TWI825796B - Charger circuit - Google Patents

Charger circuit Download PDF

Info

Publication number
TWI825796B
TWI825796B TW111123011A TW111123011A TWI825796B TW I825796 B TWI825796 B TW I825796B TW 111123011 A TW111123011 A TW 111123011A TW 111123011 A TW111123011 A TW 111123011A TW I825796 B TWI825796 B TW I825796B
Authority
TW
Taiwan
Prior art keywords
voltage
circuit
charging
current
signal
Prior art date
Application number
TW111123011A
Other languages
Chinese (zh)
Other versions
TW202332162A (en
Inventor
陳冠宇
黃宗偉
吳燦輝
羅業興
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US18/058,312 priority Critical patent/US20230231398A1/en
Publication of TW202332162A publication Critical patent/TW202332162A/en
Application granted granted Critical
Publication of TWI825796B publication Critical patent/TWI825796B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention discloses a charger circuit, including: a power stage circuit configured to operably operate at least one power switch according to an operation signal to convert an input power to an output power via an inductor to charge a battery and/or to be provided for a load, wherein the output power includes a charging power and/or a load power; a control circuit coupled with the power stage circuit and configured to operably generate the operation signal according to a voltage amplifying signal; and a voltage error amplifier circuit configured to operably compare a voltage sensing signal relevant to a charging voltage of the charging power or a load voltage of the load power with a voltage reference level in a voltage hysteresis mode in a discontinuous conduction mode (DCM), so as to generate the voltage amplifying signal; wherein the control circuit adjusts the charging voltage or the load voltage according to the voltage amplifying signal, so as to keep the charging voltage or the load voltage in a predetermined range.

Description

充電電路Charging circuit

本發明係有關充電電路,特別是有關於將充電電壓或負載電壓控制於預設範圍內之充電電路。 The present invention relates to charging circuits, and in particular to charging circuits that control charging voltage or load voltage within a preset range.

請參閱圖1A,其顯示一習知之充電電路對一充電電池充電過程的三個操作模式(預充模式、定電流模式與定電壓模式)中,充電電壓Vbat與充電電流Ibat的波形示意圖。在充電過程中,充電電壓Vbat與充電電流Ibat的改變如圖1A所示。在定電流模式中,充電電壓Vbat持續增加,當充電電壓Vbat到達預設閾值時,充電電路的操作模式改變為定電壓模式。在定電壓模式中,充電電流Ibat隨時間而降低,當充電電流Ibat降低至一預設位準,充電電路需要在定電壓模式中,選擇操作於一種非連續導通模式(DCM,discontinuous conduction mode),若操作於連續導通電流模式(CCM,continuous conduction mode),會造成負電流而導致電流倒流,進而損壞電路。選擇操作於非連續導通模式可提高效率,減少切換損失,並避免電流回流。 Please refer to FIG. 1A , which shows a schematic waveform diagram of the charging voltage Vbat and the charging current Ibat in three operating modes (precharge mode, constant current mode and constant voltage mode) of a conventional charging circuit for charging a rechargeable battery. During the charging process, the changes in charging voltage Vbat and charging current Ibat are shown in Figure 1A. In the constant current mode, the charging voltage Vbat continues to increase. When the charging voltage Vbat reaches the preset threshold, the operating mode of the charging circuit changes to the constant voltage mode. In the constant voltage mode, the charging current Ibat decreases with time. When the charging current Ibat decreases to a preset level, the charging circuit needs to choose to operate in a discontinuous conduction mode (DCM) in the constant voltage mode. , if operated in continuous conduction mode (CCM, continuous conduction mode), it will cause negative current and cause current to flow backward, thus damaging the circuit. Selecting operation in discontinuous conduction mode improves efficiency, reduces switching losses, and avoids current backflow.

圖1B係顯示習知之充電電路操作於前述非連續導通模式時的暫態響應波形示意圖。此習知充電電路之充電電壓Vbat及切換節點電壓VLX係顯示於圖1B及1C。在一般的應用中,充電電路除了對充電電池充電,還可供應電源予負載。如圖1B所示,當充電電路操作於非連續導通模式時, 充電電流Ibat降低至預設位準,若負載為輕載時,由此波形圖可知,此習知之充電電路係藉由脈衝省略(pulse skipping)來進行控制。若充電電壓Vbat的控制不夠精確,會造成充電時間太長。另一方面,當負載不穩定時,例如負載自輕載變為重載時,暫態響應會使充電電壓Vbat瞬間降低,也會很容易產生不均勻的漣波。由此暫態響應波形圖可知,當重載來臨時,負載無法在短時間內從脈衝省略模式轉變為其他的脈寬調變控制模式。由於電源供應不夠快,故負載電壓會有大約1伏特之下降,也造成充電電路操作模式的選擇錯誤。 FIG. 1B is a schematic diagram showing the transient response waveform of a conventional charging circuit operating in the aforementioned discontinuous conduction mode. The charging voltage Vbat and switching node voltage VLX of this conventional charging circuit are shown in Figures 1B and 1C. In general applications, the charging circuit not only charges the rechargeable battery, but also supplies power to the load. As shown in Figure 1B, when the charging circuit operates in discontinuous conduction mode, The charging current Ibat is reduced to the preset level. If the load is light load, it can be seen from the waveform diagram that this conventional charging circuit is controlled by pulse skipping. If the control of the charging voltage Vbat is not accurate enough, the charging time will be too long. On the other hand, when the load is unstable, such as when the load changes from light load to heavy load, the transient response will cause the charging voltage Vbat to instantly decrease, and uneven ripples will easily occur. It can be seen from the transient response waveform diagram that when a heavy load comes, the load cannot change from the pulse omission mode to other pulse width modulation control modes in a short time. Because the power supply is not fast enough, the load voltage will drop by about 1 volt, which also causes the wrong selection of the charging circuit operating mode.

有鑑於此,本發明即針對上述先前技術之不足,提出一種充電電路,可精確控制充電電壓,提高充電效率並加強暫態響應。 In view of this, the present invention aims at the above-mentioned shortcomings of the prior art and proposes a charging circuit that can accurately control the charging voltage, improve charging efficiency and enhance transient response.

於一觀點中,本發明提供一種充電電路包括:一功率級電路,用以根據一操作訊號,而操作其中之至少一功率開關,以將一輸入電源經由一電感轉換為一輸出電源,以對一電池充電及/或供應予一負載使用,其中該輸出電源包括一充電電源及/或一負載電源,該充電電源包括一充電電壓及一充電電流,該負載電源包括一負載電壓;一控制電路,與該功率級電路耦接,用以根據一電壓放大訊號,而產生該操作訊號;以及一電壓誤差放大電路,用以於一非連續導通模式(DCM,discontinuous conduction mode)之一電壓遲滯模式中比較相關於該充電電壓或該負載電壓之一電壓感測訊號與一電壓參考位準,而產生該電壓放大訊號;其中該控制電路根據該電壓放大訊號調整該充電電壓或該負載電壓,使該充電電壓或該負載電壓維持於一預定範圍內。 In one aspect, the present invention provides a charging circuit including: a power stage circuit for operating at least one of the power switches according to an operation signal to convert an input power supply into an output power supply via an inductor to charge the charging circuit. A battery is charged and/or supplied to a load, wherein the output power source includes a charging power source and/or a load power source, the charging power source includes a charging voltage and a charging current, the load power source includes a load voltage; a control circuit , coupled to the power stage circuit, for generating the operation signal according to a voltage amplification signal; and a voltage error amplification circuit for a voltage hysteresis mode in a discontinuous conduction mode (DCM, discontinuous conduction mode) Comparing a voltage sensing signal related to the charging voltage or the load voltage with a voltage reference level to generate the voltage amplification signal; wherein the control circuit adjusts the charging voltage or the load voltage according to the voltage amplification signal, so that The charging voltage or the load voltage is maintained within a predetermined range.

於一實施例中,該電壓參考位準包括一電壓上限閾值及一電壓下限閾值,其中該電壓誤差放大電路包括:一第一電壓比較電路,用以比較相關於該充電電壓或該負載電壓之該電壓感測訊號與該電壓上限閾值;一第二電壓比較電路,用以比較相關於該充電電壓或該負載電壓之該電壓感測訊號與該電壓下限閾值;以及一邏輯電路,其中該第一電壓比較電路用以根據相關於該充電電壓或該負載電壓之該電壓感測訊號與該電壓上限閾值而產生一第一電壓判斷訊號,該第二電壓比較電路用以根據相關於該充電電壓或該負載電壓之該電壓感測訊號與該電壓下限閾值而產生一第二電壓判斷訊號,該邏輯電路用以根據該第一電壓判斷訊號及該第二電壓判斷訊號而產生一電壓遲滯訊號;其中當相關於該充電電壓或該負載電壓之該電壓感測訊號自小於該電壓上限閾值上升到達該電壓上限閾值時,該電壓遲滯訊號切換為一致能位準,使該功率級電路中之該至少一功率開關皆不導通,進而使該充電電壓或該負載電壓下降;其中當相關於該充電電壓或該負載電壓之該電壓感測訊號自該電壓上限閾值開始下降,到達該電壓下限閾值時,該電壓遲滯訊號切換為一禁能位準,使該充電電路切換為該非連續導通模式之一電流遲滯模式,藉由控制該功率級電路中之該至少一功率開關,以切換該電感,進而使該充電電壓或該負載電壓上升,藉此使該充電電壓或該負載電壓維持於該電壓上限閾值與該電壓下限閾值之間的該預定範圍內。 In one embodiment, the voltage reference level includes an upper voltage threshold and a lower voltage threshold, wherein the voltage error amplification circuit includes: a first voltage comparison circuit for comparing the voltage associated with the charging voltage or the load voltage. the voltage sensing signal and the upper voltage threshold; a second voltage comparison circuit for comparing the voltage sensing signal related to the charging voltage or the load voltage with the lower voltage threshold; and a logic circuit, wherein the third A voltage comparison circuit is used to generate a first voltage judgment signal based on the voltage sensing signal related to the charging voltage or the load voltage and the voltage upper limit threshold, and the second voltage comparison circuit is used to generate a first voltage judgment signal based on the voltage sensing signal related to the charging voltage. Or the voltage sensing signal of the load voltage and the voltage lower limit threshold generate a second voltage judgment signal, and the logic circuit is used to generate a voltage hysteresis signal based on the first voltage judgment signal and the second voltage judgment signal; When the voltage sensing signal related to the charging voltage or the load voltage rises from less than the upper voltage threshold to the upper voltage threshold, the voltage hysteresis signal switches to a consistent energy level, causing the power stage circuit to At least one power switch is non-conductive, causing the charging voltage or the load voltage to drop; when the voltage sensing signal related to the charging voltage or the load voltage starts to drop from the upper voltage threshold and reaches the lower voltage threshold , the voltage hysteresis signal switches to a disabled level, causing the charging circuit to switch to the current hysteresis mode of the discontinuous conduction mode, by controlling the at least one power switch in the power stage circuit to switch the inductor, and then The charging voltage or the load voltage is increased, thereby maintaining the charging voltage or the load voltage within the predetermined range between the upper voltage threshold and the lower voltage threshold.

於一實施例中,該第一電壓比較電路及該第二電壓比較電路均為採用自動校正技術之比較電路。 In one embodiment, the first voltage comparison circuit and the second voltage comparison circuit are comparison circuits using automatic correction technology.

於一實施例中,該至少一功率開關包括一上橋開關以及一下橋開關,該上橋開關耦接於該輸入電源及該電感之第一端之間,該下橋開關 耦接於該電感之該第一端及一接地電位之間,該電感之第二端耦接於該充電電源或該負載電源。 In one embodiment, the at least one power switch includes an upper bridge switch and a lower bridge switch. The upper bridge switch is coupled between the input power supply and the first end of the inductor. The lower bridge switch Coupled between the first end of the inductor and a ground potential, the second end of the inductor is coupled to the charging power source or the load power source.

於一實施例中,在該充電電路切換為該非連續導通模式之該電流遲滯模式時,當流經該電感之一電感電流自一電流上限閾值之位準,下降到達一電流下限閾值時,該上橋開關導通,該下橋開關不導通,使該電感電流上升,進而使該充電電壓或該負載電壓以一第一上升速率上升,當該電感電流自該電流下限閾值之位準,上升到達該電流上限閾值時,該上橋開關不導通,該下橋開關導通,使該電感電流下降,進而使該充電電壓或該負載電壓以一第二上升速率上升。 In one embodiment, when the charging circuit switches to the current hysteresis mode of the discontinuous conduction mode, when an inductor current flowing through the inductor drops from a level of an upper current threshold to a lower current threshold, the The upper bridge switch is turned on and the lower bridge switch is not turned on, causing the inductor current to rise, thereby causing the charging voltage or the load voltage to rise at a first rising rate. When the inductor current rises from the level of the current lower limit threshold to When the current upper limit threshold is reached, the upper bridge switch is not turned on, and the lower bridge switch is turned on, causing the inductor current to decrease, thereby causing the charging voltage or the load voltage to increase at a second rising rate.

於一實施例中,該第一上升速率係大於該第二上升速率。 In one embodiment, the first rising rate is greater than the second rising rate.

於一實施例中,該電感電流的平均值小於或等於該電流上限閾值之二分之一。 In one embodiment, the average value of the inductor current is less than or equal to one-half of the upper current threshold.

於一實施例中,該電流下限閾值為零或稍微大於零之值,藉此使該電感電流維持正值。 In one embodiment, the lower current threshold is zero or a value slightly greater than zero, thereby maintaining the inductor current at a positive value.

於一實施例中,該輸入電源包括一輸入電壓,該輸出電源包括一輸出電壓,該電流下限閾值及該電流上限閾值可動態調整或根據該輸入電壓或該輸出電壓適應性調整。 In one embodiment, the input power source includes an input voltage, the output power source includes an output voltage, and the current lower limit threshold and the current upper limit threshold can be dynamically adjusted or adaptively adjusted according to the input voltage or the output voltage.

於一實施例中,該充電電路更包括一非連續導通模式判斷電路,用以決定該充電電路切換為該非連續導通模式之時點。 In one embodiment, the charging circuit further includes a discontinuous conduction mode determination circuit for determining the time point when the charging circuit switches to the discontinuous conduction mode.

於一實施例中,該輸入電源包括一輸入電流,該非連續導通模式判斷電路包括:一電流感測電路,用以感測該輸入電流、流經該上橋開關之一上橋電流、流經該電感之一電感電流或流經該下橋開關之一下橋電流而產生一電流感測訊號;一轉態閾值產生電路,用以根據該操作訊號及一參考電壓而產生一轉態閾值訊號;以及一比較電路,用以比較該電流感測訊 號及該轉態閾值訊號,當該電流感測訊號小於該轉態閾值訊號時,使該充電電路切換為該非連續導通模式。 In one embodiment, the input power source includes an input current, and the discontinuous conduction mode determination circuit includes: a current sensing circuit for sensing the input current, an upper bridge current flowing through the upper bridge switch, and a current flowing through the upper bridge switch. An inductor current of the inductor or a low-side current flowing through the low-side switch generates a current sensing signal; a transition threshold generation circuit for generating a transition threshold signal based on the operation signal and a reference voltage; and a comparison circuit for comparing the current sensing signal signal and the transition threshold signal. When the current sensing signal is less than the transition threshold signal, the charging circuit is switched to the discontinuous conduction mode.

於一實施例中,該控制電路於該充電電壓或該負載電壓不高於一預設底限位準時,產生一結束訊號,以離開該非連續導通模式。 In one embodiment, the control circuit generates an end signal to leave the discontinuous conduction mode when the charging voltage or the load voltage is not higher than a preset lower limit level.

於一實施例中,該充電電路更包括一計時電路,用以當該電壓遲滯訊號處於該禁能位準時,計時一段逾時期間,該計時電路於該逾時期間之一結束時點時,確認該電壓遲滯訊號是否仍處於該禁能位準,若該電壓遲滯訊號仍處於該禁能位準,則該計時電路產生一結束訊號,以離開該非連續導通模式。 In one embodiment, the charging circuit further includes a timing circuit for timing a timeout period when the voltage hysteresis signal is at the disable level, and the timing circuit confirms at an end point of the timeout period. Whether the voltage hysteresis signal is still at the disable level, if the voltage hysteresis signal is still at the disable level, the timing circuit generates an end signal to leave the discontinuous conduction mode.

於一實施例中,該充電電路更包括一電流誤差放大電路,用以將相關於該充電電流之一充電電流感測訊號與一充電電流參考位準相比較,而產生該電流放大訊號,以將該充電電流調節於一預設電流。 In one embodiment, the charging circuit further includes a current error amplification circuit for comparing a charging current sensing signal related to the charging current with a charging current reference level to generate the current amplifying signal to The charging current is adjusted to a preset current.

於一實施例中,該充電電路更包括一電流限制電路,用以將相關於該輸入電源之一輸入電流之一輸入電流感測訊號與一輸入電流參考位準相比較,而產生該電流限制訊號,當相關於該輸入電流之該輸入電流感測訊號大於該輸入電流參考位準時,該控制電路根據該電流限制訊號執行過電流保護機制。 In one embodiment, the charging circuit further includes a current limit circuit for comparing an input current sensing signal related to an input current of the input power supply with an input current reference level to generate the current limit. signal, when the input current sensing signal related to the input current is greater than the input current reference level, the control circuit executes an over-current protection mechanism according to the current limit signal.

於一實施例中,該輸入電流係來自一通用序列匯流排或一無線充電介面。 In one embodiment, the input current comes from a universal serial bus or a wireless charging interface.

於一實施例中,該充電電路更包括一電壓限制電路,用以將相關於該輸入電源之一輸入電壓之一輸入電壓感測訊號與一輸入電壓參考位準相比較,而產生該電壓限制訊號,當相關於該輸入電壓之該輸入電壓感測訊號低於該輸入電壓參考位準時,該控制電路根據該電壓限制訊號執行低電壓機制。 In one embodiment, the charging circuit further includes a voltage limiting circuit for comparing an input voltage sensing signal related to an input voltage of the input power supply with an input voltage reference level to generate the voltage limiting circuit. signal, when the input voltage sensing signal related to the input voltage is lower than the input voltage reference level, the control circuit executes a low-voltage mechanism according to the voltage limit signal.

於一實施例中,該輸入電壓係來自一通用序列匯流排或一無線充電介面。 In one embodiment, the input voltage comes from a universal serial bus or a wireless charging interface.

於一實施例中,該充電電路更包括一溫度限制電路,用以將相關於一負載溫度之一溫度感測訊號與一溫度參考位準相比較,而產生該溫度限制訊號,當相關於該負載溫度之該溫度感測訊號大於該溫度參考位準時,該控制電路根據該溫度限制訊號執行高溫保護機制。 In one embodiment, the charging circuit further includes a temperature limit circuit for comparing a temperature sensing signal related to a load temperature with a temperature reference level to generate the temperature limit signal. When the temperature sensing signal of the load temperature is greater than the temperature reference level, the control circuit executes a high temperature protection mechanism according to the temperature limit signal.

於一實施例中,每當相關於該充電電壓或該負載電壓之該電壓感測訊號下降到達該電壓下限閾值之時點時,該控制電路確認來自該電流誤差放大電路、該電流限制電路、該電壓限制電路或該溫度限制電路之對應的優先控制權訊號是否處於該致能位準,若來自該電流誤差放大電路、該電流限制電路、該電壓限制電路及該溫度限制電路之對應的該優先控制權訊號中任一者處於該致能位準,則該控制電路產生一結束訊號,以離開該非連續導通模式。 In one embodiment, whenever the voltage sensing signal related to the charging voltage or the load voltage drops to the voltage lower limit threshold, the control circuit confirms that the voltage from the current error amplification circuit, the current limiting circuit, the Whether the corresponding priority control signal of the voltage limiting circuit or the temperature limiting circuit is at the enable level, if the corresponding priority control signal from the current error amplifier circuit, the current limiting circuit, the voltage limiting circuit and the temperature limiting circuit If any of the control rights signals is at the enable level, the control circuit generates an end signal to leave the discontinuous conduction mode.

於一實施例中,當該充電電路操作於該非連續導通模式時,除了在該電壓感測訊號下降到達該電壓下限閾值之時點,禁能確認來自該電流誤差放大電路、該電流限制電路、該電壓限制電路或該溫度限制電路之對應的優先控制權訊號,藉此提升該充電電壓或該負載電壓之精準度。 In one embodiment, when the charging circuit operates in the discontinuous conduction mode, except when the voltage sensing signal drops to the voltage lower limit threshold, the disabling confirmation from the current error amplification circuit, the current limiting circuit, the The corresponding priority control signal of the voltage limiting circuit or the temperature limiting circuit thereby improves the accuracy of the charging voltage or the load voltage.

本發明之優點為本發明可達到使充電電壓之漣波為固定且提供更高的精準度,且可使進入或離開非連續導通模式之時機更為精準。 The advantage of the present invention is that the present invention can achieve a fixed ripple of the charging voltage and provide higher accuracy, and can make the timing of entering or leaving the discontinuous conduction mode more precise.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 It will be easier to understand the purpose, technical content, characteristics and achieved effects of the present invention through detailed description of specific embodiments below.

20:充電電路 20:Charging circuit

201:功率級電路 201: Power stage circuit

202:控制電路 202:Control circuit

203:電壓誤差放大電路 203: Voltage error amplifier circuit

204:電流誤差放大電路 204: Current error amplifier circuit

205:電流限制電路 205:Current limiting circuit

206:電壓限制電路 206: Voltage limiting circuit

207:溫度限制電路 207: Temperature limit circuit

208:驅動單元 208:Drive unit

209:非連續導通模式判斷電路 209: Discontinuous conduction mode judgment circuit

210:計時電路 210: Timing circuit

2031a:第一電壓比較電路 2031a: First voltage comparison circuit

2031b:第二電壓比較電路 2031b: Second voltage comparison circuit

2032:邏輯電路 2032: Logic circuits

2091:電流感測電路 2091:Current sensing circuit

2092:轉態閾值產生電路 2092: Transition threshold generation circuit

2093:比較電路 2093:Comparison circuit

AICR_FB:輸入電流感測訊號 AICR_FB: Input current sensing signal

AICR_FLAG,CC_FLAG,CV_FLAG,MIVR_FLAG,TR_FLAG:優先控制權訊號 AICR_FLAG, CC_FLAG, CV_FLAG, MIVR_FLAG, TR_FLAG: priority control signal

AICR_REF:輸入電流參考位準 AICR_REF: Input current reference level

BUSIN:通用序列匯流排輸入端 BUSIN: Universal serial bus input

CC_FB:充電電流感測訊號 CC_FB: charging current sensing signal

CC_REF:充電電流參考位準 CC_REF: charging current reference level

CO1:第一電壓判斷訊號 CO1: first voltage judgment signal

CO2:第二電壓判斷訊號 CO2: second voltage judgment signal

CV_FB:電壓感測訊號 CV_FB: voltage sensing signal

CV_REF:電壓參考位準 CV_REF: voltage reference level

DCM_DIV_REF:轉態閾值訊號 DCM_DIV_REF: Transition threshold signal

DCM_EN:非連續導通模式判斷訊號 DCM_EN: discontinuous conduction mode judgment signal

DCM_REF:參考電壓 DCM_REF: reference voltage

Drop_FLAG:電壓底限旗標訊號 Drop_FLAG: Voltage floor flag signal

EAOa:電流限制訊號 EAOa: current limit signal

EAOc:電流放大訊號 EAOc: current amplified signal

EAOm:電壓限制訊號 EAOm: voltage limit signal

EAOt:溫度限制訊號 EAOt: temperature limit signal

EAOv:電壓放大訊號 EAOv: voltage amplified signal

GA,GB:驅動訊號 GA, GB: drive signal

GA’,GB’,GM:操作訊號 GA’, GB’, GM: operation signal

IA:上橋電流 IA: upper bridge current

IB:下橋電流 IB: lower bridge current

Ibat:充電電流 Ibat: charging current

Id:電流感測訊號 Id: current sensing signal

Iin:輸入電流 Iin: input current

IL:電感電流 IL: inductor current

Iout:輸出電流 Iout: output current

Ith_FLAG:電流上限閾值旗標訊號 Ith_FLAG: Current upper limit threshold flag signal

IthH:電流上限閾值 IthH: current upper limit threshold

IthL:電流下限閾值 IthL: current lower limit threshold

L:電感 L: inductance

LX1:第一端 LX1: first end

LX2:第二端 LX2: Second end

MIVR_FB:輸入電壓感測訊號 MIVR_FB: Input voltage sensing signal

MIVR_REF:輸入電壓參考位準 MIVR_REF: Input voltage reference level

Multi-Loop_FLAG:干擾旗標訊號 Multi-Loop_FLAG: jamming flag signal

QA:功率開關/上橋開關 QA:Power switch/upper bridge switch

QB:功率開關/下橋開關 QB: Power switch/lower bridge switch

QM:開關 QM: switch

Tout:逾時期間 Tout: timeout period

TOUT_FLAG:逾時旗標訊號 TOUT_FLAG: timeout flag signal

TR_FB:溫度感測訊號 TR_FB: Temperature sensing signal

TR_REF:溫度參考位準 TR_REF: temperature reference level

t1,t2:時點 t1,t2: time point

Vbat:充電電壓 Vbat: charging voltage

Vbat_Drop:預設底限位準 Vbat_Drop: Default bottom limit level

Vbat_HYS:電壓遲滯訊號 Vbat_HYS: voltage hysteresis signal

Vin:輸入電壓 Vin: input voltage

VLX:切換節點電壓 VLX: switching node voltage

Vsys:負載電壓 Vsys: load voltage

VthH:電壓上限閾值 VthH: voltage upper limit threshold

VthL:電壓下限閾值 VthL: voltage lower limit threshold

WCIN:無線充電介面輸入端 WCIN: Wireless charging interface input

圖1A係顯示一習知之充電電路對充電電池充電過程的三個操作模式中,充電電壓與充電電流的波形示意圖。 FIG. 1A is a schematic diagram showing the waveforms of charging voltage and charging current in three operating modes of a conventional charging circuit for charging a rechargeable battery.

圖1B係顯示一習知之充電電路的訊號波形示意圖。 FIG. 1B is a schematic diagram showing a signal waveform of a conventional charging circuit.

圖1C係顯示習知之充電電路的暫態響應波形示意圖。 FIG. 1C is a schematic diagram showing the transient response waveform of a conventional charging circuit.

圖2係根據本發明之一實施例顯示一充電電路之電路方塊示意圖。 FIG. 2 is a circuit block diagram showing a charging circuit according to an embodiment of the present invention.

圖3係根據本發明之一實施例顯示一充電電路之電路方塊示意圖。 FIG. 3 is a circuit block diagram showing a charging circuit according to an embodiment of the present invention.

圖4係根據本發明之一實施例顯示一充電電路之電壓誤差放大電路之電路示意圖。 FIG. 4 is a circuit schematic diagram showing a voltage error amplification circuit of a charging circuit according to an embodiment of the present invention.

圖5係根據本發明之一實施例顯示一充電電路於非連續導通模式下之相關訊號之訊號波形示意圖。 FIG. 5 is a schematic diagram showing signal waveforms of related signals of a charging circuit in discontinuous conduction mode according to an embodiment of the present invention.

圖6係根據本發明之一實施例顯示一充電電路之相關訊號之訊號波形示意圖。 FIG. 6 is a schematic diagram showing signal waveforms of related signals of a charging circuit according to an embodiment of the present invention.

圖7係根據本發明之另一實施例顯示一充電電路之相關訊號之訊號波形示意圖。 FIG. 7 is a schematic diagram showing signal waveforms of related signals of a charging circuit according to another embodiment of the present invention.

圖8係根據本發明之再一實施例顯示一充電電路之相關訊號之訊號波形示意圖。 FIG. 8 is a schematic diagram showing signal waveforms of related signals of a charging circuit according to yet another embodiment of the present invention.

圖9A-9G圖顯示切換電感式功率級電路之同步或非同步之降壓型、升壓型、升降壓型、及返馳型功率級電路。 Figures 9A-9G illustrate buck, boost, buck-boost, and flyback power stage circuits that switch synchronous or asynchronous inductive power stage circuits.

圖10顯示一種交直流轉換電路之實施例。 Figure 10 shows an embodiment of an AC-DC conversion circuit.

發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。 The diagrams in the invention are schematic and are mainly intended to represent the coupling relationship between various circuits and the relationship between various signal waveforms. As for the circuits, signal waveforms and frequencies, they are not drawn to scale.

圖2係根據本發明之一實施例顯示一充電電路之電路方塊示意圖。如圖2所示,本發明之充電電路20包括功率級電路201、控制電路202、驅動單元208、電壓誤差放大電路203、電流誤差放大電路204、電流限制電路205、電壓限制電路206及溫度限制電路207。功率級電路201用以根據操作訊號GA’及GB’,而操作其中之至少一功率開關,以將輸入電源經由電感L轉換為輸出電源,以對電池充電及/或供負載使用。於一實施例中,輸出電源包括充電電源及/或負載電源。輸出電源包括輸出電流Iout及輸出電壓。充電電源包括充電電壓Vbat及充電電流Ibat,而負載電源包括負載電壓Vsys。控制電路202與功率級電路201耦接,用以根據電壓放大訊號EAOv、電流放大訊號EAOc、電流限制訊號EAOa、電壓限制訊號EAOm及/或溫度限制訊號EAOt,而產生操作訊號GA’及GB’。驅動單元208耦接至控制電路202,用以根據操作訊號GA’及GB’而產生驅動訊號GA及GB,進而藉由驅動訊號GA及GB操作至少一功率開關QA及QB。 FIG. 2 is a circuit block diagram showing a charging circuit according to an embodiment of the present invention. As shown in Figure 2, the charging circuit 20 of the present invention includes a power stage circuit 201, a control circuit 202, a driving unit 208, a voltage error amplifier circuit 203, a current error amplifier circuit 204, a current limit circuit 205, a voltage limit circuit 206 and a temperature limit. Circuit 207. The power stage circuit 201 is used to operate at least one of the power switches according to the operation signals GA' and GB' to convert the input power into an output power through the inductor L for charging the battery and/or for use by the load. In one embodiment, the output power source includes a charging power source and/or a load power source. The output power supply includes the output current Iout and the output voltage. The charging power supply includes charging voltage Vbat and charging current Ibat, and the load power supply includes load voltage Vsys. The control circuit 202 is coupled to the power stage circuit 201 for generating operation signals GA' and GB' according to the voltage amplification signal EAOv, the current amplification signal EAOc, the current limit signal EAOa, the voltage limit signal EAOm and/or the temperature limit signal EAOt. . The driving unit 208 is coupled to the control circuit 202 for generating driving signals GA and GB according to the operating signals GA' and GB', and then operating at least one power switch QA and QB through the driving signals GA and GB.

電壓誤差放大電路203於非連續導通模式(DCM,discontinuous conduction mode)之電壓遲滯模式中,比較相關於充電電壓Vbat或負載電壓Vsys之電壓感測訊號CV_FB與電壓參考位準CV_REF,而產生電壓放大訊號EAOv。控制電路202根據電壓放大訊號EAOv調整充電電壓Vbat或負載電壓Vsys,使充電電壓Vbat或負載電壓Vsys維持於預定範圍內。電流誤差放大電路204用以將相關於充電電流Ibat之充電電流 感測訊號CC_FB與充電電流參考位準CC_REF相比較,而產生電流放大訊號EAOc,以將該充電電流Ibat調節於預設電流。 The voltage error amplification circuit 203 compares the voltage sensing signal CV_FB related to the charging voltage Vbat or the load voltage Vsys with the voltage reference level CV_REF in the voltage hysteresis mode of the discontinuous conduction mode (DCM) to generate voltage amplification. Signal EAOv. The control circuit 202 adjusts the charging voltage Vbat or the load voltage Vsys according to the voltage amplification signal EAOv, so that the charging voltage Vbat or the load voltage Vsys is maintained within a predetermined range. The current error amplifier circuit 204 is used to convert the charging current related to the charging current Ibat into The sensing signal CC_FB is compared with the charging current reference level CC_REF to generate a current amplification signal EAOc to adjust the charging current Ibat to a preset current.

電流限制電路205用以將相關於輸入電源之輸入電流Iin之輸入電流感測訊號AICR_FB與輸入電流參考位準AICR_REF相比較,而產生電流限制訊號EAOa。當相關於輸入電流Iin之輸入電流感測訊號AICR_FB大於輸入電流參考位準AICR_REF時,控制電路202根據電流限制訊號EAOa執行過電流保護機制,例如停止充電電路20操作,以避免輸入電流Iin過高。如圖2所示,輸入電流Iin係來自通用序列匯流排輸入端BUSIN或無線充電介面輸入端WCIN。 The current limiting circuit 205 is used to compare the input current sensing signal AICR_FB related to the input current Iin of the input power supply with the input current reference level AICR_REF to generate the current limiting signal EAOa. When the input current sensing signal AICR_FB related to the input current Iin is greater than the input current reference level AICR_REF, the control circuit 202 performs an over-current protection mechanism according to the current limit signal EAOa, such as stopping the operation of the charging circuit 20 to prevent the input current Iin from being too high. . As shown in Figure 2, the input current Iin comes from the universal serial bus input terminal BUSIN or the wireless charging interface input terminal WCIN.

電壓限制電路206用以將相關於輸入電源之輸入電壓Vin之輸入電壓感測訊號MIVR_FB與輸入電壓參考位準MIVR_REF相比較,而產生電壓限制訊號EAOm。當相關於輸入電壓Vin之輸入電壓感測訊號MIVR_FB低於輸入電壓參考位準MIVR_REF時,控制電路202根據電壓限制訊號EAOm執行低電壓機制,例如停止充電電路20操作,以避免充電電路20操作於過低的輸入電壓Vin之情況。如圖2所示,輸入電壓Vin係來自通用序列匯流排輸入端BUSIN或無線充電介面輸入端WCIN。 The voltage limiting circuit 206 is used to compare the input voltage sensing signal MIVR_FB related to the input voltage Vin of the input power supply with the input voltage reference level MIVR_REF to generate the voltage limiting signal EAOm. When the input voltage sensing signal MIVR_FB related to the input voltage Vin is lower than the input voltage reference level MIVR_REF, the control circuit 202 executes a low-voltage mechanism according to the voltage limit signal EAOm, such as stopping the operation of the charging circuit 20 to prevent the charging circuit 20 from operating at The case of too low input voltage Vin. As shown in Figure 2, the input voltage Vin comes from the universal serial bus input terminal BUSIN or the wireless charging interface input terminal WCIN.

溫度限制電路207用以將相關於負載溫度之溫度感測訊號TR_FB與溫度參考位準TR_REF相比較,而產生溫度限制訊號EAOt。當相關於負載溫度之溫度感測訊號大於溫度參考位準時,控制電路202根據溫度限制訊號EAOt執行高溫保護機制,例如停止充電電路20操作,以避免充電電路20操作於過高的溫度環境。如圖2所示,電壓誤差放大電路203、電流誤差放大電路204、電流限制電路205、電壓限制電路206及溫度限制 電路207分別具有對應的優先控制權訊號CV_FLAG、CC_FLAG、AICR_FLAG、MIVR_FLAG及TR_FLAG。 The temperature limit circuit 207 is used to compare the temperature sensing signal TR_FB related to the load temperature with the temperature reference level TR_REF to generate the temperature limit signal EAOt. When the temperature sensing signal related to the load temperature is greater than the temperature reference level, the control circuit 202 executes a high temperature protection mechanism according to the temperature limit signal EAOt, such as stopping the operation of the charging circuit 20 to prevent the charging circuit 20 from operating in an excessively high temperature environment. As shown in Figure 2, the voltage error amplifier circuit 203, the current error amplifier circuit 204, the current limit circuit 205, the voltage limit circuit 206 and the temperature limit The circuit 207 has corresponding priority control signals CV_FLAG, CC_FLAG, AICR_FLAG, MIVR_FLAG and TR_FLAG respectively.

如圖2所示,至少一功率開關包括上橋開關QA以及下橋開關QB。上橋開關QA耦接於輸入電源及電感L之第一端LX1之間,下橋開關QB耦接於電感L之第一端LX1及接地電位之間。電感L之第二端LX2耦接於充電電源及/或負載電源。驅動訊號GA及GB分別用以控制上橋開關QA及下橋開關QB,以切換電感L之第一端LX1於輸入電源與接地電位之間。開關QM則耦接於負載電源與充電電源之間,操作訊號GM用以操作開關QM,以決定輸出電源供應負載及/或充電電池,也可以決定以充電電池供應電源予負載。 As shown in FIG. 2 , at least one power switch includes an upper bridge switch QA and a lower bridge switch QB. The upper bridge switch QA is coupled between the input power supply and the first terminal LX1 of the inductor L, and the lower bridge switch QB is coupled between the first terminal LX1 of the inductor L and the ground potential. The second terminal LX2 of the inductor L is coupled to the charging power supply and/or the load power supply. The driving signals GA and GB are used to control the upper bridge switch QA and the lower bridge switch QB respectively to switch the first end LX1 of the inductor L between the input power supply and the ground potential. The switch QM is coupled between the load power supply and the charging power supply. The operation signal GM is used to operate the switch QM to determine whether the output power supply supplies the load and/or the rechargeable battery, or the rechargeable battery supplies power to the load.

圖2所示之功率級電路201,係切換電感式功率級電路中的降壓型功率級電路,根據本發明,功率級電路201不限於為切換電感式功率級電路,亦可以為交直流轉換電路。切換電感式功率級電路例如可以為同步或非同步之降壓型、升壓型、升降壓型、或返馳型功率級電路,如圖9A-9G所示。圖10顯示一種功率級電路201為交直流轉換電路之實施例。 The power stage circuit 201 shown in Figure 2 is a step-down power stage circuit in a switching inductance power stage circuit. According to the present invention, the power stage circuit 201 is not limited to a switching inductance power stage circuit, and can also be an AC-DC conversion circuit. The switching inductor power stage circuit may be, for example, a synchronous or asynchronous buck-type, boost-type, buck-boost type, or flyback type power stage circuit, as shown in FIGS. 9A-9G. FIG. 10 shows an embodiment in which the power stage circuit 201 is an AC-DC conversion circuit.

圖3係根據本發明之一實施例顯示一充電電路之電路方塊示意圖。如圖3所示,本發明之充電電路20更包括非連續導通模式判斷電路209,其用以決定充電電路20切換為非連續導通模式之時點。非連續導通模式判斷電路209包括電流感測電路2091、轉態閾值產生電路2092及比較電路2093。電流感測電路2091用以感測電感電流IL、輸入電流Iin、流經上橋開關QA之上橋電流IA、流經下橋開關QB之下橋電流IB或流經上橋開關QA之上橋電流IA與流經下橋開關QB之下橋電流IB之組合,而產生電流感測訊號Id。於本實施例中,電流感測電路2091係用以感測輸入電流Iin。轉態閾值產生 電路2092用以根據操作訊號GA’及GB’及參考電壓DCM_REF而產生轉態閾值訊號DCM_DIV_REF。比較電路2093用以比較電流感測訊號Id及轉態閾值訊號DCM_DIV_REF而產生一非連續導通模式判斷訊號DCM_EN。當電流感測訊號Id小於轉態閾值訊號DCM_DIV_REF時,非連續導通模式判斷訊號DCM_EN處於致能位準,使充電電路20切換為非連續導通模式。於一實施例中,轉態閾值產生電路2092包括彼此串聯之P型電晶體及N型電晶體以及一反閘。於另一實施例中,轉態閾值產生電路2092包括彼此串聯之N型電晶體及N型電晶體。 FIG. 3 is a circuit block diagram showing a charging circuit according to an embodiment of the present invention. As shown in FIG. 3 , the charging circuit 20 of the present invention further includes a discontinuous conduction mode determination circuit 209 , which is used to determine the time point when the charging circuit 20 switches to the discontinuous conduction mode. The discontinuous conduction mode judgment circuit 209 includes a current sensing circuit 2091, a transition threshold generating circuit 2092 and a comparison circuit 2093. The current sensing circuit 2091 is used to sense the inductor current IL, the input current Iin, the upper bridge current IA flowing through the upper bridge switch QA, the lower bridge current IB flowing through the lower bridge switch QB, or the upper bridge current flowing through the upper bridge switch QA. The combination of the current IA and the lower bridge current IB flowing through the lower bridge switch QB generates the current sensing signal Id. In this embodiment, the current sensing circuit 2091 is used to sense the input current Iin. Transition threshold generation The circuit 2092 is used to generate the transition threshold signal DCM_DIV_REF according to the operation signals GA' and GB' and the reference voltage DCM_REF. The comparison circuit 2093 is used to compare the current sensing signal Id and the transition threshold signal DCM_DIV_REF to generate a discontinuous conduction mode determination signal DCM_EN. When the current sensing signal Id is less than the transition threshold signal DCM_DIV_REF, the discontinuous conduction mode determination signal DCM_EN is at the enable level, causing the charging circuit 20 to switch to the discontinuous conduction mode. In one embodiment, the transition threshold generating circuit 2092 includes a P-type transistor and an N-type transistor connected in series and a reverse gate. In another embodiment, the transition threshold generating circuit 2092 includes an N-type transistor and an N-type transistor connected in series with each other.

圖4係根據本發明之一實施例顯示一充電電路之電壓誤差放大電路之電路示意圖。如圖4所示,電壓誤差放大電路203包括第一電壓比較電路2031a、第二電壓比較電路2031b及邏輯電路2032。第一電壓比較電路2031a用以比較相關於充電電壓Vbat或負載電壓Vsys之電壓感測訊號CV_FB與電壓上限閾值VthH,而第二電壓比較電路2031b用以比較相關於充電電壓Vbat或負載電壓Vsys之電壓感測訊號CV_FB與電壓下限閾值VthL。第一電壓比較電路2031a用以根據相關於充電電壓Vbat或負載電壓Vsys之電壓感測訊號CV_FB與電壓上限閾值VthH而產生第一電壓判斷訊號CO1,第二電壓比較電路2031b用以根據相關於充電電壓Vbat或負載電壓Vsys之電壓感測訊號CV_FB與電壓下限閾值VthL而產生第二電壓判斷訊號CO2,而邏輯電路2032用以根據第一電壓判斷訊號CO1及第二電壓判斷訊號CO2而產生電壓遲滯訊號Vbat_HYS,進而產生電壓放大訊號EAOv。 FIG. 4 is a circuit schematic diagram showing a voltage error amplification circuit of a charging circuit according to an embodiment of the present invention. As shown in FIG. 4 , the voltage error amplification circuit 203 includes a first voltage comparison circuit 2031a, a second voltage comparison circuit 2031b and a logic circuit 2032. The first voltage comparison circuit 2031a is used to compare the voltage sensing signal CV_FB related to the charging voltage Vbat or the load voltage Vsys with the voltage upper limit threshold VthH, and the second voltage comparison circuit 2031b is used to compare the voltage sensing signal CV_FB related to the charging voltage Vbat or the load voltage Vsys. The voltage sensing signal CV_FB and the voltage lower limit threshold VthL. The first voltage comparison circuit 2031a is used to generate the first voltage judgment signal CO1 according to the voltage sensing signal CV_FB related to the charging voltage Vbat or the load voltage Vsys and the voltage upper limit threshold VthH. The voltage sensing signal CV_FB of the voltage Vbat or the load voltage Vsys and the voltage lower limit threshold VthL generate a second voltage determination signal CO2, and the logic circuit 2032 is used to generate a voltage hysteresis based on the first voltage determination signal CO1 and the second voltage determination signal CO2. signal Vbat_HYS, thereby generating a voltage amplification signal EAOv.

請同時參照圖4、圖2及圖5,當相關於充電電壓Vbat或負載電壓Vsys之電壓感測訊號CV_FB自小於電壓上限閾值VthH上升到達電壓上限閾值VthH時,電壓遲滯訊號Vbat_HYS切換為致能位準,使功率級電路201中之至少一功率開關QA及QB皆不導通,進而使相關於充電電壓Vbat或負載 電壓Vsys之電壓感測訊號CV_FB下降。當相關於充電電壓Vbat或負載電壓Vsys之電壓感測訊號CV_FB自電壓上限閾值VthH開始下降,到達電壓下限閾值VthL時,電壓遲滯訊號Vbat_HYS轉為禁能位準,使充電電路20切換為非連續導通模式之電流遲滯模式,藉由控制功率級電路201中之功率開關QA或QB,以切換電感L之第一端LX1於輸入電源與接地電位之間,進而使相關於充電電壓Vbat或負載電壓Vsys之電壓感測訊號CV_FB逐漸上升,藉此機制,使充電電壓Vbat或負載電壓Vsys之電壓感測訊號CV_FB維持於電壓上限閾值VthH與電壓下限閾值VthL之間的預定範圍內,也就精確地控制了充電電壓Vbat或負載電壓Vsys維持於一預定範圍內,以提高充電效率。於一實施例中,第一電壓比較電路2031a及第二電壓比較電路2031b均為採用自動校正技術之比較電路。 Please refer to Figure 4, Figure 2 and Figure 5 at the same time. When the voltage sensing signal CV_FB related to the charging voltage Vbat or the load voltage Vsys rises from less than the upper voltage threshold VthH to the upper voltage threshold VthH, the voltage hysteresis signal Vbat_HYS is switched to enable. level, so that at least one of the power switches QA and QB in the power stage circuit 201 is non-conductive, thereby causing the charging voltage Vbat or the load to The voltage sensing signal CV_FB of the voltage Vsys decreases. When the voltage sensing signal CV_FB related to the charging voltage Vbat or the load voltage Vsys starts to decrease from the upper voltage threshold VthH and reaches the lower voltage threshold VthL, the voltage hysteresis signal Vbat_HYS turns to the disabled level, causing the charging circuit 20 to switch to discontinuous. The current hysteresis mode of the conduction mode controls the power switch QA or QB in the power stage circuit 201 to switch the first end LX1 of the inductor L between the input power supply and the ground potential, thereby making the charging voltage Vbat or the load voltage related The voltage sensing signal CV_FB of Vsys gradually rises. Through this mechanism, the voltage sensing signal CV_FB of the charging voltage Vbat or the load voltage Vsys is maintained within a predetermined range between the upper voltage threshold VthH and the lower voltage threshold VthL, that is, accurately The charging voltage Vbat or the load voltage Vsys is controlled to be maintained within a predetermined range to improve charging efficiency. In one embodiment, the first voltage comparison circuit 2031a and the second voltage comparison circuit 2031b are comparison circuits using automatic correction technology.

圖5係根據本發明之一實施例顯示一充電電路於非連續導通模式下之相關訊號之訊號波形示意圖。請同時參照圖5及圖2,在充電電路20切換為非連續導通模式之電流遲滯模式時,當流經電感L之電感電流IL自電流上限閾值IthH之位準,下降到達電流下限閾值IthL時,上橋開關QA導通,下橋開關QB不導通,使電感電流IL上升,進而使相關於充電電壓Vbat或負載電壓Vsys之電壓感測訊號CV_FB以第一上升速率上升;當電感電流IL自電流下限閾值IthL之位準,上升到達電流上限閾值IthH時,電流上限閾值旗標訊號Ith_FLAG轉為致能位準,觸發上橋開關QA不導通,下橋開關QB導通,而使電感電流IL下降,進而使相關於充電電壓Vbat或負載電壓Vsys之電壓感測訊號CV_FB以第二上升速率上升。於一實施例中,第一上升速率係大於第二上升速率。於一實施例中,電感電流IL的平均值小於或等於電流上限閾值IthH之二分之一。 FIG. 5 is a schematic diagram showing signal waveforms of related signals of a charging circuit in discontinuous conduction mode according to an embodiment of the present invention. Please refer to FIG. 5 and FIG. 2 at the same time. When the charging circuit 20 switches to the current hysteresis mode of the discontinuous conduction mode, when the inductor current IL flowing through the inductor L drops from the level of the upper current threshold IthH to the lower current threshold IthL. , the upper bridge switch QA is turned on, and the lower bridge switch QB is not turned on, causing the inductor current IL to rise, and then causing the voltage sensing signal CV_FB related to the charging voltage Vbat or the load voltage Vsys to rise at the first rising rate; when the inductor current IL starts from the current When the level of the lower threshold IthL rises to the upper current threshold IthH, the upper current threshold flag signal Ith_FLAG turns to the enable level, triggering the upper bridge switch QA to become non-conductive and the lower bridge switch QB to conduct, causing the inductor current IL to decrease. Then, the voltage sensing signal CV_FB related to the charging voltage Vbat or the load voltage Vsys rises at the second rising rate. In one embodiment, the first rising rate is greater than the second rising rate. In one embodiment, the average value of the inductor current IL is less than or equal to one-half of the upper current threshold IthH.

應注意者為,電流下限閾值IthL為零或稍微大於零之值,藉此使電感電流IL維持正值,以避免電感電流IL轉為負值,而造成電流回流。於一實施例中,電流下限閾值IthL及電流上限閾值IthH可動態調整或根據輸入電壓Vin或輸出電壓適應性調整。 It should be noted that the current lower limit threshold IthL is zero or a value slightly greater than zero, thereby maintaining the inductor current IL at a positive value to prevent the inductor current IL from turning into a negative value and causing current backflow. In one embodiment, the current lower limit threshold IthL and the current upper limit threshold IthH can be dynamically adjusted or adaptively adjusted according to the input voltage Vin or the output voltage.

圖6係根據本發明之一實施例顯示一充電電路之相關訊號之訊號波形示意圖。請同時參照圖6或圖2,當相關於充電電壓Vbat或負載電壓Vsys之電壓感測訊號CV_FB不高於預設底限位準Vbat_Drop時,電壓底限旗標訊號Drop_FLAG轉為致能位準,觸發控制電路202產生結束訊號,以離開非連續導通模式。其中,預設底限位準Vbat_Drop低於電壓下限閾值VthL。當電壓感測訊號CV_FB不高於預設底限位準Vbat_Drop時,如果充電電路20操作於非連續導通模式之電流遲滯模式,無法將電壓感測訊號CV_FB控制於電壓上限閾值VthH與電壓下限閾值VthL之間,示意負載由輕載轉為重載,因此需要離開非連續導通模式,以加強充電電路20的暫態響應,避免充電電路操作模式的選擇錯誤。 FIG. 6 is a schematic diagram showing signal waveforms of related signals of a charging circuit according to an embodiment of the present invention. Please refer to Figure 6 or Figure 2 at the same time. When the voltage sensing signal CV_FB related to the charging voltage Vbat or the load voltage Vsys is not higher than the preset lower limit level Vbat_Drop, the voltage lower limit flag signal Drop_FLAG turns to the enable level. , the trigger control circuit 202 generates an end signal to leave the discontinuous conduction mode. Wherein, the preset bottom limit level Vbat_Drop is lower than the voltage lower limit threshold VthL. When the voltage sensing signal CV_FB is not higher than the preset lower limit level Vbat_Drop, if the charging circuit 20 operates in the current hysteresis mode of the discontinuous conduction mode, the voltage sensing signal CV_FB cannot be controlled between the upper voltage threshold VthH and the lower voltage threshold. between VthL and VthL indicates that the load changes from light load to heavy load, so it is necessary to leave the discontinuous conduction mode to enhance the transient response of the charging circuit 20 and avoid incorrect selection of the charging circuit operating mode.

圖7係根據本發明之另一實施例顯示一充電電路之相關訊號之訊號波形示意圖。請同時參照圖2或圖7,本發明之充電電路20更包括計時電路210,用以當電壓遲滯訊號Vbat_HYS處於禁能位準時,計時一段逾時期間Tout,計時電路210於逾時期間Tout之結束時點t1時,確認電壓遲滯訊號Vbat_HYS是否仍處於禁能位準,若電壓遲滯訊號Vbat_HYS仍處於禁能位準,則逾時旗標訊號TOUT_FLAG轉為致能位準,示意非連續導通模式逾時,而觸發控制電路202產生結束訊號,以離開非連續導通模式。其中,當輸出電流Iout的平均值剛好等於電感電流IL的平均值時,電壓感測訊號CV_FB一直保持在電壓下限閾值VthL附近,電壓遲滯訊號Vbat_HYS保持處於禁能位 準,示意電感電流IL全部供應給負載,而沒有電流用來對充電電池充電。因此,當逾時旗標訊號TOUT_FLAG轉為致能位準,就要結束非連續導通模式。 FIG. 7 is a schematic diagram showing signal waveforms of related signals of a charging circuit according to another embodiment of the present invention. Please refer to FIG. 2 or FIG. 7 at the same time. The charging circuit 20 of the present invention further includes a timing circuit 210 for timing a timeout period Tout when the voltage hysteresis signal Vbat_HYS is at the disabled level. The timing circuit 210 is between the timeout period Tout. At the end time point t1, confirm whether the voltage hysteresis signal Vbat_HYS is still at the disable level. If the voltage hysteresis signal Vbat_HYS is still at the disable level, the time-out flag signal TOUT_FLAG turns to the enable level, indicating that the discontinuous conduction mode has exceeded When, the trigger control circuit 202 generates an end signal to leave the discontinuous conduction mode. Among them, when the average value of the output current Iout is exactly equal to the average value of the inductor current IL, the voltage sensing signal CV_FB remains near the voltage lower limit threshold VthL, and the voltage hysteresis signal Vbat_HYS remains in the disabled position. Accurate, indicating that all the inductor current IL is supplied to the load, and no current is used to charge the rechargeable battery. Therefore, when the time-out flag signal TOUT_FLAG turns to the enable level, the discontinuous conduction mode will end.

圖8係根據本發明之再一實施例顯示一充電電路之相關訊號之訊號波形示意圖。同時參照圖2、圖4或圖8,每當相關於充電電壓Vbat或負載電壓Vsys之電壓感測訊號CV_FB下降到達電壓下限閾值VthL之時點t1及t2時,控制電路202確認來自電流誤差放大電路204、電流限制電路205、電壓限制電路206或溫度限制電路207之對應的優先控制權訊號CC_FLAG、AICR_FLAG、MIVR_FLAG及TR_FLAG是否處於致能位準,若例如於時點t2時控制電路202確認到來自電流誤差放大電路204、電流限制電路205、電壓限制電路206及溫度限制電路207之對應的優先控制權訊號CC_FLAG、AICR_FLAG、MIVR_FLAG及TR_FLAG中任一者處於致能位準,則干擾旗標訊號Multi-Loop_FLAG轉為致能位準,觸發控制電路202產生結束訊號,以離開非連續導通模式。 FIG. 8 is a schematic diagram showing signal waveforms of related signals of a charging circuit according to yet another embodiment of the present invention. Referring to FIG. 2 , FIG. 4 or FIG. 8 at the same time, whenever the voltage sensing signal CV_FB related to the charging voltage Vbat or the load voltage Vsys drops to the time point t1 and t2 when the voltage lower limit threshold VthL is reached, the control circuit 202 confirms that the signal from the current error amplifier circuit 204. Whether the corresponding priority control signals CC_FLAG, AICR_FLAG, MIVR_FLAG and TR_FLAG of the current limiting circuit 205, the voltage limiting circuit 206 or the temperature limiting circuit 207 are at the enable level. If, for example, at time t2, the control circuit 202 confirms that the current from the If any one of the corresponding priority control signals CC_FLAG, AICR_FLAG, MIVR_FLAG and TR_FLAG of the error amplifier circuit 204, the current limiting circuit 205, the voltage limiting circuit 206 and the temperature limiting circuit 207 is in the enable level, the interference flag signal Multi- Loop_FLAG changes to the enable level, triggering the control circuit 202 to generate an end signal to leave the discontinuous conduction mode.

再請參照圖2,當充電電路20操作於非連續導通模式時,禁能確認來自電流誤差放大電路204、電流限制電路205、電壓限制電路206及溫度限制電路207之優先控制權訊號CC_FLAG、AICR_FLAG、MIVR_FLAG及TR_FLAG,只有在前述電壓感測訊號CV_FB下降到達電壓下限閾值VthL之時點,才檢查一次優先控制權訊號CC_FLAG、AICR_FLAG、MIVR_FLAG及TR_FLAG,藉此提升充電電壓Vbat或負載電壓Vsys之精準度。 Please refer to FIG. 2 again. When the charging circuit 20 operates in the discontinuous conduction mode, the priority control signals CC_FLAG and AICR_FLAG from the current error amplifier circuit 204, the current limiting circuit 205, the voltage limiting circuit 206 and the temperature limiting circuit 207 are disabled. , MIVR_FLAG and TR_FLAG. Only when the voltage sensing signal CV_FB drops to the voltage lower limit threshold VthL, the priority control signal CC_FLAG, AICR_FLAG, MIVR_FLAG and TR_FLAG is checked once, thereby improving the accuracy of the charging voltage Vbat or the load voltage Vsys. .

本發明如上所述提供了一種充電電路,其藉由電壓誤差放大電路及非連續導通模式判斷電路可達到使充電電壓之漣波為固定且提供更高的精準度,且可使進入或離開非連續導通模式之時機更為精準。 As mentioned above, the present invention provides a charging circuit, which uses a voltage error amplification circuit and a discontinuous conduction mode judgment circuit to fix the ripple of the charging voltage and provide higher accuracy, and can enter or leave the non-continuous conduction mode. The timing of continuous conduction mode is more precise.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之最 廣的權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。 The present invention has been described above with reference to the preferred embodiments. However, the above description is only to make it easy for those familiar with the art to understand the content of the present invention, and is not intended to limit the scope of the present invention. wide scope of rights. The various embodiments described are not limited to single application, but can also be used in combination. For example, two or more embodiments can be used in combination, and part of the components in one embodiment can also be used to replace those in another embodiment. Corresponding components. In addition, under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. For example, the present invention refers to "processing or calculating according to a certain signal or generating a certain output result", which is not limited to Depending on the signal itself, it also includes performing voltage-to-current conversion, current-to-voltage conversion, and/or ratio conversion on the signal when necessary, and then processing or calculating the converted signal to produce an output result. It can be seen from this that under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. There are many combinations, and they are not listed here. Accordingly, the scope of the present invention is intended to cover the above and all other equivalent changes.

20:充電電路 20:Charging circuit

201:功率級電路 201: Power stage circuit

202:控制電路 202:Control circuit

203:電壓誤差放大電路 203: Voltage error amplifier circuit

204:電流誤差放大電路 204: Current error amplifier circuit

205:電流限制電路 205:Current limiting circuit

206:電壓限制電路 206: Voltage limiting circuit

207:溫度限制電路 207: Temperature limit circuit

208:驅動單元 208:Drive unit

210:計時電路 210: Timing circuit

AICR_FB:輸入電流感測訊號 AICR_FB: Input current sensing signal

AICR_FLAG,CC_FLAG,CV_FLAG,MIVR_FLAG,TR_FLAG:優先控制權訊號 AICR_FLAG, CC_FLAG, CV_FLAG, MIVR_FLAG, TR_FLAG: priority control signal

AICR_REF:輸入電流參考位準 AICR_REF: Input current reference level

BUSIN:通用序列匯流排輸入端 BUSIN: Universal serial bus input terminal

CC_FB:充電電流感測訊號 CC_FB: charging current sensing signal

CC_REF:充電電流參考位準 CC_REF: charging current reference level

CV_FB:電壓感測訊號 CV_FB: voltage sensing signal

CV_REF:電壓參考位準 CV_REF: voltage reference level

EAOa:電流限制訊號 EAOa: current limit signal

EAOc:電流放大訊號 EAOc: current amplified signal

EAOm:電壓限制訊號 EAOm: voltage limit signal

EAOt:溫度限制訊號 EAOt: temperature limit signal

EAOv:電壓放大訊號 EAOv: voltage amplified signal

GA,GB:驅動訊號 GA, GB: drive signal

GA’,GB’,GM:操作訊號 GA’, GB’, GM: operation signal

Ibat:充電電流 Ibat: charging current

Iin:輸入電流 Iin: input current

IL:電感電流 IL: inductor current

Iout:輸出電流 Iout: output current

L:電感 L: inductance

LX1:第一端 LX1: first end

LX2:第二端 LX2: Second end

MIVR_FB:輸入電壓感測訊號 MIVR_FB: Input voltage sensing signal

MIVR_REF:輸入電壓參考位準 MIVR_REF: Input voltage reference level

QA:功率開關/上橋開關 QA:Power switch/upper bridge switch

QB:功率開關/下橋開關 QB: Power switch/lower bridge switch

QM:開關 QM: switch

TR_FB:溫度感測訊號 TR_FB: Temperature sensing signal

TR_REF:溫度參考位準 TR_REF: temperature reference level

Vbat:充電電壓 Vbat: charging voltage

Vin:輸入電壓 Vin: input voltage

Vsys:負載電壓 Vsys: load voltage

WCIN:無線充電介面輸入端 WCIN: Wireless charging interface input

Claims (21)

一種充電電路,包含:一功率級電路,用以根據一操作訊號,而操作其中之至少一功率開關,以將一輸入電源經由一電感轉換為一輸出電源,以對一電池充電及/或供應予一負載使用,其中該輸出電源包括一充電電源及/或一負載電源,該充電電源包括一充電電壓及一充電電流,該負載電源包括一負載電壓;一控制電路,與該功率級電路耦接,用以根據一電壓誤差放大訊號,而產生該操作訊號;以及一電壓誤差放大電路,用以於一非連續導通模式(DCM,discontinuous conduction mode)之一電壓遲滯模式中比較相關於該充電電壓或該負載電壓之一電壓感測訊號與一電壓參考位準,而產生該電壓誤差放大訊號;其中該控制電路根據該電壓放大訊號調整該充電電壓或該負載電壓,使該充電電壓或該負載電壓維持於一預定範圍內。 A charging circuit, including: a power stage circuit for operating at least one of the power switches according to an operation signal to convert an input power supply into an output power supply through an inductor to charge and/or supply a battery For use with a load, wherein the output power source includes a charging power source and/or a load power source, the charging power source includes a charging voltage and a charging current, the load power source includes a load voltage; a control circuit coupled to the power stage circuit A connection is used to generate the operation signal according to a voltage error amplification signal; and a voltage error amplification circuit is used to compare the charging voltage in a voltage hysteresis mode of a discontinuous conduction mode (DCM). A voltage sensing signal of the voltage or the load voltage and a voltage reference level generate the voltage error amplification signal; wherein the control circuit adjusts the charging voltage or the load voltage according to the voltage amplification signal, so that the charging voltage or the The load voltage is maintained within a predetermined range. 如請求項1所述之充電電路,其中該電壓參考位準包括一電壓上限閾值及一電壓下限閾值,其中該電壓誤差放大電路包括:一第一電壓比較電路,用以比較相關於該充電電壓或該負載電壓之該電壓感測訊號與該電壓上限閾值;一第二電壓比較電路,用以比較相關於該充電電壓或該負載電壓之該電壓感測訊號與該電壓下限閾值;以及一邏輯電路,其中該第一電壓比較電路用以根據相關於該充電電壓或該負載電壓之該電壓感測訊號與該電壓上限閾值而產生一第一電 壓判斷訊號,該第二電壓比較電路用以根據相關於該充電電壓或該負載電壓之該電壓感測訊號與該電壓下限閾值而產生一第二電壓判斷訊號,該邏輯電路用以根據該第一電壓判斷訊號及該第二電壓判斷訊號而產生一電壓遲滯訊號;其中當相關於該充電電壓或該負載電壓之該電壓感測訊號自小於該電壓上限閾值上升到達該電壓上限閾值時,該電壓遲滯訊號切換為一致能位準,使該功率級電路中之該至少一功率開關皆不導通,進而使該充電電壓或該負載電壓下降;其中當相關於該充電電壓或該負載電壓之該電壓感測訊號自該電壓上限閾值開始下降,到達該電壓下限閾值時,該電壓遲滯訊號切換為一禁能位準,使該充電電路切換為該非連續導通模式之一電流遲滯模式,藉由控制該功率級電路中之該至少一功率開關,以切換該電感,進而使該充電電壓或該負載電壓上升,藉此使該充電電壓或該負載電壓維持於該電壓上限閾值與該電壓下限閾值之間的該預定範圍內。 The charging circuit of claim 1, wherein the voltage reference level includes an upper voltage threshold and a lower voltage threshold, and the voltage error amplification circuit includes: a first voltage comparison circuit for comparing the charging voltage or the voltage sensing signal of the load voltage and the voltage upper limit threshold; a second voltage comparison circuit for comparing the voltage sensing signal related to the charging voltage or the load voltage and the voltage lower limit threshold; and a logic circuit, wherein the first voltage comparison circuit is used to generate a first voltage based on the voltage sensing signal related to the charging voltage or the load voltage and the upper voltage threshold. The second voltage comparison circuit is used to generate a second voltage judgment signal based on the voltage sensing signal related to the charging voltage or the load voltage and the voltage lower limit threshold, and the logic circuit is used to generate a second voltage judgment signal based on the first voltage judgment signal. A voltage judgment signal and the second voltage judgment signal generate a voltage hysteresis signal; wherein when the voltage sensing signal related to the charging voltage or the load voltage rises from less than the upper voltage threshold to the upper voltage threshold, the The voltage hysteresis signal is switched to a consistent energy level, so that at least one power switch in the power stage circuit is non-conductive, thereby causing the charging voltage or the load voltage to drop; wherein when the voltage related to the charging voltage or the load voltage The voltage sensing signal starts to decrease from the upper voltage threshold. When it reaches the lower voltage threshold, the voltage hysteresis signal switches to a disable level, causing the charging circuit to switch to the current hysteresis mode of the discontinuous conduction mode. By controlling The at least one power switch in the power stage circuit is used to switch the inductor, thereby increasing the charging voltage or the load voltage, thereby maintaining the charging voltage or the load voltage between the upper voltage threshold and the lower voltage threshold. within the predetermined range. 如請求項2所述之充電電路,其中該第一電壓比較電路及該第二電壓比較電路均為採用自動校正技術之比較電路。 The charging circuit of claim 2, wherein the first voltage comparison circuit and the second voltage comparison circuit are comparison circuits using automatic correction technology. 如請求項2所述之充電電路,其中該至少一功率開關包括一上橋開關以及一下橋開關,該上橋開關耦接於該輸入電源及該電感之第一端之間,該下橋開關耦接於該電感之該第一端及一接地電位之間,該電感之第二端耦接於該充電電源或該負載電源。 The charging circuit of claim 2, wherein the at least one power switch includes an upper bridge switch and a lower bridge switch, the upper bridge switch is coupled between the input power source and the first end of the inductor, and the lower bridge switch Coupled between the first end of the inductor and a ground potential, the second end of the inductor is coupled to the charging power source or the load power source. 如請求項4所述之充電電路,其中在該充電電路切換為該非連續導通模式之該電流遲滯模式時,當流經該電感之一電感電流自一電流上限閾值之位準,下降到達一電流下限閾值時,該上橋開關導通,該下橋開關不導通,使該電感電流上升,進而使該充電電壓或該負載電壓以一第一上 升速率上升,當該電感電流自該電流下限閾值之位準,上升到達該電流上限閾值時,該上橋開關不導通,該下橋開關導通,使該電感電流下降,進而使該充電電壓或該負載電壓以一第二上升速率上升。 The charging circuit of claim 4, wherein when the charging circuit switches to the current hysteresis mode of the discontinuous conduction mode, when an inductor current flowing through the inductor drops from a level of an upper current threshold to a current When the lower limit threshold is reached, the upper bridge switch is turned on and the lower bridge switch is not turned on, causing the inductor current to rise, thereby causing the charging voltage or the load voltage to increase with a first upper limit. The rising rate rises. When the inductor current rises from the current lower limit threshold to the current upper limit threshold, the upper bridge switch does not conduct, and the lower bridge switch conducts, causing the inductor current to decrease, thereby causing the charging voltage or The load voltage rises at a second rise rate. 如請求項5所述之充電電路,其中該第一上升速率係大於該第二上升速率。 The charging circuit of claim 5, wherein the first rising rate is greater than the second rising rate. 如請求項5所述之充電電路,其中該電感電流的平均值小於或等於該電流上限閾值之二分之一。 The charging circuit of claim 5, wherein the average value of the inductor current is less than or equal to half of the current upper limit threshold. 如請求項5所述之充電電路,其中該電流下限閾值為零或稍微大於零之值,藉此使該電感電流維持正值。 The charging circuit of claim 5, wherein the current lower limit threshold is zero or a value slightly greater than zero, thereby maintaining the inductor current at a positive value. 如請求項5所述之充電電路,其中該輸入電源包括一輸入電壓,該輸出電源包括一輸出電壓,該電流下限閾值及該電流上限閾值可動態調整或根據該輸入電壓或該輸出電壓適應性調整。 The charging circuit of claim 5, wherein the input power source includes an input voltage, the output power source includes an output voltage, and the current lower limit threshold and the current upper limit threshold can be dynamically adjusted or adapted according to the input voltage or the output voltage. adjust. 如請求項4所述之充電電路,更包含一非連續導通模式判斷電路,用以決定該充電電路切換為該非連續導通模式之時點。 The charging circuit of claim 4 further includes a discontinuous conduction mode judgment circuit for determining the time point when the charging circuit switches to the discontinuous conduction mode. 如請求項10所述之充電電路,其中該輸入電源包括一輸入電流,該非連續導通模式判斷電路包括:一電流感測電路,用以感測該輸入電流、流經該上橋開關之一上橋電流、流經該電感之一電感電流或流經該下橋開關之一下橋電流而產生一電流感測訊號;一轉態閾值產生電路,用以根據該操作訊號及一參考電壓而產生一轉態閾值訊號;以及一比較電路,用以比較該電流感測訊號及該轉態閾值訊號,當該電流感測訊號小於該轉態閾值訊號時,使該充電電路切換為該非連續導通模式。 The charging circuit of claim 10, wherein the input power source includes an input current, and the discontinuous conduction mode judgment circuit includes: a current sensing circuit for sensing the input current flowing through one of the upper bridge switches. The bridge current, an inductor current flowing through the inductor or a low-bridge current flowing through the low-bridge switch generates a current sensing signal; a transition threshold generating circuit is used to generate a current sensing signal based on the operating signal and a reference voltage. a transition threshold signal; and a comparison circuit for comparing the current sensing signal with the transition threshold signal. When the current sensing signal is less than the transition threshold signal, the charging circuit is switched to the discontinuous conduction mode. 如請求項1所述之充電電路,其中該控制電路於該充電電壓或該負載電壓不高於一預設底限位準時,產生一結束訊號,以離開該非連續導通模式。 The charging circuit of claim 1, wherein the control circuit generates an end signal to leave the discontinuous conduction mode when the charging voltage or the load voltage is not higher than a preset bottom limit level. 如請求項2所述之充電電路,更包含一計時電路,用以當該電壓遲滯訊號處於該禁能位準時,計時一段逾時期間,該計時電路於該逾時期間之一結束時點時,確認該電壓遲滯訊號是否仍處於該禁能位準,若該電壓遲滯訊號仍處於該禁能位準,則該計時電路產生一結束訊號,以離開該非連續導通模式。 The charging circuit of claim 2 further includes a timing circuit for timing a timeout period when the voltage hysteresis signal is at the disable level, and when the timing circuit ends at one of the timeout periods, It is confirmed whether the voltage hysteresis signal is still at the disable level. If the voltage hysteresis signal is still at the disable level, the timing circuit generates an end signal to leave the discontinuous conduction mode. 如請求項1所述之充電電路,更包含一電流誤差放大電路,用以將相關於該充電電流之一充電電流感測訊號與一充電電流參考位準相比較,而產生一電流放大訊號,以將該充電電流調節於一預設電流。 The charging circuit of claim 1 further includes a current error amplification circuit for comparing a charging current sensing signal related to the charging current with a charging current reference level to generate a current amplification signal, To adjust the charging current to a preset current. 如請求項14所述之充電電路,更包含一電流限制電路,用以將相關於該輸入電源之一輸入電流之一輸入電流感測訊號與一輸入電流參考位準相比較,而產生一電流限制訊號,當相關於該輸入電流之該輸入電流感測訊號大於該輸入電流參考位準時,該控制電路根據該電流限制訊號執行過電流保護機制。 The charging circuit of claim 14, further comprising a current limiting circuit for comparing an input current sensing signal related to an input current of the input power supply with an input current reference level to generate a current Limiting signal, when the input current sensing signal related to the input current is greater than the input current reference level, the control circuit executes an over-current protection mechanism according to the current limiting signal. 如請求項15所述之充電電路,其中該輸入電流係來自一通用序列匯流排或一無線充電介面。 The charging circuit of claim 15, wherein the input current comes from a universal serial bus or a wireless charging interface. 如請求項15所述之充電電路,更包含一電壓限制電路,用以將相關於該輸入電源之一輸入電壓之一輸入電壓感測訊號與一輸入電壓參考位準相比較,而產生一電壓限制訊號,當相關於該輸入電壓之該輸入電壓感測訊號低於該輸入電壓參考位準時,該控制電路根據該電壓限制訊號執行低電壓保護機制。 The charging circuit of claim 15, further comprising a voltage limiting circuit for comparing an input voltage sensing signal related to an input voltage of the input power supply with an input voltage reference level to generate a voltage Limiting signal, when the input voltage sensing signal related to the input voltage is lower than the input voltage reference level, the control circuit executes a low-voltage protection mechanism according to the voltage limiting signal. 如請求項17所述之充電電路,其中該輸入電壓係來自一通用序列匯流排或一無線充電介面。 The charging circuit of claim 17, wherein the input voltage comes from a universal serial bus or a wireless charging interface. 如請求項17所述之充電電路,更包含一溫度限制電路,用以將相關於一負載溫度之一溫度感測訊號與一溫度參考位準相比較,而產生一溫度限制訊號,當相關於該負載溫度之該溫度感測訊號大於該溫度參考位準時,該控制電路根據該溫度限制訊號執行高溫保護機制。 The charging circuit of claim 17 further includes a temperature limit circuit for comparing a temperature sensing signal related to a load temperature with a temperature reference level to generate a temperature limit signal that when related to When the temperature sensing signal of the load temperature is greater than the temperature reference level, the control circuit executes a high temperature protection mechanism according to the temperature limit signal. 如請求項19所述之充電電路,其中每當相關於該充電電壓或該負載電壓之該電壓感測訊號下降到達該電壓下限閾值之時點時,該控制電路確認來自該電流誤差放大電路、該電流限制電路、該電壓限制電路或該溫度限制電路之對應的優先控制權訊號是否處於該致能位準,若來自該電流誤差放大電路、該電流限制電路、該電壓限制電路及該溫度限制電路之對應的該優先控制權訊號中任一者處於該致能位準,則該控制電路產生一結束訊號,以離開該非連續導通模式。 The charging circuit as claimed in claim 19, wherein whenever the voltage sensing signal related to the charging voltage or the load voltage drops to the voltage lower limit threshold, the control circuit confirms that the current error amplification circuit comes from the current error amplification circuit, the Whether the corresponding priority control signal of the current limit circuit, the voltage limit circuit or the temperature limit circuit is at the enable level, if it comes from the current error amplifier circuit, the current limit circuit, the voltage limit circuit and the temperature limit circuit If any of the corresponding priority control signals is at the enable level, the control circuit generates an end signal to leave the discontinuous conduction mode. 如請求項20所述之充電電路,其中當該充電電路操作於該非連續導通模式時,除了在該電壓感測訊號下降到達該電壓下限閾值之時點以外,禁能確認來自該電流誤差放大電路、該電流限制電路、該電壓限制電路或該溫度限制電路之對應的優先控制權訊號,藉此提升該充電電壓或該負載電壓之精準度。 The charging circuit of claim 20, wherein when the charging circuit operates in the discontinuous conduction mode, except when the voltage sensing signal drops to the voltage lower limit threshold, the confirmation from the current error amplification circuit is disabled, The corresponding priority control signal of the current limiting circuit, the voltage limiting circuit or the temperature limiting circuit thereby improves the accuracy of the charging voltage or the load voltage.
TW111123011A 2022-01-20 2022-06-21 Charger circuit TWI825796B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/058,312 US20230231398A1 (en) 2022-01-20 2022-11-23 Charger circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263301133P 2022-01-20 2022-01-20
US63/301133 2022-01-20

Publications (2)

Publication Number Publication Date
TW202332162A TW202332162A (en) 2023-08-01
TWI825796B true TWI825796B (en) 2023-12-11

Family

ID=87394601

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111123011A TWI825796B (en) 2022-01-20 2022-06-21 Charger circuit

Country Status (2)

Country Link
CN (1) CN116526596A (en)
TW (1) TWI825796B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104518668A (en) * 2013-10-07 2015-04-15 英飞凌科技奥地利有限公司 System and method for controlling a power supply
US9035635B2 (en) * 2013-03-06 2015-05-19 Microchip Technology Incorporated Using synchronous converter in asynchronous mode to prevent current reversal during battery charging
CN110190654A (en) * 2019-06-27 2019-08-30 季华实验室 High-power charging circuit and device
US10454381B2 (en) * 2016-09-15 2019-10-22 Virginia Tech Intellectual Properties, Inc. Variable DC link converter and transformer for wide output voltage range applications
US10483793B2 (en) * 2015-02-24 2019-11-19 Tridonic Gmbh & Co Kg Emergency supply unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035635B2 (en) * 2013-03-06 2015-05-19 Microchip Technology Incorporated Using synchronous converter in asynchronous mode to prevent current reversal during battery charging
CN104518668A (en) * 2013-10-07 2015-04-15 英飞凌科技奥地利有限公司 System and method for controlling a power supply
US10483793B2 (en) * 2015-02-24 2019-11-19 Tridonic Gmbh & Co Kg Emergency supply unit
US10454381B2 (en) * 2016-09-15 2019-10-22 Virginia Tech Intellectual Properties, Inc. Variable DC link converter and transformer for wide output voltage range applications
CN110190654A (en) * 2019-06-27 2019-08-30 季华实验室 High-power charging circuit and device

Also Published As

Publication number Publication date
TW202332162A (en) 2023-08-01
CN116526596A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
US10243470B2 (en) Power control module for an electronic converter, related integrated circuit, electronic converter and method
CN209767389U (en) current multiplying DC-DC converter
US11522457B2 (en) Buck-boost converter and control method
TWI463778B (en) Current mode buck-boost converter and direct current voltage converting method thereof
CN104218646B (en) A kind of portable power source charging circuit
TWI492511B (en) Buck-boost converter and its controller, and control method thereof
US9543832B2 (en) Current detection circuit and switching regulator thereof
US8085011B1 (en) Boost regulator using synthetic ripple regulation
US20060043953A1 (en) Pulse frequency modulation methods and circuits
JP2006501798A (en) Switching DC-DC power converter and battery charger for use with a direct oxidation fuel cell power supply
US20070085519A1 (en) Switching regulator with automatic multi mode conversion
US20140210437A1 (en) Efficient boost-buck converter and control method thereof
US20120194158A1 (en) Controllers for controlling currents to predetermined current references
CN100514824C (en) Switch type power converter and control circuit for pulse-width modulation
CN101752893A (en) Cable voltage drop compensation for battery chargers
US11588406B2 (en) Battery charging circuit and battery charging method
US6507175B2 (en) System and method for detection of zero current condition
US20120306466A1 (en) Step-up dc-dc converter
US8824180B2 (en) Power conversion apparatus
US20230268837A1 (en) Buck-Boost Converter and Hybrid Control Method
JP2008079378A (en) Electronic equipment
US9130469B2 (en) Primary-side feedback controlled AC/DC converter with an improved error amplifier
TWI704755B (en) Power supply apparatus and method of operating the same
TWI825796B (en) Charger circuit
JP2006230167A (en) Power supply unit