TWI826873B - Pesticide spraying planning method and pesticide spraying system - Google Patents

Pesticide spraying planning method and pesticide spraying system Download PDF

Info

Publication number
TWI826873B
TWI826873B TW110145555A TW110145555A TWI826873B TW I826873 B TWI826873 B TW I826873B TW 110145555 A TW110145555 A TW 110145555A TW 110145555 A TW110145555 A TW 110145555A TW I826873 B TWI826873 B TW I826873B
Authority
TW
Taiwan
Prior art keywords
path
tree species
target tree
pesticide spraying
old
Prior art date
Application number
TW110145555A
Other languages
Chinese (zh)
Other versions
TW202324273A (en
Inventor
黃悅民
陳靜茹
黃雅鈺
李元碩
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW110145555A priority Critical patent/TWI826873B/en
Publication of TW202324273A publication Critical patent/TW202324273A/en
Application granted granted Critical
Publication of TWI826873B publication Critical patent/TWI826873B/en

Links

Images

Abstract

The present disclosure provides a pesticide spraying planning method including a target specie obtaining step, a random path generating step, a new path generating step, an old path and new path selecting step and a path deciding step. In the target specie obtaining step, a target specie dataset of a target specie in a target area is obtained, and the target specie dataset includes a plurality of points. In the random path generating step, a plurality of old paths are generated based on the points. In the new path generating step, a genetic algorithm is used to generate new paths. In the old path and new path selecting step, a simulate anneal arithmetic is used to select the old path or the corresponding new path. In the path deciding step, the path of the final updated path group, whose distance is shortest, is selected. Therefore, the suitable pesticide spraying path can be quickly found.

Description

農藥噴灑規劃方法及農藥噴灑系統Pesticide spraying planning method and pesticide spraying system

本發明有關一種噴灑規劃方法及噴灑系統,且尤其是有關一種農藥噴灑規劃方法及農藥噴灑系統。The present invention relates to a spray planning method and a spray system, and in particular, to a pesticide spray planning method and a pesticide spray system.

台灣農業從業人口老化,勞動力不足,且坡地地形需大量勞動力進行農藥噴灑,故有業者發明以無人機噴灑農藥,以節省勞動力,此種無人機又可稱為植保無人機。Taiwan's agricultural workforce is aging and the labor force is insufficient, and the sloping terrain requires a large number of laborers to spray pesticides. Therefore, some industry players have invented the use of drones to spray pesticides to save labor. Such drones can also be called plant protection drones.

由於植保無人機並無人操控,因此需依其設定之路徑飛行,習知一種飛行方式是計算出整個果樹面積,並取得果樹左邊緣的地座標,讓植保無人機由左邊緣處以方波方式往右噴灑,直至完成整個噴藥為止。然而,此種方式並未考慮到不同的樹種,且飛行路徑未考慮到路徑的有效性,而仍有其待改善之處。Since the plant protection drone is not controlled by anyone, it needs to fly according to its set path. One known flight method is to calculate the area of the entire fruit tree and obtain the coordinates of the left edge of the fruit tree, so that the plant protection drone moves from the left edge to the direction in a square wave. Spray right until the entire spray is complete. However, this method does not take into account different tree species, and the flight path does not take into account the effectiveness of the path, and there is still room for improvement.

因此,當一目標區域包含多個樹種時,如何依目標樹種的分佈大小及位置來快速設定較佳且較有效率之一農藥噴灑路徑,一直是相關領域欲解決的問題。Therefore, when a target area contains multiple tree species, how to quickly set a better and more efficient pesticide spraying path based on the distribution size and location of the target tree species has always been a problem to be solved in related fields.

為了解決上述問題,本發明提供一種農藥噴灑規劃方法及農藥噴灑系統,透過基因遺傳演算法及模擬退火演算法快速規劃出較有效率的一農藥噴灑路徑。In order to solve the above problems, the present invention provides a pesticide spraying planning method and a pesticide spraying system, which quickly plans a more efficient pesticide spraying path through genetic algorithm and simulated annealing algorithm.

依據本發明一實施方式提供一種農藥噴灑規劃方法,其包含一目標樹種資訊取得步驟、一隨機路徑產生步驟、一新路徑產生步驟、一新舊路徑選擇步驟以及一路徑決定步驟。於目標樹種資訊取得步驟中,取得一目標地區有關一目標樹種的一目標樹種資訊,目標樹種資訊包含複數點位。於隨機路徑產生步驟中,以前述複數點位隨機排序以產生複數舊路徑,並得到初始的一路徑組。於新路徑產生步驟中,利用一基因遺傳演算法使各舊路徑中至少二點位的順序變更以產生一新路徑。於新舊路徑選擇步驟中,利用一模擬退火演算法對至少一舊路徑及其對應之新路徑做選擇,以決定保留前述至少一舊路徑或保留其對應之新路徑,並得到更新後的路徑組。於路徑決定步驟中,以一預設次數重覆新路徑產生步驟及新舊路徑選擇步驟,取最終更新後的路徑組中之距離最短者,定義為一農藥噴灑路徑。According to an embodiment of the present invention, a pesticide spraying planning method is provided, which includes a target tree species information acquisition step, a random path generation step, a new path generation step, a new and old path selection step, and a path determination step. In the target tree species information obtaining step, a target tree species information related to a target tree species in a target area is obtained, and the target tree species information includes plural points. In the random path generation step, the plurality of points are randomly sorted to generate a plurality of old paths, and an initial path group is obtained. In the new path generating step, a genetic algorithm is used to change the order of at least two points in each old path to generate a new path. In the old and new path selection step, a simulated annealing algorithm is used to select at least one old path and its corresponding new path to decide to retain the at least one old path or its corresponding new path, and obtain an updated path. group. In the path determination step, the new path generation step and the old and new path selection steps are repeated a preset number of times, and the shortest distance in the final updated path group is defined as a pesticide spraying path.

藉此,可利用基因遺傳演算法不斷地找出更好的新路徑,並透過模擬退火演算法的機率來抉擇是否要將舊路徑更換為目前較好的新路徑,而能更迅速地找出最適合的農藥噴灑路徑。In this way, the genetic algorithm can be used to continuously find new and better paths, and the probability of the simulated annealing algorithm can be used to decide whether to replace the old path with the current better new path, so as to find out more quickly The most suitable pesticide spraying path.

依據前述實施方式之農藥噴灑規劃方法,可更包含一噴灑時間規劃步驟以及一農藥噴灑步驟。於噴灑時間規劃步驟中,依目標樹種資訊的複數樹種密度,決定一無人機對應各點位的一停留時間。於農藥噴灑步驟中,使無人機依農藥噴灑路徑中前述複數點位的順序及各點位的停留時間噴灑農藥。The pesticide spraying planning method according to the aforementioned embodiment may further include a spraying time planning step and a pesticide spraying step. In the spraying time planning step, a residence time of a drone corresponding to each point is determined based on the density of multiple tree species of the target tree species information. In the pesticide spraying step, the drone is caused to spray the pesticide according to the order of the plurality of points in the pesticide spraying path and the residence time of each point.

依據前述實施方式之農藥噴灑規劃方法,其中,可於目標樹種資訊取得步驟中,以一無人機搭載一攝影機拍攝目標地區的至少一影像,及以一處理器對前述至少一影像進行辨識及分析,以得到目標樹種資訊。According to the pesticide spraying planning method of the above embodiment, in the step of obtaining target tree species information, a drone equipped with a camera can be used to capture at least one image of the target area, and a processor can be used to identify and analyze the at least one image. , to obtain target tree species information.

依據前述實施方式之農藥噴灑規劃方法,其中,可於目標樹種資訊取得步驟中,以處理器的一影像分析模組辨識目標樹種並進行色塊處理以區分目標樹種,取得目標樹種分布的複數經度及複數緯度,及使用處理器的一地形構件模組對目標地區建模,以取得目標樹種分布的複數高度,藉此取得目標樹種資訊的前述複數點位。According to the pesticide spraying planning method of the aforementioned embodiment, in the target tree species information acquisition step, an image analysis module of the processor can be used to identify the target tree species and perform color block processing to distinguish the target tree species, and obtain the plurality of longitudes of the target tree species distribution. and plural latitudes, and use a terrain component module of the processor to model the target area to obtain plural heights of the distribution of the target tree species, thereby obtaining the aforementioned plural points of the target tree species information.

依據前述實施方式之農藥噴灑規劃方法,其中,可將各經度及各緯度轉為TWD97座標值。According to the pesticide spraying planning method of the aforementioned embodiment, each longitude and each latitude can be converted into TWD97 coordinate values.

依據本發明另一實施方式提供一種農藥噴灑系統,其包含一無人機以及一處理器。無人機包含一攝影機,攝影機用以拍攝一目標地區以取得至少一影像。處理器訊號連接攝影機以接收前述至少一影像且包含一影像分析模組及一路徑規劃模組。影像分析模組對前述至少一影像進行辨識及分析,以得到目標地區有關一目標樹種的一目標樹種資訊,目標樹種資訊包含複數點位。路徑規劃模組接收目標樹種資訊以規劃出一農藥噴灑路徑,其中,路徑規劃模組將前述複數點位隨機排序以產生複數舊路徑,並得到初始的一路徑組,之後以一基因遺傳演算法將各舊路徑中至少二點位的順序變更以產生一新路徑,再以一模擬退火演算法對至少一舊路徑及其對應之新路徑做選擇,以決定保留前述至少一舊路徑或保留其對應之新路徑,並得到更新後的路徑組,持續以基因遺傳演算法及模擬退火演算法不斷更新路徑組,取最終更新後的路徑組中之距離最短者,定義為農藥噴灑路徑。其中,無人機依農藥噴灑路徑中前述複數點位的順序噴灑農藥。According to another embodiment of the present invention, a pesticide spraying system is provided, which includes a drone and a processor. The drone includes a camera, and the camera is used to photograph a target area to obtain at least one image. The processor signal is connected to the camera to receive the aforementioned at least one image and includes an image analysis module and a path planning module. The image analysis module identifies and analyzes the aforementioned at least one image to obtain a target tree species information related to a target tree species in the target area. The target tree species information includes a plurality of points. The path planning module receives the target tree species information to plan a pesticide spraying path. The path planning module randomly sorts the plurality of points to generate a plurality of old paths and obtains an initial path group, and then uses a genetic algorithm to Change the order of at least two points in each old path to generate a new path, and then use a simulated annealing algorithm to select at least one old path and its corresponding new path to decide whether to retain the aforementioned at least one old path or to retain its corresponding new path. The corresponding new path is obtained and the updated path group is obtained. The path group is continuously updated using the genetic algorithm and simulated annealing algorithm. The shortest distance in the final updated path group is defined as the pesticide spraying path. Among them, the drone sprays pesticides in the order of the plurality of points in the pesticide spraying path.

依據前述實施方式之農藥噴灑系統,其中,處理器可更包含一噴灑時間規劃模組,其接收目標樹種資訊,且依目標樹種資訊的複數樹種密度,給定無人機對應各點位的一停留時間。According to the pesticide spraying system of the aforementioned embodiment, the processor may further include a spraying time planning module that receives the target tree species information, and based on the plurality of tree species densities of the target tree species information, a stop of the drone corresponding to each point is given time.

依據前述實施方式之農藥噴灑系統,其中,處理器可更包含一地形構件模組,其用以對目標地區建模,以取得目標樹種分布的複數高度,且影像分析模組用以辨識目標樹種並進行色塊處理以區分目標樹種,取得目標樹種分布的複數經度及複數緯度,藉此取得目標樹種資訊的前述複數點位。According to the pesticide spraying system of the aforementioned embodiment, the processor may further include a terrain component module for modeling the target area to obtain plural heights of target tree species distribution, and an image analysis module for identifying the target tree species. And perform color block processing to distinguish the target tree species, obtain the plural longitudes and plural latitudes of the target tree species distribution, thereby obtaining the aforementioned plural points of the target tree species information.

以下將參照圖式說明本發明之實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,閱讀者應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示;並且重複之元件將可能使用相同的編號或類似的編號表示。Embodiments of the present invention will be described below with reference to the drawings. For the sake of clarity, many practical details will be explained together in the following narrative. The reader should understand, however, that these practical details should not be construed as limiting the invention. That is to say, in some embodiments of the present invention, these practical details are not necessary. In addition, in order to simplify the drawings, some commonly used structures and components will be illustrated in a simple schematic manner in the drawings; and repeated components may be represented by the same numbers or similar numbers.

此外,本文中第一、第二、第三等用語只是用來描述不同元件或成分,而對元件/成分本身並無限制,因此,第一元件/成分亦可改稱為第二元件/成分。且本文中之元件/成分/機構/模組之組合非此領域中之一般周知、常規或習知之組合,不能以元件/成分/機構/模組本身是否為習知,來判定其組合關係是否容易被技術領域中之通常知識者輕易完成。In addition, the terms first, second, third, etc. in this article are only used to describe different components or components, and there is no limitation on the components/components themselves. Therefore, the first component/component can also be renamed as the second component/component. . Moreover, the combination of components/components/mechanisms/modules in this article is not a combination that is generally known, conventional or customary in this field. Whether the components/components/mechanisms/modules themselves are common knowledge cannot be used to determine whether their combination relationship is Easily accomplished by a person of ordinary skill in the technical field.

請參閱第1圖及第2圖,其中第1圖繪示依照本發明一實施例之一種農藥噴灑系統100的方塊架構圖,第2圖繪示第1圖實施例之農藥噴灑路徑S1的規劃示意圖。農藥噴灑系統100包含一無人機110以及一處理器120。無人機110包含一攝影機111,攝影機111用以拍攝一目標地區以取得至少一影像。處理器120訊號連接攝影機111以接收前述至少一影像且包含一影像分析模組121及一路徑規劃模組122。Please refer to Figures 1 and 2. Figure 1 illustrates a block diagram of a pesticide spraying system 100 according to an embodiment of the present invention, and Figure 2 illustrates the planning of the pesticide spraying path S1 of the embodiment in Figure 1. Schematic diagram. The pesticide spraying system 100 includes a drone 110 and a processor 120 . The drone 110 includes a camera 111. The camera 111 is used to photograph a target area to obtain at least one image. The processor 120 is connected to the camera 111 via signals to receive the at least one image and includes an image analysis module 121 and a path planning module 122 .

影像分析模組121對前述至少一影像進行辨識及分析,以得到目標地區有關一目標樹種T1的一目標樹種資訊,目標樹種資訊包含複數點位。路徑規劃模組122接收目標樹種資訊以規劃出農藥噴灑路徑S1,其中,路徑規劃模組122將前述複數點位隨機排序以產生複數舊路徑,並得到初始的一路徑組,之後以一基因遺傳演算法(genetic algorithm)將各舊路徑中至少二點位的順序變更以產生一新路徑,再以一模擬退火演算法(simulate anneal arithmetic)對至少一舊路徑及其對應之新路徑做選擇,以決定保留前述至少一舊路徑或保留其對應之新路徑,並得到更新後的路徑組,持續以基因遺傳演算法及模擬退火演算法不斷更新路徑組,取最終更新後的路徑組中之距離最短者,定義為農藥噴灑路徑S1。其中,無人機110依農藥噴灑路徑S1中前述複數點位的順序噴灑農藥。The image analysis module 121 identifies and analyzes the aforementioned at least one image to obtain a target tree species information related to a target tree species T1 in the target area. The target tree species information includes a plurality of points. The path planning module 122 receives the target tree species information to plan the pesticide spraying path S1. The path planning module 122 randomly sorts the plurality of points to generate a plurality of old paths, and obtains an initial path group, which is then inherited with a gene. The genetic algorithm changes the order of at least two points in each old path to generate a new path, and then uses a simulated anneal arithmetic algorithm to select at least one old path and its corresponding new path. To decide to retain at least one of the aforementioned old paths or to retain its corresponding new path, and obtain the updated path group, continue to update the path group using genetic algorithm and simulated annealing algorithm, and obtain the distance in the final updated path group. The shortest one is defined as the pesticide spraying path S1. Among them, the drone 110 sprays pesticides in the order of the plurality of points in the pesticide spraying path S1.

藉此,可利用基因遺傳演算法不斷地找出更好的新路徑,並透過模擬退火演算法的機率來抉擇是否要將舊路徑更換為目前較好的新路徑,而能更迅速地找出最適合的農藥噴灑路徑S1。後面將詳述農藥噴灑系統100的細節。In this way, the genetic algorithm can be used to continuously find new and better paths, and the probability of the simulated annealing algorithm can be used to decide whether to replace the old path with the current better new path, so as to find out more quickly The most suitable pesticide spraying path S1. Details of the pesticide spray system 100 will be discussed later.

在本實施例中,處理器120是獨立設置於後端的伺服器,而可用無線的方式連接於無人機110,處理器120接收攝影機111的影像並產生農藥噴灑路徑S1,再將農藥噴灑路徑S1傳至無人機110的控制器,無人機110即可依農藥噴灑路徑S1噴灑農藥。在其他實施例中,處理器可為雲端伺服器,或是其可以設置於無人機上而同時做為無人機的控制系統,不以此為限。In this embodiment, the processor 120 is an independent back-end server and can be connected to the drone 110 in a wireless manner. The processor 120 receives the image of the camera 111 and generates a pesticide spraying path S1, and then converts the pesticide spraying path S1 After being transmitted to the controller of the drone 110, the drone 110 can spray pesticides according to the pesticide spraying path S1. In other embodiments, the processor may be a cloud server, or it may be installed on the drone and simultaneously serve as the control system of the drone, but is not limited thereto.

影像分析模組121可例如使用深度學習神經網路技術辨識目標樹種T1並進行色塊處理以區分目標樹種T1,而能取得目標樹種T1分布的複數經度及複數緯度。具體地,影像的數目可為複數,其是讓攝影機111拍攝目標區域不同位置的多張影像並組成全域圖,而影像分析模組121在辨識出目標樹種T1後可進一步利用塗色技術於全域圖上標示出目標樹種T1,之後再將全域圖進行切割,例如切割成網格形式,並針對目標樹種T1的分佈狀況記錄其經度及緯度,例如以各網格中心點的經度及緯度表示各點位的經度及緯度。The image analysis module 121 can, for example, use deep learning neural network technology to identify the target tree species T1 and perform color block processing to distinguish the target tree species T1, and can obtain the plural longitudes and plural latitudes of the distribution of the target tree species T1. Specifically, the number of images can be plural, which allows the camera 111 to capture multiple images at different locations in the target area to form a global map. After identifying the target tree species T1, the image analysis module 121 can further use coloring technology to map the global map. The target tree species T1 is marked on the map, and then the global map is cut, for example, into a grid form, and the longitude and latitude of the target tree species T1 are recorded according to the distribution status, for example, the longitude and latitude of the center point of each grid are used to represent each The longitude and latitude of the point.

又,處理器120可更包含一地形構件模組124,其用以對目標地區建模,以取得目標樹種T1分布的複數高度。地形構件模組124可更包含一UAV後製處理軟體例如Pix4Dmapper,而可基於攝影機111拍攝的影像建立出目標區域的三維場域地圖,並能從影像中讀取GPS的記錄,最後可匯出資料檔以包含經度、緯度及其對應之高度,據此可以得到對應目標樹種T1分佈之經度、緯度及高度。In addition, the processor 120 may further include a terrain component module 124, which is used to model the target area to obtain the complex heights of the distribution of the target tree species T1. The terrain component module 124 may further include a UAV post-processing software such as Pix4Dmapper, which can create a three-dimensional site map of the target area based on the images captured by the camera 111, and can read GPS records from the images, and finally export them. The data file includes longitude, latitude and corresponding height, from which the longitude, latitude and height of the T1 distribution of the corresponding target tree species can be obtained.

此外,處理器120可更包含一噴灑時間規劃模組123,其接收目標樹種資訊,且依目標樹種資訊的複數樹種密度,給定無人機110對應各點位的一停留時間。詳細而言,透過塗色技術標示出目標樹種T1及網格劃分,可確認網格內目標樹種T1的色塊密度以做為樹種密度,並以此做為無人機110停留時間的基礎,樹種密度高停留時間久,農藥的噴灑量就大;反之,樹種密度小停留時間短,農藥的噴灑量就小,而可更有助於噴灑適量的農藥。In addition, the processor 120 may further include a spraying time planning module 123, which receives the target tree species information and gives the UAV 110 a residence time corresponding to each point according to the plurality of tree species densities of the target tree species information. Specifically, by using coloring technology to mark the target tree species T1 and divide the grid, the density of the color blocks of the target tree species T1 in the grid can be confirmed as the tree species density, and this is used as the basis for the residence time of the UAV 110. The tree species If the density is high and the residence time is long, the amount of pesticides sprayed will be large; conversely, if the density of the tree species is small and the residence time is short, the amount of pesticides sprayed will be small, which is more conducive to spraying the right amount of pesticides.

透過影像分析模組121、噴灑時間規劃模組123及地形構件模組124,可取得如表1的目標樹種資訊,其中,目標樹種資訊可包含12個點位的經度、緯度、高度及樹種密度。 表1、目標樹種資訊 點位 經度 緯度 高度 樹種密度 1 23.00507 120.471074 150.11 2 2 23.00496 120.471012 142.06 5 3 23.00495 120.470878 143.66 3 4 23.00485 120.470958 136.62 4 5 23.00477 120.470943 137.06 2 6 23.00466 120.470931 141.46 2 7 23.00475 120.470633 135.02 1 8 23.00488 120.470609 132.18 3 9 23.00486 120.470504 133.68 4 10 23.00498 120.470574 130.82 5 11 23.00505 120.470554 132.03 2 12 23.00508 120.470505 130.11 3 Through the image analysis module 121, the spraying time planning module 123 and the terrain component module 124, the target tree species information as shown in Table 1 can be obtained, wherein the target tree species information can include the longitude, latitude, height and tree species density of 12 points. . Table 1. Target tree species information point longitude Latitude high tree species density 1 23.00507 120.471074 150.11 2 2 23.00496 120.471012 142.06 5 3 23.00495 120.470878 143.66 3 4 23.00485 120.470958 136.62 4 5 23.00477 120.470943 137.06 2 6 23.00466 120.470931 141.46 2 7 23.00475 120.470633 135.02 1 8 23.00488 120.470609 132.18 3 9 23.00486 120.470504 133.68 4 10 23.00498 120.470574 130.82 5 11 23.00505 120.470554 132.03 2 12 23.00508 120.470505 130.11 3

在此要特別說明的是,各點位的經度及緯度可再被轉為TWD97座標值,而如表2所示,其中TWD97 X對應經度,TWD97 Y對應緯度,因其單位為公尺,而更適合用於計算距離。 表2、目標樹種資訊之TWD97座標值 點位 TWD97 X TWD97 Y 1 195780.0762 2544942.793 2 195773.7298 2544931.199 3 195760.0065 2544929.244 4 195768.1893 2544918.496 5 195766.5897 2544909.875 6 195765.2618 2544897.001 7 195734.783 2544907.886 8 195732.4267 2544922.512 9 195721.6013 2544919.671 10 195728.7861 2544933.477 11 195726.7616 2544940.615 12 195721.7718 2544944.166 It should be noted here that the longitude and latitude of each point can be converted into TWD97 coordinate values, as shown in Table 2, where TWD97 X corresponds to longitude, TWD97 Y corresponds to latitude, because the unit is meters, and More suitable for calculating distances. Table 2. TWD97 coordinate values of target tree species information point TWD97X TWD97Y 1 195780.0762 2544942.793 2 195773.7298 2544931.199 3 195760.0065 2544929.244 4 195768.1893 2544918.496 5 195766.5897 2544909.875 6 195765.2618 2544897.001 7 195734.783 2544907.886 8 195732.4267 2544922.512 9 195721.6013 2544919.671 10 195728.7861 2544933.477 11 195726.7616 2544940.615 12 195721.7718 2544944.166

如表1、2所示,其共包含12個點位,若將每種排列順序都考慮進去,總共會有479001600個路徑,雖可直接從這些路徑中計算出何者距離最短,然其需花大量的時間進行計算與比較。因此,於路徑規劃模組122中,可先根據表2中的12個點位隨機產生例如100條的舊路徑做為如表3所示的初始的路徑組,再不斷演化,以加快收斂。 表3、初始的路徑組 編號 點位順序 舊路徑1 9à5à6à3à11à1à12à2à4à8à10à7 舊路徑2 11à8à7à3à9à12à6à2à4à5à10à1 舊路徑3 4à12à3à6à11à8à7à2à9à1à10à5 舊路徑4 3à7à4à9à12à5à1à2à6à8à10à11 舊路徑5 5à11à1à3à5à8à7à2à4à6à10à12 舊路徑6 7à2à5à3à11à1à9à2à8à12à10à6 舊路徑100 10à3à6à5à8à1à7à12à4à11à9à2 As shown in Tables 1 and 2, it contains a total of 12 points. If each arrangement order is taken into account, there will be a total of 479,001,600 paths. Although it can be directly calculated from these paths which distance is the shortest, it requires a lot of time. A lot of time for calculations and comparisons. Therefore, in the path planning module 122, for example, 100 old paths can be randomly generated based on the 12 points in Table 2 as the initial path group as shown in Table 3, and then continuously evolved to accelerate convergence. Table 3. Initial path group No. Point order old path 1 9à5à6à3à11à1à12à2à4à8à10à7 old path 2 11à8à7à3à9à12à6à2à4à4à5à10à1 old path 3 4à12à3à6à11à8à7à2à9à1à10à5 old path 4 3à7à4à9à12à5à1à2à6à8à10à11 old path 5 5à11à1à3à5à8à7à2à4à6à10à12 old path 6 7à2à5à3à11à1à9à2à8à12à10à6 old path 100 10à3à6à5à8à1à7à12à4à11à9à2

之後,路徑規劃模組122可再透過基因遺傳演算法,來變化出新路徑。其中,基因遺傳演算法是取中間的一段基因(中間的複數個連續點位)進行置換,例如將舊路徑1中的點位1、3、6、11、12的順序由6à3à11à1à12改為12à1à11à3à6以做為新路徑1;或者,取出其中幾個基因(點位)再重新隨機插入至序列裡,例如將舊路徑2中點位3、6、10三者的位置相互替換以變成新路徑2等。不管是用那種方式,均是讓舊路徑中至少二點位的順序被變更,而產生一新路徑,如表4所示。 表4、新路徑與舊路徑 編號 點位順序 距離(m) 舊路徑1 9à5à6à3à11à1à12à2à4à8à10à7 235.6 新路徑1 9à5à12à1à11à3à6à2à4à8à10à7 212.3 舊路徑2 11à8à7à3à9à12à6à2à4à5à10à1 213.7 新路徑2 11à8à7à10à9à12à3à2à4à5à6à1 222.6 舊路徑3 4à12à3à6à11à8à7à2à9à1à10à5 225.7 新路徑3 6à3à12à4à11à8à7à2à9à1à10à5 237.1 舊路徑4 3à7à4à9à12à5à1à2à6à8à10à11 198.5 新路徑4 3à7à4à9à5à12à1à2à8à6à10à11 196.7 舊路徑5 5à11à1à3à5à8à7à2à4à6à10à12 203.7 新路徑5 11à5à1à3à5à7à8à2à4à10à6à12 222.4 舊路徑6 7à2à5à3à11à1à9à2à8à12à10à6 233.8 新路徑6 7à11à3à5à2à1à9à2à8à12à10à6 205.4 舊路徑100 10à3à6à5à8à1à7à12à4à11à9à2 215.7 新路徑100 10à2à6à5à7à1à3à12à4à11à9à8 210.8 Afterwards, the path planning module 122 can use the genetic algorithm to change the new path. Among them, the gene genetic algorithm takes the middle section of the gene (the plurality of consecutive points in the middle) for replacement. For example, the order of points 1, 3, 6, 11, and 12 in the old path 1 is changed from 6à3à11à1à12 to 12à1à11à3à6 and so on. As a new path 1; or, take out several genes (points) and randomly insert them into the sequence, for example, replace the positions of points 3, 6, and 10 in the old path 2 to become a new path 2, etc. . No matter which method is used, the order of at least two points in the old path is changed to generate a new path, as shown in Table 4. Table 4. New path and old path No. Point order Distance(m) old path 1 9à5à6à3à11à1à12à2à4à8à10à7 235.6 new path 1 9à5à12à1à11à3à6à2à4à8à10à7 212.3 old path 2 11à8à7à3à9à12à6à2à4à4à5à10à1 213.7 new path 2 11à8à7à10à9à12à3à2à4à5à6à1 222.6 old path 3 4à12à3à6à11à8à7à2à9à1à10à5 225.7 new path 3 6à3à12à4à11à8à7à2à9à1à10à5 237.1 old path 4 3à7à4à9à12à5à1à2à6à8à10à11 198.5 new path 4 3à7à4à9à5à12à1à2à8à6à10à11 196.7 old path 5 5à11à1à3à5à8à7à2à4à6à10à12 203.7 new path 5 11à5à1à3à5à7à8à2à4à10à6à12 222.4 old path 6 7à2à5à3à11à1à9à2à8à12à10à6 233.8 new path 6 7à11à3à5à2à1à9à2à8à12à10à6 205.4 old path 100 10à3à6à5à8à1à7à12à4à11à9à2 215.7 new path 100 10à2à6à5à7à1à3à12à4à11à9à8 210.8

從表4可發現,新路徑2、3、5的距離較舊路徑2、3、5的距離長而不需做選擇直接保留舊路徑2、3、5;新路徑1、4、6、100的距離較舊路徑1、4、6、100更短,然為了防止每次都選擇最短的新路徑取代掉原先的舊路徑,而陷入局部最佳解,因此路徑規劃模組122可進一步使用模擬退火演算法的機率法,來決定是否替換掉現在的舊路徑,當作下一個路徑參考基因。模擬退火演算法中,會在每次演化下一代時,提高它選擇優良基因的機率,藉此可以快速收斂出一個最短路徑,但在最一開始的演化過程中,會盡量較大機率的保留原先的舊路徑,使基因有更多變化來找出最好的路徑變化方法。It can be found from Table 4 that the distances of the new paths 2, 3, and 5 are longer than the distances of the old paths 2, 3, and 5, and the old paths 2, 3, and 5 are directly retained without making a selection; the new paths 1, 4, 6, and 100 are The distance is shorter than the old paths 1, 4, 6, and 100. However, in order to prevent the shortest new path from being selected every time to replace the original old path and falling into the local optimal solution, the path planning module 122 can further use simulation The probabilistic method of the annealing algorithm is used to decide whether to replace the current old path as the next path reference gene. The simulated annealing algorithm will increase the probability of selecting excellent genes each time it evolves the next generation, thereby quickly converging on a shortest path, but in the initial evolution process, it will try to retain the highest probability The original old path allows more changes in the genes to find the best way to change the path.

具體而言,新路徑1較舊路徑1好,而透過模擬退火演算法的機率,也決定替換掉舊路徑1並以新路徑1當作下一代基因。新路徑4雖然較舊路徑4好,但透過機率決定還是保留舊路徑4當作下一代基因。經過模擬退火演算法的機率決定,新路徑6被選擇,而舊路徑100被保留,如此又產生出第二代的路徑組來進行演化,如表5所示。 表5、第二代的路徑組 編號 點位順序 距離(m) 新路徑1 9à5à12à1à11à3à6à2à4à8à10à7 212.3 舊路徑2 11à8à7à3à9à12à6à2à4à5à10à1 213.7 舊路徑3 4à12à3à6à11à8à7à2à9à1à10à5 225.7 舊路徑4 3à7à4à9à12à5à1à2à6à8à10à11 198.5 舊路徑5 5à11à1à3à5à8à7à2à4à6à10à12 203.7 新路徑6 7à11à3à5à2à1à9à2à8à12à10à6 205.4 舊路徑100 10à3à6à5à8à1à7à12à4à11à9à2 215.7 Specifically, the new path 1 is better than the old path 1, and through the probability of the simulated annealing algorithm, it is also decided to replace the old path 1 and use the new path 1 as the next generation gene. Although the new path 4 is better than the old path 4, it is determined by chance that the old path 4 should be retained as the next generation gene. After the probability determination of the simulated annealing algorithm, the new path 6 is selected, while the old path 100 is retained, thus generating a second generation path group for evolution, as shown in Table 5. Table 5. Second generation path group No. Point order Distance(m) new path 1 9à5à12à1à11à3à6à2à4à8à10à7 212.3 old path 2 11à8à7à3à9à12à6à2à4à4à5à10à1 213.7 old path 3 4à12à3à6à11à8à7à2à9à1à10à5 225.7 old path 4 3à7à4à9à12à5à1à2à6à8à10à11 198.5 old path 5 5à11à1à3à5à8à7à2à4à6à10à12 203.7 new path 6 7à11à3à5à2à1à9à2à8à12à10à6 205.4 old path 100 10à3à6à5à8à1à7à12à4à11à9à2 215.7

第二代的路徑組可全被視為舊路徑,以不斷重覆演化再次產生新路徑,可設定例如演化100代,而可產生最終更新後的路徑組,如表6所示,請注意在表6中,未再標示舊路徑或新路徑,而僅以路徑表示。 表6、最終更新後的路徑組 編號 點位順序 距離(m) 路徑1 10à2à6à5à7à1à3à12à4à11à9à8 195.3 路徑2 7à2à5à3à11à1à9à2à8à12à10à6 178.2 路徑3 4à12à3à6à11à8à7à2à9à1à10à5 133.4 路徑4 6à3à12à4à11à8à9à10à7à2à1à5 195.2 路徑5 5à11à1à3à5à8à7à2à10à4à6à12 169.1 路徑6 9à5à6à3à11à1à12à2à4à10à8à7 178.2 路徑100 10à3à6à5à8à1à7à12à4à11à9à2 177.2 The path group of the second generation can all be regarded as old paths, and new paths will be generated through repeated evolution. For example, the evolution can be set to 100 generations, and the final updated path group can be generated, as shown in Table 6. Please note that In Table 6, the old path or the new path is no longer marked, but only represented by the path. Table 6. Final updated path group No. Point order Distance(m) Path 1 10à2à6à5à7à1à3à12à4à11à9à8 195.3 Path 2 7à2à5à3à11à1à9à2à8à12à10à6 178.2 Path 3 4à12à3à6à11à8à7à2à9à1à10à5 133.4 Path 4 6à3à12à4à11à8à9à10à7à2à1à5 195.2 Path 5 5à11à1à3à5à8à7à2à10à4à6à12 169.1 Path 6 9à5à6à3à11à1à12à2à4à10à8à7 178.2 path 100 10à3à6à5à8à1à7à12à4à11à9à2 177.2

如表6所示,路徑3的距離最短,即可將路徑3定義為農藥噴灑路徑S1。如此一來,可迅速地找出最適合的農藥噴灑路徑S1,而讓無人機110依點位的順序4à12à3à6à11à8à7à2à9à1à10à5及其停留時間噴灑農藥。As shown in Table 6, path 3 has the shortest distance, so path 3 can be defined as pesticide spraying path S1. In this way, the most suitable pesticide spraying path S1 can be quickly found, and the UAV 110 can spray pesticides according to the sequence of points 4à12à3à6à11à8à7à2à9à1à10à5 and their residence time.

請參閱第3圖,並一併參閱第1圖及第2圖,第3圖繪示依照本發明另一實施例之一種農藥噴灑規劃方法200的方塊流程圖。農藥噴灑規劃方法200包含一目標樹種資訊取得步驟210、一隨機路徑產生步驟220、一新路徑產生步驟230、一新舊路徑選擇步驟240以及一路徑決定步驟250。以下將搭配第1圖及第2圖的農藥噴灑系統100說明農藥噴灑規劃方法200的細節。Please refer to Figure 3, and refer to Figures 1 and 2 together. Figure 3 illustrates a block flow chart of a pesticide spraying planning method 200 according to another embodiment of the present invention. The pesticide spraying planning method 200 includes a target tree species information acquisition step 210, a random path generation step 220, a new path generation step 230, a new and old path selection step 240 and a path decision step 250. The details of the pesticide spraying planning method 200 will be described below with reference to the pesticide spraying system 100 in Figures 1 and 2 .

於目標樹種資訊取得步驟210中,取得一目標地區有關一目標樹種T1的一目標樹種資訊,目標樹種資訊包含複數點位。In the target tree species information obtaining step 210, a target tree species information related to a target tree species T1 in a target area is obtained, and the target tree species information includes plural points.

於隨機路徑產生步驟220中,以前述複數點位隨機排序以產生複數舊路徑,並得到初始的一路徑組。In the random path generation step 220, the plurality of points are randomly sorted to generate a plurality of old paths, and an initial path group is obtained.

於新路徑產生步驟230中,利用一基因遺傳演算法使各舊路徑中至少二點位的順序變更以產生一新路徑。In the new path generating step 230, a genetic algorithm is used to change the order of at least two points in each old path to generate a new path.

於新舊路徑選擇步驟240中,利用一模擬退火演算法對各舊路徑及其對應之新路徑做選擇,以決定保留各舊路徑或保留其對應之新路徑,並得到更新後的路徑組。In the old and new path selection step 240, a simulated annealing algorithm is used to select each old path and its corresponding new path to decide whether to retain each old path or its corresponding new path, and obtain an updated path group.

於路徑決定步驟250中,以一預設次數重覆新路徑產生步驟230及新舊路徑選擇步驟240,取最終更新後的路徑組中之距離最短者,定義為一農藥噴灑路徑S1。In the path determination step 250, the new path generation step 230 and the old and new path selection step 240 are repeated for a preset number of times, and the shortest distance among the finally updated path groups is defined as a pesticide spraying path S1.

具體而言,於目標樹種資訊取得步驟210中,是以一無人機110搭載一攝影機111拍攝目標地區的至少一影像,及以一處理器120對前述至少一影像進行辨識及分析,以得到目標樹種資訊。進一步地,於目標樹種資訊取得步驟210中,以處理器120的一影像分析模組121辨識目標樹種T1並進行色塊處理以區分目標樹種T1,取得目標樹種T1分布的複數經度及複數緯度,再使用處理器120的一地形構件模組124對目標地區建模,以取得目標樹種T1分布的複數高度,藉此取得目標樹種資訊的前述複數點位。Specifically, in the target tree species information obtaining step 210, a drone 110 is equipped with a camera 111 to capture at least one image of the target area, and a processor 120 is used to identify and analyze the at least one image to obtain the target. Tree species information. Further, in the target tree species information acquisition step 210, an image analysis module 121 of the processor 120 is used to identify the target tree species T1 and perform color block processing to distinguish the target tree species T1, and obtain the plural longitudes and plural latitudes of the distribution of the target tree species T1. A terrain component module 124 of the processor 120 is then used to model the target area to obtain the plurality of heights of the distribution of the target tree species T1, thereby obtaining the aforementioned plurality of points of the target tree species information.

影像可例如是複數並組成全域圖,而影像分析模組121可例如使用深度學習神經網路技術辨識目標樹種T1,並利用塗色技術於全域圖上標示出目標樹種T1,之後再將全域圖進行切割,例如切割成網格形式,並針對目標樹種T1的分佈狀況記錄其經度及緯度。地形構件模組124可包含一UAV後製處理軟體例如Pix4Dmapper,而可基於攝影機111拍攝的影像建立出目標區域的三維場域地圖,並可匯出資料檔以包含經度、緯度及其對應之高度,據此可以得到目標樹種T1分佈之經度、緯度及高度,如表1所示。之後,經度及緯度可更轉換為TWD97座標值,如表2所示。The image can be, for example, plural and constitute a global map, and the image analysis module 121 can, for example, use deep learning neural network technology to identify the target tree species T1, and use coloring technology to mark the target tree species T1 on the global map, and then use the global map to Cut, for example, into a grid form, and record its longitude and latitude according to the distribution of the target tree species T1. The terrain component module 124 can include a UAV post-processing software such as Pix4Dmapper, which can create a three-dimensional site map of the target area based on the images captured by the camera 111, and can export a data file to include longitude, latitude and their corresponding height. , based on which the longitude, latitude and height of the target tree species T1 distribution can be obtained, as shown in Table 1. Afterwards, the longitude and latitude can be converted into TWD97 coordinate values, as shown in Table 2.

於隨機路徑產生步驟220中,可用各點位的TWD97座標值隨機生成例如100個舊路徑,而可得到表3中初始的路徑組。In the random path generation step 220, the TWD97 coordinate values of each point can be used to randomly generate, for example, 100 old paths, and the initial path group in Table 3 can be obtained.

於新路徑產生步驟230中,路徑規劃模組122可透過基因遺傳演算法,來變化出新路徑,其是挑選中間的複數個連續點位進行置換,或取出其中幾個點位再重新隨機插入至序列裡,而能讓舊路徑中至少二點位的順序被變更而產生新路徑,如表4所示。In the new path generation step 230, the path planning module 122 can use a genetic algorithm to generate a new path by selecting a plurality of consecutive points in the middle for replacement, or taking out several of the points and randomly inserting them again. into the sequence, so that the order of at least two points in the old path can be changed to generate a new path, as shown in Table 4.

於新舊路徑選擇步驟240中,路徑規劃模組122可透過模擬退火演算法進行選擇,來決定是否以新路徑替換掉現在舊路徑,而能得到如表5所示的第二代的路徑組。In the old and new path selection step 240, the path planning module 122 can select through the simulated annealing algorithm to determine whether to replace the old path with a new path, and obtain the second generation path set as shown in Table 5. .

如此透過不斷的重覆演化,例如演化100次,可得到如表6的最終更新後的路徑組。因此,於路徑決定步驟250中,即可以路徑3的路徑做為農藥噴灑路徑S1。Through continuous repeated evolution, for example, 100 times, the final updated path group as shown in Table 6 can be obtained. Therefore, in the path determination step 250, the path of path 3 can be used as the pesticide spraying path S1.

又,農藥噴灑規劃方法200更包含一噴灑時間規劃步驟260以及一農藥噴灑步驟270。於噴灑時間規劃步驟260中,依目標樹種資訊的複數樹種密度,決定無人機110對應各點位的一停留時間。於農藥噴灑步驟270中,使無人機110依農藥噴灑路徑S1中前述複數點位的順序及各點位的停留時間噴灑農藥。In addition, the pesticide spraying planning method 200 further includes a spraying time planning step 260 and a pesticide spraying step 270. In the spraying time planning step 260, a residence time of the UAV 110 corresponding to each point is determined based on the plural tree species density of the target tree species information. In the pesticide spraying step 270, the drone 110 is caused to spray pesticides according to the order of the plurality of points in the pesticide spraying path S1 and the residence time of each point.

其中,噴灑時間規劃步驟260中,可透過處理器120的影像分析模組121確認樹種密度,而雖噴灑時間規劃步驟260於第3圖中是置於路徑決定步驟250之後,然其亦可以是置於隨機路徑產生步驟220之前,不以此為限。Among them, in the spraying time planning step 260, the tree species density can be confirmed through the image analysis module 121 of the processor 120. Although the spraying time planning step 260 is placed after the path determination step 250 in Figure 3, it can also be placed before the random path generation step 220, but is not limited to this.

由上述的實施例可知,本發明可透過無人機空拍目標區域的影像,藉由深度學習神經網路技術辨識樹種並進行色塊處理區分樹種類別,找出目標樹種在目標區域的二維分佈,同時可透過地形的建模取得的目標區域的高度,進一步利用基因遺傳演算法與退火模擬演算法,可快速地取得較佳的農藥噴灑路徑,進行農藥的噴灑。As can be seen from the above embodiments, the present invention can use drones to take aerial images of the target area, identify tree species through deep learning neural network technology and perform color block processing to distinguish tree species categories, and find the two-dimensional distribution of the target tree species in the target area. , at the same time, the height of the target area can be obtained through terrain modeling, and further using genetic algorithms and annealing simulation algorithms, a better pesticide spraying path can be quickly obtained for pesticide spraying.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone skilled in the art can make various modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention is The scope shall be determined by the appended patent application scope.

100:農藥噴灑系統 110:無人機 111:攝影機 120:處理器 121:影像分析模組 122:路徑規劃模組 123:噴灑時間規劃模組 124:地形構件模組 200:農藥噴灑規劃方法 210:目標樹種資訊取得步驟 220:隨機路徑產生步驟 230:新路徑產生步驟 240:新舊路徑選擇步驟 250:路徑決定步驟 260:噴灑時間規劃步驟 270:農藥噴灑步驟 S1:農藥噴灑路徑 T1:目標樹種 100:Pesticide spraying system 110: Drone 111:Camera 120: Processor 121:Image analysis module 122:Path planning module 123: Spraying time planning module 124:Terrain component module 200: Pesticide Spray Planning Methods 210: Steps to obtain target tree species information 220: Random path generation steps 230: New path generation steps 240: New and old path selection steps 250: Path determination steps 260: Spraying time planning steps 270: Pesticide spraying steps S1: Pesticide spraying path T1: Target tree species

第1圖繪示依照本發明一實施例之一種農藥噴灑系統的方塊架構圖; 第2圖繪示第1圖實施例之農藥噴灑路徑的規劃示意圖;以及 第3圖繪示依照本發明另一實施例之一種農藥噴灑規劃方法的方塊流程圖。 Figure 1 illustrates a block diagram of a pesticide spraying system according to an embodiment of the present invention; Figure 2 shows a schematic planning diagram of the pesticide spraying path in the embodiment of Figure 1; and Figure 3 illustrates a block flow chart of a pesticide spraying planning method according to another embodiment of the present invention.

200:農藥噴灑規劃方法 200: Pesticide Spray Planning Methods

210:目標樹種資訊取得步驟 210: Steps to obtain target tree species information

220:隨機路徑產生步驟 220: Random path generation steps

230:新路徑產生步驟 230: New path generation steps

240:新舊路徑選擇步驟 240: New and old path selection steps

250:路徑決定步驟 250: Path determination steps

260:噴灑時間規劃步驟 260: Spraying time planning steps

270:農藥噴灑步驟 270: Pesticide spraying steps

Claims (8)

一種農藥噴灑規劃方法,包含:一目標樹種資訊取得步驟,取得一目標地區有關一目標樹種的一目標樹種資訊,該目標樹種資訊包含複數點位;一隨機路徑產生步驟,以該些點位隨機排序以產生複數舊路徑,並得到初始的一路徑組;一新路徑產生步驟,利用一基因遺傳演算法使各該舊路徑中至少二該點位的順序變更以產生一新路徑;一新舊路徑選擇步驟,利用一模擬退火演算法對至少一該舊路徑及其對應之該新路徑做選擇,以決定保留該至少一舊路徑或保留其對應之該新路徑,且在前期的演化過程中,保留距離較長之該至少一舊路徑的機率大於保留其對應之距離較短之該新路徑的機率,並得到更新後的該路徑組;以及一路徑決定步驟,以一預設次數重覆該新路徑產生步驟及該新舊路徑選擇步驟,取最終更新後的該路徑組中之距離最短者,定義為一農藥噴灑路徑。 A pesticide spraying planning method includes: a target tree species information acquisition step to obtain target tree species information about a target tree species in a target area, and the target tree species information includes a plurality of points; a random path generation step to randomly use the points Sorting to generate a plurality of old paths and obtaining an initial path group; a new path generation step, using a genetic algorithm to change the order of at least two points in each old path to generate a new path; a new and old path The path selection step uses a simulated annealing algorithm to select at least one old path and its corresponding new path to decide to retain the at least one old path or its corresponding new path, and in the early evolution process , the probability of retaining at least one old path with a longer distance is greater than the probability of retaining the corresponding new path with a shorter distance, and the updated path group is obtained; and a path determination step is repeated a preset number of times In the new path generation step and the old and new path selection step, the shortest distance in the finally updated path group is defined as a pesticide spraying path. 如請求項1所述之農藥噴灑規劃方法,更包含:一噴灑時間規劃步驟,依該目標樹種資訊的複數樹種密度,決定一無人機對應各該點位的一停留時間;以及一農藥噴灑步驟,使該無人機依該農藥噴灑路徑中該些點位的順序及各該點位的該停留時間噴灑農藥。 The pesticide spraying planning method as described in claim 1 further includes: a spraying time planning step, which determines a residence time of a drone corresponding to each point according to the plurality of tree species densities of the target tree species information; and a pesticide spraying step , causing the UAV to spray pesticides according to the sequence of the points in the pesticide spraying path and the residence time at each point. 如請求項1所述之農藥噴灑規劃方法,其中,於該目標樹種資訊取得步驟中,以一無人機搭載一攝影機拍攝該目標地區的至少一影像,及以一處理器對該至少一影像進行辨識及分析,以得到該目標樹種資訊。 The pesticide spraying planning method as described in claim 1, wherein in the step of obtaining the target tree species information, a drone is equipped with a camera to capture at least one image of the target area, and a processor is used to perform processing on the at least one image Identify and analyze to obtain information on the target tree species. 如請求項3所述之農藥噴灑規劃方法,其中,於該目標樹種資訊取得步驟中,以該處理器的一影像分析模組辨識該目標樹種並進行色塊處理以區分該目標樹種,取得該目標樹種分布的複數經度及複數緯度,及使用該處理器的一地形構件模組對該目標地區建模,以取得該目標樹種分布的複數高度,藉此取得該目標樹種資訊的該些點位。 The pesticide spraying planning method as described in claim 3, wherein in the step of obtaining the target tree species information, an image analysis module of the processor is used to identify the target tree species and perform color block processing to distinguish the target tree species, and obtain the target tree species. The plurality of longitudes and plurality of latitudes of the target tree species distribution, and using a terrain component module of the processor to model the target area to obtain the plurality of heights of the target tree species distribution, thereby obtaining the points of the target tree species information . 如請求項4所述之農藥噴灑規劃方法,其中,將各該經度及各該緯度轉為TWD97座標值。 The pesticide spraying planning method as described in claim 4, wherein each longitude and each latitude are converted into TWD97 coordinate values. 一種農藥噴灑系統,包含:一無人機,包含一攝影機,該攝影機用以拍攝一目標地區以取得至少一影像;以及一處理器,訊號連接該攝影機以接收該至少一影像且包含:一影像分析模組,對該至少一影像進行辨識及分析,以得到該目標地區有關一目標樹種的一目標樹種資訊,該目標樹種資訊包含複數點位;及 一路徑規劃模組,接收該目標樹種資訊以規劃出一農藥噴灑路徑,其中,該路徑規劃模組將該些點位隨機排序以產生複數舊路徑,並得到初始的一路徑組,之後以一基因遺傳演算法將各該舊路徑中至少二該點位的順序變更以產生一新路徑,再以一模擬退火演算法對至少一該舊路徑及其對應之該新路徑做選擇,以決定保留該至少一舊路徑或保留其對應之該新路徑,且在前期的演化過程中,保留距離較長之該至少一舊路徑的機率大於保留其對應之距離較短之該新路徑的機率,並得到更新後的該路徑組,持續以該基因遺傳演算法及該模擬退火演算法不斷更新該路徑組,取最終更新後的該路徑組中之距離最短者,定義為該農藥噴灑路徑;其中,該無人機依該農藥噴灑路徑中該些點位的順序噴灑農藥。 A pesticide spraying system, including: a drone, including a camera, the camera is used to photograph a target area to obtain at least one image; and a processor, a signal is connected to the camera to receive the at least one image and includes: an image analysis A module that identifies and analyzes the at least one image to obtain a target tree species information related to a target tree species in the target area, where the target tree species information includes a plurality of points; and A path planning module receives the target tree species information to plan a pesticide spraying path, wherein the path planning module randomly sorts the points to generate a plurality of old paths, and obtains an initial path group, and then uses a The genetic algorithm changes the order of at least two points in each old path to generate a new path, and then uses a simulated annealing algorithm to select at least one old path and its corresponding new path to decide to retain The at least one old path or the corresponding new path is retained, and in the early evolution process, the probability of retaining the at least one old path with a longer distance is greater than the probability of retaining the corresponding new path with a shorter distance, and After obtaining the updated path group, continue to update the path group using the genetic algorithm and the simulated annealing algorithm, and the shortest distance in the finally updated path group is defined as the pesticide spraying path; where, The drone sprays pesticides in the order of the points in the pesticide spraying path. 如請求項6所述之農藥噴灑系統,其中,該處理器更包含:一噴灑時間規劃模組,接收該目標樹種資訊,且依該目標樹種資訊的複數樹種密度,給定該無人機對應各該點位的一停留時間。 The pesticide spraying system as described in claim 6, wherein the processor further includes: a spraying time planning module that receives the target tree species information, and based on the plurality of tree species densities of the target tree species information, the drone corresponding to each tree species is given A dwell time at this point. 如請求項6所述之農藥噴灑系統,其中,該處理器更包含一地形構件模組,其用以對該目標地區建模,以取得該目標樹種分布的複數高度,且該影像分析模組用 以辨識該目標樹種並進行色塊處理以區分該目標樹種,取得該目標樹種分布的複數經度及複數緯度,藉此取得該目標樹種資訊的該些點位。 The pesticide spraying system of claim 6, wherein the processor further includes a terrain component module for modeling the target area to obtain the plurality of heights of the target tree species distribution, and the image analysis module use To identify the target tree species and perform color block processing to distinguish the target tree species, obtain plural longitudes and plural latitudes of the distribution of the target tree species, thereby obtaining the points of the target tree species information.
TW110145555A 2021-12-07 2021-12-07 Pesticide spraying planning method and pesticide spraying system TWI826873B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110145555A TWI826873B (en) 2021-12-07 2021-12-07 Pesticide spraying planning method and pesticide spraying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110145555A TWI826873B (en) 2021-12-07 2021-12-07 Pesticide spraying planning method and pesticide spraying system

Publications (2)

Publication Number Publication Date
TW202324273A TW202324273A (en) 2023-06-16
TWI826873B true TWI826873B (en) 2023-12-21

Family

ID=87803626

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110145555A TWI826873B (en) 2021-12-07 2021-12-07 Pesticide spraying planning method and pesticide spraying system

Country Status (1)

Country Link
TW (1) TWI826873B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108958288A (en) * 2018-07-26 2018-12-07 杭州瓦屋科技有限公司 Low latitude operation UAV system and its path planning method based on geography information
CN110832425A (en) * 2018-10-31 2020-02-21 深圳市大疆创新科技有限公司 Control method and device, surveying and mapping unmanned aerial vehicle and spraying unmanned aerial vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108958288A (en) * 2018-07-26 2018-12-07 杭州瓦屋科技有限公司 Low latitude operation UAV system and its path planning method based on geography information
CN110832425A (en) * 2018-10-31 2020-02-21 深圳市大疆创新科技有限公司 Control method and device, surveying and mapping unmanned aerial vehicle and spraying unmanned aerial vehicle

Also Published As

Publication number Publication date
TW202324273A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
US11030804B2 (en) System and method of virtual plant field modelling
CN107169608B (en) Distribution method and device for multiple unmanned aerial vehicles to execute multiple tasks
CN107977743B (en) Multi-unmanned aerial vehicle cooperative task allocation method and device
CN108983823B (en) Plant protection unmanned aerial vehicle cluster cooperative control method
CN107807665B (en) Unmanned aerial vehicle formation detection task cooperative allocation method and device
CN107886201B (en) Multi-objective optimization method and device for multi-unmanned aerial vehicle task allocation
CN108229719A (en) Unmanned plane formation task distributes the Multipurpose Optimal Method and device with trajectory planning
CN109446959B (en) Target area dividing method and device and medicine spraying control method
CN111121784B (en) Unmanned reconnaissance aircraft route planning method
US8949084B2 (en) Determining a next value of a system-simulation parameter in response to a representation of a plot having the parameter as a dimension
Jogun et al. Simulation model of land cover changes in a post-socialist peripheral rural area: Požega-Slavonia County, Croatia.
CN112329327B (en) Hardware-aware liquid state machine network generation method and system
CN116166048B (en) Unmanned aerial vehicle group fault-tolerant task planning method
CN112597870B (en) Construction method of land cover classification model
TWI826873B (en) Pesticide spraying planning method and pesticide spraying system
CN114723142A (en) Multi-target land utilization simulation system and method based on non-dominated sorting genetic algorithm and FLUS model
US8855973B2 (en) Determining a next value of a parameter for system simulation
US8738564B2 (en) Method for pollen-based geolocation
CN109855629A (en) A kind of mission planning method, apparatus and electronic equipment
Zeng et al. Real-time traffic signal control with dynamic evolutionary computation
CN114444580A (en) Big data processing method based on convolutional neural network
NA et al. Optimal regeneration regime under continuous crown cover requirements in cork oak woodlands
Araújo et al. Cooperative observation of malicious targets in a 3d urban traffic environment using uavs
Si et al. Automated terrain analysis in real-time strategy games.
CN110503244A (en) A kind of more observation method networking optimization monitoring methods towards Enteromorpha disaster overlay area