TWI825147B - Article comprising puncture resistant laminate with ultra-thin glass layer - Google Patents

Article comprising puncture resistant laminate with ultra-thin glass layer Download PDF

Info

Publication number
TWI825147B
TWI825147B TW108128838A TW108128838A TWI825147B TW I825147 B TWI825147 B TW I825147B TW 108128838 A TW108128838 A TW 108128838A TW 108128838 A TW108128838 A TW 108128838A TW I825147 B TWI825147 B TW I825147B
Authority
TW
Taiwan
Prior art keywords
cover glass
glass layer
microns
layer
mol
Prior art date
Application number
TW108128838A
Other languages
Chinese (zh)
Other versions
TW202019696A (en
Inventor
許紐 貝畢
郭冠廷
尤瑟夫凱德 庫羅許
羅伯特李 史密斯三世
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW202019696A publication Critical patent/TW202019696A/en
Application granted granted Critical
Publication of TWI825147B publication Critical patent/TWI825147B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability
    • B32B2307/581Resistant to cut
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133311Environmental protection, e.g. against dust or humidity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses

Abstract

An article including a laminate having a substrate and an ultra-thin cover glass layer bonded to a top surface of the substrate. The ultra-thin cover glass layer has a thickness in the range of 1 micron to 49 microns. The ultra-thin cover glass layer is bonded to the top surface of the substrate with an optically transparent adhesive layer having a thickness in the range of 5 microns to 50 microns.

Description

包含具有超薄玻璃層的抗穿刺積層之物件Objects containing puncture-resistant laminates with ultra-thin glass layers

本申請案根據專利法主張2018年8月24日申請之美國臨時申請案序列號第62/722309號之優先權權益,該申請案之內容為本文之基礎且以全文引用方式併入本文中。This application claims priority rights under the patent law to U.S. Provisional Application Serial No. 62/722309 filed on August 24, 2018. The contents of this application are the basis of this article and are incorporated herein by reference in full.

本揭示案係關於抗穿刺積層。具體而言,本揭示案係關於包括玻璃層之抗穿刺及斷裂積層,該玻璃層以黏合劑層結合至基板。This disclosure relates to puncture-resistant laminations. Specifically, the present disclosure relates to puncture- and fracture-resistant laminates including a glass layer bonded to a substrate with an adhesive layer.

用於電子裝置之顯示器之覆蓋基板保護顯示螢幕且提供使用者可藉以觀察顯示螢幕的光學透明表面。電子裝置(例如,手持式及可穿戴裝置)中之最近進步傾向於具有改良之可靠性之較輕便裝置。此等裝置之不同組件包括例如覆蓋玻璃及基板的保護組件之重量已經減少以產生較輕便裝置。Cover substrates for displays in electronic devices protect the display screen and provide an optically transparent surface through which a user can observe the display screen. Recent advances in electronic devices, such as handheld and wearable devices, have tended towards lighter devices with improved reliability. The weight of various components of these devices including protective components such as cover glass and substrate has been reduced to create lighter devices.

另外,消費者電子工業多年來已集中精力於將可穿戴及/或可撓性概念變成消費者產品。近來,由於塑膠膜之連續開發及改良,用於裝置的基於塑膠之覆蓋基板在市場上已表明一些成就。然而,使用塑膠覆蓋基板之固有缺點保持例如低濕氣及/或氧化抵抗力及低表面硬度,此在使用期間可導致裝置故障。塑膠基板針對其可撓性之使用在一些情形下可增加重量,降低光學透明度,降低抗刮性,降低抗穿刺性,且/或降低用於覆蓋基板之熱持久性。Additionally, the consumer electronics industry has focused on turning wearable and/or flexible concepts into consumer products for many years. Recently, plastic-based cover substrates for devices have shown some success in the market due to the continuous development and improvement of plastic films. However, inherent disadvantages of using plastic-covered substrates remain such as low moisture and/or oxidation resistance and low surface hardness, which can lead to device failure during use. The use of plastic substrates for their flexibility can in some cases increase weight, reduce optical clarity, reduce scratch resistance, reduce puncture resistance, and/or reduce the thermal durability of the substrate used to cover it.

因此,繼續需要用於消費者產品之覆蓋,例如用於保護顯示螢幕之覆蓋基板或玻璃中之創新。且具體而言,持續需要用於包括可撓性組件,例如可撓性顯示螢幕之消費者裝置之覆蓋玻璃或覆蓋基板。Therefore, there continues to be a need for innovations in coatings for consumer products, such as cover substrates or glass used to protect display screens. And in particular, there is an ongoing need for cover glasses or cover substrates for consumer devices that include flexible components, such as flexible display screens.

本揭示案針對可撓性、抗穿刺,及抗斷裂積層,該等積層包括超薄覆蓋玻璃層,該超薄覆蓋玻璃層以黏合劑結合至基板。該超薄覆蓋玻璃層具有小於50微米(μm或微米)之厚度。出乎意料地,具有小於50微米之厚度之超薄覆蓋玻璃層當以適當厚的黏合劑層結合至基板時提供合適的抗穿刺性及抗斷裂性。抗穿刺性及抗斷裂性與此類超薄覆蓋玻璃層(具有小於50微米之厚度)之可撓性一起產生如本文所描述的積層之性質之合意的組合。The present disclosure is directed to flexible, puncture-resistant, and fracture-resistant laminates that include an ultra-thin cover glass layer bonded to a substrate with an adhesive. The ultra-thin cover glass layer has a thickness of less than 50 microns (μm or microns). Unexpectedly, an ultra-thin cover glass layer having a thickness of less than 50 microns provides suitable puncture and break resistance when bonded to a substrate with a suitably thick adhesive layer. Puncture and break resistance together with the flexibility of such ultra-thin cover glass layers (having a thickness of less than 50 microns) yield a desirable combination of properties for the laminates as described herein.

一些實施例針對物件,該物件包括積層,該積層具有基板;覆蓋玻璃層,該覆蓋玻璃層結合至該基板之頂部表面,該覆蓋玻璃層具有在1微米至49微米之範圍內的厚度;以及光學透明黏合劑層,該光學透明黏合劑層具有在5微米至50微米之範圍內的厚度,該光學透明黏合劑層將該覆蓋玻璃層之底部表面結合至該基板之該頂部表面。Some embodiments are directed to an article including a build-up layer having a substrate; a cover glass layer bonded to a top surface of the substrate, the cover glass layer having a thickness in the range of 1 micron to 49 microns; and An optically clear adhesive layer having a thickness in the range of 5 microns to 50 microns, the optically clear adhesive layer bonds the bottom surface of the cover glass layer to the top surface of the substrate.

在一些實施例中,根據先前段落之物件可包括覆蓋玻璃層,該覆蓋玻璃層具有在1微米至40微米之範圍內的厚度。在一些實施例中,根據先前段落之物件可包括覆蓋玻璃層,該覆蓋玻璃層具有在1微米至30微米之範圍內的厚度。在一些實施例中,根據先前段落之物件可包括覆蓋玻璃層,該覆蓋玻璃層具有在35微米至49微米之範圍內的厚度。在一些實施例中,根據先前段落之物件可包括覆蓋玻璃層,該覆蓋玻璃層具有在25微米至49微米之範圍內的厚度。In some embodiments, the article according to the previous paragraph may include a cover glass layer having a thickness in the range of 1 micron to 40 microns. In some embodiments, an article according to the previous paragraph may include a cover glass layer having a thickness in the range of 1 micron to 30 microns. In some embodiments, the article according to the previous paragraph may include a cover glass layer having a thickness in the range of 35 microns to 49 microns. In some embodiments, the article according to the previous paragraph may include a cover glass layer having a thickness in the range of 25 microns to 49 microns.

在一些實施例中,根據先前段落中之任何段落之實施例之物件可包括光學透明黏合劑層,該光學透明黏合劑層具有在25微米至50微米之範圍內的厚度。In some embodiments, an article according to an embodiment of any of the preceding paragraphs can include an optically clear adhesive layer having a thickness in the range of 25 microns to 50 microns.

在一些實施例中,根據先前段落中之任何段落之實施例之物件可包括覆蓋玻璃層,該覆蓋玻璃層以該光學透明黏合劑層直接結合至該基板之該頂部表面。In some embodiments, an article according to an embodiment of any of the preceding paragraphs may include a cover glass layer bonded directly to the top surface of the substrate with the optically clear adhesive layer.

在一些實施例中,根據先前段落中之任何段落之實施例之物件可包括積層,該積層可達成3毫米(mm)之曲彎半徑。In some embodiments, an article according to an embodiment of any of the preceding paragraphs may include a build-up that may achieve a bend radius of 3 millimeters (mm).

在一些實施例中,根據先前段落中之任何段落之實施例之物件可包括積層,該積層具有藉由該覆蓋玻璃層在穿刺測試中之2.25公斤-力或更大之穿刺負載處避免故障之能力限定的抗衝擊性。In some embodiments, an article according to an embodiment of any of the preceding paragraphs may include a laminate having the ability to avoid failure by the cover glass layer at a puncture load of 2.25 kg-force or greater in a puncture test. Capability limited impact resistance.

在一些實施例中,根據先前段落中之任何段落之實施例之物件可包括積層,該積層具有藉由該覆蓋玻璃層在8公分或更大之筆落高度處避免故障之能力限定的抗衝擊性,其中該筆落高度係根據筆落測試量測。In some embodiments, an article according to an embodiment of any of the preceding paragraphs may include a laminate having impact resistance defined by the cover glass layer's ability to avoid failure at a drop height of 8 centimeters or greater. properties, where the pen drop height is measured according to the pen drop test.

在一些實施例中,根據先前段落中之任何段落之實施例之物件可包括覆蓋玻璃層,該覆蓋玻璃層為拉製至該覆蓋玻璃層之該厚度的再拉製玻璃層。In some embodiments, an article according to an embodiment of any of the preceding paragraphs may include a cover glass layer that is a redrawn glass layer drawn to the thickness of the cover glass layer.

在一些實施例中,根據先前段落中之任何段落之實施例之物件可包括覆蓋玻璃層,該覆蓋玻璃層包括含鹼鋁矽酸鹽玻璃。In some embodiments, an article according to an embodiment of any of the preceding paragraphs may include a cover glass layer including an alkali-containing aluminosilicate glass.

在一些實施例中,根據先前段落中之任何段落之實施例之物件可包括覆蓋玻璃層,該覆蓋玻璃層包括55莫耳%至70莫耳%的SiO2 、10莫耳%至20莫耳%的Al2 O3 ,及10莫耳%至20莫耳%的Na2 O。In some embodiments, an article according to an embodiment of any of the preceding paragraphs can include a cover glass layer including 55 to 70 mole % SiO 2 , 10 to 20 mole % % Al 2 O 3 , and 10 to 20 mol % Na 2 O.

在一些實施例中,根據先前段落中之任何段落之實施例之物件可包括覆蓋玻璃層,該覆蓋玻璃層具有至少在該覆蓋玻璃層之頂部表面或該底部表面中之一個處的壓縮應力,及至少在貫穿該覆蓋玻璃層之該厚度的兩個點處不同的金屬氧化物濃度。In some embodiments, an article according to an embodiment of any of the preceding paragraphs may include a cover glass layer having a compressive stress at at least one of a top surface or a bottom surface of the cover glass layer, and different metal oxide concentrations at at least two points through the thickness of the cover glass layer.

在一些實施例中,根據先前段落中之任何段落之實施例之物件可包括基板,該基板包括電子顯示器,該電子顯示器具有限定該基板之該頂部表面之至少一部分的顯示表面。In some embodiments, an article according to an embodiment of any of the preceding paragraphs may include a substrate including an electronic display having a display surface defining at least a portion of the top surface of the substrate.

在一些實施例中,根據先前段落中之任何段落之實施例之物件可包括塗層,該塗層設置在該覆蓋玻璃層之頂部表面上。在一些實施例中,該塗層可包括選自由以下組成之群組的塗層:防反射塗層、防光眩塗層、防指紋塗層、防碎片層、抗菌塗層,及易於清潔的塗層。In some embodiments, an article according to an embodiment of any of the preceding paragraphs may include a coating disposed on a top surface of the cover glass layer. In some embodiments, the coating may include a coating selected from the group consisting of: an anti-reflective coating, an anti-glare coating, an anti-fingerprint coating, an anti-fragment layer, an antimicrobial coating, and an easy-to-clean coating. coating.

在一些實施例中,根據先前段落中之任何段落之實施例之物件可包括積層,該積層缺乏設置在該覆蓋玻璃層之頂部表面上的聚合硬塗層。In some embodiments, an article according to an embodiment of any of the preceding paragraphs may include a build-up layer lacking a polymeric hardcoat disposed on a top surface of the cover glass layer.

在一些實施例中,根據先前段落中之任何段落之實施例之物件可為消費者電子產品,且該基板可包括電子顯示器,該消費者電子產品包括殼體,該殼體包含前表面、後表面及側表面;以及電氣組件,該等電氣組件至少部分地在該殼體內,該等電氣組件包括控制器、記憶體,及該電子顯示器,該電子顯示器在該殼體之該前表面處或鄰近該前表面,其中該覆蓋玻璃層形成該殼體之至少一部分。In some embodiments, an article according to any of the preceding paragraphs may be a consumer electronics product, and the substrate may include an electronic display, the consumer electronics product including a housing including a front surface, a rear surface, and a housing. surface and side surfaces; and electrical components at least partially within the housing, the electrical components including a controller, memory, and the electronic display at the front surface of the housing or Adjacent the front surface, the cover glass layer forms at least a portion of the housing.

一些實施例針對電子顯示組件,該電子顯示組件包括電子顯示器,該電子顯示器包括顯示表面;覆蓋玻璃層,該覆蓋玻璃層結合至該顯示表面,該覆蓋玻璃層包括在1微米至49微米之範圍內的厚度;以及光學透明黏合劑層,該光學透明黏合劑層具有在5微米至50微米之範圍內的厚度,該光學透明黏合劑層將該覆蓋玻璃層之底部表面結合至該電子顯示器之該顯示表面。Some embodiments are directed to an electronic display assembly including an electronic display including a display surface; a cover glass layer bonded to the display surface, the cover glass layer being included in the range of 1 micron to 49 microns. a thickness within; and an optically clear adhesive layer having a thickness in the range of 5 microns to 50 microns, the optically clear adhesive layer bonding the bottom surface of the cover glass layer to the electronic display the display surface.

在一些實施例中,根據先前段落之實施例之顯示組件可包括塗層,該塗層設置在該玻璃層之頂部表面上。In some embodiments, a display assembly according to embodiments of the previous paragraph may include a coating disposed on a top surface of the glass layer.

在一些實施例中,根據前述兩個段落中之任一段落之實施例之顯示組件可包括覆蓋玻璃層,該覆蓋玻璃層以該光學透明黏合劑層直接結合至該電子顯示器之該顯示表面。In some embodiments, a display assembly according to an embodiment of either of the two preceding paragraphs may include a cover glass layer bonded directly to the display surface of the electronic display with the optically clear adhesive layer.

一些實施例針對製作積層之方法,該方法包括將覆蓋玻璃層結合至基板之頂部表面,該覆蓋玻璃層具有在1微米至49微米之範圍內的厚度,其中該覆蓋玻璃層之底部表面以光學透明黏合劑層結合至該基板之該頂部表面,該光學透明黏合劑層具有在5微米至50微米之範圍內的厚度。Some embodiments are directed to a method of making a build-up including bonding a cover glass layer to a top surface of a substrate, the cover glass layer having a thickness in the range of 1 micron to 49 microns, wherein the bottom surface of the cover glass layer is optically A transparent adhesive layer is bonded to the top surface of the substrate, the optically clear adhesive layer having a thickness in the range of 5 microns to 50 microns.

在一些實施例中,根據先前段落之實施例之方法可包括以再拉製製程形成該覆蓋玻璃層,其中該再拉製製程包括將該覆蓋玻璃層再拉製至該覆蓋玻璃層之該厚度。In some embodiments, the method according to the embodiments of the previous paragraph may include forming the cover glass layer in a redraw process, wherein the redraw process includes redrawing the cover glass layer to the thickness of the cover glass layer .

在一些實施例中,根據兩個前述段落中之任一段落之實施例之方法可包括以塗層塗佈該覆蓋玻璃層之頂部表面。In some embodiments, a method according to an embodiment of either of the two preceding paragraphs may include coating a top surface of the cover glass layer with a coating.

以下實例例示,而非限制本揭示案。本領域中通常遭遇且熟習此項技術者將顯而易見的條件及參數之種類之其他合適的修改及調適在本提示案之精神及範疇內。The following examples illustrate, but do not limit, the present disclosure. Other suitable modifications and adaptations of the types of conditions and parameters that are commonly encountered in the art and will be apparent to those skilled in the art are within the spirit and scope of this tip.

用於消費者產品之覆蓋基板例如覆蓋玻璃可尤其用來減少不希望的反射,防止玻璃中之機械缺陷(例如,刮痕或裂縫)之形成,且/或提供易於清潔的透明表面。本文所揭示的覆蓋玻璃及積層可併入另一物件中,該另一物件例如具有顯示器之物件(或顯示物件) (例如,消費者電子產品,包括行動電話、平板、電腦、導航系統、可穿戴裝置(例如,手錶)等等)、架構物件、運輸物件(例如,汽車、火車、飛機、海用船舶等)、用具物件,或可受益於一些透明度、抗刮性、抗磨性,或其組合的任何物件。Cover substrates such as cover glass for consumer products may be used, inter alia, to reduce unwanted reflections, prevent the formation of mechanical defects (eg, scratches or cracks) in the glass, and/or provide a transparent surface that is easy to clean. The cover glass and laminates disclosed herein may be incorporated into another object, such as an object having a display (or display object) (e.g., consumer electronics including mobile phones, tablets, computers, navigation systems, Wearable devices (e.g., watches, etc.), structural objects, transportation objects (e.g., cars, trains, airplanes, marine vessels, etc.), appliance objects, may benefit from some transparency, scratch resistance, abrasion resistance, or any combination of them.

併入本文所揭示的覆蓋玻璃層或積層中之任一個的示範性物件為消費者電子裝置,該消費者電子裝置包括具有前表面、後表面,及側表面的殼體;電氣組件,該等電氣組件至少部分地在殼體內側或完全在殼體內且包括至少一控制器、記憶體,及在殼體之前表面處或鄰近於該前表面的顯示器;以及覆蓋玻璃層,該覆蓋玻璃層在殼體之前表面處或上,使得該覆蓋玻璃層在顯示器上。在一些實施例中,覆蓋玻璃層可包括本文所揭示的玻璃層中之任一個。在一些實施例中,殼體或顯示器之一部分中之至少一個包含如本文所揭示的覆蓋玻璃層或積層。如本文所使用,「積層」為包括至少一覆蓋玻璃層及基板的多層結構,該基板與設置在覆蓋玻璃層與基板之間的黏合劑層結合在一起。Exemplary articles incorporating any of the cover glass layers or laminates disclosed herein are consumer electronic devices including a housing having a front surface, a back surface, and side surfaces; electrical components, the like The electrical component is at least partially inside or completely within the housing and includes at least one controller, memory, and display at or adjacent the front surface of the housing; and a cover glass layer, the cover glass layer The front surface of the housing is at or on top of the display so that the cover glass layer is on it. In some embodiments, the cover glass layer may include any of the glass layers disclosed herein. In some embodiments, at least one of the housing or a portion of the display includes a cover glass layer or laminate as disclosed herein. As used herein, a "laminate" is a multilayer structure that includes at least a cover glass layer and a substrate bonded to an adhesive layer disposed between the cover glass layer and the substrate.

覆蓋基板,例如覆蓋玻璃,亦用來保護消費者產品之敏感組件免受機械損壞(例如,穿刺及衝擊力)。對於包括可撓性、可折疊,及/或急劇彎曲部分(例如,可撓性、可折疊,及/或急劇彎曲顯示螢幕)的消費者產品,用於保護顯示螢幕之覆蓋基板應保持螢幕之可撓性、可折疊性,及/或曲率而亦保護螢幕。此外,覆蓋基板應抵抗機械損壞,例如刮痕及破裂,使得使用者可享受顯示螢幕之無阻礙視野。Cover substrates, such as cover glass, are also used to protect sensitive components of consumer products from mechanical damage (eg, punctures and impact forces). For consumer products that include flexible, foldable, and/or sharply curved portions (e.g., flexible, foldable, and/or sharply curved display screens), the cover substrate used to protect the display screen should maintain the Flexibility, foldability, and/or curvature also protect the screen. In addition, the cover substrate should resist mechanical damage such as scratches and cracks, allowing users to enjoy an unobstructed view of the display screen.

厚整塊玻璃層可提供足夠的機械性質,但此等層可為巨大的且不能折疊至緊湊半徑以便在可折疊、可撓性,或急劇彎曲的消費者產品中加以利用。且高度可撓性覆蓋基板,例如塑膠基板,可不能提供對於消費者產品合意的足夠的抗穿刺性、抗刮性,及/或抗斷裂性。Thick monolithic glass layers can provide adequate mechanical properties, but these layers can be bulky and cannot be folded into tight radii for use in foldable, flexible, or sharply curved consumer products. And highly flexible cover substrates, such as plastic substrates, may not provide sufficient puncture resistance, scratch resistance, and/or break resistance desirable for consumer products.

作為覆蓋基板,與塑膠相比,玻璃提供對濕氣(及氧)的優越障壁且提供硬度性質以在使用期間使刮痕及變形最小化。且超薄玻璃可曲變至極小的曲彎半徑。可折疊物件或積層至緊湊曲彎半徑之曲彎藉由物件或積層之總體剛性驅動。由於高玻璃模數,物件或積層之覆蓋玻璃層主要有助於物件或積層之剛性。因此,需要較薄的覆蓋玻璃層來促進物件或積層之曲彎。因此,藉由提供足夠的抗穿刺性、抗刮性,及/或抗斷裂性的超薄玻璃層限定或包括該超薄玻璃層的覆蓋基板能夠充當覆蓋基板。此超薄玻璃層(具有小於50微米之厚度)可降低用以生產具有合適的機械性質之覆蓋基板之層數。As a cover substrate, glass provides a superior barrier to moisture (and oxygen) compared to plastic and provides stiffness properties to minimize scratches and deformation during use. And ultra-thin glass can be bent to a very small bending radius. The bending of an object or stack up into a tight bend radius is driven by the overall rigidity of the object or stack up. Due to the high glass modulus, the covering glass layer of an object or laminate mainly contributes to the rigidity of the object or laminate. Therefore, a thinner cover glass layer is required to facilitate the curvature of the object or laminate. Accordingly, a cover substrate defined by or including an ultra-thin glass layer that provides sufficient puncture resistance, scratch resistance, and/or break resistance can function as a cover substrate. This ultra-thin glass layer (having a thickness of less than 50 microns) reduces the number of layers required to produce a cover substrate with suitable mechanical properties.

本文所描述的物件包括具有小於50微米(微米) (亦即,49微米或更少,例如48微米,或47微米,或46微米,或45微米,或40微米,或35微米,或30微米,或25微米,或其間之任何及所有子範圍)之厚度之超薄覆蓋玻璃層。出乎意料地,與具有50微米之厚度且以黏合劑結合至基板的覆蓋玻璃層相比,具有小於50微米之厚度之覆蓋玻璃層當以類似的黏合劑層結合至類似的基板時提供優越的抗穿刺性及抗斷裂性。先前,據信,在玻璃厚度減少至50微米以下時,抗穿刺性及抗斷裂性將由於玻璃層之薄度而類似地降低。然而,對於以適當厚的黏合劑層黏附地結合至基板的覆蓋玻璃層,狀況並非如此。Objects described herein include objects having a diameter less than 50 microns (microns) (i.e., 49 microns or less, such as 48 microns, or 47 microns, or 46 microns, or 45 microns, or 40 microns, or 35 microns, or 30 microns) , or 25 microns, or any and all sub-ranges therein), an ultra-thin cover glass layer with a thickness. Unexpectedly, a cover glass layer having a thickness of less than 50 microns provides advantages when bonded to a similar substrate with a similar adhesive layer compared to a cover glass layer having a thickness of 50 microns and bonded to a substrate with an adhesive. Puncture resistance and breakage resistance. Previously, it was believed that when the glass thickness is reduced below 50 microns, puncture resistance and breakage resistance will be similarly reduced due to the thinness of the glass layer. However, this is not the case for a cover glass layer that is adhesively bonded to the substrate with a suitably thick adhesive layer.

具體而言,出乎意料地,對於具有小於50微米之厚度之超薄覆蓋玻璃層,展現在覆蓋玻璃層中的應力與結合至基板的層之剛性成反比。在穿刺測試或筆落測試期間導致覆蓋玻璃之故障的高應力起因於玻璃之局部化曲彎。因此,先前據信覆蓋玻璃之剛性與抗穿刺性及抗斷裂性一致地且直接地有關。因為據信由於穿刺力展現在覆蓋玻璃層中的應力將總是與玻璃層之剛性成反比,所以此為理解。因此,據信,相對較厚、較硬的覆蓋玻璃層將總是改良筆落及穿刺測試效能,及因此抗穿刺性及抗斷裂性。Specifically, unexpectedly, for ultra-thin cover glass layers having a thickness of less than 50 microns, the stress exhibited in the cover glass layer is inversely proportional to the stiffness of the layer bonded to the substrate. The high stresses that lead to failure of the cover glass during puncture or pen drop testing result from localized bending of the glass. Therefore, it was previously believed that the rigidity of cover glass is consistently and directly related to puncture and break resistance. This is understood since it is believed that the stresses exhibited in the cover glass layer due to puncture forces will always be inversely proportional to the stiffness of the glass layer. Therefore, it is believed that a relatively thicker, harder cover glass layer will always improve pen drop and puncture test performance, and therefore puncture and break resistance.

然而,已發現具有小於50微米之厚度之覆蓋玻璃層可為積層提供合適的穿刺故障負荷及筆落效能。如本文所揭示,小於50微米的覆蓋玻璃層厚度展示相較於50微米厚的覆蓋玻璃層的較佳效能。且當經受筆落或準靜態壓痕負載(穿刺力)時,小於50微米的覆蓋玻璃層厚度展示與大於50微米及高達約100微米的覆蓋玻璃層厚度類似的效能。然而,與由具有50微米或更多之厚度之相同材料製成的覆蓋玻璃層相比,小於50微米之覆蓋玻璃層厚度將具有優越的可撓性及曲彎性質。此類覆蓋玻璃層(具有小於50微米之厚度)之優越的可撓性及可曲彎性允許該等覆蓋玻璃層在無故障的情況下藉由較小的曲彎半徑曲彎。此外,因為此等較薄的覆蓋玻璃層減少用來製作提供合意的保護的覆蓋玻璃層的原材料之量,所以該等較薄的覆蓋玻璃層可降低製造成本。However, it has been found that a cover glass layer having a thickness of less than 50 microns can provide suitable puncture failure loading and pen drop performance for the laminate. As disclosed herein, a cover glass layer thickness of less than 50 microns exhibits better performance than a cover glass layer that is 50 microns thick. And when subjected to pen drop or quasi-static indentation loads (puncture forces), cover glass layer thicknesses less than 50 microns exhibit similar performance to cover glass layer thicknesses greater than 50 microns and up to about 100 microns. However, a cover glass layer thickness less than 50 microns will have superior flexibility and bending properties compared to a cover glass layer made of the same material with a thickness of 50 microns or more. The superior flexibility and bendability of such cover glass layers (having a thickness of less than 50 microns) allows the cover glass layers to be bent with smaller bending radii without failure. Additionally, these thinner cover glass layers may reduce manufacturing costs because they reduce the amount of raw materials used to make the cover glass layer that provides desirable protection.

包括結合至基板的覆蓋玻璃層且具有小於50微米之厚度的積層在筆落效能測試期間相較於具有50微米之厚度且類似地結合至類似基板的可比較玻璃層表現更好。為確認此出乎意料的行為,進一步積層藉由INSTRON®機器(由Illinois Tool Works Inc.製造的控制穿刺測試機器)在控制負載的情況下使用穿刺測試加以測試。與損壞引發及傳播有關的資訊可得自此穿刺測試之結果。若不可能,則此資訊難以藉由筆落實驗獲得。穿刺測試允許在準靜態負載期間監視控制斷裂。換言之,穿刺測試幫助區分積層中之哪個層首先出故障,因為該穿刺測試可在第一感測斷裂之後立即停止。第一感測斷裂之後的停止幫助區分覆蓋玻璃層及/或覆蓋玻璃層所結合到的基板之故障。穿刺測試結果確認具有小於50微米之厚度之覆蓋玻璃層具有相較於可比較的50微米厚的覆蓋玻璃層的優越抗穿刺性及抗斷裂性。Laminates that included a cover glass layer bonded to a substrate and had a thickness less than 50 microns performed better during pen drop performance testing than a comparable glass layer having a thickness of 50 microns and similarly bonded to a similar substrate. To confirm this unexpected behavior, further stacking was tested using an INSTRON® machine (a controlled puncture testing machine manufactured by Illinois Tool Works Inc.) using puncture testing under controlled load. Information regarding the initiation and propagation of damage can be obtained from the results of this puncture test. If this is not possible, this information is difficult to obtain through pen testing. Puncture testing allows monitoring of controlled fracture during quasi-static loading. In other words, the puncture test helps distinguish which layer of the build-up fails first because the puncture test can be stopped immediately after the first sensed break. The stop after the first sensed break helps distinguish failures in the cover glass layer and/or the substrate to which the cover glass layer is bonded. Puncture test results confirm that a cover glass layer having a thickness of less than 50 microns has superior puncture and break resistance compared to a comparable 50 micron thick cover glass layer.

根據出乎意料的筆落及穿刺測試,包括結合至基板的覆蓋玻璃層的積層之行為經模型化以評估藉由給予覆蓋玻璃層之表面上的穿刺力產生的應力分佈。模型結果展示用於具有小於50微米之厚度之覆蓋玻璃層的應力級總起來小於用於具有50微米之厚度之可比較的覆蓋玻璃層的彼等者。此等模型化結果確認具有小於50微米之厚度且以適當厚的黏合劑結合至基板的覆蓋玻璃層與類似地結合至類似基板的50微米厚的覆蓋玻璃層相比由於穿刺力或衝擊力在抵抗故障方面較優越。如本文所描述的結合至基板的小於50微米厚的覆蓋玻璃層提供足夠的可撓性、抗穿刺性、抗刮性,及抗斷裂性,以充當用於基板及包括基板的物件之保護組件。Based on unexpected pen drop and puncture tests, the behavior of the laminate, including a cover glass layer bonded to a substrate, was modeled to evaluate the stress distribution produced by puncture forces imparted to the surface of the cover glass layer. Model results show that stress levels for cover glass layers with a thickness of less than 50 microns are collectively less than those for comparable cover glass layers with a thickness of 50 microns. These modeling results confirm that a cover glass layer having a thickness of less than 50 microns and bonded to a substrate with an appropriately thick adhesive is less susceptible to puncture or impact forces than a 50 micron thick cover glass layer similarly bonded to a similar substrate. Superior in resistance to failure. A less than 50 micron thick cover glass layer bonded to a substrate as described herein provides sufficient flexibility, puncture resistance, scratch resistance, and fracture resistance to serve as a protective component for the substrate and articles including the substrate .

第1圖例示根據一些實施例之物件100。物件100包括積層102,該積層具有基板110及覆蓋玻璃層120,該覆蓋玻璃層以光學透明黏合劑層130結合至基板110。覆蓋玻璃層120可覆蓋基板110之全部或一部分。覆蓋玻璃層120可覆蓋基板110之頂部表面114之全部或一部分。在一些實施例中,覆蓋玻璃層120可覆蓋頂部表面114之整體。在一些實施例中,覆蓋玻璃層120可在頂部表面114之所有相對邊緣之間但並非在頂部表面之整體上覆蓋基板110之頂部表面114。Figure 1 illustrates an object 100 according to some embodiments. Article 100 includes a build-up 102 having a substrate 110 and a cover glass layer 120 bonded to the substrate 110 with an optically clear adhesive layer 130 . The cover glass layer 120 may cover all or part of the substrate 110 . Cover glass layer 120 may cover all or a portion of top surface 114 of substrate 110 . In some embodiments, cover glass layer 120 may cover the entirety of top surface 114 . In some embodiments, cover glass layer 120 may cover top surface 114 of substrate 110 between all opposing edges of top surface 114 but not the entirety of the top surface.

在一些實施例中,基板110可為電子顯示器或包括電子顯示器的電子顯示組件。在一些實施例中,基板110之頂部表面114之全部或一部分可為電子顯示器或電子顯示組件之顯示表面。換言之,顯示表面可限定基板110之頂部表面114之全部或一部分。示範性電子顯示器包括發光二極體(light emitting diode; LED)顯示器或有機發光二極體(organic light emitting diode; OLED)顯示器。在一些實施例中,基板110可為非電子顯示裝置。例如,基板110可為顯示靜態或印刷郵政標記的顯示裝置。在一些實施例中,基板110可為觸壓感測器,例如電容性觸壓感測器,或偏光鏡,或電池。In some embodiments, substrate 110 may be an electronic display or an electronic display assembly including an electronic display. In some embodiments, all or a portion of the top surface 114 of the substrate 110 may be a display surface of an electronic display or electronic display component. In other words, the display surface may define all or a portion of the top surface 114 of the substrate 110 . Exemplary electronic displays include light emitting diode (LED) displays or organic light emitting diode (OLED) displays. In some embodiments, substrate 110 may be a non-electronic display device. For example, substrate 110 may be a display device displaying static or printed postal markings. In some embodiments, the substrate 110 may be a touch pressure sensor, such as a capacitive touch pressure sensor, a polarizer, or a battery.

在一些實施例中,基板110,例如電子顯示器或電子顯示組件,可為可撓性基板。如本文所使用,可撓性層、物件,或基板為可獨自達成10 mm或更少之曲彎半徑的層、物件,或基板。在一些實施例中,基板110可達成5 mm或更少之曲彎半徑。在一些實施例中,基板110可達成4 mm或更少之曲彎半徑。在一些實施例中,基板110可達成3 mm或更少之曲彎半徑。若當基板110在約25℃且約50%相對濕度處保持在「X」半徑處達60分鐘時該基板抵抗故障,則基板110達成「X」之曲彎半徑。第9圖例示積層102,以及基板110之曲彎半徑170之量測。In some embodiments, substrate 110, such as an electronic display or electronic display assembly, may be a flexible substrate. As used herein, a flexible layer, object, or substrate is a layer, object, or substrate that can independently achieve a bend radius of 10 mm or less. In some embodiments, the substrate 110 can achieve a bend radius of 5 mm or less. In some embodiments, the substrate 110 may achieve a bend radius of 4 mm or less. In some embodiments, the substrate 110 can achieve a bend radius of 3 mm or less. The substrate 110 achieves a bend radius of "X" if the substrate resists failure when the substrate 110 is held at a radius of "X" at about 25° C. and about 50% relative humidity for 60 minutes. Figure 9 illustrates the build-up 102 and the measurement of the bend radius 170 of the substrate 110.

覆蓋玻璃層120為具有小於50微米之厚度126之超薄玻璃層。覆蓋玻璃層120可具有自覆蓋玻璃層120之底部表面122量測至頂部表面124的在1微米至49微米(微米,μm)之範圍包括其間的子範圍內之厚度126。例如,覆蓋玻璃層120可具有1微米、5微米、10微米、15微米、20微米、25微米、30微米、35微米、40微米、45微米、46微米、47微米、48微米、49微米,或在具有此等值中之任何兩個作為端點之範圍內的厚度126。在一些實施例中,厚度126可在1微米至40微米,或自2微米至35微米,或自3微米至30微米,或自4微米至30微米,或自5微米至30微米,或自6微米至25微米,或自7微米至20微米,或自10微米至20微米,或自15微米至20微米,或自15微米至25微米,或自15微米至30微米,或自15微米至35微米,或自15微米至40微米,或自15微米至45微米,或自15微米至49微米之範圍內。在一些實施例中,厚度126可在1微米至30微米之範圍內。在一些實施例中,厚度126可在35微米至49微米之範圍內。在一些實施例中,厚度126可在25微米至49微米之範圍內。在一些實施例中,厚度126可在15微米至49微米之範圍內。在一些實施例中,厚度126可在5微米至49微米之範圍內。The cover glass layer 120 is an ultra-thin glass layer having a thickness 126 of less than 50 microns. Cover glass layer 120 may have a thickness 126 measured from bottom surface 122 to top surface 124 of cover glass layer 120 in a range of 1 micron to 49 microns (microns, μm) including subranges therebetween. For example, the cover glass layer 120 may have a thickness of 1 micron, 5 microns, 10 microns, 15 microns, 20 microns, 25 microns, 30 microns, 35 microns, 40 microns, 45 microns, 46 microns, 47 microns, 48 microns, 49 microns, or the thickness 126 within a range having any two of these values as endpoints. In some embodiments, the thickness 126 may be from 1 micron to 40 microns, or from 2 microns to 35 microns, or from 3 microns to 30 microns, or from 4 microns to 30 microns, or from 5 microns to 30 microns, or from 6 microns to 25 microns, or from 7 microns to 20 microns, or from 10 microns to 20 microns, or from 15 microns to 20 microns, or from 15 microns to 25 microns, or from 15 microns to 30 microns, or from 15 microns to 35 microns, or from 15 microns to 40 microns, or from 15 microns to 45 microns, or from 15 microns to 49 microns. In some embodiments, thickness 126 may range from 1 micron to 30 microns. In some embodiments, thickness 126 may range from 35 microns to 49 microns. In some embodiments, thickness 126 may range from 25 microns to 49 microns. In some embodiments, thickness 126 may range from 15 microns to 49 microns. In some embodiments, thickness 126 may range from 5 microns to 49 microns.

覆蓋玻璃層120可達成10 mm或更少之曲彎半徑。在一些實施例中,覆蓋玻璃層120可達成5 mm或更少之曲彎半徑。在一些實施例中,覆蓋玻璃層120可達成4 mm或更少之曲彎半徑。在一些實施例中,覆蓋玻璃層120可達成3 mm或更少之曲彎半徑。The cover glass layer 120 can achieve a bending radius of 10 mm or less. In some embodiments, cover glass layer 120 may achieve a bend radius of 5 mm or less. In some embodiments, cover glass layer 120 may achieve a bend radius of 4 mm or less. In some embodiments, cover glass layer 120 may achieve a bend radius of 3 mm or less.

在一些實施例中,覆蓋玻璃層120可包括含鹼鋁矽酸鹽玻璃材料。用於覆蓋玻璃層120之其他合適的材料包括玻璃材料,例如但不限於,鈉鈣玻璃、含鹼硼矽酸鹽玻璃,及鹼性鋁硼矽酸鹽玻璃。在一些變體中,玻璃材料可不含氧化鋰。在其他實施例中,玻璃材料可含有氧化鋰。In some embodiments, cover glass layer 120 may include an alkali-containing aluminosilicate glass material. Other suitable materials for cover glass layer 120 include glass materials such as, but not limited to, soda-lime glass, alkali-containing borosilicate glass, and alkali aluminoborosilicate glass. In some variations, the glass material may be free of lithium oxide. In other embodiments, the glass material may contain lithium oxide.

在一些實施例中,覆蓋玻璃層120可為再拉製玻璃層。在一些實施例中,覆蓋玻璃層120可為使用缺乏化學薄化製程的製程形成的玻璃層(亦即,覆蓋玻璃層120可為非化學薄化玻璃層)。如本文所使用,術語「再拉製覆蓋玻璃層」意味在再拉製製程中拉製至其最終厚度的玻璃材料層。例如,在再拉製製程中,玻璃塊可經加熱至所要的拉製溫度且藉由拉伸輥(在非品質區域,例如,設置在玻璃之邊緣內部的區域及/或意欲用來製作裝置的區域中)展開以將該玻璃塊之厚度減少至覆蓋玻璃層之最終厚度。在再拉製至最終厚度之後,無額外製作步驟經利用來顯著地改變覆蓋玻璃層之厚度。研磨或拋光可用來成形再拉製覆蓋玻璃層之邊緣,但此研磨或拋光並非視為改變層之厚度。如本文所使用,術語「化學薄化覆蓋玻璃層」意味經受一或多個化學蝕刻製程以將其厚度減少至玻璃層之最終所要的厚度的玻璃材料層。化學薄化(亦稱為蝕刻)玻璃層將由於用來減少其厚度的刻蝕製程(多個)而具有相較於再拉製玻璃層的不同性質。例如,再拉製玻璃層之表面可顯著地比化學薄化玻璃層之表面更平滑。用於再拉製玻璃層之表面粗糙度可小至約0.1 nm (奈米)至0.2 nm,而化學薄化玻璃層之最小表面粗糙度為約2 nm至3 nm。In some embodiments, cover glass layer 120 may be a redrawn glass layer. In some embodiments, the cover glass layer 120 may be a glass layer formed using a process lacking a chemical thinning process (ie, the cover glass layer 120 may be a non-chemically thinned glass layer). As used herein, the term "redraw cover glass layer" means a layer of glass material that is drawn to its final thickness in a redraw process. For example, in a redraw process, the glass block can be heated to the desired draw temperature and passed through draw rollers (in non-quality areas, e.g., areas located inside the edges of the glass and/or intended to be used to make devices). area) to reduce the thickness of the glass block to the final thickness of the cover glass layer. After redrawing to final thickness, no additional fabrication steps are utilized to significantly change the thickness of the cover glass layer. Grinding or polishing may be used to shape and draw the edge of the covering glass layer, but this grinding or polishing is not considered to change the thickness of the layer. As used herein, the term "chemically thinned cover glass layer" means a layer of glass material that is subjected to one or more chemical etching processes to reduce its thickness to the final desired thickness of the glass layer. A chemically thinned (also called etched) glass layer will have different properties than a redrawn glass layer due to the etching process(es) used to reduce its thickness. For example, the surface of a redrawn glass layer may be significantly smoother than the surface of a chemically thinned glass layer. The surface roughness for the redrawn glass layer can be as small as about 0.1 nm (nanometer) to 0.2 nm, while the minimum surface roughness for the chemically thinned glass layer is about 2 nm to 3 nm.

在一些實施例中,覆蓋玻璃層120可為強化玻璃層,例如已經受離子交換製程或熱回火製程的玻璃層。對於經受離子交換製程的覆蓋玻璃層120,覆蓋玻璃層120包括頂部表面124及/或底部表面122處之壓縮應力及至少在穿過覆蓋玻璃層120之厚度126的兩個點處不同的金屬氧化物之濃度。在一些實施例中,覆蓋玻璃層120可為非強化玻璃層,例如未經受離子交換製程或熱回火製程的玻璃層。In some embodiments, the cover glass layer 120 may be a strengthened glass layer, such as a glass layer that has been subjected to an ion exchange process or a thermal tempering process. For cover glass layer 120 subjected to an ion exchange process, cover glass layer 120 includes compressive stress at top surface 124 and/or bottom surface 122 and differential metal oxidation at at least two points through thickness 126 of cover glass layer 120 concentration of matter. In some embodiments, the cover glass layer 120 may be a non-strengthened glass layer, such as a glass layer that has not been subjected to an ion exchange process or a thermal tempering process.

除非另有指示,否則覆蓋玻璃層120為單個整塊層。如本文所使用,「單個整塊層」意味跨於其體積具有實質上一致的組成物之單個整體形成的層。藉由使一或多個層或材料成層,或藉由機械地附接不同的層製作的層不視為單個整塊層。Unless otherwise indicated, cover glass layer 120 is a single monolithic layer. As used herein, "single monolithic layer" means a single monolithic layer having a substantially consistent composition across its volume. A layer made by layering one or more layers or materials, or by mechanically attaching different layers, is not considered a single monolithic layer.

光學透明黏合劑層130設置在基板110之頂部表面114上放且將覆蓋玻璃層120結合至基板110。在一些實施例中,光學透明黏合劑層130可設置在基板110之頂部表面114上。在此類實施例中,光學透明黏合劑層130之底部表面132與基板110之頂部表面114直接接觸。如本文所使用,「設置在…上」意味第一層及/或組件與第二層及/或組件直接接觸。「設置在」第二層及/或組件上的第一層及/或組件可經沉積、形成、置放,或以其他方式直接施加至第二層及/或組件上。換言之,若第一層及/或組件設置在第二層及/或組件上,則不存在設置在第一層及/或組件與第二層及/或組件之間的層。描述為「結合至」第二層及/或組件的第一層及/或組件意味層及/或組件係藉由兩個層及/或組件之間的直接接觸及/或結合或藉由黏合劑層彼此結合。若第一層及/或組件經描述為「設置在」第二層及/或組件上方,則其他層可以或可不存在於第一層及/或組件與第二層及/或組件之間。An optically clear adhesive layer 130 is disposed on the top surface 114 of the substrate 110 and bonds the cover glass layer 120 to the substrate 110 . In some embodiments, an optically clear adhesive layer 130 may be disposed on the top surface 114 of the substrate 110 . In such embodiments, the bottom surface 132 of the optically clear adhesive layer 130 is in direct contact with the top surface 114 of the substrate 110 . As used herein, "disposed on" means that the first layer and/or component is in direct contact with the second layer and/or component. The first layer and/or component "disposed on" the second layer and/or component may be deposited, formed, placed, or otherwise applied directly to the second layer and/or component. In other words, if a first layer and/or component is disposed on a second layer and/or component, there is no layer disposed between the first layer and/or component and the second layer and/or component. A description of a first layer and/or component being "joined to" a second layer and/or component means that the layer and/or component is joined by direct contact and/or bonding between the two layers and/or components or by adhesive The agent layers are bonded to each other. If a first layer and/or component is described as being "disposed above" a second layer and/or component, other layers may or may not be present between the first layer and/or component and the second layer and/or component.

用於層130之合適的光學透明黏合劑包括但不限於丙烯酸黏合劑,例如3MTM 8212黏合劑,或任何光學透明液體黏合劑,例如Loctite®光學透明液體黏合劑。光學透明黏合劑層130可具有自光學透明黏合劑層130之底部表面132量測至頂部表面134的在5微米至50微米之範圍,包括子範圍內的厚度136。例如,光學透明黏合劑層130之厚度136可為5微米、10微米、15微米、20微米、25微米、30微米、35微米、40微米、45微米、50微米,或在具有此等值中之任何兩個作為端點的範圍內。在一些實施例中,厚度136可在25微米至50微米之範圍內。在一些實施例中,厚度136可自5微米至49微米,或自5微米至45微米,或自5微米至40微米,或自5微米至35微米,或自5微米至30微米,或自5微米至25微米,或自5微米至20微米,或自5微米至15微米,或自5微米至48微米,或自10微米至45微米,或自15微米至45微米,或自20微米至45微米,或自25微米至45微米,或自30微米至45微米,或自35微米至45微米,或自6微米至48微米,或自10微米至42微米,或自15微米至37微米,或自20微米至32微米,或自25微米至30微米。Suitable optically clear adhesives for layer 130 include, but are not limited to, acrylic adhesives, such as 3M 8212 adhesive, or any optically clear liquid adhesive, such as Loctite® optically clear liquid adhesive. The optically clear adhesive layer 130 may have a thickness 136 in the range of 5 microns to 50 microns, inclusive, measured from the bottom surface 132 to the top surface 134 of the optically clear adhesive layer 130 . For example, the thickness 136 of the optically clear adhesive layer 130 may be 5 microns, 10 microns, 15 microns, 20 microns, 25 microns, 30 microns, 35 microns, 40 microns, 45 microns, 50 microns, or any other value thereof. any two of them as endpoints. In some embodiments, thickness 136 may range from 25 microns to 50 microns. In some embodiments, the thickness 136 can be from 5 microns to 49 microns, or from 5 microns to 45 microns, or from 5 microns to 40 microns, or from 5 microns to 35 microns, or from 5 microns to 30 microns, or from 5 microns to 25 microns, or from 5 microns to 20 microns, or from 5 microns to 15 microns, or from 5 microns to 48 microns, or from 10 microns to 45 microns, or from 15 microns to 45 microns, or from 20 microns to 45 microns, or from 25 microns to 45 microns, or from 30 microns to 45 microns, or from 35 microns to 45 microns, or from 6 microns to 48 microns, or from 10 microns to 42 microns, or from 15 microns to 37 Micron, or from 20 micron to 32 micron, or from 25 micron to 30 micron.

如本文所使用,「光學透明」意味在400 nm至700 nm之波長範圍內穿過材料之1.0 mm厚片的70%或更大之平均透射率。在一些實施例中,光學透明材料可具有在400 nm至700 nm之波長範圍穿過材料之1.0 mm厚片的75%或更大、80%或更大、85%或更大,或90%或更大之平均透射率。400 nm至700 nm之波長範圍內的平均透射率係藉由量測自約400 nm至約700 nm的整數波長之透射率及對量測求平均計算。覆蓋玻璃層120可為光學透明的。As used herein, "optically clear" means an average transmission of 70% or greater through a 1.0 mm thick sheet of material in the wavelength range of 400 nm to 700 nm. In some embodiments, the optically transparent material can have 75% or greater, 80% or greater, 85% or greater, or 90% passing through a 1.0 mm thick sheet of material in the wavelength range of 400 nm to 700 nm. or greater average transmittance. The average transmittance in the wavelength range of 400 nm to 700 nm is calculated by measuring the transmittance at integer wavelengths from about 400 nm to about 700 nm and averaging the measurements. Cover glass layer 120 may be optically clear.

在一些實施例中,覆蓋玻璃層120之底部表面122可與光學透明黏合劑層130之頂部表面134直接接觸。在一些實施例中,覆蓋玻璃層120可藉由光學透明黏合劑層130直接結合至基板110之頂部表面114。在此類實施例中,覆蓋玻璃層之底部表面122及基板110之頂部表面114分別與光學透明黏合劑層130之頂部表面134及底部表面132直接接觸。In some embodiments, the bottom surface 122 of the cover glass layer 120 may be in direct contact with the top surface 134 of the optically clear adhesive layer 130 . In some embodiments, cover glass layer 120 may be bonded directly to top surface 114 of substrate 110 via optically clear adhesive layer 130 . In such embodiments, the bottom surface 122 of the cover glass layer and the top surface 114 of the substrate 110 are in direct contact with the top surface 134 and bottom surface 132 of the optically clear adhesive layer 130, respectively.

在一些實施例中,覆蓋玻璃層120之頂部表面124可為積層102及/或物件100之最頂部外部、面向使用者的表面。如本文所使用,術語「頂部表面」或「最頂部表面」及「底部表面」或「最底部表面」參考在層、組件,或物件將在其正常及預定使用期間定向時的該層、組件,或物件之頂部表面及底部表面,其中頂部表面為面向使用者的表面。例如,當併入具有電子顯示器的手持式消費者電子產品中時,物件、層,或積層之「頂部表面」係指當藉由經由物件、積層,或層觀察電子顯示器的使用者固持時的該物件、層,或積層將經定向時的彼物件、積層,或層之頂部表面。In some embodiments, top surface 124 of cover glass layer 120 may be the topmost outer, user-facing surface of build-up 102 and/or article 100 . As used herein, the terms "top surface" or "top-most surface" and "bottom surface" or "bottom-most surface" refer to a layer, component, or object as that layer, component, or object is to be oriented during its normal and intended use , or the top surface and bottom surface of the object, where the top surface is the surface facing the user. For example, when incorporated into a handheld consumer electronics product having an electronic display, the "top surface" of the object, layer, or laminate means the surface when held by a user viewing the electronic display through the object, layer, or layer The top surface of that object, layer, or layer when the object, layer, or layer is to be oriented.

在一些實施例中,覆蓋玻璃層120之頂部表面124可以一或多個塗層(例如,塗層180)塗佈以提供所要的特性。此類塗層包含但不限於聚合硬塗層、防反射塗層、防光眩塗層、防指紋塗層、防碎片層、抗菌及/或抗病毒塗層,及易於清潔的塗層。在一些實施例中,積層102可缺乏設置在覆蓋玻璃層120之頂部表面124上方或結合至該頂部表面的塗層(例如,塗層180)。在一些實施例中,積層102可缺乏設置在覆蓋玻璃層120之頂部表面124上方或結合至該頂部表面的聚合硬塗層。聚合硬塗層,例如本文所描述的光學透明聚合(optically transparent polymeric; OTP)硬塗層,為具有經組配來改良積層之抗穿刺性及/或抗斷裂性的顯著硬度之層。以一或多個塗層塗佈,或未以任何塗層塗佈的覆蓋玻璃層120可稱為「覆蓋基板」。In some embodiments, top surface 124 of cover glass layer 120 may be coated with one or more coatings (eg, coating 180) to provide desired properties. Such coatings include, but are not limited to, polymeric hard coatings, anti-reflective coatings, anti-glare coatings, anti-fingerprint coatings, anti-fragment coatings, antibacterial and/or antiviral coatings, and easy-to-clean coatings. In some embodiments, buildup 102 may lack a coating (eg, coating 180 ) disposed over or bonded to top surface 124 of cover glass layer 120 . In some embodiments, the build-up layer 102 may lack a polymeric hardcoat layer disposed over or bonded to the top surface 124 of the cover glass layer 120 . Polymeric hardcoats, such as the optically transparent polymeric (OTP) hardcoats described herein, are layers with significant hardness that are formulated to improve the puncture resistance and/or fracture resistance of the laminate. The cover glass layer 120 coated with one or more coatings, or not coated with any coating, may be referred to as a "cover substrate."

物件100及/或積層102可達成10 mm或更少之曲彎半徑170。在一些實施例中,物件100及/或積層102可達成5 mm或更少之曲彎半徑170。在一些實施例中,物件100及/或積層102可達成4 mm或更少之曲彎半徑170。在一些實施例中,物件100及/或積層102可達成3 mm或更少之曲彎半徑170。第9圖例示施加至物件100及/或積層102以將該物件及/或積層曲彎至曲彎半徑170的曲彎力172。如第9圖中所示,彎曲半徑170可在玻璃層120之頂部表面124朝向自身曲彎的情況下相對於基板110之底部表面112加以量測。因而,基板110具有如第9圖中所示的曲彎半徑170,且玻璃層120具有小於基板110之曲彎半徑的曲彎半徑。The object 100 and/or the laminate 102 may achieve a bend radius 170 of 10 mm or less. In some embodiments, the article 100 and/or the build-up 102 may achieve a bend radius 170 of 5 mm or less. In some embodiments, the article 100 and/or the build-up 102 may achieve a bend radius 170 of 4 mm or less. In some embodiments, the article 100 and/or the build-up 102 may achieve a bend radius 170 of 3 mm or less. Figure 9 illustrates a bending force 172 applied to the article 100 and/or the laminate 102 to bend the article and/or the laminate to a bend radius 170. As shown in Figure 9, the bend radius 170 can be measured relative to the bottom surface 112 of the substrate 110 with the top surface 124 of the glass layer 120 curved toward itself. Therefore, the substrate 110 has a bending radius 170 as shown in FIG. 9 , and the glass layer 120 has a bending radius smaller than the bending radius of the substrate 110 .

在一些實施例中,積層102可具有藉由覆蓋玻璃層120在根據「筆落測試」量測時的8公分(cm)或更大之筆落高度處避免故障之能力限定的抗衝擊性。在一些實施例中,積層102可具有藉由覆蓋玻璃層120在根據「筆落測試」量測時的9 cm或更大之筆落高度處避免故障之能力限定的抗衝擊性。在一些實施例中,積層102可具有藉由覆蓋玻璃層120在根據「筆落測試」量測時的10 cm或更大之筆落高度處避免故障之能力限定的抗衝擊性。In some embodiments, the buildup 102 may have impact resistance defined by the ability of the cover glass layer 120 to avoid failure at a pen drop height of 8 centimeters (cm) or greater as measured according to the "Pen Drop Test". In some embodiments, the buildup 102 may have impact resistance defined by the ability of the cover glass layer 120 to avoid failure at a pen drop height of 9 cm or greater as measured according to the "Pen Drop Test." In some embodiments, the buildup 102 may have impact resistance defined by the ability of the cover glass layer 120 to avoid failure at a pen drop height of 10 cm or greater as measured according to the "Pen Drop Test."

如本文所描述且涉及,「筆落測試」經實施,使得積層之樣本以給予覆蓋玻璃層之頂部表面的負載(亦即,來自在一定高度處降落的筆)測試,其中覆蓋玻璃層之底部表面以50微米厚的光學透明黏合劑層結合至聚對苯二甲酸乙二酯(polyethylene terephthalate; PET)之100微米厚的層,從而充當用於積層之基板。筆落測試中之PTE層意圖模擬可撓性電子顯示裝置(例如,OLED裝置)。在測試期間,結合至PET層的覆蓋玻璃層經置放在鋁板(6063鋁合金,如以400粒度紙拋光至表面粗糙度)上,並且PET層與鋁板接觸。無帶子使用於擱置在鋁板上的樣本之側上。As described and referred to herein, the "Pen Drop Test" is performed such that laminated samples are tested with a load (i.e., from a pen dropped at a height) given to the top surface of the covering glass layer, with the bottom of the covering glass layer The surface is bonded to a 100-micron layer of polyethylene terephthalate (PET) with a 50-micron-thick layer of optically clear adhesive, which serves as a substrate for lamination. The PTE layer in the pen drop test is intended to simulate a flexible electronic display device (eg, OLED device). During testing, the cover glass layer bonded to the PET layer was placed on an aluminum plate (6063 aluminum alloy, as polished to surface roughness with 400 grit paper) and the PET layer was in contact with the aluminum plate. No straps are used on the side of the specimen resting on an aluminum plate.

管材經使用於筆落測試以將筆導引至樣本,且管材經置放成與樣本之頂部表面接觸,使得管材之縱向軸線實質上垂直於樣本之頂部表面。管材具有1吋(2.54 cm)之外徑、十六分之九吋(1.4 cm)之內徑及90 cm之長度。丙烯腈丁二烯(「acrylonitrile butadiene; ABS」)墊片經使用來將筆固持在用於每個測試之所要的高度處。在每個降落之後,管材相對於樣本重新定位以將筆導引至樣本上之不同衝擊位置。使用在筆落測試中的筆為具有0.7 mm ( 0.68 mm)直徑之碳化鎢球點尖端及包括帽的5.73克(g) (在無帽的情況下4.68 g)之重量的BIC® Easy Glide Pen, Fine。Tubing is used in the pen drop test to guide the pen to the specimen, and the tubing is placed in contact with the top surface of the specimen such that the longitudinal axis of the tubing is substantially perpendicular to the top surface of the specimen. The tubing has an outside diameter of 1 inch (2.54 cm), an inside diameter of nine sixteenths of an inch (1.4 cm), and a length of 90 cm. Acrylonitrile butadiene ("ABS") spacers were used to hold the pen at the desired height for each test. After each drop, the tube is repositioned relative to the sample to guide the pen to different impact locations on the sample. The pen used in the pen drop test was a BIC® Easy Glide Pen with a 0.7 mm (0.68 mm) diameter tungsten carbide ball point tip and a weight of 5.73 grams (g) including cap (4.68 g without cap). , Fine.

對於筆落測試,筆係在帽附接至頂部末端(亦即,與尖端相對的末端)的情況下降落,使得球點可與測試樣本相互作用。在根據筆落測試之降落序列中,在1 cm之初始高度處實施一個筆降落,接著是以0.5 cm增量直至20 cm的相繼降落,且在20 cm之後,2 cm增量直至測試樣本之故障。在每個降落經實施之後,與特定筆落高度一起記錄任何可觀察的斷裂、故障或樣本之損壞之其他證據。使用筆落測試,可根據相同降落序列測試多個樣本以產生具有改良統計量之母體。對於筆落測試,筆將在每5個降落之後,且針對測試的每個新樣本改變成新筆。另外,所有筆降落係在樣本之中心處或附近的樣本上之隨機位置處執行,沒有筆降落處於樣本之邊緣附近或上。For the pen drop test, the pen is dropped with the cap attached to the top end (ie, the end opposite the tip) so that the ball point can interact with the test sample. In the drop sequence according to the pen drop test, a pen drop is carried out at an initial height of 1 cm, followed by successive drops in increments of 0.5 cm up to 20 cm, and after 20 cm, increments of 2 cm up to the test specimen Fault. After each drop is performed, any observable fractures, failures, or other evidence of damage to the specimen are recorded along with the specific pen drop height. Using pen drop testing, multiple samples can be tested against the same drop sequence to produce a population with improved statistics. For the pen drop test, the pen will change to a new pen after every 5 drops and for each new sample tested. Additionally, all pen landings were performed at random locations on the sample at or near the center of the sample, and no pen landings were performed near or on the edges of the sample.

出於筆落測試之目的,「故障」意味積層中之可見機械缺陷之形成。機械缺陷可為裂縫或塑性變形(例如,表面凹陷)。裂縫可為表面裂縫或貫穿裂縫。裂縫可形成於積層之內部或外部表面上。裂縫可延伸穿過積層之層之全部或一部分。可見機械缺陷具有0.2毫米或更大之最小尺寸。第2圖及第3圖之曲線圖展示根據筆落測試測試的用於具有測試樣本400之組態的各種測試樣本的故障處之降落高度與覆蓋玻璃層厚度。For the purposes of pen drop testing, "failure" means the formation of visible mechanical defects in the build-up. Mechanical defects may be cracks or plastic deformations (eg, surface depressions). Cracks can be surface cracks or through cracks. Cracks can form on the interior or exterior surfaces of the buildup. Cracks may extend through all or part of the layers of the lamination. Visible mechanical defects have a minimum size of 0.2 mm or greater. The graphs of Figures 2 and 3 show the drop height and cover glass layer thickness at the failure for various test specimens having configurations of test specimen 400 tested according to the pen drop test.

在一些實施例中,積層102可具有藉由覆蓋玻璃層120在「穿刺測試」中的2.25公斤-力或更大之穿刺負載處避免故障之能力限定的抗衝擊性。在一些實施例中,積層102可具有藉由覆蓋玻璃層120在「穿刺測試」中的2.5公斤-力或更大之穿刺負載處避免故障之能力限定的抗衝擊性。在一些實施例中,積層102可具有藉由覆蓋玻璃層120在「穿刺測試」中的2.75公斤-力或更大之穿刺負載處避免故障之能力限定的抗衝擊性。在一些實施例中,積層102可具有藉由覆蓋玻璃層120在「穿刺測試」中的3公斤-力或更大之穿刺負載處避免故障之能力限定的抗衝擊性。在一些實施例中,積層102可具有藉由覆蓋玻璃層120在「穿刺測試」中的3.25公斤-力或更大之穿刺負載處避免故障之能力限定的抗衝擊性。In some embodiments, the buildup 102 may have impact resistance defined by the ability of the cover glass layer 120 to avoid failure at a puncture load of 2.25 kg-force or greater in a "puncture test." In some embodiments, the buildup 102 may have impact resistance defined by the ability of the cover glass layer 120 to avoid failure at a puncture load of 2.5 kg-force or greater in a "puncture test." In some embodiments, the buildup 102 may have impact resistance defined by the ability of the cover glass layer 120 to avoid failure at a puncture load of 2.75 kg-force or greater in a "puncture test." In some embodiments, the buildup 102 may have impact resistance defined by the ability of the cover glass layer 120 to avoid failure at a puncture load of 3 kg-force or greater in a "puncture test." In some embodiments, the buildup 102 may have impact resistance defined by the ability of the cover glass layer 120 to avoid failure at a puncture load of 3.25 kg-force or greater in a "puncture test."

如本文所描述且涉及,「穿刺測試」經實施,使得積層之樣本係以給予覆蓋玻璃層之頂部表面的負載測試,其中覆蓋玻璃層之底部表面以50微米厚的光學透明黏合劑層結合至聚對苯二甲酸乙二酯(PET)之100微米厚的層,從而充當對於積層之基板。穿刺測試中之PTE層意圖模擬可撓性電子顯示裝置(例如,OLED裝置)。在穿刺測試期間,覆蓋玻璃層之頂部表面以具有帶有200微米直徑之平坦底部之不銹鋼銷負載。根據本揭示案之穿刺測試係以0.5毫米/分鐘十字頭速度在位移控制下執行。此準靜態負載測試(壓痕)係藉由利用INSTRON®機器(藉由Illinois Tool Works Inc.製造的控制穿刺測試機器)進行。在測試期間,將樣本置放在銷尖端下方且增加負載直至觀察到故障。在故障處,記錄以公斤-力(kgf)為單位量測的穿刺負載。不銹鋼銷在規定數量的測試(亦即,10個測試)之後以新銷置換,以避免可起因於與測試相關聯的金屬銷之變形的偏位。As described and referred to herein, "puncture testing" was performed such that laminated samples were subjected to a load test on the top surface of a cover glass layer bonded to the bottom surface of the cover glass layer with a 50 micron thick layer of optically clear adhesive. A 100-micron-thick layer of polyethylene terephthalate (PET) serves as a substrate for the build-up. The PTE layer in the puncture test is intended to simulate flexible electronic display devices (eg, OLED devices). During the puncture test, the top surface of the covering glass layer was loaded with a stainless steel pin with a flat bottom of 200 micron diameter. The puncture test according to the present disclosure was performed under displacement control at a crosshead speed of 0.5 mm/min. This quasi-static load test (indentation) was performed using an INSTRON® machine (a controlled puncture testing machine manufactured by Illinois Tool Works Inc.). During the test, the specimen is placed under the pin tip and the load is increased until failure is observed. At the failure site, record the puncture load measured in kilogram-force (kgf). The stainless steel pins were replaced with new pins after a specified number of tests (ie, 10 tests) to avoid misalignment that could result from deformation of the metal pins associated with the tests.

出於穿刺測試之目的,「故障」意味積層中之可見機械缺陷之形成。機械缺陷可為裂縫或塑性變形(例如,表面凹陷)。裂縫可為表面裂縫或貫穿裂縫。裂縫可形成於積層之內部或外部表面上。裂縫可延伸穿過積層之層之全部或一部分。可見機械缺陷具有0.2毫米或更大之最小尺寸。第2圖及第3圖之曲線圖展示根據穿刺測試測試的用於具有測試樣本400之組態的各種測試樣品的故障處之壓痕負載與覆蓋玻璃層厚度。For the purposes of puncture testing, "failure" means the formation of visible mechanical defects in the build-up. Mechanical defects may be cracks or plastic deformations (eg, surface depressions). Cracks can be surface cracks or through cracks. Cracks can form on the interior or exterior surfaces of the buildup. Cracks may extend through all or part of the layers of the lamination. Visible mechanical defects have a minimum size of 0.2 mm or greater. The graphs of Figures 2 and 3 illustrate the indentation load and cover glass layer thickness at failure for various test specimens having a configuration of test specimen 400 as measured by puncture testing.

每個測試樣本400包括覆蓋玻璃層430,該覆蓋玻璃層以50微米厚的光學透明黏合劑層420結合至100微米厚的PTE基板410,如第4圖中所示。測試的覆蓋玻璃層430包括再拉製覆蓋玻璃層(在第2圖及第3圖中以「R」標記)及化學薄化覆蓋玻璃層(在第3圖中以「CT」標記)。每個覆蓋玻璃層430為包含具有表1中之組成物1之組成物的含鹼鋁矽酸鹽玻璃的玻璃層。每個覆蓋玻璃層430為非強化覆蓋玻璃層。測試樣本400包括以下覆蓋玻璃層:(i) 25微米厚的再拉製覆蓋玻璃層430、(ii) 35微米厚的再拉製覆蓋玻璃層430、(iii) 50微米厚的化學薄化覆蓋玻璃層430、(iv) 50微米厚的再拉製覆蓋玻璃層430、(v) 75微米厚的再拉製覆蓋玻璃層430,及(vi) 100微米厚的再拉製覆蓋玻璃層430。Each test sample 400 includes a cover glass layer 430 bonded to a 100 micron thick PTE substrate 410 with a 50 micron thick optically clear adhesive layer 420, as shown in Figure 4. The cover glass layer 430 tested included a redrawn cover glass layer (marked with "R" in Figures 2 and 3) and a chemically thinned cover glass layer (marked with "CT" in Figure 3). Each cover glass layer 430 is a glass layer including an alkali-containing aluminosilicate glass having the composition of Composition 1 in Table 1. Each cover glass layer 430 is a non-strengthened cover glass layer. Test sample 400 includes the following cover glass layers: (i) 25 micron thick redrawn cover glass layer 430, (ii) 35 micron thick redrawn cover glass layer 430, (iii) 50 micron thick chemically thinned cover glass glass layer 430, (iv) a 50 micron thick redrawn cover glass layer 430, (v) a 75 micron thick redrawn cover glass layer 430, and (vi) a 100 micron thick redrawn cover glass layer 430.

雖然第2圖及第3圖中所報告的測試結果為對具有組成物1之組成物的玻璃層執行的測試之結果,但結果中所例示的趨勢並不取決於所測試的特定鋁矽酸鹽玻璃組成物。類似的測試結果對於其他玻璃組成物,包括表1中之組成物2-5,展示相同的趨勢。本文所論述的用於覆蓋玻璃層之其他合適的玻璃材料包括鈉鈣玻璃、含鹼硼矽酸鹽玻璃,及鹼性鋁硼矽酸鹽玻璃。在一些變體中,玻璃材料可不含氧化鋰。此等玻璃材料可為強化的或非強化的。Although the test results reported in Figures 2 and 3 are the results of tests performed on glass layers having the composition of Composition 1, the trends illustrated in the results are not dependent on the specific aluminosilicate tested. Salt glass composition. Similar test results for other glass compositions, including compositions 2-5 in Table 1, show the same trend. Other suitable glass materials for the cover glass layer discussed herein include soda-lime glass, alkali-containing borosilicate glass, and alkali aluminoborosilicate glass. In some variations, the glass material may be free of lithium oxide. Such glass materials may be strengthened or non-strengthened.

在一些實施例中,本文所論述的用於玻璃層之玻璃組成物可包括40莫耳%至90莫耳%的SiO2 (氧化矽)。在一些實施例中,玻璃組成物可包括40莫耳%、45莫耳%、50莫耳%、55莫耳%、60莫耳%、65莫耳%、70莫耳%、75莫耳%、80莫耳%、85莫耳%,或90莫耳%的SiO2 ,或具有此等值中之任何兩個作為端點之任何範圍內之莫耳%。在一些實施例中,玻璃組成物可包括55莫耳%至70莫耳%的SiO2 。在一些實施例中,玻璃組成物可包括57.43莫耳%至68.95莫耳%的SiO2In some embodiments, the glass compositions for the glass layers discussed herein may include 40 mole % to 90 mole % SiO 2 (silicon oxide). In some embodiments, the glass composition may include 40 mol%, 45 mol%, 50 mol%, 55 mol%, 60 mol%, 65 mol%, 70 mol%, 75 mol% , 80 mole %, 85 mole %, or 90 mole % SiO 2 , or any range of mole % having any two of these values as endpoints. In some embodiments, the glass composition may include 55 to 70 mole % SiO2 . In some embodiments, the glass composition may include 57.43 mole % to 68.95 mole % SiO2 .

在一些實施例中,本文所論述的用於玻璃層之玻璃組成物可包括1莫耳%至10莫耳%的B2 O3 (氧化硼)。在一些實施例中,玻璃組成物可包括1莫耳%、2莫耳%、3莫耳%、4莫耳%、5莫耳%、6莫耳%、7莫耳%、8莫耳%、9莫耳%,或10莫耳%的B2 O3 ,或具有此等值中之任何兩個作為端點的任何範圍內之莫耳%。在一些實施例中,玻璃組成物可包括3莫耳%至6莫耳%的B2 O3 。在一些實施例中,玻璃組成物可包括3.86莫耳%至5.11莫耳%的B2 O3 。在一些實施例中,玻璃組成物可不包括B2 O3In some embodiments, the glass compositions for the glass layers discussed herein may include 1 to 10 mole % B 2 O 3 (boron oxide). In some embodiments, the glass composition may include 1 mol%, 2 mol%, 3 mol%, 4 mol%, 5 mol%, 6 mol%, 7 mol%, 8 mol% , 9 mole %, or 10 mole % B 2 O 3 , or any range of mole % having either two of these values as endpoints. In some embodiments, the glass composition may include 3 to 6 mole % B 2 O 3 . In some embodiments, the glass composition may include 3.86 mole % to 5.11 mole % B 2 O 3 . In some embodiments, the glass composition may exclude B 2 O 3 .

在一些實施例中,本文所論述的用於玻璃層之玻璃組成物可包括5莫耳%至30莫耳%的Al2 O3 (氧化鋁)。在一些實施例中,玻璃組成物可包括5莫耳%、10莫耳%、15莫耳%、20莫耳%、25莫耳%,或30莫耳%的Al2 O3 ,或具有此等值中之任何兩個作為端點的任何範圍內之莫耳%。在一些實施例中,玻璃組成物可包括10莫耳%至20莫耳%的Al2 O3 。在一些實施例中,玻璃組成物可包括10.27莫耳%至16.10莫耳%的Al2 O3In some embodiments, the glass compositions for the glass layers discussed herein may include 5 to 30 mole % Al 2 O 3 (aluminum oxide). In some embodiments, the glass composition may include 5 mol%, 10 mol%, 15 mol%, 20 mol%, 25 mol%, or 30 mol% Al 2 O 3 , or have Mol% of any range in which any two of the equal values are endpoints. In some embodiments, the glass composition may include 10 to 20 mole % Al 2 O 3 . In some embodiments, the glass composition may include 10.27 mol% to 16.10 mol% Al 2 O 3 .

在一些實施例中,本文所論述的用於玻璃層之玻璃組成物可包括1莫耳%至10莫耳%的P2 O5 (氧化磷)。在一些實施例中,玻璃組成物可包括1莫耳%、2莫耳%、3莫耳%、4莫耳%、5莫耳%、6莫耳%、7莫耳%、8莫耳%、9莫耳%,或10莫耳%的P2 O5 ,或具有此等值中之任何兩個作為端點的任何範圍內之莫耳%。在一些實施例中,玻璃組成物可包括2莫耳%至7莫耳%的P2 O5 。在一些實施例中,玻璃組成物可包括2.47莫耳%至6.54莫耳%的P2 O5 。在一些實施例中,玻璃組成物可不包括P2 O5In some embodiments, glass compositions for glass layers discussed herein may include 1 to 10 mole % P 2 O 5 (phosphorus oxide). In some embodiments, the glass composition may include 1 mol%, 2 mol%, 3 mol%, 4 mol%, 5 mol%, 6 mol%, 7 mol%, 8 mol% , 9 mole %, or 10 mole % P 2 O 5 , or any range of mole % having either two of these values as endpoints. In some embodiments, the glass composition may include 2 to 7 mole % P 2 O 5 . In some embodiments, the glass composition may include 2.47 mole % to 6.54 mole % P 2 O 5 . In some embodiments, the glass composition may exclude P 2 O 5 .

在一些實施例中,本文所論述的用於玻璃層之玻璃組成物可包括5莫耳%至30莫耳%的Na2 O (氧化鈉)。在一些實施例中,玻璃組成物可包括5莫耳%、10莫耳%、15莫耳%、20莫耳%、25莫耳%,或30莫耳%的Na2 O,或具有此等值中之任何兩個作為端點的任何範圍內之莫耳%。在一些實施例中,玻璃組成物可包括10莫耳%至20莫耳%的Na2 O。在一些實施例中,玻璃組成物可包括10.82莫耳%至17.05莫耳%的Na2 O。In some embodiments, the glass compositions for the glass layers discussed herein may include 5 to 30 mole % Na 2 O (sodium oxide). In some embodiments, the glass composition may include 5 mol%, 10 mol%, 15 mol%, 20 mol%, 25 mol%, or 30 mol% Na 2 O, or have a Mol% of any range in which any two of the values are endpoints. In some embodiments, the glass composition may include 10 to 20 mol% Na2O . In some embodiments, the glass composition may include 10.82 to 17.05 mol% Na2O .

在一些實施例中,本文所論述的用於玻璃層之玻璃組成物可包括0.01莫耳%至0.05莫耳%的K2 O (氧化鉀)。在一些實施例中,玻璃組成物可包括0.01莫耳%、0.02莫耳%、0.03莫耳%、0.04莫耳%,或0.05莫耳%的K2 O,或具有此等值中之任何兩個作為端點的任何範圍內之莫耳%。在一些實施例中,玻璃組成物可包括0.01莫耳%的K2 O。在一些實施例中,玻璃組成物可不包括K2 O。In some embodiments, the glass compositions for the glass layers discussed herein may include 0.01 to 0.05 mole % K 2 O (potassium oxide). In some embodiments, the glass composition may include 0.01 mol%, 0.02 mol%, 0.03 mol%, 0.04 mol%, or 0.05 mol% K 2 O, or any two of these values. Mol% of any range as endpoint. In some embodiments, the glass composition may include 0.01 mole % K2O . In some embodiments, the glass composition may exclude K2O .

在一些實施例中,本文所論述的用於玻璃層之玻璃組成物可包括1莫耳%至10莫耳%的MgO (氧化鎂)。在一些實施例中,玻璃組成物可包括1莫耳%、2莫耳%、3莫耳%、4莫耳%、5莫耳%、6莫耳%、7莫耳%、8莫耳%、9莫耳%,或10莫耳%的MgO,或具有此等值中之任何兩個作為端點的任何範圍內之莫耳%。在一些實施例中,玻璃組成物可包括2莫耳%至6莫耳%的MgO。在一些實施例中,玻璃組成物可包括2.33莫耳%至5.36莫耳%的MgO。在一些實施例中,玻璃組成物可不包括MgO。In some embodiments, glass compositions for glass layers discussed herein may include 1 to 10 mole % MgO (magnesium oxide). In some embodiments, the glass composition may include 1 mol%, 2 mol%, 3 mol%, 4 mol%, 5 mol%, 6 mol%, 7 mol%, 8 mol% , 9 mole %, or 10 mole % MgO, or any range of mole % having any two of these equivalent values as endpoints. In some embodiments, the glass composition may include 2 to 6 mol% MgO. In some embodiments, the glass composition may include 2.33 mol% to 5.36 mol% MgO. In some embodiments, the glass composition may not include MgO.

在一些實施例中,本文所論述的用於玻璃層之玻璃組成物可包括0.01莫耳%至0.1莫耳%的CaO (氧化鈣)。在一些實施例中,玻璃組成物可包括0.01莫耳%、0.02莫耳%、0.03莫耳%、0.04莫耳%、0.05莫耳%、0.06莫耳%、0.07莫耳%、0.08莫耳%、0.09莫耳%,或0.1莫耳%的CaO,或具有此等值中之任何兩個作為端點的任何範圍內之莫耳%。在一些實施例中,玻璃組成物可包括0.03莫耳%至0.06莫耳%的CaO。在一些實施例中,玻璃組成物可不包括CaO。In some embodiments, the glass compositions for the glass layers discussed herein may include 0.01 to 0.1 mol% CaO (calcium oxide). In some embodiments, the glass composition may include 0.01 mol%, 0.02 mol%, 0.03 mol%, 0.04 mol%, 0.05 mol%, 0.06 mol%, 0.07 mol%, 0.08 mol% , 0.09 mol%, or 0.1 mol% CaO, or any range having as endpoints any two of these equivalent values. In some embodiments, the glass composition may include 0.03 mol% to 0.06 mol% CaO. In some embodiments, the glass composition may exclude CaO.

在一些實施例中,本文所論述的用於玻璃層之玻璃組成物可包括0.01莫耳%至0.05莫耳%的Fe2 O3 (氧化鐵)。在一些實施例中,玻璃組成物可包括0.01莫耳%、0.02莫耳%、0.03莫耳%、0.04莫耳%,或0.05莫耳%的Fe2 O3 ,或具有此等值中之任何兩個作為端點的任何範圍內之莫耳%。在一些實施例中,玻璃組成物可包括0.01莫耳%的Fe2 O3 。在一些實施例中,玻璃組成物可不包括Fe2 O3In some embodiments, glass compositions for glass layers discussed herein may include 0.01 to 0.05 mol% Fe 2 O 3 (iron oxide). In some embodiments, the glass composition may include 0.01 mol%, 0.02 mol%, 0.03 mol%, 0.04 mol%, or 0.05 mol% Fe 2 O 3 , or any of these values. Mol% of any range between two endpoints. In some embodiments, the glass composition may include 0.01 mole % Fe 2 O 3 . In some embodiments, the glass composition may exclude Fe 2 O 3 .

在一些實施例中,本文所論述的用於玻璃層之玻璃組成物可包括0.5莫耳%至2莫耳%的ZnO (氧化鋅)。在一些實施例中,玻璃組成物可包括0.5莫耳%、1莫耳%、1.5莫耳%,或2莫耳%的ZnO,或具有此等值中之任何兩個作為端點的任何範圍內之莫耳%。在一些實施例中,玻璃組成物可包括1.16莫耳%的ZnO。在一些實施例中,玻璃組成物可不包括ZnO。In some embodiments, glass compositions for glass layers discussed herein may include 0.5 to 2 mole % ZnO (zinc oxide). In some embodiments, the glass composition may include 0.5 mol%, 1 mol%, 1.5 mol%, or 2 mol% ZnO, or any range having any two of these values as endpoints Mol% within. In some embodiments, the glass composition may include 1.16 mole % ZnO. In some embodiments, the glass composition may not include ZnO.

在一些實施例中,本文所論述的用於玻璃層之玻璃組成物可包括1莫耳%至10莫耳%的Li2 O (氧化鋰)。在一些實施例中,玻璃組成物可包括1莫耳%、2莫耳%、3莫耳%、4莫耳%、5莫耳%、6莫耳%、7莫耳%、8莫耳%、9莫耳%,10莫耳%的Li2 O,或具有此等值中之任何兩個作為端點的任何範圍內之莫耳%。在一些實施例中,玻璃組成物可包括5莫耳%至7莫耳%的Li2 O。在一些實施例中,玻璃組成物可包括6.19莫耳%的Li2 O。在一些實施例中,玻璃組成物可不包括Li2 O。In some embodiments, the glass compositions for the glass layers discussed herein may include 1 to 10 mole % Li 2 O (lithium oxide). In some embodiments, the glass composition may include 1 mol%, 2 mol%, 3 mol%, 4 mol%, 5 mol%, 6 mol%, 7 mol%, 8 mol% , 9 mole %, 10 mole % Li 2 O, or any range of mole % having any two of these equivalent values as endpoints. In some embodiments, the glass composition may include 5 to 7 mol% Li2O . In some embodiments, the glass composition may include 6.19 mole % Li2O . In some embodiments, the glass composition may not include Li2O .

在一些實施例中,本文所論述的用於玻璃層之玻璃組成物可包括0.01莫耳%至0.3莫耳%的SnO2 (氧化錫)。在一些實施例中,玻璃組成物可包括0.01莫耳%、0.05莫耳%、0.1莫耳%、0.15莫耳%、0.2莫耳%、0.25莫耳%,或0.3莫耳%的SnO2 ,或具有此等值中之任何兩個作為端點的任何範圍內之莫耳%。在一些實施例中,玻璃組成物可包括0.01莫耳%至0.2莫耳%的SnO2 。在一些實施例中,玻璃組成物可包括0.04莫耳%至0.17莫耳%的SnO2In some embodiments, the glass compositions for the glass layers discussed herein may include 0.01 mole % to 0.3 mole % SnO 2 (tin oxide). In some embodiments, the glass composition may include 0.01 mol%, 0.05 mol%, 0.1 mol%, 0.15 mol%, 0.2 mol%, 0.25 mol%, or 0.3 mol% SnO2 , or mole % of any range having any two of these values as endpoints. In some embodiments, the glass composition may include 0.01 to 0.2 mol% SnO2 . In some embodiments, the glass composition may include 0.04 to 0.17 mol% SnO 2 .

在一些實施例中,本文所論述的用於玻璃層之玻璃組成物可為包括在10莫耳%至30莫耳%之範圍內之R2 O (鹼金屬氧化物(多個)) + RO (鹼土金屬氧化物(多個))之值的組成物。在一些實施例中,R2 O + RO可為10莫耳%、15莫耳%、20莫耳%、25莫耳%,或30莫耳%,或具有此等值中之任何兩個作為端點的任何範圍內之莫耳%。在一些實施例中,R2 O + RO可在15莫耳%至25莫耳%之範圍內。在一些實施例中,R2 O + RO可在16.01莫耳%至20.61莫耳%之範圍內。 表1:玻璃組成物In some embodiments, the glass compositions for the glass layers discussed herein may include R 2 O (alkali metal oxide(s)) + RO in the range of 10 mole % to 30 mole % (alkaline earth metal oxide(s)). In some embodiments, R 2 O + RO can be 10 mol%, 15 mol%, 20 mol%, 25 mol%, or 30 mol%, or any two of these values as Mol% of any range from the endpoint. In some embodiments, R 2 O + RO can range from 15 mol% to 25 mol%. In some embodiments, R 2 O + RO can range from 16.01 mole % to 20.61 mole %. Table 1: Glass composition

此外,雖然第2圖及第3圖中所報告的測試結果為用於具有50微米厚的光學透明黏合劑層之樣本400之測試結果,但較薄的光學透明黏合劑層420,例如25微米及10微米,將導致用於覆蓋玻璃層之相同效能。然而,顯著量的黏合劑允許穿刺力位置處之覆蓋玻璃層之局部變形。在一些實施例中,相對彈性的光學透明黏合劑層允許覆蓋玻璃層在穿刺力位置處局部性地變形,且因此吸收穿刺力中之一些。5微米之最小黏合劑層厚度允許覆蓋玻璃層之充分局部化變形。Additionally, although the test results reported in Figures 2 and 3 are for sample 400 having a 50 micron thick optically clear adhesive layer, a thinner optically clear adhesive layer 420, such as 25 micron and 10 microns, will result in the same performance as the cover glass layer. However, significant amounts of adhesive allow for localized deformation of the cover glass layer at the location of the puncture force. In some embodiments, the relatively elastic optically clear adhesive layer allows the cover glass layer to locally deform at the location of the puncture force, and therefore absorb some of the puncture force. The minimum adhesive layer thickness of 5 microns allows for fully localized deformation of the covering glass layer.

第2圖展示用於再拉製覆蓋玻璃層430之五個不同厚度( 25微米、35微米、50微米、75微米,及100微米)之筆落故障高度及壓痕故障負載值的曲線圖200。曲線圖200上之每個點表示用於測試樣本400之每個厚度之15-20個資料點之平均值。筆落高度資料點經展示為圓且壓痕故障負載資料點經展示為正方形。Figure 2 shows a graph 200 of pen drop failure height and indentation failure load values for five different thicknesses of redrawn cover glass layer 430 (25 microns, 35 microns, 50 microns, 75 microns, and 100 microns). . Each point on graph 200 represents the average of 15-20 data points for each thickness of test sample 400. The pen drop height data points are shown as circles and the indentation failure load data points are shown as squares.

筆落高度及壓痕故障負載結果展示筆落故障高度及壓痕故障負載兩者對於具有自100微米減少至50微米的厚度之覆蓋玻璃層430單調地減少。然後,出乎意料地,當覆蓋玻璃層430之厚度進一步減少至小於50微米時,用於筆落故障高度及壓痕故障負載兩者之趨勢逆轉。用於35微米測試樣本及25微米測試樣本之筆落故障高度及凹痕故障負載值高於用於50微米測試樣本之值。此行為展示可藉由將覆蓋玻璃層之厚度減少至50微米以下相對於50微米厚的層增加覆蓋玻璃層之可靠性(例如,抗穿刺性及抗斷裂性)。此厚度減少不僅改良覆蓋玻璃層之可靠性,而且由於厚度減少而增加覆蓋玻璃層之相對可撓性(可曲彎性)。與由相同材料製成的較厚覆蓋玻璃層相比,較薄的覆蓋玻璃層傾向於具有增加之可撓性。Pen Drop Height and Indentation Failure Load Results show that both pen drop height and indentation failure load decrease monotonically for cover glass layer 430 having a thickness that decreases from 100 microns to 50 microns. Then, unexpectedly, when the thickness of cover glass layer 430 is further reduced to less than 50 microns, the trends for both pen drop failure height and indentation failure load are reversed. The drop failure height and dent failure load values for the 35 micron test sample and the 25 micron test sample were higher than the values for the 50 micron test sample. This behavior demonstrates that the reliability (eg, puncture resistance and breakage resistance) of the cover glass layer can be increased by reducing the thickness of the cover glass layer below 50 microns relative to a 50 micron thick layer. This thickness reduction not only improves the reliability of the cover glass layer, but also increases the relative flexibility (bendability) of the cover glass layer due to the thickness reduction. Thinner cover glass layers tend to have increased flexibility compared to thicker cover glass layers made of the same material.

除測試再拉製覆蓋玻璃層430之五個厚度之外,化學薄化覆蓋玻璃層430之一個厚度經測試以決定化學薄化玻璃層將比再拉製玻璃層更好地或更壞地執行。第3圖展示用於第2圖中所示的再拉製覆蓋玻璃層430之相同的五個厚度,及化學薄化覆蓋玻璃層430之一個厚度(50微米)之筆落故障高度及壓痕故障負載值。類似於第2圖,在第3圖中,筆落故障高度資料點經展示為圓且壓痕故障負載資料點經展示為正方形。In addition to testing five thicknesses of the redrawn cover glass layer 430, one thickness of the chemically thinned cover glass layer 430 was tested to determine whether the chemically thinned glass layer would perform better or worse than the redrawn glass layer. . Figure 3 shows pen drop failure heights and indentations for the same five thicknesses of redrawn cover glass layer 430 shown in Figure 2, and one thickness (50 microns) of chemically thinned cover glass layer 430. Fault load value. Similar to Figure 2, in Figure 3, the pen drop fault height data points are shown as circles and the indentation fault load data points are shown as squares.

如第3圖中所示,使用化學薄化製程形成的覆蓋玻璃層與具有相同厚度且由相同材料製成的再拉製玻璃層相比在筆落測試及穿刺測試兩者中更壞地執行。例如,第3圖中之50微米的化學薄化樣本之筆落高度及壓痕負載(分別小於2.5 cm,且小於1.5 kgf)低於第2圖及第3圖中之50微米的再拉製樣本之筆落高度及壓痕負載(分別大於8 cm,且大於2.25 kgf)。據信,用來生產化學薄化覆蓋玻璃層的蝕刻製程在覆蓋玻璃層之化學薄化表面(多個)上引入表面疵點。因此,化學薄化玻璃層經視為通常不及具有相同厚度的對應再拉製覆蓋玻璃層可靠。As shown in Figure 3, a cover glass layer formed using a chemical thinning process performed worse in both pen drop and puncture tests than a redrawn glass layer of the same thickness and made of the same material. . For example, the pen drop height and indentation load (less than 2.5 cm and less than 1.5 kgf, respectively) of the 50 micron chemically thinned sample in Figure 3 are lower than those of the 50 micron redrawn sample in Figures 2 and 3 The pen drop height and indentation load of the sample (greater than 8 cm and greater than 2.25 kgf respectively). It is believed that the etching process used to produce the chemically thinned cover glass layer introduces surface imperfections on the chemically thinned surface(s) of the cover glass layer. Therefore, chemically thinned glass layers are considered generally less reliable than corresponding redrawn cover glass layers of the same thickness.

有限元素分析用來評估具有小於50微米之厚度之再拉製覆蓋玻璃層為何在筆落測試及穿刺測試兩者中出乎意料地比化學薄化覆蓋玻璃層更好地執行。藉由模型化藉由筆落測試給予的應力,藉由穿刺力給予覆蓋玻璃層上的應力之程度可經分析以評估覆蓋玻璃層之故障模式。第5圖例示用來分析此等應力的有限元素模型500。Finite element analysis was used to evaluate why redrawn cover glass layers with thicknesses less than 50 microns unexpectedly performed better than chemically thinned cover glass layers in both pen drop and puncture tests. By modeling the stress imparted by the pen drop test, the extent of stress imparted on the cover glass layer by the puncture force can be analyzed to evaluate the failure mode of the cover glass layer. Figure 5 illustrates a finite element model 500 used to analyze these stresses.

模型500中之覆蓋玻璃層510表示測試樣本400之覆蓋玻璃層430。模型化覆蓋玻璃層510之頂部表面514以穿刺力負載的表面,且模型化覆蓋玻璃層510之底部表面512以50微米厚的光學透明黏合劑層結合至基板的表面。在模型500中,X方向沿著模型化覆蓋玻璃層510之長度518與頂部表面514對應,Y方向沿著模型化覆蓋玻璃層510之寬度519與頂部表面514對應,且Z方向與自底部表面512至頂部表面514的模型化覆蓋玻璃層510之厚度516對應。筆落高度530係依Z方向量測。對於模型500,筆520經模型化以將穿刺負載給予模型化覆蓋玻璃層510之頂部表面514上。筆520經模型化以複製具有0.7 mm (0.68 mm)直徑(0.34 mm之半徑524)之碳化鎢球點尖端522及5.73克之重量(該重量包括BIC® Easy Glide Pen之帽之重量)的BIC® Easy Glide Pen, Fine。Cover glass layer 510 in model 500 represents cover glass layer 430 of test sample 400 . The top surface 514 of the modeled cover glass layer 510 is a surface loaded with puncture force, and the bottom surface 512 of the modeled cover glass layer 510 is bonded to the surface of the substrate with a 50 micron thick layer of optically clear adhesive. In the model 500, the 512 corresponds to the thickness 516 of the modeled cover glass layer 510 of the top surface 514 . The pen drop height 530 is measured in the Z direction. For model 500 , pen 520 is modeled to impart a puncture load onto top surface 514 of modeled cover glass layer 510 . Pen 520 was modeled to replicate a BIC® with a 0.7 mm (0.68 mm) diameter (0.34 mm radius 524) tungsten carbide ball point tip 522 and a weight of 5.73 grams (this weight includes the weight of the cap of the BIC® Easy Glide Pen) Easy Glide Pen, Fine.

第6圖展示用於不同的覆蓋玻璃層510厚度及用於10公分(cm)之筆落高度530的依模型500之X方向給予頂部表面514上的最大主應力分佈的曲線圖600。第7圖展示用於不同的覆蓋玻璃層510厚度且用於10公分(cm)之筆落高度530的依模型500之X方向給予底部表面512上的最大主應力分佈的曲線圖700。曲線圖600及700兩者展示50微米、35微米,及25微米之模型化覆蓋玻璃層510厚度。在曲線圖600中,零X方向值為模型化球點尖端522之中心接觸頂部表面514所在的頂部表面514上之點。在曲線圖700中,零X方向值為依Z方向直接在模型化球點尖端522之中心接觸頂部表面514所在的頂部表面514上之點下方的底部表面512上之點。Figure 6 shows a graph 600 of the maximum principal stress distribution on the top surface 514 in the X direction of the model 500 for different cover glass layer 510 thicknesses and for a pen drop height 530 of 10 centimeters (cm). Figure 7 shows a graph 700 of the maximum principal stress distribution on the bottom surface 512 in the X direction of the model 500 for different cover glass layer 510 thicknesses and for a pen drop height 530 of 10 centimeters (cm). Both graphs 600 and 700 show modeled cover glass layer 510 thicknesses of 50 microns, 35 microns, and 25 microns. In graph 600 , a zero X-direction value is the point on top surface 514 where the center of modeled ball point tip 522 contacts top surface 514 . In graph 700, a zero X-direction value is a point on bottom surface 512 directly below the point on top surface 514 where the center of modeled ball point tip 522 contacts top surface 514 in the Z direction.

如第6圖中所示,有限元素分析展示用於所有三個厚度的用於頂部表面514上之最大主應力之值遵循類似的趨勢。類似地,如第7圖中所示,有限元素分析展示用於所有三個厚度的用於底部表面512上之最大主應力之值遵循類似趨勢。As shown in Figure 6, finite element analysis shows that the values of the maximum principal stress on the top surface 514 follow a similar trend for all three thicknesses. Similarly, as shown in Figure 7, finite element analysis shows that the values for the maximum principal stress on the bottom surface 512 follow similar trends for all three thicknesses.

藉由比較第6圖及第7圖,可看出,頂部表面514上之最大主應力與底部表面512上之最大主應力之間的最大差異(「差量最大應力」)位於零X值(亦即,模型化球點尖端522之中心接觸頂部表面514所在的頂部表面514上之點)處。第6圖及第7圖展示玻璃層510在此位置,零X值處經歷最高應力。因而,比較地,25微米厚的玻璃層510在零X值處具有最小差量最大應力,此展示具有25微米之厚度之模型化覆蓋玻璃層510在穿刺事件期間經歷最低應力量(在此等厚度間)。具有35微米之厚度之模型化覆蓋玻璃層510具有大於25微米厚的層,但仍小於50微米厚的層的差量最大應力。對於25微米厚的玻璃層510,等於零的X處之底部表面512上之最大主應力小於其他玻璃厚度(35微米及50微米)之彼最大主應力。等於零的X處之25微米厚的玻璃層510之頂部表面514上之最大主應力高於其他玻璃厚度之彼最大主應力。然而,等於零的X處之玻璃層之底部表面512處的最大主應力比頂部表面上之彼最大主應力高得多(比彼最大主應力高約2倍或更多倍),因此此最大主應力將最可能決定玻璃層是否在穿刺事件期間出故障。By comparing Figures 6 and 7, it can be seen that the maximum difference between the maximum principal stress on the top surface 514 and the maximum principal stress on the bottom surface 512 (the "differential maximum stress") is located at the zero X value ( That is, the center of the modeled ball point tip 522 contacts the point on the top surface 514 where the top surface 514 is located. Figures 6 and 7 show that the glass layer 510 experiences the highest stress at this location, zero X value. Thus, in comparison, a 25 micron thick glass layer 510 has a minimum differential maximum stress at zero thickness). A modeled cover glass layer 510 having a thickness of 35 microns has a differential maximum stress greater than a 25 micron thick layer, but still less than a 50 micron thick layer. For a 25 micron thick glass layer 510, the maximum principal stress on the bottom surface 512 at X equal to zero is less than that for other glass thicknesses (35 microns and 50 microns). The maximum principal stress on the top surface 514 of the 25 micron thick glass layer 510 at X equal to zero is higher than that at other glass thicknesses. However, the maximum principal stress at the bottom surface 512 of the glass layer at Stress will most likely determine whether the glass layer fails during a puncture event.

第6圖及第7圖中所示的結果指示相較於50微米厚的覆蓋玻璃層510之彼等者的較低應力值貫穿25微米及35微米厚的覆蓋玻璃層510之厚度存在。貫穿較薄覆蓋玻璃層510之厚度存在的此等較低應力值導致如第2圖中所示的改良筆落測試及穿刺測試結果。換言之,與50微米厚的玻璃層相比,類似的降落能量貫穿具有小於50微米之厚度的覆蓋玻璃層之厚度產生相對較少的應力。此意味此等較薄層與50微米厚的覆蓋玻璃層相比更好地能夠經受住給定穿刺力。如第6圖及第7圖中所示,使覆蓋玻璃層厚度自50微米減少至25微米導致底部表面512上之較低拉伸應力及頂部表面514上之較高應力。據信,此行為指示玻璃厚度減少時的玻璃故障模式之移位,且此移位之結果為改良之抗穿刺性及抗斷裂性。The results shown in Figures 6 and 7 indicate that lower stress values exist throughout the thickness of the 25 micron and 35 micron thick cover glass layers 510 compared to those of the 50 micron thick cover glass layer 510. These lower stress values present throughout the thickness of the thinner cover glass layer 510 result in improved pen drop test and puncture test results as shown in Figure 2. In other words, similar falling energy creates relatively less stress through the thickness of a cover glass layer having a thickness of less than 50 microns compared to a glass layer that is 50 microns thick. This means that these thinner layers are better able to withstand a given puncture force than a 50 micron thick cover glass layer. As shown in Figures 6 and 7, reducing the cover glass layer thickness from 50 microns to 25 microns results in lower tensile stress on the bottom surface 512 and higher stress on the top surface 514. It is believed that this behavior indicates a shift in the glass failure mode as the glass thickness is reduced, and that the result of this shift is improved puncture and break resistance.

此外,藉由比較第6圖及第7圖,可看出,存在於覆蓋玻璃層510之底部表面512上的主應力之最大值在量級上顯著地高於頂部表面514上之彼等者。此對於小於約0.15 mm的X值尤其成立,其中底部表面512上之最大值在5000 MPa (兆帕)以上。因為模型500展示底部表面512上之拉伸主應力為高最主應力;所以此等應力最可能在筆落測試及/或穿刺測試期間促進故障。因此,導致底部表面512上之較低最大主應力的覆蓋玻璃層更可能在筆落及/或穿刺測試中具有改良之效能。Furthermore, by comparing Figures 6 and 7, it can be seen that the maximum values of the principal stresses present on the bottom surface 512 of the cover glass layer 510 are significantly higher in magnitude than those on the top surface 514 . This is particularly true for values of Because model 500 exhibits the highest tensile principal stresses on bottom surface 512; these stresses are most likely to promote failure during pen drop testing and/or puncture testing. Therefore, a cover glass layer that results in a lower maximum principal stress on bottom surface 512 is more likely to have improved performance in pen drop and/or puncture tests.

第8圖基於2公分(cm)之筆落高度展示作為厚度516之函數的用於模型化覆蓋玻璃層510之底部表面512上之最大主應力的曲線圖800。如第8圖中所示,底部表面512上之主應力之最大量發生在具有約65微米之厚度516之覆蓋玻璃層510中。與第6圖及第7圖中所示的結果一致且將覆蓋玻璃層之厚度減少至50微米以下導致用於底部表面512上之最大主應力之較低值。且類似於第6圖及第7圖之結果,此行為係出乎意料的。Figure 8 shows a graph 800 for modeling the maximum principal stress on the bottom surface 512 of the cover glass layer 510 as a function of thickness 516 based on a drop height of 2 centimeters (cm). As shown in Figure 8, the greatest amount of principal stress on bottom surface 512 occurs in cover glass layer 510 having a thickness 516 of approximately 65 microns. Consistent with the results shown in Figures 6 and 7 and reducing the thickness of the cover glass layer below 50 microns results in lower values for the maximum principal stress on the bottom surface 512. And similar to the results in Figures 6 and 7, this behavior is unexpected.

因此,如第2圖及第3圖之測試結果及第6圖至第8圖中之有限元素模型分析結果中所示,包括在本文所描述的積層中之具有小於50微米(例如,49微米或更少)之厚度之覆蓋玻璃層與包括在類似積層中之具有50微米之厚度之覆蓋玻璃層相比具有優越的且出乎意料的抗穿刺性及抗斷裂性。此行為係出乎意料的,因為,通常,在玻璃厚度降低時,預期對衝擊力(例如,筆降落力)之抗穿刺性及抗斷裂性降低。降低抗穿刺性及抗斷裂性之趨勢展示在第2圖及第3圖中之用於100微米厚、75微米厚,及50微米厚的測試樣本400之測試結果中。然而,對於小於50微米的厚度,此趨勢出乎意料地逆轉。用於35微米及25微米厚的測試樣本400之測試結果展示,藉由將覆蓋玻璃層之厚度減少至小於50微米,可相對於可比較的50微米厚的覆蓋玻璃層增加對衝擊力(例如,筆降落力)之抗穿刺性及抗斷裂性。Therefore, as shown in the test results in Figures 2 and 3 and the finite element model analysis results in Figures 6 through 8, the layers included in the build-up described herein have a thickness of less than 50 microns (e.g., 49 microns A cover glass layer having a thickness of 50 microns or less has superior and unexpected puncture and break resistance compared to a cover glass layer having a thickness of 50 microns included in a similar build-up. This behavior was unexpected because, generally, as the thickness of the glass decreases, puncture and fracture resistance to impact forces (eg, pen drop forces) is expected to decrease. The trend towards reduced puncture resistance and fracture resistance is demonstrated in the test results for 100 micron thick, 75 micron thick, and 50 micron thick test sample 400 in Figures 2 and 3. However, for thicknesses less than 50 microns, this trend is unexpectedly reversed. Test results for 35 micron and 25 micron thick test specimens 400 demonstrate that by reducing the thickness of the cover glass layer to less than 50 microns, the impact force can be increased relative to a comparable 50 micron thick cover glass layer (e.g. , pen falling force) puncture resistance and breakage resistance.

具有小於50微米之厚度之覆蓋玻璃層之出乎意料及優越行為藉由有限元素分析確認,該有限元素分析展示衝擊力(例如,筆降落力)在此類覆蓋玻璃層中產生較小量的應力。因為此等應力值為較小的,所以此類覆蓋玻璃層(具有小於50微米之厚度)可更好地抵抗歸因於衝擊力的穿刺及/或斷裂。具體而言,具有小於50微米之厚度之覆蓋玻璃層之底部表面上的較小應力值導致更好地適合於抵抗歸因於衝擊力的穿刺及/或斷裂的覆蓋玻璃層。The unexpected and superior behavior of cover glass layers having a thickness of less than 50 microns was confirmed by finite element analysis showing that impact forces (e.g., pen drop forces) produce smaller amounts of vibration in such cover glass layers. stress. Because these stress values are smaller, such cover glass layers (having a thickness of less than 50 microns) can better resist punctures and/or fractures due to impact forces. In particular, smaller stress values on the bottom surface of a cover glass layer having a thickness of less than 50 microns results in a cover glass layer that is better suited to resist punctures and/or fractures due to impact forces.

在一些實施例中,例如如第10圖中所示,積層102可以具有底部表面182、頂部表面184,及厚度186之塗層180塗佈。在一些實施例中,塗層180可結合至覆蓋玻璃層120之頂部表面124。在一些實施例中,塗層180可設置在覆蓋玻璃層120之頂部表面124上。在一些實施例中,相同或不同材料及/或厚度之多個塗層180可經塗佈在覆蓋玻璃層120上方,包括頂部表面上,及/或底部表面112上。In some embodiments, such as shown in FIG. 10 , the buildup 102 may be coated with a coating 180 having a bottom surface 182 , a top surface 184 , and a thickness 186 . In some embodiments, coating 180 may be bonded to top surface 124 of cover glass layer 120 . In some embodiments, coating 180 may be disposed on top surface 124 of cover glass layer 120 . In some embodiments, multiple coatings 180 of the same or different materials and/or thicknesses may be applied over the cover glass layer 120 , including on the top surface, and/or the bottom surface 112 .

在一些實施例中,塗層180可為光學透明聚合(OTP)堅硬塗層。用於OTP硬塗層之合適的材料包括但不限於聚醯亞胺、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(polycarbonate; PC)、聚甲基丙烯酸甲酯(poly methyl methacrylate; PMMA)、有機聚合物材料、無機-有機混合聚合材料,及脂肪族或芳香族六官能胺甲酸乙酯丙烯酸酯。在一些實施例中,OTP硬塗層可基本上由有機聚合物材料、無機-有機混合聚合材料,或脂肪族或芳香族六官能胺甲酸乙酯丙烯酸酯組成。在一些實施例中,OTP硬塗層可由聚醯亞胺、有機聚合物材料、無機-有機混合聚合材料,或脂肪族或芳香族六官能胺甲酸乙酯丙烯酸酯組成。In some embodiments, coating 180 may be an optically clear polymer (OTP) hard coating. Suitable materials for OTP hard coating include but are not limited to polyimide, polyethylene terephthalate (PET), polycarbonate (PC), polymethyl methacrylate (polymethyl methacrylate) ; PMMA), organic polymer materials, inorganic-organic hybrid polymer materials, and aliphatic or aromatic hexafunctional ethyl urethane acrylate. In some embodiments, the OTP hardcoat layer may consist essentially of organic polymeric materials, inorganic-organic hybrid polymeric materials, or aliphatic or aromatic hexafunctional urethane ethyl acrylate. In some embodiments, the OTP hardcoat layer may be composed of polyimide, organic polymeric materials, inorganic-organic hybrid polymeric materials, or aliphatic or aromatic hexafunctional ethyl amine formate acrylate.

如本文所使用,「有機聚合物材料」意味包含具有僅有機組份之單體的聚合材料。在一些實施例中,OTP硬塗層可包含藉由Gunze Limited製造且具有9H之硬度的有機聚合物材料,例如Gunze的「Highly Durable Transparent Film」。如本文所使用,「無機-有機混合聚合材料」意味包含具有無機及有機組份之單體的聚合材料。無機-有機混合聚合物係藉由具有無機基團及有機基團之單體之間的聚合反應獲得。無機-有機混合聚合物並非包含單獨無機及有機構成或相的奈米複合材料,例如分散在有機基質內的無機微粒。As used herein, "organic polymeric material" means a polymeric material containing monomers having only organic components. In some embodiments, the OTP hard coating may include an organic polymer material manufactured by Gunze Limited and having a hardness of 9H, such as Gunze's "Highly Durable Transparent Film". As used herein, "inorganic-organic hybrid polymeric material" means a polymeric material containing monomers having both inorganic and organic components. Inorganic-organic hybrid polymers are obtained by the polymerization reaction between monomers having inorganic groups and organic groups. Inorganic-organic hybrid polymers are not nanocomposites containing separate inorganic and organic components or phases, such as inorganic particles dispersed within an organic matrix.

在一些實施例中,無機-有機混合聚合材料可包括包含無機矽基基團的聚合單體,例如,矽倍半氧烷聚合物。矽倍半氧烷聚合物可為例如烷基-矽倍半氧烷、芳基-矽倍半氧烷,或具有以下化學結構之芳基烷基-矽倍半氧烷:(RSiO1 .5 )n,其中R為有機基團,例如,但不限於甲基或苯基。在一些實施例中,OTP硬塗層可包含與有機基質組合的矽倍半氧烷聚合物,例如藉由Nippon Steel Chemical Co., Ltd製造的SILPLUS。In some embodiments, the inorganic-organic hybrid polymeric material may include polymerized monomers containing inorganic silicyl groups, for example, silsesquioxane polymers. The silsesquioxane polymer may be, for example, an alkyl-silsesquioxane, an aryl-silsesquioxane, or an arylalkyl-silsesquioxane having the following chemical structure: (RSiO 1 .5 )n, where R is an organic group, such as, but not limited to, methyl or phenyl. In some embodiments, the OTP hard coat may include a silsesquioxane polymer, such as SILPLUS manufactured by Nippon Steel Chemical Co., Ltd., combined with an organic matrix.

在一些實施例中,OTP硬塗層可包含90 wt%至95 wt%的芳香族六官能胺甲酸乙酯丙烯酸酯(例如,藉由Miwon Specialty Chemical Co.製造的PU662NT (芳香族六官能胺甲酸乙酯丙烯酸酯))及具有8H或更大之硬度之10 wt%至5 wt%的光引發劑(例如,藉由Ciba Specialty Chemicals Corporation製造的Darocur 1173)。在一些實施例中,包含脂肪族或芳香族六官能胺甲酸乙酯丙烯酸酯的OTP硬塗層可藉由將層旋轉塗佈在聚對苯二甲酸乙二酯(PET)基板上,固化胺甲酸乙酯丙烯酸酯,且自PET基板移除胺甲酸乙酯丙烯酸酯層形成為獨立層。In some embodiments, the OTP hardcoat layer may include 90 wt% to 95 wt% aromatic hexafunctional ethyl acrylate (e.g., PU662NT (aromatic hexafunctional ethyl acrylate) manufactured by Miwon Specialty Chemical Co. Ethyl acrylate)) and 10 to 5 wt% of a photoinitiator having a hardness of 8H or greater (eg, Darocur 1173 manufactured by Ciba Specialty Chemicals Corporation). In some embodiments, OTP hardcoats containing aliphatic or aromatic hexafunctional amine ethyl formate acrylate can be obtained by spin coating the layer onto a polyethylene terephthalate (PET) substrate, curing the amine Ethyl formate acrylate, and the urethane acrylate layer is removed from the PET substrate to form an independent layer.

OTP硬塗層可具有在10微米至120微米之範圍,包括子範圍內的厚度186。例如,OTP硬塗層可具有10微米、20微米、30微米、40微米、50微米、60微米、70微米、80微米、90微米、100微米、110微米、120微米,或在具有此等值中之任何兩個作為端點之範圍內的厚度186。在一些實施例中,OTP硬塗層可為單個整塊層。The OTP hardcoat layer may have a thickness 186 in the range of 10 microns to 120 microns, inclusive. For example, the OTP hard coat layer may have a thickness of 10 microns, 20 microns, 30 microns, 40 microns, 50 microns, 60 microns, 70 microns, 80 microns, 90 microns, 100 microns, 110 microns, 120 microns, or the equivalent thereof. Any two of them serve as endpoints within the range of thickness 186. In some embodiments, the OTP hardcoat layer may be a single monolithic layer.

在一些實施例中,OTP硬塗層可為具有在80微米至120微米之範圍,包括子範圍內的厚度之無機-有機混合聚合材料層或有機聚合物材料層。例如,包含無機-有機混合聚合材料或有機聚合物材料的OTP硬塗層可具有80微米、90微米、100微米、110微米、120微米,或在具有此等值中之任何兩個作為端點之範圍內的厚度。在一些實施例中,OTP硬塗層可為具有在10微米至60微米之範圍,包括例如15微米至60微米,或20微米至60微米,或25微米至60微米,或30微米至60微米,或45微米至60微米,或50微米至60微米,或10微米至55微米,或10微米至50微米,或10微米至45微米,或10微米至40微米,或10微米至35微米,或10微米至30微米,或10微米至25微米,或10微米至20微米之子範圍內的厚度之脂肪族或芳香族六官能胺甲酸乙酯丙烯酸酯材料層。例如,包含脂肪族或芳香族六官能胺甲酸乙酯丙烯酸酯材料的OTP硬塗層可具有10微米、20微米、30微米、40微米、50微米、60微米,或在具有此等值中之任何兩個作為端點之範圍內的厚度。In some embodiments, the OTP hard coat layer may be a layer of inorganic-organic hybrid polymeric material or an organic polymeric material having a thickness in the range of 80 microns to 120 microns, including sub-ranges. For example, an OTP hardcoat layer comprising an inorganic-organic hybrid polymeric material or an organic polymeric material may have an endpoint of 80 microns, 90 microns, 100 microns, 110 microns, 120 microns, or any two of these values. thickness within the range. In some embodiments, the OTP hard coating may have a thickness in the range of 10 microns to 60 microns, including, for example, 15 microns to 60 microns, or 20 microns to 60 microns, or 25 microns to 60 microns, or 30 microns to 60 microns. , or 45 microns to 60 microns, or 50 microns to 60 microns, or 10 microns to 55 microns, or 10 microns to 50 microns, or 10 microns to 45 microns, or 10 microns to 40 microns, or 10 microns to 35 microns, Or an aliphatic or aromatic hexafunctional urethane ethyl acrylate material layer with a thickness in the range of 10 microns to 30 microns, or 10 microns to 25 microns, or 10 microns to 20 microns. For example, an OTP hardcoat layer comprising an aliphatic or aromatic hexafunctional urethane acrylate material may have a thickness of 10 microns, 20 microns, 30 microns, 40 microns, 50 microns, 60 microns, or any of these equivalent values. The thickness within the range of any two endpoints.

在一些實施例中,塗層(多個) 180可為防反射塗層。適合於使用在防反射塗層中之示範性材料包括:SiO2 、Al2 O3 、GeO2 、SiO、AlOx Ny 、AlN、SiNx 、SiOx Ny 、Siu Alv Ox Ny 、Ta2 O5 、Nb2 O5 、TiO2 、ZrO2 、TiN、MgO、MgF2 、BaF2 、CaF2 、SnO2 、HfO2 、Y2 O3 、MoO3 、DyF3 、YbF3 、YF3 、CeF3 、聚合物、氟聚合物、電漿聚合的聚合物、矽氧烷聚合物、矽倍半氧烷、聚醯亞胺、氟化聚醯亞胺、聚醚醯亞胺、聚醚碸、聚苯碸、聚碳酸酯、聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、丙烯酸聚合物、胺甲酸乙酯聚合物、聚甲基丙烯酸甲酯,及以上作為適合於使用在抗刮痕層中所引用的其他材料。防反射塗層可包括不同材料之子層。In some embodiments, coating(s) 180 may be an anti-reflective coating. Exemplary materials suitable for use in anti-reflective coatings include: SiO 2 , Al 2 O 3 , GeO 2 , SiO, AlO x N y , AlN, SiN x , SiO x N y , Si u Al v O x N y , Ta 2 O 5 , Nb 2 O 5 , TiO 2 , ZrO 2 , TiN, MgO, MgF 2 , BaF 2 , CaF 2 , SnO 2 , HfO 2 , Y 2 O 3 , MoO 3 , DyF 3 , YbF 3 , YF 3 , CeF 3 , polymer, fluoropolymer, plasma polymerized polymer, siloxane polymer, silsesquioxane, polyimide, fluorinated polyimide, polyetherimide , polyether styrene, polystyrene, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, acrylic polymer, urethane polymer, polymethyl methacrylate, and above Other materials cited as suitable for use in the anti-scratch layer. Anti-reflective coatings may include sub-layers of different materials.

在一些實施例中,防反射塗層可包括六方填充奈米粒子層,例如但不限於2016年3月1日頒佈之美國專利第9,272,947號中所描述的六方填充奈米粒子層,該美國專利由此以全文引用方式併入本文。在一些實施例中,防反射塗層可包括奈米多孔含矽塗層,例如但不限於2013年7月18日公佈的WO2013/106629中所描述的奈米多孔含矽塗層,該專利由此以全文引用方式併入本文。在一些實施例中,防反射塗層可包括多層塗層,例如,但不限於2013年7月18日公佈的WO2013/106638;2013年6月6日公佈的WO2013/082488;以及2016年5月10日頒佈的美國專利第9,335,444號中所描述的多層塗層,該等專利中之全部由此以全文引用方式併入本文。In some embodiments, the anti-reflective coating may include a hexagonally filled nanoparticle layer, such as, but not limited to, the hexagonally filled nanoparticle layer described in U.S. Patent No. 9,272,947, issued on March 1, 2016. This article is hereby incorporated by reference in its entirety. In some embodiments, the anti-reflective coating may include a nanoporous silicon-containing coating, such as, but not limited to, the nanoporous silicon-containing coating described in WO2013/106629, published on July 18, 2013 by This is incorporated by reference in its entirety. In some embodiments, the anti-reflective coating may include a multi-layer coating, such as, but not limited to, WO2013/106638, published on July 18, 2013; WO2013/082488, published on June 6, 2013; and May 2016 The multi-layer coating is described in U.S. Patent No. 9,335,444 issued on the 10th, all of which are hereby incorporated by reference in their entirety.

在一些實施例中,塗層(多個) 180可為易於清潔的塗層。在一些實施例中,易於清潔的塗層可包括選自由氟烷基矽烷、全氟聚醚烷氧基矽烷、全氟烴基烷氧基矽烷、氟烷基矽烷-(非氟烷基矽烷)共聚物,及氟烷基矽烷之混合物組成之群組的材料。在一些實施例中,易於清潔的塗層可包括為含有全氟化基團的選定類型之矽烷的一或多個材料,例如,化學式(RF )y SiX4-y 之全氟烴基矽烷,其中RF為線性C6-C30 全氟烷基基團,X = CI、乙醯氧基、-OCH3 ,及-OCH2 CH3 ,且y = 2或3。全氟烷基矽烷可自許多銷售商包括Dow-Corning(例如氟碳化物2604及2634)、3M Company (例如ECC-1000及ECC-4000),及其他氟碳化物供應商例如Daikin Corporation, Ceko (南韓)、Cotec-GmbH (DURALON UltraTec材料)及Evonik商業獲得。在一些實施例中,易於清潔的塗層可包括如2013年6月6日公佈的WO2013/082477中所描述的易於清潔的塗層,該專利由此以全文引用方式併入本文。In some embodiments, coating(s) 180 may be an easy-to-clean coating. In some embodiments, the easy-to-clean coating may include a coating selected from the group consisting of fluoroalkylsilane, perfluoropolyetheralkoxysilane, perfluoroalkylalkoxysilane, fluoroalkylsilane-(non-fluoroalkylsilane) copolymer material, and a mixture of fluoroalkylsilanes. In some embodiments, the easy-to-clean coating may include one or more materials that are selected types of silanes containing perfluorinated groups, for example, perfluoroalkyl silanes of the formula ( RF ) ySiX4 -y , where RF is a linear C6- C30 perfluoroalkyl group, X=CI, acetyloxy, -OCH3 , and -OCH2CH3 , and y=2 or 3. Perfluoroalkylsilanes are available from many vendors including Dow-Corning (e.g. Fluorocarbons 2604 and 2634), 3M Company (e.g. ECC-1000 and ECC-4000), and other fluorocarbon suppliers such as Daikin Corporation, Ceko ( South Korea), Cotec-GmbH (DURALON UltraTec material) and Evonik are commercially available. In some embodiments, the easy-to-clean coating may include an easy-to-clean coating as described in WO2013/082477, published June 6, 2013, which patent is hereby incorporated by reference in its entirety.

在一些實施例中,塗層(多個) 180可為形成於覆蓋玻璃層120之頂部表面124上或設置在該頂部表面上方的防眩層。合適的防眩層包括但不限於藉由美國專利公告第2010/0246016號、第2011/0062849號、第2011/0267697號、第2011/0267698號、第2015/0198752號,及第2012/0281292號中所描述的製程準備的防眩層,該等美國專利中之全部由此以全文引用方式併入本文。In some embodiments, coating(s) 180 may be an anti-glare layer formed on or disposed over top surface 124 of cover glass layer 120 . Suitable anti-glare layers include, but are not limited to, those provided by U.S. Patent Publications Nos. 2010/0246016, 2011/0062849, 2011/0267697, 2011/0267698, 2015/0198752, and 2012/0281292. Anti-glare layers prepared by processes described in , all of which are hereby incorporated by reference in their entirety.

在一些實施例中,塗層(多個)180可為防指紋塗層。合適的防指紋塗層包括但不限於如在例如2011年8月25日公佈的美國專利申請案公告第2011/0206903號中所描述的包括氣體截留特徵之拒油性表面層,及如在例如2013年5月23日公佈的美國專利申請案公告第2013/0130004號中所描述的親油性塗層,該等親油性塗層由包含與玻璃或玻璃-陶瓷基板之表面反應的無機側鏈的未固化或部分固化的矽氧烷塗層前驅物(例如,部分固化的線性烷基矽氧烷)形成。美國專利申請案公告第2011/0206903號及美國專利申請案公告第2013/0130004號之內容以全文引用方式併入本文。In some embodiments, coating(s) 180 may be an anti-fingerprint coating. Suitable anti-fingerprint coatings include, but are not limited to, oil-repellent surface layers including gas-trapping features as described in, for example, U.S. Patent Application Publication No. 2011/0206903, published on August 25, 2011, and as described in, for example, 2013 The lipophilic coatings described in U.S. Patent Application Publication No. 2013/0130004 published on May 23, 2016, are composed of unorganized side chains that react with the surface of a glass or glass-ceramic substrate. A cured or partially cured siloxane coating precursor (eg, partially cured linear alkyl siloxane) is formed. The contents of U.S. Patent Application Publication No. 2011/0206903 and U.S. Patent Application Publication No. 2013/0130004 are incorporated herein by reference in their entirety.

在一些實施例中,塗層(多個) 180可為形成於覆蓋玻璃層120之頂部表面124上或設置在該頂部表面上方的抗菌及/或抗病毒層。合適的抗菌及/或抗病毒層包括但不限於如在例如2012年2月9日公佈的美國專利申請案公告第2012/0034435號及2015年4月30日公佈的美國專利申請案公告第2015/0118276號中所描述的自玻璃之表面延伸至玻璃中之深度的抗菌Ag+區,該抗菌Ag+區具有玻璃之表面上之Ag+1離子之合適的濃度。美國專利申請案公告第2012/0034435號及美國專利申請案公告第2015/0118276號之內容以全文引用方式併入本文。In some embodiments, coating(s) 180 may be an antimicrobial and/or antiviral layer formed on or disposed over top surface 124 of cover glass layer 120 . Suitable antibacterial and/or antiviral layers include, but are not limited to, as described in, for example, U.S. Patent Application Publication No. 2012/0034435, published on February 9, 2012, and U.S. Patent Application Publication No. 2015, published on April 30, 2015. The antibacterial Ag+ zone described in /0118276 extends from the surface of the glass to the depth in the glass, and the antibacterial Ag+ zone has a suitable concentration of Ag+1 ions on the surface of the glass. The contents of U.S. Patent Application Publication No. 2012/0034435 and U.S. Patent Application Publication No. 2015/0118276 are incorporated herein by reference in their entirety.

在一些實施例中,覆蓋玻璃層120可為2D、2.5D,或3D覆蓋玻璃。如本文所使用,「2D覆蓋玻璃」包括具有帶有鄰近於周邊邊緣的覆蓋玻璃之頂部及/或底部表面上之倒角形狀之周邊邊緣的覆蓋玻璃。頂部及/或底部表面上之倒角形狀可藉由例如精整方法包括機械研磨形成。2D覆蓋玻璃可具有覆蓋玻璃之頂部表面及底部表面上之相同或不同的倒角形狀。In some embodiments, cover glass layer 120 may be 2D, 2.5D, or 3D cover glass. As used herein, "2D cover glass" includes cover glass having a peripheral edge with chamfered shapes on the top and/or bottom surfaces of the cover glass adjacent the peripheral edge. The chamfered shape on the top and/or bottom surfaces may be formed by, for example, finishing methods including mechanical grinding. The 2D cover glass can have the same or different chamfer shapes on the top and bottom surfaces of the cover glass.

如本文所使用,「2.5D覆蓋玻璃」意味具有帶有其頂部(面向使用者)側上之彎曲表面之周邊邊緣的覆蓋玻璃。彎曲表面可藉由例如機械拋光方法形成。2.5D覆蓋玻璃之頂部側上之彎曲表面比2D覆蓋玻璃之倒角表面接觸起來更平滑。如本文所使用,「3D覆蓋玻璃」意味具有形成非平面形狀的曲彎周邊邊緣的覆蓋玻璃。曲彎周邊邊緣可藉由例如熱成型法及/或冷成型法形成。3D覆蓋玻璃具有鄰近於覆蓋玻璃之周邊邊緣的彎曲底部表面及彎曲頂部表面。3D覆蓋玻璃係指在室溫(23℃)處且當不經受外力(例如,曲彎力)時保持如本文所描述的3D形狀的覆蓋玻璃。可在室溫處在其自身重量下變形的可撓性膜不視為如本文所描述的3D覆蓋玻璃。2.5D及3D覆蓋玻璃兩者具有最頂部外部表面,該最頂部外部表面包括實質上平坦中心區域及設置在實質上平坦中心區域之全部或部分周圍的彎曲周邊區域。3D覆蓋玻璃具有最底部外部表面,該最底部外部表面包括實質上平坦中心區域及設置在實質上平坦中心區域之全部或部分周圍的彎曲周邊區域。As used herein, "2.5D cover glass" means cover glass that has a peripheral edge with a curved surface on its top (user-facing) side. The curved surface can be formed by, for example, mechanical polishing methods. The curved surface on the top side of 2.5D cover glass touches smoother than the chamfered surface of 2D cover glass. As used herein, "3D cover glass" means cover glass with curved peripheral edges forming a non-planar shape. The curved peripheral edge may be formed by, for example, thermoforming and/or cold forming. The 3D cover glass has a curved bottom surface and a curved top surface adjacent the peripheral edge of the cover glass. 3D cover glass refers to cover glass that maintains a 3D shape as described herein at room temperature (23°C) and when not subjected to external forces (eg, bending forces). Flexible films that can deform under their own weight at room temperature are not considered 3D cover glass as described herein. Both 2.5D and 3D cover glass have a topmost exterior surface that includes a substantially flat central area and a curved peripheral area disposed around all or part of the substantially flat central area. The 3D cover glass has a bottommost outer surface that includes a substantially flat central area and a curved peripheral area disposed around all or part of the substantially flat central area.

第11A圖展示根據一些實施例之2D覆蓋玻璃1100。覆蓋玻璃1100包括實質上平坦中心區域1102及倒角周邊區域1104。2D覆蓋玻璃1100之周邊區域1104可藉由機械研磨方法精整,以在覆蓋玻璃1100之頂部表面1106及/或底部表面1108上產生倒角形狀。在一些實施例中,覆蓋玻璃1100之頂部表面1106及底部表面1108上的倒角形狀可為相同的。Figure 11A shows a 2D cover glass 1100 according to some embodiments. The cover glass 1100 includes a substantially flat central region 1102 and a chamfered peripheral region 1104. The peripheral region 1104 of the 2D cover glass 1100 may be finished by a mechanical grinding method on the top surface 1106 and/or the bottom surface 1108 of the cover glass 1100 Creates a chamfered shape. In some embodiments, the chamfer shapes on the top surface 1106 and the bottom surface 1108 of the cover glass 1100 may be the same.

第11B圖展示根據一些實施例之2.5D覆蓋玻璃1110。2.5D覆蓋玻璃1110包括實質上平坦中心區域1112及覆蓋玻璃1110之頂部表面1116上的彎曲周邊區域1114。彎曲周邊區域1114可以機械拋光方法精整以在頂部表面1116上形成彎曲表面。因而,2.5D覆蓋玻璃1110可具有帶有平坦底部表面1118及彎曲頂部表面1116之周邊區域1114。在一些實施例中,2.5D覆蓋玻璃可藉由機械地拋光玻璃層之周邊區域加以製作。Figure 11B shows a 2.5D cover glass 1110 according to some embodiments. The 2.5D cover glass 1110 includes a substantially flat central region 1112 and a curved peripheral region 1114 on a top surface 1116 of the cover glass 1110. The curved perimeter region 1114 may be finished by mechanical polishing methods to form a curved surface on the top surface 1116 . Thus, 2.5D cover glass 1110 may have a peripheral area 1114 with a flat bottom surface 1118 and a curved top surface 1116. In some embodiments, 2.5D cover glass can be produced by mechanically polishing peripheral areas of the glass layer.

第11C圖展示根據一些實施例之3D覆蓋玻璃1120。3D覆蓋玻璃1120包括實質上平坦中心區域1122及彎曲周邊區域1124。3D覆蓋玻璃1120具有彎曲周邊區域1124中之彎曲頂部表面1126及彎曲底部表面1128。3D覆蓋玻璃1120可藉由例如將玻璃層模製成3D形狀加以形成。Figure 11C shows a 3D cover glass 1120 according to some embodiments. The 3D cover glass 1120 includes a substantially flat central region 1122 and a curved peripheral region 1124. The 3D cover glass 1120 has a curved top surface 1126 and a curved bottom surface in the curved peripheral region 1124. 1128. 3D cover glass 1120 may be formed, for example, by molding a glass layer into a 3D shape.

第12圖展示根據一些實施例之消費者電子產品1200。消費者電子產品1200可包括殼體1202,該殼體具有前(面向使用者)表面1204、與前表面1204相對的後表面1206,及側表面1208。電氣組件可至少部分地提供在殼體1202內。電氣組件尤其可包括控制器1210、記憶體1212,及顯示組件,包括顯示器1214。在一些實施例中,顯示器1214可提供在殼體1202之前表面1204處或鄰近於該前表面。顯示器1214可為例如發光二極體(LED)顯示器或有機發光二極體(OLED)顯示器。Figure 12 shows a consumer electronic product 1200 according to some embodiments. Consumer electronics 1200 may include a housing 1202 having a front (user-facing) surface 1204 , a rear surface 1206 opposite the front surface 1204 , and side surfaces 1208 . Electrical components may be provided at least partially within housing 1202. Electrical components may include, among others, controller 1210, memory 1212, and display components, including display 1214. In some embodiments, display 1214 may be provided at or adjacent front surface 1204 of housing 1202 . Display 1214 may be, for example, a light emitting diode (LED) display or an organic light emitting diode (OLED) display.

如例如第12圖中所示,消費者電子產品1200可包括覆蓋基板1220。覆蓋基板1220可用來保護顯示器1214及電子產品1200之其他組件(例如,控制器1210及記憶體1212)以免損壞。在一些實施例中,覆蓋基板1220可設置在顯示器1214上方。在一些實施例中,覆蓋基板1220可結合至顯示器1214。在一些實施例中,覆蓋基板1220可為全部或部分由本文所論述的覆蓋玻璃層120限定的覆蓋玻璃。覆蓋基板1220可為2D、2.5D,或3D覆蓋基板。覆蓋基板1220可限定殼體1202之至少一部分。在一些實施例中,覆蓋基板1220可限定殼體1202之前表面1204。在一些實施例中,覆蓋基板1220可限定殼體1202之前表面1204,及殼體1202之側表面1208之全部或一部分。在一些實施例中,消費者電子產品1200可包括限定殼體1202之後表面1206之全部或一部分的覆蓋基板1220。As shown, for example, in Figure 12, consumer electronic product 1200 may include a cover substrate 1220. The cover substrate 1220 may be used to protect the display 1214 and other components of the electronic product 1200 (eg, the controller 1210 and the memory 1212) from damage. In some embodiments, cover substrate 1220 may be disposed over display 1214. In some embodiments, cover substrate 1220 may be bonded to display 1214. In some embodiments, cover substrate 1220 may be a cover glass defined in whole or in part by cover glass layer 120 discussed herein. Cover substrate 1220 may be a 2D, 2.5D, or 3D cover substrate. Cover substrate 1220 may define at least a portion of housing 1202. In some embodiments, cover substrate 1220 may define housing 1202 front surface 1204 . In some embodiments, the cover substrate 1220 may define all or a portion of the front surface 1204 of the housing 1202 and the side surfaces 1208 of the housing 1202 . In some embodiments, consumer electronics 1200 may include a cover substrate 1220 that defines all or a portion of rear surface 1206 of housing 1202 .

在一些實施例中,本文所論述的覆蓋玻璃層可包含藉由玻璃之控制結晶生產的「玻璃-陶瓷」材料。在此類實施例中,玻璃-陶瓷具有約30%至約90%的結晶度。可使用的玻璃-陶瓷系統之非限制實例包括Li2 O × Al2 O3 × nSiO2 (亦即LAS系統)、MgO × Al2 O3 × nSiO2 (亦即MAS系統),及ZnO × Al2 O3 × nSiO2 (亦即ZAS系統)。在一或多個替代實施例中,玻璃層可包括例如玻璃-陶瓷基板(其可為強化或非強化)的結晶基板,或可包括例如藍寶石的單晶結構。在一或多個特定實施例中,玻璃層可包括非晶形基底(例如,玻璃)及結晶包層(例如,藍寶石層、多晶氧化鋁層及/或尖晶石(MgAl2 O4 )層)。在一些實施例中,本文所論述的覆蓋玻璃層可並非由玻璃-陶瓷材料組成。In some embodiments, the cover glass layer discussed herein may comprise a "glass-ceramic" material produced by controlled crystallization of glass. In such embodiments, the glass-ceramic has a crystallinity of about 30% to about 90%. Non-limiting examples of glass-ceramic systems that can be used include Li 2 O × Al 2 O 3 × nSiO 2 (also known as the LAS system), MgO × Al 2 O 3 × nSiO 2 (also known as the MAS system), and ZnO × Al 2 O 3 × nSiO 2 (also known as ZAS system). In one or more alternative embodiments, the glass layer may comprise a crystalline substrate such as a glass-ceramic substrate (which may be reinforced or non-reinforced), or may comprise a single crystal structure such as sapphire. In one or more specific embodiments, the glass layer may include an amorphous substrate (e.g., glass) and a crystalline cladding layer (e.g., a sapphire layer, a polycrystalline alumina layer, and/or a spinel (MgAl 2 O 4 ) layer ). In some embodiments, the cover glass layer discussed herein may not be composed of a glass-ceramic material.

如本文所論述,覆蓋玻璃層經強化以形成強化層。如本文所使用,術語「強化層」可指已經化學強化的基板,例如已經由將層之表面中的較小離子交換成較大離子的離子交換而強化。亦可利用此項技術中已知的其他強化方法來形成強化層,該等方法例如熱回火,或利用層之數個部分之間的熱脹係數之不匹配來產生壓縮應力及中心張力區。As discussed herein, the cover glass layer is strengthened to form the strengthened layer. As used herein, the term "strengthened layer" may refer to a substrate that has been chemically strengthened, such as by ion exchange that exchanges smaller ions for larger ions in the surface of the layer. The reinforced layer can also be formed using other strengthening methods known in the art, such as thermal tempering, or using mismatches in thermal expansion coefficients between portions of the layer to create compressive stresses and a central tension zone .

在層藉由離子交換製程來化學強化的情況下,層之表面層中的離子由具有相同原子價或氧化態之較大離子置換——或由該等較大離子交換。離子交換製程典型地藉由將層浸沒於含有較大離子的熔融鹽浴中來進行,該等較大離子欲與基板中之較小離子交換。熟習此項技術者將瞭解的是,用於離子交換製程之參數包括但不限於浴組成物及溫度、浸沒時間、層於(一或多個)鹽浴中之浸沒次數、多個鹽浴之使用、額外步驟例如退火、洗滌,及類似參數,該等參數通常由層之組成物及因強化操作而產生的基板之所要壓縮應力(compressive stress;CS)、壓縮應力層深度(或層深度)決定。舉例而言,含鹼金屬玻璃層之離子交換可藉由浸沒於含有鹽的至少一個熔融浴中來達成,該鹽例如但不限於較大鹼金屬離子之硝酸鹽、硫酸鹽及氯化物。熔融鹽浴之溫度典型地在自約380℃至多約450℃範圍內,而浸沒時間在約15分鐘至多約40小時範圍變化。然而,亦可使用與以上所述之彼等者不同的溫度及浸沒時間。Where a layer is chemically strengthened by an ion exchange process, ions in the surface layer of the layer are replaced by - or exchanged by - larger ions of the same valence or oxidation state. The ion exchange process is typically performed by immersing the layers in a molten salt bath containing larger ions that are intended to exchange with smaller ions in the substrate. Those skilled in the art will understand that the parameters used in the ion exchange process include, but are not limited to, bath composition and temperature, immersion time, number of immersions of the layer in the salt bath(s), the number of times the layer is immersed in the salt bath(s), and the number of immersions in the salt bath(s). Use, additional steps such as annealing, washing, and similar parameters, which are usually determined by the composition of the layers and the required compressive stress (CS) of the substrate due to the strengthening operation, the compressive stress layer depth (or layer depth) Decide. For example, ion exchange of the alkali metal-containing glass layer may be accomplished by immersion in at least one molten bath containing salts such as, but not limited to, nitrates, sulfates, and chlorides of larger alkali metal ions. The temperature of the molten salt bath typically ranges from about 380°C to up to about 450°C, and the immersion time varies from about 15 minutes to up to about 40 hours. However, temperatures and immersion times different from those described above may also be used.

另外,其中玻璃層浸沒於多個離子交換浴中的具有介於浸沒之間的洗滌及/或退火步驟的離子交換製程之非限制實例描述於以下專利中:由Douglas C. Allan等人2009年7月10日申請的標題名稱為「Glass with Compressive Surface for Consumer Applications」且主張來自2008年7月11申請的美國臨時專利申請案第61/079,995號之優先權的美國專利申請案第12/500,650號,其中玻璃基板係藉由浸沒於不同濃度之鹽浴中的多個、相繼、離子交換處置加以強化;以及由Christopher M. Lee等人在2012年11月20日頒佈,且標題名稱為「Dual Stage Ion Exchange for Chemical Strengthening of Glass」且主張來自2008年7月29日申請的美國臨時專利申請案第61/084,398號之優先權的美國專利8,312,739,其中玻璃基板係藉由以流出離子稀釋的第一浴中之離子交換,繼之以浸沒於第二浴中加以強化,該第二浴具有相比於第一浴的流出離子之較小濃度。美國專利申請案第12/500,650號及美國專利第8,312,739號之內容以全文引用方式併入本文。Additionally, non-limiting examples of ion exchange processes in which glass layers are immersed in multiple ion exchange baths with washing and/or annealing steps between immersions are described in the following patent: Douglas C. Allan et al. 2009 U.S. Patent Application No. 12/500,650, filed on July 10, titled "Glass with Compressive Surface for Consumer Applications" and claiming priority from U.S. Provisional Patent Application No. 61/079,995 filed on July 11, 2008 No. 1, in which a glass substrate is strengthened by multiple, sequential, ion exchange treatments immersed in a salt bath of varying concentrations; and published by Christopher M. Lee et al. on November 20, 2012, with the title " Dual Stage Ion Exchange for Chemical Strengthening of Glass" and US Patent 8,312,739 claiming priority from US Provisional Patent Application No. 61/084,398 filed on July 29, 2008, in which the glass substrate is diluted with effluent ions Ion exchange in the first bath is enhanced by subsequent immersion in a second bath having a smaller concentration of effluent ions than the first bath. The contents of U.S. Patent Application No. 12/500,650 and U.S. Patent No. 8,312,739 are incorporated herein by reference in their entirety.

雖然本文已描述各種實施例,但該等實施例已藉由實例而非限制之方式呈現。應明白的是,基於本文呈現的教示及指導,調適及修改意欲在所揭示實施例之等效物之意義及範圍內。因此,熟習此項技術者將明白的是,可在不脫離本揭示案之精神及範疇的情況下對本文所揭示的實施例做出各種形式及細節變化。本文呈現的實施例之元件未必互斥,但可互換以滿足如熟習此項技術者將瞭解的各種情形。Although various embodiments have been described herein, these embodiments have been presented by way of example and not limitation. It should be understood that, based on the teachings and guidance presented herein, adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments. Accordingly, those skilled in the art will understand that various changes in form and details may be made to the embodiments disclosed herein without departing from the spirit and scope of the disclosure. Elements of the embodiments presented herein are not necessarily mutually exclusive, but may be interchanged to satisfy a variety of situations as those skilled in the art will appreciate.

本文參考如伴隨圖式中所例示的本發明之實施例詳細地描述本揭示案之實施例,在圖式中,相同元件符號用來指示相同的或功能類似的元件。對「一個實施例」、「一實施例」、「一些實施例」、「在特定實施例中」等等之涉及指示所描述的實施例可包括特定特徵、結構,或特性,但每個實施例可未必包括該特定特徵、結構,或特性。另外,此類片語未必涉及相同實施例。此外,當特定特徵、結構,或特性與一實施例相結合地加以描述時,則認為該特徵、結構,或特性在熟習此項技術者對與無論是否明確描述的其他實施例相結合地影響此特徵、結構,或特性之認識內。Embodiments of the present disclosure are described in detail herein with reference to embodiments of the invention as illustrated in the accompanying drawings, in which like reference numerals are used to indicate identical or functionally similar elements. References to "one embodiment," "an embodiment," "some embodiments," "in a particular embodiment," etc. indicate that the described embodiment may include specific features, structures, or characteristics, but each implementation Examples may not necessarily include the specific feature, structure, or characteristic. Additionally, such phrases are not necessarily referring to the same embodiment. Furthermore, when a particular feature, structure, or characteristic is described in connection with one embodiment, it is understood that the feature, structure, or characteristic will affect one skilled in the art in combination with other embodiments whether explicitly described or not. Within the understanding of this characteristic, structure, or characteristic.

實例例示而非限制本揭示案。本領域中通常遭遇且熟習此項技術者將明白的條件及參數之種類之其他合適的修改及調適在本提示案之精神及範疇內。The examples illustrate but do not limit the disclosure. Other suitable modifications and adaptations of the types of conditions and parameters commonly encountered in the art and that will be apparent to those skilled in the art are within the spirit and scope of this tip.

用來描述元件或組件的不定冠詞「一(a及an)」意味此等元件或組件中之一個或至少一個存在。儘管此等冠詞按照慣例使用來表示所修飾的名詞為單數名詞,但如本文所使用,冠詞「一(a及an)」亦包括複數,除非在特定情況下另有說明。類似地,如本文所使用的定冠詞「該」亦表示所修飾名詞可為單數的或複數的,再次除非在特定情況下另有說明。The indefinite article "a" and "an" used to describe an element or component means that one or at least one of these elements or components is present. Although these articles are conventionally used to indicate that the noun they modify is singular, as used herein, the article "a and an" also includes the plural unless otherwise stated in a particular case. Similarly, the definite article "the" as used herein also means that the noun it modifies may be singular or plural, again unless otherwise stated in a particular case.

如申請專利範圍中所使用,「包含」為開放式過渡用語。過渡用語「包含」之後的元件之列表為非排他性列表,使得除列表中具體所述的彼等者之外的元件亦可存在。如申請專利範圍中所使用,「基本上由…組成」或「基本上構成自…」將材料之組成物限制於指定的材料及本質上不影響材料之基本及新穎特性(多個)的彼等者。如申請專利範圍中所使用,「由…組成」或「完全構成自…」將材料之組成物限制於指定的材料且排除未指定的任何材料。As used in the scope of a patent application, "comprising" is an open transitional term. The list of elements following the transitional word "includes" is a non-exclusive list, such that elements other than those specifically stated in the list may be present. As used in the scope of a patent application, "consisting essentially of" or "consisting essentially of" limits the composition of a material to the specified material and those that do not materially affect the basic and novel characteristic(s) of the material. Wait. As used in a patent application, "consisting of" or "consisting entirely of" limits the composition of materials to the specified materials and excludes any materials not specified.

術語「其中」作為開放式過渡用語用來引入結構之一系列特性之敘述。The term "wherein" is used as an open-ended transitional term to introduce a description of a series of properties of a structure.

在數值之範圍在本文中敘述的情況下,包含上值及下值,除非在特定情況下另有說明,否則範圍意欲包括其端點,及範圍內的所有整數及小數。並非意欲將申請專利範圍之範疇限於限定範圍時敘述的特定值。此外,當量、濃度,或其他值或參數經給出為範圍、一或多個較佳範圍或上較佳值及下較佳值之列表時,此將理解為具體地揭示由任何上範圍限制或較佳值及任何下範圍限制或較佳值之任何對形成的所有範圍,而不管此類對是否經單獨地揭示。最後,當術語「約」使用在描述值或範圍之端點時,本發明應被理解為包括所涉及的特定值或端點。無論範圍之數值或端點是否敘述「約」,範圍之數值或端點意欲包括兩個實施例:藉由「約」修飾的一個及未藉由「約」修飾的一個。Where numerical ranges are recited herein, they include both the upper and lower values and, unless otherwise stated in a particular instance, the range is intended to include its endpoints and all integers and decimals within the range. It is not intended that the scope of the claimed scope be limited to the specific values recited in defining the scope. Furthermore, when an amount, concentration, or other value or parameter is given as a range, one or more preferred ranges, or a list of upper and lower preferred values, this will be understood to specifically disclose a limitation by any upper range. or all ranges formed by any pair of the preferred value and any lower range limit or preferred value, regardless of whether such pairs are individually disclosed. Finally, when the term "about" is used to describe a value or an endpoint of a range, the present invention should be understood to include the specific value or endpoint referred to. Regardless of whether a range value or endpoint states "about," the range value or endpoint is intended to include both embodiments: one modified by "about" and one not modified by "about."

如本文所使用,術語「約」意味量、大小、配方、參數,及其他數量及特性並非且無需為精確的,但可根據需要為近似的及/或較大的或較小的,從而反映公差、轉換因數、捨入、量測誤差等等,及熟習此項技術者已知的其他因素。As used herein, the term "about" means that quantities, sizes, formulations, parameters, and other quantities and characteristics are not and need not be precise, but may be approximate and/or larger or smaller as appropriate, thereby reflecting Tolerances, conversion factors, rounding, measurement errors, etc., and other factors known to those skilled in the art.

如本文所使用的術語「實質」、「實質上」及其變化意欲指:所描述特徵與值或描述相等或近似相等。例如,「實質上平面」表面意欲表示平面的或近似平面的表面。此外,「實質上」意欲表示兩個值相等或近似相等。在一些實施例中,「實質上」可表示在彼此之約10%內的值,例如在彼此之約5%內或彼此之約2%內的值。As used herein, the terms "substantially," "substantially," and variations thereof are intended to mean that the described feature is equal or approximately equal to the value or description. For example, a "substantially planar" surface is intended to mean a planar or approximately planar surface. Furthermore, "substantially" is intended to mean that two values are equal or approximately equal. In some embodiments, "substantially" may mean values that are within about 10% of each other, such as within about 5% of each other or within about 2% of each other.

以上已藉助於例示所呈現實施例(多個)之指定功能及關係的功能構建塊描述該等實施例。為便於描述,此等功能構建塊之邊界在本文中已任意地限定。可限定替代邊界,只要其指定功能及關係經適當地執行。The embodiments presented have been described above with the aid of functional building blocks illustrating designated functions and relationships of the embodiment(s) presented. For ease of description, the boundaries of these functional building blocks have been arbitrarily limited herein. Alternative boundaries can be defined as long as their designated functions and relationships are appropriately performed.

將理解,本文所使用的用語或術語係用於描述且非限制之目的。本揭示案之廣度及範疇不應受以上描述的示範性實施例中之任何實施例限制,但應根據以下申請專利範圍及其等效物加以限定。It is to be understood that the phraseology or terminology used herein is for the purpose of description and not of limitation. The breadth and scope of the present disclosure should not be limited by any of the exemplary embodiments described above, but should be limited in accordance with the following claims and their equivalents.

100:物件 102:積層 110:基板 112:底部表面 114:頂部表面 120:覆蓋玻璃層 122:底部表面 124:頂部表面 126:厚度 130:光學透明黏合劑層 132:底部表面 132:底部表面 134:頂部表面 136:厚度 170:曲彎半徑 172:曲彎力 180:塗層 182:底部表面 184:頂部表面 186:厚度 400:測試樣本 410:PTE基板 420:光學透明黏合劑層 430:覆蓋玻璃層 500:模型 510:覆蓋玻璃層 512:底部表面 514:頂部表面 516:厚度 518:長度 519:寬度 520:筆 522:碳化鎢球點尖端 524:半徑 200、300、600、700、800:曲線圖 1100:2D覆蓋玻璃 1102:實質上平坦中心區域 1104:倒角周邊區域 1106:頂部表面 1108:底部表面 1110:2.5D覆蓋玻璃 1112:實質上平坦中心區域 1114:彎曲周邊區域 1116:頂部表面 1118:平坦底部表面 1120:3D覆蓋玻璃 1122:實質上平坦中心區域 1124:彎曲周邊區域 1126:彎曲頂部表面 1128:彎曲底部表面 1200:消費者電子產品 1202:殼體 1204:前表面 1206:後表面 1208:側表面 1210:控制器 1212:記憶體 1214:顯示器 1220:覆蓋基板100:Object 102:Layering 110:Substrate 112: Bottom surface 114:Top surface 120: Covering glass layer 122: Bottom surface 124:Top surface 126:Thickness 130: Optically clear adhesive layer 132: Bottom surface 132: Bottom surface 134:Top surface 136:Thickness 170:bending radius 172:Bending force 180:Coating 182: Bottom surface 184:Top surface 186:Thickness 400:Test sample 410:PTE substrate 420: Optically clear adhesive layer 430: Covering glass layer 500:Model 510: Covering glass layer 512: Bottom surface 514: Top surface 516:Thickness 518:Length 519:Width 520: pen 522: Tungsten carbide ball point tip 524:radius 200, 300, 600, 700, 800: Curve graph 1100:2D cover glass 1102: Substantially flat central area 1104: Chamfer surrounding area 1106: Top surface 1108: Bottom surface 1110:2.5D cover glass 1112: Substantially flat central area 1114:Bend surrounding area 1116: Top surface 1118: Flat bottom surface 1120:3D cover glass 1122: Substantially flat central area 1124:Bend surrounding area 1126: Curved top surface 1128: Curved bottom surface 1200:Consumer electronics 1202: Shell 1204: Front surface 1206:Rear surface 1208:Side surface 1210:Controller 1212:Memory 1214:Display 1220: Covering the substrate

併入本文中的伴隨圖式形成本說明書之部分且例示本提示案之實施例。連同描述一起,圖進一步用來解釋所揭示實施例之原理且用來使熟習此項技術者能夠製作且使用所揭示實施例。此等圖意欲為例示性的,而非限制。儘管本揭示案一般地描述於此等實施例之上下文中,但應理解,不欲使本揭示案之範疇限於此等特定實施例。在圖式中,相同元件符號指示相同或功能上類似的元件。The accompanying drawings, which are incorporated in and form part of this specification, illustrate embodiments of the present disclosure. Together with the description, the drawings further serve to explain the principles of the disclosed embodiments and to enable those skilled in the art to make and use the disclosed embodiments. These figures are intended to be illustrative and not limiting. Although the disclosure is described generally in the context of these embodiments, it should be understood that there is no intention to limit the scope of the disclosure to these specific embodiments. In the drawings, identical reference numbers indicate identical or functionally similar elements.

第1圖例示根據一些實施例之物件。Figure 1 illustrates an article in accordance with some embodiments.

第2圖為用於具有帶有再拉製覆蓋玻璃層之第4圖之測試樣本組態的各種測試樣本之筆落故障高度及壓痕負載的曲線圖。Figure 2 is a graph of pen drop failure height and indentation load for various test specimens having the test specimen configuration of Figure 4 with a redrawn cover glass layer.

第3圖為用於具有帶有再拉製且化學薄化覆蓋玻璃層之第4圖之測試樣本組態的各種測試樣本之筆落故障高度及壓痕負載的曲線圖。Figure 3 is a graph of pen drop failure height and indentation load for various test specimens having the test specimen configuration of Figure 4 with a redrawn and chemically thinned cover glass layer.

第4圖例示測試樣本組態。Figure 4 illustrates the test sample configuration.

第5圖例示根據一些實施例之用以模擬筆落測試的有限元素模型。Figure 5 illustrates a finite element model used to simulate pen drop testing according to some embodiments.

第6圖為作為覆蓋玻璃層之頂部表面上的距離之函數的用於模型化積層之覆蓋玻璃層之頂部表面上的最大主應力的曲線圖。Figure 6 is a graph of the maximum principal stress on the top surface of the cover glass layer as a function of distance on the top surface of the cover glass layer for modeling the build-up.

第7圖為作為覆蓋玻璃層之底部表面上的距離之函數的用於模型化積層之覆蓋玻璃層之底部表面上的最大主應力的曲線圖。Figure 7 is a graph of the maximum principal stress on the bottom surface of the cover glass layer as a function of distance on the bottom surface of the cover glass layer for modeling the build-up.

第8圖為作為覆蓋玻璃層厚度之函數的用於模型化積層之覆蓋玻璃層之底部表面上的最大應力的曲線圖。Figure 8 is a graph of maximum stress on the bottom surface of a cover glass layer used to model build-up as a function of cover glass layer thickness.

第9圖例示在物件彎曲時的第1圖之物件的橫截面圖。Figure 9 illustrates a cross-sectional view of the object of Figure 1 when the object is bent.

第10圖例示根據一些實施例之包括塗層之物件。Figure 10 illustrates an article including a coating in accordance with some embodiments.

第11A圖至第11C圖例示根據各種實施例之覆蓋玻璃層。Figures 11A-11C illustrate cover glass layers according to various embodiments.

第12圖例示根據一些實施例之消費者產品。Figure 12 illustrates a consumer product according to some embodiments.

國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic storage information (please note in order of storage institution, date and number) without

國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Overseas storage information (please note in order of storage country, institution, date, and number) without

200:曲線圖 200: Curve graph

Claims (11)

一種玻璃物件,包含:一積層,該積層包含:一基板;一覆蓋玻璃層,該覆蓋玻璃層結合至該基板之一頂部表面,該覆蓋玻璃層包含在1微米至49微米之一範圍內的一厚度;以及一光學透明黏合劑層,該光學透明黏合劑層包含在5微米至50微米之一範圍內的一厚度,該光學透明黏合劑層將該覆蓋玻璃層之一底部表面結合至該基板之該頂部表面,其中該覆蓋玻璃層包含一含鹼鋁矽酸鹽玻璃,該含鹼鋁矽酸鹽玻璃包含0.01莫耳%至0.08莫耳%的SnO2A glass article comprising: a laminate comprising: a substrate; a cover glass layer bonded to a top surface of the substrate, the cover glass layer comprising a a thickness; and an optically clear adhesive layer, the optically clear adhesive layer comprising a thickness in the range of 5 microns to 50 microns, the optically clear adhesive layer bonding a bottom surface of the cover glass layer to the The top surface of the substrate, wherein the cover glass layer includes an alkali-containing aluminosilicate glass, the alkali-containing aluminosilicate glass including 0.01 mol% to 0.08 mol% SnO 2 . 如請求項1所述之玻璃物件,其中該覆蓋玻璃層以該光學透明黏合劑層直接結合至該基板之該頂部表面。 The glass article of claim 1, wherein the cover glass layer is directly bonded to the top surface of the substrate with the optically clear adhesive layer. 如請求項1所述之玻璃物件,其中以下之至少一者:該積層達成3mm之一曲彎半徑;該積層包含藉由該覆蓋玻璃層在一穿刺測試中的2.25公斤-力或更大之一穿刺負載處避免故障之能力 所界定的一抗衝擊性;或該積層包含藉由該覆蓋玻璃層在8公分或更大之一筆落高度處避免故障之能力所界定的一抗衝擊性,其中該筆落高度係根據一筆落測試量測。 The glass article of claim 1, wherein at least one of the following: the laminate achieves a bending radius of 3 mm; the laminate includes 2.25 kg-force or greater in a puncture test by the cover glass layer Ability to avoid failure at the puncture load site an impact resistance as defined; or the laminate includes an impact resistance as defined by the ability of the cover glass layer to avoid failure at a drop height of 8 cm or greater, where the drop height is based on a drop height of 8 cm or greater Test measurements. 如請求項1至3中任一項所述之玻璃物件,其中該覆蓋玻璃層包含:55莫耳%至70莫耳%的SiO2;10莫耳%至20莫耳%的Al2O3;以及10莫耳%至20莫耳%的Na2O,且其中該覆蓋玻璃層包含在該覆蓋玻璃層之一頂部表面或該底部表面中之至少一者處的一壓縮應力,及至少在貫穿該覆蓋玻璃層之該厚度的兩個點處不同的一金屬氧化物濃度。 The glass object according to any one of claims 1 to 3, wherein the cover glass layer contains: 55 mol% to 70 mol% SiO 2 ; 10 mol% to 20 mol% Al 2 O 3 ; and 10 mol% to 20 mol% Na 2 O, and wherein the cover glass layer includes a compressive stress at at least one of a top surface or the bottom surface of the cover glass layer, and at least A metal oxide concentration that is different at two points through the thickness of the cover glass layer. 如請求項1至3中任一項所述之玻璃物件,包含一塗層,該塗層設置在該覆蓋玻璃層之一頂部表面上,且其中該塗層包含選自由以下者組成之群組中的一塗層:一防反射塗層、一防光眩塗層、一防指紋塗層、一防碎片塗層、一抗菌塗層及一易於清潔的塗層。 The glass article of any one of claims 1 to 3, comprising a coating disposed on a top surface of the cover glass layer, and wherein the coating comprises a group selected from the group consisting of One of the coatings: an anti-reflective coating, an anti-glare coating, an anti-fingerprint coating, an anti-fragment coating, an anti-bacterial coating and an easy-to-clean coating. 如請求項1至3中任一項所述之玻璃物件,其中該積層缺乏設置在該覆蓋玻璃層之一頂部表面上的一聚合硬塗層。 The glass article of any one of claims 1 to 3, wherein the laminate lacks a polymeric hardcoat disposed on a top surface of the cover glass layer. 如請求項1至3中任一項所述之玻璃物件,其中該物件為一消費者電子產品且該基板包含一電子顯示器,該消費者電子產品包含:一殼體,該殼體包含一前表面、一後表面及側表面;以及電氣組件,該等電氣組件至少部分地定位在該殼體內,該等電氣組件包含一控制器、一記憶體及該電子顯示器,該電子顯示器在該殼體之該前表面處或鄰近該殼體之該前表面,其中該覆蓋玻璃層形成該殼體之至少一部分。 The glass object according to any one of claims 1 to 3, wherein the object is a consumer electronic product and the substrate includes an electronic display, the consumer electronic product includes: a shell, the shell includes a front surface, a rear surface and side surfaces; and electrical components at least partially positioned within the housing, the electrical components including a controller, a memory and the electronic display, the electronic display being in the housing The front surface is at or adjacent to the front surface of the housing, wherein the cover glass layer forms at least a portion of the housing. 如請求項1所述之玻璃物件,其中該含鹼鋁矽酸鹽玻璃包含0.04莫耳%至0.08莫耳%的SnO2The glass article of claim 1, wherein the alkali-containing aluminosilicate glass contains 0.04 mol% to 0.08 mol% SnO 2 . 一種製作一積層之方法,該方法包含以下步驟:將一覆蓋玻璃層結合至一基板之一頂部表面,該覆蓋玻璃層包含在1微米至49微米之範圍內的一厚度,其中該覆蓋玻璃層之一底部表面以一光學透明黏合劑層結合至該基板之該頂部表面,該光學透明黏合劑層包含在5微米至50微米之一範圍內的一厚度,且其中該覆蓋玻璃層包含一含鹼鋁矽酸鹽玻璃,該含 鹼鋁矽酸鹽玻璃包含0.01莫耳%至0.08莫耳%的SnO2A method of making a build-up, the method comprising the steps of bonding a cover glass layer to a top surface of a substrate, the cover glass layer comprising a thickness in the range of 1 micron to 49 microns, wherein the cover glass layer A bottom surface is bonded to the top surface of the substrate with an optically clear adhesive layer, the optically clear adhesive layer includes a thickness in a range of 5 microns to 50 microns, and wherein the cover glass layer includes a Alkali aluminosilicate glass, the alkali-containing aluminosilicate glass contains 0.01 mol% to 0.08 mol% SnO 2 . 如請求項9所述之方法,進一步包含以下步驟:以一再拉製製程形成該覆蓋玻璃層,其中該再拉製製程包含將該覆蓋玻璃層再拉製至該覆蓋玻璃層之該厚度。 The method of claim 9, further comprising the step of forming the cover glass layer in a re-drawing process, wherein the re-drawing process includes re-drawing the cover glass layer to the thickness of the cover glass layer. 如請求項9或10所述之方法,進一步包含以下步驟:以一塗層塗佈該覆蓋玻璃層之一頂部表面。 The method of claim 9 or 10, further comprising the step of coating a top surface of the cover glass layer with a coating.
TW108128838A 2018-08-24 2019-08-14 Article comprising puncture resistant laminate with ultra-thin glass layer TWI825147B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862722309P 2018-08-24 2018-08-24
US62/722,309 2018-08-24

Publications (2)

Publication Number Publication Date
TW202019696A TW202019696A (en) 2020-06-01
TWI825147B true TWI825147B (en) 2023-12-11

Family

ID=67766404

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108128838A TWI825147B (en) 2018-08-24 2019-08-14 Article comprising puncture resistant laminate with ultra-thin glass layer

Country Status (7)

Country Link
US (1) US20210178730A1 (en)
EP (1) EP3840947A1 (en)
JP (1) JP2021536389A (en)
KR (1) KR20210049838A (en)
CN (1) CN112703105A (en)
TW (1) TWI825147B (en)
WO (1) WO2020041032A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3792229A4 (en) * 2018-07-13 2022-03-02 Central Glass Company, Limited Laminated glass for automotive windshields, and method for producing same
KR20210113512A (en) * 2020-03-06 2021-09-16 삼성디스플레이 주식회사 Cover window and display device including the same
CN112068342A (en) * 2020-08-27 2020-12-11 惠州市华星光电技术有限公司 Display screen and electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108351547A (en) * 2015-10-13 2018-07-31 康宁股份有限公司 Flexible electronic-component module, product and its manufacturing method

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467490B2 (en) * 2007-08-03 2014-04-09 日本電気硝子株式会社 Method for producing tempered glass substrate and tempered glass substrate
JP5777109B2 (en) 2008-07-29 2015-09-09 コーニング インコーポレイテッド Two-stage ion exchange for chemical strengthening of glass
US8439808B2 (en) 2008-09-08 2013-05-14 Brian H Hamilton Bicycle trainer with variable resistance to pedaling
TWM359148U (en) 2009-01-05 2009-06-11 Samya Technology Co Ltd Universal battery charger
EP2404228B1 (en) * 2009-03-02 2020-01-15 Apple Inc. Techniques for strengthening glass covers for portable electronic devices
US8771532B2 (en) 2009-03-31 2014-07-08 Corning Incorporated Glass having anti-glare surface and method of making
US8598771B2 (en) 2009-09-15 2013-12-03 Corning Incorporated Glass and display having anti-glare properties
US8795812B2 (en) 2010-02-24 2014-08-05 Corning Incorporated Oleophobic glass substrates
US8992786B2 (en) 2010-04-30 2015-03-31 Corning Incorporated Anti-glare surface and method of making
US9017566B2 (en) 2010-04-30 2015-04-28 Corning Incorporated Anti-glare surface treatment method and articles thereof
US9085484B2 (en) 2010-04-30 2015-07-21 Corning Incorporated Anti-glare surface treatment method and articles thereof
US8973401B2 (en) 2010-08-06 2015-03-10 Corning Incorporated Coated, antimicrobial, chemically strengthened glass and method of making
US9272947B2 (en) 2011-05-02 2016-03-01 Corning Incorporated Glass article having antireflective layer and method of making
WO2013078279A2 (en) 2011-11-23 2013-05-30 Corning Incorporated Smudge-resistant glass articles and methods for making and using same
TWI564409B (en) 2011-11-30 2017-01-01 康寧公司 Optical coating method, apparatus and product
KR20140098178A (en) 2011-11-30 2014-08-07 코닝 인코포레이티드 Process for making of glass articles with optical and easy-to-clean coatings
US9785299B2 (en) * 2012-01-03 2017-10-10 Synaptics Incorporated Structures and manufacturing methods for glass covered electronic devices
WO2013106629A2 (en) 2012-01-13 2013-07-18 Corning Incorporated Reflection-resistant glass articles and methods for making and using same
US20130183489A1 (en) 2012-01-13 2013-07-18 Melissa Danielle Cremer Reflection-resistant glass articles and methods for making and using same
WO2014059263A1 (en) * 2012-10-12 2014-04-17 Corning Incorporated Articles having retained strength
JP6195941B2 (en) * 2013-03-15 2017-09-13 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. Flexible ultra-thin chemically tempered glass
US20140322547A1 (en) * 2013-04-30 2014-10-30 Corning Incorporated Antimicrobial Glass Articles and Methods for Making and Using Same
KR102325927B1 (en) * 2013-10-14 2021-11-15 코닝 인코포레이티드 Glass articles having films with moderate adhesion and retained strength
CN112919828A (en) * 2013-10-14 2021-06-08 康宁股份有限公司 Ion exchange method and chemically strengthened glass substrate obtained by the ion exchange method
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
JP6615520B2 (en) * 2015-07-15 2019-12-04 日東電工株式会社 Optical laminate
EP3909927A1 (en) * 2015-12-11 2021-11-17 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
KR102608263B1 (en) * 2016-08-10 2023-12-04 삼성디스플레이 주식회사 Window substrate and display device having the same
US11155492B2 (en) * 2016-09-23 2021-10-26 Nippon Sheet Glass Company, Limited Cover glass and display using same
CN111542941B (en) * 2017-10-11 2023-07-04 康宁公司 Foldable electronic device module with impact resistance and bending resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108351547A (en) * 2015-10-13 2018-07-31 康宁股份有限公司 Flexible electronic-component module, product and its manufacturing method

Also Published As

Publication number Publication date
US20210178730A1 (en) 2021-06-17
CN112703105A (en) 2021-04-23
EP3840947A1 (en) 2021-06-30
JP2021536389A (en) 2021-12-27
WO2020041032A1 (en) 2020-02-27
KR20210049838A (en) 2021-05-06
TW202019696A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
US11709291B2 (en) Fiberglass composite cover for foldable electronic display and methods of making the same
CN108463339B (en) Foldable electronic device assembly and cover element therefor
TWI805688B (en) Foldable glass article including an optically transparent polymeric hard-coat and methods of making the same
TWI825147B (en) Article comprising puncture resistant laminate with ultra-thin glass layer
US11752730B2 (en) Bendable glass stack assemblies and methods of making the same
JP2018067709A (en) Electronic device structure and ultra-thin glass sheet used therein
JP2022546475A (en) Foldable device, foldable substrate, and method of making same
TW201902699A (en) Flexible laminate comprising anisotropic layers
TWI780166B (en) Coated articles that include easy-to-clean coatings
JP2020521699A (en) Flexible ultra-thin glass with high contact resistance
JP2020525308A (en) Bendable laminate including structured island layers and method of making same
CN113039166B (en) Flexible glass cover plate with polymer coating
JP2020521700A (en) Flexible ultra-thin glass with high contact resistance
US20220282130A1 (en) Bendable articles including adhesive layer with a dynamic elastic modulus
US20230301002A1 (en) Cover articles with high hardness and anti-reflective properties for infrared sensors
WO2021026408A1 (en) Thin flexible glass cover with a fragment retention hard coating
US20230364888A1 (en) Foldable apparatus
WO2023081046A1 (en) Foldable substrates and methods of making
TW202335331A (en) Cold-formed oled displays with split neutral planes and methods for fabricating the same
WO2023177614A1 (en) Foldable apparatus and method of making the same