TWI826015B - Angular display device and image compensation method - Google Patents

Angular display device and image compensation method Download PDF

Info

Publication number
TWI826015B
TWI826015B TW111136410A TW111136410A TWI826015B TW I826015 B TWI826015 B TW I826015B TW 111136410 A TW111136410 A TW 111136410A TW 111136410 A TW111136410 A TW 111136410A TW I826015 B TWI826015 B TW I826015B
Authority
TW
Taiwan
Prior art keywords
simulation
display
image
projection
sides
Prior art date
Application number
TW111136410A
Other languages
Chinese (zh)
Other versions
TW202414042A (en
Inventor
游淯鈞
Original Assignee
達擎股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 達擎股份有限公司 filed Critical 達擎股份有限公司
Priority to TW111136410A priority Critical patent/TWI826015B/en
Priority to CN202211250995.8A priority patent/CN117812241A/en
Application granted granted Critical
Publication of TWI826015B publication Critical patent/TWI826015B/en
Publication of TW202414042A publication Critical patent/TW202414042A/en

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Processing Or Creating Images (AREA)

Abstract

An angular display device and an image compensation method are provided in the present disclosure. The image compensation method includes simulating a first display surface and a second display surface of an angular display to respectively create a first simulation surface and a second simulation surface in a three-dimensional (3D) space , wherein the first display surface and the second display surface are not coplanar; creating a projection surface in the 3D space; projecting an original image onto the projection surface to form a first projection image; parallel projecting the first projection image toward a viewing position onto the first simulation surface and the second simulation surface to form a second projection image; forming a display image on the first display surface and the second display surface according to the first simulation surface, the second simulation surface, and the second projection image.

Description

折角顯示裝置及影像補償方法Corner display device and image compensation method

本發明是關於一種影像顯示技術,尤其是關於一種折角顯示裝置及影像補償方法。The present invention relates to an image display technology, and in particular to a folding angle display device and an image compensation method.

顯示裝置經常應用於各種場域(例如商場、辦公室等)中。顯示裝置一般為使用二維顯示技術。然而,二維顯示技術無法使顯示裝置所顯示的影像具有立體感。再者,若顯示裝置的顯示面具有特殊形狀(例如折角)時,二維顯示技術可能造成顯示裝置所顯示的影像具有不連續性。Display devices are often used in various fields (such as shopping malls, offices, etc.). Display devices generally use two-dimensional display technology. However, the two-dimensional display technology cannot make the image displayed by the display device have a three-dimensional sense. Furthermore, if the display surface of the display device has a special shape (such as an angle), the two-dimensional display technology may cause discontinuity in the image displayed by the display device.

鑒於上述,本發明提供一種折角顯示裝置及影像補償方法。折角顯示裝置包含一折角顯示器、一記憶體及一處理器。折角顯示器包括一第一顯示面及一第二顯示面。第一顯示面與第二顯示面不共平面。記憶體用以儲存一或多個命令。處理器耦接記憶體及折角顯示器。處理器用以存取並執行記憶體之一或多個命令。一或多個命令包含模擬第一顯示面及第二顯示面,以於一三維空間分別建立一第一模擬面及一第二模擬面;於三維空間建立一投影面;將一原始影像投影至投影面,以形成一第一投影影像;將第一投影影像朝向一觀看位置平行投影至第一模擬面及第二模擬面,以形成一第二投影影像;及依據第一模擬面、第二模擬面及第二投影影像,於第一顯示面及第二顯示面形成一顯示影像。In view of the above, the present invention provides a folding display device and an image compensation method. The folding display device includes a folding display, a memory and a processor. The corner display includes a first display surface and a second display surface. The first display surface and the second display surface are not coplanar. The memory is used to store one or more commands. The processor is coupled to the memory and the fold-angle display. The processor is used to access and execute one or more commands in the memory. One or more commands include simulating the first display surface and the second display surface to respectively establish a first simulation surface and a second simulation surface in a three-dimensional space; establishing a projection surface in the three-dimensional space; and projecting an original image to The projection surface is used to form a first projection image; the first projection image is projected parallel to the first simulation surface and the second simulation surface toward a viewing position to form a second projection image; and based on the first simulation surface, the second simulation surface The simulation surface and the second projected image form a display image on the first display surface and the second display surface.

影像補償方法包含模擬一折角顯示器的一第一顯示面及一第二顯示面,以於一三維空間分別建立一第一模擬面及一第二模擬面,其中第一顯示面與第二顯示面不共平面;於三維空間建立一投影面;將一原始影像投影至投影面,以形成一第一投影影像;將第一投影影像朝向一觀看位置平行投影至第一模擬面及第二模擬面,以形成一第二投影影像;及依據第一模擬面、第二模擬面及第二投影影像,於第一顯示面及第二顯示面形成一顯示影像。The image compensation method includes simulating a first display surface and a second display surface of a folding display to establish a first simulation surface and a second simulation surface respectively in a three-dimensional space, wherein the first display surface and the second display surface Non-coplanar; establish a projection surface in a three-dimensional space; project an original image to the projection surface to form a first projection image; project the first projection image parallel to the first simulation surface and the second simulation surface toward a viewing position , to form a second projection image; and based on the first simulation surface, the second simulation surface and the second projection image, form a display image on the first display surface and the second display surface.

綜上所述,依據本發明之實施例,可以使折角顯示器的顯示影像具有立體感。此外,本發明還可以使折角顯示器的顯示影像不受折角的影響而具有連續性。In summary, according to the embodiments of the present invention, the display image of the corner display can have a three-dimensional effect. In addition, the present invention can also make the display image of the folding display have continuity without being affected by the folding angle.

參照圖1,係為本發明依據一些實施例之折角顯示裝置10的方塊示意圖。折角顯示裝置10包含折角顯示器11、記憶體13及處理器15。處理器15耦接記憶體13及折角顯示器11。記憶體13用以儲存一或多個命令。處理器15用以存取並執行記憶體13之一或多個命令,以執行本發明之影像補償方法。處理器15可以自折角顯示裝置10內建的或是外部的輸出入裝置(例如相機、掃描器、或具有通用序列匯流排介面(Universal serial bus,USB)的裝置等)(圖未示)獲得第一影像訊號(於後稱為原始影像),並對原始影像執行影像補償方法後,輸出第二影像訊號(於後稱為顯示影像115)至折角顯示器11,以使折角顯示器11呈現出顯示影像115。Referring to FIG. 1 , a schematic block diagram of a corner display device 10 according to some embodiments of the present invention is shown. The corner display device 10 includes a corner display 11 , a memory 13 and a processor 15 . The processor 15 is coupled to the memory 13 and the fold-angle display 11 . The memory 13 is used to store one or more commands. The processor 15 is used to access and execute one or more commands in the memory 13 to execute the image compensation method of the present invention. The processor 15 can be obtained from a built-in or external input/output device (such as a camera, a scanner, or a device with a universal serial bus interface (USB), etc.) of the fold-angle display device 10 (not shown). The first image signal (hereinafter referred to as the original image), and after performing the image compensation method on the original image, the second image signal (hereinafter referred to as the display image 115) is output to the corner display 11, so that the corner display 11 presents the display Image 115.

在一些實施例中,記憶體13例如但不限於傳統硬碟、固態硬碟、快閃記憶體、光碟等。在一些實施例中,處理器15例如但不限於中央處理器、微處理器、特定應用積體電路(ASIC,Application-specific Integrated Circuit)、或系統單晶片(SOC,System on a Chip)等運算電路。In some embodiments, the memory 13 is such as, but not limited to, a traditional hard drive, a solid state drive, a flash memory, an optical disk, etc. In some embodiments, the processor 15 is, for example, but not limited to, a central processing unit, a microprocessor, an application-specific integrated circuit (ASIC), or a system on a chip (SOC). circuit.

參照圖2及圖3。圖2係為本發明依據一些實施例之折角顯示器11的立體示意圖。圖3係為本發明依據一些實施例之折角顯示器11的前視示意圖。折角顯示器11包括第一顯示面110、第二顯示面111及背板113。第一顯示面110與第二顯示面111不共平面。例如,第一顯示面110與第二顯示面111之間具有一折角112。具體來說,如圖2及圖3所示,第一顯示面110的一側邊與第二顯示面111的一側邊連接,以使第一顯示面110與第二顯示面111所構成的顯示面凸起。即第一顯示面110與第二顯示面111之間的折角112大於180度。在一些實施例中,第一顯示面110及第二顯示面111可以是同一形狀或是不同的形狀。背板113位於第一顯示面110及第二顯示面111的出光面的另一側,用以支撐第一顯示面110及第二顯示面111。Refer to Figures 2 and 3. FIG. 2 is a three-dimensional schematic diagram of a folding display 11 according to some embodiments of the present invention. FIG. 3 is a schematic front view of the foldable display 11 according to some embodiments of the present invention. The corner display 11 includes a first display surface 110 , a second display surface 111 and a back panel 113 . The first display surface 110 and the second display surface 111 are not coplanar. For example, there is a folding corner 112 between the first display surface 110 and the second display surface 111 . Specifically, as shown in FIGS. 2 and 3 , one side of the first display surface 110 is connected to one side of the second display surface 111 , so that the first display surface 110 and the second display surface 111 form a The display surface is raised. That is, the folding angle 112 between the first display surface 110 and the second display surface 111 is greater than 180 degrees. In some embodiments, the first display surface 110 and the second display surface 111 may have the same shape or different shapes. The back plate 113 is located on the other side of the light emitting surface of the first display surface 110 and the second display surface 111 to support the first display surface 110 and the second display surface 111 .

參照圖2、圖4至圖9。圖4係為本發明依據一些實施例之影像補償方法的流程圖。圖5係為本發明依據一些實施例之三維空間100中的第一模擬面20、第二模擬面21及投影面24的立體透視示意圖。圖6係為本發明依據一些實施例之三維空間100中的第一模擬面20、第二模擬面21及投影面24的前視示意圖。圖7係為本發明依據一些實施例之三維空間100中的第一模擬面20、第二模擬面21及投影面24的後視示意圖。圖8係為本發明依據一些實施例之三維空間100中的第一模擬面20、第二模擬面21及投影面24的立體透視示意圖。圖9係為本發明依據一些實施例之三維空間100中的第一模擬面20、第二模擬面21及投影面24的前視示意圖。在一些實施例中,處理器15所執行的一或多個命令包含步驟S601~S609,以實現影像補償方法。首先,處理器15模擬第一顯示面110及第二顯示面111,以於三維空間100分別建立第一模擬面20及第二模擬面21(步驟S601)。由於第一模擬面20及第二模擬面21係模擬自第一顯示面110及第二顯示面111,因此第一模擬面20與第二模擬面21也不共平面。舉例來說,處理器15可以將折角顯示器11的某一處作為基準點,而定義出三維空間100的三維座標系統(例如直角座標系統)。處理器15依據基準點與第一顯示面110(例如,其四個邊界點)之間的相對位置,獲得三維座標系統的第一三維座標參數集,並依據基準點與第二顯示面111(例如,其四個邊界點)之間的相對位置,獲得三維座標系統的第二三維座標參數集。其中,第一三維座標參數集及第二三維座標參數集可以分別包含多個三維座標參數。在一些實施例中,三維座標參數可以以(x,y,z)來表示,x係為三維座標系統的橫軸值,y係為三維座標系統的縱軸值,z係為三維座標系統的豎軸值。處理器15依據第一三維座標參數集及第二三維座標參數集,即可於三維空間100分別建立出第一模擬面20及第二模擬面21。Refer to Figure 2, Figure 4 to Figure 9. FIG. 4 is a flow chart of an image compensation method according to some embodiments of the present invention. FIG. 5 is a three-dimensional perspective view of the first simulation surface 20 , the second simulation surface 21 and the projection surface 24 in the three-dimensional space 100 according to some embodiments of the present invention. Figure 6 is a schematic front view of the first simulation surface 20, the second simulation surface 21 and the projection surface 24 in the three-dimensional space 100 according to some embodiments of the present invention. Figure 7 is a schematic rear view of the first simulation surface 20, the second simulation surface 21 and the projection surface 24 in the three-dimensional space 100 according to some embodiments of the present invention. FIG. 8 is a three-dimensional perspective view of the first simulation surface 20 , the second simulation surface 21 and the projection surface 24 in the three-dimensional space 100 according to some embodiments of the present invention. Figure 9 is a schematic front view of the first simulation surface 20, the second simulation surface 21 and the projection surface 24 in the three-dimensional space 100 according to some embodiments of the present invention. In some embodiments, one or more commands executed by the processor 15 include steps S601 to S609 to implement the image compensation method. First, the processor 15 simulates the first display surface 110 and the second display surface 111 to respectively establish the first simulation surface 20 and the second simulation surface 21 in the three-dimensional space 100 (step S601). Since the first simulation surface 20 and the second simulation surface 21 are simulated from the first display surface 110 and the second display surface 111 , the first simulation surface 20 and the second simulation surface 21 are not coplanar. For example, the processor 15 can define a three-dimensional coordinate system (for example, a rectangular coordinate system) of the three-dimensional space 100 by using a certain point on the folded display 11 as a reference point. The processor 15 obtains the first three-dimensional coordinate parameter set of the three-dimensional coordinate system based on the relative position between the reference point and the first display surface 110 (for example, its four boundary points), and based on the reference point and the second display surface 111 ( For example, the relative positions between its four boundary points) are used to obtain the second three-dimensional coordinate parameter set of the three-dimensional coordinate system. The first three-dimensional coordinate parameter set and the second three-dimensional coordinate parameter set may respectively include multiple three-dimensional coordinate parameters. In some embodiments, the three-dimensional coordinate parameters can be represented by (x, y, z), where x is the horizontal axis value of the three-dimensional coordinate system, y is the vertical axis value of the three-dimensional coordinate system, and z is the vertical axis value of the three-dimensional coordinate system. Vertical axis value. The processor 15 can respectively establish the first simulation surface 20 and the second simulation surface 21 in the three-dimensional space 100 based on the first three-dimensional coordinate parameter set and the second three-dimensional coordinate parameter set.

在一些實施例中,除了模擬第一顯示面110及第二顯示面111之外,處理器15還可以模擬折角顯示器11的其他元件或是折角顯示器11的整體,以於三維空間100建立出對應的模型。例如,如圖5及圖8所示,處理器15還可以模擬折角顯示器11的背板113,以於三維空間100建立出背板模型23。In some embodiments, in addition to simulating the first display surface 110 and the second display surface 111 , the processor 15 can also simulate other components of the corner display 11 or the entire corner display 11 to establish a corresponding relationship in the three-dimensional space 100 model. For example, as shown in FIGS. 5 and 8 , the processor 15 can also simulate the back panel 113 of the foldable display 11 to establish the back panel model 23 in the three-dimensional space 100 .

接著,處理器15於三維空間100中建立一投影面24(步驟S603)。例如,如圖5及圖7所示,相較於第一模擬面20及第二模擬面21位於背板模型23的前側,投影面24是位於背板模型23的後側。但本發明並不限於此,例如圖8及圖9所示,投影面24、第一模擬面20及第二模擬面21均位於背板模型23的同一側(前側)。在一些實施例中,投影面24係為一平面或是一曲面。Next, the processor 15 creates a projection plane 24 in the three-dimensional space 100 (step S603). For example, as shown in FIGS. 5 and 7 , while the first simulation surface 20 and the second simulation surface 21 are located on the front side of the back panel model 23 , the projection surface 24 is located on the rear side of the back panel model 23 . However, the present invention is not limited thereto. For example, as shown in FIGS. 8 and 9 , the projection surface 24 , the first simulation surface 20 and the second simulation surface 21 are all located on the same side (front side) of the back panel model 23 . In some embodiments, the projection surface 24 is a plane or a curved surface.

如圖4及圖5所示,在建立出第一模擬面20、第二模擬面21及投影面24之後,處理器15將原始影像投影至投影面24,以形成一第一投影影像30(步驟S605)。舉例來說,處理器15可以將原始影像的中心點對齊投影面24的中心點,並依據原始影像的每一像素的像素座標參數,將每一像素投影至投影面24於三維空間100的三維座標系統中對應的三維座標參數(於後稱為投影面座標參數),以形成出第一投影影像30。也就是說,處理器15可以將原始影像直接投影至投影面24,以形成出第一投影影像30。具體來說,處理器15可以依據第一轉換函數將原始影像轉換為第一投影影像30,其中第一轉換函數可以如式1表示,Pv是第一轉換函數,Vo是原始影像的像素的像素座標參數的矩陣,Mvtran是將像素座標參數轉換為投影面24的投影面座標參數的轉換矩陣。As shown in FIGS. 4 and 5 , after establishing the first simulation surface 20 , the second simulation surface 21 and the projection surface 24 , the processor 15 projects the original image to the projection surface 24 to form a first projection image 30 ( Step S605). For example, the processor 15 can align the center point of the original image with the center point of the projection plane 24 , and project each pixel to the projection plane 24 in the three-dimensional space 100 according to the pixel coordinate parameters of each pixel of the original image. The corresponding three-dimensional coordinate parameters in the coordinate system (hereinafter referred to as the projection surface coordinate parameters) are used to form the first projection image 30 . That is to say, the processor 15 can directly project the original image to the projection surface 24 to form the first projected image 30 . Specifically, the processor 15 can convert the original image into the first projected image 30 according to the first conversion function, where the first conversion function can be expressed as Equation 1, Pv is the first conversion function, and Vo is the pixel of the pixel of the original image. Mvtran is a matrix of coordinate parameters that converts pixel coordinate parameters into projection plane coordinate parameters of the projection plane 24 .

……………………………………(式1) ……………………………………(Formula 1)

如圖4至圖6所示,在形成出第一投影影像30之後,處理器15將第一投影影像30朝向一觀看位置40平行投影(parallel projection)至第一模擬面20及第二模擬面21,以形成一第二投影影像31(步驟S607)。舉例來說,處理器15可以依據第二轉換函數將第一投影影像30轉換為第二投影影像31,其中第二轉換函數可以如式2表示,Ps是第二轉換函數,Pv是在步驟S605中所執行的轉換函數(例如第一轉換函數或是於後所述之第三轉換函數),Mob是平行投影的轉換矩陣,Mtran是將經平行投影處理後的投影面座標參數轉換為第一模擬面20及第二模擬面21於三維空間100的三維座標系統中對應的三維座標參數(於後稱為模擬面座標參數)。As shown in FIGS. 4 to 6 , after forming the first projection image 30 , the processor 15 projects the first projection image 30 toward a viewing position 40 in parallel to the first simulation surface 20 and the second simulation surface. 21 to form a second projected image 31 (step S607). For example, the processor 15 can convert the first projection image 30 into the second projection image 31 according to the second conversion function, where the second conversion function can be expressed as Equation 2, Ps is the second conversion function, and Pv is in step S605 The conversion function (such as the first conversion function or the third conversion function described later) performed in The corresponding three-dimensional coordinate parameters of the simulation surface 20 and the second simulation surface 21 in the three-dimensional coordinate system of the three-dimensional space 100 (hereinafter referred to as simulation surface coordinate parameters).

…………………………………(式2) ……………………………… (Formula 2)

在一些實施例中,平行投影包含正投影(orthographic projection)及斜投影(oblique projection)。在步驟S607的一些實施例中,依據不同的觀看位置40及第一投影影像30於投影面24的分布位置,將第一投影影像30投影至第一模擬面20及第二模擬面21的投影方法可以是使用正投影及斜投影的其中一者或是二者。In some embodiments, parallel projection includes orthographic projection and oblique projection. In some embodiments of step S607, the first projection image 30 is projected onto the first simulation surface 20 and the second simulation surface 21 according to different viewing positions 40 and the distribution positions of the first projection image 30 on the projection surface 24. The method can be to use one or both of orthographic projection and oblique projection.

參照圖4、圖6、圖10及圖11。圖10係為本發明之比較例之折角顯示器11的前視示意圖。圖11係為本發明依據一些實施例之折角顯示器11的前視示意圖。在形成出第二投影影像31之後,處理器15依據第一模擬面20、第二模擬面21及第二投影影像31,於第一顯示面110及第二顯示面111形成顯示影像115(步驟S609)。舉例來說,由於第一模擬面20及第二模擬面21係模擬自第一顯示面110及第二顯示面111,因此處理器15可以依據模擬面座標參數及其於原始影像對應的像素,控制第一顯示面110及第二顯示面111將第二投影影像31作為顯示影像115呈現。如此,相較於將原始影像作為顯示影像116(如圖10所示)呈現於第一顯示面110及第二顯示面111,將第二投影影像31作為顯示影像115(如圖11所示)呈現於第一顯示面110及第二顯示面111,可以使顯示影像115的圖案具有立體感,且圖案不受折角112的影響而具有連續性。此外,作為顯示影像115的第二投影影像31不會因不同的觀看位置40(例如觀看者是以俯視的位置觀看折角顯示器11或是以仰視的位置觀看折角顯示器11)而產生視覺性的變形。Refer to Figure 4, Figure 6, Figure 10 and Figure 11. FIG. 10 is a schematic front view of the fold-angle display 11 according to a comparative example of the present invention. FIG. 11 is a schematic front view of a foldable display 11 according to some embodiments of the present invention. After forming the second projection image 31 , the processor 15 forms a display image 115 on the first display surface 110 and the second display surface 111 based on the first simulation surface 20 , the second simulation surface 21 and the second projection image 31 (step S609). For example, since the first simulation surface 20 and the second simulation surface 21 are simulated from the first display surface 110 and the second display surface 111, the processor 15 can, based on the coordinate parameters of the simulation surface and its corresponding pixels in the original image, The first display surface 110 and the second display surface 111 are controlled to present the second projected image 31 as the display image 115 . In this way, instead of presenting the original image as the display image 116 (as shown in FIG. 10 ) on the first display surface 110 and the second display surface 111 , the second projected image 31 is used as the display image 115 (as shown in FIG. 11 ). Presented on the first display surface 110 and the second display surface 111, the pattern of the displayed image 115 can have a three-dimensional effect, and the pattern will not be affected by the folding angle 112 and will have continuity. In addition, the second projected image 31 as the display image 115 will not be visually deformed due to different viewing positions 40 (for example, whether the viewer views the fold-angle display 11 from a top-down position or from a downward-view position). .

參照圖12及圖13。圖12係為本發明依據一些實施例之三維空間100中的第一模擬面20、第二模擬面21及投影面24的立體透視示意圖。圖13係為本發明依據一些實施例之影像補償方法的流程圖。在步驟S605的一些實施例中,處理器15是將原始影像投影至第一模擬面20及第二模擬面21,以形成一第三投影影像32(步驟S6051),並將第三投影影像32正投影至投影面24,以形成第一投影影像30(步驟S6052)。由於第一模擬面20及第二模擬面21係模擬自第一顯示面110及第二顯示面111,因此處理器15可以透過將原始影像投影至第一模擬面20及第二模擬面21所形成出的第三投影影像32,來模擬直接將原始影像作為顯示影像116(如圖10所示)呈現於第一顯示面110及第二顯示面111時的情形。舉例來說,處理器15可以是依據在直接將原始影像呈現於第一顯示面110及第二顯示面111時原始影像的每一像素的像素座標參數於第一顯示面110及第二顯示面111的位置,將原始影像投影至第一模擬面20及第二模擬面21之模擬面座標參數,以形成出第三投影影像32。接著,處理器15將第三投影影像32正投影至投影面24,以形成第一投影影像30。也就是說,處理器15可以將原始影像間接投影至投影面24,以形成出第一投影影像30。具體來說,處理器15可以依據第三轉換函數將原始影像轉換為第一投影影像30,其中第三轉換函數可以如式3表示,Pv是第三轉換函數,Vo是原始影像的像素的像素座標參數的矩陣,Mort是正投影的轉換矩陣,Mvtran是將經正投影處理後的像素座標參數轉換為投影面24的投影面座標參數的轉換矩陣。如此,相較於將原始影像直接投影至投影面24,將原始影像間接投影至投影面24而形成出的第一投影影像30可以更相近於折角顯示器11的第一顯示面110及第二顯示面111的實際顯示狀態,以確保作為顯示影像115的第二投影影像31不會產生視覺性的變形。Refer to Figures 12 and 13. FIG. 12 is a schematic perspective view of the first simulation surface 20 , the second simulation surface 21 and the projection surface 24 in the three-dimensional space 100 according to some embodiments of the present invention. Figure 13 is a flow chart of an image compensation method according to some embodiments of the present invention. In some embodiments of step S605, the processor 15 projects the original image to the first simulation surface 20 and the second simulation surface 21 to form a third projected image 32 (step S6051), and converts the third projected image 32 It is forward projected onto the projection surface 24 to form the first projection image 30 (step S6052). Since the first simulation surface 20 and the second simulation surface 21 are simulated from the first display surface 110 and the second display surface 111 , the processor 15 can project the original image onto the first simulation surface 20 and the second simulation surface 21 . The third projected image 32 is formed to simulate the situation when the original image is directly presented as the display image 116 (as shown in FIG. 10 ) on the first display surface 110 and the second display surface 111 . For example, the processor 15 may display the original image on the first display surface 110 and the second display surface 111 based on the pixel coordinate parameters of each pixel of the original image when the original image is directly presented on the first display surface 110 and the second display surface 111 . At the position of 111, the original image is projected onto the simulation surface coordinate parameters of the first simulation surface 20 and the second simulation surface 21 to form the third projection image 32. Then, the processor 15 forward projects the third projection image 32 to the projection surface 24 to form the first projection image 30 . That is to say, the processor 15 can indirectly project the original image to the projection surface 24 to form the first projected image 30 . Specifically, the processor 15 can convert the original image into the first projected image 30 according to the third conversion function, where the third conversion function can be expressed as Equation 3, Pv is the third conversion function, and Vo is the pixel of the pixel of the original image. The matrix of coordinate parameters, Mort is the transformation matrix of the orthographic projection, and Mvtran is the transformation matrix that converts the pixel coordinate parameters processed by the orthographic projection into the coordinate parameters of the projection surface of the projection surface 24 . In this way, compared to directly projecting the original image to the projection surface 24 , the first projection image 30 formed by indirectly projecting the original image to the projection surface 24 can be closer to the first display surface 110 and the second display of the corner display 11 The actual display state of the surface 111 is adjusted to ensure that the second projected image 31 as the displayed image 115 will not be visually deformed.

………………………………(式3) …………………………(Formula 3)

在一些實施例中,投影面24的尺寸可以是根據第一模擬面20及第二模擬面21的尺寸來決定。例如,投影面24的尺寸是以第一模擬面20及第二模擬面21之間的接合邊向兩側位移一距離所界定的兩側邊決定。不同的投影面24的尺寸可以使作為顯示影像115的第二投影影像31具有不同程度的立體感。例如,接合邊向兩側位移的距離較小時,投影面24的尺寸較小且第二投影影像31具有視覺較遠效果;接合邊向兩側位移的距離較大時,投影面24的尺寸較大且第二投影影像31具有視覺較近效果。In some embodiments, the size of the projection surface 24 may be determined according to the sizes of the first simulation surface 20 and the second simulation surface 21 . For example, the size of the projection surface 24 is determined by the two sides defined by the joint edge between the first simulation surface 20 and the second simulation surface 21 being displaced a distance to both sides. Different sizes of the projection surface 24 can make the second projected image 31 as the displayed image 115 have different degrees of three-dimensionality. For example, when the displacement distance of the joining edge to both sides is small, the size of the projection surface 24 is small and the second projected image 31 has a visually distant effect; when the distance of the joining edge displacement to both sides is large, the size of the projection surface 24 The larger and second projected image 31 has a visual closer effect.

參照圖7及圖14。圖14係為本發明依據一些實施例之三維空間100中的第一模擬面20、第二模擬面21及投影面24的後視示意圖。在一些實施例中,投影面24的兩側邊(即第一側邊241及第二側邊242)分別連接第一模擬面20及第二模擬面21。如圖7所示,在第一示範例中,投影面24的兩側邊的其中一者(即第一側邊241)連接於第一模擬面20的兩側邊(即第三側邊201及第四側邊202)之間的區域,投影面24的兩側邊的另一者(即第二側邊242)連接於第二模擬面21的兩側邊(即第五側邊211及第六側邊212)之間的區域。其中,第一側邊241與第三側邊201之間的距離及第一側邊241與第四側邊202之間的距離可以是分別相同於或是不同於第二側邊242與第五側邊211之間的距離及第二側邊242與第六側邊212之間的距離。如圖14所示,在第二示範例中,投影面24的兩側邊的其中一者(即第一側邊241)連接第一模擬面20的兩側邊的其中一者(即第三側邊201),投影面24的兩側邊的另一者(即第二側邊242)連接第二模擬面21的兩側邊的其中一者(即第五側邊211),第一模擬面20的兩側邊的另一者(即第四側邊202)連接於第二模擬面21的兩側邊的另一者(即第六側邊212),也就是說第四側邊202及第六側邊212即為接合邊。相較於第一示範例,在第二示範例中,投影面24的尺寸較大。Refer to Figure 7 and Figure 14. Figure 14 is a schematic rear view of the first simulation surface 20, the second simulation surface 21 and the projection surface 24 in the three-dimensional space 100 according to some embodiments of the present invention. In some embodiments, two sides of the projection surface 24 (ie, the first side 241 and the second side 242 ) are respectively connected to the first simulation surface 20 and the second simulation surface 21 . As shown in FIG. 7 , in the first exemplary example, one of the two sides of the projection surface 24 (ie, the first side 241 ) is connected to both sides of the first simulation surface 20 (ie, the third side 201 and the fourth side 202), the other of the two sides of the projection surface 24 (i.e., the second side 242) is connected to both sides of the second simulation surface 21 (i.e., the fifth side 211 and The area between the sixth side 212). The distance between the first side 241 and the third side 201 and the distance between the first side 241 and the fourth side 202 may be the same as or different from the second side 242 and the fifth side respectively. The distance between the sides 211 and the distance between the second side 242 and the sixth side 212. As shown in FIG. 14 , in the second exemplary example, one of the two sides of the projection surface 24 (i.e., the first side 241 ) is connected to one of the two sides of the first simulation surface 20 (i.e., the third side). side 201), the other of the two sides of the projection surface 24 (ie, the second side 242) is connected to one of the two sides of the second simulation surface 21 (ie, the fifth side 211), the first simulation The other of the two sides of the surface 20 (that is, the fourth side 202) is connected to the other of the two sides of the second simulation surface 21 (that is, the sixth side 212), that is to say, the fourth side 202 And the sixth side 212 is the joint side. Compared with the first exemplary example, in the second exemplary example, the size of the projection surface 24 is larger.

如圖5及圖7所示,在一些實施例中,觀看位置40係依據第一模擬面20的兩側邊(即第三側邊201及第四側邊202)之間的距離、第二模擬面21的兩側邊(即第五側邊211及第六側邊212)之間的距離、視角及第一模擬面20與第二模擬面21之間的一折角50而計算得。在此,折角50是指第一顯示面110及第二顯示面111的出光面的另一側所構成的角度。視角係為觀看者眼睛的視線範圍。在一些實施例中,第一模擬面20與第二模擬面21之間的折角50小於180度。在一些實施例中,視角在20度至30度之間。舉例來說,假設第一模擬面20及第二模擬面21具有同一尺寸(也就是說,第一模擬面20的第三側邊201及第四側邊202之間的距離相同於第二模擬面21的第五側邊211及第六側邊212之間的距離),處理器15可以依據觀看位置函數計算得觀看位置40於三維空間100的三維座標系統中的三維座標參數。觀看位置函數可以如式4表示,L1是觀看位置40與第四側邊202(或第六側邊212)之間的距離,L2是第三側邊201與第五側邊211之間的中心軸與第四側邊202(或第六側邊212)之間的距離,L3是第一模擬面20的第三側邊201及第四側邊202之間的距離(或是第二模擬面21的第五側邊211及第六側邊212之間的距離),θa是第一模擬面20與第二模擬面21之間的折角50之半值,θb是視角之半值。As shown in FIGS. 5 and 7 , in some embodiments, the viewing position 40 is based on the distance between two sides of the first simulation surface 20 (ie, the third side 201 and the fourth side 202 ), the second It is calculated based on the distance between the two sides of the simulation surface 21 (ie, the fifth side 211 and the sixth side 212 ), the viewing angle, and a folding angle 50 between the first simulation surface 20 and the second simulation surface 21 . Here, the folding angle 50 refers to the angle formed by the other side of the light-emitting surface of the first display surface 110 and the second display surface 111 . The viewing angle is the line of sight of the viewer's eyes. In some embodiments, the fold angle 50 between the first simulation surface 20 and the second simulation surface 21 is less than 180 degrees. In some embodiments, the viewing angle is between 20 degrees and 30 degrees. For example, assume that the first simulation surface 20 and the second simulation surface 21 have the same size (that is, the distance between the third side 201 and the fourth side 202 of the first simulation surface 20 is the same as that of the second simulation surface). (the distance between the fifth side 211 and the sixth side 212 of the surface 21 ), the processor 15 can calculate the three-dimensional coordinate parameters of the viewing position 40 in the three-dimensional coordinate system of the three-dimensional space 100 according to the viewing position function. The viewing position function can be expressed as Equation 4, L1 is the distance between the viewing position 40 and the fourth side 202 (or the sixth side 212), L2 is the center between the third side 201 and the fifth side 211 The distance between the axis and the fourth side 202 (or the sixth side 212), L3 is the distance between the third side 201 and the fourth side 202 of the first simulation surface 20 (or the second simulation surface 21), θa is the half value of the fold angle 50 between the first simulation surface 20 and the second simulation surface 21, and θb is the half value of the viewing angle.

…………………………………(式4) ……………………………… (Formula 4)

參照圖15,係為本發明依據一些實施例之折角顯示器11的立體示意圖。在一些實施例中,折角顯示器11更包含一第三顯示面114,連接於第一顯示面110及第二顯示面111之間。在一些實施例中,第三顯示面114與第一顯示面110不共平面,且第三顯示面114與第二顯示面111不共平面。例如,第一顯示面110與第三顯示面114之間具有第一折角112A,第二顯示面111與第三顯示面114之間具有第二折角112B。具體來說,第三顯示面114的兩側邊分別連接於第一顯示面110的一側邊及第二顯示面111的一側邊,以使第一顯示面110、第二顯示面111與第三顯示面114所構成的顯示面為外凸。亦即,第一折角112A及第二折角112B是大於180度的折角。在一些實施例中,背板113位於第一顯示面110、第二顯示面111及第三顯示面114的出光面的另一側,用以支撐第一顯示面110、第二顯示面111及第三顯示面114。Refer to FIG. 15 , which is a schematic three-dimensional view of a corner display 11 according to some embodiments of the present invention. In some embodiments, the fold-angle display 11 further includes a third display surface 114 connected between the first display surface 110 and the second display surface 111 . In some embodiments, the third display surface 114 and the first display surface 110 are not co-planar, and the third display surface 114 and the second display surface 111 are not co-planar. For example, the first display surface 110 and the third display surface 114 have a first folding angle 112A, and the second display surface 111 and the third display surface 114 have a second folding angle 112B. Specifically, both sides of the third display surface 114 are respectively connected to one side of the first display surface 110 and one side of the second display surface 111, so that the first display surface 110, the second display surface 111 and The display surface formed by the third display surface 114 is convex. That is, the first folding angle 112A and the second folding angle 112B are folding angles greater than 180 degrees. In some embodiments, the back plate 113 is located on the other side of the light emitting surface of the first display surface 110 , the second display surface 111 and the third display surface 114 to support the first display surface 110 , the second display surface 111 and the third display surface 114 . The third display surface 114.

參照圖16及圖17。圖16係為本發明依據一些實施例之三維空間100中的第一模擬面20、第二模擬面21、第三模擬面25及投影面24的立體透視示意圖。圖17係為本發明依據一些實施例之影像補償方法的流程圖。在一些實施例中,處理器15所執行的一或多個命令包含步驟S1601~S1609,以實現影像補償方法。由於步驟S1601、S1603、S1605相同於步驟S601、603、605,因而於此不再重複贅述。在步驟S1602中,處理器15模擬第三顯示面114,以於三維空間100建立連接於第一模擬面20及第二模擬面21之間的第三模擬面25。在一些實施例中,由於第一模擬面20、第二模擬面21及第三模擬面25係模擬自第一顯示面110、第二顯示面111及第三顯示面114,因此第三模擬面25與第一模擬面20不共平面,且第三模擬面25與第二模擬面21不共平面。舉例來說,處理器15依據基準點與第三顯示面114(例如,其四個邊界點)之間的相對位置,獲得三維空間100的三維座標系統的第三三維座標參數集。其中,第三三維座標參數集可以包含多個三維座標參數。處理器15依據第三三維座標參數集,即可於三維空間100建立出第三模擬面25。Refer to Figures 16 and 17. Figure 16 is a schematic perspective view of the first simulation surface 20, the second simulation surface 21, the third simulation surface 25 and the projection surface 24 in the three-dimensional space 100 according to some embodiments of the present invention. Figure 17 is a flow chart of an image compensation method according to some embodiments of the present invention. In some embodiments, one or more commands executed by the processor 15 include steps S1601 to S1609 to implement the image compensation method. Since steps S1601, S1603, and S1605 are the same as steps S601, 603, and 605, they will not be repeated here. In step S1602 , the processor 15 simulates the third display surface 114 to establish the third simulation surface 25 connected between the first simulation surface 20 and the second simulation surface 21 in the three-dimensional space 100 . In some embodiments, since the first simulation surface 20 , the second simulation surface 21 and the third simulation surface 25 are simulated from the first display surface 110 , the second display surface 111 and the third display surface 114 , the third simulation surface 25 is not coplanar with the first simulation surface 20 , and the third simulation surface 25 is not coplanar with the second simulation surface 21 . For example, the processor 15 obtains the third three-dimensional coordinate parameter set of the three-dimensional coordinate system of the three-dimensional space 100 based on the relative position between the reference point and the third display surface 114 (for example, its four boundary points). The third three-dimensional coordinate parameter set may include multiple three-dimensional coordinate parameters. The processor 15 can establish the third simulation surface 25 in the three-dimensional space 100 based on the third three-dimensional coordinate parameter set.

在一些實施例中,相較於第一模擬面20、第二模擬面21及第三模擬面25位於背板模型23的前側,投影面24是位於背板模型23的後側。但本發明並不限於此,投影面24、第一模擬面20、第二模擬面21及第三模擬面25均位於背板模型23的同一側(前側)。In some embodiments, while the first simulation surface 20 , the second simulation surface 21 and the third simulation surface 25 are located on the front side of the back panel model 23 , the projection surface 24 is located on the rear side of the back panel model 23 . However, the present invention is not limited to this. The projection surface 24 , the first simulation surface 20 , the second simulation surface 21 and the third simulation surface 25 are all located on the same side (front side) of the back panel model 23 .

與步驟S607的差異在於,在步驟S1607中,處理器15除了將第一投影影像30朝向觀看位置40平行投影至第一模擬面20及第二模擬面21之外,還將第一投影影像30朝向觀看位置40平行投影至第三模擬面25,也就是說,處理器15是將第一投影影像30朝向觀看位置40平行投影至第一模擬面20、第二模擬面21及第三模擬面25,以形成第二投影影像31。舉例來說,處理器15可以依據前述之第二轉換函數將第一投影影像30轉換為第二投影影像31。其中,在本實施例中,Mtran是將經平行投影處理後的投影面座標參數轉換為第一模擬面20、第二模擬面21及第三模擬面25於三維空間100的三維座標系統中對應的三維座標參數(即模擬面座標參數)。在一些實施例中,平行投影包含正投影及斜投影。因此,在步驟S1607的一些實施例中,依據不同的觀看位置40及第一投影影像30於投影面24的分布位置,將第一投影影像30投影至第一模擬面20、第二模擬面21及第三模擬面25的投影方法可以是使用正投影及斜投影的其中一者或是二者。The difference from step S607 is that in step S1607 , in addition to projecting the first projection image 30 parallel to the first simulation surface 20 and the second simulation surface 21 toward the viewing position 40 , the processor 15 also projects the first projection image 30 Parallel projection toward the viewing position 40 to the third simulation surface 25 , that is to say, the processor 15 projects the first projection image 30 toward the viewing position 40 to the first simulation surface 20 , the second simulation surface 21 and the third simulation surface in parallel. 25 to form the second projected image 31. For example, the processor 15 can convert the first projection image 30 into the second projection image 31 according to the aforementioned second conversion function. Among them, in this embodiment, Mtran converts the coordinate parameters of the projection surface after parallel projection processing into the first simulation surface 20 , the second simulation surface 21 and the third simulation surface 25 corresponding to the three-dimensional coordinate system of the three-dimensional space 100 The three-dimensional coordinate parameters (ie, the simulation surface coordinate parameters). In some embodiments, parallel projection includes orthographic projection and oblique projection. Therefore, in some embodiments of step S1607, the first projection image 30 is projected to the first simulation surface 20 and the second simulation surface 21 according to different viewing positions 40 and the distribution positions of the first projection image 30 on the projection surface 24. The projection method of the third simulation surface 25 may be to use one or both of orthographic projection and oblique projection.

與步驟S609的差異在於,在步驟S1609中,處理器15除了考量第一模擬面20、第二模擬面21及第二投影影像31之外,還考量有第三模擬面25,也就是說,處理器15依據第一模擬面20、第二模擬面21、第三模擬面25及第二投影影像31,於第一顯示面110、第二顯示面111及第三顯示面114形成顯示影像115。舉例來說,由於第一模擬面20、第二模擬面21及第三模擬面25係模擬自第一顯示面110、第二顯示面111及第三顯示面114,因此處理器15可以依據第一模擬面20、第二模擬面21及第三模擬面25的模擬面座標參數及其於原始影像對應的像素,控制第一顯示面110、第二顯示面111及第三顯示面114將第二投影影像31作為顯示影像115呈現。如此,可以使顯示影像115的圖案具有立體感,且圖案不受折角112的影響而具有連續性。此外,顯示影像115不會因不同的觀看位置40而產生視覺性的變形。The difference from step S609 is that in step S1609, in addition to considering the first simulation surface 20, the second simulation surface 21 and the second projected image 31, the processor 15 also considers the third simulation surface 25, that is to say, The processor 15 forms a display image 115 on the first display surface 110 , the second display surface 111 and the third display surface 114 based on the first simulation surface 20 , the second simulation surface 21 , the third simulation surface 25 and the second projection image 31 . For example, since the first simulation surface 20 , the second simulation surface 21 and the third simulation surface 25 are simulated from the first display surface 110 , the second display surface 111 and the third display surface 114 , the processor 15 can be configured according to the first simulation surface 20 , the second simulation surface 21 and the third simulation surface 25 . The simulation surface coordinate parameters of the first simulation surface 20 , the second simulation surface 21 and the third simulation surface 25 and their corresponding pixels in the original image control the first display surface 110 , the second display surface 111 and the third display surface 114 to move the first display surface 110 to the third display surface 114 . The two projected images 31 are presented as display images 115 . In this way, the pattern of the displayed image 115 can have a three-dimensional effect, and the pattern will not be affected by the folding corners 112 and have continuity. In addition, the display image 115 will not be visually deformed due to different viewing positions 40 .

參照圖18,係為本發明依據一些實施例之影像補償方法的流程圖。在步驟S1605的一些實施例中,處理器15是將原始影像投影至第一模擬面20、第二模擬面21及第三模擬面25,以形成第三投影影像32(步驟S16051),並將第三投影影像32正投影至投影面24,以形成第一投影影像30(步驟S16052)。舉例來說,處理器15可以是依據在直接將原始影像呈現於第一顯示面110、第二顯示面111及第三顯示面114時原始影像的每一像素的像素座標參數於第一顯示面110、第二顯示面111及第三顯示面114的位置,將原始影像投影至第一模擬面20、第二模擬面21及第三模擬面25之模擬面座標參數,以形成出第三投影影像32。接著,處理器15將第三投影影像32正投影至投影面24,以形成第一投影影像30。具體來說,處理器15可以依據前述之第三轉換函數將原始影像轉換為第一投影影像30。如此,可以確保作為顯示影像115的第二投影影像31是相近於第一顯示面110、第二顯示面111及第三顯示面114的實際顯示狀態,且不會產生視覺性的變形。Refer to FIG. 18 , which is a flow chart of an image compensation method according to some embodiments of the present invention. In some embodiments of step S1605, the processor 15 projects the original image to the first simulation surface 20, the second simulation surface 21 and the third simulation surface 25 to form the third projected image 32 (step S16051), and The third projection image 32 is projected onto the projection surface 24 to form the first projection image 30 (step S16052). For example, the processor 15 may display the original image on the first display surface based on the pixel coordinate parameters of each pixel of the original image when the original image is directly presented on the first display surface 110, the second display surface 111, and the third display surface 114. 110. According to the positions of the second display surface 111 and the third display surface 114, the original image is projected onto the simulation surface coordinate parameters of the first simulation surface 20, the second simulation surface 21 and the third simulation surface 25 to form a third projection. Image 32. Then, the processor 15 forward projects the third projection image 32 to the projection surface 24 to form the first projection image 30 . Specifically, the processor 15 may convert the original image into the first projected image 30 according to the aforementioned third conversion function. In this way, it can be ensured that the second projected image 31 as the displayed image 115 is close to the actual display states of the first display surface 110 , the second display surface 111 and the third display surface 114 without visual distortion.

綜上所述,依據本發明之實施例,可以使折角顯示器的顯示影像具有立體感。此外,本發明還可以使折角顯示器的顯示影像不受折角的影響而具有連續性。In summary, according to the embodiments of the present invention, the display image of the corner display can have a three-dimensional effect. In addition, the present invention can also make the display image of the folding display have continuity without being affected by the folding angle.

10:折角顯示裝置 11:折角顯示器 110:第一顯示面 111:第二顯示面 112:折角 112A:第一折角 112B:第二折角 113:背板 114:第三顯示面 115、116:顯示影像 13:記憶體 15:處理器 100:三維空間 20:第一模擬面 201:第三側邊 202:第四側邊 21:第二模擬面 211:第五側邊 212:第六側邊 23:背板模型 24:投影面 241:第一側邊 242:第二側邊 25:第三模擬面 30:第一投影影像 31:第二投影影像 32:第三投影影像 40:觀看位置 50:折角 S601~S609:步驟 S6051~S6052:步驟 S1601~S1609:步驟 S16051~S16052:步驟10: Corner display device 11: Corner display 110: First display surface 111: Second display surface 112: folded corners 112A: First corner 112B: Second corner 113:Back panel 114:Third display surface 115, 116: Display image 13:Memory 15: Processor 100: Three-dimensional space 20: First simulation side 201:Third side 202:Fourth side 21:Second simulation side 211:Fifth side 212:Sixth side 23: Backplane model 24: Projection surface 241:First side 242:Second side 25: The third simulation surface 30: First projected image 31: Second projected image 32: The third projected image 40:Viewing position 50: folded corner S601~S609: steps S6051~S6052: steps S1601~S1609: steps S16051~S16052: Steps

[圖1]係為本發明依據一些實施例之折角顯示裝置的方塊示意圖。 [圖2]係為本發明依據一些實施例之折角顯示器的立體示意圖。 [圖3]係為本發明依據一些實施例之折角顯示器的前視示意圖。 [圖4]係為本發明依據一些實施例之影像補償方法的流程圖。 [圖5]係為本發明依據一些實施例之三維空間中的第一模擬面、第二模擬面及投影面的立體透視示意圖。 [圖6]係為本發明依據一些實施例之三維空間中的第一模擬面、第二模擬面及投影面的前視示意圖。 [圖7]係為本發明依據一些實施例之三維空間中的第一模擬面、第二模擬面及投影面的後視示意圖。 [圖8]係為本發明依據一些實施例之三維空間中的第一模擬面、第二模擬面及投影面的立體透視示意圖。 [圖9]係為本發明依據一些實施例之三維空間中的第一模擬面、第二模擬面及投影面的前視示意圖。 [圖10]係為本發明之比較例之折角顯示器的前視示意圖。 [圖11]係為本發明依據一些實施例之折角顯示器的前視示意圖。 [圖12]係為本發明依據一些實施例之三維空間中的第一模擬面、第二模擬面及投影面的立體透視示意圖。 [圖13]係為本發明依據一些實施例之影像補償方法的流程圖。 [圖14]係為本發明依據一些實施例之三維空間中的第一模擬面、第二模擬面及投影面的後視示意圖。 [圖15]係為本發明依據一些實施例之折角顯示器的立體示意圖。 [圖16]係為本發明依據一些實施例之三維空間中的第一模擬面、第二模擬面、第三模擬面及投影面的立體透視示意圖。 [圖17]係為本發明依據一些實施例之影像補償方法的流程圖。 [圖18]係為本發明依據一些實施例之影像補償方法的流程圖。 [Fig. 1] is a block diagram of a corner display device according to some embodiments of the present invention. [Fig. 2] is a three-dimensional schematic diagram of a corner display according to some embodiments of the present invention. [Fig. 3] is a schematic front view of a corner display according to some embodiments of the present invention. [Fig. 4] is a flow chart of an image compensation method according to some embodiments of the present invention. [Fig. 5] is a three-dimensional perspective view of the first simulation surface, the second simulation surface and the projection surface in the three-dimensional space according to some embodiments of the present invention. [Fig. 6] is a schematic front view of the first simulation surface, the second simulation surface and the projection surface in the three-dimensional space according to some embodiments of the present invention. [Fig. 7] is a schematic rear view of the first simulation surface, the second simulation surface and the projection surface in the three-dimensional space according to some embodiments of the present invention. [Fig. 8] is a three-dimensional perspective view of the first simulation surface, the second simulation surface and the projection surface in the three-dimensional space according to some embodiments of the present invention. [Fig. 9] is a schematic front view of the first simulation surface, the second simulation surface and the projection surface in the three-dimensional space according to some embodiments of the present invention. [Fig. 10] is a schematic front view of a corner display according to a comparative example of the present invention. [Fig. 11] is a schematic front view of a corner display according to some embodiments of the present invention. [Fig. 12] is a three-dimensional perspective view of the first simulation surface, the second simulation surface and the projection surface in the three-dimensional space according to some embodiments of the present invention. [Fig. 13] is a flow chart of an image compensation method according to some embodiments of the present invention. [Fig. 14] is a schematic rear view of the first simulation surface, the second simulation surface and the projection surface in the three-dimensional space according to some embodiments of the present invention. [Fig. 15] is a three-dimensional schematic diagram of a corner display according to some embodiments of the present invention. [Fig. 16] is a three-dimensional perspective view of the first simulation surface, the second simulation surface, the third simulation surface and the projection surface in the three-dimensional space according to some embodiments of the present invention. [Fig. 17] is a flow chart of an image compensation method according to some embodiments of the present invention. [Fig. 18] is a flow chart of an image compensation method according to some embodiments of the present invention.

S601~S609:步驟 S601~S609: steps

Claims (20)

一種折角顯示裝置,包含: 一折角顯示器,包括一第一顯示面及一第二顯示面,該第一顯示面與該第二顯示面不共平面; 一記憶體,用以儲存一或多個命令;及 一處理器,耦接該記憶體及該折角顯示器,用以存取並執行該記憶體之該一或多個命令,該一或多個命令包含: 模擬該第一顯示面及該第二顯示面,以於一三維空間分別建立一第一模擬面及一第二模擬面; 於該三維空間建立一投影面; 將一原始影像投影至該投影面,以形成一第一投影影像; 將該第一投影影像朝向一觀看位置平行投影至該第一模擬面及該第二模擬面,以形成一第二投影影像;及 依據該第一模擬面、該第二模擬面及該第二投影影像,於該第一顯示面及該第二顯示面形成一顯示影像。 A corner display device, including: A fold-angle display includes a first display surface and a second display surface, and the first display surface and the second display surface are not coplanar; a memory to store one or more commands; and A processor, coupled to the memory and the corner display, is used to access and execute the one or more commands of the memory. The one or more commands include: Simulate the first display surface and the second display surface to respectively establish a first simulation surface and a second simulation surface in a three-dimensional space; Establish a projection surface in the three-dimensional space; Project an original image onto the projection surface to form a first projected image; Project the first projection image parallel to the first simulation surface and the second simulation surface toward a viewing position to form a second projection image; and According to the first simulation surface, the second simulation surface and the second projection image, a display image is formed on the first display surface and the second display surface. 如請求項1所述之折角顯示裝置,其中,形成該第一投影影像的該命令是,將該原始影像投影至該第一模擬面及該第二模擬面,以形成一第三投影影像,並將該第三投影影像正投影至該投影面,以形成該第一投影影像。The corner display device of claim 1, wherein the command to form the first projection image is to project the original image to the first simulation surface and the second simulation surface to form a third projection image, The third projection image is forward projected onto the projection surface to form the first projection image. 如請求項1所述之折角顯示裝置,其中,該投影面的兩側邊分別連接該第一模擬面及該第二模擬面。The corner display device of claim 1, wherein both sides of the projection surface are respectively connected to the first simulation surface and the second simulation surface. 如請求項3所述之折角顯示裝置,其中,該投影面的該兩側邊的其中一者連接於該第一模擬面的兩側邊之間的區域,該投影面的該兩側邊的另一者連接於該第二模擬面的兩側邊之間的區域。The corner display device according to claim 3, wherein one of the two sides of the projection surface is connected to an area between the two sides of the first simulation surface, and one of the two sides of the projection surface is The other one is connected to the area between the two sides of the second simulation surface. 如請求項3所述之折角顯示裝置,其中,該投影面的該兩側邊的其中一者連接該第一模擬面的兩側邊的其中一者,該投影面的該兩側邊的另一者連接該第二模擬面的兩側邊的其中一者,該第一模擬面的該兩側邊的另一者連接於該第二模擬面的該兩側邊的另一者。The corner display device according to claim 3, wherein one of the two sides of the projection surface is connected to one of the two sides of the first simulation surface, and the other of the two sides of the projection surface is connected to one of the two sides of the first simulation surface. One is connected to one of the two sides of the second simulation surface, and the other of the two sides of the first simulation surface is connected to the other of the two sides of the second simulation surface. 如請求項4或5中所述之折角顯示裝置,其中,該觀看位置係依據該第一模擬面的該兩側邊之間的距離、該第二模擬面的該兩側邊之間的距離、一視角及該第一模擬面與該第二模擬面之間的一折角而計算得。The corner display device as claimed in claim 4 or 5, wherein the viewing position is based on the distance between the two sides of the first simulation surface and the distance between the two sides of the second simulation surface. , a viewing angle and a folding angle between the first simulation surface and the second simulation surface. 如請求項1所述之折角顯示裝置,其中,該折角顯示器更包含一第三顯示面,連接於該第一顯示面及該第二顯示面之間,該一或多個命令更包含模擬該第三顯示面,以於該三維空間建立連接於該第一模擬面及該第二模擬面之間的一第三模擬面;其中,形成該第二投影影像的該命令是,將該第一投影影像朝向該觀看位置平行投影至該第一模擬面、該第二模擬面及該第三模擬面,以形成該第二投影影像;其中,形成該顯示影像的該命令是,依據該第一模擬面、該第二模擬面、該第三模擬面及該第二投影影像,於該第一顯示面、該第二顯示面及該第三顯示面形成該顯示影像。The corner display device of claim 1, wherein the corner display further includes a third display surface connected between the first display surface and the second display surface, and the one or more commands further include simulating the The third display surface is used to establish a third simulation surface connected between the first simulation surface and the second simulation surface in the three-dimensional space; wherein, the command to form the second projection image is to convert the first simulation surface to the third display surface. The projected image is projected parallel to the first simulation surface, the second simulation surface and the third simulation surface toward the viewing position to form the second projection image; wherein the command to form the display image is based on the first The simulation surface, the second simulation surface, the third simulation surface and the second projection image form the display image on the first display surface, the second display surface and the third display surface. 如請求項7所述之折角顯示裝置,其中,形成該第一投影影像的該命令是,將該原始影像投影至該第一模擬面、該第二模擬面及該第三模擬面,以形成一第三投影影像,並將該第三投影影像正投影至該投影面,以形成該第一投影影像。The corner display device of claim 7, wherein the command to form the first projected image is to project the original image to the first simulation surface, the second simulation surface and the third simulation surface to form A third projection image is projected onto the projection surface to form the first projection image. 如請求項1所述之折角顯示裝置,其中,該投影面係為一平面。The corner display device according to claim 1, wherein the projection surface is a plane. 如請求項1所述之折角顯示裝置,其中,該投影面係為一曲面。The corner display device of claim 1, wherein the projection surface is a curved surface. 一種影像補償方法,包含: 模擬一折角顯示器的一第一顯示面及一第二顯示面,以於一三維空間分別建立一第一模擬面及一第二模擬面,其中該第一顯示面與該第二顯示面不共平面; 於該三維空間建立一投影面; 將一原始影像投影至該投影面,以形成一第一投影影像; 將該第一投影影像朝向一觀看位置平行投影至該第一模擬面及該第二模擬面,以形成一第二投影影像;及 依據該第一模擬面、該第二模擬面及該第二投影影像,於該第一顯示面及該第二顯示面形成一顯示影像。 An image compensation method, including: Simulating a first display surface and a second display surface of a fold-angle display to respectively establish a first simulation surface and a second simulation surface in a three-dimensional space, wherein the first display surface and the second display surface are different flat; Establish a projection surface in the three-dimensional space; Project an original image onto the projection surface to form a first projected image; Project the first projection image parallel to the first simulation surface and the second simulation surface toward a viewing position to form a second projection image; and According to the first simulation surface, the second simulation surface and the second projection image, a display image is formed on the first display surface and the second display surface. 如請求項11所述之影像補償方法,其中,形成該第一投影影像的步驟是,將該原始影像投影至該第一模擬面及該第二模擬面,以形成一第三投影影像,並將該第三投影影像正投影至該投影面,以形成該第一投影影像。The image compensation method according to claim 11, wherein the step of forming the first projection image is to project the original image to the first simulation surface and the second simulation surface to form a third projection image, and The third projection image is forward projected onto the projection surface to form the first projection image. 如請求項11所述之影像補償方法,其中,該投影面的兩側邊分別連接該第一模擬面及該第二模擬面。The image compensation method as claimed in claim 11, wherein both sides of the projection surface are respectively connected to the first simulation surface and the second simulation surface. 如請求項13所述之影像補償方法,其中,該投影面的該兩側邊的其中一者連接於該第一模擬面的兩側邊之間的區域,該投影面的該兩側邊的另一者連接於該第二模擬面的兩側邊之間的區域。The image compensation method according to claim 13, wherein one of the two sides of the projection surface is connected to the area between the two sides of the first simulation surface, and the two sides of the projection surface are The other one is connected to the area between the two sides of the second simulation surface. 如請求項13所述之影像補償方法,其中,該投影面的該兩側邊的其中一者連接該第一模擬面的兩側邊的其中一者,該投影面的該兩側邊的另一者連接該第二模擬面的兩側邊的其中一者,該第一模擬面的該兩側邊的另一者連接於該第二模擬面的該兩側邊的另一者。The image compensation method according to claim 13, wherein one of the two sides of the projection surface is connected to one of the two sides of the first simulation surface, and the other of the two sides of the projection surface is connected to one of the two sides of the first simulation surface. One is connected to one of the two sides of the second simulation surface, and the other of the two sides of the first simulation surface is connected to the other of the two sides of the second simulation surface. 如請求項14或15中所述之影像補償方法,其中,該觀看位置係依據該第一模擬面的該兩側邊之間的距離、該第二模擬面的該兩側邊之間的距離、一視角及該第一模擬面與該第二模擬面之間的一折角而計算得。The image compensation method as described in claim 14 or 15, wherein the viewing position is based on the distance between the two sides of the first simulation surface and the distance between the two sides of the second simulation surface. , a viewing angle and a folding angle between the first simulation surface and the second simulation surface. 如請求項11所述之影像補償方法,其中,該折角顯示器的一第三顯示面連接於該第一顯示面及該第二顯示面之間,該影像補償方法更包含模擬該第三顯示面,以於該三維空間建立連接於該第一模擬面及該第二模擬面之間的一第三模擬面;其中,形成該第二投影影像的步驟是,將該第一投影影像朝向該觀看位置平行投影至該第一模擬面、該第二模擬面及該第三模擬面,以形成該第二投影影像;其中,形成該顯示影像的步驟是,依據該第一模擬面、該第二模擬面、該第三模擬面及該第二投影影像,於該第一顯示面、該第二顯示面及該第三顯示面形成該顯示影像。The image compensation method according to claim 11, wherein a third display surface of the corner display is connected between the first display surface and the second display surface, and the image compensation method further includes simulating the third display surface , to establish a third simulation surface connected between the first simulation surface and the second simulation surface in the three-dimensional space; wherein the step of forming the second projection image is to direct the first projection image toward the viewing Positions are projected parallel to the first simulation surface, the second simulation surface and the third simulation surface to form the second projection image; wherein, the step of forming the display image is based on the first simulation surface, the second simulation surface The simulation surface, the third simulation surface and the second projection image form the display image on the first display surface, the second display surface and the third display surface. 如請求項17所述之影像補償方法,其中,形成該第一投影影像的步驟是,將該原始影像投影至該第一模擬面、該第二模擬面及該第三模擬面,以形成一第三投影影像,並將該第三投影影像正投影至該投影面,以形成該第一投影影像。The image compensation method according to claim 17, wherein the step of forming the first projected image is to project the original image to the first simulation surface, the second simulation surface and the third simulation surface to form a A third projection image is projected onto the projection surface to form the first projection image. 如請求項11所述之影像補償方法,其中,該投影面係為一平面。The image compensation method as claimed in claim 11, wherein the projection plane is a plane. 如請求項11所述之影像補償方法,其中,該投影面係為一曲面。The image compensation method as claimed in claim 11, wherein the projection surface is a curved surface.
TW111136410A 2022-09-26 2022-09-26 Angular display device and image compensation method TWI826015B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111136410A TWI826015B (en) 2022-09-26 2022-09-26 Angular display device and image compensation method
CN202211250995.8A CN117812241A (en) 2022-09-26 2022-10-13 Folded angle display device and image compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111136410A TWI826015B (en) 2022-09-26 2022-09-26 Angular display device and image compensation method

Publications (2)

Publication Number Publication Date
TWI826015B true TWI826015B (en) 2023-12-11
TW202414042A TW202414042A (en) 2024-04-01

Family

ID=90053213

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111136410A TWI826015B (en) 2022-09-26 2022-09-26 Angular display device and image compensation method

Country Status (2)

Country Link
CN (1) CN117812241A (en)
TW (1) TWI826015B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200912380A (en) * 2007-09-06 2009-03-16 Chung Shan Inst Of Science Three-dimensional image display device
CN102402009A (en) * 2010-03-31 2012-04-04 岳祖洲 Three dimension image display method and display device
TWI653624B (en) * 2018-02-22 2019-03-11 誠屏科技股份有限公司 Multi-screen display device and display method
US10761343B2 (en) * 2018-02-05 2020-09-01 Disney Enterprises, Inc. Floating image display system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200912380A (en) * 2007-09-06 2009-03-16 Chung Shan Inst Of Science Three-dimensional image display device
CN102402009A (en) * 2010-03-31 2012-04-04 岳祖洲 Three dimension image display method and display device
US10761343B2 (en) * 2018-02-05 2020-09-01 Disney Enterprises, Inc. Floating image display system
TWI653624B (en) * 2018-02-22 2019-03-11 誠屏科技股份有限公司 Multi-screen display device and display method

Also Published As

Publication number Publication date
CN117812241A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
US10901309B2 (en) System and method for automated test-pattern-free projection calibration
TWI278227B (en) Image processing system, projector, information storage medium, and image processing method
CN110337386A (en) For rearview visually after spliced panoramic view
KR101016136B1 (en) Method and system for aligning an array of projectors
CN112584113B (en) Wide-screen projection method and system based on mapping correction and readable storage medium
WO2020252934A1 (en) Dynamic projection device and method, and projector
US20060244749A1 (en) Image processing apparatus, image processing method, and program and recording medium used therewith
CN110809786A (en) Calibration device, calibration chart, chart pattern generation device, and calibration method
US11323674B2 (en) Projection device, projection system and image correction method
JP2010092050A (en) Image processing method
US20210150762A1 (en) Camera calibration using depth data
US20170294052A1 (en) System, Method and Software for Producing Virtual Three Dimensional Images that Appear to Project Forward of or Above an Electronic Display
WO2018032841A1 (en) Method, device and system for drawing three-dimensional image
JP2003091720A (en) View point converting device, view point converting program and image processor for vehicle
WO2018167918A1 (en) Projector, method of creating data for mapping, program, and projection mapping system
WO2023040176A1 (en) Power supply port positioning method and system for insulation test of electrical product
TWI826015B (en) Angular display device and image compensation method
US20200045277A1 (en) Projection device, projection system and an image calibration method
JP4304946B2 (en) Image display device
TW202414042A (en) Angular display device and image compensation method
TWM594322U (en) Camera configuration system with omnidirectional stereo vision
US11877103B2 (en) Projection device and projection picture correction method thereof
JP4121313B2 (en) 3D image display equipment
Mitsugami et al. Multi-planar projection by fixed-center pan-tilt projectors
TWI661260B (en) System and method for automatic calibration of principal point