TWI827888B - Cd166-targeted synthesized peptides, compositions and contrast agents thereof - Google Patents

Cd166-targeted synthesized peptides, compositions and contrast agents thereof Download PDF

Info

Publication number
TWI827888B
TWI827888B TW109135091A TW109135091A TWI827888B TW I827888 B TWI827888 B TW I827888B TW 109135091 A TW109135091 A TW 109135091A TW 109135091 A TW109135091 A TW 109135091A TW I827888 B TWI827888 B TW I827888B
Authority
TW
Taiwan
Prior art keywords
cdata
cd166tp
dtpa
gly gly
composition
Prior art date
Application number
TW109135091A
Other languages
Chinese (zh)
Other versions
TW202214672A (en
Inventor
官孝勳
羅彩月
廖澤蓉
林昆諒
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to TW109135091A priority Critical patent/TWI827888B/en
Publication of TW202214672A publication Critical patent/TW202214672A/en
Application granted granted Critical
Publication of TWI827888B publication Critical patent/TWI827888B/en

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Disclosed herein are CD166-targeted synthesized peptides, compositions and contrast agents. The synthesized peptides is capable of binding to cancer stem cells that exhibit CD166 cell markers, and accumulate in tumor, so that the synthesized peptides have potential for use as nuclear imaging agent for diagnosis.

Description

CD166 標的合成胜肽、組合物及造影劑CD166 Target synthetic peptides, compositions and contrast agents

本發明關於放射醫學造影及診斷領域,特別是關於一種能夠偵測CD166標的之合成胜肽。 The present invention relates to the field of radiological medical imaging and diagnosis, and in particular to a synthetic peptide capable of detecting the CD166 target.

有許多研究認為,腫瘤組織內有一小部分的癌症幹細胞,這類細胞對於放射或化學治療具有抗性,當大部分的腫瘤細胞因治療而死亡時,少部分的癌症幹細胞會隱藏、分化、增生,導致腫瘤再復發的情況產生。若無法正確追蹤或評估腫瘤幹細胞的狀態或位置,將無法早期獲得治療,造成癌症患者病情再度惡化。 Many studies believe that there is a small number of cancer stem cells in tumor tissue. These cells are resistant to radiation or chemotherapy. When most of the tumor cells die due to treatment, a small number of cancer stem cells will hide, differentiate, and proliferate. , leading to tumor recurrence. If the status or location of cancer stem cells cannot be accurately tracked or assessed, early treatment will not be available, causing cancer patients' condition to worsen again.

CD166是大腸癌幹細胞(colorectal cancer stem cell,CRCSCs)表面的特異性抗原蛋白。早期的結腸直腸癌若能在癌症擴散前早期治療,五年銼活率高達九成,依據研究指出目前僅為三分之一的病人是在未轉移前被發現,若發生淋巴轉移,五年存活率僅存五成左右;一但有其他遠處器官轉移,其五年存活率低於一成。在臨床上,給予化療藥物治療後,普遍仍會發現直腸癌有復發的現象,原因在於腫瘤組織內有癌症幹細胞。在臨床上,目前已有相關治療癌症幹細胞的藥物,然而尚無有效方法能夠精確偵測病灶處或個體內是否存有腫瘤幹細胞,故 無法進行有效治療,導致腫瘤再次復發。有鑑於此,本領域亟需一種新穎偵測腫瘤幹細胞的組合物,以改善先前技術的缺陷。 CD166 is a specific antigen protein on the surface of colorectal cancer stem cells (CRCSCs). If early-stage colorectal cancer can be treated early before the cancer spreads, the five-year survival rate is as high as 90%. According to research, only one-third of patients are discovered before metastasis occurs. If lymphatic metastasis occurs, the survival rate can be as high as 90% in five years. The survival rate is only about 50%; once there is metastasis to other distant organs, the five-year survival rate is less than 10%. Clinically, rectal cancer is generally found to recur after treatment with chemotherapy drugs. The reason is that there are cancer stem cells in the tumor tissue. Clinically, there are currently drugs related to the treatment of cancer stem cells. However, there is no effective method to accurately detect the presence of cancer stem cells in the lesion or within the individual. Therefore, Inability to provide effective treatment results in tumor recurrence. In view of this, there is an urgent need in the art for a novel composition for detecting cancer stem cells to improve the shortcomings of the prior art.

為了讓讀者了解本揭示內容的基本意涵,發明內容係提供本揭示內容的簡要說明。發明內容並非本揭示內容的完整描述,且其用意非界定本發明的技術特徵或權利範圍。 In order to allow readers to understand the basic meaning of the disclosure, this Summary provides a brief description of the disclosure. The Summary of the Invention is not a complete description of the present disclosure, and is not intended to define the technical features or rights scope of the present invention.

本發明一態樣是關於一種CD166標的合成胜肽,所述合成胜肽包含一結合胜肽和附加胜肽,其中該合成胜肽係選自於以下所組成之群組中:序列編號1(EGHCNNQICSNQ)、序列編號2(ETETQGTVCGGC)、序列編號3(KCDNGTVACNQT)、序列編號4(DNKCSNTAQTNG)、序列編號5(HQHGNNTIGGN)、序列編號6(DSEGNSNLCSQS)、序列編號7(KGRPQSTMPNSQ)和序列編號8(DNESSTNITQTS)之胺基酸序列,且附加胜肽與結合胜肽相連,其具有序列編號9(G18C)之胺基酸序列。 One aspect of the present invention relates to a CD166-targeted synthetic peptide. The synthetic peptide includes a binding peptide and an additional peptide, wherein the synthetic peptide is selected from the group consisting of: SEQ ID NO: 1 ( EGHCNNQICSNQ), sequence number 2 (ETETQGTVCGGC), sequence number 3 (KCDNGTVACNQT), sequence number 4 (DNKCSNTAQTNG), sequence number 5 (HQHGNNTIGGN), sequence number 6 (DSEGNSNLCSQS), sequence number 7 (KGRPQSTMPNSQ) and sequence number 8 (DNESSTNITQTS ), and the additional peptide is connected to the binding peptide, which has the amino acid sequence of sequence number 9 (G 18 C).

依據本發明一具體的實施方式,所述結合胜肽是序列編號6(DSEGNSNLCSQS)之胺基酸序列。 According to a specific embodiment of the present invention, the binding peptide is the amino acid sequence of SEQ ID NO: 6 (DSEGNSNLCSQS).

本發明另一態樣是關於一種可結合至CD166之組合物,其包含上述任一實施方式所示之合成胜肽及一螢光標記標記於該合成胜肽上。 Another aspect of the present invention relates to a composition that can bind to CD166, which includes the synthetic peptide shown in any of the above embodiments and a fluorescent label labeled on the synthetic peptide.

本發明又一態樣是關於一種可結合至CD166之組合物,在結構上所述組合物包含前述任一實施方式所示之合成胜肽、金屬螯合劑和放射線核種。所述金屬螯合劑與合成胜肽耦接,放射線核種標誌於標誌於該金屬螯合劑上。 Another aspect of the present invention relates to a composition that can be bound to CD166. Structurally, the composition includes the synthetic peptide shown in any of the preceding embodiments, a metal chelating agent and a radionuclide. The metal chelating agent is coupled with the synthetic peptide, and the radionuclide is marked on the metal chelating agent.

在可任選的實施方式中,金屬螯合劑是選自以下物質所組成的群組:1,4,7,10-四氮雜環十二烷-1,4,7,10-四乙酸 (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid,DOTA)、1,4,7-三氮雜環壬烷-1,4,7-三乙酸(1,4,7-triazacyclononane-1,4,7-triacetic acid,NOTA)、1,4,7-三氮雜環壬烷-1,4-二乙酸(1,4,7-triazacyclononane-1,4-diacetic acid,NODA)和二乙烯三胺五乙酸(diethylenetriaminepenta-acetic acid,DTPA)。 In an optional embodiment, the metal chelating agent is selected from the group consisting of: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, DOTA), 1,4,7-triazacyclononane-1,4,7-triacetic acid (1,4 ,7-triazacyclononane-1,4,7-triacetic acid, NOTA), 1,4,7-triazacyclononane-1,4-diacetic acid (1,4,7-triazacyclononane-1,4-diacetic acid acid (NODA) and diethylenetriaminepenta-acetic acid (DTPA).

在其他可任選的實施方式中,所述放射性核種是選自以下物質所組成的群組:Ga-66、Ga-67、Ga-68、Zr-89、Lu-177、In-111、I-123。在一具體的實施方式,所述放射性核種是In-111,且結合胜肽是序列編號6(DSEGNSNLCSQS)之胺基酸序列。依據本發明一實施方式所述金屬螯合劑是DTPA。 In other optional embodiments, the radioactive nuclide species is selected from the group consisting of: Ga-66, Ga-67, Ga-68, Zr-89, Lu-177, In-111, I -123. In a specific embodiment, the radioactive nuclide is In-111, and the binding peptide is the amino acid sequence of SEQ ID NO: 6 (DSEGNSNLCSQS). According to one embodiment of the present invention, the metal chelating agent is DTPA.

本發明又一態樣是關於一種造影劑,包含上述任一實施方式所述之組合物;以及一造影賦型劑。 Another aspect of the present invention relates to a contrast agent, including the composition described in any of the above embodiments; and a contrast excipient.

本發明所屬技術領域中具有通常知識者參閱下文實施方式後,可充分瞭解本發明的中心概念、所採用的技術手段及各種實施態樣。 Those with ordinary knowledge in the technical field to which the present invention belongs can fully understand the central concept, the technical means adopted and various implementation aspects of the present invention by referring to the following embodiments.

為讓本發明的上述與其他目的、特徵、優點與實施例能更明顯易懂,所述圖式說明如下:第1A圖至第1C圖為依據本發明一實施方式所示之CD166tp-G18C標的至表現CD166大腸癌細胞的結果;第2圖為依據本發明一實施方式所示111In-DTPA-CD166tp-G18C穩定試驗的結果; 第3A圖是依據本發明一實施方式所示之111In-DTPA-CD166tp-G18C之腫瘤動物模型腫瘤攝取量結果的直線圖;第3B圖是依據本發明另一實施方式所示之111In-DTPA-CD166tp-G18C競爭試驗之之腫瘤動物模型腫瘤攝取量結果的直線圖;第4圖是依據本發明一實施方式所示之111In-DTPA-CD166tp-G18C於腫瘤動物埋模型中組織生物分佈的結果的直線圖;第5圖為第4圖實施方式所示之111In-DTPA-CD166tp-G18C於腫瘤動物模型中腫瘤與肌肉、血液之比值。 In order to make the above and other objects, features, advantages and embodiments of the present invention more clearly understood, the drawings are described as follows: Figures 1A to 1C show CD166tp-G 18 according to an embodiment of the present invention. C target shows the results of expressing CD166 colorectal cancer cells; Figure 2 shows the results of the 111 In-DTPA-CD166tp-G 18 C stability test according to one embodiment of the present invention; Figure 3A shows the results according to one embodiment of the present invention. The straight line graph of the tumor uptake results of 111 In-DTPA-CD166tp-G 18 C tumor animal model; Figure 3B is a competition test of 111 In-DTPA-CD166tp-G 18 C according to another embodiment of the present invention. The straight line graph of the tumor uptake results of the tumor animal model; Figure 4 is the straight line graph of the tissue biodistribution results of 111 In-DTPA-CD166tp-G 18 C in the tumor animal model according to one embodiment of the present invention; Figure 5 shows the ratio of tumor to muscle and blood in the tumor animal model of 111 In-DTPA-CD166tp-G 18 C shown in the embodiment of Figure 4.

為使本揭示內容的敘述更加詳盡與完備,下文針對本發明實施態樣與具體實施例提出說明性的文字敘述;但本發明的實施態樣及具體實施例並非僅限於此。 In order to make the description of this disclosure more detailed and complete, illustrative text descriptions are provided below for the implementation aspects and specific examples of the present invention; however, the implementation aspects and specific examples of the present invention are not limited thereto.

除非另有說明,本說明書所用的科學與技術專有名詞之含義與本技術領域中具有通常知識者所理解與慣用的意義相同。再者,本說明書所用的名詞均涵蓋該名詞的單數型及複數型,除非另有指明。 Unless otherwise stated, the scientific and technical terms used in this specification have the same meanings as commonly understood and customary by those with ordinary knowledge in the art. Furthermore, nouns used in this specification include both singular and plural forms of the noun, unless otherwise specified.

在本說明書所述,「約」一詞通常係指實際數值在一特定數值或範圍的正負10%、5%、1%或0.5%之內。「約」一詞在本文中代表實際數值落在平均值的可接受標準誤差之內,視本發明所屬技術領域中具有通常知識者的考量而定。除了實驗例外,或除非另有明確的說明,當可理解此處所用的範圍、數量、數值與百分比均經過「約」的修飾。因此,除非另有說明,本說明書與附隨申請專利範圍所揭示的數值或參數皆為約略的數值,且可視需求而更動。 As used in this specification, the word "about" generally means that the actual value is within plus or minus 10%, 5%, 1% or 0.5% of a specific value or range. The term "about" as used herein means that actual values fall within acceptable standard errors of the mean, as would be considered by one of ordinary skill in the art to which this invention pertains. Except for experimental exceptions, or unless otherwise expressly stated, it is understood that ranges, quantities, values and percentages used herein are modified by the word "about". Therefore, unless otherwise stated, the numerical values or parameters disclosed in this specification and the accompanying patent claims are approximate values and may be changed as required.

在此所揭示的「合成胜肽」除非另有指明,一特定胺基酸序列包含保留性修飾變異,亦即氨基酸經置換或被取代後並不影響合成胜肽的活性,即,能夠結合至表現CD166的癌細胞。 Unless otherwise specified, the "synthetic peptides" disclosed herein include a specific amino acid sequence that contains conservation modifications, that is, the substitution or substitution of amino acids does not affect the activity of the synthetic peptide, that is, the ability to bind to Cancer cells expressing CD166.

「個體」一詞是指包含人類的動物,適用於本發明合成胜肽、組合物或套組的動物。除非特定指出,否則「個體」一詞同時意指雄性及雌性。 The term "individual" refers to an animal, including a human being, and is applicable to the animals for which the synthetic peptides, compositions or kits of the present invention are used. Unless otherwise stated, the term "individual" refers to both males and females.

為解決先前技術的問題,本發明創作的目的是提供一種新穎用於偵測癌症幹細胞之合成胜肽,其敏感度、專一性和穩定高,能夠長時間堆積於腫瘤組織中長達至少48小時,具有潛力作為分子核醫診斷藥物。再者,本發明所提出的合成胜肽,能夠改善先前技術的缺陷,在不必使用侵入性治療或診斷手段的情況下,透過核子醫學影像技術,能夠準確診斷處組織中是否有癌症幹細胞,使得個體能夠盡早得到相應的癌症治療。 In order to solve the problems of the prior art, the purpose of the invention is to provide a novel synthetic peptide for detecting cancer stem cells, which has high sensitivity, specificity and stability, and can accumulate in tumor tissue for a long time for at least 48 hours. , has the potential to be used as a molecular nuclear medicine diagnostic drug. Furthermore, the synthetic peptide proposed by the present invention can improve the shortcomings of the previous technology. It can accurately diagnose whether there are cancer stem cells in the tissue through nuclear medical imaging technology without using invasive treatment or diagnostic means, so that Individuals can get appropriate cancer treatment as early as possible.

下文揭示多個實施例以闡述本發明各種不同的實施態樣,以使本發明所屬技術領域中具有通常知識者依據本說明書的揭示能夠實施本發明所揭示技術內容。因此,以下所揭示的各實施例不可用以限制本發明的權利範圍。再者,本說明書所引述的所有文獻,皆視為完全引用成為本說明書的一部分。 Multiple embodiments are disclosed below to illustrate various implementation aspects of the present invention, so that those with ordinary knowledge in the technical field to which the present invention belongs can implement the technical content disclosed in the present invention based on the disclosure of this specification. Therefore, the embodiments disclosed below cannot be used to limit the scope of rights of the present invention. Furthermore, all documents cited in this specification are deemed to be fully cited and become part of this specification.

實驗例1 本發明之合成胜肽Experimental Example 1 Synthetic peptide of the present invention

本發明合成胜肽是以化學合成法所合成,其具體內容參見如表1:

Figure 109135091-A0305-02-0006-1
Figure 109135091-A0305-02-0007-3
The synthetic peptide of the present invention is synthesized by a chemical synthesis method, and its specific content is shown in Table 1:
Figure 109135091-A0305-02-0006-1
Figure 109135091-A0305-02-0007-3

實驗例2 本發明合成胜肽能夠結合至表現CD166之細胞Experimental Example 2 The synthetic peptide of the present invention can bind to cells expressing CD166

本實驗例以流式細胞儀分析,合成胜肽是否能夠結合至CD166陽性大腸癌。在此實施例中,係以CD166tp-G18C進行試驗。具體而言,本發明CD166tp-G18C是於CD166tp的C端更延長附加序列G18C,而製得序列編號11之胺基酸序列,所述CD166tp-G18C於體內循環的期間較長。 This experimental example uses flow cytometry to analyze whether the synthetic peptide can bind to CD166-positive colorectal cancer. In this example, CD166tp-G 18 C was tested. Specifically, the CD166tp-G 18 C of the present invention further extends the additional sequence G 18 C at the C-terminus of CD166tp to obtain the amino acid sequence of SEQ ID NO: 11. The CD166tp-G 18 C has a relatively long circulation period in the body. long.

再者,為了測試CD166tp-G18C的結合能力,具體實施方法參見如後。將CD166陽性大腸癌細胞(CD166+HCT15細胞)和CD166陰性大腸癌(CD166- HCT15細胞)以標誌有螢光物質FITC之CD166tp-G18C(20μg/mL)(即,CD166tp-G18C-FITC)處理1小時。在競爭試驗中,CD166+HCT15細胞以CD166tp-G18C(20μg/mL)預處理1小時,再以CD166tp-G18C-FITC(20μg/mL)處理1小時,結果示於第1A圖。數據以mean+SD表示(n

Figure 109135091-A0305-02-0007-4
3)。*P<0.05,vs(CD166- HCT15)CD166tp-G18C-FITC;#P<0.05,vs(CD166+ HCT15)CD166tp-G18C-FITC。如第1A圖的結果顯示,在CD166+HCT15細胞中,CD166tp-G18C-FITC螢光強度顯著增加,但並未發現於CD166- HCT15細胞。在競爭試驗的結果中,以非螢光CD166tp-G18C預處理的組別,CD166tp-G18C-FITC在CD166+ HCT15細胞中結合能力顯著降低。利用免疫螢光分析進一步測定CD166+和CD166- HCT15細胞中CD166tp-G18C-FITC結合能力。螢光影像的結果顯示相較於CD166- HCT15的結果,CD166+ HCT15 中CD166tp-G18C-FITC結合能力增加(第1B圖)。進一步確認CD166tp-G18C-FITC標的至CD166是否在CD166+ HCT15細胞的表面。CD166tp-G18C和CD166蛋白交互作用的分析結果,請參見第1C圖。CD166+ HCT15和CD166- HCT15細胞以CD166tp-G18C-FITC(20μg/mL)處理1小時。收集上清液,以生物素化CD166多株抗體(2μg/mL)處理或未處理含streptavidin瓊膠珠(4℃隔夜)。以ELISA分析免疫沈澱物的螢光訊號。競爭抑制試驗以CD166tp-G18C(20μg/mL)預處理。數據以mean±SD(n
Figure 109135091-A0305-02-0008-5
3).*P<0.05表示。結果顯示依照免疫沈澱分析的結果,以CD166抗體進行測定,結果顯示透過與CD166蛋白的交互作用,CD166tp-G18C-FITC能夠結合至CD166+ HCT15細胞,但不能結合至CD166- HCT15細胞。且CD166tp-G18C-FITC結合的增加,能夠被非螢光CD166tp-G18C預處理所抑制。 Furthermore, in order to test the binding ability of CD166tp-G 18 C, the specific implementation method is as follows. CD166-positive colorectal cancer cells (CD166 + HCT15 cells) and CD166-negative colorectal cancer cells (CD166 - HCT15 cells) were treated with CD166tp-G 18 C (20 μg/mL) labeled with the fluorescent substance FITC (i.e., CD166tp-G 18 C- FITC) for 1 hour. In the competition experiment, CD166 + HCT15 cells were pretreated with CD166tp-G 18 C (20 μg/mL) for 1 hour and then treated with CD166tp-G 18 C-FITC (20 μg/mL) for 1 hour. The results are shown in Figure 1A. Data are expressed as mean + SD (n
Figure 109135091-A0305-02-0007-4
3). *P<0.05, vs (CD166 - HCT15) CD166tp-G 18 C-FITC; #P < 0.05, vs (CD166 + HCT15) CD166tp-G 18 C-FITC. As shown in Figure 1A, the fluorescence intensity of CD166tp-G 18 C-FITC increased significantly in CD166 + HCT15 cells, but was not found in CD166 - HCT15 cells. In the results of the competition test, the binding ability of CD166tp-G 18 C-FITC in CD166 + HCT15 cells was significantly reduced in the group pretreated with non-fluorescent CD166tp-G 18 C. Immunofluorescence analysis was used to further determine the CD166tp-G 18 C-FITC binding ability in CD166 + and CD166 HCT15 cells. The results of fluorescence imaging showed that compared with the results of CD166 - HCT15, CD166tp-G 18 C-FITC binding capacity was increased in CD166 + HCT15 (Figure 1B). Further confirm whether CD166tp-G 18 C-FITC is labeled on the surface of CD166 + HCT15 cells. For analysis of the interaction between CD166tp-G 18 C and CD166 proteins, see Figure 1C. CD166 + HCT15 and CD166 HCT15 cells were treated with CD166tp-G 18 C-FITC (20 μg/mL) for 1 hour. The supernatant was collected and treated with biotinylated CD166 polyclonal antibody (2 μg/mL) or untreated streptavidin-containing agar beads (overnight at 4°C). The fluorescent signal of the immunoprecipitate was analyzed by ELISA. Competitive inhibition assay was pretreated with CD166tp-G 18 C (20 μg/mL). Data are expressed as mean±SD(n
Figure 109135091-A0305-02-0008-5
3).*P<0.05 means. The results showed that according to the results of immunoprecipitation analysis, the CD166 antibody was used to measure the results. The results showed that through the interaction with the CD166 protein, CD166tp-G 18 C-FITC could bind to CD16 6+ HCT15 cells, but could not bind to CD166- HCT15 cells. And the increase in CD166tp-G 18 C-FITC binding can be inhibited by non-fluorescent CD166tp-G 18 C pretreatment.

實施例3 製備DTPA-CD166tp-G18C Example 3 Preparation of DTPA-CD166tp-G 18 C

為了合成接合DTPA之CD166tp-G18C(DTPA-CD166tp-G18C),CD166tp-G18C和maleimide-DTPA(w/w 1:50)溶於碳酸鈉緩衝液(pH 8.0)8小時,接著將反應混合物以HPLC(Ultimate 3000;Thermo Dionex,Sunnyvale,CA,USA)純化,其中利用C18管柱、線性梯度10至80%乙腈/水(0.1%三氟乙酸),處理30分鐘,流速0.3毫升/分鐘。利用基質輔助雷射脫附飛行時間質譜儀(matrix-assisted laser desorption/ionization time-of-flight)質譜分析(ultraflexIII MS TOFTOF;Bruker Daltonics,Billerica,MA,USA)偵測maleimide-DTPA、CD166tp-G18C和DTPA-CD166tpG18C的分子量。以FlexAnalysisTM 3.0軟體(Bruker Daltonics)處理質譜結果。依照分析的結果顯示,maleimide-DTPA之分子量為630.51、 CD166tp-G18C之分子量為2372.09,以及DTPA-CD166tpG118C的分子量為3001.63。 In order to synthesize DTPA-conjugated CD166tp-G 18 C (DTPA-CD166tp-G 18 C), CD166tp-G 18 C and maleimide-DTPA (w/w 1:50) were dissolved in sodium carbonate buffer (pH 8.0) for 8 hours. The reaction mixture was then purified by HPLC (Ultimate 3000; Thermo Dionex, Sunnyvale, CA, USA) using a C18 column, linear gradient 10 to 80% acetonitrile/water (0.1% trifluoroacetic acid), 30 min, flow rate 0.3 ml/min. Detection of maleimide-DTPA and CD166tp-G using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (ultraflexIII MS TOFTOF; Bruker Daltonics, Billerica, MA, USA) Molecular weight of 18 C and DTPA-CD166tpG 18 C. Mass spectrometry results were processed with FlexAnalysis TM 3.0 software (Bruker Daltonics). According to the analysis results, the molecular weight of maleimide-DTPA is 630.51, the molecular weight of CD166tp-G 18 C is 2372.09, and the molecular weight of DTPA-CD166tpG1 18 C is 3001.63.

實施例4 製備111In-DTPA-CD166tp-G18C Example 4 Preparation of 111 In-DTPA-CD166tp-G 18 C

於放射線核種的標示步驟上,0.1mg DTPA-CD166tp-G18C和370MBq In-111於PBS緩衝液(pH 7.4)中反應,在室溫下反應1小時,製得111In-DTPA-CD166tp-G18C。接著,以即時薄層色層分析(instant thin-layer chromatography,ITLC)偵測標誌效率。依照即時薄層色層分析的測定結果顯示,111In-DTPACD166tp-G18C標誌效率大於98%。 In the labeling step of radionuclide, 0.1mg DTPA-CD166tp-G 18 C and 370MBq In-111 were reacted in PBS buffer (pH 7.4) for 1 hour at room temperature to prepare 111 In-DTPA-CD166tp- G18C . Next, instant thin-layer chromatography (ITLC) was used to detect the labeling efficiency. According to the measurement results of real-time thin layer chromatography analysis, the 111 In-DTPACD166tp-G 18 C labeling efficiency is greater than 98%.

實施例5 111In-DTPA-CD166tp-G18C穩定度分析 Example 5 111 In-DTPA-CD166tp-G 18 C stability analysis

將實施例18.5MBq 111In-DTPA-CD166tp-G18C分別培養於含人類血清、胎牛血清或小鼠血清的培養盤(6cm)中,於37℃培養至144小時,。每24小時以ITLC在矽膠浸漬玻璃纖維板上(PALL公司,USA)偵測111InDTPA-CD166tp-G18C放射線標記的產率,利用PBS緩衝液(pH 7.4)作為移動相,結果以mean±SD(n=5)表示(第2圖)。結果顯示,111InDTPA-CD166tp-G18C無論在何種血清樣本中,經過144小時的期間,其標誌效率皆大於98%,穩定性佳。 Example 18.5MBq 111 In-DTPA-CD166tp-G 18 C were cultured in culture dishes (6cm) containing human serum, fetal calf serum or mouse serum, and cultured at 37°C for 144 hours. The yield of 111 InDTPA-CD166tp-G 18 C radioactive labeling was detected by ITLC on silica-impregnated glass fiber plates (PALL Company, USA) every 24 hours, using PBS buffer (pH 7.4) as the mobile phase, and the results were expressed as mean±SD (n=5) represents (Fig. 2). The results showed that no matter what kind of serum samples 111 InDTPA-CD166tp-G 18 C was used in, the labeling efficiency was greater than 98% after 144 hours, and the stability was good.

實施例6 111In-DTPA-CD166tp-G18C對於大腸癌動物的治療效果 Example 6 Therapeutic effect of 111 In-DTPA-CD166tp-G 18 C on animals with colorectal cancer

BALB/c小鼠於右後腿皮下注射CD166+人類大腸癌細胞(HCT15,1╳106個),並使其生長兩週後,靜脈注射111In-DTPA、111In-DTPA-G18C和111In-DTPA-CD166tp-G18C(740MBq/kg/小鼠)。於第2、4、24、48小時進行nanoSPE CT/CT影像分析。在競爭試驗中,將CD166+HTC15異種移植小鼠先以CD166tp-G 18C(0、10和50mg/kg)處理6小時,每隻小鼠接著分別接受靜脈注射111In-DTPA-CD166tp-G18C(740MBq/kg/小鼠),並於於第24和48小時進行nanoSPECT/CT影像分析,並以3D分析軟體進行定量分析。結果顯示,在第3A圖中,相較於控制組(如,111In-DTPA、111In-DTPA-G18C和111In-DTPA-CD166tp-C)),111In-DTPA-CD166tp-G18C堆積於腫瘤的量顯著增加,數據以mean±SD(n

Figure 109135091-A0305-02-0010-6
3)顯示,*P<0.05,vs對照組。競爭試驗的結果,請參見第3B圖,數據以mean±SD(n=3)顯示。*P<0.05,vs 100mm3(CD166-HCT15);#P<0.05,vs 150mm3(CD166-HCT15)。由此可以證實,本發明111In-DTPA-CD166tp-G18C能夠專一性的聚積在腫瘤處,腫瘤攝取量佳,並且堆積於腫瘤處的時間長,能夠延長作用期間。 BALB/c mice were subcutaneously injected with CD166 + human colorectal cancer cells (HCT15, 1╳10 6 cells) in the right hind leg and allowed to grow for two weeks. After that, 111 In-DTPA and 111 In-DTPA-G 18 C were injected intravenously. and 111 In-DTPA-CD166tp-G 18 C (740 MBq/kg/mouse). NanoSPE CT/CT image analysis was performed at 2, 4, 24, and 48 hours. In competition experiments, CD166 + HTC15 xenograft mice were first treated with CD166tp-G 18 C (0, 10 and 50 mg/kg) for 6 hours, and each mouse then received an intravenous injection of 111 In-DTPA-CD166tp-G. 18 C (740MBq/kg/mouse), and nanoSPECT/CT image analysis was performed at 24 and 48 hours, and quantitative analysis was performed using 3D analysis software. The results show that in Figure 3A, compared to the control group (e.g., 111 In-DTPA, 111 In-DTPA-G 18 C and 111 In-DTPA-CD166tp-C), 111 In-DTPA-CD166tp-G The amount of 18 C accumulated in tumors increased significantly, and the data are expressed as mean ± SD (n
Figure 109135091-A0305-02-0010-6
3) Display, *P<0.05, vs control group. For the results of the competition experiment, see Figure 3B, data are shown as mean±SD (n=3). *P<0.05, vs 100mm 3 (CD166 - HCT15); #P<0.05, vs 150mm 3 (CD166 - HCT15). It can be confirmed from this that the 111 In-DTPA-CD166tp-G 18 C of the present invention can specifically accumulate at the tumor, has good tumor uptake, and accumulates at the tumor for a long time, which can prolong the action period.

實施例7 Example 7 111111 InDTPA-CD166tp-GInDTPA-CD166tp-G 1818 C大腸癌動物生物分佈C colorectal cancer animal biodistribution

BALB/c小鼠於右後腿皮下注射CD166+人類大腸癌細胞(HCT15,1╳106個),並使腫瘤形成後,靜脈注射111In-DTPA、111In-DTPA-G18C和111In-DTPA-CD166tp-G18C(148MBq/kg/小鼠)。動物給藥後第2、4、24、48小時進行動物犧牲取器官(腦、心、肺、肝、腎、脾、胃、大腸、小腸、腫瘤、肌肉、血液),量秤組織器官之重量,並於γ計數器(gamma counter)計讀放射活度。以每克組織(g)的放射性計數占總注入(Injected Dose,ID)的放射性計數的百分比(%)為單位(%ID/g),作長條圖表示。數據表示為平均值±SEM(n=3)。 BALB/c mice were subcutaneously injected with CD166 + human colorectal cancer cells (HCT15, 1╳10 6 cells) in the right hind leg, and after tumor formation, 111 In-DTPA, 111 In-DTPA-G 18 C and 111 were injected intravenously. In-DTPA-CD166tp-G 18 C (148MBq/kg/mouse). Animals were sacrificed at 2, 4, 24, and 48 hours after administration to collect organs (brain, heart, lungs, liver, kidney, spleen, stomach, large intestine, small intestine, tumor, muscle, and blood), and the weight of the tissues and organs was measured. , and read the radioactivity on a gamma counter. The radioactive count per gram of tissue (g) is expressed as a bar graph as a percentage (%) of the total radioactive count injected (Injected Dose, ID) as the unit (%ID/g). Data are expressed as mean±SEM (n=3).

生物分佈分析的結果示於第4和第5圖。在第4圖中,相較於對照組(111In-DTPA、111In-DTPA-G18C和111In-DTPA-CD166tp-C),111In-DTPA-CD166tp-G18C在腫瘤組織中放射核種訊號最強。再者,評估以111In-DTPA、111In-DTPA-G18C、111InDTPA-CD166tp-C-或111In-DTPA-CD166tp-G18C處理之CD166+ HCT-15異種移植小鼠的腫瘤/肌肉比(T/M)和腫瘤/血液比(T/B)。相較於對照組(111In-DT PA、111In-DTPA-G18C和111In-DTPA-CD166tp-C),經111In-DTPACD166tp-G18C處理組中,T/M和T/B比顯著增加,該些結果顯示111In-DTPA-CD166tp-G18C於CD16 6+大腸癌腫瘤組織有標的效力。 The results of the biodistribution analysis are shown in Figures 4 and 5. In Figure 4, compared to the control group ( 111 In-DTPA, 111 In-DTPA-G 18 C and 111 In-DTPA-CD166tp-C), 111 In-DTPA-CD166tp-G 18 C in tumor tissue The radionuclide signal is the strongest. Furthermore, tumors in CD166 + HCT-15 xenograft mice treated with 111 In-DTPA, 111 In-DTPA-G 18 C, 111 InDTPA-CD166tp-C-, or 111 In-DTPA-CD166tp-G 18 C were evaluated /muscle ratio (T/M) and tumor/blood ratio (T/B). Compared with the control group ( 111 In-DTPA, 111 In-DTPA-G 18 C and 111 In-DTPA-CD166tp-C), in the 111 In-DTPACD166tp-G 18 C treated group, T/M and T/ The B ratio was significantly increased, and these results show that 111 In-DTPA-CD166tp-G 18 C has targeting efficacy in CD16 6 + colorectal cancer tumor tissues.

綜上以上試驗結果能夠證實本發明所提出的合成胜肽能夠偵測大腸癌腫瘤組織中CD166+癌細胞,具有潛力成為新穎的診斷胜肽及癌症治療藥物。 In summary, the above test results can confirm that the synthetic peptide proposed by the present invention can detect CD166 + cancer cells in colorectal cancer tumor tissue, and has the potential to become a novel diagnostic peptide and cancer treatment drug.

                        SEQUENCE LISTING
          <![CDATA[<110> 行政院原子能委員會核能研究所]]>
          <![CDATA[<120> CD166 標的合成胜肽、組合物及造影劑]]>
          <![CDATA[<130> 1090133]]>
          <![CDATA[<160> 11]]>
          <![CDATA[<170> BiSSAP 1.3.6]]>
          <![CDATA[<210> 1]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166eg]]>
          <![CDATA[<400> 1]]>
          Glu Gly His Cys Asn Asn Gln Ile Cys Ser Asn Gln 
          1               5                   10          
          <![CDATA[<210> 2]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166et]]>
          <![CDATA[<400> 2]]>
          Glu Thr Glu Thr Gln Gly Thr Val Cys Gly Gly Cys 
          1               5                   10          
          <![CDATA[<210> 3]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166kc]]>
          <![CDATA[<400> 3]]>
          Lys Cys Asp Asn Gly Thr Val Ala Cys Asn Gln Thr 
          1               5                   10          
          <![CDATA[<210> 4]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166dn]]>
          <![CDATA[<400> 4]]>
          Asp Asn Lys Cys Ser Asn Thr Ala Gln Thr Asn Gly 
          1               5                   10          
          <![CDATA[<210> 5]]>
          <![CDATA[<211> 11]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166hq]]>
          <![CDATA[<400> 5]]>
          His Gln His Gly Asn Asn Thr Ile Gly Gly Asn 
          1               5                   10      
          <![CDATA[<210> 6]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166tp]]>
          <![CDATA[<400> 6]]>
          Asp Ser Glu Gly Asn Ser Asn Leu Cys Ser Gln Ser 
          1               5                   10          
          <![CDATA[<210> 7]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166kg]]>
          <![CDATA[<400> 7]]>
          Lys Gly Arg Pro Gln Ser Thr Met Pro Asn Ser Gln 
          1               5                   10          
          <![CDATA[<210> 8]]>
          <![CDATA[<211>]]> 12
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166dne]]>
          <![CDATA[<400> 8]]>
          Asp Asn Glu Ser Ser Thr Asn Ile Thr Gln Thr Ser 
          1               5                   10          
          <![CDATA[<210> 9]]>
          <![CDATA[<211> 19]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;G18C]]>
          <![CDATA[<400> 9]]>
          Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly 
          1               5                   10                  15      
          Gly Gly Cys 
          <![CDATA[<210> 10]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166tp-C]]>
          <![CDATA[<400> 10]]>
          Ser Glu Gly Asn Ser Asn Leu Cys Ser Gln Ser Cys 
          1               5                   10          
          <![CDATA[<210> 11]]>
          <![CDATA[<211> 31]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166tp-G18C]]>
          <![CDATA[<40]]>0> 11]]&gt;
          <br/><![CDATA[Asp Ser Glu Gly Asn Ser Asn Leu Cys Ser Gln Ser Gly Gly Gly Gly 
          1               5                   10                  15      
          Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Cys 
                      20                  25                  30      
                         SEQUENCE LISTING
          <![CDATA[<110> Nuclear Energy Research Institute of the Atomic Energy Commission of the Executive Yuan]]>
          <![CDATA[<120> CD166-targeted synthetic peptides, compositions and contrast agents]]>
          <![CDATA[<130> 1090133]]>
          <![CDATA[<160> 11]]>
          <![CDATA[<170> BiSSAP 1.3.6]]>
          <![CDATA[<210> 1]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166eg]]>
          <![CDATA[<400> 1]]>
          Glu Gly His Cys Asn Asn Gln Ile Cys Ser Asn Gln
          1 5 10
          <![CDATA[<210> 2]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166et]]>
          <![CDATA[<400> 2]]>
          Glu Thr Glu Thr Gln Gly Thr Val Cys Gly Gly Cys
          1 5 10
          <![CDATA[<210> 3]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166kc]]>
          <![CDATA[<400> 3]]>
          Lys Cys Asp Asn Gly Thr Val Ala Cys Asn Gln Thr
          1 5 10
          <![CDATA[<210> 4]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166dn]]>
          <![CDATA[<400> 4]]>
          Asp Asn Lys Cys Ser Asn Thr Ala Gln Thr Asn Gly
          1 5 10
          <![CDATA[<210> 5]]>
          <![CDATA[<211> 11]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166hq]]>
          <![CDATA[<400> 5]]>
          His Gln His Gly Asn Asn Thr Ile Gly Gly Asn
          1 5 10
          <![CDATA[<210> 6]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166tp]]>
          <![CDATA[<400> 6]]>
          Asp Ser Glu Gly Asn Ser Asn Leu Cys Ser Gln Ser
          1 5 10
          <![CDATA[<210> 7]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166kg]]>
          <![CDATA[<400> 7]]>
          Lys Gly Arg Pro Gln Ser Thr Met Pro Asn Ser Gln
          1 5 10
          <![CDATA[<210> 8]]>
          <![CDATA[<211>]]> 12
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166dne]]>
          <![CDATA[<400> 8]]>
          Asp Asn Glu Ser Ser Thr Asn Ile Thr Gln Thr Ser
          1 5 10
          <![CDATA[<210> 9]]>
          <![CDATA[<211> 19]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;G18C]]>
          <![CDATA[<400> 9]]>
          Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly
          1 5 10 15
          Gly Gly Cys
          <![CDATA[<210> 10]]>
          <![CDATA[<211> 12]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166tp-C]]>
          <![CDATA[<400> 10]]>
          Ser Glu Gly Asn Ser Asn Leu Cys Ser Gln Ser Cys
          1 5 10
          <![CDATA[<210> 11]]>
          <![CDATA[<211> 31]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> synthetic;CD166tp-G18C]]>
          <![CDATA[<40]]>0> 11]]&gt;
          <br/><![CDATA[Asp Ser Glu Gly Asn Ser Asn Leu Cys Ser Gln Ser Gly Gly Gly Gly
          1 5 10 15
          Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Cys
                      20 25 30
          
      

Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0001

Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0002

Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0003

Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0004

Claims (8)

一種結合至CD166之合成胜肽,包含:一結合胜肽,其具有一序列編號6(DSEGNSNLCSQS)之胺基酸序列;以及一附加胜肽,與該結合胜肽相連,其具有序列編號9(G18C)之胺基酸序列。 A synthetic peptide that binds to CD166, comprising: a binding peptide having an amino acid sequence of sequence number 6 (DSEGNSNLCSQS); and an additional peptide connected to the binding peptide having sequence number 9 ( Amino acid sequence of G 18 C). 一種結合CD166之組合物,包含:如請求項1所述之合成胜肽;以及一螢光標記,標記於該合成胜肽上。 A composition that binds CD166, comprising: the synthetic peptide as described in claim 1; and a fluorescent label labeled on the synthetic peptide. 一種結合CD166之組合物,包含:如請求項1所述之合成胜肽;一金屬螯合劑,與該合成胜肽耦接;以及一放射線核種,標誌於該標誌於該金屬螯合劑上。 A composition that binds to CD166, comprising: the synthetic peptide as described in claim 1; a metal chelating agent coupled to the synthetic peptide; and a radioactive nuclide marked on the metal chelating agent. 如請求項3所述之組合物,其中該金屬螯合劑是選自以下物質所組成的群組:1,4,7,10-四氮雜環十二烷-1,4,7,10-四乙酸(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid,DOTA)、1,4,7-三氮雜環壬烷-1,4,7-三乙酸(1,4,7-triazacyclononane-1,4,7-triacetic acid,NOTA)、1,4,7-三氮雜環壬烷-1,4-二乙酸(1,4,7-triazacyclononane-1,4-diacetic acid,NODA)和二乙烯三胺五乙酸(diethylenetriaminepenta-acetic acid,DTPA)。 The composition of claim 3, wherein the metal chelating agent is selected from the group consisting of: 1,4,7,10-tetraazacyclododecane-1,4,7,10- Tetraacetic acid (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, DOTA), 1,4,7-triazacyclononane-1,4,7-triacetic acid (1 ,4,7-triazacyclononane-1,4,7-triacetic acid, NOTA), 1,4,7-triazacyclononane-1,4-diacetic acid (1,4,7-triazacyclononane-1,4 -diacetic acid (NODA) and diethylenetriaminepenta-acetic acid (DTPA). 如請求項3所述之組合物,其中該放射性核種是選自以下物質所組成的群組:Ga-66、Ga-67、Ga-68、Zr-89、Lu-177、In-111、I-123。 The composition of claim 3, wherein the radioactive nuclide is selected from the group consisting of: Ga-66, Ga-67, Ga-68, Zr-89, Lu-177, In-111, I -123. 如請求項5所述之組合物,其中放射性核種是In-111。 The composition of claim 5, wherein the radioactive nuclide is In-111. 如請求項5所述之組合物,其中該金屬螯合劑是DTPA。 The composition of claim 5, wherein the metal chelating agent is DTPA. 一種造影劑,包含:如請求項4所示之組合物;以及一造影賦型劑。 A contrast agent, comprising: the composition shown in claim 4; and a contrast excipient.
TW109135091A 2020-10-12 2020-10-12 Cd166-targeted synthesized peptides, compositions and contrast agents thereof TWI827888B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109135091A TWI827888B (en) 2020-10-12 2020-10-12 Cd166-targeted synthesized peptides, compositions and contrast agents thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109135091A TWI827888B (en) 2020-10-12 2020-10-12 Cd166-targeted synthesized peptides, compositions and contrast agents thereof

Publications (2)

Publication Number Publication Date
TW202214672A TW202214672A (en) 2022-04-16
TWI827888B true TWI827888B (en) 2024-01-01

Family

ID=82197183

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109135091A TWI827888B (en) 2020-10-12 2020-10-12 Cd166-targeted synthesized peptides, compositions and contrast agents thereof

Country Status (1)

Country Link
TW (1) TWI827888B (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Strohl1 WR, "Fusion Proteins for Half-Life Extension of Biologics as a Strategy to Make Biobetters", BioDrugs, Vol. 29, Issue 4, CrossMark, 16 July 2015, Pages 215-239

Also Published As

Publication number Publication date
TW202214672A (en) 2022-04-16

Similar Documents

Publication Publication Date Title
WO2021238842A1 (en) Her2 affibody, diagnostic or therapeutic nuclide-labeled substance, and preparation method for nuclide-labeled substance and application of nuclide-labeled substance
CN108434468B (en) Radioiodinated protein binding ligand and application thereof
US20140271467A1 (en) Probes and methods of imaging non-hodgkins lymphoma
US20110117012A1 (en) Radiolabeled gallium complexes, methods for synthesis and use for pet imaging of egfr expression in malignant tumors
Escudero-Castellanos et al. Synthesis and preclinical evaluation of the 177Lu-DOTA-PSMA (inhibitor)-Lys3-bombesin heterodimer designed as a radiotheranostic probe for prostate cancer
AU2020367415A1 (en) RI-labeled humanized antibody
Zhou et al. Synthesis and in vitro and in vivo evaluation of hypoxia-enhanced 111In-bombesin conjugates for prostate cancer imaging
EP3077407A1 (en) Compounds and compositions for imaging gcc-expressing cells
CN107308466B (en) Polypeptide with tumor blood vessel targeting property, molecular probe, preparation method and application thereof
Mozaffari et al. Synthesis and preliminary evaluation of a new 99mTc labeled substance P analogue as a potential tumor imaging agent
TW202120016A (en) Dual-targeted carbonic anhydrase ix complex and a contrast agent thereof
Zhao et al. Evaluation of 68 Ga-labeled iNGR peptide with tumor-penetrating motif for microPET imaging of CD13-positive tumor xenografts
CN114195868A (en) Radionuclide-labeled virus receptor binding domain and preparation method and application thereof
Gniazdowska et al. Synthesis, physicochemical and biological evaluation of technetium-99m labeled lapatinib as a novel potential tumor imaging agent of Her-2 positive breast cancer
US20150050213A1 (en) Compositions and methods for imaging inflammation of traumatic brain injury
WO2023184839A1 (en) Preparation of novel probe 99mtc-labeled affinity targeting tumor pd-l1
TWI827888B (en) Cd166-targeted synthesized peptides, compositions and contrast agents thereof
Zhao et al. Validation study of 131I‑RRL: Assessment of biodistribution, SPECT imaging and radiation dosimetry in mice
WO2022183689A1 (en) Her2 affibody radionuclide marker composition and application thereof
Mirshojaei et al. Freeze-dried cold kit for preparation of 99mTc-ciprofloxacin as an infection imaging agent
WO2020238800A1 (en) Targeted radiopharmaceuticals for tumors, and combination therapy of targeted radiotherapy thereof and immunotherapy under guidance of images
Zhang et al. Synthesis and biological evaluation of a new nitroimidazole-99mTc-complex for imaging of hypoxia in mice model
Shirmardi et al. Synthesis and biodistribution study of a chlorotoxin derivative peptide labeled with 131-iodine for tumor therapy
EP0700930B1 (en) Tumor affinity peptide, and radioactive diagnostic agent and radioactive therapeutic agent containing the peptide
Alonso Martínez et al. Development of 90 Y-DOTA-nimotuzumab Fab fragment for radioimmunotherapy