TWI825021B - Mmp13 binding immunoglobulins - Google Patents

Mmp13 binding immunoglobulins Download PDF

Info

Publication number
TWI825021B
TWI825021B TW107119216A TW107119216A TWI825021B TW I825021 B TWI825021 B TW I825021B TW 107119216 A TW107119216 A TW 107119216A TW 107119216 A TW107119216 A TW 107119216A TW I825021 B TWI825021 B TW I825021B
Authority
TW
Taiwan
Prior art keywords
polypeptide
seq
mmp13
isvd
amino acid
Prior art date
Application number
TW107119216A
Other languages
Chinese (zh)
Other versions
TW201906870A (en
Inventor
法蘭斯 戴斯
傑拉德 貝斯特
蓋 赫曼斯
漢斯 古林
拉斯 托萊基斯
克里斯多福 萊德爾
Original Assignee
德商麥克專利有限公司
比利時商艾柏靈斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商麥克專利有限公司, 比利時商艾柏靈斯公司 filed Critical 德商麥克專利有限公司
Publication of TW201906870A publication Critical patent/TW201906870A/en
Application granted granted Critical
Publication of TWI825021B publication Critical patent/TWI825021B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/22Immunoglobulins specific features characterized by taxonomic origin from camelids, e.g. camel, llama or dromedary
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/31Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin

Abstract

The present invention relates to immunoglobulins that specifically bind MMP13 and more in particular to polypeptides, nucleic acids encoding such polypeptides; to methods for preparing such polypeptides; to compositions and in particular to pharmaceutical compositions that comprise such polypeptides, for prophylactic, therapeutic or diagnostic purposes. In particular, the immunoglobulins of the present invention inhibit an activity of MMP13 and preferably are also stable.

Description

與MMP13結合之免疫球蛋白Immunoglobulin that binds to MMP13

本發明關於與MMP13結合之免疫球蛋白,且更特別關於多肽,其包含或基本上由一或多個此等免疫球蛋白(在本文亦分別稱為〝本發明之免疫球蛋白〞及〝本發明之多肽〞)所組成。本發明亦關於包含此等免疫球蛋白或多肽以及編碼此等免疫球蛋白或多肽之核酸(在本文亦稱為〝本發明之核酸〞)的構築體;製備此等免疫球蛋白、多肽及構築體之方法;表現或能夠表現此等免疫球蛋白或多肽之宿主細胞;包含此等免疫球蛋白、多肽、構築體、核酸及/或宿主細胞之組成物及特別為醫藥組成物;及免疫球蛋白、多肽、構築體、核酸、宿主細胞及/或組成物之用途,特別用於預防及/或治療目的,諸如本文所提及之預防及/或治療目的。本發明之其他態樣、實施態樣、優點及應用係自本文進一步的說明而變得明確。The present invention relates to immunoglobulins that bind to MMP13, and more particularly to polypeptides that comprise or consist essentially of one or more such immunoglobulins (also referred to herein as "immunoglobulins of the invention" and "the immunoglobulins of the invention", respectively). Composed of the polypeptide of the invention"). The invention also relates to constructs comprising such immunoglobulins or polypeptides and nucleic acids encoding such immunoglobulins or polypeptides (also referred to herein as "nucleic acids of the invention"); preparation of such immunoglobulins, polypeptides and constructs methods; host cells expressing or capable of expressing such immunoglobulins or polypeptides; compositions and particularly pharmaceutical compositions including such immunoglobulins, polypeptides, constructs, nucleic acids and/or host cells; and immunoglobulins Use of proteins, polypeptides, constructs, nucleic acids, host cells and/or compositions, particularly for prophylactic and/or therapeutic purposes, such as those mentioned herein. Other aspects, implementation aspects, advantages and applications of the present invention will become apparent from the further description herein.

骨關節炎(OA)為全世界最常見的殘疾原因之一。其影響3000萬美國人且為最常見的關節疾患。預計至2025年影響超過20%之美國人口。該疾病不為全身性且通常侷限於少數關節。然而,疾病可發生在所有的關節中,最常為膝蓋、髖部、手和脊柱。OA係以關節軟骨(覆蓋骨骼的軟骨)的進行性侵蝕為特徵,導致慢性疼痛和殘疾。最終,疾病導致關節軟骨完全破壞,骨下組織硬化,骨贅形成等,全部皆導致運動喪失和疼痛。疼痛是OA最明顯的症狀且為患者尋求醫療幫助的最常見原因。OA無法治癒;疾病管理僅限於最好的姑息治療且幾乎無法解決疾病進展的根本原因。   可定義為抑制結構性疾病進展且亦理想地改善症狀及/或功能之藥物的改善疾病之抗骨關節炎藥物(DMOAD)廣受歡迎。DMOAD很可能為老齡化人口的此慢性病中之長期處方,因此要求在具有多重合併症及藥物-藥物相互作用潛在性之標的人口中極好的安全性數據。   骨關節炎可定義為多樣性症狀群組,其以關節症狀、源自關節軟骨缺陷的徵兆及鄰近組織(包括骨骼、肌腱和肌肉)的變化之組合為特徵。關節軟骨中最大量的組份為蛋白聚糖及膠原蛋白(最重要為膠原蛋白II)。軟骨中的主要蛋白聚糖為聚集蛋白聚糖(Aggrecan)。儘管疾病起始可為多因素的,但是軟骨破壞似乎是不受控制的蛋白水解細胞外基質破壞(ECM)的結果。   如上文所述,軟骨細胞外基質的主要組份為聚集蛋白聚糖(Kiani等人之2002 Cell Research 12:19-32)。此分子在關節軟骨的正常功能中具有重要性,因為其提供水合凝膠結構,賦予軟骨承重特性。聚集蛋白聚糖為以軟骨細胞表現的大型多模組份子(2317個胺基酸)。其核心蛋白質係由三個球狀域(G1、G2和G3)及介於G2與G3之間用於糖胺聚糖鏈附著的大型延伸區所組成。此延伸區包含兩個域,一個係由硫酸角質素鏈(KS域)所取代及一個由硫酸軟骨素鏈(CS域)所取代。CS域具有與其附著的100至150個糖胺聚糖(GAG)鏈。聚集蛋白聚糖係與玻尿酸形成大型複合物,其中50至100個聚集蛋白聚糖分子係經由G1域相互作用且以一個玻尿酸分子連結蛋白質。一旦攝取水時(由於GAG含量),該等複合物形成抵抗壓縮的可逆式變形凝膠。關節軟骨的結構、液體保留性及功能係與聚集蛋白聚糖的基質含量及與完整核心蛋白質結合之硫酸軟骨素的量相關聯。   第II型膠原蛋白(膠原蛋白II,Col II)佔關節軟骨之50%。膠原蛋白原纖維形成網絡,容許軟骨捕陷蛋白聚糖以及提供組織強度。膠原蛋白為由三個平行左旋聚脯胺酸II型(PPII)螺旋的右旋束所組成之結構蛋白質。由於PPII螺旋緊密堆積在三重螺旋內,每第三個殘基(其為胺基酸)為Gly(甘胺酸)。因為甘胺酸為沒有側鏈的最小胺基酸,所以其在纖維結構蛋白質中扮演獨特的角色。在膠原蛋白中,Gly必須在每第三個位置上,因為三重螺旋的組合體使此殘基置於螺旋的內部(軸上),在此沒有空間用於比甘胺酸的單一氫原子更大的側基團。   OA之特徵在於1)聚集蛋白聚糖的降解,進行性釋放域G3和G2(導致軟骨〝除脹〞)且最終釋放G1域,及2)膠原蛋白的降解,不可逆地破壞軟骨結構。   有令人信服的證據證明基質金屬蛋白酶(MMP)在與OA相關聯的組織破壞中具有重要的角色。MMP為涉及細胞外基質降解及組織重塑之鋅依賴性內肽酶家族。有約莫28個MMP家族成員,可分類成各種子群,包括膠原蛋白酶、明膠酶、基質溶解素、膜型MMP、基質分解素、釉質溶解素(enamelysin)及其他等。包含MMP1、MMP8、MMP13和MMP18之膠原蛋白酶能夠降解三重螺旋原纖維膠原蛋白成特別的3/4及1/4片段。另外,MMP14亦顯示出切割纖維狀膠原蛋白且有MMP2亦能夠膠原纖維溶解的證據。MMP長期被認為是治療OA之誘人的治療靶標。然而,經開發用於治療關節炎之廣效性MMP抑制劑係由於被稱為肌肉骨骼症候群(MSS)之疼痛的關節僵硬副作用而於臨床試驗中失敗。咸信MSS係由多種MMP的非選擇性抑制而引起。   Nam等人(2017 Proc Natl Acad Sci USA 113:14970-14975)說明了顯然特別針對MMP14之活性位點的奈米抗體。   OA之治療干預亦受到藥物難以靶向關節軟骨之阻礙。因為關節軟骨為無血管及無淋巴組織,所以傳統的藥物遞送途徑(經口、靜脈內、肌肉內)最終依賴於藥物以被動擴散自滑膜毛細血管至軟骨的經滑膜轉移。因此,在沒有使藥物選擇性地靶向軟骨之機制存在下,必需使身體全身暴露於高藥物濃度以達成持續的關節內治療劑量。由於高度全身暴露,使用於OA的大多數傳統療法受到嚴重毒性的困擾。   另外,大多數新開發的DMOAD在關節中具有短的滯留時間,即使當經關節內投予時(Edwards之2011 Vet. J. 190:15-21;Larsen等人之2008 J Pham Sci 97:4622-4654)。治療性蛋白質的關節內(IA)遞送受限於彼等自關節空間快速清除及在軟骨內缺乏保留性。藥物在關節中的滑膜滯留時間時常少於24小時。由於大多數的IA注射藥物之快速清除,總是需要經常注射以維持有效的濃度(Owen等人之1994 Br. J. Clin Pharmacol. 38:349-355)。然而,由於疼痛及不適性而不希望經常的IA注射,注射可能引起挑戰患者的順從性以及引入關節感染的風險。   對有效的DMOAD仍有需求。Osteoarthritis (OA) is one of the most common causes of disability worldwide. It affects 30 million Americans and is the most common joint disorder. It is expected to affect more than 20% of the US population by 2025. The disease is not systemic and is usually localized to a few joints. However, the disease can occur in all joints, most commonly the knees, hips, hands, and spine. OA is characterized by the progressive erosion of articular cartilage (the cartilage covering bones), leading to chronic pain and disability. Eventually, the disease leads to complete destruction of the articular cartilage, hardening of the underlying tissue, and formation of osteophytes, all of which lead to loss of motion and pain. Pain is the most obvious symptom of OA and the most common reason patients seek medical help. There is no cure for OA; disease management is limited to the best palliative care and rarely addresses the underlying causes of disease progression. Disease-modifying anti-osteoarthritis drugs (DMOADs), which can be defined as drugs that inhibit the progression of structural disease and also ideally improve symptoms and/or function, are gaining popularity. DMOADs are likely to be prescribed long-term in this chronic condition in an aging population, thus requiring excellent safety data in a population with multiple comorbidities and potential for drug-drug interactions. Osteoarthritis can be defined as a diverse group of symptoms characterized by a combination of joint symptoms, signs arising from defects in articular cartilage, and changes in adjacent tissues, including bone, tendons, and muscles. The largest components in articular cartilage are proteoglycans and collagen (the most important is collagen II). The main proteoglycan in cartilage is aggrecan. Although disease initiation can be multifactorial, cartilage destruction appears to be the result of uncontrolled proteolytic extracellular matrix destruction (ECM). As mentioned above, the main component of the cartilage extracellular matrix is aggrecan (Kiani et al. 2002 Cell Research 12:19-32). This molecule is important in the normal function of articular cartilage because it provides a hydrated gel structure that gives the cartilage its load-bearing properties. Aggrecan is a large multimodular molecule (2317 amino acids) expressed in chondrocytes. Its core protein is composed of three globular domains (G1, G2 and G3) and a large extended region between G2 and G3 for glycosaminoglycan chain attachment. This extension contains two domains, one substituted by a keratan sulfate chain (KS domain) and one substituted by a chondroitin sulfate chain (CS domain). The CS domain has 100 to 150 glycosaminoglycan (GAG) chains attached to it. Aggrecan forms a large complex with hyaluronic acid, in which 50 to 100 aggrecan molecules interact through the G1 domain and link the protein with one hyaluronic acid molecule. Upon ingestion of water (due to the GAG content), these complexes form a reversibly deformable gel that resists compression. The structure, fluid retention and function of articular cartilage are related to the matrix content of aggrecan and the amount of chondroitin sulfate bound to the intact core protein. Type II collagen (collagen II, Col II) accounts for 50% of articular cartilage. Collagen fibrils form a network that allows cartilage to trap proteoglycans and provide tissue strength. Collagen is a structural protein composed of three right-handed bundles of parallel left-handed polyproline type II (PPII) helices. Since the PPII helices are tightly packed within the triple helix, every third residue (which is an amino acid) is Gly (glycine). Because glycine is the smallest amino acid without side chains, it plays a unique role in fibrous structural proteins. In collagen, Gly must be in every third position because the assembly of the triple helix places this residue in the interior (on the axis) of the helix, where there is no room for more than the single hydrogen atom of glycine. Large side groups. OA is characterized by 1) degradation of aggrecan, progressive release of domains G3 and G2 (resulting in "debulking" of cartilage) and eventual release of domain G1, and 2) degradation of collagen, irreversible destruction of cartilage structure. There is compelling evidence that matrix metalloproteinases (MMPs) play an important role in the tissue destruction associated with OA. MMPs are a family of zinc-dependent endopeptidases involved in extracellular matrix degradation and tissue remodeling. There are approximately 28 MMP family members, which can be classified into various subgroups, including collagenases, gelatinases, stromelysins, membrane-type MMPs, stromelysins, enamelysins, and others. Collagenase including MMP1, MMP8, MMP13 and MMP18 can degrade triple helical fibrillar collagen into special 3/4 and 1/4 fragments. In addition, MMP14 also showed evidence of cleaving fibrillar collagen and MMP2 was also able to dissolve collagen fibers. MMPs have long been considered as attractive therapeutic targets for the treatment of OA. However, broad-spectrum MMP inhibitors developed to treat arthritis failed in clinical trials due to painful joint stiffness side effects known as musculoskeletal syndrome (MSS). MSS is believed to be caused by non-selective inhibition of various MMPs. Nam et al. (2017 Proc Natl Acad Sci USA 113:14970-14975) describe nanobodies apparently specifically targeting the active site of MMP14. Therapeutic intervention of OA is also hindered by the difficulty of targeting articular cartilage with drugs. Because articular cartilage is an avascular and alymphoid tissue, traditional drug delivery routes (oral, intravenous, intramuscular) ultimately rely on transsynovial transfer of drugs via passive diffusion from synovial capillaries to cartilage. Therefore, in the absence of a mechanism to selectively target drugs to cartilage, systemic exposure of the body to high drug concentrations is necessary to achieve sustained intra-articular therapeutic doses. Most traditional therapies used for OA suffer from severe toxicity due to high systemic exposure. Additionally, most newly developed DMOADs have short residence times in joints, even when administered intra-articularly (Edwards 2011 Vet. J. 190:15-21; Larsen et al. 2008 J Pham Sci 97:4622 -4654). Intra-articular (IA) delivery of therapeutic proteins is limited by their rapid clearance from the joint space and lack of retention within cartilage. The synovial residence time of drugs in joints is often less than 24 hours. Due to the rapid clearance of most IA injected drugs, frequent injections are always required to maintain effective concentrations (Owen et al. 1994 Br. J. Clin Pharmacol. 38:349-355). However, frequent IA injections are undesirable due to pain and discomfort, and injections may pose challenges to patient compliance and introduce the risk of joint infection. There is still a need for effective DMOAD.

本發明的目標係提供針對OA之多肽,其與先前技術胺基酸序列及抗體相比而具有改進之預防、治療及/或藥理學特性,以及其他有利的特性(諸如例如改進之製備容易性、良好的穩定性及/或降低的商品成本)。特別地,本發明的目標係提供用於抑制MMP及尤其用於抑制MMP13之免疫球蛋白單可變域(ISVD)及包含彼等之多肽。   本發明者推測抑制MMP13之酶活性的最好區域會是提高針對催化袋之ISVD。然而,這成為重大的挑戰。特別地,MMP13經分泌為無活性的前形式(proMMP13),其中前域遮蔽催化袋,因為如此,使催化袋不易獲得來提高免疫反應。另一方面,活化之MMP13具有短的半衰期,主要由於自體蛋白分解。此外,即使在本發明者克服了前兩個問題之後,結果使各種物種之間的催化域之高序列保守性放棄強大的免疫反應。   最後,本發明者能夠藉由獨創開發的新工具及非常規篩選方法以應對該等挑戰。   ISVD係自不同的篩選試驗系列(campaign)分離且進一步工程化以具有多樣及有利的特徵,包括穩定性、親和力及抑制活性。與MMP13結合的本發明之單價ISVD勝過比較藥物。包含不太適宜抑制MMP13活性的ISVD之雙互補位(Biparatopic)多肽甚至更有效力。   因此,本發明關於包含至少1個與基質金屬蛋白酶(MMP)結合且較佳地與基質金屬蛋白酶MMP13結合之免疫球蛋白單可變域(ISVD)的多肽。本發明亦包括包含二或更多個各自單獨地與MMP13特異性結合之ISVD的多肽,其中   a) 至少〝第一〞ISVD係與MMP13之第一抗原決定子、抗原決定區、部分、域、次單元或構形特異性結合;及其中   b) 至少〝第二〞ISVD係與MMP13之第二抗原決定子、抗原決定區、部分、域、次單元或構形特異性結合,其分別不同於第一抗原決定子、抗原決定區、部分、域、次單元或構形。   亦提供包含與基質金屬蛋白酶(MMP)結合之單可變域(ISVD)及與軟骨蛋白聚糖且較佳為聚集蛋白聚糖(Aggrecan)結合之另一單可變域(ISVD)的本發明之多肽。   另一態樣關於用作為藥劑的根據本發明之多肽。又另一態樣關於治療預防個體疾病或疾患之方法,例如其中涉及MMP13活性,該方法包含對該個體投予有效治療或預防該疾病或疾患症狀的量之根據本發明之多肽。   多肽及組成物的其他態樣、優點、應用及用途係自本文進一步的揭示而變得明確。在本說明書的整篇文章中引用了許多文件。將本文無論於上文或下文所引用之每一篇文件(包括所有專利、專利申請、科學出版物、製造商說明書、教導等)特此藉由提及而併入彼等全文。本文的任何內容不應被解釋為承認本發明無權由於先前發明而使此等揭示內容日期居先。It is an object of the present invention to provide polypeptides against OA which have improved preventive, therapeutic and/or pharmacological properties compared to prior art amino acid sequences and antibodies, as well as other advantageous properties such as, for example, improved ease of preparation. , good stability and/or reduced cost of goods). In particular, it is an object of the present invention to provide immunoglobulin single variable domains (ISVDs) and polypeptides comprising them for the inhibition of MMPs and in particular for the inhibition of MMP13. The inventors speculate that the best area to inhibit the enzymatic activity of MMP13 would be to increase ISVD against the catalytic pocket. However, this becomes a major challenge. In particular, MMP13 is secreted as an inactive pro-form (proMMP13), in which the prodomain obscures the catalytic pocket and, as such, makes the catalytic pocket less accessible to enhance immune responses. On the other hand, activated MMP13 has a short half-life, mainly due to autologous proteolysis. Furthermore, even after the inventors overcame the first two problems, the high sequence conservation of the catalytic domain between various species resulted in foregoing a robust immune response. Finally, the inventors were able to address these challenges through innovatively developed new tools and unconventional screening methods. ISVDs were isolated from different screening campaigns and further engineered to possess diverse and advantageous characteristics, including stability, affinity and inhibitory activity. Monovalent ISVDs of the invention that bind to MMP13 outperform comparative drugs. Biparatopic peptides containing ISVDs less suitable for inhibiting MMP13 activity were even more potent. Therefore, the present invention relates to a polypeptide comprising at least one immunoglobulin single variable domain (ISVD) that binds to a matrix metalloproteinase (MMP) and preferably to the matrix metalloproteinase MMP13. The invention also includes polypeptides comprising two or more ISVDs that each individually specifically bind to MMP13, wherein a) at least the "first" ISVD is bound to a first epitope, epitope, part, domain, Subunit or conformation specific binding; and wherein b) at least the "second" ISVD specifically binds to a second epitope, epitopic region, portion, domain, subunit or conformation of MMP13 that is different from A first epitope, epitope, part, domain, subunit or configuration. The invention also provides an invention comprising a single variable domain (ISVD) that binds to a matrix metalloproteinase (MMP) and another single variable domain (ISVD) that binds to a cartilage proteoglycan, preferably aggrecan. of peptides. Another aspect concerns the polypeptide according to the invention for use as a medicament. Yet another aspect relates to a method of treating or preventing a disease or disorder in an individual, for example involving MMP13 activity, the method comprising administering to the individual an amount of a polypeptide according to the invention effective to treat or prevent symptoms of the disease or disorder. Other aspects, advantages, applications and uses of polypeptides and compositions will become clear from further disclosure herein. Throughout this specification a number of documents are referenced. Every document cited herein, whether above or below (including all patents, patent applications, scientific publications, manufacturer's instructions, teachings, etc.), is hereby incorporated by reference in its entirety. Nothing contained herein should be construed as an admission that the present invention is not entitled to antedate the date of these disclosures by virtue of prior invention.

對安全且有效的OA藥劑仍有需求。該等藥劑應符合各種及經常對立的要求,尤其當想成要廣泛可應用的格式(format)時。確切而言,該格式較佳地應可用於廣泛的患者。該格式較佳地應為安全的且不由於經常的IA投予而誘發感染。另外,該格式較佳地應對患者友善。例如,該格式應在關節中具有延長的半衰期,使得該格式不在投予時即刻移除。然而,延長半衰期較佳地不應引入脫靶活性及副作用或限制功效。   本發明實現該等要求中之至少一者。   基於非常規篩選,特徵化及組合策略,本發明者驚訝地觀察到免疫球蛋白單可變域(ISVD)在試管內及活體內實驗中表現異常良好。   而且,本發明者能夠重建ISVD以勝過比較藥物。在雙互補位模式中,此性能不僅得以保留,且甚至得以改善。   另一方面,亦展現本發明之ISVD比比較分子顯著更有效。   本發明提供拮抗MMP(特別為MMP13)之多肽,與比較分子相比而具有改進之預防、治療及/或藥理學特性,包括更安全的概況圖。   因此,本發明關於針對MMP及/或可與MMP特異性結合(如本文所定義)且調節其活性之ISVD及多肽,較佳地該MMP係選自由下列所組成之群組:MMP13(膠原蛋白酶)、MMP8(膠原蛋白酶)、MMP1(膠原蛋白酶)、MMP19(基質金屬蛋白酶RASI)和MMP20(釉質溶解素),較佳地該MMP為MMP13,特別地多肽包含至少一個與MMP13特異性結合之免疫球蛋白單可變域(ISVD),其中與MMP13之結合調節MMP13之活性。 定義   除非另有其他指示或定義,否則所使用之所有術語具有彼等在此項技術中的慣用含義,其為熟習此項技術者所明瞭。參考例如標準手冊,諸如Sambrook等人(Molecular Cloning: A Laboratory Manual(2nd Ed.)Vols. 1-3, Cold Spring Harbor Laboratory Press, 1989)、F. Ausubel等人(Current protocols in molecular biology, Green Publishing and Wiley Interscience, New York, 1987)、Lewin(Genes II, John Wiley & Sons, New York, N.Y., 1985)、Old等人(Principles of Gene Manipulation: An Introduction to Genetic Engineering(2nd edition)University of California Press, Berkeley, CA, 1981)、Roitt等人(Immunology(6th Ed.)Mosby/Elsevier, Edinburgh, 2001)、Roitt等人(Roitt’s Essential Immunology(10th Ed.)Blackwell Publishing, UK, 2001)及Janeway等人(Immunobiology(6th Ed.)Garland Science Publishing/Churchill Livingstone, New York, 2005),以及本文所引用之一般背景。   除非另有其他指示,否則可執行且已以本身已知的方式執行之未詳細具體說明的所有方法、步驟、技術及操作,如熟習此項技術者所明瞭。再參考例如標準手冊及本文所提及之一般背景技術及本文所引用之其他參考文獻;以及例如下文的評論:Presta(Adv. Drug Deliv. Rev. 58(5-6): 640-56, 2006)、Levin和Weiss(Mol. Biosyst. 2(1): 49-57, 2006)、Irving等人(J. Immunol. Methods 248(1-2): 31-45, 2001)、Schmitz等人(Placenta 21 Suppl. A: S106-12, 2000)、Gonzales等人(Tumour Biol. 26(1): 31-43, 2005),其說明蛋白質工程化之技術(諸如親和力成熟)及改進蛋白質(例如免疫球蛋白)之特異性及其他所欲特性的其他技術。   應注意如本文所使用之單數形式〝一(a)〞、〝一(an)〞及〝該(the)〞包括複數個參考物,除非上下文另有其他明確的指示。因此,例如述及之〝一試劑(a reagent)〞包括此等不同的試劑中之一或多者及述及之〝該方法(the method)〞包括那些一般熟習此項技術者已知可經修飾或取代而用於本文所述之方法的述及之等效步驟及方法。   除非另有其他指示,應瞭解在一系列要素之前的術語〝至少〞係指系列中的每一要素。那些熟習此項技術者係使用不超過常規實驗而識別或能夠確定本文所述的本發明之具體實施態樣的許多等效物。意欲以本發明包含此等等效物。   在本文任何時候所使用之術語〝及/或〞包括〝及〞、〝或〞和〝以該術語連接之要素的所有或任何其他組合〞之含義。   如本文所使用之術語〝約(about)〞或〝約(approximately)〞意指在所給出之值或範圍的20%之內,較佳為15%之內,更佳為10%之內,且最佳為5%之內。   在整篇說明書及隨後的申請專利範圍內,除非在上下文另有其他要求,否則應瞭解單詞〝包含(comprise)〞及變型(諸如〝包含(comprises)〞及〝包含(comprising)〞)意味著包含所陳述之整數或步驟,或整數或步驟之群組,但不排除任何其他的整數或步驟,或整數或步驟之群組。當在本文使用時,術語〝包含(comprising)〞可以術語〝含有(containing)〞或〝包括(including)〞取代,或有時當在本文使用時,以術語〝具有〞取代。   通常應瞭解如本文所使用之術語〝序列〞(例如在如〝免疫球蛋白序列〞、〝抗體序列〞、〝可變域序列〞、〝VHH 序列〞或〝蛋白質序列〞之術語中)包括相關的胺基酸序列,以及編碼彼等之核酸或核苷酸序列二者,除非上下文要求更限定的解釋。   胺基酸序列經解釋成意指單一胺基酸或二或更多個胺基酸之無分支序列,其係取決於上下文而定。核苷酸序列經解釋成意指3或更多個核苷酸之無分支序列。   胺基酸為天然生成蛋白質中常見的那些L-胺基酸。胺基酸殘基係根據標準的三個字母或一個字母胺基酸代碼表示。參考例如WO 08/020079的第48頁之表A-2。不意欲以此定義涵蓋含有D-胺基酸的那些胺基酸序列。含有轉譯後修飾之胺基酸的任何胺基酸序列可被描述成在此表A-2中所示具有修飾位置之符號的最初轉譯(例如羥化或糖化)之胺基酸序列,但是該等修飾不應明確地顯示在胺基酸序列中。此定義涵蓋可以序列修飾之鍵聯、交聯和末端蓋、非肽基鍵等表示之任何肽或蛋白質。   術語〝蛋白質〞、〝肽〞、〝蛋白質/肽〞及〝多肽〞在整篇揭示內容中可交換使用且出於本發明之目的的各者具有相同的含義。各術語係指由二或更多個胺基酸的直鏈所構成之有機化合物。化合物可有10或更多個胺基酸、25或更多個胺基酸、50或更多個胺基酸、100或更多個胺基酸、200或更多個胺基酸、及甚至300或更多個胺基酸。熟習此項技術者理解多肽通常包含比蛋白質更少的胺基酸,儘管沒有技術上公認之區別多肽與蛋白質之胺基酸數量的截止點;多肽可以化學合成或重組方法製得;且蛋白質通常以重組方法於試管內或活體內製得,如此項技術中已知。在多肽之一級結構中的醯胺鍵係按常規呈寫入胺基酸順序,其中多肽之胺末端(N端)總在左邊,而酸末端(C端)總在右邊。   例如,與獲得核酸或胺基酸序列之反應培養基或培養用培養基(cultivation medium)相比,當核酸或胺基酸序列已與在該來源或培養基中經常與其締合之至少一種其他組份(諸如另一核酸、另一蛋白質/多肽、另一生物組份或巨分子或至少一種污染物、雜質或次要組份)分離時,則認為核酸或胺基酸序列〝(呈)(基本上)經分離(形式)〞。特別地,當核酸或胺基酸序列已純化至少2倍、特別為至少10倍、更特別為至少100倍且高達1000倍或更多倍時,則認為核酸或胺基酸序列〝(基本上)經分離〞。〝呈(基本上)經分離形式〞之核酸或胺基酸較佳地基本上均勻的,如使用適合的技術所測定,諸如適合的層析技術,諸如聚丙烯醯胺凝膠電泳。   當核苷酸序列或胺基酸序列據稱分別〝包含〞另一核苷酸序列或胺基酸序列或〝基本上由〞另一核苷酸序列或胺基酸序列〝所組成〞時,則這可意指後提及之核苷酸序列或胺基酸序列已分別併入先提及之核苷酸序列或胺基酸序列中,但更經常地,這通常意指先提及之核苷酸序列或胺基酸序列於其序列內分別包含一段核苷酸或胺基酸殘基,具有分別與後提及之序列相同的核苷酸序列或胺基酸序列,無關於先提及之序列實際上如何產生或獲得(其可例如藉由本文所述之任何適合的方法)。藉助於非限制性實例,當本發明之多肽據稱包含免疫球蛋白單可變域(〝ISVD〞)時,則這可意指該免疫球蛋白單可變域序列已併入本發明之多肽的序列中,但更經常地,這通常意指本發明之多肽於其序列內含有免疫球蛋白單可變域的序列,無關於本發明之該多肽如何產生或獲得。同樣地,當核酸或核苷酸序列據稱包含另一核苷酸序列時,先提及之核酸或核苷酸序列較佳地使得當其表現成表現產物(例如多肽)時,則以後提及之核苷酸序列編碼之胺基酸序列形成該表現產物的一部分(換言之,後提及之核苷酸序列係在與先提及之較大的核酸或核苷酸序列相同的讀框中)。同樣地,當本發明之構築體據稱包含多肽或ISVD時,則這可意指該構築體至少分別包含該多肽或ISVD,但更經常地,這意指該構築體包含除了該多肽或ISVD以外,還有基團、殘基(例如胺基酸殘基)、部分及/或結合單元,無關於該多肽或ISVD如何連接該基團、殘基(例如胺基酸殘基)、部分及/或結合單元,且無關於該構築體如何產生或獲得。   藉由〝基本上由…所組成〞意指在本發明方法中所使用之免疫球蛋白單可變域完全與本發明之免疫球蛋白單可變域相同或對應於在免疫球蛋白單可變域之胺基末端、羧基末端或胺基末端與羧基末端二者上均具有經添加之有限數量的胺基酸殘基(諸如1至20個胺基酸殘基,例如1至10胺基酸殘基,且較佳為1至6胺基酸殘基,諸如1、2、3、4、5或6個胺基酸殘基)的本發明之免疫球蛋白單可變域。   出於比較二或更多個核苷酸序列之目的,在第一核苷酸序列與第二核苷酸序列之間的〝序列同一性〞百分比可藉由[在第一核苷酸序列中與在第二核苷酸序列中的對應位置上之核苷酸一致的核苷酸數量]除以[在第一核苷酸序列中的核苷酸總數量]及乘以[100%]來計算,與第一核苷酸序列相比,其中在第二核苷酸序列中的核苷酸之各缺失、插入、取代或添加被認為是在單一核苷酸(位置)上的差異。另一選擇地,在二或更多個核苷酸序列之間的序列同一性程度可使用用於序列比對之已知的電腦演算法(諸如NCBI Blast v2.0)及使用標準的設定計算。用於測定序列同一性程度的一些其他技術、電腦演算法及設定說明於例如WO 04/037999、EP 0967284、EP 1085089、WO 00/55318、WO 00/78972、WO 98/49185及GB 2357768中。出於依照上文概述之計算方法測定兩個核苷酸序列之間的〝序列一致性〞百分比之目的,經常使具有最多核苷酸數量之核苷酸序列視為〝第一〞核苷酸序列及其他的核苷酸序列視為〝第二〞核苷酸序列。   出於比較二或更多個胺基酸序列之目的,在第一胺基酸序列與第二胺基酸序列之間的〝序列同一性〞(在本文亦稱為〝胺基酸同一性〞)百分比可藉由[在第一胺基酸序列中與在第二胺基酸序列中的對應位置上之胺基酸殘基一致的胺基酸殘基數量]除以[在第一胺基酸序列中的胺基酸殘基總數量]及乘以[100%]來計算,與第一胺基酸序列相比,其中在第二胺基酸序列中的胺基酸殘基之各缺失、插入、取代或添加被認為是在單一胺基酸殘基(位置)上的差異,亦即如本文所定義之〝胺基酸差異〞。另一選擇地,在兩個胺基酸序列之間的序列同一性程度可使用用於測定核苷酸序列的序列同一性程度之已知的電腦演算法(諸如那些上文所提者),一樣地使用標準的設定計算。出於依照上文概述之計算方法測定兩個胺基酸序列之間的〝序列一致性〞百分比之目的,經常使具有最多胺基酸殘基數量之胺基酸序列視為〝第一〞胺基酸序列及其他的胺基酸序列視為〝第二〞胺基酸序列。   而且,在測定兩個胺基酸序列之間的序列一致性程度時,熟習此項技術者可考慮所謂〝保守性〞胺基酸取代,其通常可說明為其中胺基酸殘基經化學結構類似的另一胺基酸殘基置換的胺基酸取代且其對多肽的功能、活性或其他生物特性具有些微或基本上沒有影響。此等保守性胺基酸取代為此項技術中所熟知,例如WO 04/037999、GB 335768、WO 98/49185、WO 00/46383和WO 01/09300;且此等取代之(較佳的)類型及/或組合可基於來自例如WO 04/037999以及WO 98/49185及來自本文所引用之更多參考文獻的相關教導進行選擇。   此等保守性取代較佳為其中在下列各組(a)至(e)內的一個胺基酸經同一組內的另一胺基酸殘基取代之取代:(a)小型脂族、非極性或輕微極性殘基:Ala、Ser、Thr、Pro和Gly;(b)極性、帶負電殘基及彼之(不帶電)醯胺:Asp、Asn、Glu和Gln;(c)極性、帶正電殘基:His、Arg和Lys;(d)大型脂族、非極性殘基:Met、Leu、Ile、Val和Cys;及(e)芳族殘基:Phe、Tyr和Trp。特別佳的保守性取代係如下:Ala成為Gly或成為Ser;Arg成為Lys;Asn成為Gln或成為His;Asp成為Glu;Cys成為Ser;Gln成為Asn;Glu成為Asp;Gly成為Ala或成為Pro;His成為Asn或成為Gln;Ile成為Leu或成為Val;Leu成為Ile或成為Val;Lys成為Arg、成為Gln或成為Glu;Met成為Leu、成為Tyr或成為Ile;Phe成為Met、成為Leu或成為Tyr;Ser成為Thr;Thr成為Ser;Trp成為Tyr;Tyr成為Trp;及/或Phe成為Val、成為Ile或成為Leu。   應用於本文所述之多肽的任何胺基酸取代亦可基於由Schulz等人(“Principles of Protein Structure”, Springer-Verlag, 1978)開發之不同物種的同源性蛋白質之間的胺基酸變異頻率之分析、由Chou和Fasman(Biochemistry 13: 211, 1974;Adv. Enzymol., 47: 45-149, 1978)開發之結構形成潛在性之分析、及由Eisenberg等人之(Proc. Natl. Acad Sci. USA 81: 140-144, 1984)、Kyte和Doolittle(J. Molec. Biol. 157: 105-132, 1981)及Goldman等人(Ann. Rev. Biophys. Chem. 15: 321-353, 1986)開發之蛋白質中的疏水性圖案之分析,藉由提及將全部彼之全文併入本文。奈米抗體之一級、二級及三級結構之訊息係於本文發明內容及上文所引用之一般背景技術中給出。同樣出於此目的,來自駝馬(Llama)之VHH 域的晶體結構係由例如Desmyter等人(Nature Structural Biology, 3: 803, 1996)、Spinelli等人(Natural Structural Biology, 3: 752-757, 1996)及Decanniere等人(Structure, 7(4): 361, 1999)給出。關於在習知的VH 域中形成VH /VL 界面的一些胺基酸殘基及在該等位置上可能的駱駝源化(camelizing)取代的其他訊息可見於上文所引用之先前技術中。   若胺基酸序列及核酸序列於彼等的全長具有100%序列同一性(如本文所定義),則胺基酸序列及核酸序列據稱為〝完全相同〞。   當比較兩種胺基酸序列時,術語〝胺基酸差異〞係指與第二序列相比而在第一序列位置上的單一胺基酸殘基之插入、缺失或取代;應瞭解兩個胺基酸序列可含有一、二或更多個此等胺基酸差異。更特別地,在本發明之ISVD及/或多肽中,術語〝胺基酸差異〞係指分別與a)、c)或e)之CDR序列相比而在b)、d)或f)中指定之CDR序列位置上的單一胺基酸殘基之插入、缺失或取代;應瞭解b)、d)和f)之CDR序列可分別與a)、c)或e)之CDR序列相比而含有一、二、三、四或最多五個此等胺基酸差異。   〝胺基酸差異〞可為任何一、二、三、四或最多五個取代、缺失或插入或其任何組合,其改進本發明之MMP13結合劑(諸如本發明之多肽)的特性或至少不過度減損本發明之MMP13結合劑(諸如本發明之多肽)的所欲特性或所欲特性之平衡或組合。關於此點,本發明之所得MMP13結合劑(諸如本發明之多肽)與包含一或多個沒有一、二、三、四或最多五個取代、缺失或插入之CDR序列的多肽相比應至少以相同、大約相同或更高的親和力與MMP13結合。親和力可以此項技術中已知的任何適合的方法測量,但是較佳地以如實施例段落中所述之方法測量。   關於此點,根據b)、d)及/或f)之CDR的胺基酸序列可為藉助於使用一或多種本身已知或如實施例中所述之親和力成熟技術的親和力成熟而分別自根據a)、c)及/或e)之胺基酸序列所衍生之胺基酸序列。例如且取決於用以表現本發明之多肽的宿主生物體而定,此等缺失及/或取代可以移除用於轉譯後修飾之一或多個位點(諸如一或多個糖化位點)的此一方式設計,其係在熟習此項技術者之能力範圍內(參考實施例)。   在任何SEQ ID NO的上下文中,如本文所使用之〝以…代表〞等同於〝包含〝該SEQ ID NO〞或由〝該SEQ ID NO〞所組成,且較佳地等同於由〝該SEQ ID NO〞所組成〞。   如本說明書中所使用之〝奈米抗體家族〞、〝VHH 家族〞或〝家族〞係指具有相同長度之奈米抗體及/或VHH 序列群組(亦即在彼等的序列內具有相同的胺基酸數量)及在位置8與位置106之間的其胺基酸序列(根據Kabat編號)具有89%或更高的胺基酸序列同一性。   可交換使用之術語〝抗原決定區〞及〝抗原決定子〞係指以抗原結合分子(諸如本發明之免疫球蛋白、習知的抗體、免疫球蛋白單可變域及/或多肽),且更特別地以該分子之抗原結合位點識別之巨分子(諸如多肽或蛋白質)的一部分。抗原決定區限定免疫球蛋白之最少結合位點,且因此代表免疫球蛋白特異性之標靶。   識別抗原決定區之抗原結合分子(諸如本發明之免疫球蛋白、習知的抗體、免疫球蛋白單可變域及/或多肽)的一部分被稱為〝互補位〞。   可與特定的抗原決定區、抗原或蛋白質(或其至少一部分、片段或抗原決定區)〝結合〞或〝特異性結合〞、〝對其具有親和力〞及/或〝對其具有特異性〞之胺基酸序列(諸如本發明之免疫球蛋白單可變域、抗體、多肽或通常為與蛋白質或多肽結合之抗原或其片段)據稱為〝針對(against)〞或〝導向針對(directed against)〞該抗原決定區、抗原或蛋白質,或為有關此等抗原決定區、抗原或蛋白質之〝結合〞分子,或據稱為〝抗〞抗原決定區、〝抗〞抗原或〝抗〞蛋白質(例如〝抗〞MMP13)。   親和力表示分子相互作用的強度或穩定性。親和力常以具有莫耳/公升(或M)之單位的KD 或解離常數給出。親和力亦可以締合常數KA 表示,其等於1/KD 且具有(莫耳/公升)-1 (或M-1 )之單位。在本說明書中,介於兩個分子之間的相互作用之穩定性主要以彼等相互作用之KD 值的方式表示;熟習此項技術者明瞭鑑於KA =1/KD 的關係,以其KD 值具體指出之分子相互作用的強度亦可用於計算對應之KA 值。KD 值在熱力學的意義上亦以分子相互作用的強度特徵化,因為其藉由熟知的關係DG=RTln(KD )(等同於DG= -RTln(KA ))而與結合之自由能變化(DG)有關,其中R等於氣體常數,T等於絕對溫度及ln表示自然對數。   認為有意義的(例如特異的)生物相互作用之KD 通常係在10-12 M(0.001 nM)至10-5 M(10000 nM)之範圍內。相互作用越強,則其KD 越低。   KD 亦可以複合物之解離速率常數(以koff 表示)對其締合速率(以kon 表示)之比表示(使得KD =koff /kon 及KA =kon /koff )。解離速率koff 具有單位s-1 (其中s為秒的SI單位記號)。締合速率kon 具有單位M-1 s-1 。締合速率可在介於102 M-1 s-1 至約107 M-1 s-1 之間變化,接近雙分子相互作用的擴散限制之締合速率常數。解離速率係與以關係t1/2 =ln(2)/koff 給出之分子相互作用的半衰期有關。解離速率可在介於10-6 s-1 (以多天的t1/2 近似於不可逆性複合物)至1 s-1 (t1/2 =0.69 s)之間變化。   抗原結合蛋白質(諸如ISVD)與抗原或抗原決定子之特異性結合可以本身已知的任何適合的方式測定,包括例如飽和結合檢定法及/或競爭型結合檢定法,諸如放射免疫檢定法(RIA)、酶免疫檢定法(EIA)及夾層競爭(sandwich competition)檢定法,及此項技術中本身已知的其不同變化方式;以及本文所提及之其他技術。   介於兩個分子之間的分子相互作用之親和力可經由本身已知的不同技術測量,諸如熟知的表面電漿共振(SPR)生物感應器技術(參見例如Ober等人之2001, Intern. Immunology 13: 1551-1559),其中將一個分子固定在生物感應器晶片上及其他分子在流動條件下通過固定之分子,得到kon 、koff 量度及因此得到KD (或KA )值。這可例如使用熟知的BIACORE®儀器(Pharmacia Biosensor AB, Uppsala, Sweden)執行。動力學排阻檢定法(KINEXA®)(Drake等人之2004,Analytical Biochemistry 328: 35-43)測量在溶液中的結合事件而不標記結合配偶且以動力學排阻複合物解離為基礎。溶液中親和力分析亦可使用GYROLAB®免疫檢定系統執行,其提供自動化生物分析及快速樣品轉迴的平台(Fraley等人之2013, Bioanalysis 5:1765-74)。   熟習此項技術者亦明瞭若測量方法以某種方式影響隱含分子之固有結合親和力,例如與一個分子之生物感應器上的塗層有關的失真,則測得的KD 可能相當於視KD 。同樣地,若一個分子含有一個以上對其他分子而言的識別位點,則可能測得視KD 。在此等情況中,測得的親和力可受到兩個分子的相互作用之親留力的影響。特別地,準確的測量KD 可能非常費力,而因此常測定視KD 值以評定兩個分子的結合強度。應注意的是只要所有的測量係以一致的方式進行(例如保持檢定條件不變),則可使用視KD 量度作為真實KD 的近似值,而因此在本文件中應將KD 及視KD 以同等的重要性或相關性看待。   術語〝特異性〞係指可與特別的抗原結合分子或抗原結合蛋白(諸如本發明之ISVD或多肽)分子結合的不同類型之抗原或抗原決定子的數量,例如在WO 08/020079的第53至56頁之段落n)中所述。抗原結合蛋白之特異性可基於親和力及/或親留力測定,如WO 08/020079的第53至56頁中所述(藉由提及併入本文),其亦說明一些用於測量抗原結合分子(諸如本發明之多肽或ISVD)與相干抗原之間結合的較佳技術。抗原結合蛋白(諸如本發明之ISVD及/或多肽)通常係以10-5 至10-12 莫耳/公升或更低,且較佳為10-7 至10‑12 莫耳/公升或更低,且更佳為10-8 至10-12 莫耳/公升之解離常數(KD )(亦即以105 至1012 公升/莫耳或更高,且較佳為107 至1012 公升/莫耳或更高,且更佳為108 至1012 公升/莫耳之締合常數(KA ))與彼等抗原結合。通常認為以大於10-4 莫耳/公升之任何KD 值(或小於104 公升/莫耳之任何KA 值)表示非特異性結合。較佳地本發明之單價ISVD與少於500 nM,較佳為少於200 nM,更佳為少於10 nM,諸如少於500 pM,諸如介於10與5 pM或更低之間的親和力與所欲抗原結合。   當免疫球蛋白單可變域及/或多肽與第一抗原結合之親和力(如上述,且適當地表示為KD 值、KA 值、Koff 速率及/或Kon 速率)比免疫球蛋白單可變域及/或多肽與第二標靶或抗原結合之親和力好至少10倍,諸如至少100倍,且較佳為至少1000倍或更多倍時,則免疫球蛋白單可變域及/或多肽據稱對(第一)標靶或抗原比對另一(第二)標靶或抗原〝具有特異性〞。例如,免疫球蛋白單可變域及/或多肽與第一標靶或抗原結合之KD 值比該免疫球蛋白單可變域及/或多肽與第二標靶或抗原結合之KD 小至少10倍,諸如小至少100倍,且較佳為小至少1000倍或甚至更小。較佳地當免疫球蛋白單可變域及/或多肽對第一標靶或抗原比對第二標靶或抗原〝具有特異性〞時,則其導向針對(如本文所定義)該第一標靶或抗原,但不導向針對該第二標靶或抗原。   抗原結合蛋白質與抗原或抗原決定子之特異性結合可以本身已知的任何適合的方式測定,包括例如飽和結合檢定法、史卡查(Scatchard)分析及/或競爭型結合檢定法,諸如放射免疫檢定法(RIA)、酶免疫檢定法(EIA)及夾層競爭型檢定法,及此項技術中已知的其不同變化方式;以及本文所提及之其他技術。如熟習此項技術者所明瞭及如WO 08/020079的第53至56頁所述,解離常數可能為真實或視解離常數。測定解離常數之方法為熟習此項技術者所明瞭,且例如包括WO 08/020079的第53至56頁所提及之技術。   可用於評定親和力之另一較佳方法為Friguet等人於1985年之2步驟ELISA(酶連結之免疫吸附檢定法)程序(J. Immunol. Methods 77: 305-19)。此方法建立溶液相結合平衡測量及避免與撐體(諸如塑膠)上的分子之一的吸附有關的可能失真。如熟習此項技術者所明瞭及例如WO 08/020079的第53至56頁所述,解離常數可能為真實或視解離常數。測定解離常數之方法為熟習此項技術者所明瞭,且例如包括WO 08/020079的第53至56頁所提及之技術。   在一態樣中,本發明關於MMP13結合劑,諸如本發明之ISVD及多肽,其中該MMP13結合劑不與MMP1或MMP14(膜型)結合。   最後,應注意有經驗的科學家可在許多情況下判定測定相對於一些參考分子的結合親和力是方便的。例如,為了評定在分子A與B之間的結合強度,可例如使用已知與B結合且以螢光團或發色團基團或其他化學部分(諸如在ELISA或FACS(螢光活化細胞分選)中容易檢測之生物素)或其他形式(用於螢光檢測之螢光團、用於光吸收檢測之發色團、用於鏈親合素(streptavidin)調介之ELISA檢測之生物素)適當地標記之參考分子C。通常參考分子C係保持固定的濃度及A濃度係就給出之B濃度或量而改變。結果獲得對應於A濃度之IC50 值,該值在沒有A存在下以C所測量之信號減半。如果已知KD ref( 參考分子之KD )以及參考分子之總濃度cref ,則可自以下公式:KD =IC50 /(1+cref / KDref ) 獲得相互作用A-B之視KD 。應注意若cref << KD ref ,則KD » IC50 。如果以一致的方式(例如保持固定之cref )進行用於比較之結合劑的IC50 測量,則分子相互作用的強度或穩定性差異可藉由比較IC50 來評定且判定此量度於整篇文章中等同於KD 或視KD 。   一半的最大抑制濃度(IC50 )亦可為化合物抑制生物或生化功能(例如藥理學效應)之有效性的量度。此量化量度表示需要多少多肽或ISVD(例如奈米抗體)以抑制一半的給出之生物過程(或過程的組份,亦即酶、細胞、細胞受體、趨化性、退行發育、轉移、侵襲等)。換言之,其為物質之最大抑制濃度(IC)的一半(50%)(50% IC或IC50 )。本發明給出之拮抗劑(諸如多肽或ISVD(例如奈米抗體))之IC50 值可藉由測定抑制促效劑之最大生物反應的一半所需之濃度來計算。藥物之KD 可藉由建構劑量-反應曲線及檢查不同濃度的拮抗劑(諸如本發明之多肽或ISVD(例如奈米抗體))對逆轉促效劑活性的效應來測定。   術語一半的最大有效濃度(EC50 )係指在指定的暴露時間後誘發在基線與最大值之間的半程反應之化合物濃度。在本發明的上下文中,該EC50 被用作為多肽或ISVD(例如奈米抗體)的其效力之量度。分級之劑量反應曲線的EC50 代表觀察到其最大效應之50%的化合物濃度。濃度較佳地以莫耳單位表示。   在生物系統中,少量的配體濃度變化通常引起遵循S型函數的快速反應變化。隨著增加的配體濃度而增加的反應開始減慢的反曲點為EC50 。這可藉由導出最好擬合線而以數學方式測定。在大多數情況中,依賴圖形進行預估具有方便性。若在實施例段落提供EC50 ,則設計儘可能準確地反映KD的實驗。換言之,EC50 值則可被認為是KD值。術語〝平均KD〞關於以至少1次,但較佳為超過1次,諸如至少2次實驗所獲得的平均KD值。術語〝平均〞係指數學術語〝平均〞(數據總和除以數據的項目數)。   其亦關於IC50 ,其為化合物其抑制作用的量度(50%抑制)。IC50 為競爭型結合檢定法及功能性拮抗劑檢定法之劑量反應曲線最常見的概括性量度。促效劑/刺激劑檢定法最常見的概括性量度為EC50 。   抑制常數Ki為抑制劑如何有效力的指標;其為產生一半的最大抑制所需之濃度。與IC50 不同,IC50 可取決於實驗條件而可能改變(但參見上文),Ki為絕對值且常被稱為藥物的抑制常數。抑制常數Ki 可使用鄭-普魯薩福(Cheng-Prusoff)公式計算:其中[L]為固定的配體濃度。   如本文所使用的術語本發明之多肽的〝效力〞為發生其特定效應所需的本發明之多肽量的函數。其係以該多肽之IC50 的倒數簡單地測量。效力係指本發明之該多肽調節及/或部分或完全抑制MMP13之活性的能力。更特別地,效力可指該多肽降低或甚至完全抑制如本文所定義之MMP13活性的能力。確切而言,效力可指該多肽抑制蛋白分解(諸如蛋白酶活性、內肽酶活性)及/受質(諸如聚集蛋白聚糖、膠原蛋白II、膠原蛋白I、膠原蛋白III、膠原蛋白IV、膠原蛋白IX、膠原蛋白X、膠原蛋白XIV和明膠)結合的能力。效力可以此項技術中已知或本文所述之任何適合的檢定法測量。   本發明之多肽的〝功效〞係在飽和多肽濃度下測量效應本身的最大強度。功效指出自本發明之多肽可達成的最大反應。功效係指多肽得到所欲(治療)效應的能力。   在一態樣中,本發明關於如本文所述之多肽,其中該多肽係以介於1E-07 M與1E-13 M之間的KD 與MMP13結合,諸如介於1E-08 M與1E-12 M之間,較佳為至多1E-07 M,較佳為低於1E-08 M或1E-09 M,或甚至低於1E‑10 M,諸如5E-11 M、4E=11 M、3E‑11 M、2E-11 M、1.7E-11 M、1E‑11 M,或甚至為5E-12 M、4E-12 M、3E‑12 M、1E-12 M,其係例如以KinExA測定。   在一態樣中,本發明關於如本文所述之多肽,其中該多肽係以介於1E-07 M與1E-12 M之間的IC50 抑制MMP13之活性,諸如介於1E-08 M與1E-11 M之間,其係例如以競爭型ELISA、競爭型TIMP-2 ELISA、螢光肽檢定法、螢光膠原蛋白檢定法或膠原蛋白溶解檢定法測定,諸如實施例段落中所詳述。   在一態樣中,本發明關於如本文所述之多肽,其中該多肽係以至多1E-07 M之IC50 抑制MMP13之活性,較佳為1E-08 M、5E-09 M或4E-9 M、3E-9 M、2E-9 M,諸如1E-9 M。   在一態樣中,本發明關於如本文所述之多肽,其中該多肽係以介於1E-07 M與1E-12 M之間的EC50 與MMP13結合,諸如介於1E-08 M與1E-11 M之間,其係例如以ELISA、競爭型TIMP-2 ELISA、螢光肽檢定法、螢光膠原蛋白檢定法或膠原蛋白溶解檢定法測定。   在一態樣中,本發明關於如本文所述之多肽,其中該多肽係以低於5E-04 (s-1 )之解離速率與MMP13結合,其係例如以SPR測定。   若胺基酸序列(諸如ISVD或多肽)對該等不同的抗原或抗原決定子具有特異性(如本文所定義),則其據稱對兩種不同的抗原或抗原決定子(諸如來自不同物種的哺乳動物之MMP13,諸如人類MMP13、狗MMP13、牛MMP13、大鼠MMP13、豬MMP13、小鼠MMP13、兔子MMP13、食蟹獼猴MMP13及/或恆河猴MMP13)具有〝交叉反應性〞。應理解ISVD或多肽可被認為具有交叉反應性,儘管對兩種不同的抗原之結合親和力可以不同,諸如2、5、10、50、100或甚至更大的倍數,先決條件為對該等不同的抗原或抗原決定子具有特異性(如本文所定義)。   MMP13亦稱為CLG3或膠原蛋白酶3、MANDP1、MMP-13、基質金屬肽酶13或MDST。   MMP13之相關結構的訊息可以例如以下表1中所描述之UniProt登錄號找到(參見表B)。〝人類MMP13〞係指包含SEQ ID NO:115之胺基酸序列的MMP13。在一態樣中,本發明之多肽係與來自智人、小鼠、狼、家牛、恆河獼猴、褐鼠、雞及/或黑猩猩的MMP13特異性結合,較佳為來自人類MMP13,較佳為SEQ ID NO:115。   術語〝(交叉)阻斷((cross)-block、(cross)-blocked、(cross)-blocking)〞、〝競爭性結合〞、〝(交叉)競爭((cross)-compete、(cross)-competing及(cross)-competition)〞在本文可交換使用,意指免疫球蛋白、抗體、ISVD、多肽或其他的結合劑干擾其他的免疫球蛋白、抗體、ISVD、多肽或結合劑與給定標靶結合的能力。免疫球蛋白、抗體、ISVD、多肽或其他的結合劑能夠干擾另一者與標靶結合的程度,及因此是否可根據本發明據稱為交叉阻斷,可使用技術中常見的競爭型結合檢定法測定,諸如例如藉由在競爭型ELISA中篩選針對顯現在噬菌體上之ISVD的純化之ISVD,如實施例中所述。用於測定針對標靶之免疫球蛋白、抗體、免疫球蛋白單可變域、多肽或其他的結合劑是否(交叉)阻斷、能夠(交叉)阻斷、競爭性結合或(交叉)競爭(如本文所定義)之方法說明於例如Xiao-Chi Jia等人(Journal of Immunological Methods 288: 91-98, 2004)、Miller等人(Journal of Immunological Methods 365: 118-125, 2011)及/或本文所述之方法(參見例如實施例7)中。   本發明關於如本文所述之多肽,諸如以SEQ ID NO:111、11、112、12、109、9、110、10、1、13、14、15、16、17、18、19、20、21、22、2、3、4、5、6、7或8代表之多肽,其中該多肽係與多肽競爭,其係例如以競爭型ELISA測定。   本發明關於測定與如本文所述之多肽(諸如以SEQ ID NO:111、11、112、12、109、9、110、10、1、13、14、15、16、17、18、19、20、21、22、2、3、4、5、6、7或8中任一者代表)競爭的競爭物(諸如多肽)之方法,其中如本文所述之多肽係與競爭物(諸如多肽)競爭或交叉阻斷其與MMP13(諸如人類MMP13(SEQ ID NO:115))結合,其中在本發明之多肽不存在下與競爭物之MMP13之結合相比,競爭物在本發明之多肽存在下與MMP13之結合降低至少5%,諸如10%、20%、30%、40%、50%或甚至更多,諸如80%、90%或甚至100%(亦即在給定之檢定法中幾乎檢測不到)。競爭及交叉阻斷可以技術中已知的任何方式測定,諸如競爭型ELISA。在一態樣中,本發明關於本發明之多肽,其中該多肽交叉阻斷以SEQ ID NO:111、11、112、12、109、9、110、10、1、13、14、15、16、17、18、19、20、21、22、2、3、4、5、6、7或8代表之多肽中至少一者與MMP13結合及/或被SEQ ID NO:111、11、112、12、109、9、110、10、1、13、14、15、16、17、18、19、20、21、22、2、3、4、5、6、7或8代表之多肽中至少一者交叉阻斷與MMP13結合。   本發明亦關於與如本文所述之多肽(諸如SEQ ID NO:111、11、112、12、109、9、110、10、1、13、14、15、16、17、18、19、20、21、22、2、3、4、5、6、7或8)競爭的競爭物,其中競爭物係與如本文所述之多肽競爭或交叉阻斷與MMP13結合,其中相較於本發明之多肽在該競爭物不存在下與MMP13之結合,本發明之多肽在該競爭物存在下與MMP13之結合降低至少5%,諸如10%、20%、30%、40%、50%或甚至更多,諸如80%或甚至更多,諸如至少90%或甚至100%(亦即在給定之檢定法中幾乎檢測不到)。在一態樣中,本發明關於以本發明之多肽(諸如SEQ ID NO:111、11、112、12、109、9、110、10、1、13、14、15、16、17、18、19、20、21、22、2、3、4、5、6、7或8中之一者)交叉阻斷與MMP13的結合的多肽,及/或被SEQ ID NO:111、11、112、12、109、9、110、10、1、13、14、15、16、17、18、19、20、21、22、2、3、4、5、6、7或8中至少一者交叉阻斷與MMP13結合,較佳地其中該多肽包含與MMP13特異性結合之至少一種VH、VL、dAb、免疫球蛋白單可變域(ISVD),其中與MMP13結合調節MMP13之活性。   〝MMP13活性〞及〝MMP13之活性〞(該等術語在本文可交換使用)包括但不限於蛋白分解,諸如蛋白酶活性(亦稱為蛋白酶或肽酶活性)及另一方面包括內肽酶活性,及與受質之結合,例如藉由類凝血酶域及肽聚糖結合域。MMP13活性包括與受質(諸如聚集蛋白聚糖、膠原蛋白II、膠原蛋白I、膠原蛋白III、膠原蛋白IV、膠原蛋白IX、膠原蛋白X、膠原蛋白XIV和明膠)之結合及/或蛋白分解。如本文所使用之蛋白分解為藉由水解在多肽鏈中將胺基酸連結在一起的肽鍵而使蛋白質分裂成更小的多肽或胺基酸。   在本發明之上下文中,〝調節(modulating或to modulate)〞通常意指藉由MMP13改變活性,其係使用適合的試管內、細胞或活體內檢定法(諸如那些本文所提及者)測量。特別地,〝調節(modulating或to modulate)〞可意指降低或抑制MMP13活性,或另一選擇地增加MMP13活性,其係使用適合的試管內、細胞或活體內檢定法(諸如那些本文所提及者)測量,與在相同條件下的相同檢定法中但不在本發明之ISVD或多肽存在下的MMP13活性相比而調節至少1%,較佳為至少5%,諸如至少10%或至少25%、例如至少50%、至少60%、至少70%、至少80%或90%或更多。   因此,本發明關於如本文所述之多肽,其中該多肽調節MMP13活性,較佳地抑制MMP13活性。   因此,本發明關於如本文所述之多肽,其中該多肽抑制MMP13之蛋白酶活性,諸如抑制受質之蛋白分解,諸如聚集蛋白聚糖、膠原蛋白II、膠原蛋白I、膠原蛋白III、膠原蛋白IV、膠原蛋白IX、膠原蛋白X、膠原蛋白XIV及/或明膠。   因此,本發明關於如本文所述之多肽,其中該多肽阻斷MMP13與受質(諸如聚集蛋白聚糖、膠原蛋白II、膠原蛋白I、膠原蛋白III、膠原蛋白IV、膠原蛋白IX、膠原蛋白X、膠原蛋白XIV及/或明膠)結合,其中該膠原蛋白較佳為膠原蛋白II。   在一態樣中,本發明關於如本文所述之多肽,其中該多肽阻斷MMP13與膠原蛋白及/或聚集蛋白聚糖之至少20%之結合,諸如至少30%、40%、50%、60%、70%、80%、90%、95%或甚至更高,其係例如以基於ELISA之競爭型檢定法(參考Howes等人之2014 J. Biol. Chem. 289:24091–24101)所測定。   在一態樣中,本發明關於如本文所述之多肽,其中該多肽拮抗或抑制MMP13之活性,諸如(i)蛋白酶活性,較佳為聚集蛋白聚糖及/或膠原蛋白之切割,其中該膠原蛋白較佳為膠原蛋白II;(ii)膠原蛋白與類凝血酶域結合。   因此,本發明關於如本文所述之多肽,其中該多肽抑制MMP13之蛋白酶活性,較佳地抑制至少5%,諸如10%、20%、30%、40%、50%或甚至更多,諸如至少60%、70%、80%、90%、95%或甚至更高,其係以此項技術中已知的任何適合的方法測定,諸如競爭型檢定法或如實施例段落中所述。 ISVD   除非另有其他指示,無論是否於本文用於指重鏈抗體或習知的4鏈抗體,術語〝免疫球蛋白〞及〝免疫球蛋白序列〞二者係用作為包括全長抗體、其個別的鏈,以及其所有部分、域或片段(分別包括但不限於抗原結合域或片段,諸如VHH 域或VH /VL 域)之通用術語。   如本文所使用之術語(多肽或蛋白質之)〝域〞係指具有保留其三級結構的褶疊之蛋白質結構,與蛋白質的其餘部分無關。域通常負責蛋白質個別的功能性質,且在許多情況中可被添加、移除或轉移至其他蛋白質,而不失去蛋白質其餘部分及/或域之功能。   如本文所使用之術語〝免疫球蛋白域〞係指抗體鏈(諸如習知的4-鏈抗體或重鏈抗體之鏈)的球狀區域或基本上由此球狀區域所組成之多肽。免疫球蛋白域之特徵在於彼等保留抗體分子之免疫球蛋白褶疊特徵,其係由配置成兩個β褶板中的約7個反平行β股之雙層夾層所組成,隨意地以保守性二硫鍵穩定。   如本文所使用之術語〝免疫球蛋白可變域〞意指基本上由4個〝框架區〞所組成之免疫球蛋白域,在此項技術及下文中分別稱為〝框架區1〞或〝FR1〞、〝框架區2〞或〝FR2〞、〝框架區3〞或〝FR3〞及〝框架區4〞或〝FR4〞;該等框架區係以三個〝互補決定區〞或〝CDR〞中斷,在此項技術及下文中分別稱為〝互補決定區1〞或〝CDR1〞、〝互補決定區2〞或〝CDR2〞及〝互補決定區3〞或〝CDR3〞。因此,免疫球蛋白可變域的一般結構或序列可表示如下:FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4。免疫球蛋白可變域藉由攜帶抗原結合位點而賦予了抗體對抗原之特異性。在本發明之所有態樣的較佳實施態樣中,根據本發明之免疫球蛋白單可變域(ISVD)較佳地由或基本上由如上文概述之該一般結構中的4個框架區(分別為FR1至FR4)及3個互補決定區CDR1、CDR2和CDR3所組成。較佳的框架序列概述於例如以下表A-2中且可用於本發明之ISVD中。較佳地在表A-2中描述之CDR係與相同的ISVD構築體之各自的框架區匹配。   術語〝免疫球蛋白單可變域〞(在本文縮寫成〝ISVD〞或〝ISV〞)及可交換使用的〝單可變域〞係定義其中有抗原結合位點存在於單免疫球蛋白域上及以單免疫球蛋白域所形成之分子。這使免疫球蛋白單可變域異於〝習知的〞免疫球蛋白或彼之片段,其中兩個免疫球蛋白域(特別為兩個可變域)相互作用以形成抗原結合位點。通常在習知的免疫球蛋白中,重鏈可變域(VH )及輕鏈可變域(VL )相互作用以形成抗原結合位點。在後一情況中,VH 和VL 二者之互補決定區(CDR)貢獻抗原結合位點,亦即總共6個CDR涉及抗原結合位點形成。   鑑於上述定義,習知的4鏈抗體(諸如此項技術中已知的IgG、IgM、IgA、IgD或IgE分子)或源自此等習知的4鏈抗體之Fab片段、F(ab')2片段、Fv片段(諸如二硫連結之Fv或scFv片段)或雙功能抗體(全部皆為此項技術中已知)之抗原結合域通常不被視為免疫球蛋白單可變域,因為在該等情況中,與抗原各自的抗原決定區之結合通常不會以一個(單)免疫球蛋白域,而以一對(締合之)免疫球蛋白域(諸如輕鏈及重鏈可變域)發生,亦即以與各自的抗原之抗原決定區共同結合之免疫球蛋白域的VH -VL 對發生。   相反地,ISVD能夠與抗原之抗原決定區特異性結合而不與額外的免疫球蛋白可變域配對。ISVD之結合位點係以單VHH 、VH 或VL 域形成。因此,ISVD之抗原結合位點係由不超過三個CDR形成。   確切而言,單可變域可為輕鏈可變域序列(例如VL 序列)或其適合的片段;或重鏈可變域序列(例如VH 序列或VHH 序列)或其適合的片段;只要其能夠形成單抗原結合單元(亦即基本上由單可變域所組成之功能性抗原結合單元,使得單抗原結合域不需要與另一可變域相互作用以形成功能性抗原結合單元)。   在本發明之一個實施態樣中,ISVD為重鏈可變域序列(例如VH 序列);更特定言之,ISVD可為源自習知的四鏈抗體之重鏈可變域序列或源自重鏈抗體之重鏈可變域序列。   例如,ISVD可為(單)域抗體(或適合用作為(單)域抗體之肽)、〝dAb〞或dAb(或適合用作為dAb之肽)或奈米抗體(如本文所定義,且包括但不限於VHH);其他的單可變域或其任一者之任何適合的片段。   特別地,ISVD可為Nanobody®(奈米抗體)(如本文所定義)或其適合的片段。[註:Nanobody®及Nanobodies®為Ablynx N.V.之註冊商標]。關於奈米抗體之概括說明,參考下文的進一步說明,以及本文所引用之先前技術,諸如在WO 08/020079(第16頁)中所述。   亦稱為VHH、VH H域、VHH抗體片段及VHH抗體之〝VHH 域〞最初說明為〝重鏈抗體〞之抗原結合免疫球蛋白(可變)域(亦即〝沒有輕鏈的抗體〞;Hamers-Casterman等人之1993 Nature 363: 446-448)。選擇術語〝VHH 域〞以區別該等可變域與存在於習知的4鏈抗體中的重鏈可變域(在本文稱為〝VH 域〞或〝VH域〞)及存在於習知的4鏈抗體中的輕鏈可變域(其在本文稱為〝VL 域〞或〝VL域〞)。關於VHH及奈米抗體之進一步說明,參考Muyldermans(Reviews in Molecular Biotechnology 74: 277-302, 2001)之評論文章以及下列的專利申請案,作為一般背景技術提及:the Vrije Universiteit Brussel之WO 94/04678、WO 95/04079和WO 96/34103;Unilever之WO 94/25591、WO 99/37681、WO 00/40968、WO 00/43507、WO 00/65057、WO 01/40310、WO 01/44301、EP 1134231和WO 02/48193;the Vlaams Instituut voor Biotechnologie (VIB)之WO 97/49805、WO 01/21817、WO 03/035694、WO 03/054016和WO 03/055527;Algonomics N.V.與Ablynx N.V.之WO 03/050531;National Research Council of Canada 之WO 01/90190;the Institute of Antibodies之WO 03/025020(=EP 1433793);以及Ablynx N.V.之WO 04/041867、WO 04/041862、WO 04/041865、WO 04/041863、WO 04/062551、WO 05/044858、WO 06/40153、WO 06/079372、WO 06/122786、WO 06/122787和WO 06/122825及Ablynx N.V.的更多公開之專利申請案。亦參考在該等申請案中所提及的更多先前技術及特別參考在國際申請案WO 06/040153的第41至43頁所提及之參考文獻列表,將該列表及參考文獻藉由提及併入本文。如該等參考文獻中所述,奈米抗體(特別為VHH序列及部分人源化奈米抗體)可特別以一或多個〝標誌(Hallmark)殘基〞存在於框架序列中之一或多者為特徵。奈米抗體(包括奈米抗體之人源化及/或駱駝源化,以及其他的修飾、部分或片段、衍生物或〝奈米抗體融合物〞)、多價構築體(包括連結子序列的一些非限制性實例)及增加奈米抗體和彼等製劑之半衰期的不同修飾之進一步說明可見於例如WO 08/101985和WO 08/142164中。關於奈米抗體之進一步概括說明,參考本文所引用之先前技術,諸如在WO 08/020079(第16頁)中所述。   特別地,存在於本發明之MMP13結合劑(諸如本發明之ISVD及/或多肽)中的框架序列可含有一或多個標誌殘基(例如在WO 08/020079(表A-3至A-8)中所定義),使得本發明之MMP13結合劑為奈米抗體。此等框架序列之(適合的組合)一些較佳但非限制性實例係自本文進一步的揭示而變得明確(參考例如表A-2)。通常奈米抗體(特別為VHH 序列及部分人源化奈米抗體)可特別以一或多個〝標誌殘基〞存在於框架序列中之一或多者為特徵(例如在WO 08/020079,第61頁的第24行至第98頁的第3行中的進一步說明)。   更特別地,本發明提供包含至少一個免疫球蛋白單可變域之MMP13結合劑,該免疫球蛋白單可變域為具有下列(一般)結構之胺基酸序列:   FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4   其中FR1至FR4分別係指框架區1至4,且其中CDR1至CDR3分別係指互補決定區1至3,且該ISVD:   i) 係與SEQ ID NO:111、11、112、12、109、9、110、10、1、13、14、15、16、17、18、19、20、21、22、2、3、4、5、6、7或8之胺基酸序列中至少一者具有至少80%,更佳為90%,甚至更佳為95%之胺基酸同一性(參見表A-1),其中出於測定胺基酸同一性程度之目的,忽視形成CDR序列之胺基酸殘基。關於此點,亦參考表A-2,其列示SEQ ID NO:1至22和109至112之免疫球蛋白單可變域的框架1序列(SEQ ID NO:67至79)、框架2序列(SEQ ID NO:80至87和108)、框架3序列(SEQ ID NO:88至99和113至114)及框架4序列(SEQ ID NO:100至104);或   ii) 如表A-2中所描述之框架序列的組合;   及其中:   iii) 較佳地在根據Kabat編號之位置11、37、44、45、47、83、84、103、104和108上的胺基酸殘基中之一或多者選自標誌殘基,諸如在WO 08/020079之表A-3至表A-8中所提及者。   本發明之MMP13結合劑(諸如本發明之ISVD及/或多肽)亦可含有在下列全部以〝改進之免疫球蛋白可變域〞為標題的同樣在審理中之美國臨時申請案中所述之特定突變/胺基酸殘基:在2014年5月16日申請之US 61/994552;在2014年6月18日申請之US 61/014,015;在2014年8月21日申請之US 62/040,167;及在2014年9月8日申請之US 62/047,560(全部皆歸(assigned)於Ablynx N.V.)。   特別地,本發明之MMP13結合劑(諸如本發明之ISVD及/或多肽)可適合含有(i)在位置112上的K或Q;或(ii)在位置110上的K或Q與在位置11上的V之組合;或(iii)在位置89上的T;或(iv)在位置89上的L與在位置110上的K或Q;或(v)在位置11上的V及在位置89上的L;或(i)至(v)之任何適合的組合。   亦如該等同樣在審理中之美國臨時申請案中所述,當本發明之MMP13結合劑(諸如本發明之ISVD及/或多肽)含有根據上文(i)至(v)(或其適合的組合)中之一的突變:   - 在位置11上的胺基酸殘基較佳地選自L、V或K(且最佳為V);及/或   - 在位置14上的胺基酸殘基較佳地適合選自A或P;及/或   - 在位置41上的胺基酸殘基較佳地適合選自A或P;及/或   - 在位置89上的胺基酸殘基較佳地適合選自T、V或L;及/或   - 在位置108上的胺基酸殘基較佳地適合選自Q或L;及/或   - 在位置110上的胺基酸殘基較佳地適合選自T、K或Q;及/或   - 在位置112上的胺基酸殘基較佳地適合選自S、K或Q。   如該等同樣在審理中之美國臨時申請案中所提及,該等突變有效防止或降低所謂的〝預存在之抗體〞與免疫球蛋白及本發明化合物結合。出於此目的,本發明之MMP13結合劑(諸如本發明之ISVD及/或多肽)亦可含有(隨意地與該等突變組合之)C-端延伸(X)n(其中n為1至10,較佳為1至5,諸如1、2、3、4或5(且較佳為1或2,諸如1);及各X為獨立選擇之(較佳為天然生成)胺基酸殘基,且較佳為獨立地選自由下列所組成之群組:丙胺酸(A)、甘胺酸(G)、纈胺酸(V)、白胺酸(L)或異白胺酸(I)),其再參考該等美國臨時申請案以及WO 12/175741。特別地,當本發明之MMP13結合劑(諸如本發明之ISVD及/或多肽)形成蛋白質、多肽或包含彼等之其他化合物或構築體之C端時,則其可含有此等C-端延伸(再如該等美國臨時申請案以及WO 12/175741中進一步的說明)。   本發明之MMP13結合劑可為源自以任何適合的方式及任何適合的來源之免疫球蛋白,諸如免疫球蛋白單可變域,且可為例如天然生成VHH 序列(亦即來自駱駝科之適合物種)或合成或半合成胺基酸序列,包括但不限於〝人源化〞(如本文所定義)奈米抗體或VHH序列、〝駱駝源化〞(如本文所定義)免疫球蛋白序列(及特別為駱駝源化重鏈可變域序列)以及以下列技術獲得的奈米抗體:諸如親和力成熟(例如自合成、隨機或天然生成免疫球蛋白序列開始)、CDR移植、切接(veneering)、組合源自不同的免疫球蛋白序列之片段、使用重疊引子之PCR組裝及熟習此項技術者熟知之工程化免疫球蛋白序列的類似技術;或前述中任一者之任何適合的組合,如本文進一步的說明。而且,當免疫球蛋白包含VHH 序列時,則該免疫球蛋白可適當地人源化,如本文進一步的說明,以便提供一或多種進一步(部分或完全)人源化的本發明之免疫球蛋白。同樣地,當免疫球蛋白包含合成或半合成序列時(諸如部分人源化序列),則該免疫球蛋白可隨意地進一步適當地人源化,再如本文所述,再提供一或多種進一步(部分或完全)人源化的本發明之免疫球蛋白。   亦稱為〝Dab〞、〝域抗體〞和〝dAbs〞之〝域抗體〞(術語〝域抗體〞和〝dAbs〞被GlaxoSmithKline group of companies用作為商標)已說明於例如 EP 0368684、Ward等人(Nature 341: 544-546, 1989)、Holt等人(Tends in Biotechnology 21: 484-490, 2003)和WO 03/002609,以及例如WO 04/068820、WO 06/030220、WO 06/003388及Domantis Ltd.的其他公開之專利申請案。域抗體基本上對應於非駱駝源化之哺乳動物,特別為人類4鏈抗體的VH或VL域。為了結合抗原決定區成為單抗原結合域,亦即不分別與VL或VH域配對,需要就此等抗原結合特性進行特定的選擇,例如藉由使用人類單VH或VL域序列庫。與VHH一樣,域抗體具有約13 至約16 kDa之分子量,且若源自完全人類序列,則不需要為了例如人類之治療用途而人源化。   亦應注意儘管在本發明之背景下較不偏好,因為彼等不為哺乳動物來源,但是單可變域可來源自特定的鯊魚物種(例如所謂〝IgNAR域〞,參見例如WO 05/18629)。   本發明特別關於ISVD,其中該ISVD 係選自由下列所組成之群組:VHH、人源化VHH和駱駝源化VH。   VHH域之胺基酸殘基係根據由Kabat等人("Sequence of proteins of immunological interest", US Public Health Services, NIH Bethesda, MD,刊物第91期)給出之用於VH 域的通用編號進行編號來對奈米抗體之胺基酸殘基編號,同樣應用於來自駱駝科的VHH域,如在例如Riechmann和Muyldermans(J. Immunol. Methods 231: 25-38, 1999)之圖2中所示。用於編號VH 域之胺基酸殘基的替代方法為此項技術中已知,該方法亦可以類似的方式應用於VHH域。然而,在本發明說明書、申請專利範圍及圖形中,遵循根據如上述應用於VHH域之Kabat的編號、除非本文另有其他的指示。   應注意如此項技術所熟知的VH 域及VHH域,在每一CDR中的胺基酸殘基總數量可能改變且可能不對應於以Kabat編號所指示之胺基酸殘基總數量(亦即根據Kabat編號的一或多個位置可能在真實序列中未被佔據或真實序列可能含有比Kabat編號容許之數量更多的胺基酸殘基)。這意指通常根據Kabat之編號可能對應或可能不對應於真實序列中的胺基酸殘基之真實編號。在VH域及VHH域中的胺基酸殘基總數量通常係在110至120之範圍內,時常介於112與115之間。然而,應注意更小及更長的序列可能亦適合於本文所述之目的。   關於如此項技術所熟知的CDR,有許多定義及說明VH或VHH片段之CDR的常規,諸如Kabat定義(其係基於序列變異性且最常被使用)及Chothia定義(其係基於結構環區域的位置)。參考例如網址http://www.bioinf.org.uk/abs/。出於本發明說明書及申請專利範圍之目的,CDR最佳地基於Abm定義(其係基於Oxford Molecular之AbM抗體模型化軟體)予以定義,因為這被認為是介於Kabat與Chothia定義之間的最適化折衷(參考http://www.bioinf.org.uk/abs/)。如本文所使用之FR1包含在位置1至25上的胺基酸殘基,CDR1包含在位置26至35上的胺基酸殘基,FR2包含在位置36至49上的胺基酸,CDR2包含在位置50至58上的胺基酸殘基,FR3包含在位置59至94上的胺基酸殘基,CDR3包含在位置95至102上的胺基酸殘基,及FR4包含在位置103至113上的胺基酸殘基。   在本發明之含義中,術語〝免疫球蛋白單可變域〞或〝單可變域〞包含源自非人類來源之多肽,較佳為駱駝科,較佳為駱駝科重鏈抗體。彼等可如本文所述予以人源化。而且,該術語包含源自非駱駝科來源之多肽,例如小鼠或人類,彼等係如本文所述予以〝駱駝源化〞。   因此,ISVD(諸如域抗體及奈米抗體(包括VHH域))可經歷人源化。特別地,人源化ISVD(諸如奈米抗體(包括VHH域))可為本文概括定義之ISVD,但其中有至少一個胺基酸殘基存在(且特別地在框架殘基之至少一者中),其為及/或對應於人源化取代(如本文所定義)之ISVD。可能有用的人源化取代可藉由比較天然生成VHH 序列之框架區序列與一或多個密切相關的人類VH 序列之對應的框架序列而確定,隨後因此測定之可能有用的人源化取代(或其組合)中之一或多者可引入該VHH 序列中(以本身已知的任何方式,如本文進一步的說明)及可測試所得人源化VHH 序列對標靶之親和力、穩定性、表現容易性和水平及/或其他的所欲特性。在此方式中,藉助於有限程度的嘗試錯誤法,可使熟習此項技術者基於本文之揭示內容測定其他適合的人源化取代(或其適合的組合)。而且,基於前文所述,ISVD(之框架區)(諸如奈米抗體(包括VHH域))可部分人源化或完全人源化。   本發明之另一特別佳的ISVD類別包含具有對應於天然生成VH 域之胺基酸序列,但已經〝駱駝源化〞之胺基酸序列的ISVD,亦即在來自習知的4鏈抗體的天然生成VH 域之胺基酸序列中的一或多個胺基酸殘基經出現在重鏈抗體的VHH 域中之對應位置上的胺基酸殘基中之一或多者置換。這可以本身為熟習此項技術者所明瞭的已知方式進行,例如基於本文所述之方式。此等〝駱駝源化〞取代較佳地在形成及/或出現在VH -VL 界面及/或在所謂駱駝科標誌殘基之胺基酸位置上插入,如本文所定義(亦參見例如WO 94/04678及Davies和Riechmann(1994及1996))。較佳地,用作為產生或設計駱駝源化免疫球蛋白單可變域之起始材料或起始點之VH 序列較佳為來自哺乳動物之VH 序列,更佳為人類之VH 序列,諸如VH 3序列。然而,應注意本發明之此等駱駝源化免疫球蛋白單可變域可以本身已知的任何適合的方式獲得且因此未嚴格地限制於使用包含天然生成VH 域作為起始材料之多肽獲得的多肽。參考例如Davies和Riechmann(FEBS 339: 285-290, 1994;Biotechnol. 13: 475-479, 1995;Prot. Eng. 9: 531-537, 1996)及Riechmann和Muyldermans(J. Immunol. Methods 231: 25-38, 1999)。   例如,再如本文進一步的說明,〝人源化〞及〝駱駝源化〞二者可藉由提供分別編碼天然生成VHH 域或VH 域之核苷酸序列及接著以本身已知的方式改變在該核苷酸序列中的一或多個密碼子進行,以此方式使得新的核苷酸序列分別編碼本發明之〝人源化〞或〝駱駝源化〞ISVD。此核酸接著可以本身已知的方式表現,以便提供本發明之所欲ISVD。另一選擇地,分別以天然生成VHH 域或VH 域之胺基酸序列為基礎,可分別使用本身已知的肽合成技術設計及接著合成本發明之所欲人源化或駱駝源化ISVD的胺基酸序列。亦分別以天然生成VHH 域或VH 域之胺基酸序列或核苷酸序列為基礎,可分別使用本身已知的核酸合成技術設計及接著重新合成編碼本發明之所欲人源化或駱駝源化ISVD的核苷酸序列,隨後因此獲得的核酸可以本身已知的方式表現,以便提供本發明之所欲ISVD。   ISVD(諸如域抗體及奈米抗體)(包括VHH域及人源化VHH域)亦可藉由引入一或多個CDR之胺基酸序列中的一或多個變化而經歷親和力成熟,與各自的母體分子相比,該變化導致所得ISVD改進對其各自抗原之親和力。本發明的親和力成熟之ISVD分子可以此項技術中已知的方法製備,例如以Marks等人(Biotechnology 10:779-783, 1992)、Barbas等人(Proc. Nat. Acad. Sci, USA 91: 3809-3813, 1994)、Shier等人(Gene 169: 147-155, 1995)、Yelton等人之(Immunol. 155: 1994-2004, 1995)、Jackson等人(J. Immunol. 154: 3310-9, 1995)、Hawkins等人(J. Mol. Biol. 226: 889 896, 1992)、Johnson和Hawkins(Affinity maturation of antibodies using phage display, Oxford University Press, 1996)所述。   自ISVD(諸如VH 、VL 、VHH 、域抗體或奈米抗體)開始的設計/選擇及/或製備多肽的方法在本文亦稱為〝格式化(formatting)〞該ISVD;且構成多肽的一部分之ISVD據稱為〝經格式化(formatted)〞或呈該多肽的〝格式〞。可使ISVD格式化之方式的實例及此等格式的實例係基於本文之揭示內容而為熟習此項技術者所明瞭;且此等經格式化之免疫球蛋白單可變域構成本發明之另一態樣。   較佳的CDR描述於表A-2中。   特別地,本發明關於如本文所述之ISVD,其中該ISVD係與MMP13特異性結合且基本上由4個框架區(分別為FR1至FR4)及3個互補決定區(分別為CDR1至CDR3)所組成,其中   (i) CDR1係選自由下列所組成之群組:     (a) SEQ ID NO:27、28、25、26、23、29、30、31、32、33、34、35、36和24;及     (b) 與SEQ ID NO:27、28、25、26、23、29、30、31、32、33、34、35、36和24具有1、2或3個胺基酸差異之胺基酸序列;   (ii) CDR2係選自由下列所組成之群組:     (c)SEQ ID NO:42、43、40、41、37、44、45、46、47、48、49、50、51、38和39;及     (d) 與SEQ ID NO:42、43、40、41、37、44、45、46、47、48、49、50、51、38和39具有1、2或3個胺基酸差異之胺基酸序列;及   (iii) CDR3係選自由下列所組成之群組:     (e) SEQ ID NO:SEQ ID NO:56、107、57、54、106、55、52、58、59、60、61、62、63、64、65、66和53;及     (f) 與SEQ ID NO:56、107、57、54、106、55、52、58、59、60、61、62、63、64、65、66和53具有1、2、3或4個胺基酸差異之胺基酸序列。   特別地,本發明關於如本文所述之ISVD,其中該ISVD係與MMP13特異性結合且基本上由4個框架區(分別為FR1至FR4)及3個互補決定區(分別為CDR1至CDR3)所組成,其中   (i) CDR1係選自由下列所組成之群組:   (a) SEQ ID NO:23;及   (b) 與SEQ ID NO:23具有1個胺基酸差異之胺基酸序列,其中在位置7上,Y已更換成R;   (ii) CDR2係選自由下列所組成之群組:   (c) SEQ ID NO:37;及   (d)與SEQ ID NO:37具有1、2或3個胺基酸差異之胺基酸序列,其中   - 在位置4上,V已更換成T;   - 在位置5上,G已更換成A;及/或   - 在位置9上,N已更換成H;   (iii) CDR3係選自由下列所組成之群組:   (e) SEQ ID NO:52;及   (f) 與SEQ ID NO:52具有1個胺基酸差異之胺基酸序列,其中在位置6上,Y已更換成S。   特別地,本發明關於如本文所述之ISVD,其中該ISVD係與MMP13特異性結合且基本上由4個框架區(分別為FR1至FR4)及3個互補決定區(分別為CDR1至CDR3)所組成,其中   (i) CDR1為SEQ ID NO:26;   (ii) CDR2為SEQ ID NO:41;及   (iii) CDR3係選自由下列所組成之群組:   (e) SEQ ID NO:55;及   (f) 與SEQ ID NO:55具有1或2胺基酸差異之胺基酸序列,其中   - 在位置8上,N已更換成Q或S;及/或   - 在位置19上,N已更換成V或Q。   特別地,本發明關於如本文所述之ISVD,其中該ISVD係與MMP13特異性結合且基本上由4個框架區(分別為FR1至FR4)及3個互補決定區(分別為CDR1至CDR3)所組成,其中   (i) CDR1為SEQ ID NO:28;   (ii) CDR2為SEQ ID NO:43;及   (iii) CDR3係選自由下列所組成之群組:   (e) SEQ ID NO:57;及   (f) 與SEQ ID NO:57具有1、2、3或4個胺基酸差異之胺基酸序列,其中   - 在位置10上,D已更換成E、G、A、P、T、R、M、W或Y;   - 在位置16上,M已更換成A、R、N、D、E、Q、Z、G、I、L、K、F、P、S、W、Y或V;   - 在位置17上,D已更換成A、R、N、C、E、Q、Z、G、H、I、L、K、M、S、T、W、Y或V;及/或   - 在位置18上,Y已更換成A、R、N、D、C、E、Q、Z、G、H、I、L、K、M、F、P、S、T、W或V。   特別地,本發明關於如本文所述之ISVD,其中該ISVD係與MMP13特異性結合且基本上由4個框架區(分別為FR1至FR4)及3個互補決定區(分別為CDR1至CDR3)所組成,其中   - CDR1係選自由下列所組成之群組:SEQ ID NO:27、28、25、26、23、29、30、31、32、33、34、35、36和24;   - CDR2係選自由下列所組成之群組:SEQ ID NO:42、43、40、41、37、44、45、46、47、48、49、50、51、38和39;及   - CDR3係選自由下列所組成之群組:SEQ ID NO:56、107、57、54、106、55、52、58、59、60、61、62、63、64、65、66和53。   特別地,本發明關於如本文所述之ISVD,其中該ISVD係與MMP13特異性結合且基本上由4個框架區(分別為FR1至FR4)及3個互補決定區(分別為CDR1至CDR3)所組成,其中該ISVD係選自ISVD之群組,其中:   - CDR1為SEQ ID NO:27,CDR2為SEQ ID NO:42,及CDR3為SEQ ID NO:56;   - CDR1為SEQ ID NO:28,CDR2為SEQ ID NO:43,及CDR3為SEQ ID NO:107;   - CDR1為SEQ ID NO:28,CDR2為SEQ ID NO:43,及CDR3為SEQ ID NO:57;   - CDR1為SEQ ID NO:25,CDR2為SEQ ID NO:40,及CDR3為SEQ ID NO:54;   - CDR1為SEQ ID NO:26,CDR2為SEQ ID NO:41,及CDR3為SEQ ID NO:106;   - CDR1為SEQ ID NO:26,CDR2為SEQ ID NO:41,及CDR3為SEQ ID NO:55;   - CDR1為SEQ ID NO:23,CDR2為SEQ ID NO:37,及CDR3為SEQ ID NO:52;   - CDR1為SEQ ID NO:26,CDR2為SEQ ID NO:48,及CDR3為SEQ ID NO:62;   - CDR1為SEQ ID NO:26,CDR2為SEQ ID NO:41,及CDR3為SEQ ID NO:63;   - CDR1為SEQ ID NO:29,CDR2為SEQ ID NO:44,及CDR3為SEQ ID NO:58;   - CDR1為SEQ ID NO:30,CDR2為SEQ ID NO:45,及CDR3為SEQ ID NO:58;   - CDR1為SEQ ID NO:31,CDR2為SEQ ID NO:46,及CDR3為SEQ ID NO:59;   - CDR1為SEQ ID NO:32,CDR2為SEQ ID NO:47,及CDR3為SEQ ID NO:60;   - CDR1為SEQ ID NO:33,CDR2為SEQ ID NO:41,及CDR3為SEQ ID NO:61;   - CDR1為SEQ ID NO:34,CDR2為SEQ ID NO:49,及CDR3為SEQ ID NO:64;   - CDR1為SEQ ID NO:35,CDR2為SEQ ID NO:50,及CDR3為SEQ ID NO:65;   - CDR1為SEQ ID NO:36,CDR2為SEQ ID NO:51,及CDR3為SEQ ID NO:66;   - CDR1為SEQ ID NO:23,CDR2為SEQ ID NO:39,及CDR3為SEQ ID NO:53;及   - CDR1為SEQ ID NO:24,CDR2為SEQ ID NO:38,及CDR3為SEQ ID NO:52。   特別地,本發明關於如本文所述之ISVD,其中該ISVD係與MMP13特異性結合且基本上由4個框架區(分別為FR1至FR4)及3個互補決定區(分別為CDR1至CDR3)所組成,其中CDR1為SEQ ID NO:27,CDR2為SEQ ID NO:42,及CDR3為SEQ ID NO:56。   特別地,本發明關於如本文所述之ISVD,其中該ISVD係與MMP13特異性結合且基本上由4個框架區(分別為FR1至FR4)及3個互補決定區(分別為CDR1至CDR3)所組成,其中該ISVD係選自由下列所組成之群組:SEQ ID NO:111、11、112、12、109、9、110、10、1、13、14、15、16、17、18、19、20、21、22、2、3、4、5、6、7和8。   應理解而非限制,本發明之免疫球蛋白單可變域可用作為製備多肽之〝構建單元〞,其可隨意地含有可當作為構建單元的一或多個其他的免疫球蛋白單可變域(亦即針對在MMP13上相同或另一抗原決定區及/或針對除了MMP13以外的一或多種其他抗原、蛋白質或標靶)。 多肽   本發明之多肽包含至少一個與MMP(較佳為MMP13)結合之ISVD,諸如兩個與MMP13結合之ISVD,且較佳地亦包含至少一個與聚集蛋白聚糖結合之ISVD,更佳為兩個與聚集蛋白聚糖結合之ISVD。在本發明之多肽中,ISVD可直接連結或經由連結子連結。甚至更佳地本發明之多肽包含C-端延伸。如下文詳述,C-端延伸基本上防止/去除在人類個體/患者之大多數樣品中預存在的抗體/因子之結合。C-端延伸係以C端存在於最後的(大多數經C端定位)ISVD之最後的胺基酸殘基(經常為絲胺酸殘基)。   如本文進一步的詳細闡述,ISVD可源自VHH 、VH 或VL 域,然而選擇ISVD而使得彼等不形成本發明之多肽中的VH 與VL 域之互補對。奈米抗體、VHH 及人源化VHH 為不尋常的,因為彼等源自不具有輕鏈之天然駱駝科抗體且事實上該等域不能夠與駱駝科輕鏈締合以形成互補的VHH 與VL 對。因此,本發明之多肽不包含互補的ISVD及/或形成互補的ISVD對,諸如互補的VH /VL 對。   通常包含或基本上由單一構建單元(例如單一ISVD或單一奈米抗體)所組成之多肽或構築體在本文分別稱為〝單價〞多肽及〝單價構築體〞。包含二或更多個構建單元(諸如ISVD)之多肽或構築體在本文亦稱為〝多價〞多肽或構築體且存在於該等多肽或構築體中的構建單元/ISVD在本文亦稱為呈〝多價格式〞。例如,〝雙價〞多肽可包含隨意地經由連結子序列連結的兩個ISVD,而〝三價〞多肽可包含隨意地經由兩個連結子序列連結的三個ISVD,而〝四價〞多肽可包含隨意地經由三個連結子序列連結的四個ISVD;等。   在多價多肽中,二或更多個ISVD可能相同或不同,且可能導向針對相同的抗原或抗原決定子(例如針對相同的部分或抗原決定區或針對不同的部分或抗原決定區)或可另一選擇地導向針對不同的抗原或抗原決定子,或其任何適合的組合。含有至少兩個構建單元(諸如ISVD)之多肽及構築體(其中至少一個構建單元係導向針對第一抗原(亦即MMP13)及至少一個構建單元係導向針對第二抗原(亦即不同於MMP13))亦稱為〝多特異性〞多肽及構築體,且存在於此等多肽及構築體中的構建單元(諸如ISVD)在本文亦稱為呈〝多特異性格式〞。因此,例如,本發明之〝雙特異性〞多肽為包含至少一個導向針對第一抗原(亦即MMP13)之ISVD及至少一個導向針對第二抗原(亦即不同於MMP13)之另外的ISVD之多肽,而本發明之〝三特異性〞多肽為包含至少一個導向針對第一抗原(亦即MMP13)之ISVD、至少一個導向針對第二抗原(亦即不同於MMP13)之另外的ISVD及至少一個導向針對第三抗原(亦即不同於MMP13及第二抗原二者)之另外的ISVD之多肽;等等。   在一態樣中,本發明關於包含二或更多個與MMP13特異性結合之ISVD的多肽,其中   a) 至少〝第一〞ISVD係與MMP13之第一抗原決定子、抗原決定區、部分、域、次單元或構形特異性結合;較佳地與MMP13特異性結合之該〝第一個〞ISVD係選自由下列所組成之群組:SEQ ID NO:111、11、110、10、112、12、109、9、13、14、15、16、17、18、19、20、21和22;及其中   b) 至少〝第二〞ISVD係與MMP13之第二抗原決定子、抗原決定區、部分、域、次單元或構形特異性結合,其分別不同於第一抗原決定子、抗原決定區、部分、域、次單元或構形,較佳地與MMP13特異性結合之該〝第二個〞ISVD係選自由下列所組成之群組:SEQ ID NO:1、2、3、4、5、6、7和8。   在一態樣中,本發明關於包含二或更多個與MMP13特異性結合之ISVD的多肽,其係選自由下列所組成之群組:SEQ ID NO:160至165,較佳為SEQ ID NO:160(參考表A-3)。   〝多互補位〞多肽及〝多互補位〞構築體(諸如〝雙互補位〞多肽或構築體及〝三互補位〞多肽或構築體)包含或基本上由各具有不同的互補位之二或更多個構建單元所組成。   因此,與MMP13結合的本發明之ISVD可呈基本上分離形式(如本文所定義),或彼等可構成構築體或多肽的一部分,其可包含或基本上由一或多個與MMP13結合之ISVD所組成,且其可隨意地另外包含一或多個另外的胺基酸序列(全部隨意地經由一或多個適合的連結子連結)。本發明關於多肽或構築體,其包含或基本上由至少一個與MMP13結合之根據本發明之ISVD(諸如本發明之一或多個ISVD)(或其適合的片段)所組成。   本發明之一或多個ISVD可用於作為此等多肽或構築體中的構建單元,以便分別提供本發明之單價、多價或多互補位多肽或構築體,全部皆如本文所述。本發明因此亦關於為單價構築體的多肽,其包含或基本上由本發明之單價多肽或ISVD所組成。   本發明因此亦關於分別為多價多肽或多價構築體之多肽或構築體,諸如雙價或三價多肽或構築體,其包含或基本上由本發明之二或更多個ISVD所組成(關於含有一或多個VHH域之多價及多特異性多肽及彼等之製備,亦參考例如Conrath等人(J. Biol. Chem. 276: 7346-7350, 2001),以及例如WO 96/34103、WO 99/23221和WO 2010/115998)。   在一態樣中,在其最簡單的形式中,本發明之多價多肽或構築體為本發明之雙價多肽或構築體,其包含導向針對MMP13的第一個ISVD(諸如奈米抗體)及導向針對MMP13之相同的第二個ISVD(諸如奈米抗體),其中該第一個及該第二個ISVD(諸如奈米抗體)可隨意地經由連結子序列連結(如本文所定義)。在其最簡單的形式中,本發明之多價多肽或構築體可為本發明之三價多肽或構築體,其包含導向針對MMP13的第一個ISVD(諸如奈米抗體)、導向針對MMP13之相同的第二個ISVD(諸如奈米抗體)及導向針對MMP13之相同的第三個ISVD(諸如奈米抗體),其中該第一個、第二個及第三個ISVD(諸如奈米抗體)可隨意地經由一或多個,且特別為兩個連結子序列連結。在一態樣中,本發明關於多肽或構築體,其包含或基本上由至少兩個與MMP13結合之根據本發明之ISVD(諸如2、3或4個ISVD)(或其適合的片段)所組成。二或更多個ISVD可隨意地經由一或多個肽連結子連結。   在另一態樣中,本發明之多價多肽或構築體可為本發明之雙特異性多肽或構築體,其包含導向針對MMP13之第一個ISVD(諸如奈米抗體)及導向針對第二抗原(諸如聚集蛋白聚糖)之第二個ISVD(諸如奈米抗體),其中該第一個及第二個ISVD(諸如奈米抗體)可隨意地經由連結子序列連結(如本文所定義);而本發明之多價多肽或構築體亦可為本發明之三特異性多肽或構築體,其包含導向針對MMP13之第一個ISVD(諸如奈米抗體)、導向針對第二抗原(諸如聚集蛋白聚糖)之第二個ISVD(諸如奈米抗體)及導向針對第三抗原之第三個ISVD(諸如奈米抗體),其中該第一個、第二個及第三個ISVD(諸如奈米抗體)可隨意地經由一或多個,且特別為兩個連結子序列連結。   本發明另外關於多價多肽,其包含或(基本上)由至少一個與MMP13(較佳為人類MMP13)結合之ISVD(或其適合的片段)及至少一個額外的ISVD(諸如聚集蛋白聚糖結合之ISVD)。   依照本發明之特別佳的三價、雙特異性多肽或構築體為那些在本文所述之實施例及表A-3中所示者。   在較佳的態樣中,本發明之多肽或構築體包含或基本上由至少兩個ISVD所組成,其中該至少兩個ISVD可相同或不同,但是其中至少一個ISVD係導向針對 MMP13。   存在於本發明之多價多肽或構築體中的二或更多個ISVD可由輕鏈可變域序列(例如VL -序列)或重鏈可變域序列(例如VH -序列)所組成;彼等可由源自習知的四鏈抗體之重鏈可變域序列或源自重鏈抗體之重鏈可變域序列所組成。在較佳的態樣中,彼等係由以親和力成熟所獲得的域抗體(或適合用作為域抗體之肽)、單域抗體(或適合用作為單域抗體之肽)、〝dAb〞(或適合用作為dAb之肽)、Nanobody®(包括但不限於VHH )、人源化VHH 序列、駱駝源化VH 序列或VHH 序列所組成。二或更多個免疫球蛋白單可變域可由部分或完全人源化奈米抗體或部分或完全人源化VHH所組成。   在本發明之態樣中,存在於本發明之多互補位(較佳為雙互補位或三互補位)多肽或構築體中的第一個ISVD及第二個ISVD彼此不(交叉)競爭與MMP13之結合,且確切而言屬於不同的家族。因此,本發明關於包含二或更多個ISVD之多互補位(較佳為雙互補位)多肽或構築體,其中各ISVD屬於不同的家族。在一態樣中,本發明之此多互補位(較佳為雙互補位)多肽或構築體的第一個ISVD不交叉阻斷本發明之此多互補位(較佳為雙互補位)多肽或構築體的第二個ISVD與MMP13之結合及/或第一個ISVD不被第二個ISVD交叉阻斷與MMP13之結合。在另一態樣中,本發明之多互補位(較佳為雙互補位)多肽或構築體的第一個ISVD交叉阻斷本發明之此多互補位(較佳為雙互補位)多肽或構築體的第二個ISVD與MMP13之結合及/或第一個ISVD被第二個ISVD交叉阻斷與MMP13之結合。   在特別佳的態樣中,本發明之多肽或構築體包含或基本上由三或更多個ISVD所組成,其中至少兩個ISVD係導向針對MMP13。應理解導向針對MMP13的該至少兩個ISVD可相同或不同,可導向針對MMP13之相同的抗原決定區或不同的抗原決定區,可屬於相同的抗原決定區倉(bin)或不同的抗原決定區倉及/或可與相同的或不同的MMP13域結合。   在較佳的態樣中,本發明之多肽或構築體包含或基本上由至少兩個與MMP13結合之ISVD所組成,其中該至少兩個ISVD可相同或不同,其係獨立地選自由下列的SEQ ID NO所組成之群組:SEQ ID NO:111、11、110、10、112、12、109、9、13、14、15、16、17、18、19、20、21和22及SEQ ID NO:1、2、3、4、5、6、7和8,更佳地該至少兩個ISVD係獨立地選自由下列所組成之群組:SEQ ID NO:111、11、110、10、112、12、109、9和1,及/或至少一個ISVD係選自由下列所組成之群組:SEQ ID NO:111、11、110、10、112、12、109、9、13、14、15、16、17、18、19、20、21和22及至少一個ISVD係選自由下列所組成之群組:SEQ ID NO:1、2、3、4、5、6、7和8。   在另一態樣中,本發明關於包含二或更多個導向針對MMP13的ISVD之多互補位(較佳為雙互補位)多肽或構築體,該ISVD係與相同的抗原決定區結合,如以下列中任一者結合:SEQ ID NO:111、11、110、10、112、12、109、9、13、14、15、16、17、18、19、20、21和22或以下列中任一者結合:SEQ ID NO:1、2、3、4、5、6、7和8。   在另一態樣中,本發明關於如本文所述之多肽,其中該多肽與下列中任一者具有至少80%、90%、95%或100%(更佳為至少95%,且最佳為100%)之序列同一性:SEQ ID NO:160至165(亦即160、161、162、163、164或165)及176至192(亦即176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191或192),較佳為SEQ ID NO:192。 保留性   此項技術對影響關節軟骨之疾患需要更有效的治療,諸如骨關節炎。即使經關節內投藥時,用於治療受影響之軟骨的大多數藥物亦沒有足夠的滯留時間。本發明者推測治療藥物(諸如本發明之構築體、多肽及ISVD)的功效可藉由將治療藥物與能使藥物〝錨定〞在關節中及接著增加藥物保留,但是不應破壞該治療藥物的功效之部分偶合而顯著地增加(此部分在本文亦以〝錨定蛋白之軟骨〞或〝CAP〞表示)。藉由降低毒性及副作用而使此錨定概念不僅增加藥物功效,且亦增加對患病關節之操作特異性,因此擴大可能有用的藥物數量。   預期臨床使用之分子的最終格式包含一或兩個與MMP13結合之構建單元(諸如ISVD)及一或多個具有此作用保留模式之構建單元(例如ISVD),及可能的更多部分。在實施例段落中,其證明此等格式同時保留MMP13結合及治療效應,例如抑制活性以及保留特性。一或多個具有作用保留模式之構建單元(例如ISVD)可為在涉及MMP13之疾病中具有保留效應的任何構建單元(〝CAP構建單元〞),諸如關節炎疾病、骨關節炎、脊椎骨端發育不全、腰椎間盤退化性疾病、退化性關節疾病、類風濕性關節炎、剝離性骨軟骨炎、聚集蛋白聚糖病變(aggrecanopathies)和惡性腫瘤轉移。   〝CAP構建單元〞係用於引導、錨定及/或保留其他的例如治療性構建單元(諸如與MMP13結合之ISVD)在所欲位置上(諸如在關節中),其中該其他的例如治療性構建單元發揮其效應,例如結合及/或抑制MMP13活性。   本發明者另外推測聚集蛋白聚糖結合劑(諸如與聚集蛋白聚糖結合之ISVD)有可能作為此等錨定作用,儘管聚集蛋白聚糖在影響關節軟骨之各種疾患中高度糖化及降解。而且,鑑於藥物可進入臨床前所需之各種動物模式中的成本及大規模的測試,此等聚集蛋白聚糖結合劑應優先具有廣泛的物種交叉反應性,例如聚集蛋白聚糖結合劑應與各種物種的聚集蛋白聚糖結合。   本發明者能夠使用各種巧妙的免疫、篩選及特徵化方法鑑定具有卓越的選擇性、穩定性及特異性特質的各種聚集蛋白聚糖結合劑,其能於關節中延長保留性及活性。   在一態樣中,本發明關於減少及/或抑制組成物、多肽或構築體自關節流出之方法,其中該方法包含對有需要的個人投予醫藥活性量的根據本發明之至少一種多肽、根據本發明之構築體或根據本發明之組成物。   在本發明中,術語〝減少及/或抑制流出〞意指減少及/或抑制組成物、多肽或構築體自關節內向外流動至外部。與在相同的條件下但沒有本發明之聚集蛋白聚糖結合劑(例如與聚集蛋白聚糖結合之ISVD)存在下在關節中的前述組成物、多肽或構築體流出相比,較佳地流出減少及/或抑制至少10%,諸如至少20%、30%、40%或50%或甚至更高,諸如至少60%、70%、80%、90%或甚至100%。   接下來為其中涉及MMP13之疾病,諸如關節炎疾病、骨關節炎、脊椎骨端發育不全、腰椎間盤退化性疾病、退化性關節疾病、類風濕性關節炎、剝離性骨軟骨炎、聚集蛋白聚糖病變和惡性腫瘤轉移,預期本發明之聚集蛋白聚糖結合劑亦可用於影響軟骨的各種其他疾病,諸如關節病變和軟骨營養不良、關節炎疾病(諸如骨關節炎、類風濕性關節炎、痛風性關節炎、乾癬性關節炎、創傷性破裂或脫離)、軟骨發育不全、肋軟骨炎、脊椎骨端發育不全、椎間盤突出、腰椎間盤退化性疾病、退化性關節疾病和復發性多發性軟骨炎(在本文常以〝聚集蛋白聚糖相關疾病〞表示)。   CAP構建單元(例如與聚集蛋白聚糖結合之ISVD)較佳地與軟骨組織(諸如軟骨及/或半月板)結合。在較佳的態樣中,CAP構建單元對其他物種具有交叉反應性且與人類聚集蛋白聚糖(SEQ ID NO:105)、狗聚集蛋白聚糖、牛聚集蛋白聚糖、大鼠聚集蛋白聚糖、豬聚集蛋白聚糖、小鼠聚集蛋白聚糖、兔子聚集蛋白聚糖、食蟹獼猴聚集蛋白聚糖及/或恆河猴聚集蛋白聚糖中之一或多者特異性結合。聚集蛋白聚糖之相關的結構訊息可以例如以下表2中所描述之(UniProt)登錄號找到。   較佳的CAP構建單元為與聚集蛋白聚糖結合之ISVD,較佳為較佳地以SEQ ID NO:105代表之人類聚集蛋白聚糖,如表B中所描述。本發明因此關於根據本發明之多肽或構築體,其另外包含至少一個CAP構建單元。   本發明因此關於根據本發明之多肽或構築體,其另包含至少一個與聚集蛋白聚糖特異性結合之ISVD,諸如表E中所示,且較佳地選自以SEQ ID NO:166至168代表的ISVD。   特別地,本發明關於與聚集蛋白聚糖特異性結合之ISVD,其中該ISVD基本上由4個框架區(分別為FR1至FR4)及3個互補決定區(分別為CDR1至CDR3)所組成,其中該ISVD係選自ISVD之群組,其中(a)CDR1為SEQ ID NO:169,CDR2為SEQ ID NO:170;及CDR3為SEQ ID NO:171;及(b)CDR1為SEQ ID NO:172,CDR2為SEQ ID NO:173,及CDR3為SEQ ID NO:174。   在一態樣中,本發明關於如本文所述之多肽,其包含至少2個與聚集蛋白聚糖特異性結合之ISVD。   在一態樣中,本發明關於如本文所述之多肽,其包含至少2個與聚集蛋白聚糖特異性結合之ISVD,其中該至少2個與聚集蛋白聚糖特異性結合之ISVD可相同或不同。   在一態樣中,本發明關於如本文所述之多肽,其包含至少2個與聚集蛋白聚糖特異性結合之ISVD,其中該至少2個與聚集蛋白聚糖特異性結合之ISVD係獨立地選自由下列所組成之群組:SEQ ID NO:166至168。   在一態樣中,本發明關於如本文所述之多肽,其包含至少2個與聚集蛋白聚糖特異性結合之ISVD,其中該至少2個與聚集蛋白聚糖特異性結合之ISVD係以SEQ ID NO:166至168代表。   在一態樣中,本發明關於如本文所述之多肽,其包含與聚集蛋白聚糖特異性結合之ISVD,其中與聚集蛋白聚糖特異性結合之該ISVD係與人類聚集蛋白聚糖[SEQ ID NO:105]特異性結合。   在一態樣中,本發明關於如本文所述之多肽,其中與聚集蛋白聚糖特異性結合之該ISVD係與人類聚集蛋白聚糖(SEQ ID NO:105)、狗聚集蛋白聚糖、牛聚集蛋白聚糖、大鼠聚集蛋白聚糖、豬聚集蛋白聚糖、小鼠聚集蛋白聚糖、兔子聚集蛋白聚糖、食蟹獼猴聚集蛋白聚糖及/或恆河猴聚集蛋白聚糖特異性結合。   在一態樣中,本發明關於如本文所述之多肽,其中與聚集蛋白聚糖特異性結合之該ISVD較佳地與軟骨組織(諸如軟骨及/或半月板)結合。   應理解本發明之ISVD、多肽及構築體較佳為穩定的。本發明之多肽、構築體或ISVD的穩定性可以熟習此項技術者已知的常規檢定法測量。典型的檢定法包括(非限制)其中測定該等多肽、構築體或ISVD的活性,接著在滑液中經所欲時期培育,隨後再測定活性之檢定法,例如實施例段落中所詳述。   在一態樣中,本發明關於本發明之ISVD、多肽或構築體,其在37℃下於滑液(SF)中具有至少7天的穩定性,諸如至少14天、21天、1個月、2個月或甚至3個月。   在一態樣中,本發明關於本發明之ISVD、多肽或構築體,其穿透至少5微米軟骨中,諸如至少10微米、20微米、30微米、40微米、50微米或甚至更多。   治療性構建單元(例如在本發明之多價多肽或構築體中與MMP13結合之ISVD)的所欲活性可以熟習此項技術者已知的常規檢定法測量。典型的檢定法包括(非限制)GAG釋放檢定法,如實施例段落中所詳述。   相對親和力可取決於ISVD在多肽中的位置而定。應理解ISVD在本發明之多肽中的順序(定向)可根據熟習此項技術者的需要而選擇。個別ISVD的順序以及多肽是否包含連結子為設計選擇的事項。一些具有或不具有連結子之定向可提供與其他定向相比而較佳的結合特徵。例如,在本發明之多肽中的第一個ISVD(例如ISVD 1)及第二個ISVD(例如ISVD 2)的順序可為(自N-端至C-端):(i)ISVD 1(例如奈米抗體1)-[連結子]-ISVD 2(例如奈米抗體2)-[C-端延伸];或(ii)ISVD 2(例如奈米抗體2)-[連結子]-ISVD 1(例如奈米抗體1)-[C-端延伸];(其中介於方括號之間的部分(亦即連結子及C-端延伸)為隨意的)。本發明涵蓋所有的定向。含有提供所欲結合特徵之ISVD定向之多肽可由常規篩選容易地鑑定,例如實施例段落中所例示。較佳的順序係自N-端至C-端:與MMP13結合之ISVD-[連結子]-與聚集蛋白聚糖結合之ISVD-[C-端延伸],其中介於方括號之間的部分為隨意的。更佳的順序係自N-端至C-端:與MMP13結合之ISVD-[連結子]-與聚集蛋白聚糖結合之ISVD-[連結子]-與聚集蛋白聚糖結合之ISVD-[C-端延伸],其中介於方括號之間的部分為隨意的。參見例如表F。 半衰期   在本發明特定的態樣中,本發明之構築體或多肽可具有賦予增加半衰期的部分,其係與沒有該部分之對應的本發明之構築體及多肽相比。本發明之此等構築體及多肽的一些較佳但非限制的實例係基於本文進一步的揭示而為熟習此項技術者所明瞭,且例如包含經化學修飾以增加其半衰期的本發明之ISVD或多肽(例如藉助於聚乙二醇化);包含至少一個額外與血清蛋白(諸如血清白蛋白)結合之結合位點的本發明之MMP13結合劑(諸如本發明之ISVD及/或多肽;或包含與增加本發明之胺基酸序列的半衰期之至少一個部分(且特別為至少一個胺基酸序列)連結的本發明之至少一個ISVD的本發明之多肽。包含此等半衰期延長部分或ISVD的本發明之構築體(諸如本發明之多肽)的實例係基於本文進一步的揭示而為熟習此項技術者所明瞭;且例如包括而不限於以下多肽:其中本發明之一或多個ISVD係與一或多個血清蛋白或其片段(諸如(人類)血清白蛋白或其適合的片段)或與可與血清蛋白結合之一或多個結合單元適當地連結之多肽(諸如域抗體、適合用作為域抗體之免疫球蛋白單可變域、單域抗體、適合用作為單域抗體之免疫球蛋白單可變域、dAb、適合用作為dAb之免疫球蛋白單可變域、或可與血清蛋白(諸如血清白蛋白,諸如人類血清白蛋白)、血清免疫球蛋白(諸如IgG)或轉鐵蛋白結合之奈米抗體;參考進一步的說明及本文所提及之參考文獻);其中本發明之胺基酸序列係與Fc部分(諸如人類Fc)或其適合的部分或片段連結之多肽;或其中本發明之一或多個免疫球蛋白單可變域係與可與血清蛋白結合之一或多個小蛋白質或肽適當地連結之多肽,諸如在WO 91/01743、WO 01/45746、WO 02/076489、WO2008/068280、WO2009/127691及PCT/EP2011/051559中所述之蛋白質及肽。   在一態樣中,本發明提供本發明之構築體或多肽,其中該構築體或該多肽另外包含血清蛋白結合部分或血清蛋白。較佳地該血清蛋白結合部分係與血清白蛋白(諸如人類血清白蛋白)結合。   在一態樣中,本發明關於包含與血清白蛋白結合之ISVD的如本文所述之多肽。   通常具有增加半衰期的本發明之構築體及多肽較佳地具有比對應之本發明之構築體及多肽本身(亦即沒有賦予增加半衰期的部分)的半衰期多至少1.5倍,較佳為至少2倍,諸如至少5倍,例如至少10倍或超過20倍的半衰期。例如,具有增加半衰期的本發明之構築體或多肽可在例如人類中具有與對應之本發明之構築體及多肽本身(亦即沒有賦予增加半衰期的部分)相比而增加超過1小時,較佳為超過2小時,更佳為超過6小時,諸如超過12小時或甚至超過24、48或72小時的半衰期。   在本發明較佳但非限制的態樣中,本發明之構築體及本發明之多肽在例如人類中具有與對應之本發明之構築體及多肽本身(亦即沒有賦予增加半衰期的部分)相比而增加超過1小時,較佳為超過2小時,更佳為超過6小時,諸如超過12小時或甚至超過24、48或72小時的血清半衰期。   在本發明另一較佳但非限制的態樣中,本發明之此等構築體(諸如本發明之多肽)在人類中展現至少約12小時,較佳為至少24小時,更佳為至少48小時,甚至更佳為至少72小時或更長的血清半衰期。例如,本發明之構築體或多肽可具有至少5天(諸如約5至10天),較佳為至少9天(諸如約9至14天),更佳為至少約10天(諸如約10至15天),或至少約11天(諸如約11至16天),更佳為至少約12天(諸如約12約18天或更長),或超過14天(諸如約14至19天)的半衰期。   在本發明特別佳但非限制的態樣中,本發明提供本發明之構築體及本發明之多肽,其包含除了一或多個與MMP13結合之構建單元及可能的一或多個與聚集蛋白聚糖結合之CAP構建單元(例如ISVD)以外,亦包含至少一個與血清白蛋白結合之構建單元,諸如與血清白蛋白(諸如人類血清白蛋白)結合之ISVD,如本文所述。較佳地與血清白蛋白結合之該ISVD包含或基本上由4個框架區(分別為FR1至FR4)及3個互補決定區(分別為CDR1至CDR3)所組成,其中CDR1為SFGMS,CDR2為SISGSGSDTLYADSVKG,及CDR3為GGSLSR。較佳地與人類血清白蛋白結合之該ISVD係選自由下列所組成之群組:Alb8、Alb23、Alb129、Alb132、Alb11、Alb11(S112K)-A、Alb82、Alb82-A、Alb82-AA、Alb82-AAA、Alb82-G、Alb82-GG、Alb82-GGG、Alb92、Alb135或Alb223(參考表D)。   在一實施態樣中,本發明關於包含血清蛋白結合部分的本發明之構築體(諸如多肽),其中該血清蛋白結合部分為基於非抗體之多肽。 其他部分   在一態樣中,本發明關於如本文所述之構築體,其包含一或多個其他基團、殘基、部分或結合單元。該一或多個其他基團、殘基、部分或結合單元較佳地選自由下列所組成之群組:聚乙二醇分子、血清蛋白或其片段、可與血清蛋白結合之結合單元、Fc部分及可與血清蛋白結合之小蛋白質或肽、另外的胺基酸殘基、標籤或其他的功能性部分,例如毒素、標記物、放射化學品等。   在下文所提及之實施態樣中,本發明關於包含賦予半衰期延長之部分的本發明之構築體(諸如多肽),其中該部分為PEG。因此,本發明亦關於包含PEG的本發明之構築體或多肽。   另外的胺基酸殘基可能或可能不改變、變更或以其他方式影響本發明之多肽的其他(生物)特性及可能或可能不添加另外的功能性至本發明之多肽。例如,此等胺基酸殘基:   a) 可包含N-端Met殘基,例如由於在異源性宿主細胞或宿主生物體中的表現。   b) 可形成信號序列或前導序列,其引導在合成時多肽自宿主細胞分泌(例如以提供本發明之多肽的預、前或預前形式(pre-、pro-或prepro-form),其係取決於用以表現本發明之多肽的宿主細胞而定)。適合的分泌性前導肽為熟習此項技術者所明瞭,且可如本文進一步的說明。此等前導序列經常與多肽之N-端連結,儘管呈最廣義之本發明不限於此;   c) 可形成〝標籤〞,例如容許或加速多肽純化之胺基酸序列或殘基,例如使用導向針對該序列或殘基之親合力技術。隨後可移除該序列或殘基(例如藉由化學或酶催化切割),以提供多肽(出於此目的,標籤可隨意地經由可切割的連結子序列與胺基酸序列或多肽序列連結或含有可切割的基序)。此等殘基的一些較佳但非限制的實例為多重組胺酸殘基、麩胱甘肽殘基、myc-標籤(諸如AAAEQKLISEEDLNGAA(SEQ ID NO:175))、MYC-HIS-標籤(SEQ ID NO:123)或FLAG-HIS6-標籤(SEQ ID NO:124)(參見表B);   d) 可為已經功能化及/或可充當為附著官能基之位點的一或多個胺基酸殘基。適合的胺基酸殘基及官能基為熟習此項技術者所明瞭且包括但不限於就本發明之多肽的衍生物而於本文所提及之胺基酸殘基及官能基。   本發明亦涵蓋包含本發明之ISVD及另外包含其他的功能性部分(例如毒素、標記物、放射化學品等)之構築體及/或多肽。   其他的基團、殘基、部分或結合單元可為例如化學基團、殘基、部分,其本身可能或可能不具有生物及/或藥理學活性。例如而非限制,此等基團可與本發明之一或多個ISVD或多肽連結,以便提供本發明之多肽或構築體的〝衍生物〞。   因此,呈最廣義之本發明亦包含為本發明之構築體及/或多肽的衍生物之構築體及/或多肽。此等衍生物通常係藉由修飾及特別藉由化學及/或生物(例如酶催化)修飾本發明之構築體及/或多肽及/或形成本發明之多肽的胺基酸殘基中之一或多者而獲得。   此等修飾的實例,以及可以此方式修飾之多肽序列內的胺基酸殘基(亦即在蛋白質主鏈上,但較佳地在側鏈上)、可用於引入此等修飾之方法和技術、及此等修飾的可能用途和優點的實例為熟習此項技術者所明瞭(亦參見Zangi等人之Nat Biotechnol 31(10):898-907, 2013)。   例如,此等修飾可包含引入(例如以共價連結或以任何其他適合的方式)一或多個(功能性)基團、殘基或部分至本發明之多肽之中或之上,且特別引入賦予一或多個所欲特性或功能性的一或多個功能性基團、殘基或部分至本發明之構築體及/或多肽中。此等功能性基團的實例為熟習此項技術者所明瞭。   例如,此等修飾可包含引入(例如以共價連結或以任何其他適合的方式)一或多個功能性部分,其增加本發明之構築體或多肽的半衰期、溶解性及/或吸收,降低本發明之構築體或多肽的免疫原性及/或毒性,消除或減弱本發明之構築體或多肽的任何非所欲副作用,及/或賦予本發明之構築體或多肽其他有利的特性及/或降低非所欲特性;或前述之二或更多個的任何組合。此等功能性部分及引入彼等之技術的實例為熟習此項技術者所明瞭,且通常可包含在上文所引用之一般背景技術中所提及之所有功能性部分和技術,以及用於修飾醫藥蛋白質及特別用於修飾抗體或抗體片段(包括ScFv及單域抗體)之本身已知的功能性部分和技術,參考例如Remington(Pharmaceutical Sciences, 16th ed., Mack Publishing Co., Easton, PA, 1980)。此等功能性部分可例如直接連結(例如經共價)至本發明之多肽或隨意地經由適合的連結子或間隔子連結,又為熟習此項技術者所明瞭。   一個特定的實例為本發明之多肽或構築體的衍生物,其中本發明之多肽或構築體已經化學修飾以增加其半衰期(例如藉助於聚乙二醇化)。這為增加半衰期及/或降低醫藥蛋白質的免疫原性之最廣泛使用的技術之一,且包含附著適合的藥理學上可接受之聚合物,諸如聚(乙二醇)(PEG)或其衍生物(諸如甲氧基聚(乙二醇)或mPEG)。通常可使用任何適合的聚乙二醇化形式,諸如在此項技術中用於抗體和抗體片段(包括但不限於(單)域抗體及ScFv)之聚乙二醇化;參考例如Chapman(Nat. Biotechnol. 54: 531-545, 2002)、Veronese和Harris(Adv.Drug Deliv. Rev. 54: 453-456, 2003)、Harris和Chess(Nat. Rev. Drug. Discov. 2: 214-221, 2003)及WO 04/060965。用於蛋白質聚乙二醇化的各種試劑亦可於商業上取得,例如取自Nektar Therapeutics, USA。   較佳地使用位點引導之聚乙二醇化,特別經由半胱胺酸殘基(參見例如Yang等人(Protein Engineering 16: 761-770, 2003)。例如,出於此目的,PEG可附著至本發明之多肽中天然生成之半胱胺酸殘基,本發明之構築體或多肽可經修飾以適當地引入用於附著PEG的一或多個半胱胺酸殘基,或包含用於附著PEG的一或多個半胱胺酸殘基之胺基酸序列可與本發明之構築體或多肽的N-端及/或C-端融合,全部皆使用本身為熟習此項技術者已知的蛋白質工程化技術。   較佳地用於本發明之構築體及多肽的PEG具有超過5000之分子量,諸如超過10,000及少於200,000,諸如少於100,000;例如在20,000至80,000之範圍內。   另外,通常較不偏好的修飾包含經N連結或經O連結之糖化作用,經常成為共同轉譯及/或轉譯後修飾的一部分,其係取決於用以表現本發明之多肽的宿主細胞而定。   又另一修飾可包含引入一或多個可檢測的標記物或其他信號產生基團或部分,此係取決於本發明之多肽或構築體的意欲用途而定。適合的標記物及用於附著、使用及檢測彼等之技術為熟習此項技術者所明瞭,且例如包括但不限於螢光標記物(諸如螢光素、異硫氰酸鹽、玫瑰紅、藻紅素、藻青蛋白、別藻藍蛋白、鄰二醛苯甲酸和螢咔明)及螢光金屬(諸如152 Eu或來自鑭系的其他金屬)、磷光標記物、化學發光標記物或生物發光標記物(諸如魯米那(luminal)、異魯米諾(isoluminol)、熱性(theromatic)吖啶酯、咪唑、吖啶鹽、草酸酯、二氧雜環丁烷或GFP及其類似物)、放射性同位素(諸如3 H、125 I、32 P、35 S、14 C、51 Cr、36 Cl、57 Co、58 Co、59 Fe和75 Se)、金屬、金屬螯合物或金屬陽離子(例如金屬陽離子,諸如99m Tc、123 I、111 In、131 I、97 Ru、67 Cu、67 Ga和68 Ga或特別適合用於活體內、試管內或現場診斷和成像的其他金屬或金屬陽離子,諸如(157 Gd、55 Mn、162 Dy、52 Cr和56 Fe)),以及發色團及酶(諸如蘋果酸去氫酶、葡萄球菌核酸酶、δ-V-類固醇異構酶、酵母醇去氫酶、α-甘油磷酸去氫酶、丙醣磷酸異構酶、生物素親合素過氧化酶、山葵過氧化酶、鹼性磷酸酶、天門冬醯胺酶、葡萄糖氧化酶、β-半乳糖苷酶、核糖核酸酶、尿素酶、觸酶、葡萄糖-VI-磷酸去氫酶、葡萄糖澱粉酶和乙醯膽鹼酯酶)。其他適合的標記物為熟習此項技術者所明瞭,且例如包括可使用NMR或ESR光譜法檢測的部分。   本發明的此等標記之多肽及構築體可例如用於試管內、活體內或現場檢定(包括本身已知之免疫檢定法,諸如ELISA、RIA、EIA和〝夾心式檢定法〞等),以及活體內診斷及成像目的,其係取決於特定的標記物選擇而定。   如熟習此項技術者所明瞭,另一修飾可包含引入螯合基團,例如螯合上文述及之金屬或金屬陽離子中之一者。適合的螯合基團例如包括而不限於二伸乙三胺五乙酸(DTPA)或乙二胺四乙酸(EDTA)。   又另一修飾可包含引入功能性部分,其為特定的結合對(諸如生物素-(鏈)親合素結合對)之一部分。此等功能性部分可用於連結本發明之多肽與結合對的另一半結合之另一蛋白質、多肽或化學化合物,亦即通過形成結合對。例如,本發明之構築體或多肽可與生物素共軛,且連結與親和素或鏈親合素共軛之另一蛋白質、多肽、化合物或載體。例如,本發明的此等共軛之構築體或多肽可用作為例如診斷系統中的報導子,其中可偵測的信號產生劑係與親和素或鏈親合素共軛。此等結合對亦可例如用於結合本發明之構築體或多肽與載劑,包括適合於藥物目的之載劑。一個非限制性實例為Cao和Suresh(Journal of Drug Targeting 8: 257, 2000)所述之脂質體調配物。此等結合對亦可用於連結治療活性劑與本發明之多肽。   其他可能的化學及酶催化修飾為熟習此項技術者所明瞭。此等修飾亦可出於研究目的而引入(例如研究功能-活性關係)。參考例如Lundblad和Bradshaw(Biotechnol. Appl. Biochem. 26: 143-151, 1997)。   較佳地構築體、多肽及/或衍生物使得彼等以如本文定義(亦即如以本發明之多肽所定義)之親和力(以(真實或視)KD 值、(真實或視)KA 值、kon 締合速率及/或koff 解離速率或另一選擇地以IC50 值適當地測量及/或表示,如本文進一步的說明)與MMP13結合。   本發明之此等構築體及/或多肽及其衍生物亦可呈基本上分離形式(如本文所定義)。   在一態樣中,本發明關於本發明之構築體,其包含或基本上由根據本發明之ISVD或根據本發明之多肽所組成,且其另外包含隨意地經由一或多個肽連結子連結之一或多個其他基團、殘基、部分或結合單元。   在一態樣中,本發明關於本發明之構築體,其中一或多個其他基團、殘基、部分或結合單元係選自由下列所組成之群組:聚乙二醇分子、血清蛋白或其片段、可與血清蛋白結合之結合單元、Fc部分及可與血清蛋白結合之小蛋白質或肽。 連結子   在本發明之構築體(諸如本發明之多肽)中,二或更多個構建單元(諸如ISVD)及隨意的一或多個其他基團、藥物、劑、殘基、部分或結合單元可彼此直接連結(如例如WO 99/23221中所述)及/或可經由一或多個適合的間隔子或連結子或其任何組合彼此連結。適用於多價及多特異性多肽的間隔子或連結子為熟習此項技術者所明瞭,且通常可為此項技術中用於連結胺基酸序列的任何連結子或間隔子。較佳地該連結子或間隔子適用於構築為醫藥用途而設之構築體、蛋白質或多肽。   例如,本發明之多肽可為例如三價、三特異性多肽,其包含一個與MMP13結合之構建單元(諸如ISVD)、CAP構建單元(諸如與聚集蛋白聚糖結合之ISVD)及可能的另一構建單元(諸如第三個ISVD),其中該第一個、第二個及第三個構建單元(諸如ISVD)可隨意地經由一或多個及特別經由2個連結子序列連結。本發明亦提供包含與MMP13結合之第一個ISVD及與聚集蛋白聚糖結合之可能的第二個ISVD及/或可能的第三個ISVD及/或可能的第四個ISVD的本發明之構築體或多肽,其中該第一個ISVD及/或該第二個ISVD及/或可能的該第三個ISVD及/或可能的該第四個ISVD係經由連結子,特別經由3個連結子連結。   一些特別佳的連結子包括在此項技術中用於連結抗體片段或抗體域之連結子。該等包括在上文所引用之一般背景技術中所提及之連結子,以及例如在此項技術中用於構築雙功能抗體或ScFv片段之連結子(然而,關於此點,應注意在雙功能抗體中及在ScFv片段中所使用之連結子序列應具有容許有關的VH 和VL 域一起形成完整的抗原結合位點之長度、可撓性程度及其他特性,而對本發明之多肽中所使用之連結子的長度或可撓性沒有特別的限制,因為各ISVD(諸如奈米抗體)本身形成完整的抗原結合位點)。   例如,連結子可為適合的胺基酸序列,且特別為介於1與50個,較佳為介於1與30個,諸如介於1與10個胺基酸殘基之胺基酸序列。此等胺基酸序列之一些較佳的實例包括例如WO 99/42077中所述之類型(glyx sery )z 的gly-ser連結子(諸如(gly4 ser)3 或(gly3 ser2 )3 )及在本文所提及之Ablynx的申請案中所述之GS30、GS15、GS9和GS7連結子(參見例如WO 06/040153和WO 06/122825),以及鉸鏈樣區域,諸如天然生成重鏈抗體或類似序列之鉸鏈區(諸如在WO 94/04678中所述)。較佳的連結子描述於表C中。   一些其他特別佳的連結子為聚丙胺酸(諸如AAA),以及連結子GS30(在WO 06/122825中的SEQ ID NO:85)和GS9(在WO 06/122825中的SEQ ID NO:84)。   其他適合的連結子通常包含有機化合物或聚合物,特別為那些適用於醫藥用途之蛋白質中的連結子。例如,聚(乙二醇)部分被用於連結抗體域,參見例如WO 04/081026。   涵蓋在本發明之範圍內的所使用之連結子的長度、可撓性程度及/或其他特性(儘管不重要,但是因為其經常為用於ScFv片段之連結子)對本發明之最終構築體(諸如本發明之多肽)的特性可能有一些影響,包括但不限於對MMP13或其他的抗原中之一或多者的親和力、特異性或親留力。基於本文之揭示內容,熟習此項技術者能夠隨意地在一些有限的常規實驗之後測定用於本發明特定的構築體(諸如本發明之多肽)之最適化連結子。   例如,在包含針對MMP13及其他標靶之構建單元、ISVD或奈米抗體的本發明之多價多肽中,連結子的長度及可撓性較佳地使得其容許存在於多肽中的本發明之各構建單元(諸如ISVD)與其同源標靶(例如在每一標靶上的抗原決定子)結合。再基於本文的揭示內容,熟習此項技術者能夠隨意地在一些有限的常規實驗之後測定用於本發明特定的構築體(諸如本發明之多肽)之最適化連結子。   亦在本發明之範圍內的所使用之連結子賦予本發明之構築體(諸如本發明之多肽)一或多個其他有利的特性或功能性及/或提供用於形成衍生物及/或用於附著功能性基團的一或多個位點(例如本文就本發明之ISVD的衍生物所述)。例如,含有一或多個荷電胺基酸殘基之連結子可提供改進的親水特性,而形成或含有小的抗原決定區或標籤之連結子可用檢測、鑑定及/或純化之目的。再基於本文的揭示內容,熟習此項技術者能夠隨意地在一些有限的常規實驗之後測定用於本發明特定的多肽之最適化連結子。   最後,當二或更多個連結子被用於本發明之構築體(諸如多肽)時,該等連結子可相同或不同。再基於本文的揭示內容,熟習此項技術者能夠隨意地在一些有限的常規實驗之後測定用於本發明特定的構築體及多肽之最適化連結子。   為了容易表現及生產,本發明之構築體(諸如本發明之多肽)經常為線性多肽。然而,呈最廣義之本發明不限於此。例如,當本發明之構築體(諸如本發明之多肽)包含三或更多個構建單元、ISVD或奈米抗體時,則該等有可能使用具有三或更多個〝臂〞之連結子連結,各〝臂〞係與構建單元、ISVD或奈米抗體連結,以便提供〝星形〞構築體。儘管通常為次佳,但亦有可能使用圓形構築體。   因此,本發明關於本發明之構築體,諸如本發明之多肽,其中該等ISVD彼此直接連結或經由連結子連結。   因此,本發明關於本發明之構築體,諸如本發明之多肽,其中第一個ISVD及/或第二個ISVD及/或與血清白蛋白結合之可能的ISVD係經由連結子連結。   因此,本發明關於本發明之構築體,諸如本發明之多肽,其中該連結子係選自由下列的連結子所組成之群組:A3、5GS、7GS、8GS、9GS、10GS、15GS、18GS、20GS、25GS、30GS、35GS、40GS、G1絞鏈區、9GS-G1絞鏈區、駱馬上部長絞鏈區和G3絞鏈區,諸如表C中所呈示。   因此,本發明關於本發明之構築體,諸如本發明之多肽,其中該多肽係選自在表A-3及表F中所示之群組,例如選自由下列所組成之群組:SEQ ID NO:164至165、160、161、162、163,及SEQ ID NO:176、192和175至191(亦即175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190或191)。 製備   本發明另外關於製備本文所述之構築體、多肽、ISVD、核酸、宿主細胞及組成物之方法。   本發明之多價多肽通常可藉由包含至少以下步驟之方法製備:將本發明之ISVD及/或單價多肽與一或多個另外的ISVD隨意地經由一或多個適合的連結子適當地連結,以便提供本發明之多價多肽。本發明之多肽亦可藉由通常包含至少以下步驟之方法製備:提供編碼本發明之多肽的核酸,以適合的方式表現該核酸,及回收經表現的本發明之多肽。此等方法可以本身為熟習此項技術者所明瞭的已知方式進行,例如基於本文進一步說明之方法及技術。   製備本發明之多價多肽之方法可包含至少以下步驟:將本發明之二或更多個ISVD與例如一或多個連結子以適合的方式連結在一起。本發明之ISVD(與連結子)可以此項技術中已知及如本文進一步說明之任何方法偶合。較佳的技術包括將編碼本發明之ISVD的核酸序列(與連結子)連結以製備表現多價多肽之基因構築體。用於連結胺基酸或核酸之技術為熟習此項技術者所明瞭,且再參考標準手冊(諸如上文提及之Sambrook等人及Ausubel等人)以及下文的實施例。   因此,本發明亦關於本發明之ISVD製備本發明之多價多肽的用途。製備多價多肽之方法包含將本發明之ISVD與本發明之至少一個另外的ISVD隨意地經由一或多個連結子連結。本發明之ISVD接著用作為結合域或構建單元以提供及/或製備包含2個(例如呈雙價多肽)、3個(例如呈三價多肽)、4個(例如呈四價多肽)或更多個(例如呈多價多肽)構建單元之多價多肽。關於此點,本發明之ISVD可用作為結合域或結合單元以提供及/或製備包含2、3、4或更多個構建單元的本發明之多價(諸如雙價、三價或四價)多肽。   因此,本發明亦關於本發明之ISVD多肽(如本文所述)製備多價多肽的用途。用於製備多價多肽之方法包含將本發明之ISVD與本發明之至少一個另外的ISVD隨意地經由一或多個連結子連結。   本發明之多肽及核酸可以本身已知的方式製備,如熟習此項技術者自本文進一步的說明所明瞭。例如,本發明之多肽可以用於製備抗體及特別用於製備抗體片段(包括但不限於(單)域抗體及ScFv片段)之本身已知的任何方式製備。用於製備多肽及核酸之一些較佳但非限制的方法包括本文所述之方法及技術。   用於生產本發明之多肽的方法可包含以下步驟:   - 表現在適合的宿主細胞或宿主生物體(在本文亦稱為〝本發明之宿主〞)中或在編碼本發明之該多肽的核酸(在本文亦稱為〝本發明之核酸〞)之另一適合的表現系統中,   隨意地接著:   - 分離及/或純化因此獲得的本發明之多肽。   特別地,此方法可包含以下步驟:   - 使本發明之宿主在使得本發明之該宿主表現及/或生產本發明之至少一種多肽的條件下培養及/維持;隨意地接著:   - 分離及/或純化因此獲得的本發明之多肽。   因此,本發明亦關於編碼本發明之多肽、ISVD或構築體的核酸或核苷酸序列(亦稱為〝本發明之核酸〞)。   本發明之核酸可呈單股或雙股DNA或RNA的形式。根據本發明之一個實施態樣,本發明之核酸呈基本上分離形式,如本文所定義。本發明之核酸亦呈載體形式、存在於載體中及/或為載體的一部分,例如表現載體,諸如質體、黏粒或YAC,其亦可呈基本上分離形式。因此,本發明亦關於包含本發明之核酸或核苷酸序列的表現載體。   本發明之核酸可基於本文所給出之本發明之多肽的訊息而以本身已知的方式製備或獲得及/或可自適合的天然來源分離。亦如熟習此項技術者所明瞭,許多核苷酸序列(諸如編碼本發明之ISVD的至少兩個核酸及例如編碼一或多個連結子之核酸)亦可以適合的方式連結在一起以製備本發明之核酸。產生本發明之核酸的技術為熟習此項技術者所明瞭且可例如包括但不限於自動化DNA合成、位點引導之突變、組合二或更多個天然生成及/或合成序列(或其二或更多個部分)、引入導致經截短之表現產物表現之突變、引入一或多個限制位點(例如產生可使用適合的限制酶容易消化及/或接合之基因盒及/或區域)、及/或藉助於使用一或多個〝錯配〞引子的PCR反應而引入突變。該等及其他技術為熟習此項技術者所明瞭,且再參考標準手冊(諸如上文提及之Sambrook等人及Ausubel等人)以及下文的實施例。   在較佳但非限制的實施態樣中,本發明之基因構築體包含   a) 本發明之至少一種核酸;   b) 與一或多個調控元件(諸如啟動子及隨意地適合的終止子)可操作地連接;及亦隨意地包含   c) 本身已知的基因構築體之一或多個其他元件;   其中術語〝調控元件〞、〝啟動子〞、〝終止子〞及〝可操作地連接〞具有彼等在此項技術中的慣用含義。   本發明之基因構築體通常可藉由將本發明之核苷酸序列與上述之一或多個其他元件適當地連結而提供,例如使用在通用手冊中所述之技術,諸如上文提及之Sambrook等人及Ausubel等人。   本發明之核酸及/或本發明之基因構築體可用於轉形宿主細胞或宿主生物體,亦即用於表現及/或生產本發明之多肽。適合的宿主或宿主細胞為熟習此項技術者所明瞭,且可例如為任何適合的真菌、原核或真核細胞或細胞株或任何適合的真菌、原核或(非人類)真核生物體;以及用於表現及生產抗體和抗體片段(包括但不限於(單)域抗體及ScFv片段)之本身已知的所有其他宿主細胞或(非人類)宿主,其為熟習此項技術者所明瞭。亦參考上文所引用之一般背景技術,以及例如WO 94/29457;WO 96/34103;WO 99/42077;Frenken等人(Res Immunol. 149: 589-99, 1998);Riechmann和Muyldermans(1999),上文所述;van der Linden(J. Biotechnol. 80: 261-70, 2000);Joosten等人(Microb. Cell Fact. 2: 1, 2003);Joosten等人(Appl. Microbiol. Biotechnol. 66: 384-92, 2005);及本文所引用之更多參考文獻。此外,本發明之多肽亦可在無細胞表現系統中表現及/或生產,且該等系統之適合的實例為熟習此項技術者所明瞭。用於轉形本發明之宿主或宿主細胞之適合的技術為熟習此項技術者所明瞭且可取決於意欲之宿主細胞/宿主生物體及欲使用之基因構築體而定。再參考上文提及之手冊及專利申請案。經轉形之宿主細胞(其可呈穩定的細胞株形式)或宿主生物體(其可呈穩定的突變株或菌株形式)構成本發明之另外的態樣。因此,本發明關於包含根據本發明之核酸的宿主或宿主細胞或根據本發明之表現載體。較佳地該等宿主細胞或宿主生物體使得彼等表現或(至少)能夠表現(例如在適合的條件下)本發明之多肽(且在宿主生物體之情況中:在其至少一種細胞、部分、組織或器官中表現)。本發明亦包括本發明之宿主細胞或宿主生物體的其他世代、子代及/或後代,其可例如藉由細胞分裂或藉由有性或無性繁殖而獲得。   為了產生/獲得本發明之多肽的表現,經轉形之宿主細胞或經轉形之宿主生物體通常可保持、維持在得以表現/生產本發明之(所欲)多肽的條件下及/或在條件下培養。適合的條件為熟習此項技術者所明瞭且通常取決於所使用之宿主細胞/宿主生物體,以及控制本發明之(相關)核苷酸序列表現的調控元件而定。再參考上文關於本發明之基因構築體的段落中所提及之手冊及專利申請案。   接著本發明之多肽可自宿主細胞/宿主生物體及/或自培養該宿主細胞或宿主生物體之培養基分離,該分離係使用本身已知的蛋白質分離及/或純化技術,諸如(製備性)層析術及/或電泳技術、微差沈澱技術、親和力技術(例如使用與本發明之多肽融合的特異性、可切割性胺基酸序列)及/或製備性免疫技術(亦即使用針對欲分離之多肽的抗體)。   在一態樣中,本發明關於生產根據本發明之構築體、多肽或ISVD之方法,其包含至少步驟:(a)在適合的宿主細胞或宿主生物體或在另一適合的表現系統中表現根據本發明之核酸序列;隨意地接著(b)分離及/或純化根據本發明之構築體、多肽或ISVD。   在一態樣中,本發明關於包含根據本發明之構築體、多肽、ISVD或核酸之組成物。 藥劑(本發明之ISVD、多肽、構築體的用途)   如本文所提及,對安全且有效的OA藥劑仍有需求。基於非常規篩選、特徵化及組合策略,本發明者鑑定了結合及抑制MMP13之ISVD。該等MMP13結合劑於試管內及活體內實驗執行異常良好。而且,本發明之ISVD亦證明比比較分子更顯著有效。本發明因此提供拮抗MMP(特別為MMP13)之ISVD及多肽,具有與比較分子相比而改進之預防、治療及/或藥理學特性,包括更安全的輪廓。另外,當該等MMP13結合劑與CAP構建單元連結時,其在關節中具有增加的保留性,以及另一方面具有保留的活性。   在一態樣中,本發明關於用作為藥劑的根據本發明之組成物、根據本發明之ISVD、根據本發明之多肽及/或根據本發明之構築體。   在另一態樣中,本發明關於本發明之ISVD、多肽及/或構築體製備醫藥組成物之用途,該醫藥組成物係用於預防及/或治療與至少MMP13相關性疾病;及/或用於一或多種本文所提及之治療方法。   本發明亦關於本發明之ISVD、多肽、化合物及/或構築體製備醫藥組成物之用途,該醫藥組成物係用於預防及/或治療可藉由調節MMP(較佳為MMP13)活性,例如抑制聚集蛋白聚糖及/或膠原蛋白降解而預防及/或治療之至少一種疾病或疾患。   本發明亦關於本發明之ISVD、多肽、化合物及/或構築體製備醫藥組成物之用途,該醫藥組成物係用於預防及/或治療可藉由對患者投予本發明之ISVD、多肽、化合物及/或構築體而預防及/或治療之至少一種疾病、疾患或症狀。   本發明另外關於用於預防及/或治療與至少一種MMP13相關性疾病的本發明之ISVD、多肽、化合物及/或構築體或包含彼等之醫藥組成物。   預期本發明之MMP13結合劑可用於影響軟骨的各種疾病,諸如關節病變和軟骨營養不良、關節炎疾病,諸如骨關節炎、類風濕性關節炎、痛風性關節炎、乾癬性關節炎、創傷性破裂或脫離、軟骨發育不全、肋軟骨炎、脊椎骨端發育不全、椎間盤突出、腰椎間盤退化性疾病、退化性關節疾病,和復發性多發性軟骨炎、剝離性骨軟骨炎及聚集蛋白聚糖病變(在本文常以〝與MMP13相關性疾病〞表示)。   在一態樣中,本發明關於用於治療或預防與MMP13相關性疾病之症狀的根據本發明之組成物、ISVD、多肽及/或構築體,諸如用於關節病變和軟骨營養不良、關節炎疾病,諸如骨關節炎、類風濕性關節炎、痛風性關節炎、乾癬性關節炎、創傷性破裂或脫離、軟骨發育不全、肋軟骨炎、脊椎骨端發育不全、椎間盤突出、腰椎間盤退化性疾病、退化性關節疾病和復發性多發性軟骨炎、剝離性骨軟骨炎及聚集蛋白聚糖病變。更佳地該疾病或疾患為關節炎疾病,且最佳為骨關節炎。   在一態樣中,本發明關於用於預防或治療關節病變和軟骨營養不良、關節炎疾病,諸如骨關節炎、類風濕性關節炎、痛風性關節炎、乾癬性關節炎、創傷性破裂或脫離、軟骨發育不全、肋軟骨炎、脊椎骨端發育不全、椎間盤突出、腰椎間盤退化性疾病、退化性關節疾病和復發性多發性軟骨炎之方法,其中該方法包含對有需要的個體(對有需要的人)投予醫藥活性量的根據本發明之至少組成物、免疫球蛋白、多肽或構築體。更佳地該疾病為關節炎疾病,且最佳為骨關節炎。   在一態樣中,本發明關於根據本發明之ISVD、多肽、組成物或構築體製備醫藥組成物之用途,該醫藥組成物係用於治療或預防下列疾病或疾患:諸如關節病變和軟骨營養不良、關節炎疾病,諸如骨關節炎、類風濕性關節炎、痛風性關節炎、乾癬性關節炎、創傷性破裂或脫離、軟骨發育不全、肋軟骨炎、脊椎骨端發育不全、椎間盤突出、腰椎間盤退化性疾病、退化性關節疾病和復發性多發性軟骨炎、剝離性骨軟骨炎及聚集蛋白聚糖病變。更佳地該疾病或疾患為關節炎疾病,且最佳為骨關節炎。   本發明之構築體及/或多肽可藉由與聚集蛋白聚糖結合而降低或抑制降解聚集蛋白聚糖之絲胺酸蛋白酶家族成員、細胞自溶酶、基質金屬蛋白酶(MMP)/基質金屬蛋白酶(Matrixin)或具有血小板凝血酶(Thrombospondin)之去整合素(Disintegrin)和金屬蛋白酶(ADAMTS)、MMP20、ADAMTS5(聚集蛋白聚糖酶(Aggrecanase)-2)、ADAMTS4(聚集蛋白聚糖酶-1)及/或ADAMTS11的活性。   在本發明之上下文中,術語〝預防及/或治療〞不僅包含預防及/或治療疾病,且通常亦包含預防疾病發作、減慢或逆轉疾病進展、預防或減慢與疾病相關聯之一或多種症狀發作、降低及/或減輕與疾病相關聯之一或多種症狀、降低疾病及/或與疾病相關聯之任何症狀的嚴重性及/或持續期間及/或預防進一步增加疾病及/或與疾病相關聯之任何症狀的嚴重性、預防、降低或逆轉由疾病引起的任何生理損傷,且通常亦包含對治療之患者有利的任何藥理作用。   劑量方案係由主治醫師及臨床因素決定。如熟習醫學技術者所熟知,用於任一患者之劑量係取決於許多因素而定,包括患者尺寸、體重、體表面積、年齡、欲投予之特定化合物、所使用之多肽(包括抗體)的活性、投予時間和途徑、一般健康狀況以及與其他的治療法或治療之組合。蛋白質醫藥活性物質可以每一劑介於1克與100毫克/公斤計體重之量存在;然而,亦可以設想低於或高於此示例性範圍之劑量。若方案為連續輸注,則其可在每分鐘每公斤體重計1皮克至100毫克之範圍內。   本發明之ISVD、多肽或構築體可以例如0.01、0.1、0.5、1、2、5、10、20或50皮克/毫升之濃度使用,以便抑制及/或中和至少約50%,較佳為75%,更佳為90%、95%或至多99%,且最佳為約100%(基本上完全)之MMP13的生物功能,如以此項技術中熟知的方法所檢定。   本發明之ISVD、多肽或構築體可以例如1、2、5、10、20、25、30、40、50、75、100、200、250或500毫微克/毫克軟骨之濃度使用,以便抑制及/或中和至少約50%,較佳為75%,更佳為90%、95%或至多99%,且最佳為約100%(基本上完全)之MMP13的生物功能,如以此項技術中熟知的方法所檢定。   通常治療方案包含投予醫藥有效量或劑量的本發明之一或多種ISVD、多肽及/或構築體或包含該等之一或多種組成物。欲投予之特定量或劑量可由臨床醫師再基於上文所引用之因素決定。本發明之構築體、多肽及/或ISVD的有用劑量可藉由比較彼等在動物模式中的試管內活性及活體內活性來決定。以老鼠和其他動物中的有效劑量外推至人類之方法為此項技術中已知;例如US 4,938,949。   通常臨床醫師能夠取決於欲治療之特定疾病、疾患或症狀、欲使用的本發明之特定的ISVD、多肽及/或構築體之效力、投予途徑及所使用之特定的醫藥調配物或組成物來決定適合的日劑量。   用於治療所需的本發明之構築體、多肽及/或ISVD的量不僅隨著所選擇之特定的免疫球蛋白、多肽、化合物及/或構築體,且亦隨著投予途徑、治療之症狀本性及患者的年齡和狀況來變更,且最終係由主治醫師或臨床醫師斟酌。本發明之構築體、多肽及/或ISVD的劑量亦取決於標靶細胞、組織、移植物、關節或器官來變更。   所欲劑量可方便以適當的間隔投予之單次劑量或分次劑量呈現,例如以每天兩個、三個、四個或更多個次劑量。次劑量自身可進一步例如分成許多個別未嚴格間隔的投予。較佳地該劑量係以每週投予一次或甚至更不頻繁,諸如每兩週一次、每三週一次、每個月一次或甚至每兩個月一次。   投予方案可包括長期治療。〝長期〞意謂至少兩週且較佳為數週、數月或數年的持續時間。在此劑量範圍內的必要修改可由一般熟習此項技術者只使用由本文指導所給出的常規實驗來決定。參見Remington’s Pharmaceutical Sciences(Martin, E.W., ed. 4), Mack Publishing Co., Easton, PA。劑量亦可由個別醫師在任何併發症之情況下調整。   通常本發明之ISVD、多肽及/或構築體係用於上述方法中。然而,在本發明之範圍內使用本發明之二或更多種ISVD、多肽及/或構築體之組合。   本發明之ISVD、多肽及/或構築體可與可能或可能不導致協同效應之一或多種另外的醫藥活性化合物或主藥組合使用,亦即用作為組合治療方案。   醫藥組成物亦可包含至少一種另外的活性劑,例如一或多種另外的抗體或其抗原結合片段、肽、蛋白質、核酸、有機和無機分子。   再者,臨床醫師能夠基於上文所引用之因素及其專業判斷而選擇此等另外的化合物或主藥,以及適合的組合治療方案。   特別地,本發明之ISVD、多肽及/或構築體可與用於或可用於預防及/或治療上文所引用之疾病、疾患及症狀的其他醫藥活性化合物或主藥組合使用,結果可能或可能不獲得協同效應。此等化合物及主藥以及投予該等之途徑、方法和醫藥調配物或組成物的實例為臨床醫師所明瞭。   當二或更多種物質或主藥係用作為組合治療方案的一部分時,則該等可經由相同的投予途徑或經由不同的投予途徑,在基本上相同的時間或不同的時間(例如基本上同時、連續或根據交替的方案)投予。當物質或主藥係經由相同的投予途徑同時投予時,該等可以不同的醫藥調配物或組成物或成為組合之醫藥調配物或組成物的一部分投予,如為熟習此項技術者所明瞭。   而且,當二或更多種物質或主藥係用作為組合治療方案的一部分時,則每一物質或主藥可以與當化合物或主藥係單獨使用時所使用之相同的量及根據與其相同的方案投予,且此組合使用可能或可能不導致協同效應。然而,當二或更多種活性物質或主藥之組合使用導致協同效應時,則亦有可能減少欲投予之物質或主藥中之一或多者或全部的量,同時仍達成所欲治療作用。這可例如有用於避免、限制或減少與該物質或主藥中之一或多者以彼等慣用的量使用時相關聯的不當副作用,同時仍獲得所欲醫藥或治療效應。   根據本發明所使用之治療方案的有效性可以本身已知用於所涉及之疾病、疾患或症狀的任何方式測定及/或追蹤,如臨床醫師所明瞭。臨床醫師能夠在適當時及基於逐一情況改變或修改特別的治療方案,以便達成所欲治療效應,避免、限制或減少不當的副作用,及/或一方面達成所欲治療效應及另一方面避免、限制或減少不當的副作用之間達成適當的平衡。   通常追蹤治療方案,直到達成所欲治療效應為止及/或只要維持所欲治療效應。而且,這可由臨床醫師決定。   因此,在另一態樣中,本發明關於醫藥組成物,其含有本發明之至少一種構築體、本發明之至少一種多肽、本發明之至少一種ISVD或本發明之至少一種核酸及至少一種適合的載劑、稀釋劑或賦形劑(亦即適合於醫藥用途)及隨意的一或多種另外的活性物質。在特別的態樣中,本發明關於醫藥組成物,其包含根據本發明之構築體、多肽、ISVD或核酸(較佳為下列中之至少一者:SEQ ID NO:111、11、112、12、109、9、110、10、1、13、14、15、16、17、18、19、20、21、22、2、3、4、5、6、7、8、160-165(亦即SEQ ID NO:160、161、162、163、164或165)及176至192(亦即SEQ ID NO:176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191或192))及至少一種適合的載劑、稀釋劑或賦形劑(亦即適合於醫藥用途)及隨意的一或多種另外的活性物質。   欲治療之個體可為任何溫血動物,但特別為哺乳動物,且更特別為人類。在獸醫學應用中,欲治療之個體包括出於商業目的而飼養或當作寵物的任何動物。如熟習此項技術者所明瞭,欲治療之個體特別為罹患本文所提及之疾病、疾患及症狀或處於此等風險的人。因此,在本發明較佳的實施態樣中,包含本發明之多肽的醫藥組成物係用於醫學或診斷學。較佳地醫藥組成物係用於人類醫學,但是該等亦可出於獸醫學目的而使用。   再者,在此等醫藥組成物中,本發明之一或多種免疫球蛋白、多肽、化合物及/或構築體,或編碼彼等之核苷酸及/或包含彼等之醫藥組成物亦可與一或多種其他的活性主藥(諸如那些本文所提及者)適當地組合。   本發明亦關於用於試管內(例如在試管內或細胞檢定法中)或活體內(例如在單細胞或多細胞生物體中,且特別在哺乳動物中,且更特別在人類中,諸如在處於本發明之疾病、疾患或症狀風險或罹患彼等的人類中)之組成物(諸如而不限於醫藥組成物或製劑,如本文進一步的說明)。   應瞭解所述及之治療包括確立之症狀的治療及預防性治療二者,除非另有其他明確的陳述。   通常用於醫藥用途的本發明之構築體、多肽及/或ISVD可調配成醫藥製劑或組成物,其包含本發明之至少一種構築體、多肽及/或ISVD及至少一種醫藥上可接受之載劑、稀釋劑或賦形劑及/或佐劑,及隨意的一或多種醫藥活性多肽及/或化合物。藉助於非限制性實例,此等調配物可呈適合於經口投予、非經腸投予(諸如靜脈內、肌肉內或皮下注射或靜脈內輸注)、經局部投予(諸如關節內投予)、經吸入投予、經皮膚貼片、經植入物、經栓劑等的形式,其中經關節內投予較佳。此等適合的投予形式為熟習此項技術者所明瞭,其可取決於投予方式以及用於製備其之方法和載劑而而呈固體、半固體或液體,且於本文進一步說明。此等醫藥製劑或組成物通常在本文被稱為〝醫藥組成物〞。   可提及崩解劑、結合劑、填充劑及潤滑劑作為例示性賦形劑。崩解劑的實例包括瓊脂、藻素、碳酸鈣、纖維素、膠態二氧化矽、膠、矽酸鋁鎂、甲基纖維素和澱粉。結合劑的實例包括微晶纖維素、羥甲基纖維素、羥丙基纖維素和聚乙烯基吡咯啶酮。填充劑的實例包括碳酸鈣、磷酸鈣、硫酸鈣、羧甲基纖維素鈣、纖維素、糊精、右旋糖、果糖、乳糖醇、乳糖、碳酸鎂、氧化鎂、麥芽糖醇、麥芽糖糊精、麥芽糖、山梨糖醇、澱粉、蔗糖、糖和木糖醇。潤滑劑的實例包括瓊脂、油酸乙酯、月桂酸乙酯、甘油、棕櫚酸硬脂酸甘油酯、氫化植物油、氧化鎂、硬脂酸鹽、甘露醇、泊洛沙姆(poloxamer)、二醇、苯甲酸鈉、月桂基硫酸鈉、硬脂酸鈉、山梨糖醇和滑石。有用的穩定劑、保存劑、潤濕劑和乳化劑、稠度改善劑、氣味改善劑、改變滲透壓之鹽、緩衝物質、增溶劑、稀釋劑、潤膚劑、著色劑和遮蔽劑及抗氧化劑被考慮作為醫藥佐劑。   適合的載劑包括但不限於碳酸鎂、硬脂酸鎂、滑石、糖、乳糖、果膠、糊精、澱粉、明膠、黃蓍膠、甲基纖維素、羧甲基纖維素鈉、低熔點蠟、可可脂、水、醇、多元醇、甘油、植物油及類似者。   通常本發明之構築體、多肽及/或ISVD可以本身已知的任何適合的方式調配及投予。參考例如上文所引用之一般背景技術(且特別為WO 04/041862、WO 04/041863、WO 04/041865、WO 04/041867和WO 08/020079)以及標準的手冊,諸如Remington’s Pharmaceutical Sciences, 18th Ed., Mack Publishing Company, USA(1990), Remington, the Science and Practice of Pharmacy, 21st Edition, Lippincott Williams and Wilkins(2005);或the Handbook of Therapeutic Antibodies(S. Dubel, Ed.), Wiley, Weinheim, 2007(參見例如第252至255頁)。   在特別的態樣中,本發明關於醫藥組成物,其包含根據本發明之構築體、多肽、ISVD或核酸及另外包含至少一種醫藥上可接受之載劑、稀釋劑或賦形劑及/或佐劑,及隨意地包含一或多種另外的醫藥活性多肽及/或化合物。   本發明之構築體、多肽及/或ISVD可以本身已知用於習知的抗體和抗體片段(包括ScFv和雙功能抗體)及其他的醫藥活性蛋白質之任何方式調配及投予。該等調配物及用於製備彼等之方法為熟習此項技術者所明瞭,且例如包括適合用非經腸投予(例如靜脈內、腹膜內、皮下、肌肉內、血管腔內、動脈內、椎管內、鼻內或支氣管內投予),但亦適合於局部(例如關節內、經皮或皮內)投予之較佳製劑。   用於局部或非經腸投予之製劑可例如為適合於輸注或注射之無菌溶液、懸浮液、分散液或乳液。適合於此等製劑之載劑或稀釋劑例如包括那些在WO 08/020079的第143頁所提及者。通常以水溶液或懸浮液較佳。   本發明之構築體、多肽及/或ISVD亦可使用自基因療法已知的遞送方法投予,參考例如美國專利第5,399,346號,為了其基因治療遞送方法,藉由提及將其併入。使用基因治療遞送方法,可使以編碼本發明之構築體、多肽及/或ISVD的基因轉染之初級細胞另外以組織特異性啟動子轉染以靶向特定器官、組織、移植物、關節或細胞,且可另外以用於亞細胞定位表現之信號及穩定序列轉染。   根據本發明之另外的態樣,本發明之多肽可用於活體內及試管內的附加應用。例如,本發明之多肽可出於診斷目的而使用,例如在經設計以檢測及/或量化存在的MMP13及/或純化MMP13之檢定法中。亦可在特定疾病的動物模式中測試多肽及用於進行毒性、安全性和劑量研究。   最後,本發明關於套組,其包含根據本發明之至少一種多肽、本發明之編碼該組份、載體或載體系統之至少一種核酸序列及/或根據本發明之宿主細胞。預期套組可以不同的形式供給,例如作為診斷套組。   本發明現藉助於下列的非限制性較佳態樣、實施例及圖形進一步說明。   將此申請案整篇內所引用之所有參考文獻的完整內容(包括文獻參考資料、頒佈之專利、公開之專利申請案及同樣在審理中之專利申請案)特此藉由提及明確地併入本文,特別為上文述及之指導。   序列係揭示在說明書主體及根據WIPO標準ST.25之個別序列表中。以特定的數字具體指定之SEQ ID在說明書主體及個別序列表中應該相同。以實例說明,SEQ ID no.:1在說明書主體及個別序列表二者中應該定義相同的序列。若說明書主體中的序列定義與個別序列表之間不一致(若例如在說明書主體中的SEQ ID no.:1錯誤地對應於個別序列表中之SEQ ID no.:2),則應理解在申請案中(特別在特定的實施態樣中)述及之特定序列為申請案主體中而不為個別序列表中述及之序列。換言之,在說明書主體中的序列定義/名稱與個別序列表之間的不一致應係藉由校正個別序列表成為包括發明內容、實施例、圖式及申請專利範圍之本申請案主體中所揭示之序列及彼等名稱而予以解決。 實施例   下列的實施例例證本發明之方法及產物。通常在分子及細胞生物學技術中見到的所述條件及參數之適當修飾及改編為那些熟習此項技術者顯而易見且在本發明之精神及範圍內。 6.1 方法 6.1.1 駱馬免疫法   駱馬免疫法係根據標準的程序以變異的抗原量、佐劑類型及所使用之注射方法進行。該等變異詳細說明於以下各段落中。所有的免疫實驗皆經當地倫理委員會(local ethical committee)批准。 6.1.2 庫建造(Library construction)   cDNA係使用以MMP13免疫之所有駱馬/羊駝的血液樣品萃取之總RNA製備。編碼奈米抗體之核苷酸序列係在一步驟RT-PCR反應中自cDNA擴增且接合至噬菌粒載體pAX212之對應限制位點中,接著以接合產物經由電穿孔轉形大腸桿菌菌株TG-1。   NNK庫係以退化性引子經由重疊延伸PCR產生。將PCR產物選殖在表現載體(pAX129)中且轉形至大腸桿菌TG-1勝任細胞中。在具有奈米抗體編碼序列之框架中,載體編碼C-端FLAG3 -及His6 -標籤。   關注之選殖株經序列驗證。 6.1.3 選擇   噬菌體展示庫係使用重組MMP13探測。不同輪次的選擇使用不同的抗原,如在結果段落(亦即實施例6.2)及隨後的詳細說明。   選擇係由將抗原與庫噬菌體粒一起培育2小時(在以2% Marvel及0.05% Tween 20補充之PBS中)所組成。生物素化抗原係使用經鏈親合素塗佈之磁珠(Invitrogen,112-05D)捕獲。將非生物素化抗原塗佈在MaxiSorp板上(Nunc,430341)。洗出未經結合之噬菌體(以0.05% Tween 20補充之PBS);經結合之噬菌體係以添加胰蛋白酶(1毫克/毫升於PBS中)經15分鐘溶離。使用經溶離之噬菌體感染以指數生長的大腸桿菌TG-1細胞用於噬菌體營救。自選擇之輸出物製備之噬菌體係用作為後續選擇輪次的輸入物。 6.1.4 經ELISA直接塗佈之抗原   將MaxiSorp板(Nunc,430341)在4℃下以人類proMMP 13經塗佈隔夜,接著在RT下以1小時阻斷(PBS,1%酪蛋白)。在PBS+0.05% Tween20中的清洗步驟之後,在RT下經1小時添加在PBS、0.1%酪蛋白、0.05% Tween 20中的周質萃取物之10倍稀釋液。以小鼠抗FLAG-HRP(Sigma(A8592))檢測結合之奈米抗體。 捕獲之抗原   - 活化之人類MMP13 ELISA   - 活化之大鼠MMP13 ELISA   - 活化之狗MMP13 ELISA   將MaxiSorp板(Nunc,430341)在4℃下以人類MMP13抗體mAb511經塗佈隔夜,接著在RT下以1小時阻斷(PBS,1%酪蛋白)。在PBS+0.05% Tween20中的清洗步驟之後,在RT下經1小時添加20 nM活化之人類、大鼠或狗MMP13。在第二次清洗步驟之後,在RT下經1小時添加在PBS、0.1%酪蛋白、0.05% Tween 20中的周質萃取物之10倍稀釋液或純化之奈米抗體的連續稀釋液。以小鼠抗FLAG-HRP(Sigma(A8592))檢測結合之奈米抗體。 6.1.5 螢光肽檢定法   人類、食蟹獼猴、大鼠、狗和牛MMP13螢光肽檢定法以及人類MMP1和MMP14螢光肽檢定法之設定簡要如下:將活化之MMP與螢光肽受質Mca-PLGL-Dpa-AR-NH2(R&D Systems #ES001)及周質萃取物之1/5稀釋液或純化之奈米抗體/陽性對照物的連續稀釋液(總體積=20μl,在檢定緩衝液50 mM Tris pH 7.5、100 mM NaCl、10 mM CaCl2、0.01% Tween20中)在37℃下培育2小時。使用線性增加之螢光(v0-以介於15與45分鐘之間培育)作為酶活性之量度及以公式100-100(在試驗奈米抗體存在下的v0/在陰性對照奈米抗體(Cablys)存在下的v0)計算%抑制。 6.1.6 膠原蛋白溶解檢定法   此檢定法之設定簡要如下:將250ng/ml之免疫級人類膠原蛋白II(Chondrex #20052)與5 nM活化之MMP13在100μl檢定緩衝液(50 mM Tris-Cl pH 7.5、100 mM NaCl、10 mM CaCl2、0.01% Tween-20)中培育。在35℃下培育1.5小時之後,將反應以EDTA(10μl的30 mM儲備液)中和。經MMP13切割之膠原蛋白在38℃下以彈性蛋白酶經20分鐘進一步降解,以避免經降解之膠原蛋白II(以第II型膠原蛋白檢測套組(Chondrex #6009)提供的10μl的1/3稀釋儲備液)重黏合(re-annealing)。剩餘的完整膠原蛋白係經由ELISA(以第II型膠原蛋白檢測套組(Chondrex #6009)提供之試劑)檢測。 6.1.7 螢光膠原蛋白檢定法   此檢定法之設定簡要如下:將100μg/ml之來自牛皮膚的第I型DQ™膠原蛋白(螢光素共軛物;Molecular Probes #D-12060,批號1149062)與10 nM活化之MMP13及純化之奈米抗體/陽性對照物的連續稀釋液在37℃下於40μl檢定緩衝液(50 mM Tris-Cl pH 7.5、100 mM NaCl、10 mM CaCl2 、0.01% Tween-20)中培育2小時。使用線性增加之螢光(v0-以介於15與45分鐘之間培育)作為酶活性之量度及以公式100-100(在試驗奈米抗體存在下的v0/在陰性對照奈米抗體(Cablys)存在下的v0)計算%抑制。 6.1.8 TIMP-2競爭型檢定法   將50μlTIMP-2(0.63 nM;R&D Systems #971-TM)捕獲(在RT下1小時)在經抗人類TIMP-2抗體(R&D Systems #MAB9711)塗佈之板上(2微克/毫升於PBS中;隔夜)。在此捕獲期間,將1.26 nM活化之MMP-13-生物素與奈米抗體/TIMP-3/MSC2392891A的連續稀釋液在70μl檢定緩衝液(50 mM Tris-Cl pH 7.5、100 mM NaCl、10 mM CaCl2 、0.01% Tween-20)中預培育。將50μl此混合物添加至捕獲之TIMP-2中且在室溫下培育1小時。以50μl鏈親合素-HRP(1:5000 DakoCytomation #P0397)檢測MMP13-生物素。 6.1.9 熱轉移檢定法(TSA)   TSA基本上根據Ericsson等人(2006 Anals of Biochemistry, 357: 289-298)以5μl純化之單價奈米抗體進行。 6.1.10 分析性粒徑排阻層析術(分析性SEC)   分析性SEC實驗係在Ultimate 3000機器(Dionex)上組合Biosep-SEC-3(Agilent)管柱進行。 6.1.11 強制氧化   將奈米抗體樣品(1mg/ml)在RT下及暗處經歷4小時在PBS中的10 mM H2 O2 ,同時以沒有H2 O2 之對照樣品進行,隨後將緩衝液使用Zeba去鹽旋轉管柱(0.5毫升)(Thermo Scientific)轉換成PBS。接著在70℃下藉助於RPC在1200或1290系列機器(Agilent Technologies)上於Zorbax 300SB-C3管柱(Agilent Technologies)上分析受力樣品及對照樣品。與主要蛋白質峰相比,藉由測定由於氧化應力而出現之預峰的%峰面積以量化奈米抗體之氧化。 6.1.12 溫度應力   將奈米抗體樣品(1至2mg/ml)在-20℃(陰性對照物)、25℃及40℃下儲存於PBS中4週。在此培育期之後,將奈米抗體以胰蛋白酶或LysC消化。接著在60℃下藉助於RPC在1290系列機器(Agilent Technologies)上與Q-TOF質譜儀(6530 Accurate Mass Q-TOF(Agilent))耦合之Acquity UPLC BEH300-C18管柱(Agilent Technologies)上分析受力及對照樣品之肽。 6.2 免疫法   MMP13係以無活性的前形式(proMMP13)分泌。該形式係在前域被切割時活化,留下由形成催化袋的催化域及類凝血酶域(PDB:1PEX)所組成之活性酶,經說明其係作為受質膠原蛋白II(Col II)的對接(docking)/相互作用域起作用。   據推測抑制MMP13之酶活性的最好區域可為催化袋。然而,提高針對催化袋之免疫反應具有各種重要的問題。   第一,在proMMP13中,前域遮蔽催化袋,因此催化袋不可獲得來提高免疫反應。   第二,活化之MMP13具有短的半衰期,其主要由於自體蛋白分解。此短的半衰期阻礙強大的免疫反應發展。   第三,催化域序列在物種間高度保守。因此,若提高的話,則預期的免疫反應肯定很弱。 6.2.1 免疫策略   為了處置該等問題且增加獲得MMP13抑制劑與催化袋結合的成功機會,設計了包含各種格式的MMP13之複雜且精細的免疫策略。最終,進行下列的免疫法:   (a) 將3隻駱馬以截短之MMP13變異體免疫,該變異體係由催化域所組成及含有保護MMP13免於自體蛋白分解之突變F72D;   (b) 將3隻駱馬以相同截短之MMP13變異體免疫,該變異體係與(a)相同,但除了突變F72D以外另含有使酶功能失活之突變E120A;   (c)將3隻以上的駱馬以全長proMMP13蛋白質免疫;及   (d)將3隻駱馬以針對經分泌之proMMP13變異體(V123A)或針對經GPI錨定之proMMP13變異體(V123A)編碼之質體混合物免疫。針對MMP13說明之V123A突變激起Cys104與催化鋅離子的弱相互作用,導致自發性自活化。 6.2.2 血清滴定   測定針對proMMP13及催化域(F72D)之血清滴定。   通常以蛋白質proMMP13(c)或編碼proMMP13 V123A之DNA(d)免疫的動物顯示對proMMP13良好的免疫反應,但是對催化域(F72D)僅有弱的反應。以催化域(F72D)(a)或無活性催化域(F72D、E120A)(b)免疫的動物顯示對催化域沒有或僅有弱的免疫反應。 6.2.3 庫建造   儘管對催化域具有低的血清滴定,但是發明者確信大規模的篩選能夠鑑定對催化袋的抑制結合劑。   RNA係自PBL(原發性血液淋巴細胞)萃取且用作為RT-PCR之模板以擴增編碼基因片段之奈米抗體。將該等片段選殖在噬菌粒載體pAX212中,能夠生產展示與His6-及FLAG3-標籤融合的奈米抗體之噬菌體粒。噬菌體係根據標準的流程製備及儲存(Phage Display of Peptides and Proteins: A Laboratory Manual 1st Edition, Brian K. Kay, Jill Winter, John McCafferty, Academic Press, 1996)。   最終獲得的18個免疫庫之平均大小為約5 * 108 個個別選殖株。 6.3 初篩選   噬菌體展示選擇係以18個免疫庫及兩個合成奈米抗體庫進行。該等庫係針對人類proMMP13,活化之人類、大鼠和狗MMP13,以及人類MMP13催化域(F72D)之不同組合,使用不同的抗原呈現格式,經歷強化的二至四輪次選擇。來自選擇輸出物的個別選殖株係經篩選以在ELISA(使用來自表現奈米抗體之大腸桿菌細胞的周質萃取物)中針對人類和大鼠MMP13之結合及在測量使用廣效性MMP螢光肽受質之肽水解時增加的螢光之螢光肽檢定法中針對抑制活性。在ELISA中顯示結合,但在螢光肽檢定法中未顯示抑制活性之奈米抗體在膠原蛋白溶解檢定法進一步篩選。膠原蛋白溶解檢定法係使用天然受質取代肽代替物。當膠原蛋白與MMP13具有比螢光肽大許多的相互作用表面時,則推測奈米抗體可干擾膠原蛋白降解,但不干擾肽降解。然而,膠原蛋白溶解檢定法與周質萃取物不相容且必需使用純化之奈米抗體。 6.3.1 試驗系列1   在第一個選擇試驗系列中,MMP13係以經直接塗佈之抗原呈現。這在人類和大鼠MMP13 ELISA(結合檢定法)中得到高的命中率,包括奈米抗體與人類MMP13結合的良好多樣性,在ELISA中具有大範圍的結合信號。發現大多數的奈米抗體對大鼠MMP13交叉反應。然而,在螢光肽檢定法(抑制檢定法)中獲得極低的命中率。而且,觀察到不完全的抑制且一些該等奈米抗體未顯示大鼠交叉反應性。   因為沒有獲得單價完全抑制性奈米抗體,所以本發明者推測未靶向正確的抗原決定區,且在選擇期間所使用之條件不是最適化。然而,測試選擇條件在沒有陽性對照物存在下受到阻礙。   最終發現直接塗佈會干擾酶活性。 6.3.2 試驗系列2   在試驗系列2中,該選擇係在溶液中以生物素化MMP13進行。使用經由未中和之抗體取代經直接塗佈之proMMP13而捕獲的活化之人類和大鼠MMP13,然而ELISA命中率遠低於試驗系列1。又,在螢光肽檢定法中的命中率亦非常低。然而,發現一種在膠原蛋白溶解檢定法中完全抑制的奈米抗體。因為酶的前形式係用於結合劑強化,所以推測重要的抗原決定區被前肽遮蔽。 6.3.3 試驗系列3   鑑於試驗系列1和2令人失望的結果,本發明者選擇藉由使用以未中和之抗體捕獲的活化之MMP13使催化域中重要的抗原決定區之呈現最適化。亦以相同的捕獲格式用於ELISA。這在ELISA中對人類和大鼠MMP13二者得到更高的命中率。然而,儘管在螢光肽檢定法中的命中率略高於先前的試驗系列,但是奈米抗體仍然只給出不完全的抑制且顯示弱的或沒有大鼠交叉反應性,示意所捕獲之MMP13呈現仍為次最適化。   包括C0101040E09(〝40E09〞)的三種選殖株儘管在螢光肽檢定法中給出不完全抑制,但是在膠原蛋白溶解檢定法中發現陽性。選殖且定序40E09之家族成員:C0101PMP040E08、C0101PMP042A04、C0101PMP040B05、C0101PMP042D12、C0101PMP042A03、C0101PMP024A08和C0101PMP040D01(參考表A-1和A-2)。CDR區之序列變異性描述在以下表6.3.3A、6.3.3B和6.3.3C中。選殖株40E09之CDR的胺基酸序列係用作為針對與家族成員之CDR相比的參考物(CDR1係在Kabat位置26開始,CDR2係在Kabat位置50開始,及CDR3係在Kabat位置95開始)。 6.3.4 試驗系列4   在第4個試驗系列中,除了源自免疫策略(a)和(c)之免疫奈米抗體噬菌體展示庫以外,亦探索源自選擇策略(b)和(d)之庫(參考實施例6.2.1)。選擇策略集中於MMP13催化域(F72D),其係於溶液中使用。在螢光肽檢定法中的命中率跨庫增加且許多奈米抗體顯示完全抑制。抑制性奈米抗體只在ELISA中顯示差的結合,證實在試驗系列3中所使用的經捕獲之MMP13呈現對重要的抗原決定區之可及性為次最適化。因此,使用大鼠螢光肽檢定法取代ELISA以評定大鼠交叉反應性。具有確認的抑制潛力之奈米抗體的家族代表全部皆具有大鼠交叉反應性,示意以此特別的選殖株組識別之抗原決定區係位於保守的MMP13催化袋內。   總之,發現MMP13的任何常規操作皆干擾酶活性及TIMP-2結合(未顯示數據)。在變更及評估各種參數之後,包括不同的抗原(例如proMMP13、催化域(F72D)、活化之人類MMP13、活化之大鼠MMP13、活化之狗MMP13),不同的檢定法(包括ELISA、人類螢光肽檢定法、大鼠螢光肽檢定法和人類膠原蛋白溶解檢定法),不同的檢定法設定(包括塗佈條件的變化、在溶液中及捕獲MMP13),發現用於鑑定完全抑制性奈米抗體唯一的成功策略為使用催化域(F72D)或活化之MMP13物種之選擇(試驗系列4)。 6.3.5 前導小組   在螢光肽或膠原蛋白溶解檢定法中鑑定之抑制性奈米抗體經定序。奈米抗體可基於序列訊息分類成各種家族。源自試驗系列2和3的4種家族在膠原蛋白溶解檢定法中顯示完全抑制,但是在螢光肽檢定法中未顯示出活性;在本文另外以〝概況1〞選殖株表示(參考40E09及家族成員)。源自篩選試驗系列4的10種家族在膠原蛋白溶解檢定法及螢光肽檢定法二者中顯示出抑制活性;在本文另外以〝概況2〞選殖株表示。   選出每一奈米抗體家族的代表性選殖株,總共14個代表。代表性選殖株之序列描述於表A-1中。 6.4 單價前導小組之試管內特徵化   為了使代表性奈米抗體選殖株在功能上進一步特徵化,將彼等根據標準的流程再選殖至pAX129中,轉形至大腸桿菌中及表現且純化(例如Maussang等人之2013 J Biol Chem 288(41): 29562-72)。接著,該等選殖株經歷各種功能性試管內檢定法。 6.4.1 酶檢定法   奈米抗體之效力/功效係在對不同的MMP13同源基因設定之螢光肽檢定法中及在人類膠原蛋白溶解檢定法中測試(兩種檢定法亦在篩選期間使用,參見實施例6.3)。另外,建立使用與膠原蛋白溶解檢定法相比而更高的膠原蛋白濃度之第二個基於膠原蛋白之檢定法(螢光膠原蛋白檢定法)以模擬在軟骨中的高膠原蛋白濃度條件,預期MMP13抑制劑於其中具有活性。在此檢定法中,經完整FITC標記之膠原蛋白受質係由於螢光團之交互淬滅效應而具有低螢光。在切割時,失去淬滅且增加螢光。   在酶檢定法中的效力綜述於表6.4.1中給出。在圖1中,描述當使用高濃度牛膠原蛋白I 時活化之人類MMP13的抑制作用之劑量反應曲線(螢光膠原蛋白檢定法)。儘管概況1奈米抗體在膠原蛋白溶解檢定法中於低的膠原蛋白濃度條件下顯示完全的功效,但是彼等在螢光膠原蛋白檢定法中於高的膠原蛋白濃度條件下的功效下降(圖1,左圖)。   比較藥物MSC2392891A在螢光膠原蛋白檢定法中亦顯示較弱的功效(圖1)。   概況2代表性奈米抗體在膠原蛋白溶解檢定法及螢光膠原蛋白檢定法二者中有效力且完全的功效。大多數的奈米抗體在此檢定法中比比較藥物更有活性。該等概況2代表物在人類、食蟹獼猴、大鼠、狗和牛螢光肽檢定法中顯示出可相比的效力(參考表6.4.1)及功效(圖1,右圖)。 6.4.2 結合檢定法   使用ELISA設定以評定結合親和力。然而,發現此檢定法僅適合於評定概況1奈米抗體之親和力,但不適合於概況2奈米抗體(參考實施例6.3)。   將結果描述於表6.4.2A中。總而言之,概況1奈米抗體對所測試的三個物種具有可相比的結合親和力(亦即少於10倍差異)。儘管選殖株40E09對人類MMP13僅具有次好的結合親和力,但是其顯示跨物種之最好的親和力。   因為發現概況2奈米抗體係與TIMP-2競爭與MMP13之結合,所以設立TIMP-2競爭型ELISA且用於評定概況2奈米抗體之親和力。值得注意的是概況1奈米抗體不與TIMP-2競爭。   將結果描述於表6.4.2B中。總而言之,評比類似於酶檢定法中所獲得的效力,以奈米抗體516G08、529C12和62C02顯示最好的抑制效力,而以奈米抗體59F06、525C04和63F01為次好的。 6.4.3 選擇性檢定法   為了測定奈米抗體對MMP13的選擇性超過MMP1及MMP14,使用螢光肽檢定法。MMP1及MMP14為二個密切相關的MMP家族成員。因為概況1奈米抗體在MMP13螢光肽檢定法未顯示抑制作用,所以可能僅測試概況2奈米抗體。使用TIMP-2(非選擇性MMP抑制劑)作為該等檢定法中的陽性對照物。   將結果描述於圖2中。所有的奈米抗體皆具有高選擇性。彼等未顯示MMP1抑制作用且僅在高濃度MMP14下觀察到對一些奈米抗體非常微小的抑制。 6.4.4 抗原決定區分倉(binning)   關於抗原決定區分倉,將源自概況1及概況2之單價奈米抗體小組在競爭型ELISA中針對純化之奈米抗體 40E09(概況1)進行測試。   將競爭型ELISA的結果顯示於圖3中。概況1奈米抗體 32B08、43B05、43E10和40E09(陽性對照物)全部皆與40E09競爭。另一方面,概況2奈米抗體 59F06、62C02、63F01、513C04、516G08和517A01,陰性對照物cAblys皆不與40E09競爭。   因此,概況1奈米抗體的抗原決定區倉(暫時稱為〝倉1〞)似乎與概況2奈米抗體的抗原決定區倉(暫時稱為〝倉2〞)屬於不同的倉,這亦將反映免疫及選擇策略。 6.5 雙價構築體   如上文實施例6.4.1所證明,概況1奈米抗體在螢光肽檢定法中未顯示抑制作用(參考表6.4.1)。本發明者著手研究概況1奈米抗體與概況2奈米抗體的組合效應。   作為最好的物種交叉反應結合劑(參考實施例6.4.2),選擇奈米抗體40E09作為概況1奈米抗體代表。概況2,選擇三種奈米抗體:516G08、62C02和517A01。概況1及概況2奈米抗體係以雙價格式與35GS連結子組合(參見表6.5;Nb(A)-35GS-Nb(B))。將雙價奈米抗體根據標準的程序選殖至pAX205中,轉形至嗜甲醇酵母菌(P. Pastoris )中,表現且純化。   使用大鼠螢光肽檢定法評定該等雙價構築體的效力,但是使用與篩選設定相比較低的MMP13濃度(0.15 nM取代1.33 nM)以改進檢定法的敏感性。雙價構築體係在此經調適之螢光肽檢定法中以及在人類螢光膠原蛋白檢定法中測試。   將所得數據總結於表6.5中。結果表示由概況1奈米抗體與概況2奈米抗體組合所組成之雙價構築體在經調適之大鼠螢光肽檢定法中比彼等單價構建單元更有效力,具有至多40倍的效力改進。亦在人類螢光膠原蛋白檢定法中觀察到效力改進(至多4倍)。在兩種檢定法中,雙價構築體與陽性、非選擇性對照物TIMP-2具有相等的效力。   因此,儘管概況1奈米抗體本身沒有特別的抑制性,但是當彼等以雙價構築體組合時,其改進概況2奈米抗體的效力。 6.6 生物物理特徵化   為了促進患者的方便性,偏好低投予頻率及高保留性的治療化合物。因此,較佳的是奈米抗體具有高穩定性。   為了測試穩定性,以5個代表性概況2奈米抗體及1個代表性概況1奈米抗體經歷生物物理特徵化分析。 6.6.1 熱轉移檢定法   野生型抗MMP13奈米抗體的熱穩定性係於熱轉移檢定法(TSA)中研究。   將結果描述於表6.6.1中。在pH 7下的Tm值係在65℃至83℃之範圍內,表示良好至非常良好的穩定性特徵。 6.6.2 分析性SEC   5個代表性抗MMP13奈米抗體之選定小組的多聚合及聚集趨勢係以分析性粒徑排阻層析術(aSEC)研究。   將總結的結果顯示於表6.6.2中。5個代表性奈米抗體具有在單價奈米抗體預期範圍內的保留時間(7.6至8.2分鐘),且對所有奈米抗體,主峰相對面積及總回收率皆大於90%。   基於TSA及aSEC之生物物理特性認為對所有測試之奈米抗體適合於進一步發展。 6.7 用於進一步發展及序列最適化之選殖株的選擇   基於代表性奈米抗體及雙價構築體之功能及生物物理特徵,選擇4個例示性前導奈米抗體進一步發展:62C02、529C12、80A01和雙價構築體C01010080(〝0080〞,由概況2奈米抗體517A01及概況1奈米抗體40E09所組成)。   本發明者著手使前導小組之胺基酸序列最適化(〝序列最適化〞或〝SO〞)。在序列最適化之方法中,嘗試(1)剔除用於轉譯後修飾(PTM)之位點;(2)使親體奈米抗體人源化;以及(3)剔除用於可能預存在的抗體之抗原決定區。同時較佳地應維持或甚至改善奈米抗體之功能及生物物理特徵。 6.7.1 轉譯後修飾(PTM)   被評定之轉譯後修飾(PTM)為:Met-氧化、Asn-去醯胺化、Asp-異構化、Asn-糖化及焦麩胺酸形成。   儘管未在序列最適化期間分析E1D突變(通常經併入以防止焦麩胺酸形成),但是其包括在經格式化之奈米抗體中。對所有的MMP13前導奈米抗體接受突變,除了62C02以外,觀察到其效力下降12倍。因此,決定不使E1D突變併入62C02 構建單元中。   為了評定可能的PTM,對前導小組施予強制氧化及溫度應力。除了C0101517A01(〝517A01〞)及C0101080A01 (〝80A01〞)以外,未於前導小組觀察到修飾。   在強制氧化及溫度應力條件下,C0101080A01傾向於Asp-異構化及Met-氧化。然而,異構化及氧化程度在評定的條件下不同且在各情況下正好低或高於所應用之閾值。最終,胺基酸殘基54-55、100d-100e、M100j和101-102經鑑定為負責PTM之殘基。值得注意的是,所有該等殘基係位於CDR2或CDR3區中且因此可能涉及標靶結合。為了嘗試滿足不同的需求,構建了NKK庫,其中使該等殘基突變且隨後在螢光肽檢定法中篩選以評估可能的效力損失以及篩選生物物理特性(Tm)。出乎意料地發現各種位置可在該等CDR中突變而沒有任何顯著的效力損失,亦即保留超過80%之抑制。   ¡ 關於D100dX庫,9個胺基酸(〝AA〞)取代顯示>80%之抑制(E、G、A、P、T、R、M、W和Y)。   ¡ 關於M100jX庫,16個AA取代顯示>85%之抑制(全部,除了T、C和H以外)。   ¡ 關於D101X庫,16個AA取代顯示>90%之抑制(全部,除了D、F和P以外)。   ¡ 關於Y102X庫,大多數的選殖株顯示>90%之抑制。由此咸信胺基酸位置102可能突變成任何殘基。   以下列的保守性突變特別佳:D100dE和M100jL。   在CDR區中的較佳突變之綜述提供在以下表6.7.1A、6.7.1B和6.7.1C中。選殖株80A01之CDR的胺基酸序列係用作為針對與家族成員之CDR相比的參考物。CDR1係在根據Kabat編號的胺基酸殘基26開始,CDR2係在胺基酸殘基50開始,及CDR3係在胺基酸殘基95開始。 X1=E、G、A、P、T、R、M、W、Y   X2=A、R、N、D、E、Q、Z、G、I、L、K、F、P、S、W、Y和V   X3=A、R、N、C、E、Q、Z、G、H、I、L、K、M、S、T、W、Y和V   X4=A、R、N、D、C、E、Q、Z、G、H、I、L、K、M、F、P、S、T、W和V   在強制氧化及溫度應力條件下,C0101517A01傾向於去醯胺化。最終,胺基酸殘基N100b和N101係經由溫度應力實驗鑑定為對去醯胺化敏感之殘基。然而,該等殘基係位於CDR3區中且可能涉及標靶結合。因此,剔除去醯胺化位置可能對結合有衝擊。亦在此情況下建構NKK庫,其中使傾向去醯胺化之殘基突變且隨後在螢光肽檢定法中篩選以評估可能的效力損失以及篩選生物物理特性(Tm)。   完全出乎意料地顯示以N100b突變成Q或S或以N101突變成Q或V使去醯胺化消除,但是同時導致與親體奈米抗體C0101517A01相比,增加1至3℃之Tm,而效力可相比。4種較佳的變異體顯示於表6.7.1D中,該表亦總結TSA及螢光肽檢定法的結果。在CDR中較佳的突變之綜述描述於下表中。在CDR區中較佳的突變之綜述提供於以下表6.7.1E、6.7.1F和6.7.1G中。選殖株517A01之CDR的胺基酸序列係用作為針對與其他的選殖株之CDR相比的參考物。根據Kabat編號,CDR1係在胺基酸殘基26開始,CDR2係在胺基酸殘基50開始,及CDR3係在胺基酸殘基95開始。 6.7.2 人源化   為了人源化,使奈米抗體序列與人類IGHV3-IGHJ種系共通序列成為更同源性。除了奈米抗體〝標誌〞殘基以外,在奈米抗體與人類IGHV3-IGHJ種系共通序列之間不同的框架區中特定的胺基酸以保持蛋白質結構、活性及穩定性完整的此等方式改變成人類對應物。 6.7.3 預存在抗體及抗藥物抗體   本發明者對引領序列最適化策略的免疫原性相關之臨床結果進行早期風險評定。該評定包括候選藥物的免疫原性潛力以及基於作用模式和最終生物治療分子的本性,抗藥物抗體之可能衝擊二者。針對此評定奈米抗體之序列,以便可能使(i)任何天然生成的預存在抗體之結合最小化,及(ii)引起治療突發免疫原性反應的可能性降低。   將突變L11V及V89L引入所有的MMP13奈米抗體中。 6.7.4 較佳的SO-選殖株   在表A-1和A-2中,序列係基於前導小組之序列最適化描述,其中序列係鑑於可能的預存在抗體及抗藥物抗體之PTM、人源化和抗原決定區詳細闡述。 6.8 雙特異性構築體   抗MMP13奈米抗體應優先在關注之位點(諸如關節)上作用,以便抑制MMP13之軟骨降解功能。聚集蛋白聚糖大量地存在於關節中,且在細胞外基質(ECM)中的主要蛋白聚糖佔總蛋白質含量的約50%。因此,至少在理論上,以抗MMP13奈米抗體錨定至聚集蛋白聚糖結合劑能容許引導抗MMP13奈米抗體至相關組織且改進其保留性。   著手使本發明之抗MMP13結合劑與該等聚集蛋白聚糖結合劑組合且測試所得雙特異性構築體在人類螢光肽檢定法及競爭型ELISA 檢定法中的效力。產生及測試包含聚集蛋白聚糖結合劑與MMP13抑制劑之各種雙特異性構築體,如表中所指示。   典型結果的格式及效力描述於表6.8A和表6.8B中。 在表6.8A和6.8B中所示之結果證明聚集蛋白聚糖結合劑與MMP13抑制劑之組合對MMP13抑制劑的效力沒有負面效應。值得注意的是,在大多數的例子中,前導小組MMP13抑制劑具有與非選擇性MMP抑制劑TIMP-2相同的效力。 實施例6.9 試管內大鼠MMT模式DMOAD研究   為了進一步證明MMP13抑制劑與本發明之CAP結合劑融合之活體內功效,使用在大鼠中以手術誘發之內側半月板裂傷(MMT)模式。簡言之,將抗MMP13奈米抗體與CAP結合劑(〝754〞或C010100754)偶合。在大鼠的一個膝蓋上操作以誘發OA樣症狀。在手術後3天以IA注射開始治療。在手術後第42天進行組織病理學檢查。採集中期和末期血清樣品用於探索性生物標記物分析。測定內側及總實質軟骨退化寬度,以及軟骨退化的減少百分比。每組使用20隻動物。   脛骨內側的軟骨退化抑制顯示於圖4中。   與媒劑相比,結果證明以MMP13-CAP構築體在42天之後顯著地減小軟骨寬度。該等結果示意   (a) CAP部分對抗MMP13奈米抗體(754)的活性沒有負面衝擊,與實施例6.8的結果一致;   (b) CAP部分能夠保留抗MMP13奈米抗體;及   (c) 抗MMP13奈米抗體對軟骨寬度具有正面效應。將此申請案整篇內所引用之所有的參考文獻的完整內容(包括文獻參考資料、頒佈之專利,公開之專利申請案及同樣在審理中之專利申請案)特此藉由提及明確地併入本文,特別為上文述及之指導。 There is still a need for safe and effective OA agents. Such agents should comply with various and often competing requirements, especially when envisioned in a broadly applicable format. Rather, the format should ideally be usable by a wide range of patients. The format should preferably be safe and not induce infection due to frequent IA administration. In addition, this format is more patient-friendly. For example, the format should have an extended half-life in the joint such that the format is not removed immediately upon administration. However, extending half-life should preferably not introduce off-target activity and side effects or limit efficacy. The present invention realizes at least one of these requirements. Based on unconventional screening, characterization and combination strategies, the inventors were surprised to observe that immunoglobulin single variable domains (ISVD) performed exceptionally well in vitro and in vivo experiments. Furthermore, the inventors were able to reconstruct ISVD to outperform the comparator drugs. In dual-parallel mode, this performance is not only preserved but even improved. On the other hand, it is also shown that the ISVD of the present invention is significantly more effective than the comparative molecules. The present invention provides polypeptides that antagonize MMPs, particularly MMP13, with improved prophylactic, therapeutic and/or pharmacological properties compared to comparative molecules, including a safer profile. Therefore, the present invention relates to ISVDs and polypeptides directed against MMPs and/or that can specifically bind to MMPs (as defined herein) and modulate their activity. Preferably, the MMPs are selected from the group consisting of: MMP13 (collagenase) ), MMP8 (collagenase), MMP1 (collagenase), MMP19 (matrix metalloproteinase RASI) and MMP20 (ameliolysin). Preferably, the MMP is MMP13. In particular, the polypeptide includes at least one immune protein that specifically binds to MMP13. Globulin single variable domain (ISVD), in which binding to MMP13 modulates the activity of MMP13. Definitions Unless otherwise indicated or defined, all terms used have their customary meanings in the art and will be understood by those skilled in the art. Reference is made to, for example, standard manuals such as Sambrook et al. (Molecular Cloning: A Laboratory Manual (2nd Ed.) Vols. 1-3, Cold Spring Harbor Laboratory Press, 1989), F. Ausubel et al. (Current protocols in molecular biology, Green Publishing and Wiley Interscience, New York, 1987), Lewin (Genes II, John Wiley & Sons, New York, N.Y., 1985), Old et al. (Principles of Gene Manipulation: An Introduction to Genetic Engineering (2nd edition) University of California Press, Berkeley, CA, 1981), Roitt et al. (Immunology (6th Ed.) Mosby/Elsevier, Edinburgh, 2001), Roitt et al (Roitt’s Essential Immunology (10th Ed.) Blackwell Publishing, UK, 2001) and Janeway et al. (Immunobiology (6th Ed.) Garland Science Publishing/Churchill Livingstone, New York, 2005), and the general background cited in this article. Unless otherwise instructed, all methods, steps, techniques and operations not specifically described in detail can be performed and have been performed in a manner known per se, as would be apparent to a person skilled in the art. Reference is further made to, for example, standard manuals and the general background mentioned herein and other references cited herein; and to, for example, the comments below: Presta (Adv. Drug Deliv. Rev. 58(5-6): 640-56, 2006 ), Levin and Weiss (Mol. Biosyst. 2(1): 49-57, 2006), Irving et al. (J. Immunol. Methods 248(1-2): 31-45, 2001), Schmitz et al. (Placenta 21 Suppl. A: S106-12, 2000), Gonzales et al. (Tumour Biol. 26(1): 31-43, 2005), which describe techniques for protein engineering (such as affinity maturation) and improved proteins (such as immunoglobulin Other techniques for specificity and other desired properties of proteins. It should be noted that as used herein, the singular forms "a", "an" and "the" include plural references unless the context clearly indicates otherwise. Thus, for example, reference to "a reagent" includes one or more of these different reagents and reference to "the method" includes those known to those of ordinary skill in the art to be Equivalent steps and methods described that are modified or substituted for use in the methods described herein. Unless otherwise indicated, it is understood that the term "at least" preceding a series of elements refers to each element in the series. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is intended that this invention encompasses such equivalents. The term "and/or" used at any time herein includes the meaning of "and", "or" and "all or any other combination of elements connected by that term". As used herein, the term "about" or "approximately" means within 20%, preferably within 15%, and more preferably within 10% of a given value or range. , and the best is within 5%. Throughout this specification and the patent claims that follow, it is understood that the word "comprise" and variations (such as "comprises" and "comprising") mean, unless the context requires otherwise. Includes a stated integer or step, or group of integers or steps, but does not exclude any other integer, step, or group of integers or steps. When used herein, the term "comprising" may be replaced by the term "containing" or "including", or sometimes, when used herein, by the term "having". The term "sequence" as used herein should generally be understood (e.g. in terms such as "immunoglobulin sequence", "antibody sequence", "variable domain sequence", "VHH The term "sequence" or "protein sequence") includes both the related amino acid sequences and the nucleic acid or nucleotide sequences encoding them, unless the context requires a more limited interpretation. Amino acid sequences are construed to mean A single amino acid or an unbranched sequence of two or more amino acids, depending on the context. Nucleotide sequence is interpreted to mean an unbranched sequence of 3 or more nucleotides. Amino group The acids are those L-amino acids commonly found in naturally occurring proteins. Amino acid residues are represented according to the standard three-letter or one-letter amino acid codes. See, for example, Table A- on page 48 of WO 08/020079 2. Those amino acid sequences containing D-amino acids are not intended to be encompassed by this definition. Any amino acid sequence containing a post-translationally modified amino acid may be described as having the modifications shown in this Table A-2 The original translation (e.g., hydroxylation or glycation) of the amino acid sequence of the position symbol, but such modifications should not be explicitly shown in the amino acid sequence. This definition covers linkages, cross-links, and end caps that can be sequence modified , any peptide or protein represented by non-peptide bonds, etc. The terms "protein", "peptide", "protein/peptide" and "polypeptide" are used interchangeably throughout this disclosure and for the purposes of the present invention. Have the same meaning. Each term refers to an organic compound composed of a straight chain of two or more amino acids. The compound may have 10 or more amino acids, 25 or more amino acids, 50 or More amino acids, 100 or more amino acids, 200 or more amino acids, and even 300 or more amino acids. Those skilled in the art understand that polypeptides generally contain less than proteins Amino acids, although there is no technically recognized cut-off point for the number of amino acids that distinguishes polypeptides from proteins; polypeptides can be produced by chemical synthesis or recombinant methods; and proteins are usually produced by recombinant methods in vitro or in vivo, as in this It is known in the art that the amide bonds in the primary structure of polypeptides are conventionally written in the order of amino acids, with the amine terminus (N-terminus) of the polypeptide always on the left and the acid terminus (C-terminus) always on the right. For example, when the nucleic acid or amino acid sequence has been associated with at least one other component ( When separated from another nucleic acid, another protein/polypeptide, another biological component or macromolecule, or at least one contaminant, impurity or minor component), a nucleic acid or amino acid sequence is considered to be ) is isolated (form)". In particular, a nucleic acid or amino acid sequence is considered to have been purified at least 2-fold, in particular at least 10-fold, more in particular at least 100-fold and up to 1000-fold or more. The amino acid sequence is "(substantially) isolated." The nucleic acid or amino acid "in (substantially) isolated form" is preferably substantially homogeneous, as determined using a suitable technique, such as suitable chromatography techniques, such as polyacrylamide gel electrophoresis. When a nucleotide sequence or an amino acid sequence, respectively, is said to "comprise" another nucleotide sequence or amino acid sequence or "consist essentially of" another nucleotide sequence or amino acid sequence, this may mean that the later-mentioned nucleotide sequence or amino acid sequence has been incorporated into the first-mentioned nucleotide sequence or amino acid sequence, respectively, but more Frequently, this usually means that the first-mentioned nucleotide sequence or amino acid sequence respectively contains a stretch of nucleotides or amino acid residues within its sequence, and has the same nucleotide sequence as the later-mentioned sequence respectively. or amino acid sequence, regardless of how the aforementioned sequence is actually generated or obtained (which may, for example, be by any suitable method described herein). By way of non-limiting example, when a polypeptide of the invention is said to comprise an immunoglobulin single variable domain ("ISVD"), this may mean that the immunoglobulin single variable domain sequence has been incorporated into the polypeptide of the invention in the sequence, but more often, this generally means that the polypeptide of the invention contains within its sequence the sequence of an immunoglobulin single variable domain, regardless of how the polypeptide of the invention is produced or obtained. Likewise, when a nucleic acid or nucleotide sequence is said to comprise another nucleotide sequence, the first-mentioned nucleic acid or nucleotide sequence is preferably such that when expressed as an expression product (e.g., a polypeptide), the later-mentioned nucleic acid or nucleotide sequence is and the amino acid sequence encoded by the nucleotide sequence forms part of the expression product (in other words, the nucleotide sequence mentioned later is in the same reading frame as the larger nucleic acid or nucleotide sequence mentioned earlier ). Likewise, when a construct of the invention is said to comprise a polypeptide or ISVD, this may mean that the construct comprises at least the polypeptide or ISVD respectively, but more often it means that the construct comprises in addition to the polypeptide or ISVD. In addition, there are groups, residues (such as amino acid residues), moieties and/or binding units, regardless of how the groups, residues (such as amino acid residues), moieties and / or combined units, regardless of how the construct was created or obtained. By "consisting essentially of" it is meant that the immunoglobulin single variable domain used in the method of the invention is completely identical to or corresponds to the immunoglobulin single variable domain of the invention. Domains have a limited number of amino acid residues added on the amine terminus, the carboxyl terminus, or both the amine terminus and the carboxyl terminus (such as 1 to 20 amino acid residues, e.g., 1 to 10 amino acid residues) residues, and preferably 1 to 6 amino acid residues, such as 1, 2, 3, 4, 5 or 6 amino acid residues) of the immunoglobulin single variable domain of the invention. For the purpose of comparing two or more nucleotide sequences, the percent "sequence identity" between a first nucleotide sequence and a second nucleotide sequence can be determined by [in the first nucleotide sequence The number of nucleotides identical to the nucleotide at the corresponding position in the second nucleotide sequence] divided by [the total number of nucleotides in the first nucleotide sequence] and multiplied by [100%] Calculation in which each deletion, insertion, substitution or addition of a nucleotide in a second nucleotide sequence is considered a difference in a single nucleotide (position) compared to the first nucleotide sequence. Alternatively, the degree of sequence identity between two or more nucleotide sequences can be calculated using known computer algorithms for sequence alignment (such as NCBI Blast v2.0) and using standard settings. . Some other techniques, computer algorithms and settings for determining the degree of sequence identity are described in, for example, WO 04/037999, EP 0967284, EP 1085089, WO 00/55318, WO 00/78972, WO 98/49185 and GB 2357768. For purposes of determining the percent "sequence identity" between two nucleotide sequences according to the calculation method outlined above, the nucleotide sequence with the highest number of nucleotides is often considered the "first" nucleotide. sequence and other nucleotide sequences are considered the "second" nucleotide sequence. For the purpose of comparing two or more amino acid sequences, "sequence identity" between a first amino acid sequence and a second amino acid sequence (also referred to herein as "amino acid identity" ) percentage can be calculated by dividing [the number of amino acid residues in the first amino acid sequence that are identical to the amino acid residue at the corresponding position in the second amino acid sequence] by [the number of amino acid residues in the first amino acid sequence] total number of amino acid residues in the acid sequence] and multiplied by [100%] to calculate where each amino acid residue in the second amino acid sequence is missing compared to the first amino acid sequence , insertion, substitution or addition is considered to be a difference in a single amino acid residue (position), that is, an "amino acid difference" as defined herein. Alternatively, the degree of sequence identity between two amino acid sequences can be determined using known computer algorithms for determining the degree of sequence identity of nucleotide sequences (such as those mentioned above), Calculations are performed as usual using standard settings. For purposes of determining the percent "sequence identity" between two amino acid sequences according to the calculation method outlined above, the amino acid sequence with the highest number of amino acid residues is often considered the "first" amine The amino acid sequence and other amino acid sequences are regarded as the "second" amino acid sequence. Furthermore, when determining the degree of sequence identity between two amino acid sequences, one skilled in the art may consider so-called "conservative" amino acid substitutions, which are generally described as in which the amino acid residue has a chemical structure An amino acid substitution that is similar to the substitution of another amino acid residue and has little or essentially no effect on the function, activity, or other biological properties of the polypeptide. Such conservative amino acid substitutions are well known in the art, such as WO 04/037999, GB 335768, WO 98/49185, WO 00/46383 and WO 01/09300; and these substitutions are (preferred) Types and/or combinations may be selected based on relevant teachings from, for example, WO 04/037999 and WO 98/49185 and from further references cited herein. Preferably these conservative substitutions are substitutions in which an amino acid within each of the following groups (a) to (e) is replaced by another amino acid residue within the same group: (a) small aliphatic, non- Polar or slightly polar residues: Ala, Ser, Thr, Pro and Gly; (b) Polar, negatively charged residues and their (uncharged) amides: Asp, Asn, Glu and Gln; (c) Polar, negatively charged residues Positively charged residues: His, Arg and Lys; (d) large aliphatic, non-polar residues: Met, Leu, Ile, Val and Cys; and (e) aromatic residues: Phe, Tyr and Trp. Particularly preferred conservative substitution systems are as follows: Ala becomes Gly or becomes Ser; Arg becomes Lys; Asn becomes Gln or becomes His; Asp becomes Glu; Cys becomes Ser; Gln becomes Asn; Glu becomes Asp; Gly becomes Ala or becomes Pro; His becomes Asn or becomes Gln; Ile becomes Leu or becomes Val; Leu becomes Ile or becomes Val; Lys becomes Arg, becomes Gln or becomes Glu; Met becomes Leu, becomes Tyr or becomes Ile; Phe becomes Met, becomes Leu or becomes Tyr ; Ser becomes Thr; Thr becomes Ser; Trp becomes Tyr; Tyr becomes Trp; and/or Phe becomes Val, becomes Ile or becomes Leu. Any amino acid substitutions applied to the polypeptides described herein may also be based on amino acid variations between homologous proteins of different species developed by Schulz et al. ("Principles of Protein Structure", Springer-Verlag, 1978) Analysis of frequencies, analysis of structure-forming potential developed by Chou and Fasman (Biochemistry 13: 211, 1974; Adv. Enzymol., 47: 45-149, 1978), and analysis of structure-forming potential by Eisenberg et al. (Proc. Natl. Acad Sci. USA 81: 140-144, 1984), Kyte and Doolittle (J. Molec. Biol. 157: 105-132, 1981) and Goldman et al. (Ann. Rev. Biophys. Chem. 15: 321-353, 1986 ), the entire text of which is incorporated herein by reference. Information on the primary, secondary and tertiary structures of Nanobodies is given in the Summary of the Invention herein and in the general background cited above. Also for this purpose, V from LlamaHH The crystal structure of the domain is provided by, for example, Desmyter et al. (Nature Structural Biology, 3: 803, 1996), Spinelli et al. (Natural Structural Biology, 3: 752-757, 1996), and Decanniere et al. (Structure, 7(4): 361, 1999) given. About V in Xi ZhiH V is formed in the domainH /VL Additional information on some of the amino acid residues at the interface and possible camelizing substitutions at these positions can be found in the prior art cited above. An amino acid sequence and a nucleic acid sequence are said to be "identical" if they have 100% sequence identity (as defined herein) over their entire length. When comparing two amino acid sequences, the term "amino acid difference" refers to the insertion, deletion or substitution of a single amino acid residue at a position in the first sequence compared to the second sequence; it should be understood that both The amino acid sequence may contain one, two or more such amino acid differences. More specifically, in the ISVD and/or polypeptide of the present invention, the term "amino acid difference" refers to the difference in b), d) or f) compared to the CDR sequence of a), c) or e) respectively. Insertion, deletion or substitution of a single amino acid residue at a specified CDR sequence position; it is understood that the CDR sequences of b), d) and f) are comparable to the CDR sequences of a), c) or e) respectively. Containing one, two, three, four or up to five of these amino acid differences. An "amino acid difference" may be any one, two, three, four or up to five substitutions, deletions or insertions or any combination thereof, which improves or at least improves the properties of the MMP13 binding agents of the invention (such as the polypeptides of the invention). Unduly impairs a desired property or balance or combination of desirable properties of a MMP13 binding agent of the invention, such as a polypeptide of the invention. In this regard, the resulting MMP13 binding agents of the invention (such as the polypeptides of the invention) should be at least Binds to MMP13 with the same, approximately the same or higher affinity. Affinity can be measured by any suitable method known in the art, but is preferably measured as described in the Examples paragraph. In this regard, the amino acid sequences of the CDRs according to b), d) and/or f) may be individually self-isolated by means of affinity maturation using one or more affinity maturation techniques known per se or as described in the examples. Amino acid sequences derived from the amino acid sequences of a), c) and/or e). For example, and depending on the host organism in which the polypeptides of the invention are expressed, such deletions and/or substitutions may remove one or more sites for post-translational modification (such as one or more glycation sites) This method of design is within the capabilities of those skilled in the art (refer to the embodiment). In the context of any SEQ ID NO, "represented by" as used herein is equivalent to "comprising or consisting of "the SEQ ID NO", and is preferably equivalent to "the SEQ ID NO". ID NO〞Composed of〞. As used in this manual, "Nanobody family", "VHH "Family" or "Family" refers to Nanobodies and/or V that have the same length.HH Sequence groups (i.e., having the same number of amino acids within their sequences) and their amino acid sequences between positions 8 and 106 (according to Kabat numbering) have 89% or higher amino acids Sequence identity. The terms "antigenic region" and "antigenic determinant" are used interchangeably to refer to an antigen-binding molecule (such as an immunoglobulin of the invention, a conventional antibody, an immunoglobulin single variable domain and/or a polypeptide), and More particularly a portion of a giant molecule (such as a polypeptide or protein) recognized by the antigen binding site of the molecule. The epitope defines the minimum binding site for an immunoglobulin and therefore represents the target for immunoglobulin specificity. The part of an antigen-binding molecule (such as the immunoglobulin of the present invention, a conventional antibody, an immunoglobulin single variable domain and/or a polypeptide) that recognizes an antigenic determinant is called a "paratope." Can "bind" or "specifically bind", "have affinity to" and/or "have specificity" to a specific epitope, antigen or protein (or at least a part, fragment or epitope thereof) An amino acid sequence (such as an immunoglobulin single variable domain of the invention, an antibody, a polypeptide or generally an antigen or fragment thereof that binds to a protein or polypeptide) is said to be "against" or "directed against" )"the epitope, antigen or protein, or is a "binding" molecule related to such epitope, antigen or protein, or is said to be an "anti" epitope, "anti" antigen or "anti" protein ( For example "anti" MMP13). Affinity represents the strength or stability of molecular interactions. Affinity is often expressed in units of moles/liter (or M).D or the dissociation constant is given. Affinity can also be associated with the association constant KA means that it is equal to 1/KD and has (mol/liter)-1 (or M-1 ) unit. In this specification, the stability of the interaction between two molecules is mainly determined by the K of their interaction.D Expressed in the form of value; those familiar with this technology will understand that in view of KA =1/KD relationship, with its KD The strength of the molecular interaction specified by the value can also be used to calculate the corresponding KA value. KD The value is also characterized in a thermodynamic sense by the strength of molecular interactions, since it is determined by the well-known relationship DG=RTln(KD )(equivalent to DG= -RTln(KA )) is related to the change in free energy of binding (DG), where R is equal to the gas constant, T is equal to the absolute temperature and ln represents the natural logarithm. The K of biological interactions that are considered meaningful (e.g., specific)D Usually tied at 10-12 M(0.001 nM) to 10-5 M (10000 nM). The stronger the interaction, the KD The lower. KD The dissociation rate constant of the complex (in terms of koff expressed) and its association rate (expressed as kon expressed) expressed by the ratio of expressed (such that KD =koff /kon and KA =kon /koff ). Dissociation rate koff has unit s-1 (where s is the SI unit notation of seconds). Association rate kon Has unit M-1 s-1 . The association rate can be between 102 M-1 s-1 to about 107 M-1 s-1 changes between them, approaching the diffusion-limited association rate constant of bimolecular interactions. The dissociation rate is related to t1/2 =ln(2)/koff The half-lives of the given molecular interactions are related. The dissociation rate can be between 10-6 s-1 (in terms of multiple days t1/2 Approximately irreversible complex) to 1 s-1 (t1/2 =0.69 s). Specific binding of an antigen-binding protein (such as ISVD) to an antigen or antigenic determinant may be determined in any suitable manner known per se, including, for example, saturation binding assays and/or competitive binding assays, such as radioimmunoassays (RIA) ), enzyme immunoassays (EIA) and sandwich competition assays, and their different variations known per se in this technology; and other technologies mentioned herein. The affinity of a molecular interaction between two molecules can be measured via different techniques known per se, such as the well-known surface plasmon resonance (SPR) biosensor technology (see e.g. Ober et al. 2001, Intern. Immunology 13 : 1551-1559), in which a molecule is fixed on the biosensor chip and other molecules pass through the fixed molecule under flow conditions to obtain kon , koff Measure and therefore get KD (or KA )value. This can be performed, for example, using the well-known BIACORE® instrument (Pharmacia Biosensor AB, Uppsala, Sweden). The kinetic exclusion assay (KINEXA®) (Drake et al. 2004, Analytical Biochemistry 328: 35-43) measures binding events in solution without labeling the binding partner and is based on kinetic exclusion complex dissociation. In-solution affinity analysis can also be performed using the GYROLAB® Immunoassay System, which provides a platform for automated bioanalysis and rapid sample transfer (Fraley et al. 2013, Bioanalysis 5:1765-74). Those skilled in the art will also understand that if the measurement method affects the inherent binding affinity of the underlying molecule in some way, such as distortion associated with a coating on a biosensor of a molecule, then the measured KD May be equivalent to visual KD . Likewise, if a molecule contains more than one recognition site for other molecules, it is possible to measure the visual KD . In such cases, the measured affinity can be affected by the affinity of the interaction between the two molecules. In particular, accurate measurement of KD It can be very laborious, and therefore the visual KD value to evaluate the binding strength of two molecules. It should be noted that visual K can be used as long as all measurements are performed in a consistent manner (e.g. keeping calibration conditions constant).D measure as true KD is an approximate value, and therefore in this document K should beD And as KD viewed with equal importance or relevance. The term "specificity" refers to the number of different types of antigens or antigenic determinants that can bind to a particular antigen-binding molecule or antigen-binding protein molecule (such as an ISVD or polypeptide of the invention), for example in paragraph 53 of WO 08/020079 Go to paragraph n) on page 56. The specificity of an antigen-binding protein can be based on affinity and/or retention assays, as described on pages 53 to 56 of WO 08/020079 (incorporated herein by reference), which also describes some methods for measuring antigen binding. Preferred techniques for binding between molecules (such as polypeptides of the invention or ISVD) and coherent antigens. Antigen-binding proteins (such as ISVDs and/or polypeptides of the invention) are usually expressed as 10-5 to 10-12 Mol/liter or less, and preferably 10-7 to 10‑12 Mol/liter or less, and preferably 10-8 to 10-12 Dissociation constant in moles/liter (KD )(i.e. 105 to 1012 Liter/mol or higher, preferably 107 to 1012 Liter/mol or higher, and preferably 108 to 1012 Liter/mol association constant (KA )) binds to those antigens. It is generally considered to be greater than 10-4 Mol/L of any KD value (or less than 104 Liter/mol of any KA value) indicates nonspecific binding. Preferably the monovalent ISVD of the invention has an affinity of less than 500 nM, preferably less than 200 nM, more preferably less than 10 nM, such as less than 500 pM, such as between 10 and 5 pM or less. Binds to desired antigen. When the immunoglobulin single variable domain and/or polypeptide binds to the first antigen with affinity (as described above, and appropriately expressed as KD Value, KA Value, Koff Velocity and/or Kon rate) is at least 10 times, such as at least 100 times, and preferably at least 1000 times or more, better than the affinity of the immunoglobulin single variable domain and/or polypeptide for binding to the second target or antigen. A single variable domain of a protein and/or a polypeptide is said to be "specific" for a (first) target or antigen relative to another (second) target or antigen. For example, the K of an immunoglobulin single variable domain and/or polypeptide that binds to the first target or antigenD The value is greater than the K of the immunoglobulin single variable domain and/or polypeptide binding to the second target or antigen.D At least 10 times smaller, such as at least 100 times smaller, and preferably at least 1000 times smaller or even smaller. Preferably when an immunoglobulin single variable domain and/or polypeptide is "specific" for a first target or antigen versus a second target or antigen, it is directed against (as defined herein) the first target or antigen. target or antigen, but is not directed against the second target or antigen. Specific binding of an antigen-binding protein to an antigen or antigenic determinant may be determined in any suitable manner known per se, including, for example, saturation binding assays, Scatchard analysis, and/or competitive binding assays, such as radioimmunoassay. Assays (RIA), enzyme immunoassays (EIA), and sandwich competitive assays, and their different variations known in this technology; and other technologies mentioned herein. As will be appreciated by those skilled in the art and as described on pages 53 to 56 of WO 08/020079, the dissociation constant may be a real or an apparent dissociation constant. Methods for determining dissociation constants are known to those skilled in the art and include, for example, the techniques mentioned on pages 53 to 56 of WO 08/020079. Another preferred method that can be used to assess affinity is the 2-step ELISA (enzyme-linked immunosorbent assay) procedure of Friguet et al. in 1985 (J. Immunol. Methods 77: 305-19). This method establishes solution-phase binding equilibrium measurements and avoids possible distortions associated with adsorption of one of the molecules on the support (such as plastic). The dissociation constant may be a real or an apparent dissociation constant, as will be apparent to those skilled in the art and as described, for example, on pages 53 to 56 of WO 08/020079. Methods for determining dissociation constants are known to those skilled in the art and include, for example, the techniques mentioned on pages 53 to 56 of WO 08/020079. In one aspect, the invention relates to MMP13 binding agents, such as the ISVDs and polypeptides of the invention, wherein the MMP13 binding agent does not bind to MMP1 or MMP14 (membrane type). Finally, it should be noted that the experienced scientist may in many cases determine that it is convenient to determine the binding affinity relative to some reference molecule. For example, to assess the strength of the binding between molecules A and B, one can e.g. Choose) easily detectable biotin) or other forms (fluorophore for fluorescence detection, chromophore for light absorption detection, biotin for streptavidin-mediated ELISA detection) ) appropriately labeled reference molecule C. Usually the reference molecule C is kept at a fixed concentration and the A concentration is varied for a given concentration or amount of B. As a result, the IC corresponding to the concentration of A is obtained50 value, which is halved by the signal measured with C in the absence of A. If K is knownD ref( Reference molecule KD ) and the total concentration c of the reference moleculeref , then it can be obtained from the following formula: KD =IC50 /(1+cref /KDref ) to obtain the view K of the interaction A-BD . It should be noted that if cref <<KD ref , then KD »IC50 . If in a consistent manner (e.g. keeping a fixed cref ) to perform IC of binding agents for comparison50 measurement, then differences in the strength or stability of molecular interactions can be measured by comparing IC50 to evaluate and determine that this measure is equivalent to K throughout the articleD Or depending on KD . Half of the maximum inhibitory concentration (IC50 ) may also be a measure of the effectiveness of a compound in inhibiting biological or biochemical functions (eg, pharmacological effects). This quantitative measure represents how much polypeptide or ISVD (e.g., Nanobody) is required to inhibit half of a given biological process (or component of a process, i.e., enzyme, cell, cell receptor, chemotaxis, regression, metastasis, invasion, etc.). In other words, it is half (50%) of the maximum inhibitory concentration (IC) of the substance (50% IC or IC50 ). IC of antagonists provided by the present invention (such as polypeptides or ISVD (such as nanobodies))50 The value can be calculated by determining the concentration required to inhibit half of the maximum biological response of the agonist. Drug KD This can be determined by constructing a dose-response curve and examining the effect of different concentrations of an antagonist, such as a polypeptide of the invention or an ISVD (eg, a Nanobody), on reversing agonist activity. Term half the maximum effective concentration (EC50 ) means the concentration of a compound that induces a half-way response between baseline and maximum after a specified exposure time. In the context of the present invention, the EC50 Used as a measure of the potency of a polypeptide or ISVD (eg Nanobody). EC for graded dose-response curves50 Represents the concentration of a compound at which 50% of its maximum effect is observed. Concentrations are preferably expressed in molar units. In biological systems, small changes in ligand concentration often cause rapid response changes that follow a sigmoid function. The inflection point at which the reaction begins to slow down with increasing ligand concentration is the EC50 . This can be determined mathematically by deriving a line of best fit. In most cases, it is convenient to rely on graphs for estimation. If EC is provided in the Examples paragraph50 , then design experiments that reflect KD as accurately as possible. In other words, E.C.50 The value can be considered as the KD value. The term "average KD" refers to the average KD value obtained in at least 1, but preferably more than 1, such as at least 2 experiments. The term "average" refers to the mathematical term "average" (the sum of data divided by the number of items in the data). It’s also about IC50 , which is a measure of a compound's inhibitory effect (50% inhibition). IC50 It is the most common summary measure for dose-response curves in competitive binding assays and functional antagonist assays. The most common summary measure for agonist/stimulant assays is EC50 . The inhibition constant Ki is an indicator of how effective an inhibitor is; it is the concentration required to produce half of maximum inhibition. with IC50 Different, IC50 As may vary depending on the experimental conditions (but see above), Ki is an absolute value and is often referred to as the inhibition constant of the drug. Suppression constant Ki It can be calculated using the Cheng-Prusoff formula:where [L] is the fixed ligand concentration. As the term is used herein, "potency" of a polypeptide of the invention is a function of the amount of the polypeptide of the invention required to produce its specific effect. It is based on the IC of the polypeptide50 The reciprocal of is simply measured. Potency refers to the ability of the polypeptide of the invention to modulate and/or partially or completely inhibit the activity of MMP13. More specifically, potency may refer to the ability of the polypeptide to reduce or even completely inhibit MMP13 activity as defined herein. Specifically, potency may refer to the polypeptide's ability to inhibit proteolysis (such as protease activity, endopeptidase activity) and/or substrates (such as aggrecan, collagen II, collagen I, collagen III, collagen IV, collagen protein IX, collagen X, collagen XIV and gelatin) binding ability. Potency can be measured by any suitable assay known in the art or described herein. The "efficacy" of the polypeptide of the present invention is measured at the maximum intensity of the effect itself at a saturated polypeptide concentration. Efficacy refers to the maximum response that can be achieved from a polypeptide of the invention. Efficacy refers to the ability of a polypeptide to achieve the desired (therapeutic) effect. In one aspect, the invention relates to a polypeptide as described herein, wherein the polypeptide is expressed between 1E-07 M and 1E-13 K between MD Binds to MMP13, such as between 1E-08 M and 1E-12 Between M, preferably at most 1E-07 M, preferably less than 1E-08 M or 1E-09 M, or even below 1E‑10 M, such as 5E-11 M, 4E=11 M, 3E‑11 M, 2E-11 M, 1.7E-11 M, 1E‑11 M, or even 5E-12 M, 4E-12 M, 3E‑12 M, 1E-12 M, which is measured, for example, with KinExA. In one aspect, the invention relates to a polypeptide as described herein, wherein the polypeptide is expressed between 1E-07 M and 1E-12 IC between M50 Inhibit MMP13 activity, such as between 1E-08 M and 1E-11 M, which is determined, for example, by a competitive ELISA, a competitive TIMP-2 ELISA, a fluorescent peptide assay, a fluorescent collagen assay or a collagen lysis assay, such as detailed in the Examples paragraph. In one aspect, the invention relates to a polypeptide as described herein, wherein the polypeptide is expressed with at most 1E-07 M of IC50 Inhibit the activity of MMP13, preferably 1E-08 M, 5E-09 M or 4E-9 M, 3E-9 M, 2E-9 M, such as 1E-9 M. In one aspect, the invention relates to a polypeptide as described herein, wherein the polypeptide is expressed between 1E-07 M and 1E-12 EC between M50 Binds to MMP13, such as between 1E-08 M and 1E-11 M, for example, it is measured by ELISA, competitive TIMP-2 ELISA, fluorescent peptide assay, fluorescent collagen assay or collagen dissolution assay. In one aspect, the invention relates to a polypeptide as described herein, wherein the polypeptide is expressed at less than 5E-04 (s-1 ) binds to MMP13, which is measured, for example, by SPR. An amino acid sequence (such as an ISVD or polypeptide) is said to be specific for two different antigens or antigenic determinants (such as from different species) if it is specific (as defined herein) for these different antigens or antigenic determinants. MMP13s of mammals, such as human MMP13, dog MMP13, bovine MMP13, rat MMP13, porcine MMP13, mouse MMP13, rabbit MMP13, cynomolgus monkey MMP13 and/or rhesus monkey MMP13) have "cross-reactivity". It is understood that ISVDs or polypeptides may be considered to be cross-reactive, although the binding affinities for two different antigens may be different, such as by a factor of 2, 5, 10, 50, 100, or even greater, provided that the binding affinities for these different antigens are The antigen or antigenic determinant is specific (as defined herein). MMP13 is also known as CLG3 or collagenase 3, MANDP1, MMP-13, matrix metallopeptidase 13 or MDST. Information about the related structure of MMP13 can be found, for example, by the UniProt accession number described in Table 1 below (see Table B)."Human MMP13" refers to MMP13 comprising the amino acid sequence of SEQ ID NO:115. In one aspect, the polypeptide of the present invention specifically binds to MMP13 from Homo sapiens, mouse, wolf, domestic cow, rhesus macaque, brown rat, chicken and/or chimpanzee, preferably from human MMP13, more preferably from human MMP13. Preferably SEQ ID NO:115. Terms "(cross)-block ((cross)-block, (cross)-blocked, (cross)-blocking)", "competitive binding", "(cross) competition ((cross)-compete, (cross)- Competing and (cross)-competition) are used interchangeably herein to mean that an immunoglobulin, antibody, ISVD, polypeptide or other binding agent interferes with other immunoglobulins, antibodies, ISVDs, polypeptides or binding agents with a given target. Target binding ability. The extent to which an immunoglobulin, antibody, ISVD, peptide or other binding agent is able to interfere with the binding of another to the target, and therefore whether it can be said to be cross-blocking in accordance with the present invention, can be determined using competitive binding assays commonly known in the art. The purified ISVD can be assayed, such as, for example, by screening purified ISVD against ISVD expressed on phage in a competitive ELISA, as described in the Examples. For determining whether an immunoglobulin, antibody, immunoglobulin single variable domain, polypeptide or other binding agent (cross) blocks, is able to (cross) block, competitively binds or (cross) competes against a target ( (as defined herein) are described, for example, in Xiao-Chi Jia et al. (Journal of Immunological Methods 288: 91-98, 2004), Miller et al. (Journal of Immunological Methods 365: 118-125, 2011) and/or herein in the methods described (see, e.g., Example 7). The present invention relates to polypeptides as described herein, such as SEQ ID NOs: 111, 11, 112, 12, 109, 9, 110, 10, 1, 13, 14, 15, 16, 17, 18, 19, 20, The polypeptide represented by 21, 22, 2, 3, 4, 5, 6, 7 or 8, wherein the polypeptide competes with the polypeptide, which is determined, for example, by a competitive ELISA. The present invention relates to assays with polypeptides as described herein (such as SEQ ID NO: 111, 11, 112, 12, 109, 9, 110, 10, 1, 13, 14, 15, 16, 17, 18, 19, A method of competing with a competitor (such as a polypeptide) represented by any one of 20, 21, 22, 2, 3, 4, 5, 6, 7 or 8), wherein a polypeptide as described herein is competed with a competitor (such as a polypeptide ) competes or cross-blocks its binding to MMP13, such as human MMP13 (SEQ ID NO: 115), wherein the competitor's binding to MMP13 in the absence of the polypeptide of the invention is compared to the binding of the competitor to MMP13 in the presence of the polypeptide of the invention. The combination with MMP13 is reduced by at least 5%, such as 10%, 20%, 30%, 40%, 50% or even more, such as 80%, 90% or even 100% (i.e. almost cannot be detected). Competition and cross-blocking can be determined in any manner known in the art, such as competition ELISA. In one aspect, the invention relates to a polypeptide of the invention, wherein the polypeptide cross-blocks with SEQ ID NO: 111, 11, 112, 12, 109, 9, 110, 10, 1, 13, 14, 15, 16 , at least one of the polypeptides represented by 17, 18, 19, 20, 21, 22, 2, 3, 4, 5, 6, 7 or 8 binds to MMP13 and/or is SEQ ID NO: 111, 11, 112, At least one of the polypeptides represented by 12, 109, 9, 110, 10, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 2, 3, 4, 5, 6, 7 or 8 One cross-blocks binding to MMP13. The invention also relates to polypeptides as described herein (such as SEQ ID NOs: 111, 11, 112, 12, 109, 9, 110, 10, 1, 13, 14, 15, 16, 17, 18, 19, 20 , 21, 22, 2, 3, 4, 5, 6, 7 or 8) a competitor, wherein the competitor competes with the polypeptide as described herein or cross-blocks binding to MMP13, wherein compared to the present invention The binding of the polypeptide to MMP13 in the absence of the competitor, the binding of the polypeptide of the invention to MMP13 in the presence of the competitor is reduced by at least 5%, such as 10%, 20%, 30%, 40%, 50% or even More, such as 80% or even more, such as at least 90% or even 100% (ie barely detectable in a given assay). In one aspect, the invention relates to polypeptides of the invention (such as SEQ ID NO: 111, 11, 112, 12, 109, 9, 110, 10, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 2, 3, 4, 5, 6, 7 or 8) cross-blocking polypeptides binding to MMP13, and/or SEQ ID NO: 111, 11, 112, At least one of 12, 109, 9, 110, 10, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 2, 3, 4, 5, 6, 7 or 8 crosses Blocking binding to MMP13, preferably wherein the polypeptide comprises at least one VH, VL, dAb, immunoglobulin single variable domain (ISVD) that specifically binds to MMP13, wherein binding to MMP13 modulates the activity of MMP13. "MMP13 activity" and "activity of MMP13" (these terms are used interchangeably herein) include, but are not limited to, proteolytic activity, such as protease activity (also known as protease or peptidase activity) and, on the other hand, endopeptidase activity, and binding to substrates, such as through thrombin-like domains and peptidoglycan-binding domains. MMP13 activity includes binding to and/or proteolysis of substrates such as aggrecan, collagen II, collagen I, collagen III, collagen IV, collagen IX, collagen X, collagen XIV, and gelatin . Proteolysis as used herein refers to the breaking of proteins into smaller polypeptides or amino acids by hydrolysis of the peptide bonds that link amino acids together in the polypeptide chain. In the context of the present invention, "modulating or to modulate" generally means changing activity by MMP13, as measured using suitable in vitro, cellular or in vivo assays (such as those mentioned herein). In particular, "modulating or to modulate" may mean reducing or inhibiting MMP13 activity, or alternatively increasing MMP13 activity, using suitable in vitro, cellular or in vivo assays such as those mentioned herein. and) measured, modulated by at least 1%, preferably at least 5%, such as at least 10% or at least 25, compared to the MMP13 activity in the same assay under the same conditions but not in the presence of an ISVD or polypeptide of the invention. %, such as at least 50%, at least 60%, at least 70%, at least 80% or 90% or more. Therefore, the present invention relates to a polypeptide as described herein, wherein the polypeptide modulates MMP13 activity, preferably inhibits MMP13 activity. Accordingly, the present invention relates to a polypeptide as described herein, wherein the polypeptide inhibits the protease activity of MMP13, such as inhibiting proteolysis of a substrate, such as aggrecan, collagen II, collagen I, collagen III, collagen IV , collagen IX, collagen X, collagen XIV and/or gelatin. Accordingly, the present invention relates to a polypeptide as described herein, wherein the polypeptide blocks the interaction of MMP13 with a substrate such as aggrecan, collagen II, collagen I, collagen III, collagen IV, collagen IX, collagen X, collagen XIV and/or gelatin), wherein the collagen is preferably collagen II. In one aspect, the invention relates to a polypeptide as described herein, wherein the polypeptide blocks at least 20% of the binding of MMP13 to collagen and/or aggrecan, such as at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or even higher, for example, by a competitive ELISA-based assay (see Howes et al. 2014 J. Biol. Chem. 289:24091–24101) Determination. In one aspect, the invention relates to a polypeptide as described herein, wherein the polypeptide antagonizes or inhibits the activity of MMP13, such as (i) protease activity, preferably cleavage of aggrecan and/or collagen, wherein the Collagen is preferably collagen II; (ii) collagen binds to a thrombin-like domain. Accordingly, the present invention relates to a polypeptide as described herein, wherein the polypeptide inhibits the protease activity of MMP13, preferably by at least 5%, such as 10%, 20%, 30%, 40%, 50% or even more, such as At least 60%, 70%, 80%, 90%, 95% or even higher, determined by any suitable method known in the art, such as a competitive assay or as described in the Examples paragraph. ISVD Unless otherwise indicated, the terms "immunoglobulin" and "immunoglobulin sequence" are both used to include full-length antibodies, their respective chain, and all parts, domains or fragments thereof (including, but not limited to, antigen-binding domains or fragments, respectively, such as VHH Domain or VH /VL domain). As used herein, the term "domain" (of a polypeptide or protein) refers to a protein structure that has folds that retain its tertiary structure, regardless of the rest of the protein. Domains are often responsible for individual functional properties of a protein, and in many cases can be added, removed, or transferred to other proteins without losing the function of the rest of the protein and/or the domain. The term "immunoglobulin domain" as used herein refers to a globular region of an antibody chain (such as a chain of a conventional 4-chain antibody or a heavy chain antibody) or a polypeptide consisting essentially of such a globular region. Immunoglobulin domains are characterized by that they retain the immunoglobulin fold characteristic of antibody molecules, which consists of a bilayer sandwich of approximately 7 antiparallel β strands arranged into two β-pleated plates, optionally with conservative Sexual disulfide bonds are stable. The term "immunoglobulin variable domain" as used herein means an immunoglobulin domain consisting essentially of four "framework regions", referred to in the art and hereafter as "framework region 1" or "framework region 1" respectively. FR1", "Framework Region 2" or "FR2", "Framework Region 3" or "FR3" and "Framework Region 4" or "FR4"; these framework regions are based on three "Complementary Determining Regions" or "CDR" Interrupts are referred to as "Complementary Determining Region 1" or "CDR1", "Complementary Determining Region 2" or "CDR2" and "Complementary Determining Region 3" or "CDR3" in this technology and below respectively. Therefore, the general structure or sequence of an immunoglobulin variable domain can be represented as follows: FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4. The immunoglobulin variable domain confers the antibody's specificity for the antigen by carrying the antigen-binding site. In a preferred embodiment of all aspects of the invention, the immunoglobulin single variable domain (ISVD) according to the invention preferably consists of or consists essentially of 4 framework regions in the general structure as outlined above (FR1 to FR4 respectively) and three complementary determining regions CDR1, CDR2 and CDR3. Preferred framework sequences are summarized, for example, in Table A-2 below and may be used in the ISVD of the present invention. Preferably the CDRs described in Table A-2 match the respective framework regions of the same ISVD construct. The terms "immunoglobulin single variable domain" (abbreviated herein as "ISVD" or "ISV") and "single variable domain" used interchangeably are defined in which an antigen-binding site is present on a single immunoglobulin domain and molecules formed from single immunoglobulin domains. This distinguishes immunoglobulin single variable domains from "conventional" immunoglobulins or fragments thereof, in which two immunoglobulin domains (in particular two variable domains) interact to form an antigen-binding site. Typically in conventional immunoglobulins, the heavy chain variable domain (VH ) and the light chain variable domain (VL ) interact to form the antigen-binding site. In the latter case, VH and VL The complementarity determining regions (CDRs) of the two contribute to the antigen binding site, that is, a total of 6 CDRs are involved in the formation of the antigen binding site. In view of the above definition, a conventional 4-chain antibody (such as an IgG, IgM, IgA, IgD or IgE molecule known in the art) or a Fab fragment, F(ab') derived from such a conventional 4-chain antibody Antigen-binding domains of 2 fragments, Fv fragments (such as disulfide-linked Fv or scFv fragments) or diabodies (all known in the art) are generally not considered to be immunoglobulin single variable domains because in In these cases, the binding to the respective epitope of the antigen is usually not with a (single) immunoglobulin domain, but with a pair (associated) of immunoglobulin domains (such as light and heavy chain variable domains). ) occurs, that is, the V of the immunoglobulin domain co-binds with the epitope of the respective antigen.H -VL to happen. In contrast, ISVD is able to specifically bind to the epitope of the antigen without pairing with additional immunoglobulin variable domains. The binding site of ISVD is based on a single VHH ,VH or VL domain formation. Therefore, the antigen-binding site of ISVD is formed by no more than three CDRs. Specifically, a single variable domain may be a light chain variable domain sequence (e.g., VL sequence) or a suitable fragment thereof; or a heavy chain variable domain sequence (e.g. VH Sequence or VHH sequence) or a suitable fragment thereof; as long as it can form a single antigen-binding unit (i.e., a functional antigen-binding unit consisting essentially of a single variable domain, such that the single antigen-binding domain does not need to interact with another variable domain to form a functional antigen-binding unit). In one embodiment of the invention, ISVD is a heavy chain variable domain sequence (e.g., VH sequence); more specifically, the ISVD may be a heavy chain variable domain sequence derived from a conventional quadribody or a heavy chain variable domain sequence derived from a heavy chain antibody. For example, an ISVD may be a (single) domain antibody (or a peptide suitable for use as a (single) domain antibody), a "dAb" or a dAb (or a peptide suitable for use as a dAb) or a Nanobody (as defined herein and including but not limited to VHH); other single variable domains or any suitable fragments of any of them. In particular, the ISVD may be a Nanobody® (as defined herein) or a suitable fragment thereof. [Note: Nanobody® and Nanobodies® are registered trademarks of Ablynx N.V.]. For a general description of Nanobodies, reference is made to the further description below, as well as to the prior art cited herein, such as that described in WO 08/020079 (page 16). Also known as VHH, VH H domain, VHH antibody fragment and "V of VHH antibody"HH Domain" was originally described as the antigen-binding immunoglobulin (variable) domain of a "heavy chain antibody" (i.e., an "antibody without a light chain"; Hamers-Casterman et al. 1993 Nature 363: 446-448). Select the term " VHH domain" to distinguish these variable domains from the heavy chain variable domains (referred to herein as "VH domain" or "VH domain") and the light chain variable domain (which is referred to herein as the "VH domain") present in conventional 4-chain antibodies.L Domain" or "VL domain"). For further description of VHH and nanobodies, refer to the review article by Muyldermans (Reviews in Molecular Biotechnology 74: 277-302, 2001) and the following patent applications, which are mentioned as general background technology : WO 94/04678, WO 95/04079 and WO 96/34103 of the Vrije Universiteit Brussel; WO 94/25591, WO 99/37681, WO 00/40968, WO 00/43507, WO 00/65057, WO 01 of Unilever /40310, WO 01/44301, EP 1134231 and WO 02/48193; WO 97/49805, WO 01/21817, WO 03/035694, WO 03/054016 and WO 03/055527 of the Vlaams Instituut voor Biotechnologie (VIB); WO 03/050531 to Algonomics N.V. and Ablynx N.V.; WO 01/90190 to the National Research Council of Canada; WO 03/025020 (=EP 1433793) to the Institute of Antibodies; and WO 04/041867, WO 04/041862 to Ablynx N.V. , WO 04/041865, WO 04/041863, WO 04/062551, WO 05/044858, WO 06/40153, WO 06/079372, WO 06/122786, WO 06/122787 and WO 06/122825 and updates of Ablynx N.V. Multiple published patent applications. Reference is also made to further prior art mentioned in these applications and in particular to the reference list mentioned on pages 41 to 43 of the international application WO 06/040153. The list and references are incorporated herein by reference. As described in these references, Nanobodies (particularly VHH sequences and partially humanized Nanobodies) may be specifically identified with one or more "Hallmarks" "Residues" are characterized by the presence of one or more in the framework sequence. Nanobodies (including humanization and/or camelization of Nanobodies, as well as other modifications, parts or fragments, derivatives or "Nanobodies" Further descriptions of "antibody fusions"), multivalent constructs (including some non-limiting examples of linker sequences) and different modifications that increase the half-life of Nanobodies and their formulations can be found, for example, in WO 08/101985 and WO 08/ 142164 in. For a further general description of Nanobodies, reference is made to the prior art cited herein, such as that described in WO 08/020079 (page 16). In particular, the framework sequences present in the MMP13 binding agents of the invention (such as the ISVDs and/or polypeptides of the invention) may contain one or more marker residues (for example in WO 08/020079 (Tables A-3 to A- 8)), making the MMP13 binding agent of the present invention a nanobody. Some preferred but non-limiting examples of (suitable combinations of) these framework sequences will become apparent from further disclosure herein (see, eg, Table A-2). Usually nanobodies (especially VHH sequences and partially humanized Nanobodies) may be characterized in particular by the presence of one or more "marker residues" in one or more of the framework sequences (e.g. in WO 08/020079, page 61, line 24 to Further explanation in line 3 of page 98). More specifically, the present invention provides MMP13 binding agents comprising at least one immunoglobulin single variable domain, which is an amino acid sequence having the following (general) structure: FR1-CDR1-FR2-CDR2 -FR3-CDR3-FR4 Where FR1 to FR4 refer to framework regions 1 to 4 respectively, and CDR1 to CDR3 refer to complementarity determining regions 1 to 3 respectively, and the ISVD: i) is the same as SEQ ID NO: 111, 11, 112, 12, 109, 9, 110, 10, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 2, 3, 4, 5, 6, 7 or 8 amine groups At least one of the acid sequences has an amino acid identity of at least 80%, more preferably 90%, and even more preferably 95% (see Table A-1), where for the purpose of determining the degree of amino acid identity, Amino acid residues forming the CDR sequence are ignored. In this regard, reference is also made to Table A-2, which sets forth the frame 1 sequences (SEQ ID NOs: 67 to 79), frame 2 sequences of the immunoglobulin single variable domains of SEQ ID NOs: 1 to 22 and 109 to 112 (SEQ ID NO:80 to 87 and 108), frame 3 sequence (SEQ ID NO: 88 to 99 and 113 to 114) and frame 4 sequence (SEQ ID NO: 100 to 104); or ii) as shown in Table A-2 Combinations of framework sequences described in; and wherein: iii) Preferably in the amino acid residues at positions 11, 37, 44, 45, 47, 83, 84, 103, 104 and 108 according to Kabat numbering One or more are selected from marker residues, such as those mentioned in Tables A-3 to A-8 of WO 08/020079. MMP13 binding agents of the present invention (such as ISVDs and/or polypeptides of the present invention) may also contain those described in the following U.S. provisional applications all titled "Improved Immunoglobulin Variable Domains" which are also pending. Specific mutations/amino acid residues: US 61/994552 filed on May 16, 2014; US 61/014,015 filed on June 18, 2014; US 62/040,167 filed on August 21, 2014 ; and US 62/047,560 applied on September 8, 2014 (all assigned to Ablynx N.V.). In particular, MMP13 binding agents of the invention (such as ISVDs and/or polypeptides of the invention) may suitably contain (i) K or Q at position 112; or (ii) K or Q at position 110 combined with at position 110 The combination of V at position 11; or (iii) T at position 89; or (iv) L at position 89 and K or Q at position 110; or (v) V at position 11 and L at position 89; or any suitable combination of (i) to (v). As also described in these U.S. provisional applications that are also pending, when the MMP13 binding agent of the present invention (such as the ISVD and/or polypeptide of the present invention) contains the above (i) to (v) (or its appropriate Mutation of one of the combinations): - the amino acid residue at position 11 is preferably selected from L, V or K (and most preferably V); and/or - the amino acid residue at position 14 The residue is preferably selected from A or P; and/or - the amino acid residue at position 41 is preferably selected from A or P; and/or - the amino acid residue at position 89 Preferably, the amino acid residue at position 108 is selected from T, V or L; and/or - The amino acid residue at position 110 is preferably selected from Q or L; and/or - The amino acid residue at position 110 It is preferably selected from T, K or Q; and/or - The amino acid residue at position 112 is preferably selected from S, K or Q. As mentioned in these US provisional applications, which are also pending, these mutations effectively prevent or reduce the binding of so-called "pre-existing antibodies" to immunoglobulins and the compounds of the invention. For this purpose, MMP13 binding agents of the invention (such as ISVDs and/or polypeptides of the invention) may also contain (optionally in combination with such mutations) a C-terminal extension (X)n (where n is 1 to 10 , preferably 1 to 5, such as 1, 2, 3, 4 or 5 (and preferably 1 or 2, such as 1); and each X is an independently selected (preferably naturally occurring) amino acid residue , and preferably independently selected from the group consisting of: alanine (A), glycine (G), valine (V), leucine (L) or isoleucine (I) ), which further refers to those US provisional applications and WO 12/175741. In particular, MMP13 binding agents of the invention (such as ISVDs and/or polypeptides of the invention) may contain such C-terminal extensions when they form the C-terminus of proteins, polypeptides or other compounds or constructs comprising them. (See also these US provisional applications and further instructions in WO 12/175741). The MMP13 binding agent of the invention may be derived from an immunoglobulin in any suitable manner and from any suitable source, such as an immunoglobulin single variable domain, and may be, for example, a naturally occurring VHH Sequences (i.e. from a suitable species of the family Camelidae) or synthetic or semi-synthetic amino acid sequences, including but not limited to "humanized" (as defined herein) Nanobodies or VHH sequences, "camelized" (e.g. As defined herein) immunoglobulin sequences (and in particular camelized heavy chain variable domain sequences) and Nanobodies obtained by techniques such as affinity maturation (e.g. starting from synthetic, random or naturally generated immunoglobulin sequences) , CDR grafting, veneering, combining fragments derived from different immunoglobulin sequences, PCR assembly using overlapping primers, and similar techniques for engineering immunoglobulin sequences that are well known to those skilled in the art; or any of the foregoing. Any suitable combination of the two, as further described herein. Furthermore, when immunoglobulins contain VHH sequence, the immunoglobulin may be suitably humanized, as further described herein, to provide one or more further (partially or fully) humanized immunoglobulins of the invention. Likewise, when an immunoglobulin contains synthetic or semi-synthetic sequences (such as partially humanized sequences), then the immunoglobulin can optionally be further suitably humanized and provided with one or more further (Partially or fully) humanized immunoglobulins of the invention. "Domain antibodies", also known as "Dabs", "domain antibodies" and "dAbs" (the terms "domain antibodies" and "dAbs" are used as trademarks by the GlaxoSmithKline group of companies) have been described, for example, in EP 0368684, Ward et al. Nature 341: 544-546, 1989), Holt et al. (Tends in Biotechnology 21: 484-490, 2003) and WO 03/002609, and for example WO 04/068820, WO 06/030220, WO 06/003388 and Domantis Ltd Other published patent applications of . Domain antibodies essentially correspond to the VH or VL domains of non-camelized mammalian, specifically human 4-chain antibodies. In order to bind an epitope into a single antigen binding domain, that is, not paired with a VL or VH domain respectively, specific selection for these antigen binding properties is required, for example by using a library of human single VH or VL domain sequences. Like VHH, domain antibodies have a molecular weight of about 13 to about 16 kDa and, if derived from fully human sequences, do not require humanization for therapeutic use in, eg, humans. It should also be noted that although less preferred in the context of the present invention as they are not of mammalian origin, single variable domains may be derived from specific shark species (e.g. so-called "IgNAR domains", see e.g. WO 05/18629) . The present invention relates specifically to ISVDs, wherein the ISVDs are selected from the group consisting of VHHs, humanized VHHs and camelized VHs. The amino acid residues of the VHH domain are based on those given by Kabat et al. ("Sequence of proteins of immunological interest", US Public Health Services, NIH Bethesda, MD, Issue 91) for VH The amino acid residue numbering of nanobodies is numbered according to the universal numbering of domains, which also applies to VHH domains from Camelidae, as in, for example, Riechmann and Muyldermans (J. Immunol. Methods 231: 25-38, 1999) As shown in Figure 2. for number VH Methods for substitution of amino acid residues in domains are known in the art and can be applied to VHH domains in a similar manner. However, in the specification, claims, and drawings of the present invention, numbering according to Kabat as described above applies to the VHH domain, unless otherwise indicated herein. It should be noted that the VH domains and VHH domains, the total number of amino acid residues in each CDR may vary and may not correspond to the total number of amino acid residues indicated by the Kabat numbering (i.e., one or more positions according to the Kabat numbering may not be occupied in the true sequence or the true sequence may contain more amino acid residues than Kabat numbering allows). This means that the numbering generally according to Kabat may or may not correspond to the actual numbering of the amino acid residues in the actual sequence. The total number of amino acid residues in the VH domain and VHH domain generally ranges from 110 to 120, often between 112 and 115. However, it should be noted that smaller and longer sequences may also be suitable for the purposes described herein. Regarding CDRs as they are well known in the art, there are many conventions for defining and describing CDRs of VH or VHH fragments, such as the Kabat definition (which is based on sequence variability and is most commonly used) and the Chothia definition (which is based on structural loop regions). Location). See for example the URL http://www.bioinf.org.uk/abs/. For the purposes of this specification and patent claim, CDRs are best defined based on the Abm definition (which is based on Oxford Molecular's AbM antibody modeling software) as this is considered to be the most appropriate between the Kabat and Chothia definitions. chemical compromise (refer to http://www.bioinf.org.uk/abs/). As used herein, FR1 includes the amino acid residues at positions 1 to 25, CDR1 includes the amino acid residues at positions 26 to 35, FR2 includes the amino acid residues at positions 36 to 49, and CDR2 includes Amino acid residues at positions 50 to 58, FR3 includes amino acid residues at positions 59 to 94, CDR3 includes amino acid residues at positions 95 to 102, and FR4 includes amino acid residues at positions 103 to Amino acid residue on 113. Within the meaning of the present invention, the term "immunoglobulin single variable domain" or "single variable domain" includes polypeptides derived from non-human sources, preferably Camelidae, preferably Camelidae heavy chain antibodies. They can be humanized as described herein. Furthermore, the term encompasses polypeptides derived from non-Camelid sources, such as mouse or human, which are "camelized" as described herein. Therefore, ISVDs such as domain antibodies and nanobodies (including VHH domains) can undergo humanization. In particular, a humanized ISVD such as a Nanobody (including a VHH domain) may be an ISVD as broadly defined herein, but in which at least one amino acid residue is present (and in particular in at least one of the framework residues) ), which is and/or corresponds to an ISVD of a humanized substitution (as defined herein). Potentially useful humanized substitutions can be made by comparing naturally occurring VHH Sequences of framework regions that are closely related to one or more human VH sequence corresponding to the framework sequence, and subsequently determined that one or more of the potentially useful humanizing substitutions (or combinations thereof) can be introduced into the VHH sequence (in any manner known per se, as further described herein) and testable in the resulting humanized VHH The sequence's affinity for the target, stability, ease and level of expression, and/or other desired characteristics. In this manner, one skilled in the art may, by means of a limited degree of trial and error, determine other suitable humanizing substitutions (or suitable combinations thereof) based on the disclosure herein. Furthermore, based on the foregoing, ISVD (the framework region) such as Nanobodies (including the VHH domain) can be partially or fully humanized. Another particularly preferred class of ISVDs of the present invention includes those having genes corresponding to naturally occurring VH The amino acid sequence of the domain, but the ISVD of the amino acid sequence that has been "camelized", that is, in the naturally occurring V from the conventional 4-chain antibodyH One or more amino acid residues in the amino acid sequence of the domain appear in the V of the heavy chain antibody.HH One or more of the amino acid residues at corresponding positions in the domain are replaced. This can be done in a known manner per se apparent to those skilled in the art, for example based on the manner described herein. These "camelized" substitutions are preferably formed and/or present in VH -VL Interface and/or insertion at an amino acid position of a so-called camelid signature residue, as defined herein (see also eg WO 94/04678 and Davies and Riechmann (1994 and 1996)). Preferably, V is used as a starting material or starting point for the generation or design of camelized immunoglobulin single variable domains.H The sequence is preferably from mammalian VH Sequence, better for human VH sequence, such as VH 3 sequence. However, it should be noted that the camelized immunoglobulin single variable domains of the present invention can be obtained in any suitable manner known per se and are therefore not strictly limited to use containing naturally occurring VH A polypeptide obtained from a polypeptide whose domain is used as a starting material. Reference, for example, Davies and Riechmann (FEBS 339: 285-290, 1994; Biotechnol. 13: 475-479, 1995; Prot. Eng. 9: 531-537, 1996) and Riechmann and Muyldermans (J. Immunol. Methods 231: 25 -38, 1999). For example, as further explained in this article, both "humanization" and "camelization" can be achieved by providing respectively encoding naturally occurring VHH Domain or VH The nucleotide sequence of the domain and then changing one or more codons in the nucleotide sequence in a manner known per se, in such a way that the new nucleotide sequence encodes the "humanization" of the invention respectively. "or "camel-derived" ISVD. This nucleic acid can then be expressed in a manner known per se to provide the desired ISVD of the invention. Alternatively, naturally occurring VHH Domain or VH Based on the amino acid sequence of the domain, the amino acid sequence of the desired humanized or camelized ISVD of the present invention can be designed and subsequently synthesized using known peptide synthesis techniques, respectively. Also naturally occurring VHH Domain or VH Based on the amino acid sequence or nucleotide sequence of the domain, the nucleotide sequence encoding the desired humanized or camelized ISVD of the present invention can be designed and then re-synthesized using known nucleic acid synthesis techniques, respectively, and then The nucleic acids thus obtained can be expressed in a manner known per se so as to provide the desired ISVDs of the invention. ISVDs (such as domain antibodies and nanobodies) (including VHH domains and humanized VHH domains) can also undergo affinity maturation by introducing one or more changes in the amino acid sequence of one or more CDRs, with their respective This change results in the resulting ISVD having improved affinity for its respective antigen compared to the parent molecule. Affinity matured ISVD molecules of the present invention can be prepared by methods known in the art, for example by Marks et al. (Biotechnology 10:779-783, 1992), Barbas et al. (Proc. Nat. Acad. Sci, USA 91: 3809-3813, 1994), Shier et al. (Gene 169: 147-155, 1995), Yelton et al. (Immunol. 155: 1994-2004, 1995), Jackson et al. (J. Immunol. 154: 3310-9 , 1995), Hawkins et al. (J. Mol. Biol. 226: 889 896, 1992), Johnson and Hawkins (Affinity maturation of antibodies using phage display, Oxford University Press, 1996). Since ISVD (such as VH ,VL ,VHH , domain antibodies or nanobodies) is also referred to herein as "formatting" the ISVD; and an ISVD that forms part of a polypeptide is said to be "formatted" formatted)" or in the "format" of the polypeptide. Examples of ways in which ISVDs can be formatted and examples of such formats will be apparent to those skilled in the art based on the disclosure herein; and such formatted immunoglobulin single variable domains constitute another aspect of the invention. Same look. Preferred CDRs are described in Table A-2. In particular, the present invention relates to an ISVD as described herein, wherein the ISVD specifically binds to MMP13 and consists essentially of 4 framework regions (FR1 to FR4, respectively) and 3 complementarity determining regions (CDR1 to CDR3, respectively) Composed of, wherein (i) CDR1 is selected from the group consisting of: (a) SEQ ID NO: 27, 28, 25, 26, 23, 29, 30, 31, 32, 33, 34, 35, 36 and 24; and (b) have 1, 2 or 3 amino acid differences from SEQ ID NOs: 27, 28, 25, 26, 23, 29, 30, 31, 32, 33, 34, 35, 36 and 24 The amino acid sequence of , 51, 38 and 39; and (d) having 1, 2 or Amino acid sequences that differ by 3 amino acids; and (iii) CDR3 is selected from the group consisting of: (e) SEQ ID NO: SEQ ID NO: 56, 107, 57, 54, 106, 55, 52, 58, 59, 60, 61, 62, 63, 64, 65, 66 and 53; and (f) with SEQ ID NO: 56, 107, 57, 54, 106, 55, 52, 58, 59, 60 , 61, 62, 63, 64, 65, 66 and 53 have amino acid sequences that differ by 1, 2, 3 or 4 amino acids. In particular, the present invention relates to an ISVD as described herein, wherein the ISVD specifically binds to MMP13 and consists essentially of 4 framework regions (FR1 to FR4, respectively) and 3 complementarity determining regions (CDR1 to CDR3, respectively) Composed of, wherein (i) CDR1 is selected from the group consisting of: (a) SEQ ID NO: 23; and (b) an amino acid sequence having 1 amino acid difference from SEQ ID NO: 23, Wherein at position 7, Y has been replaced by R; (ii) CDR2 is selected from the group consisting of: (c) SEQ ID NO:37; and (d) has 1, 2 or 1 with SEQ ID NO:37 Amino acid sequence with 3 amino acid differences, in which - at position 4, V has been replaced with T; - at position 5, G has been replaced with A; and/or - at position 9, N has been replaced with H; (iii) CDR3 is selected from the group consisting of: (e) SEQ ID NO: 52; and (f) an amino acid sequence having 1 amino acid difference from SEQ ID NO: 52, wherein At position 6, Y has been replaced by S. In particular, the present invention relates to an ISVD as described herein, wherein the ISVD specifically binds to MMP13 and consists essentially of 4 framework regions (FR1 to FR4, respectively) and 3 complementarity determining regions (CDR1 to CDR3, respectively) Composed of, wherein (i) CDR1 is SEQ ID NO:26; (ii) CDR2 is SEQ ID NO:41; and (iii) CDR3 is selected from the group consisting of: (e) SEQ ID NO:55; and (f) An amino acid sequence having 1 or 2 amino acid differences from SEQ ID NO:55, wherein - at position 8, N has been replaced by Q or S; and/or - at position 19, N has been replaced Replace with V or Q. In particular, the present invention relates to an ISVD as described herein, wherein the ISVD specifically binds to MMP13 and consists essentially of 4 framework regions (FR1 to FR4, respectively) and 3 complementarity determining regions (CDR1 to CDR3, respectively) Composed of, wherein (i) CDR1 is SEQ ID NO:28; (ii) CDR2 is SEQ ID NO:43; and (iii) CDR3 is selected from the group consisting of: (e) SEQ ID NO:57; and (f) An amino acid sequence having 1, 2, 3 or 4 amino acid differences from SEQ ID NO: 57, wherein - at position 10, D has been replaced by E, G, A, P, T, R, M, W or Y; - In position 16, M has been replaced by A, R, N, D, E, Q, Z, G, I, L, K, F, P, S, W, Y or V; - At position 17, D has been replaced by A, R, N, C, E, Q, Z, G, H, I, L, K, M, S, T, W, Y, or V; and/ or - In position 18, Y has been replaced by A, R, N, D, C, E, Q, Z, G, H, I, L, K, M, F, P, S, T, W or V . In particular, the present invention relates to an ISVD as described herein, wherein the ISVD specifically binds to MMP13 and consists essentially of 4 framework regions (FR1 to FR4, respectively) and 3 complementarity determining regions (CDR1 to CDR3, respectively) Composed of, wherein - CDR1 is selected from the group consisting of: SEQ ID NO: 27, 28, 25, 26, 23, 29, 30, 31, 32, 33, 34, 35, 36 and 24; - CDR2 The system is selected from the group consisting of: SEQ ID NO: 42, 43, 40, 41, 37, 44, 45, 46, 47, 48, 49, 50, 51, 38 and 39; and - the CDR3 system is selected from Group consisting of: SEQ ID NO: 56, 107, 57, 54, 106, 55, 52, 58, 59, 60, 61, 62, 63, 64, 65, 66 and 53. In particular, the present invention relates to an ISVD as described herein, wherein the ISVD specifically binds to MMP13 and consists essentially of 4 framework regions (FR1 to FR4, respectively) and 3 complementarity determining regions (CDR1 to CDR3, respectively) Composed of, wherein the ISVD is selected from the group of ISVDs, wherein: - CDR1 is SEQ ID NO:27, CDR2 is SEQ ID NO:42, and CDR3 is SEQ ID NO:56; - CDR1 is SEQ ID NO:28 , CDR2 is SEQ ID NO:43, and CDR3 is SEQ ID NO:107; - CDR1 is SEQ ID NO:28, CDR2 is SEQ ID NO:43, and CDR3 is SEQ ID NO:57; - CDR1 is SEQ ID NO :25, CDR2 is SEQ ID NO:40, and CDR3 is SEQ ID NO:54; - CDR1 is SEQ ID NO:26, CDR2 is SEQ ID NO:41, and CDR3 is SEQ ID NO:106; - CDR1 is SEQ ID NO:26, CDR2 is SEQ ID NO:41, and CDR3 is SEQ ID NO:55; - CDR1 is SEQ ID NO:23, CDR2 is SEQ ID NO:37, and CDR3 is SEQ ID NO:52; - CDR1 is SEQ ID NO:26, CDR2 is SEQ ID NO:48, and CDR3 is SEQ ID NO:62; - CDR1 is SEQ ID NO:26, CDR2 is SEQ ID NO:41, and CDR3 is SEQ ID NO:63; - CDR1 is SEQ ID NO:29, CDR2 is SEQ ID NO:44, and CDR3 is SEQ ID NO:58; - CDR1 is SEQ ID NO:30, CDR2 is SEQ ID NO:45, and CDR3 is SEQ ID NO: 58; - CDR1 is SEQ ID NO:31, CDR2 is SEQ ID NO:46, and CDR3 is SEQ ID NO:59; - CDR1 is SEQ ID NO:32, CDR2 is SEQ ID NO:47, and CDR3 is SEQ ID NO:60; - CDR1 is SEQ ID NO:33, CDR2 is SEQ ID NO:41, and CDR3 is SEQ ID NO:61; - CDR1 is SEQ ID NO:34, CDR2 is SEQ ID NO:49, and CDR3 is SEQ ID NO:64; - CDR1 is SEQ ID NO:35, CDR2 is SEQ ID NO:50, and CDR3 is SEQ ID NO:65; - CDR1 is SEQ ID NO:36, CDR2 is SEQ ID NO:51, and CDR3 is SEQ ID NO:66; - CDR1 is SEQ ID NO:23, CDR2 is SEQ ID NO:39, and CDR3 is SEQ ID NO:53; and - CDR1 is SEQ ID NO:24, CDR2 is SEQ ID NO: 38, and CDR3 is SEQ ID NO:52. In particular, the present invention relates to an ISVD as described herein, wherein the ISVD specifically binds to MMP13 and consists essentially of 4 framework regions (FR1 to FR4, respectively) and 3 complementarity determining regions (CDR1 to CDR3, respectively) Composed of, wherein CDR1 is SEQ ID NO:27, CDR2 is SEQ ID NO:42, and CDR3 is SEQ ID NO:56. In particular, the present invention relates to an ISVD as described herein, wherein the ISVD specifically binds to MMP13 and consists essentially of 4 framework regions (FR1 to FR4, respectively) and 3 complementarity determining regions (CDR1 to CDR3, respectively) Composed of, wherein the ISVD is selected from the group consisting of: SEQ ID NO: 111, 11, 112, 12, 109, 9, 110, 10, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 2, 3, 4, 5, 6, 7 and 8. It should be understood, without limitation, that the immunoglobulin single variable domains of the present invention can be used as "building blocks" for preparing polypeptides, which may optionally contain one or more other immunoglobulin single variable domains that can be used as building blocks. (i.e., against the same or another epitope on MMP13 and/or against one or more other antigens, proteins or targets besides MMP13). Polypeptides The polypeptides of the invention comprise at least one ISVD that binds to a MMP, preferably MMP13, such as two ISVDs that bind to MMP13, and preferably also comprise at least one ISVD that binds aggrecan, more preferably two. An ISVD that binds to aggrecan. In the polypeptide of the invention, ISVD can be linked directly or via a linker. Even more preferably the polypeptides of the invention comprise a C-terminal extension. As detailed below, C-terminal extension substantially prevents/removes binding of pre-existing antibodies/factors in most samples from human individuals/patients. The C-terminal extension is present at the C-terminus of the last amino acid residue (often a serine residue) of the last (mostly C-terminally positioned) ISVD. As further detailed in this article, ISVD can be derived from VHH ,VH or VL domains, however the ISVDs are selected such that they do not form V in the polypeptides of the invention.H with VL Complementary pairs of domains. Nanobodies, VHH and humanized VHH are unusual because they are derived from native camelid antibodies that do not have light chains and the fact that these domains are unable to associate with camelid light chains to form complementary VHH with VL right. Therefore, the polypeptides of the invention do not comprise complementary ISVDs and/or form complementary ISVD pairs, such as complementary VH /VL right. Polypeptides or constructs that generally contain or consist essentially of a single building unit (such as a single ISVD or a single Nanobody) are referred to herein as "monovalent" polypeptides and "monovalent constructs" respectively. Polypeptides or constructs containing two or more building blocks (such as ISVD) are also referred to herein as "multivalent" polypeptides or constructs and the building blocks/ISVDs present in such polypeptides or constructs are also referred to herein as It is in "multi-price format". For example, a "bivalent" polypeptide may comprise two ISVDs, optionally linked via a linker sequence, while a "trivalent" polypeptide may comprise three ISVDs, optionally linked via two linker sequences, and a "tetravalent" polypeptide may Contains four ISVDs optionally connected via three linker subsequences; etc. In a multivalent polypeptide, two or more ISVDs may be the same or different and may be directed against the same antigen or epitope (e.g., against the same part or epitope or against different parts or epitopes) or may Another alternative is to target different antigens or antigenic determinants, or any suitable combination thereof. Polypeptides and constructs containing at least two building blocks (such as ISVD), wherein at least one building block is directed against a first antigen (i.e., MMP13) and at least one building block is directed against a second antigen (i.e., different from MMP13) ) are also referred to as "multispecific" polypeptides and constructs, and the building blocks (such as ISVD) present in such polypeptides and constructs are also referred to herein as being in a "multispecific format." Thus, for example, a "bispecific" polypeptide of the invention is a polypeptide comprising at least one ISVD directed against a first antigen (i.e., MMP13) and at least one additional ISVD directed against a second antigen (i.e., different from MMP13) , and the "trispecific" polypeptide of the present invention is one that includes at least one ISVD targeting the first antigen (i.e., MMP13), at least one additional ISVD targeting the second antigen (i.e., different from MMP13), and at least one ISVD targeting the second antigen (i.e., different from MMP13). Polypeptides of additional ISVDs directed against a third antigen (i.e., different from both MMP13 and the second antigen); etc. In one aspect, the invention relates to polypeptides comprising two or more ISVDs that specifically bind to MMP13, wherein a) at least the "first" ISVD is related to the first epitope, epitope region, portion, Domain, subunit or conformation specifically binds; preferably the "first" ISVD that specifically binds to MMP13 is selected from the group consisting of: SEQ ID NO: 111, 11, 110, 10, 112 , 12, 109, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22; and among them b) at least the "second" ISVD is related to the second antigenic determinant and antigenic determinant of MMP13 , a portion, domain, subunit or configuration that specifically binds to the first epitope, epitope, region, portion, domain, subunit or configuration, respectively, that preferably specifically binds to MMP13 Two "ISVDs" were selected from the group consisting of: SEQ ID NO: 1, 2, 3, 4, 5, 6, 7 and 8. In one aspect, the present invention relates to polypeptides comprising two or more ISVDs that specifically bind to MMP13, which are selected from the group consisting of: SEQ ID NO: 160 to 165, preferably SEQ ID NO :160 (refer to Table A-3). "Multiparatope" polypeptides and "multiparatope" constructs (such as "biparatope" polypeptides or constructs and "triparatope" polypeptides or constructs) comprise or consist essentially of two or more paratopes each having different paratopes. Composed of more building units. Accordingly, the ISVDs of the invention that bind to MMP13 may be in a substantially isolated form (as defined herein), or they may form part of a construct or polypeptide, which may comprise or consist essentially of one or more MMP13-binding ISVDs. ISVD consists of, and may optionally additionally contain, one or more additional amino acid sequences (all optionally linked via one or more suitable linkers). The invention relates to a polypeptide or construct comprising or consisting essentially of at least one ISVD according to the invention (such as one or more ISVDs of the invention) (or a suitable fragment thereof) that binds to MMP13. One or more ISVDs of the invention may be used as building blocks in such polypeptides or constructs to provide monovalent, multivalent or multiparatopic polypeptides or constructs of the invention, respectively, all as described herein. The invention therefore also relates to polypeptides that are monovalent constructs, which comprise or consist essentially of a monovalent polypeptide or ISVD of the invention. The invention therefore also relates to polypeptides or constructs, respectively, multivalent polypeptides or multivalent constructs, such as bivalent or trivalent polypeptides or constructs, which comprise or consist essentially of two or more ISVDs of the invention (regarding Multivalent and multispecific polypeptides containing one or more VHH domains and their preparation are also referred to, for example, Conrath et al. (J. Biol. Chem. 276: 7346-7350, 2001), and for example, WO 96/34103, WO 99/23221 and WO 2010/115998). In one aspect, in its simplest form, a multivalent polypeptide or construct of the invention is a bivalent polypeptide or construct of the invention comprising a first ISVD (such as a Nanobody) directed against MMP13 and directed to the same second ISVD (such as a Nanobody) directed against MMP13, wherein the first and the second ISVD (such as a Nanobody) are optionally linked via a linker sequence (as defined herein). In its simplest form, a multivalent polypeptide or construct of the invention may be a trivalent polypeptide or construct of the invention, comprising a first ISVD (such as a Nanobody) directed against MMP13, The same second ISVD (such as a nanobody) and the same third ISVD (such as a nanobody) directed against MMP13, wherein the first, second and third ISVD (such as a nanobody) They may optionally be connected via one or more, and in particular two, linker subsequences. In one aspect, the invention relates to a polypeptide or construct comprising or consisting essentially of at least two ISVDs according to the invention (such as 2, 3 or 4 ISVDs) (or suitable fragments thereof) that bind to MMP13 composition. Two or more ISVDs can optionally be linked via one or more peptide linkers. In another aspect, a multivalent polypeptide or construct of the invention may be a bispecific polypeptide or construct of the invention, comprising a first ISVD (such as a Nanobody) directed against MMP13 and a second ISVD directed against A second ISVD (such as a Nanobody) of an antigen (such as aggrecan), wherein the first and second ISVD (such as a Nanobody) are optionally linked via a linker sequence (as defined herein) ; And the multivalent polypeptide or construct of the present invention can also be the trispecific polypeptide or construct of the present invention, which includes a first ISVD directed against MMP13 (such as a nanobody), a second antigen directed against (such as aggregation a second ISVD (such as a nanobody) targeting a proteoglycan) and a third ISVD (such as a nanobody) directed against a third antigen, wherein the first, second and third ISVD (such as a nanobody) Antibodies) can optionally be linked via one or more, and in particular two, linker sequences. The invention further relates to multivalent polypeptides comprising or (essentially) consisting of at least one ISVD (or a suitable fragment thereof) that binds MMP13, preferably human MMP13, and at least one additional ISVD such as aggrecan-binding of ISVD). Particularly preferred trivalent, bispecific polypeptides or constructs according to the invention are those set forth in the Examples described herein and Table A-3. In a preferred aspect, the polypeptide or construct of the invention comprises or consists essentially of at least two ISVDs, wherein the at least two ISVDs may be the same or different, but at least one of the ISVDs is directed against MMP13. Two or more ISVDs present in a multivalent polypeptide or construct of the invention may be composed of light chain variable domain sequences (e.g., VL - sequence) or heavy chain variable domain sequence (e.g. VH - sequences); they may be composed of heavy chain variable domain sequences derived from conventional quadruplex antibodies or heavy chain variable domain sequences derived from heavy chain antibodies. In a preferred aspect, they are domain antibodies (or peptides suitable for use as domain antibodies), single domain antibodies (or peptides suitable for use as single domain antibodies), "dAb" ( or peptides suitable for use as dAb), Nanobody® (including but not limited to VHH ), humanized VHH Sequence, camel-derived VH Sequence or VHH composed of sequences. Two or more immunoglobulin single variable domains may be composed of partially or fully humanized Nanobodies or partially or fully humanized VHHs. In aspects of the invention, the first ISVD and the second ISVD present in the multiparatope (preferably biparatope or triparatope) polypeptide or construct of the invention do not (cross) compete with each other. A combination of MMP13s, and indeed belong to different families. Accordingly, the present invention relates to polypeptides or constructs comprising two or more ISVDs, preferably biparatopes, where each ISVD belongs to a different family. In one aspect, the first ISVD of the multiparatope (preferably biparatope) polypeptide or construct of the invention does not cross-block the multiparatope (preferably biparatope) polypeptide of the invention Or the second ISVD of the construct binds to MMP13 and/or the first ISVD is not cross-blocked by the second ISVD from binding to MMP13. In another aspect, the first ISVD cross-blocking multiparatope (preferably biparatope) polypeptide or construct of the invention blocks the multiparatope (preferably biparatope) polypeptide of the invention or The second ISVD of the construct binds to MMP13 and/or the first ISVD is cross-blocked by the second ISVD from binding to MMP13. In a particularly preferred aspect, a polypeptide or construct of the invention comprises or consists essentially of three or more ISVDs, at least two of which are directed against MMP13. It should be understood that the at least two ISVDs targeting MMP13 can be the same or different, can target the same epitope or different epitopes of MMP13, and can belong to the same epitope bin or different epitopes. Bins and/or may bind to the same or different MMP13 domains. In a preferred aspect, the polypeptide or construct of the invention comprises or essentially consists of at least two ISVDs that bind to MMP13, wherein the at least two ISVDs may be the same or different, and are independently selected from the following: Group consisting of SEQ ID NO: 111, 11, 110, 10, 112, 12, 109, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22 and SEQ ID NO: 1, 2, 3, 4, 5, 6, 7 and 8, preferably the at least two ISVDs are independently selected from the group consisting of: SEQ ID NO: 111, 11, 110, 10 , 112, 12, 109, 9 and 1, and/or at least one ISVD is selected from the group consisting of: SEQ ID NO: 111, 11, 110, 10, 112, 12, 109, 9, 13, 14 , 15, 16, 17, 18, 19, 20, 21 and 22 and at least one ISVD are selected from the group consisting of: SEQ ID NO: 1, 2, 3, 4, 5, 6, 7 and 8. In another aspect, the invention relates to polypeptides or constructs comprising two or more multiparatopic (preferably biparatopic) ISVDs directed against MMP13 that bind to the same epitope, e.g. Combined with any of the following: SEQ ID NO: 111, 11, 110, 10, 112, 12, 109, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22 or the following Combining any of: SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7 and 8. In another aspect, the invention relates to a polypeptide as described herein, wherein the polypeptide has at least 80%, 90%, 95% or 100% (more preferably at least 95%, and most preferably 100%) sequence identity: SEQ ID NO: 160 to 165 (i.e. 160, 161, 162, 163, 164 or 165) and 176 to 192 (i.e. 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192), preferably SEQ ID NO: 192. Sparing This technology is needed for more effective treatment of diseases affecting joint cartilage, such as osteoarthritis. Even when administered intra-articularly, most drugs used to treat affected cartilage do not have sufficient residence time. The inventors speculate that the efficacy of therapeutic agents (such as the constructs, polypeptides and ISVDs of the present invention) may be achieved by combining the therapeutic agent with a device that "anchors" the drug in the joint and subsequently increases drug retention, but should not destroy the therapeutic agent. Part of the efficacy is coupled and significantly increased (this part is also represented by "anchored protein cartilage" or "CAP" in this article). This anchoring concept not only increases drug efficacy by reducing toxicity and side effects, but also increases operational specificity for diseased joints, thereby expanding the number of potentially useful drugs. The final format of the molecule expected for clinical use contains one or two building blocks that bind to MMP13 (such as ISVD) and one or more building blocks that have this mode of action retention (such as ISVD), and possibly more. In the Examples section, it is demonstrated that these formats retain both MMP13 binding and therapeutic effects, such as inhibitory activity and retention properties. One or more building blocks with a retained mode of action (e.g., ISVD) can be any building block ("CAP building block") with retained effects in diseases involving MMP13, such as arthritic diseases, osteoarthritis, spondylosis Insufficiency, degenerative lumbar disc disease, degenerative joint disease, rheumatoid arthritis, osteochondritis dissecans, aggrecanopathies and malignant tumor metastasis. "CAP building blocks" are used to guide, anchor, and/or retain other, e.g., therapeutic building blocks (such as ISVDs that bind to MMP13) in a desired location (such as in a joint), where the other, e.g., therapeutic, e.g. The building blocks exert their effects, such as binding and/or inhibiting MMP13 activity. The inventors additionally speculate that aggrecan binding agents, such as ISVD that binds aggrecan, may serve as such anchors, although aggrecan is highly glycated and degraded in various disorders affecting articular cartilage. Furthermore, given the cost and large-scale testing required in various animal models before drugs can enter the clinic, such aggrecan-binding agents should preferably have broad species cross-reactivity, e.g., aggrecan-binding agents should be compatible with Aggrecan binding in various species. The inventors were able to use a variety of ingenious immunological, screening and characterization methods to identify a variety of aggrecan binders with excellent selectivity, stability and specificity properties that result in prolonged retention and activity in joints. In one aspect, the invention relates to a method of reducing and/or inhibiting the outflow of a composition, polypeptide or construct from a joint, wherein the method comprises administering to a subject in need thereof a pharmaceutically active amount of at least one polypeptide according to the invention, A construct according to the invention or a composition according to the invention. In the present invention, the term "reducing and/or inhibiting outflow" means reducing and/or inhibiting the outward flow of a composition, polypeptide or construct from the inside of a joint to the outside. Preferably efflux compared to the efflux of the aforementioned composition, polypeptide or construct in the joint under the same conditions but in the absence of an aggrecan-binding agent of the invention (e.g., an ISVD that binds aggrecan). Reduction and/or inhibition by at least 10%, such as at least 20%, 30%, 40% or 50% or even higher, such as at least 60%, 70%, 80%, 90% or even 100%. Next are diseases in which MMP13 is involved, such as arthritic diseases, osteoarthritis, spondylodysplasia, degenerative lumbar disc disease, degenerative joint disease, rheumatoid arthritis, osteochondritis dissecans, aggrecan lesions and malignant tumor metastasis, it is expected that the aggrecan binding agent of the present invention can also be used for various other diseases affecting cartilage, such as joint lesions and chondrodystrophies, arthritic diseases (such as osteoarthritis, rheumatoid arthritis, gout arthritis, psoriatic arthritis, traumatic rupture or detachment), achondroplasia, costochondritis, aplasia of the spine, disc herniation, degenerative lumbar disc disease, degenerative joint disease, and relapsing polychondritis ( Often referred to as "aggrecan-related diseases" in this article). CAP building blocks (e.g., ISVD bound to aggrecan) preferably bind to cartilaginous tissue (such as cartilage and/or meniscus). In preferred aspects, the CAP building blocks are cross-reactive to other species and are compatible with human aggrecan (SEQ ID NO: 105), dog aggrecan, bovine aggrecan, rat aggrecan, Specific binding to one or more of the sugar, porcine aggrecan, mouse aggrecan, rabbit aggrecan, cynomolgus aggrecan and/or rhesus monkey aggrecan. Relevant structural information for aggrecan can be found, for example, in the (UniProt) accession numbers described in Table 2 below. Preferred CAP building blocks are ISVDs that bind to aggrecan, preferably human aggrecan, preferably represented by SEQ ID NO: 105, as described in Table B. The invention therefore relates to polypeptides or constructs according to the invention, which additionally comprise at least one CAP building block. The invention therefore relates to a polypeptide or construct according to the invention, which further comprises at least one ISVD that specifically binds aggrecan, such as shown in Table E, and preferably selected from the group consisting of SEQ ID NO: 166 to 168 Represented by ISVD. In particular, the present invention relates to an ISVD that specifically binds to aggrecan, wherein the ISVD essentially consists of 4 framework regions (FR1 to FR4, respectively) and 3 complementarity determining regions (CDR1 to CDR3, respectively), wherein the ISVD is selected from the group of ISVDs, wherein (a) CDR1 is SEQ ID NO:169, CDR2 is SEQ ID NO:170; and CDR3 is SEQ ID NO:171; and (b) CDR1 is SEQ ID NO: 172, CDR2 is SEQ ID NO:173, and CDR3 is SEQ ID NO:174. In one aspect, the invention relates to a polypeptide as described herein, comprising at least 2 ISVDs that specifically bind aggrecan. In one aspect, the invention relates to a polypeptide as described herein comprising at least 2 ISVDs that specifically bind to aggrecan, wherein the at least 2 ISVDs that specifically bind to aggrecan may be the same or different. In one aspect, the invention relates to a polypeptide as described herein comprising at least 2 ISVDs that specifically bind to aggrecan, wherein the at least 2 ISVDs that specifically bind to aggrecan are independently Selected from the group consisting of: SEQ ID NO: 166 to 168. In one aspect, the invention relates to a polypeptide as described herein, comprising at least 2 ISVDs that specifically bind to aggrecan, wherein the at least 2 ISVDs that specifically bind to aggrecan are represented by SEQ. ID NO:166 to 168 represents. In one aspect, the invention relates to a polypeptide as described herein, comprising an ISVD that specifically binds aggrecan, wherein the ISVD that specifically binds aggrecan is with human aggrecan [SEQ ID NO:105] Specific binding. In one aspect, the invention relates to polypeptides as described herein, wherein the ISVD that specifically binds aggrecan is with human aggrecan (SEQ ID NO: 105), dog aggrecan, bovine aggrecan, Aggrecan, rat aggrecan, porcine aggrecan, mouse aggrecan, rabbit aggrecan, macaque aggrecan and/or rhesus monkey aggrecan specific combine. In one aspect, the invention relates to polypeptides as described herein, wherein the ISVD that specifically binds to aggrecan preferably binds to cartilaginous tissue (such as cartilage and/or meniscus). It is understood that the ISVDs, polypeptides and constructs of the invention are preferably stable. The stability of a polypeptide, construct or ISVD of the invention can be measured by conventional assays known to those skilled in the art. Typical assays include, without limitation, assays in which the activity of such polypeptides, constructs or ISVDs is determined, followed by incubation in synovial fluid for a desired period, and subsequent activity is determined, such as those detailed in the Examples paragraph. In one aspect, the invention relates to an ISVD, polypeptide or construct of the invention having stability in synovial fluid (SF) at 37°C for at least 7 days, such as at least 14 days, 21 days, 1 month , 2 months or even 3 months. In one aspect, the invention relates to ISVDs, polypeptides or constructs of the invention that penetrate at least 5 microns into cartilage, such as at least 10 microns, 20 microns, 30 microns, 40 microns, 50 microns or even more. The desired activity of a therapeutic building block (eg, an ISVD binding to MMP13 in a multivalent polypeptide or construct of the invention) can be measured by conventional assays known to those skilled in the art. Typical assays include (non-limiting) GAG release assays, as detailed in the Examples paragraph. Relative affinity can depend on the position of the ISVD within the polypeptide. It will be understood that the order (orientation) of the ISVDs in the polypeptides of the invention can be selected according to the needs of one skilled in the art. The order of individual ISVDs and whether the polypeptide contains a linker is a matter of design choice. Some orientations, with or without linkers, may provide better binding characteristics than other orientations. For example, the order of the first ISVD (e.g., ISVD 1) and the second ISVD (e.g., ISVD 2) in the polypeptide of the invention can be (from N-terminus to C-terminus): (i) ISVD 1 (e.g., ISVD 1) Nanobody 1)-[linker]-ISVD 2 (e.g. Nanobody 2)-[C-terminal extension]; or (ii) ISVD 2 (e.g. Nanobody 2)-[linker]-ISVD 1( For example, Nanobody 1)-[C-terminal extension]; (the part between the square brackets (i.e., the linker and the C-terminal extension) is optional). The present invention covers all orientations. Polypeptides containing ISVD orientations that provide desired binding characteristics can be readily identified by routine screening, such as exemplified in the Examples paragraph. The preferred sequence is from N-terminus to C-terminus: ISVD-[linker] that binds to MMP13-ISVD-[C-terminal extension] that binds to aggrecan, with the part between square brackets For random. A better sequence is from N-terminal to C-terminal: ISVD-[linker] that binds to MMP13-ISVD-[linker] that binds to aggrecan-ISVD-[C that binds to aggrecan -end extension], where the part between square brackets is optional. See, for example, Table F. Half-life In certain aspects of the invention, a construct or polypeptide of the invention may have a moiety that confers an increased half-life compared to a corresponding construct or polypeptide of the invention without such moiety. Some preferred but non-limiting examples of these constructs and polypeptides of the invention will be apparent to those skilled in the art based on the further disclosure herein, and include, for example, the ISVD of the invention that is chemically modified to increase its half-life or A polypeptide (e.g. by PEGylation); an MMP13 binding agent of the invention (such as an ISVD and/or polypeptide of the invention) comprising at least one additional binding site for binding to a serum protein (such as serum albumin); or comprising a Polypeptides of the invention that are linked to at least one ISVD of the invention linked to at least one portion (and in particular at least one amino acid sequence) that increases the half-life of an amino acid sequence of the invention. Polypeptides of the invention comprising such half-life extending portions or ISVDs Examples of constructs (such as polypeptides of the invention) will be apparent to those skilled in the art based on the further disclosure herein; and examples include, but are not limited to, polypeptides in which one or more ISVDs of the invention are combined with one or A plurality of serum proteins or fragments thereof (such as (human) serum albumin or suitable fragments thereof) or polypeptides suitably linked to one or more binding units capable of binding to a serum protein (such as domain antibodies, suitable for use as domain antibodies An immunoglobulin single variable domain, a single domain antibody, an immunoglobulin single variable domain suitable for use as a single domain antibody, a dAb, an immunoglobulin single variable domain suitable for use as a dAb, or may be combined with a serum protein such as Serum albumin, such as human serum albumin), serum immunoglobulin (such as IgG) or transferrin-binding Nanobodies; see further description and references mentioned herein); wherein the amino acids of the present invention A polypeptide whose sequence is linked to an Fc portion (such as human Fc), or a suitable portion or fragment thereof; or wherein one or more immunoglobulin single variable domains of the invention are linked to one or more small molecules capable of binding to a serum protein. Proteins or peptides suitably linked polypeptides, such as those described in WO 91/01743, WO 01/45746, WO 02/076489, WO2008/068280, WO2009/127691 and PCT/EP2011/051559. In one state In this manner, the invention provides a construct or polypeptide of the invention, wherein the construct or the polypeptide additionally comprises a serum protein binding moiety or a serum protein. Preferably the serum protein binding moiety is combined with serum albumin (such as human serum albumin ) binds. In one aspect, the invention relates to a polypeptide as described herein comprising an ISVD that binds to serum albumin. Constructs and polypeptides of the invention that generally have an increased half-life preferably have a higher half-life than the corresponding The constructs and polypeptides themselves (i.e. without portions conferring increased half-life) have a half-life that is at least 1.5 times greater, preferably at least 2 times greater, such as at least 5 times, such as at least 10 times or more than 20 times greater. For example, having an increased half-life The construct or polypeptide of the invention may, for example, have an increased half-life of more than 1 hour, preferably more than 2 hours, compared to the corresponding construct or polypeptide of the invention itself (i.e. without a moiety conferring increased half-life), More preferably a half-life of more than 6 hours, such as more than 12 hours or even more than 24, 48 or 72 hours. In a preferred but non-limiting aspect of the invention, the constructs of the invention and the polypeptides of the invention have properties similar to those of the corresponding constructs and polypeptides of the invention themselves (i.e. without the moiety conferring increased half-life), for example in humans. A serum half-life of more than 1 hour, preferably more than 2 hours, more preferably more than 6 hours, such as more than 12 hours or even more than 24, 48 or 72 hours. In another preferred but non-limiting aspect of the invention, the constructs of the invention (such as the polypeptides of the invention) exhibit in humans at least about 12 hours, preferably at least 24 hours, more preferably at least 48 hours. hours, and even more preferably a serum half-life of at least 72 hours or longer. For example, a construct or polypeptide of the invention may have at least 5 days (such as about 5 to 10 days), preferably at least 9 days (such as about 9 to 14 days), more preferably at least about 10 days (such as about 10 to 14 days). 15 days), or at least about 11 days (such as about 11 to 16 days), more preferably at least about 12 days (such as about 12 to 18 days or more), or more than 14 days (such as about 14 to 19 days) half life. In a particularly preferred but non-limiting aspect of the invention, the invention provides constructs of the invention and polypeptides of the invention, which comprise in addition to one or more building blocks binding to MMP13 and possibly one or more binding proteins to aggregation proteins. In addition to the glycan-binding CAP building blocks (eg, ISVD), at least one building block that binds to serum albumin, such as an ISVD that binds to serum albumin (such as human serum albumin), is also included, as described herein. The ISVD that preferably binds to serum albumin includes or consists essentially of 4 framework regions (FR1 to FR4 respectively) and 3 complementarity determining regions (CDR1 to CDR3 respectively), wherein CDR1 is SFGMS and CDR2 is SISGSGSDTLYADSVKG, and CDR3 is GGSLSR. The ISVD that preferably binds to human serum albumin is selected from the group consisting of: Alb8, Alb23, Alb129, Alb132, Alb11, Alb11(S112K)-A, Alb82, Alb82-A, Alb82-AA, Alb82 -AAA, Alb82-G, Alb82-GG, Alb82-GGG, Alb92, Alb135 or Alb223 (refer to Table D). In one embodiment, the invention relates to a construct (such as a polypeptide) of the invention comprising a serum protein binding moiety, wherein the serum protein binding moiety is a non-antibody based polypeptide. Other Moieties In one aspect, the invention relates to constructs as described herein, which comprise one or more other groups, residues, moieties or binding units. The one or more other groups, residues, moieties or binding units are preferably selected from the group consisting of polyethylene glycol molecules, serum proteins or fragments thereof, binding units capable of binding to serum proteins, Fc Parts and small proteins or peptides that can bind to serum proteins, additional amino acid residues, tags or other functional parts, such as toxins, markers, radiochemicals, etc. In the embodiments mentioned below, the invention relates to constructs of the invention (such as polypeptides) comprising a moiety conferring half-life extension, wherein the moiety is PEG. Therefore, the invention also relates to constructs or polypeptides of the invention comprising PEG. Additional amino acid residues may or may not alter, alter or otherwise affect other (biological) properties of the polypeptides of the invention and may or may not add additional functionality to the polypeptides of the invention. For example, such amino acid residues: a) may contain an N-terminal Met residue, for example due to expression in a heterologous host cell or host organism. b) A signal sequence or leader sequence may be formed which directs the secretion of the polypeptide from the host cell upon synthesis (e.g. to provide a pre-, pro- or prepro-form) of the polypeptide of the invention, which is Depends on the host cell used to express the polypeptide of the invention). Suitable secretory leader peptides will be known to those skilled in the art and may be described further herein. Such leader sequences are often linked to the N-terminus of the polypeptide, although the invention in its broadest sense is not so limited; c) can form a "tag", such as an amino acid sequence or residue that allows or accelerates purification of the polypeptide, for example using a guide Affinity technology for that sequence or residue. The sequence or residues can then be removed (eg by chemical or enzymatic cleavage) to provide a polypeptide (for this purpose, the tag can optionally be linked to an amino acid sequence or polypeptide sequence via a cleavable linker sequence or Contains cleavable motifs). Some preferred but non-limiting examples of such residues are multiple histidine residues, glutathione residues, myc-tags (such as AAAEQKLISEEDLNGAA (SEQ ID NO: 175)), MYC-HIS-tags (SEQ ID NO:123) or FLAG-HIS6-tag (SEQ ID NO:124) (see Table B); d) can be one or more amine groups that have been functionalized and/or can serve as sites for attachment of functional groups acid residue. Suitable amino acid residues and functional groups will be apparent to those skilled in the art and include, but are not limited to, those mentioned herein with respect to derivatives of the polypeptides of the invention. The invention also encompasses constructs and/or polypeptides comprising the ISVD of the invention and additionally comprising other functional moieties (eg, toxins, markers, radiochemicals, etc.). Other groups, residues, moieties or binding units may be, for example, chemical groups, residues, moieties which themselves may or may not have biological and/or pharmacological activity. For example, and without limitation, such groups may be linked to one or more ISVDs or polypeptides of the invention to provide "derivatives" of the polypeptides or constructs of the invention. Therefore, the invention in its broadest sense also includes constructs and/or polypeptides that are derivatives of the constructs and/or polypeptides of the invention. Such derivatives generally modify the constructs and/or polypeptides of the invention and/or form one of the amino acid residues forming the polypeptides of the invention, and in particular chemically and/or biologically (e.g., enzymatically). or more. Examples of such modifications, as well as the amino acid residues within the polypeptide sequence that can be modified in this manner (i.e., on the protein backbone, but preferably on the side chains), methods and techniques that can be used to introduce such modifications , and examples of possible uses and advantages of such modifications will be apparent to those skilled in the art (see also Zangi et al., Nat Biotechnol 31(10):898-907, 2013). For example, such modifications may comprise the introduction (eg by covalent linkage or in any other suitable manner) of one or more (functional) groups, residues or moieties into or on the polypeptide of the invention, and in particular One or more functional groups, residues or moieties that confer one or more desired properties or functionality are introduced into the constructs and/or polypeptides of the invention. Examples of such functional groups will be apparent to those skilled in the art. For example, such modifications may include the introduction (e.g., covalently linked or in any other suitable manner) of one or more functional moieties that increase the half-life, solubility and/or absorption of the construct or polypeptide of the invention, decrease The immunogenicity and/or toxicity of the construct or polypeptide of the invention, eliminate or reduce any undesirable side effects of the construct or polypeptide of the invention, and/or confer other advantageous properties to the construct or polypeptide of the invention and/or or reduction of undesirable characteristics; or any combination of two or more of the foregoing. Examples of such functional components and the techniques incorporating them will be apparent to those skilled in the art, and may generally include all functional components and techniques mentioned in the general background cited above, as well as for Functional moieties and techniques known per se for modifying pharmaceutical proteins and particularly for modifying antibodies or antibody fragments (including ScFv and single domain antibodies), see for example Remington (Pharmaceutical Sciences, 16th ed., Mack Publishing Co., Easton, PA , 1980). Such functional moieties may, for example, be linked directly (eg, covalently) to the polypeptide of the invention or optionally via a suitable linker or spacer, as will be apparent to those skilled in the art. A specific example are derivatives of the polypeptide or construct of the invention, wherein the polypeptide or construct of the invention has been chemically modified to increase its half-life (eg by means of PEGylation). This is one of the most widely used techniques to increase the half-life and/or reduce the immunogenicity of pharmaceutical proteins and involves attachment of suitable pharmacologically acceptable polymers such as poly(ethylene glycol) (PEG) or its derivatives substances (such as methoxypoly(ethylene glycol) or mPEG). Generally any suitable pegylation format may be used, such as that used in the art for pegylation of antibodies and antibody fragments including but not limited to (single) domain antibodies and ScFv; see e.g. Chapman (Nat. Biotechnol .54: 531-545, 2002), Veronese and Harris (Adv.Drug Deliv.Rev.54: 453-456, 2003), Harris and Chess (Nat.Rev.Drug.Discov.2: 214-221, 2003) and WO 04/060965. Various reagents for protein pegylation are also commercially available, for example from Nektar Therapeutics, USA. Preferably site-directed PEGylation is used, in particular via cysteine residues (see e.g. Yang et al. (Protein Engineering 16: 761-770, 2003)). For example, for this purpose PEG can be attached to Naturally occurring cysteine residues in polypeptides of the invention, constructs or polypeptides of the invention may be modified to appropriately introduce one or more cysteine residues for attachment of PEG, or may include The amino acid sequence of one or more cysteine residues of PEG can be fused to the N-terminus and/or C-terminus of the construct or polypeptide of the invention, all using methods known per se to those skilled in the art. Protein engineering technology. PEG preferably used in the constructs and polypeptides of the invention has a molecular weight of more than 5000, such as more than 10,000 and less than 200,000, such as less than 100,000; for example, in the range of 20,000 to 80,000. Additionally, generally less preferred modifications include N-linked or O-linked glycation, often as part of co-translational and/or post-translational modifications, depending on the host cell used to express the polypeptide of the invention. Yet another modification may include the introduction of one or more detectable labels or other signal generating groups or moieties, depending on the intended use of the polypeptide or construct of the invention. Suitable labels and techniques for attaching, using and detecting them will be apparent to those skilled in the art, and include, but are not limited to, fluorescent labels (such as fluorescein, isothiocyanate, rose bengal, Phycoerythrin, phycocyanin, allophycocyanin, o-dialdehyde benzoic acid and fluorocarmine) and fluorescent metals (such as152 Eu or other metals from the lanthanide series), phosphorescent, chemiluminescent or bioluminescent markers (such as luminal, isoluminol, theromatic acridinium esters, imidazole, Acridinium salts, oxalates, dioxetanes or GFP and their analogs), radioactive isotopes such as3 H.125 I.32 P.35 S.14 C.51 Cr,36 Cl.57 Co.,58 Co.,59 Fe and75 Se), metals, metal chelates or metal cations (e.g. metal cations such as99m Tc,123 I.111 In,131 I.97 Ru,67 Cu,67 Ga and68 Ga or other metals or metal cations particularly suitable for use in in vivo, in vitro or on-site diagnostics and imaging, such as (157 Gd,55 Mn,162 Dy,52 Cr and56 Fe)), as well as chromophores and enzymes (such as malate dehydrogenase, staphylococcal nuclease, delta-V-steroid isomerase, yeast alcohol dehydrogenase, α-glycerophosphate dehydrogenase, triosephosphate isomerase Constructase, biotin avidin peroxidase, wasabi peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, β-galactosidase, ribonuclease, urease, catalase, glucose -VI-phosphate dehydrogenase, glucoamylase and acetylcholinesterase). Other suitable labels will be apparent to those skilled in the art, and include, for example, moieties detectable using NMR or ESR spectroscopy. The labeled polypeptides and constructs of the present invention can be used, for example, in in vitro, in vivo or on-site assays (including immunoassays known per se, such as ELISA, RIA, EIA and "sandwich assays", etc.), as well as in vitro assays. In vivo diagnostic and imaging purposes will depend on the specific marker selection. As will be appreciated by those skilled in the art, another modification may include the introduction of a chelating group, for example one that chelates one of the metals or metal cations mentioned above. Suitable chelating groups include, for example, but are not limited to, diethylenetriaminepentaacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA). Yet another modification may include the introduction of a functional moiety that is part of a specific binding pair, such as a biotin-(streptavidin) binding pair. Such functional moieties can be used to link the polypeptide of the invention to another protein, polypeptide or chemical compound that binds to the other half of the binding pair, ie, by forming a binding pair. For example, a construct or polypeptide of the invention can be conjugated to biotin and linked to another protein, polypeptide, compound or carrier conjugated to avidin or streptavidin. For example, such conjugated constructs or polypeptides of the invention may be used as reporters, for example, in diagnostic systems, where the detectable signal-generating agent is conjugated to avidin or streptavidin. Such binding pairs may also be used, for example, to bind the constructs or polypeptides of the invention to carriers, including carriers suitable for pharmaceutical purposes. One non-limiting example is the liposome formulation described by Cao and Suresh (Journal of Drug Targeting 8: 257, 2000). Such binding pairs may also be used to link therapeutically active agents to the polypeptides of the invention. Other possible chemical and enzymatic modifications will be apparent to those skilled in the art. Such modifications may also be introduced for research purposes (eg, to study function-activity relationships). See, for example, Lundblad and Bradshaw (Biotechnol. Appl. Biochem. 26: 143-151, 1997). Preferably the constructs, polypeptides and/or derivatives are such that they have an affinity (with (real or apparent) KD Value, (real or apparent) KA value,kon Association rate and/or koff dissociation rate or alternatively in terms of IC50 Values appropriately measured and/or expressed as further described herein) bind to MMP13. The constructs and/or polypeptides and derivatives thereof of the invention may also be in substantially isolated form (as defined herein). In one aspect, the invention relates to a construct of the invention comprising or consisting essentially of an ISVD according to the invention or a polypeptide according to the invention and which further comprises optionally linked via one or more peptide linkers one or more other groups, residues, moieties or binding units. In one aspect, the invention relates to constructs of the invention, wherein one or more other groups, residues, moieties or binding units are selected from the group consisting of: polyethylene glycol molecules, serum proteins or Its fragments, binding units that can bind to serum proteins, Fc portions and small proteins or peptides that can bind to serum proteins. Linkers In a construct of the invention (such as a polypeptide of the invention), two or more building blocks (such as ISVD) and optionally one or more other groups, drugs, agents, residues, moieties or binding units They may be linked to each other directly (as for example described in WO 99/23221) and/or may be linked to each other via one or more suitable spacers or linkers or any combination thereof. Spacers or linkers suitable for use in multivalent and multispecific polypeptides will be apparent to those skilled in the art, and may generally be any linker or spacer used in the art to link amino acid sequences. Preferably the linker or spacer is suitable for constructing constructs, proteins or polypeptides for medical use. For example, a polypeptide of the invention may be, for example, a trivalent, trispecific polypeptide comprising a building block that binds to MMP13 (such as an ISVD), a CAP building block (such as an ISVD that binds to aggrecan), and possibly another Building blocks (such as a third ISVD), wherein the first, second and third building blocks (such as an ISVD) are optionally linked via one or more and in particular via 2 linker sequences. The invention also provides constructs of the invention comprising a first ISVD that binds to MMP13 and a possible second ISVD and/or a possible third ISVD and/or a possible fourth ISVD that binds aggrecan. body or polypeptide, wherein the first ISVD and/or the second ISVD and/or the possible third ISVD and/or the possible fourth ISVD are linked via a linker, in particular via 3 linkers . Some particularly preferred linkers include those used in this technology to link antibody fragments or antibody domains. These include linkers mentioned in the general background cited above, as well as linkers used, for example, in the art to construct diabodies or ScFv fragments (however, in this regard, it should be noted that in bifunctional Linker sequences used in functional antibodies and in ScFv fragments should have permissive VH and VL The length, degree of flexibility and other properties of the domains that together form a complete antigen-binding site are not particularly limited as to the length or flexibility of the linkers used in the polypeptides of the invention, as each ISVD (such as Nanobodies ) itself forms a complete antigen-binding site). For example, the linker may be a suitable amino acid sequence, and particularly an amino acid sequence of between 1 and 50, preferably between 1 and 30, such as between 1 and 10 amino acid residues. . Some preferred examples of such amino acid sequences include, for example, the type described in WO 99/42077 (glyx sery )z gly-ser linkers (such as (gly4 ser)3 or(gly3 ser2 )3 ) and the GS30, GS15, GS9 and GS7 linkers described in the Ablynx applications referred to herein (see e.g. WO 06/040153 and WO 06/122825), as well as hinge-like regions such as naturally occurring heavy chain antibodies or a hinge region of similar sequence (such as that described in WO 94/04678). Preferred linkers are described in Table C. Some other particularly good linkers are polyalanine (such as AAA), and the linkers GS30 (SEQ ID NO:85 in WO 06/122825) and GS9 (SEQ ID NO:84 in WO 06/122825) . Other suitable linkers generally include organic compounds or polymers, particularly those in proteins suitable for pharmaceutical use. For example, poly(ethylene glycol) moieties are used to link antibody domains, see eg WO 04/081026. It is within the scope of the present invention that the length, degree of flexibility, and/or other characteristics of the linker used (although not critical as they are often the linkers used for ScFv fragments) have a significant impact on the final construct of the invention ( Properties of polypeptides such as those of the invention may have some impact, including but not limited to affinity, specificity or retention for one or more of MMP13 or other antigens. Based on the disclosure herein, one skilled in the art will be free to determine, after some limited routine experimentation, the optimal linker for a particular construct of the invention (such as a polypeptide of the invention). For example, in multivalent polypeptides of the invention that include building blocks, ISVDs, or Nanobodies directed against MMP13 and other targets, the length and flexibility of the linker are preferably such that they allow for the presence of the linkers of the invention in the polypeptide. Each building block (such as an ISVD) binds to its cognate targets (eg, an antigenic determinant on each target). Based on the disclosure herein, one skilled in the art is free to determine, after some limited routine experimentation, the optimal linker for a particular construct of the invention (such as a polypeptide of the invention). It is also within the scope of the invention that the use of linkers confer one or more other advantageous properties or functionality to the constructs of the invention (such as the polypeptides of the invention) and/or provide for the formation of derivatives and/or use At one or more sites for attachment of functional groups (eg, as described herein for derivatives of ISVD of the invention). For example, linkers containing one or more charged amino acid residues can provide improved hydrophilic properties, while linkers that form or contain small epitopes or tags can be used for detection, identification and/or purification purposes. Based on the disclosure herein, one skilled in the art will be free to determine, after some limited routine experimentation, the optimal linker for a particular polypeptide of the invention. Finally, when two or more linkers are used in a construct of the invention (such as a polypeptide), the linkers may be the same or different. Based on the disclosure herein, one skilled in the art is free to determine, after some limited routine experimentation, the optimal linker for a particular construct and polypeptide of the invention. For ease of expression and production, constructs of the invention (such as polypeptides of the invention) are often linear polypeptides. However, the invention in its broadest sense is not limited thereto. For example, when a construct of the invention (such as a polypeptide of the invention) contains three or more building blocks, ISVDs or Nanobodies, it is possible that these may be linked using a linker with three or more "arms" , each "arm" is linked to a building block, ISVD or nanobody to provide a "star" construct. Although usually second best, it is also possible to use circular structures. Accordingly, the invention relates to constructs of the invention, such as polypeptides of the invention, wherein the ISVDs are linked to each other either directly or via a linker. The invention therefore relates to constructs of the invention, such as polypeptides of the invention, wherein the first ISVD and/or the second ISVD and/or a possible ISVD binding to serum albumin are linked via a linker. Therefore, the present invention relates to a construct of the invention, such as a polypeptide of the invention, wherein the linker is selected from the group consisting of: A3, 5GS, 7GS, 8GS, 9GS, 10GS, 15GS, 18GS, 20GS, 25GS, 30GS, 35GS, 40GS, G1 hinge, 9GS-G1 hinge, vicuña long hinge, and G3 hinge, such as those presented in Table C. Therefore, the present invention relates to a construct of the invention, such as a polypeptide of the invention, wherein the polypeptide is selected from the group shown in Table A-3 and Table F, for example, selected from the group consisting of: SEQ ID NO :164 to 165, 160, 161, 162, 163, and SEQ ID NO: 176, 192 and 175 to 191 (i.e. 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190 or 191). Preparation The present invention further relates to methods of making the constructs, polypeptides, ISVDs, nucleic acids, host cells and compositions described herein. Multivalent polypeptides of the invention can generally be prepared by a method comprising at least the following steps: suitably linking an ISVD and/or a monovalent polypeptide of the invention to one or more additional ISVDs, optionally via one or more suitable linkers. , in order to provide the multivalent polypeptide of the present invention. The polypeptides of the invention can also be prepared by a method generally comprising at least the following steps: providing a nucleic acid encoding a polypeptide of the invention, expressing the nucleic acid in a suitable manner, and recovering the expressed polypeptide of the invention. These methods may be performed in known manner per se apparent to those skilled in the art, for example based on the methods and techniques further described herein. The method for preparing the multivalent polypeptide of the present invention may comprise at least the following steps: linking two or more ISVDs of the present invention together with, for example, one or more linkers in a suitable manner. The ISVDs (and linkers) of the present invention may be coupled by any method known in the art and as further described herein. Preferred techniques involve linking nucleic acid sequences encoding ISVDs of the invention (with linkers) to prepare genetic constructs expressing multivalent polypeptides. Techniques for linking amino acids or nucleic acids will be apparent to those skilled in the art, and reference is made to standard manuals such as Sambrook et al. and Ausubel et al., mentioned above, and to the Examples below. Therefore, the present invention also relates to the use of the ISVD of the invention to prepare multivalent polypeptides of the invention. Methods of preparing multivalent polypeptides comprise linking an ISVD of the invention to at least one additional ISVD of the invention, optionally via one or more linkers. The ISVDs of the invention are then used as binding domains or building blocks to provide and/or prepare compounds containing 2 (eg as a bivalent polypeptide), 3 (eg as a trivalent polypeptide), 4 (eg as a tetravalent polypeptide) or more A multivalent polypeptide of multiple (e.g., in the form of a multivalent polypeptide) building blocks. In this regard, ISVDs of the invention can be used as binding domains or binding units to provide and/or prepare multivalent (such as bivalent, trivalent or tetravalent) compounds of the invention comprising 2, 3, 4 or more building blocks. Peptides. Accordingly, the present invention also relates to the use of an ISVD polypeptide of the invention (as described herein) to prepare a multivalent polypeptide. Methods for preparing multivalent polypeptides comprise linking an ISVD of the invention to at least one additional ISVD of the invention, optionally via one or more linkers. The polypeptides and nucleic acids of the invention may be prepared in a manner known per se, as will be apparent to those skilled in the art from the further description herein. For example, the polypeptides of the invention may be prepared in any manner known per se for the preparation of antibodies and in particular for the preparation of antibody fragments, including but not limited to (single) domain antibodies and ScFv fragments. Some preferred, but non-limiting, methods for preparing polypeptides and nucleic acids include the methods and techniques described herein. Methods for producing a polypeptide of the invention may comprise the steps of: - Expression in a suitable host cell or host organism (also referred to herein as a "host of the invention") or in a nucleic acid encoding the polypeptide of the invention ( In another suitable expression system, also referred to herein as "nucleic acid of the invention"), optionally follows: - isolation and/or purification of the polypeptide of the invention thus obtained. In particular, this method may comprise the following steps: - culturing and/maintaining a host of the invention under conditions such that the host of the invention expresses and/or produces at least one polypeptide of the invention; optionally followed by: - isolating and/or Or purify the polypeptide of the invention thus obtained. Accordingly, the invention also relates to nucleic acids or nucleotide sequences encoding polypeptides, ISVDs or constructs of the invention (also referred to as "nucleic acids of the invention"). The nucleic acids of the invention may be in the form of single- or double-stranded DNA or RNA. According to one embodiment of the invention, the nucleic acids of the invention are in substantially isolated form, as defined herein. The nucleic acids of the invention are also in the form of, present in and/or part of a vector, eg an expression vector such as a plasmid, cosmid or YAC, which may also be in a substantially isolated form. Therefore, the present invention also relates to expression vectors comprising the nucleic acid or nucleotide sequence of the invention. The nucleic acids of the invention can be prepared or obtained in a manner known per se based on the information given herein about the polypeptides of the invention and/or can be isolated from suitable natural sources. As will also be apparent to those skilled in the art, a number of nucleotide sequences (such as at least two nucleic acids encoding an ISVD of the invention and, for example, a nucleic acid encoding one or more linkers) may also be linked together in a suitable manner to prepare the invention. Invention of nucleic acids. Techniques for producing nucleic acids of the invention will be apparent to those skilled in the art and may include, for example, but are not limited to, automated DNA synthesis, site-guided mutagenesis, combination of two or more naturally occurring and/or synthetic sequences (or two or more parts), introduction of mutations resulting in the expression of a truncated expression product, introduction of one or more restriction sites (e.g., the creation of gene cassettes and/or regions that can be readily digested and/or ligated using suitable restriction enzymes), and/or introduce mutations by means of PCR reactions using one or more "mismatch" primers. These and other techniques will be apparent to those skilled in the art and reference is made to standard manuals such as Sambrook et al. and Ausubel et al., mentioned above, and to the examples below. In a preferred but non-limiting embodiment, the genetic construct of the invention comprises a) at least one nucleic acid of the invention; b) together with one or more regulatory elements (such as a promoter and optionally a suitable terminator). operably linked; and optionally also c) one or more other elements of the genetic construct known per se; wherein the terms "regulatory element", "promoter", "terminator" and "operably linked" have their customary meaning in this technology. Genetic constructs of the invention may generally be provided by suitably linking the nucleotide sequence of the invention to one or more of the other elements described above, for example using techniques described in general manuals, such as those mentioned above Sambrook et al. and Ausubel et al. The nucleic acids of the invention and/or the genetic constructs of the invention can be used to transform host cells or host organisms, that is, to express and/or produce the polypeptides of the invention. Suitable hosts or host cells will be apparent to those skilled in the art and may, for example, be any suitable fungal, prokaryotic or eukaryotic cell or cell strain or any suitable fungal, prokaryotic or (non-human) eukaryotic organism; and All other host cells or (non-human) hosts known per se for the expression and production of antibodies and antibody fragments, including but not limited to (single) domain antibodies and ScFv fragments, will be apparent to those skilled in the art. Reference is also made to the general background cited above, and to eg WO 94/29457; WO 96/34103; WO 99/42077; Frenken et al. (Res Immunol. 149: 589-99, 1998); Riechmann and Muyldermans (1999) , mentioned above; van der Linden (J. Biotechnol. 80: 261-70, 2000); Joosten et al. (Microb. Cell Fact. 2: 1, 2003); Joosten et al. (Appl. Microbiol. Biotechnol. 66 : 384-92, 2005); and further references cited in this article. In addition, the polypeptides of the invention can also be expressed and/or produced in cell-free expression systems, and suitable examples of such systems will be apparent to those skilled in the art. Suitable techniques for transforming the host or host cells of the invention will be apparent to those skilled in the art and may depend on the intended host cell/host organism and the genetic construct intended to be used. Refer again to the manuals and patent applications mentioned above. Transformed host cells (which may be in the form of stable cell lines) or host organisms (which may be in the form of stable mutants or strains) constitute further aspects of the invention. The invention therefore relates to a host or host cell comprising a nucleic acid according to the invention or an expression vector according to the invention. Preferably such host cells or host organisms are such that they express or (at least) are capable of expressing (e.g. under suitable conditions) a polypeptide of the invention (and in the case of a host organism: in at least one cell, part thereof , tissues or organs). The invention also includes other generations, progeny and/or progeny of the host cell or host organism of the invention, which may be obtained, for example, by cell division or by sexual or asexual reproduction. In order to produce/obtain the expression of a polypeptide of the invention, the transformed host cell or the transformed host organism can generally be maintained, maintained under conditions and/or in which the (desired) polypeptide of the invention can be expressed/produced. cultured under conditions. Suitable conditions will be apparent to those skilled in the art and will generally depend on the host cell/host organism used, as well as the regulatory elements controlling the expression of the (relevant) nucleotide sequence of the invention. Reference is again made to the manuals and patent applications mentioned in the paragraph above regarding the genetic constructs of the present invention. The polypeptide of the invention can then be isolated from the host cell/host organism and/or from the culture medium in which the host cell or host organism is cultured, using protein isolation and/or purification techniques known per se, such as (preparative) Chromatography and/or electrophoresis techniques, differential precipitation techniques, affinity techniques (for example, the use of specific, cleavable amino acid sequences fused to the polypeptide of the invention) and/or preparative immunology techniques (that is, the use of specific and cleavable amino acid sequences fused to the polypeptide of the invention) Antibodies to isolated polypeptides). In one aspect, the invention relates to a method of producing a construct, polypeptide or ISVD according to the invention, comprising at least the steps of: (a) expressing in a suitable host cell or host organism or in another suitable expression system A nucleic acid sequence according to the invention; optionally followed by (b) isolating and/or purifying a construct, polypeptide or ISVD according to the invention. In one aspect, the invention relates to compositions comprising a construct, polypeptide, ISVD or nucleic acid according to the invention. Agents (Uses of ISVDs, Polypeptides, and Constructs of the Invention) As mentioned herein, there is still a need for safe and effective OA agents. Based on unconventional screening, characterization and combination strategies, the inventors identified ISVDs that bind and inhibit MMP13. These MMP13 binding agents performed exceptionally well in in vitro and in vivo experiments. Furthermore, the ISVD of the present invention also proved to be significantly more effective than the comparative molecules. The present invention therefore provides ISVDs and polypeptides that antagonize MMPs, particularly MMP13, with improved prophylactic, therapeutic and/or pharmacological properties compared to comparative molecules, including a safer profile. Additionally, when these MMP13 binding agents are linked to the CAP building blocks, they have increased retention in joints and, on the other hand, retained activity. In one aspect, the invention relates to a composition according to the invention, an ISVD according to the invention, a polypeptide according to the invention and/or a construct according to the invention for use as a medicament. In another aspect, the present invention relates to the use of the ISVD, polypeptide and/or construct of the present invention to prepare a pharmaceutical composition for preventing and/or treating diseases related to at least MMP13; and/or For use in one or more of the treatments mentioned herein. The present invention also relates to the use of the ISVD, polypeptide, compound and/or construct of the present invention to prepare pharmaceutical compositions for prevention and/or treatment by modulating the activity of MMP (preferably MMP13), for example At least one disease or disease that is prevented and/or treated by inhibiting the degradation of aggrecan and/or collagen. The present invention also relates to the use of the ISVD, polypeptide, compound and/or construct of the present invention to prepare a pharmaceutical composition. The pharmaceutical composition is used for prevention and/or treatment by administering the ISVD, polypeptide, compound and/or construct of the present invention to a patient. At least one disease, disorder or symptom for the prevention and/or treatment of compounds and/or constructs. The invention further relates to the ISVDs, polypeptides, compounds and/or constructs of the invention or pharmaceutical compositions comprising them for the prevention and/or treatment of at least one MMP13-related disease. The MMP13 binding agents of the present invention are expected to be useful in various diseases affecting cartilage, such as joint pathologies and chondrodystrophies, arthritic diseases such as osteoarthritis, rheumatoid arthritis, gouty arthritis, psoriatic arthritis, traumatic arthritis, Rupture or detachment, achondroplasia, costochondritis, aplasia of the spine, disc herniation, lumbar disc degenerative disease, degenerative joint disease, and relapsing polychondritis, osteochondritis dissecans, and aggrecan pathology (This article is often expressed as "MMP13-related diseases"). In one aspect, the invention relates to compositions, ISVDs, polypeptides and/or constructs according to the invention for use in the treatment or prevention of symptoms of MMP13-related diseases, such as for use in joint pathologies and chondrodystrophies, arthritis Diseases such as osteoarthritis, rheumatoid arthritis, gouty arthritis, psoriatic arthritis, traumatic rupture or detachment, achondroplasia, costochondritis, spondylosis, disc herniation, lumbar degenerative disc disease , degenerative joint diseases and relapsing polychondritis dissecans, and aggrecan lesions. More preferably the disease or disorder is arthritic disease, and most preferably osteoarthritis. In one aspect, the invention relates to use in the prevention or treatment of joint pathology and chondrodystrophies, arthritic diseases such as osteoarthritis, rheumatoid arthritis, gouty arthritis, psoriatic arthritis, traumatic rupture or Methods for detachment, achondroplasia, costochondritis, aplasia of the vertebrae, disc herniation, degenerative lumbar disc disease, degenerative joint disease and relapsing polychondritis, wherein the method includes treatment for individuals in need (for those with A person in need thereof) is administered a pharmaceutically active amount of at least a composition, immunoglobulin, polypeptide or construct according to the invention. More preferably the disease is an arthritic disease, and most preferably osteoarthritis. In one aspect, the invention relates to the use of a pharmaceutical composition prepared according to the ISVD, polypeptide, composition or construct of the invention for the treatment or prevention of diseases or disorders such as joint pathology and cartilage nutrition. Unhealthy, arthritic diseases such as osteoarthritis, rheumatoid arthritis, gouty arthritis, psoriatic arthritis, traumatic rupture or detachment, achondroplasia, costochondritis, aplasia of the vertebrae, disc herniation, lumbar Degenerative disc disease, degenerative joint disease, and relapsing polychondritis, osteochondritis dissecans, and aggrecan lesions. More preferably the disease or disorder is arthritic disease, and most preferably osteoarthritis. The constructs and/or polypeptides of the present invention can reduce or inhibit serine protease family members, autolyses, matrix metalloproteinases (MMPs)/matrix metalloproteinases that degrade aggrecan by binding to aggrecan. (Matrixin) or disintegrin (Disintegrin) and metalloproteinase (ADAMTS) with platelet thrombin (Thrombospondin), MMP20, ADAMTS5 (Aggrecanase)-2), ADAMTS4 (aggrecanase-1 ) and/or the activity of ADAMTS11. In the context of the present invention, the term "prevention and/or treatment" includes not only the prevention and/or treatment of a disease, but also generally the prevention of the onset of a disease, the slowing down or reversal of the progression of a disease, the prevention or slowing down of one of the or The onset of multiple symptoms, reduction and/or alleviation of one or more symptoms associated with the disease, reduction in the severity and/or duration of the disease and/or any symptoms associated with the disease and/or prevention of further increase in the disease and/or association with the disease The severity of any symptoms associated with the disease, the prevention, reduction or reversal of any physiological damage caused by the disease, and generally any pharmacological effects that are beneficial to the patient being treated. Dosage regimens are determined by the attending physician and clinical factors. As is well known to those skilled in the art of medicine, the dosage for any given patient will depend on many factors, including the patient's size, weight, body surface area, age, the specific compound being administered, and the type of polypeptide (including antibodies) being used. Activity, time and route of administration, general health, and combination with other treatments or treatments. The protein pharmaceutical active may be present in an amount between 1 gram and 100 mg/kg body weight per dose; however, doses below or above this exemplary range are also contemplated. If the regimen is a continuous infusion, it may range from 1 picogram to 100 mg per kilogram of body weight per minute. ISVDs, polypeptides or constructs of the invention may be used at a concentration of, for example, 0.01, 0.1, 0.5, 1, 2, 5, 10, 20 or 50 pg/ml to inhibit and/or neutralize by at least about 50%, preferably is 75%, more preferably 90%, 95% or at most 99%, and most preferably about 100% (substantially complete) of the biological function of MMP13, as assayed by methods well known in the art. ISVDs, polypeptides or constructs of the invention may be used, for example, at a concentration of 1, 2, 5, 10, 20, 25, 30, 40, 50, 75, 100, 200, 250 or 500 ng/mg of cartilage to inhibit and /or neutralize at least about 50%, preferably 75%, more preferably 90%, 95% or at most 99%, and most preferably about 100% (substantially completely) of the biological function of MMP13, as in this case Tested by methods well known in the art. Typically, treatment regimens include the administration of a pharmaceutically effective amount or dose of one or more ISVDs, polypeptides and/or constructs of the invention or comprise one or more compositions thereof. The specific amount or dose to be administered can be determined by the clinician based upon the factors cited above. Useful dosages of the constructs, polypeptides and/or ISVDs of the invention can be determined by comparing their in vitro and in vivo activities in animal models. Methods for extrapolating effective doses in mice and other animals to humans are known in the art; eg US 4,938,949. Typically the clinician can depend on the specific disease, disorder or condition to be treated, the efficacy of the specific ISVD, polypeptide and/or construct of the invention to be used, the route of administration and the specific pharmaceutical formulation or composition to be used. to determine the appropriate daily dose. The amount of constructs, polypeptides and/or ISVDs of the invention required for treatment will vary not only with the particular immunoglobulin, polypeptide, compound and/or construct selected, but also with the route of administration, type of treatment. It will vary depending on the nature of the symptoms and the age and condition of the patient, and is ultimately at the discretion of the attending physician or clinician. The dosage of the constructs, polypeptides and/or ISVDs of the invention will also vary depending on the target cell, tissue, graft, joint or organ. The desired dose may be presented as a single dose or as divided doses administered conveniently at appropriate intervals, for example, as two, three, four or more doses per day. The sub-doses themselves may be further divided, for example, into a number of individual, not strictly spaced administrations. Preferably the dosage is administered once a week or even less frequently, such as once every two weeks, once every three weeks, once a month or even once every two months. Dosage regimens may include long-term treatment. "Long-term" means a duration of at least two weeks and preferably weeks, months or years. Necessary modifications within this dosage range can be determined by one of ordinary skill in the art using only routine experimentation as given by the guidance herein. See Remington’s Pharmaceutical Sciences (Martin, E.W., ed.4), Mack Publishing Co., Easton, PA. The dosage may also be adjusted by the individual physician in case of any complications. Typically the ISVDs, polypeptides and/or constructs of the invention are used in the above methods. However, it is within the scope of the invention to use combinations of two or more ISVDs, polypeptides and/or constructs of the invention. The ISVDs, polypeptides and/or constructs of the present invention can be used in combination with one or more additional pharmaceutically active compounds or main drugs that may or may not lead to a synergistic effect, ie, as a combination treatment regimen. Pharmaceutical compositions may also contain at least one additional active agent, such as one or more additional antibodies or antigen-binding fragments thereof, peptides, proteins, nucleic acids, organic and inorganic molecules. Furthermore, clinicians can select such additional compounds or main drugs, as well as appropriate combination treatment options, based on the factors cited above and their professional judgment. In particular, the ISVDs, polypeptides and/or constructs of the present invention can be used in combination with other pharmaceutically active compounds or main drugs that are or can be used to prevent and/or treat the diseases, disorders and symptoms cited above, and the results may or Synergy effects may not be obtained. Examples of such compounds and agents, as well as routes, methods, and pharmaceutical formulations or compositions for administering the same, are known to clinicians. When two or more substances or agents are used as part of a combination treatment regimen, they may be administered via the same route of administration or via different routes of administration, at substantially the same time or at different times (e.g. Administered substantially simultaneously, sequentially, or on an alternating schedule). When the substances or active ingredients are administered simultaneously by the same route of administration, they may be administered as different pharmaceutical formulations or compositions or as part of a combined pharmaceutical formulation or composition, to those skilled in the art All is clear. Furthermore, when two or more substances or agents are used as part of a combination treatment regimen, each substance or agent may be used in the same amount and on the same basis as when the compound or agent is used alone. regimen, and this combination may or may not result in synergistic effects. However, when the combined use of two or more active substances or active substances results in a synergistic effect, it is also possible to reduce the amount of one, more or all of the substances or active ingredients to be administered, while still achieving the desired effect. Therapeutic effect. This may, for example, serve to avoid, limit or reduce undesirable side effects associated with one or more of the substances or principal drugs when used in their customary amounts, while still obtaining the desired medicinal or therapeutic effect. The effectiveness of a treatment regimen used in accordance with the present invention may be determined and/or tracked in any manner known per se for the disease, disorder or condition involved, as will be apparent to the clinician. Clinicians are able, when appropriate and on a case-by-case basis, to alter or modify a particular treatment plan in order to achieve the desired therapeutic effect, avoid, limit or reduce undesirable side effects, and/or achieve the desired therapeutic effect on the one hand and avoid, strike the right balance between limiting or reducing undue side effects. Treatment regimens are typically followed until the desired therapeutic effect is achieved and/or as long as the desired therapeutic effect is maintained. Furthermore, this can be determined by the clinician. Therefore, in another aspect, the invention relates to a pharmaceutical composition comprising at least one construct of the invention, at least one polypeptide of the invention, at least one ISVD of the invention or at least one nucleic acid of the invention and at least one suitable carriers, diluents or excipients (i.e. suitable for pharmaceutical use) and optionally one or more additional active substances. In a particular aspect, the invention relates to pharmaceutical compositions comprising a construct, polypeptide, ISVD or nucleic acid according to the invention (preferably at least one of the following: SEQ ID NO: 111, 11, 112, 12 ,109,9,110,10,1,13,14,15,16,17,18,19,20,21,22,2,3,4,5,6,7,8,160-165 (also That is, SEQ ID NO: 160, 161, 162, 163, 164 or 165) and 176 to 192 (that is, SEQ ID NO: 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192)) and at least one suitable carrier, diluent or excipient (ie suitable for pharmaceutical use) and optionally one or more additional active substances. The individual to be treated can be any warm-blooded animal, but particularly mammals, and more particularly humans. In veterinary applications, an individual to be treated includes any animal kept for commercial purposes or kept as a pet. As will be appreciated by those skilled in the art, individuals to be treated are particularly those suffering from or at risk of the diseases, disorders and conditions mentioned herein. Therefore, in a preferred embodiment of the present invention, a pharmaceutical composition comprising the polypeptide of the present invention is used in medicine or diagnostics. Preferably the pharmaceutical compositions are for use in human medicine, but they may also be used for veterinary purposes. Furthermore, in these pharmaceutical compositions, one or more immunoglobulins, polypeptides, compounds and/or constructs of the present invention, or nucleotides encoding them and/or pharmaceutical compositions containing them can also be used. Suitably combined with one or more other active ingredients (such as those mentioned herein). The invention also relates to use in vitro (e.g. in vitro or in cellular assays) or in vivo (e.g. in unicellular or multicellular organisms, and in particular in mammals, and more particularly in humans, such as in compositions (such as, but not limited to, pharmaceutical compositions or formulations, as further described herein) in humans who are at risk for or suffering from the diseases, disorders, or symptoms of the invention). It should be understood that treatment referred to includes both treatment of established symptoms and preventive treatment, unless otherwise expressly stated. The constructs, polypeptides and/or ISVDs of the invention generally used for pharmaceutical purposes may be formulated into pharmaceutical preparations or compositions, which comprise at least one construct, polypeptide and/or ISVD of the invention and at least one pharmaceutically acceptable carrier. agents, diluents or excipients and/or adjuvants, and optionally one or more pharmaceutically active polypeptides and/or compounds. By way of non-limiting example, such formulations may be in a form suitable for oral administration, parenteral administration (such as intravenous, intramuscular or subcutaneous injection or intravenous infusion), local administration (such as intra-articular administration). administration), inhalation administration, transdermal patch, implant, suppository, etc., among which intra-articular administration is preferred. Such suitable administration forms will be apparent to those skilled in the art and may be solid, semi-solid or liquid depending on the mode of administration as well as the methods and vehicles used to prepare them, and are further described herein. Such pharmaceutical preparations or compositions are generally referred to herein as "pharmaceutical compositions." Disintegrating agents, binding agents, fillers and lubricants may be mentioned as exemplary excipients. Examples of disintegrants include agar, algin, calcium carbonate, cellulose, colloidal silica, gum, magnesium aluminum silicate, methylcellulose and starch. Examples of binding agents include microcrystalline cellulose, hydroxymethylcellulose, hydroxypropylcellulose and polyvinylpyrrolidone. Examples of fillers include calcium carbonate, calcium phosphate, calcium sulfate, calcium carboxymethyl cellulose, cellulose, dextrin, dextrose, fructose, lactitol, lactose, magnesium carbonate, magnesium oxide, maltitol, maltodextrin , maltose, sorbitol, starch, sucrose, sugar and xylitol. Examples of lubricants include agar, ethyl oleate, ethyl laurate, glycerin, glyceryl palmitostearate, hydrogenated vegetable oil, magnesium oxide, stearates, mannitol, poloxamer, dihydrogen alcohol, sodium benzoate, sodium lauryl sulfate, sodium stearate, sorbitol and talc. Useful stabilizers, preservatives, wetting and emulsifying agents, consistency improvers, odor improvers, osmotic pressure modifying salts, buffer substances, solubilizers, diluents, emollients, colorants and opacifying agents and antioxidants Considered as a pharmaceutical adjuvant. Suitable carriers include, but are not limited to, magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, low melting point Waxes, cocoa butter, water, alcohols, polyols, glycerin, vegetable oils and the like. Generally, the constructs, polypeptides and/or ISVDs of the invention may be formulated and administered in any suitable manner known per se. Reference is made to the general background art cited above (and in particular to WO 04/041862, WO 04/041863, WO 04/041865, WO 04/041867 and WO 08/020079) and to standard handbooks such as Remington’s Pharmaceutical Sciences, 18th Ed., Mack Publishing Company, USA (1990), Remington, the Science and Practice of Pharmacy, 21st Edition, Lippincott Williams and Wilkins (2005); or the Handbook of Therapeutic Antibodies (S. Dubel, Ed.), Wiley, Weinheim , 2007 (see e.g. pp. 252 to 255). In a particular aspect, the invention relates to pharmaceutical compositions comprising a construct, polypeptide, ISVD or nucleic acid according to the invention and further comprising at least one pharmaceutically acceptable carrier, diluent or excipient and/or Adjuvants, and optionally include one or more additional pharmaceutically active polypeptides and/or compounds. The constructs, polypeptides and/or ISVDs of the invention may be formulated and administered in any manner known per se for conventional antibodies and antibody fragments (including ScFv and diabodies) and other pharmaceutically active proteins. Such formulations and methods for preparing them will be apparent to those skilled in the art, and include, for example, those suitable for parenteral administration (e.g., intravenous, intraperitoneal, subcutaneous, intramuscular, intravascular, intraarterial , intraspinal, intranasal or intrabronchial administration), but is also a preferred formulation suitable for local (such as intra-articular, transdermal or intradermal) administration. Formulations for topical or parenteral administration may, for example, be sterile solutions, suspensions, dispersions or emulsions suitable for infusion or injection. Suitable carriers or diluents for such formulations include, for example, those mentioned on page 143 of WO 08/020079. Usually aqueous solution or suspension is preferred. The constructs, polypeptides and/or ISVDs of the invention may also be administered using delivery methods known from gene therapy, see for example U.S. Patent No. 5,399,346, which is incorporated by reference for its gene therapy delivery methods. Using gene therapy delivery methods, primary cells transfected with genes encoding constructs, polypeptides, and/or ISVDs of the invention can be additionally transfected with tissue-specific promoters to target specific organs, tissues, grafts, joints, or cells, and may additionally be transfected with signals and stabilizing sequences for subcellular localization expression. According to additional aspects of the invention, the polypeptides of the invention can be used for additional applications in vivo and in vitro. For example, the polypeptides of the invention may be used for diagnostic purposes, such as in assays designed to detect and/or quantify the presence of MMP13 and/or purify MMP13. Peptides can also be tested in animal models of specific diseases and used to conduct toxicity, safety and dosage studies. Finally, the invention relates to a kit comprising at least one polypeptide according to the invention, at least one nucleic acid sequence encoding said component, vector or vector system according to the invention and/or a host cell according to the invention. It is contemplated that the kit may be supplied in different forms, for example as a diagnostic kit. The present invention is now further explained with the help of the following non-limiting preferred aspects, examples and figures. The entire contents of all references cited throughout this application (including literature references, issued patents, published patent applications, and patent applications also pending) are hereby expressly incorporated by reference. This article is specifically for the guidance mentioned above. The sequence is disclosed in the main body of the description and in the individual sequence listing according to WIPO Standard ST.25. The SEQ ID specified by a specific number should be the same in the main body of the description and in the individual sequence listing. To illustrate by example, SEQ ID no.:1 should define the same sequence in both the main body of the description and the individual sequence listing. If there is an inconsistency between the sequence definition in the main body of the specification and the individual sequence listing (if, for example, SEQ ID no.:1 in the main body of the description incorrectly corresponds to SEQ ID no.:2 in the individual sequence listing), it should be understood that in the application The specific sequences mentioned in the application (especially in specific embodiments) are the sequences mentioned in the main body of the application and not in the individual sequence listings. In other words, inconsistencies between sequence definitions/names in the main body of the specification and the individual sequence listings should be disclosed by correcting the individual sequence listings into the main body of the application including the inventive content, embodiments, drawings and patentable scope. sequence and their names. EXAMPLES The following examples illustrate the methods and products of the present invention. Appropriate modifications and adaptations of the described conditions and parameters commonly found in the molecular and cell biology arts will be apparent to those skilled in the art and are within the spirit and scope of the invention. 6.1 Methods 6.1.1 Llama immunization The Llama immunization method was performed according to standard procedures with varying amounts of antigen, type of adjuvant, and injection method used. These variations are detailed in the following paragraphs. All immunological experiments were approved by the local ethical committee. 6.1.2 Library construction cDNA was prepared using total RNA extracted from blood samples of all llamas/alpacas immunized with MMP13. The nucleotide sequence encoding the nanobody was amplified from cDNA in a one-step RT-PCR reaction and ligated into the corresponding restriction site of the phagemid vector pAX212, and the ligated product was then used to transform E. coli strain TG via electroporation. -1. The NNK library was generated by overlap extension PCR with degenerate primers. The PCR product was cloned in an expression vector (pAX129) and transformed into E. coli TG-1 competent cells. In frame with the Nanobody coding sequence, the vector encodes C-terminal FLAG3 - and His6 -Tag. The selected strains of concern have been sequence verified. 6.1.3 Selection Phage display libraries were probed using recombinant MMP13. Different rounds of selection use different antigens, as detailed in the Results section (i.e. Example 6.2) and subsequently. Selection consists of incubating the antigen with library phage particles for 2 hours in PBS supplemented with 2% Marvel and 0.05% Tween 20. Biotinylated antigens were captured using streptavidin-coated magnetic beads (Invitrogen, 112-05D). Non-biotinylated antigen was plated on MaxiSorp plates (Nunc, 430341). Unbound phage were washed out (PBS supplemented with 0.05% Tween 20); bound phage system was eluted by adding trypsin (1 mg/ml in PBS) for 15 minutes. Exponentially growing E. coli TG-1 cells were infected with lysed phage for phage rescue. Phage systems prepared from the output of selection are used as input for subsequent selection rounds. 6.1.4 Antigens directly coated by ELISA MaxiSorp plates (Nunc, 430341) were coated with human proMMP 13 overnight at 4°C, followed by blocking (PBS, 1% casein) for 1 hour at RT. After the wash step in PBS + 0.05% Tween 20, a 10-fold dilution of the periplasmic extract in PBS, 0.1% casein, 0.05% Tween 20 was added over 1 h at RT. Bound Nanobodies were detected with mouse anti-FLAG-HRP (Sigma (A8592)). Captured Antigen - Activated Human MMP13 ELISA - Activated Rat MMP13 ELISA - Activated Dog MMP13 ELISA MaxiSorp plates (Nunc, 430341) were coated with human MMP13 antibody mAb511 overnight at 4°C, followed by 1 hour blocking (PBS, 1% casein). After the wash step in PBS + 0.05% Tween20, 20 nM activated human, rat or dog MMP13 was added over 1 hour at RT. After the second wash step, 10-fold dilutions of periplasmic extracts or serial dilutions of purified nanobodies in PBS, 0.1% casein, 0.05% Tween 20 were added over 1 h at RT. Bound Nanobodies were detected with mouse anti-FLAG-HRP (Sigma (A8592)). 6.1.5 Fluorescent peptide assay The settings for the human, macaque, rat, dog and bovine MMP13 fluorescent peptide assay and the human MMP1 and MMP14 fluorescent peptide assay are briefly as follows: Combine activated MMP and fluorescent peptide substrates Mca-PLGL-Dpa-AR-NH2 (R&D Systems #ES001) and 1/5 dilutions of periplasmic extract or serial dilutions of purified nanobodies/positive controls (total volume = 20 μl, in assay buffer 50 mM Tris pH 7.5, 100 mM NaCl, 10 mM CaCl2, 0.01% Tween20) and incubated at 37°C for 2 hours. Use the linear increase in fluorescence (v0 - with incubation between 15 and 45 minutes) as a measure of enzymatic activity and the formula 100-100 (v0 in the presence of test Nanobodies/negative control Nanobodies (Cablys v0) in the presence of ) calculates % inhibition. 6.1.6 Collagen solubilization assay The setup of this assay is as follows: 250ng/ml immune-grade human collagen II (Chondrex #20052) and 5 nM activated MMP13 were dissolved in 100μl assay buffer (50 mM Tris-Cl pH 7.5, 100 mM NaCl, 10 mM CaCl2, 0.01% Tween-20). After incubation at 35°C for 1.5 hours, the reaction was neutralized with EDTA (10 μl of 30 mM stock). MMP13-cleaved collagen was further degraded with elastase at 38°C for 20 minutes to avoid degradation of collagen II (1/3 dilution of 10 μl provided in Type II Collagen Assay Kit (Chondrex #6009) Stock solution) re-annealing. The remaining intact collagen is tested by ELISA using the reagents provided in the Type II Collagen Assay Kit (Chondrex #6009). 6.1.7 Fluorescent Collagen Assay The setup of this assay is as follows: 100 μg/ml of type I DQ™ collagen from bovine skin (fluorescein conjugate; Molecular Probes #D-12060, lot number 1149062 ) with 10 nM activated MMP13 and serial dilutions of purified Nanobodies/positive controls in 40 μl assay buffer (50 mM Tris-Cl pH 7.5, 100 mM NaCl, 10 mM CaCl) at 37°C.2 , 0.01% Tween-20) for 2 hours. Use the linear increase in fluorescence (v0 - with incubation between 15 and 45 minutes) as a measure of enzymatic activity and the formula 100-100 (v0 in the presence of test Nanobodies/negative control Nanobodies (Cablys v0) in the presence of ) calculates % inhibition. 6.1.8 TIMP-2 Competition Assay 50 μl of TIMP-2 (0.63 nM; R&D Systems #971-TM) was captured (1 hour at RT) coated with anti-human TIMP-2 antibody (R&D Systems #MAB9711). plate (2 μg/ml in PBS; overnight). During this capture, serial dilutions of 1.26 nM activated MMP-13-biotin with Nanobody/TIMP-3/MSC2392891A were mixed in 70 μl of assay buffer (50 mM Tris-Cl pH 7.5, 100 mM NaCl, 10 mM CaCl2 , 0.01% Tween-20) pre-cultured. 50 μl of this mixture was added to the captured TIMP-2 and incubated for 1 hour at room temperature. MMP13-biotin was detected with 50 μl of Streptavidin-HRP (1:5000 DakoCytomation #P0397). 6.1.9 Thermal transfer assay (TSA) TSA was performed basically according to Ericsson et al. (2006 Anals of Biochemistry, 357: 289-298) with 5 μl of purified monovalent nanobodies. 6.1.10 Analytical size exclusion chromatography (analytical SEC) Analytical SEC experiments were performed on an Ultimate 3000 machine (Dionex) combined with a Biosep-SEC-3 (Agilent) column. 6.1.11 Forced oxidation: Nanobody samples (1mg/ml) were subjected to 10 mM H in PBS for 4 hours at RT and in the dark.2 O2 , while without H2 O2 Control samples were performed, and the buffer was subsequently converted to PBS using a Zeba desalted spin column (0.5 ml) (Thermo Scientific). The stressed and control samples were then analyzed by RPC at 70°C on a Zorbax 300SB-C3 column (Agilent Technologies) on a 1200 or 1290 series machine (Agilent Technologies). Oxidation of Nanobodies was quantified by determining the % peak area of pre-peaks that appear due to oxidative stress compared to the main protein peak. 6.1.12 Temperature stress Nanobody samples (1 to 2 mg/ml) were stored in PBS at -20°C (negative control), 25°C, and 40°C for 4 weeks. After this incubation period, the Nanobodies are digested with trypsin or LysC. The sample was then analyzed by RPC at 60°C on an Acquity UPLC BEH300-C18 column (Agilent Technologies) coupled to a Q-TOF mass spectrometer (6530 Accurate Mass Q-TOF (Agilent)) on a 1290 series machine (Agilent Technologies). and the peptide of the control sample. 6.2 Immunization method MMP13 is secreted in the inactive pro-form (proMMP13). This form is activated when the prodomain is cleaved, leaving the active enzyme consisting of the catalytic domain forming the catalytic pocket and the thrombin-like domain (PDB: 1PEX), which has been shown to act as a substrate for collagen II (Col II) The docking/interaction domain functions. It is speculated that the best area to inhibit the enzymatic activity of MMP13 may be the catalytic pocket. However, increasing the immune response against the catalytic bag has various important problems. First, in proMMP13, the prodomain obscures the catalytic pocket, so the catalytic pocket is not available to enhance immune responses. Second, activated MMP13 has a short half-life, mainly due to autologous proteolysis. This short half-life prevents the development of a robust immune response. Third, the catalytic domain sequence is highly conserved among species. Therefore, if elevated, the expected immune response must be weak. 6.2.1 Immunization Strategies In order to deal with these problems and increase the chance of success in obtaining MMP13 inhibitors combined with the catalytic bag, complex and sophisticated immunization strategies containing various formats of MMP13 were designed. Finally, the following immunization method was performed: (a) 3 llamas were immunized with a truncated MMP13 variant consisting of the catalytic domain and containing the mutation F72D that protects MMP13 from autologous proteolysis; (b) Three llamas were immunized with the same truncated MMP13 variant. The mutation system was the same as (a), but in addition to the mutation F72D, it also contained the mutation E120A that inactivates the enzyme function; (c) More than 3 llamas were immunized with the same truncated MMP13 variant. immunized with full-length proMMP13 protein; and (d) 3 llamas were immunized with a plasmid mixture encoding either a secreted proMMP13 variant (V123A) or a GPI-anchored proMMP13 variant (V123A). The V123A mutation described for MMP13 stimulates a weak interaction between Cys104 and the catalytic zinc ion, resulting in spontaneous self-activation. 6.2.2 Serum titration Determine serum titer against proMMP13 and catalytic domain (F72D). Animals immunized with the protein proMMP13 (c) or the DNA encoding proMMP13 V123A (d) generally showed good immune responses to proMMP13 but only weak responses to the catalytic domain (F72D). Animals immunized with the catalytic domain (F72D) (a) or the inactive catalytic domain (F72D, E120A) (b) showed no or only a weak immune response to the catalytic domain. 6.2.3 Library Construction Despite the low serum titers for the catalytic domain, the inventors are confident that large-scale screening can identify inhibitory binders to the catalytic pocket. RNA is extracted from PBL (primary blood lymphocytes) and used as a template for RT-PCR to amplify nanobodies encoding gene fragments. These fragments were selected and cloned into the phagemid vector pAX212 to produce phagemids displaying nanobodies fused to His6- and FLAG3-tags. Phage systems were prepared and stored according to standard procedures (Phage Display of Peptides and Proteins: A Laboratory Manual 1st Edition, Brian K. Kay, Jill Winter, John McCafferty, Academic Press, 1996). The average size of the 18 immune libraries finally obtained is about 5 * 108 Individually selected strains. 6.3 Preliminary screening Phage display selection was carried out with 18 immune libraries and two synthetic nanobody libraries. The libraries were targeted to different combinations of human proMMP13, activated human, rat and dog MMP13, and the human MMP13 catalytic domain (F72D) using different antigen presentation formats and underwent two to four rounds of intensive selection. Individual clones from the selection output were screened for binding to human and rat MMP13 in an ELISA using periplasmic extracts from E. coli cells expressing the nanobody and were measured using a broad-spectrum MMP fluorescent Fluorescent peptide assays target inhibitory activity by increasing fluorescence upon hydrolysis of the peptide of the photopeptide substrate. Nanobodies that showed binding in the ELISA but no inhibitory activity in the fluorescent peptide assay were further screened in a collagen lysis assay. The collagen dissolution assay uses natural substrates instead of peptide substitutes. When collagen and MMP13 have a much larger interaction surface than fluorescent peptides, it is speculated that nanobodies can interfere with collagen degradation but not peptide degradation. However, the collagen lysis assay is incompatible with periplasmic extracts and requires the use of purified nanobodies. 6.3.1 Test Series 1 In the first selection test series, MMP13 was presented as directly coated antigen. This resulted in high hit rates in human and rat MMP13 ELISAs (binding assays), including good diversity of nanobody binding to human MMP13, with a wide range of binding signals in the ELISA. Most nanobodies were found to be cross-reactive to rat MMP13. However, extremely low hit rates were obtained in the fluorescent peptide assay (inhibition assay). Furthermore, incomplete inhibition was observed and some of these Nanobodies showed no rat cross-reactivity. Since no monovalent fully inhibitory Nanobodies were obtained, the inventors speculate that the correct epitope was not targeted and the conditions used during selection were not optimal. However, test selection conditions were hampered in the absence of positive controls. It was eventually discovered that direct coating would interfere with enzyme activity. 6.3.2 Test series 2 In test series 2, the selection was performed with biotinylated MMP13 in solution. Using activated human and rat MMP13 captured via replacement of directly coated proMMP13 with unneutralized antibodies, however the ELISA hit rate was much lower than in trial series 1. In addition, the hit rate in the fluorescent peptide assay is also very low. However, a nanobody was found that completely inhibited the collagenolysis assay. Because the proform of the enzyme is used for binder enhancement, it is hypothesized that important epitopes are obscured by the propeptide. 6.3.3 Experiment Series 3 In view of the disappointing results of Experiment Series 1 and 2, the inventors chose to optimize the presentation of important epitopes in the catalytic domain by using activated MMP13 captured with unneutralizing antibodies. Also used in ELISA in the same capture format. This resulted in higher hit rates for both human and rat MMP13 in the ELISA. However, although the hit rate in the fluorescent peptide assay was slightly higher than in previous experimental series, the nanobodies still gave only incomplete inhibition and showed weak or no rat cross-reactivity, indicating that captured MMP13 The rendering is still sub-optimal. Although the three selected strains including C0101040E09 ("40E09") gave incomplete inhibition in the fluorescent peptide assay, they were found to be positive in the collagen dissolution assay. Family members of the family selection and sequence of 40E09: C0101PMP040E08, C0101pMP042A04, C0101pMP040B05, C0101pMP042D12, C0101pMP042A03, C0101PMP024A08 and C0101PMP040D01 (Reference Table A-1 and A-2). Sequence variability of the CDR regions is described in Tables 6.3.3A, 6.3.3B and 6.3.3C below. The amino acid sequence of the CDR of the selected strain 40E09 was used as a reference for comparison with the CDRs of family members (CDR1 starts at Kabat position 26, CDR2 starts at Kabat position 50, and CDR3 starts at Kabat position 95 ). 6.3.4 Trial Series 4 In the fourth trial series, in addition to the immune nanobody phage display libraries derived from immunization strategies (a) and (c), the phage display libraries derived from selection strategies (b) and (d) were also explored. library (refer to Example 6.2.1). The selection strategy focused on the MMP13 catalytic domain (F72D), which was used in solution. Hit rates in fluorescent peptide assays increased across libraries and many nanobodies showed complete inhibition. Inhibitory Nanobodies showed only poor binding in the ELISA, confirming that the captured MMP13 used in Experiment Series 3 presented suboptimal access to important epitopes. Therefore, a rat fluorescent peptide assay was used instead of ELISA to assess rat cross-reactivity. Representatives of families of nanobodies with confirmed inhibitory potential all have rat cross-reactivity, indicating that the epitopes recognized by this particular set of strains are located within the conserved MMP13 catalytic pocket. In summary, any conventional manipulation of MMP13 was found to interfere with enzymatic activity and TIMP-2 binding (data not shown). After changing and evaluating various parameters, including different antigens (such as proMMP13, catalytic domain (F72D), activated human MMP13, activated rat MMP13, activated dog MMP13), different assays (including ELISA, human fluorescent peptide assay, rat fluorescent peptide assay, and human collagen solubilization assay), different assay settings (including changes in coating conditions, in solution, and capturing MMP13) were found to be useful in identifying fully inhibitory nanoparticles The only successful strategies for antibodies were the use of the catalytic domain (F72D) or the selection of activated MMP13 species (Trial Series 4). 6.3.5 Pilot Panel Sequencing of inhibitory Nanobodies identified in fluorescent peptide or collagen lysis assays. Nanobodies can be classified into various families based on sequence information. Four families derived from test series 2 and 3 showed complete inhibition in the collagenolytic assay but no activity in the fluorescent peptide assay; additionally represented herein as "Profile 1" clones (ref. 40E09 and family members). Ten families derived from Screening Test Series 4 showed inhibitory activity in both the collagen dissolution assay and the fluorescent peptide assay; additionally represented herein as "Profile 2" clones. Select representative clones of each nanobody family, with a total of 14 representatives. The sequences of representative clones are described in Table A-1. 6.4 In vitro characterization of monovalent lead panels To further functionally characterize representative Nanobody clones, they were re-cloned into pAX129 according to standard procedures, transformed into E. coli and expressed and purified ( For example, Maussang et al. 2013 J Biol Chem 288(41): 29562-72). The selected strains then undergo various functional in vitro assays. 6.4.1 Enzymatic Assays The potency/efficacy of the nanobodies was tested in a fluorescent peptide assay targeting different MMP13 orthologs and in a human collagen lysis assay (both assays were also used during the screening , see Example 6.3). Additionally, a second collagen-based assay (fluorescent collagen assay) using higher collagen concentrations compared to the collagen lysis assay was developed to simulate high collagen concentration conditions in cartilage, anticipating MMP13 Inhibitors are active in it. In this assay, the intact FITC-labeled collagen substrate has low fluorescence due to the cross-quenching effect of the fluorophores. Upon cutting, quenching is lost and fluorescence increases. A summary of effectiveness in enzymatic assays is given in Table 6.4.1.In Figure 1, a dose response curve (fluorescent collagen assay) is depicted for the inhibitory effect of activated human MMP13 when high concentrations of bovine collagen I are used.Although Profile 1 nanobodies showed full efficacy in collagen lysis assays at low collagen concentrations, their efficacy in fluorescent collagen assays decreased at high collagen concentrations (Figure 1, left picture). The comparative drug MSC2392891A also showed weak efficacy in the fluorescent collagen assay (Figure 1). Overview 2 Representative nanobodies are effective and fully functional in both collagen dissolution assay and fluorescent collagen assay. Most nanobodies were more active than the comparator drugs in this assay. These Profile 2 representatives showed comparable potency (see Table 6.4.1) and efficacy (Figure 1, right panel) in human, macaque, rat, dog and bovine luciferase peptide assays. 6.4.2 Binding Assay Use an ELISA setup to assess binding affinity. However, this assay was found to be suitable only for assessing the affinity of Profile 1 Nanobodies, but not for Profile 2 Nanobodies (see Example 6.3). Describe the results in Table 6.4.2A.Overall, the Profile 1 Nanobodies had comparable binding affinities (i.e., less than 10-fold difference) for the three species tested. Although selection strain 40E09 had only the second-best binding affinity for human MMP13, it showed the best affinity across species. Because it was found that the profile 2 nanoantibody system competes with TIMP-2 for binding to MMP13, a TIMP-2 competitive ELISA was established and used to evaluate the affinity of the profile 2 nanoantibody. It is noteworthy that Profile 1 nanobodies do not compete with TIMP-2. Describe the results in Table 6.4.2B.Overall, the evaluation was similar to the potency obtained in the enzymatic assay, with Nanobodies 516G08, 529C12 and 62C02 showing the best inhibitory potency, and Nanobodies 59F06, 525C04 and 63F01 being the next best. 6.4.3 Selectivity assay In order to determine the selectivity of nanobodies for MMP13 over MMP1 and MMP14, a fluorescent peptide assay was used. MMP1 and MMP14 are two closely related members of the MMP family. Because Profile 1 Nanobodies did not show inhibition in the MMP13 fluorescent peptide assay, only Profile 2 Nanobodies may be tested. TIMP-2 (a non-selective MMP inhibitor) was used as a positive control in these assays. The results are depicted in Figure 2.All nanobodies are highly selective. They showed no MMP1 inhibitory effect and only observed very minor inhibition for some Nanobodies at high concentrations of MMP14. 6.4.4 Binning For antigen-binding, panels of monovalent Nanobodies derived from Profile 1 and Profile 2 were tested in a competitive ELISA against purified Nanobody 40E09 (Profile 1). The results of the competitive ELISA are shown in Figure 3.Overview 1 Nanobodies 32B08, 43B05, 43E10 and 40E09 (positive controls) all compete with 40E09. On the other hand, profile 2 nanobodies 59F06, 62C02, 63F01, 513C04, 516G08 and 517A01, and the negative control cAblys did not compete with 40E09. Therefore, the epitopic region bin of profile 1 nanobody (tentatively called "bin 1") seems to belong to a different bin from the epitope bin of profile 2 nanobody (tentatively called "bin 2"), which will also Reflects immunity and selection strategies. 6.5 Bivalent construct As demonstrated in Example 6.4.1 above, Profile 1 Nanobodies showed no inhibitory effect in the fluorescent peptide assay (refer to Table 6.4.1). The inventors set out to study the combined effects of Profile 1 Nanobodies and Profile 2 Nanobodies. As the best species cross-reactive binding agent (refer to Example 6.4.2), Nanobody 40E09 was selected as the profile 1 Nanobody representative. Overview 2, select three nanobodies: 516G08, 62C02 and 517A01. Profile 1 and Profile 2 nanoantibody systems are combined with the 35GS linker in a bivalent format (see Table 6.5; Nb(A)-35GS-Nb(B)). Bivalent nanobodies were selected and cloned into pAX205 according to standard procedures and transformed into methanophilic yeast (P. Pastoris ), expressed and purified. A rat fluorescent peptide assay was used to assess the potency of these bivalent constructs, but a lower MMP13 concentration (0.15 nM instead of 1.33 nM) was used compared to the screening setting to improve the sensitivity of the assay. The bivalent construct system was tested in this adapted fluorescent peptide assay as well as in a human fluorescent collagen assay. The obtained data are summarized in Table 6.5.The results indicate that a bivalent construct composed of a combination of Profile 1 Nanobodies and Profile 2 Nanobodies is more potent than those monovalent building blocks in an adapted rat fluorescent peptide assay, with up to 40-fold greater potency Improvement. Improved efficacy (up to 4-fold) was also observed in human fluorescent collagen assays. In both assays, the bivalent construct was equally potent as the positive, non-selective control TIMP-2. Thus, although Profile 1 Nanobodies are not particularly inhibitory by themselves, they improve the potency of Profile 2 Nanobodies when they are combined in bivalent constructs. 6.6 Biophysical Characterization To promote patient convenience, therapeutic compounds with low dosing frequency and high retention are preferred. Therefore, it is preferred that Nanobodies have high stability. To test stability, five representative profile 2 nanobodies and one representative profile 1 nanobody were subjected to biophysical characterization analysis. 6.6.1 Thermal Shift Assay The thermal stability of the wild-type anti-MMP13 Nanobody was studied in the Thermal Shift Assay (TSA). The results are described in Table 6.6.1.Tm values at pH 7 ranged from 65°C to 83°C, indicating good to very good stability characteristics. 6.6.2 Analytical SEC Polymerization and aggregation trends of a selected panel of 5 representative anti-MMP13 nanobodies were studied by analytical size exclusion chromatography (aSEC). The summarized results are shown in Table 6.6.2.Five representative nanobodies have retention times within the expected range of monovalent nanobodies (7.6 to 8.2 minutes), and for all nanobodies, the relative area of the main peak and the total recovery rate are both greater than 90%. Based on the biophysical properties of TSA and aSEC, all tested nanobodies were considered suitable for further development. 6.7 Selection of clones for further development and sequence optimization Based on the functional and biophysical characteristics of representative Nanobodies and bivalent constructs, 4 exemplary lead Nanobodies were selected for further development: 62C02, 529C12, 80A01 and bivalent construct C01010080 ("0080", consisting of Profile 2 Nanobody 517A01 and Profile 1 Nanobody 40E09). The inventors set out to optimize the amino acid sequence of the leader panel ("sequence optimization" or "SO"). In a sequence optimization approach, attempts are made to (1) eliminate sites for post-translational modifications (PTMs); (2) humanize the parent nanobody; and (3) eliminate sites for possible pre-existing antibodies. Antigenic determining region. At the same time, the functional and biophysical characteristics of the nanobody should preferably be maintained or even improved. 6.7.1 Post-translational modifications (PTMs) The post-translational modifications (PTMs) assessed were: Met-oxidation, Asn-deamidation, Asp-isomerization, Asn-glycation and pyroglutamic acid formation. Although the E1D mutation (which is typically incorporated to prevent pyroglutamic acid formation) was not analyzed during sequence optimization, it was included in the formatted Nanobodies. For all MMP13 lead nanobodies that underwent mutation, except 62C02, a 12-fold decrease in potency was observed. Therefore, it was decided not to incorporate the E1D mutation into the 62C02 building block. To assess possible PTM, the lead team was subjected to forced oxidation and temperature stress. No modifications were observed in the lead panel except C0101517A01 ("517A01") and C0101080A01 ("80A01"). Under forced oxidation and temperature stress conditions, C0101080A01 tends to Asp-isomerization and Met-oxidation. However, the degree of isomerization and oxidation differs under the conditions evaluated and is in each case just below or above the applied threshold values. Finally, amino acid residues 54-55, 100d-100e, M100j, and 101-102 were identified as the residues responsible for PTM. Notably, all of these residues are located in the CDR2 or CDR3 regions and therefore may be involved in target binding. To try to meet different needs, NKK libraries were constructed in which these residues were mutated and subsequently screened in a fluorescent peptide assay to assess possible loss of potency and to screen for biophysical properties (Tm). It was unexpectedly found that various positions can be mutated in these CDRs without any significant loss of potency, i.e. retention of over 80% inhibition. ¡ Regarding the D100dX library, 9 amino acid ("AA") substitutions showed >80% inhibition (E, G, A, P, T, R, M, W, and Y). ¡ Regarding the M100jX library, 16 AA substitutions showed >85% inhibition (all, except T, C, and H). ¡ Regarding the D101X library, 16 AA substitutions showed >90% inhibition (all, except D, F, and P). ¡ Regarding the Y102X library, most selected strains showed >90% inhibition. It is believed that amino acid position 102 may be mutated to any residue. The following conservative mutations are particularly good: D100dE and M100jL. A summary of preferred mutations in CDR regions is provided below in Tables 6.7.1A, 6.7.1B and 6.7.1C. The amino acid sequence of the CDR of the selected strain 80A01 was used as a reference for comparison with the CDRs of family members. CDR1 begins at amino acid residue 26 according to Kabat numbering, CDR2 begins at amino acid residue 50, and CDR3 begins at amino acid residue 95. X1=E,G,A,P,T,R,M,W,Y X2=A,R,N,D,E,Q,Z,G,I,L,K,F,P,S,W , Y and V X3=A, R, N, C, E, Q, Z, G, H, I, L, K, M, S, T, W, Y and V , C, E, Q, Z, G, H, I, L, K, M, F, P, S, T, W and V Under forced oxidation and temperature stress conditions, C0101517A01 tends to be deamidated. Finally, amino acid residues N100b and N101 were identified as residues sensitive to deamidation through temperature stress experiments. However, these residues are located in the CDR3 region and may be involved in target binding. Therefore, eliminating the cleidation site may have an impact on binding. In this case also an NKK library was constructed in which residues favoring deamidation were mutated and subsequently screened in a fluorescent peptide assay to assess possible loss of potency and to screen for biophysical properties (Tm). Completely unexpectedly, it was shown that mutation of N100b to Q or S or N101 to Q or V abrogates deamidation, but at the same time results in an increase in Tm of 1 to 3°C compared to the parent nanobody C0101517A01, whereas potency Comparable. The four preferred variants are shown in Table 6.7.1D, which also summarizes the results of the TSA and fluorescent peptide assays. A summary of preferred mutations in CDRs is described in the table below.A summary of preferred mutations in the CDR regions is provided below in Tables 6.7.1E, 6.7.1F and 6.7.1G. The amino acid sequence of the CDR of the selected strain 517A01 was used as a reference for comparison with the CDRs of other selected strains. According to Kabat numbering, CDR1 starts at amino acid residue 26, CDR2 starts at amino acid residue 50, and CDR3 starts at amino acid residue 95. 6.7.2 Humanization For humanization, the nanobody sequence is made more homologous to the human IGHV3-IGHJ germline consensus sequence. In addition to the nanobody "flag" residues, specific amino acids in the different framework regions between the nanobody and the human IGHV3-IGHJ germline consensus sequence are used to keep the protein structure, activity and stability intact. Change into human counterpart. 6.7.3 Pre-existing antibodies and anti-drug antibodies The inventors conducted an early risk assessment of clinical outcomes related to immunogenicity that led to sequence optimization strategies. This assessment includes the immunogenic potential of the drug candidate and the likelihood that anti-drug antibodies will impact both based on the mode of action and the nature of the final biotherapeutic molecule. The sequence of the Nanobody is evaluated against this to potentially (i) minimize the binding of any naturally occurring pre-existing antibodies, and (ii) reduce the likelihood of causing a therapeutically emergent immunogenic response. Mutations L11V and V89L were introduced into all MMP13 nanobodies. 6.7.4 Preferred SO-selected strains In Tables A-1 and A-2, the sequences are optimally described based on the sequence of the leading group, in which the sequences are based on possible pre-existing antibodies and anti-drug antibody PTMs, human source and epitope regions are elaborated. 6.8 Bispecific constructs Anti-MMP13 nanobodies should preferentially target sites of concern (such as joints) in order to inhibit the cartilage-degrading function of MMP13. Aggrecan is abundantly present in joints and is the major proteoglycan in the extracellular matrix (ECM) accounting for approximately 50% of the total protein content. Therefore, at least in theory, anchoring anti-MMP13 Nanobodies to aggrecan-binding agents could allow directing anti-MMP13 Nanobodies to relevant tissues and improve their retention. Set out to combine the anti-MMP13 binding agents of the invention with these aggrecan binding agents and test the efficacy of the resulting bispecific constructs in human fluorescent peptide assays and competitive ELISA assays. Various bispecific constructs containing aggrecan binders and MMP13 inhibitors were generated and tested as indicated in the table. The format and validity of typical results are described in Table 6.8A and Table 6.8B. The results shown in Tables 6.8A and 6.8B demonstrate that the combination of aggrecan binding agents and MMP13 inhibitors has no negative effect on the efficacy of the MMP13 inhibitors. Notably, in most cases, the lead group MMP13 inhibitors were as potent as the non-selective MMP inhibitor TIMP-2. Example 6.9 In vitro rat MMT model DMOAD study In order to further demonstrate the in vivo efficacy of the fusion of the MMP13 inhibitor and the CAP binding agent of the present invention, the surgically induced medial meniscal laceration (MMT) model in rats was used. Briefly, anti-MMP13 Nanobodies were coupled to CAP binding agent ("754" or C010100754). Operate on one knee of rats to induce OA-like symptoms. Treatment begins with IA injection 3 days after surgery. Histopathological examination was performed on day 42 after surgery. Interim and terminal serum samples were collected for exploratory biomarker analysis. Medial and total parenchymal cartilage degeneration widths were determined, as well as the percent reduction in cartilage degeneration. Twenty animals were used in each group. Suppression of cartilage degeneration in the medial tibia is shown in Figure 4. Results demonstrated that the MMP13-CAP construct significantly reduced cartilage width after 42 days compared to vehicle. These results indicate that (a) the CAP portion has no negative impact on the activity of the anti-MMP13 Nanobody (754), consistent with the results of Example 6.8; (b) the CAP portion is able to retain the anti-MMP13 Nanobody; and (c) the anti-MMP13 Nanobodies have a positive effect on cartilage width.The complete contents of all references cited throughout this application (including literature references, issued patents, published patent applications and patent applications also pending) are hereby expressly incorporated by reference. Incorporated into this article, specifically for the guidance mentioned above.

圖1:概況1奈米抗體(左圖)及概況2奈米抗體(右圖)在螢光膠原蛋白檢定法中的劑量反應曲線。   圖2:MMP13前導奈米抗體之選擇性。   圖3:以0.6 nM生物素化40E09針對概況1及概況2奈米抗體小組在經由小鼠抗人類MMP13 mAb(R&D Systems #MAB511)塗佈之人類全長MMP13上的競爭型ELISA。MMP13係經由在37℃下與APMA培育90分鐘而活化。   圖4:在大鼠MMT模式中以奈米抗體之軟骨退化抑制。Figure 1: Dose-response curves of Profile 1 Nanobodies (left) and Profile 2 Nanobodies (right) in fluorescent collagen assays. Figure 2: Selectivity of MMP13 leader nanobodies. Figure 3: Competitive ELISA with 0.6 nM biotinylated 40E09 against the profile 1 and profile 2 nanobody panels on human full-length MMP13 coated with mouse anti-human MMP13 mAb (R&D Systems #MAB511). MMP13 was activated by incubation with APMA at 37°C for 90 minutes. Figure 4: Inhibition of cartilage degeneration using nanobodies in rat MMT model.

<110> 德商麥克專利有限公司(Merck Patent GmbH) 比利時商艾柏靈斯公司(Ablynx N.V.) <110> Merck Patent GmbH Belgian company Ablynx N.V.

<120> 與MMP13結合之免疫球蛋白 <120> Immunoglobulin binding to MMP13

<130> MEPAT.0104 <130> MEPAT.0104

<140> TW 107119216 <140> TW 107119216

<141> 2018-06-04 <141> 2018-06-04

<150> EP17174402.2 <150> EP17174402.2

<151> 2017-06-02 <151> 2017-06-02

<160> 197 <160> 197

<170> BiSSAP 1.3.6 <170> BiSSAP 1.3.6

<210> 1 <210> 1

<211> 114 <211> 114

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 1

Figure 107119216-A0305-02-0149-13
<400> 1
Figure 107119216-A0305-02-0149-13

<210> 2 <210> 2

<211> 114 <211> 114

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 2

Figure 107119216-A0305-02-0149-14
Figure 107119216-A0305-02-0150-2
<400> 2
Figure 107119216-A0305-02-0149-14
Figure 107119216-A0305-02-0150-2

<210> 3 <210> 3

<211> 114 <211> 114

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 3

Figure 107119216-A0305-02-0150-15
<400> 3
Figure 107119216-A0305-02-0150-15

<210> 4 <210> 4

<211> 114 <211> 114

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 4

Figure 107119216-A0305-02-0150-16
<400> 4
Figure 107119216-A0305-02-0150-16

<210> 5 <210> 5

<211> 114 <211> 114

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 5

Figure 107119216-A0305-02-0151-17
<400> 5
Figure 107119216-A0305-02-0151-17

<210> 6 <210> 6

<211> 114 <211> 114

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 6

Figure 107119216-A0305-02-0151-19
<400> 6
Figure 107119216-A0305-02-0151-19

<210> 7 <210> 7

<211> 114 <211> 114

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 7

Figure 107119216-A0305-02-0151-20
Figure 107119216-A0305-02-0152-21
<400> 7
Figure 107119216-A0305-02-0151-20
Figure 107119216-A0305-02-0152-21

<210> 8 <210> 8

<211> 114 <211> 114

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 8

Figure 107119216-A0305-02-0152-23
<400> 8
Figure 107119216-A0305-02-0152-23

<210> 9 <210> 9

<211> 123 <211> 123

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 9

Figure 107119216-A0305-02-0152-24
<400> 9
Figure 107119216-A0305-02-0152-24

<210> 10 <210> 10

<211> 129 <211> 129

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 10

Figure 107119216-A0305-02-0153-25
<400> 10
Figure 107119216-A0305-02-0153-25

<210> 11 <210> 11

<211> 121 <211> 121

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 11

Figure 107119216-A0305-02-0153-26
<400> 11
Figure 107119216-A0305-02-0153-26

<210> 12 <210> 12

<211> 128 <211> 128

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 12

Figure 107119216-A0305-02-0153-28
Figure 107119216-A0305-02-0154-29
<400> 12
Figure 107119216-A0305-02-0153-28
Figure 107119216-A0305-02-0154-29

<210> 13 <210> 13

<211> 120 <211> 120

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 13

Figure 107119216-A0305-02-0154-30
<400> 13
Figure 107119216-A0305-02-0154-30

<210> 14 <210> 14

<211> 120 <211> 120

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 14

Figure 107119216-A0305-02-0154-31
<400> 14
Figure 107119216-A0305-02-0154-31

<210> 15 <210> 15

<211> 126 <211> 126

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 15

Figure 107119216-A0305-02-0155-32
<400> 15
Figure 107119216-A0305-02-0155-32

<210> 16 <210> 16

<211> 124 <211> 124

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 16

Figure 107119216-A0305-02-0155-33
<400> 16
Figure 107119216-A0305-02-0155-33

<210> 17 <210> 17

<211> 127 <211> 127

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 17

Figure 107119216-A0305-02-0155-35
Figure 107119216-A0305-02-0156-36
<400> 17
Figure 107119216-A0305-02-0155-35
Figure 107119216-A0305-02-0156-36

<210> 18 <210> 18

<211> 126 <211> 126

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 18

Figure 107119216-A0305-02-0156-38
<400> 18
Figure 107119216-A0305-02-0156-38

<210> 19 <210> 19

<211> 126 <211> 126

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 19

Figure 107119216-A0305-02-0156-40
<400> 19
Figure 107119216-A0305-02-0156-40

<210> 20 <210> 20

<211> 120 <211> 120

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 20

Figure 107119216-A0305-02-0157-41
<400> 20
Figure 107119216-A0305-02-0157-41

<210> 21 <210> 21

<211> 120 <211> 120

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 21

Figure 107119216-A0305-02-0157-42
<400> 21
Figure 107119216-A0305-02-0157-42

<210> 22 <210> 22

<211> 128 <211> 128

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 22

Figure 107119216-A0305-02-0157-43
Figure 107119216-A0305-02-0158-44
<400> 22
Figure 107119216-A0305-02-0157-43
Figure 107119216-A0305-02-0158-44

<210> 23 <210> 23

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 23

Figure 107119216-A0305-02-0158-45
<400> 23
Figure 107119216-A0305-02-0158-45

<210> 24 <210> 24

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 24

Figure 107119216-A0305-02-0158-46
<400> 24
Figure 107119216-A0305-02-0158-46

<210> 25 <210> 25

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 25

Figure 107119216-A0305-02-0158-47
<400> 25
Figure 107119216-A0305-02-0158-47

<210> 26 <210> 26

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 26

Figure 107119216-A0305-02-0158-48
<400> 26
Figure 107119216-A0305-02-0158-48

<210> 27 <210> 27

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 27

Figure 107119216-A0305-02-0159-49
<400> 27
Figure 107119216-A0305-02-0159-49

<210> 28 <210> 28

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 28

Figure 107119216-A0305-02-0159-50
<400> 28
Figure 107119216-A0305-02-0159-50

<210> 29 <210> 29

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 29

Figure 107119216-A0305-02-0159-51
<400> 29
Figure 107119216-A0305-02-0159-51

<210> 30 <210> 30

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 30

Figure 107119216-A0305-02-0159-52
<400> 30
Figure 107119216-A0305-02-0159-52

<210> 31 <210> 31

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 31

Figure 107119216-A0305-02-0159-53
<400> 31
Figure 107119216-A0305-02-0159-53

<210> 32 <210> 32

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 32

Figure 107119216-A0305-02-0160-56
<400> 32
Figure 107119216-A0305-02-0160-56

<210> 33 <210> 33

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 33

Figure 107119216-A0305-02-0160-58
<400> 33
Figure 107119216-A0305-02-0160-58

<210> 34 <210> 34

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 34

Figure 107119216-A0305-02-0160-61
<400> 34
Figure 107119216-A0305-02-0160-61

<210> 35 <210> 35

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 35 <400> 35

<210> 36 <210> 36

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 36

Figure 107119216-A0305-02-0160-65
<400> 36
Figure 107119216-A0305-02-0160-65

<210> 37 <210> 37

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 37

Figure 107119216-A0305-02-0161-67
<400> 37
Figure 107119216-A0305-02-0161-67

<210> 38 <210> 38

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 38

Figure 107119216-A0305-02-0161-68
<400> 38
Figure 107119216-A0305-02-0161-68

<210> 39 <210> 39

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 39

Figure 107119216-A0305-02-0161-70
<400> 39
Figure 107119216-A0305-02-0161-70

<210> 40 <210> 40

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 40

Figure 107119216-A0305-02-0161-71
<400> 40
Figure 107119216-A0305-02-0161-71

<210> 41 <210> 41

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 41

Figure 107119216-A0305-02-0161-72
<400> 41
Figure 107119216-A0305-02-0161-72

<210> 42 <210> 42

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 42

Figure 107119216-A0305-02-0162-77
<400> 42
Figure 107119216-A0305-02-0162-77

<210> 43 <210> 43

<211> 11 <211> 11

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 43

Figure 107119216-A0305-02-0162-79
<400> 43
Figure 107119216-A0305-02-0162-79

<210> 44 <210> 44

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 44

Figure 107119216-A0305-02-0162-84
<400> 44
Figure 107119216-A0305-02-0162-84

<210> 45 <210> 45

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 45

Figure 107119216-A0305-02-0162-83
<400> 45
Figure 107119216-A0305-02-0162-83

<210> 46 <210> 46

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 46

Figure 107119216-A0305-02-0162-86
<400> 46
Figure 107119216-A0305-02-0162-86

<210> 47 <210> 47

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 47

Figure 107119216-A0305-02-0163-87
<400> 47
Figure 107119216-A0305-02-0163-87

<210> 48 <210> 48

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 48

Figure 107119216-A0305-02-0163-89
<400> 48
Figure 107119216-A0305-02-0163-89

<210> 49 <210> 49

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 49

Figure 107119216-A0305-02-0163-91
<400> 49
Figure 107119216-A0305-02-0163-91

<210> 50 <210> 50

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 50

Figure 107119216-A0305-02-0163-92
<400> 50
Figure 107119216-A0305-02-0163-92

<210> 51 <210> 51

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 51

Figure 107119216-A0305-02-0163-93
<400> 51
Figure 107119216-A0305-02-0163-93

<210> 52 <210> 52

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 52

Figure 107119216-A0305-02-0163-94
<400> 52
Figure 107119216-A0305-02-0163-94

<210> 53 <210> 53

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 53

Figure 107119216-A0305-02-0164-95
<400> 53
Figure 107119216-A0305-02-0164-95

<210> 54 <210> 54

<211> 15 <211> 15

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 54

Figure 107119216-A0305-02-0164-96
<400> 54
Figure 107119216-A0305-02-0164-96

<210> 55 <210> 55

<211> 20 <211> 20

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 55

Figure 107119216-A0305-02-0164-97
<400> 55
Figure 107119216-A0305-02-0164-97

<210> 56 <210> 56

<211> 12 <211> 12

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 56

Figure 107119216-A0305-02-0164-98
<400> 56
Figure 107119216-A0305-02-0164-98

<210> 57 <210> 57

<211> 18 <211> 18

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 57

Figure 107119216-A0305-02-0164-99
Figure 107119216-A0305-02-0165-3
<400> 57
Figure 107119216-A0305-02-0164-99
Figure 107119216-A0305-02-0165-3

<210> 58 <210> 58

<211> 12 <211> 12

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 58

Figure 107119216-A0305-02-0165-100
<400> 58
Figure 107119216-A0305-02-0165-100

<210> 59 <210> 59

<211> 17 <211> 17

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 59

Figure 107119216-A0305-02-0165-103
<400> 59
Figure 107119216-A0305-02-0165-103

<210> 60 <210> 60

<211> 15 <211> 15

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 60

Figure 107119216-A0305-02-0165-104
<400> 60
Figure 107119216-A0305-02-0165-104

<210> 61 <210> 61

<211> 18 <211> 18

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 61

Figure 107119216-A0305-02-0165-105
<400> 61
Figure 107119216-A0305-02-0165-105

<210> 62 <210> 62

<211> 17 <211> 17

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 62

Figure 107119216-A0305-02-0166-106
<400> 62
Figure 107119216-A0305-02-0166-106

<210> 63 <210> 63

<211> 17 <211> 17

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 63

Figure 107119216-A0305-02-0166-107
<400> 63
Figure 107119216-A0305-02-0166-107

<210> 64 <210> 64

<211> 12 <211> 12

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 64

Figure 107119216-A0305-02-0166-108
<400> 64
Figure 107119216-A0305-02-0166-108

<210> 65 <210> 65

<211> 12 <211> 12

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 65

Figure 107119216-A0305-02-0166-109
<400> 65
Figure 107119216-A0305-02-0166-109

<210> 66 <210> 66

<211> 20 <211> 20

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<222> 胺基酸序列 <222> Amino acid sequence

<400> 66

Figure 107119216-A0305-02-0166-110
<400> 66
Figure 107119216-A0305-02-0166-110

<210> 67 <210> 67

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 67

Figure 107119216-A0305-02-0167-111
<400> 67
Figure 107119216-A0305-02-0167-111

<210> 68 <210> 68

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 68

Figure 107119216-A0305-02-0167-112
<400> 68
Figure 107119216-A0305-02-0167-112

<210> 69 <210> 69

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 69

Figure 107119216-A0305-02-0167-113
<400> 69
Figure 107119216-A0305-02-0167-113

<210> 70 <210> 70

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 70

Figure 107119216-A0305-02-0167-114
<400> 70
Figure 107119216-A0305-02-0167-114

<210> 71 <210> 71

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 71

Figure 107119216-A0305-02-0167-115
Figure 107119216-A0305-02-0168-116
<400> 71
Figure 107119216-A0305-02-0167-115
Figure 107119216-A0305-02-0168-116

<210> 72 <210> 72

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 72

Figure 107119216-A0305-02-0168-117
<400> 72
Figure 107119216-A0305-02-0168-117

<210> 73 <210> 73

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 73

Figure 107119216-A0305-02-0168-118
<400> 73
Figure 107119216-A0305-02-0168-118

<210> 74 <210> 74

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 74

Figure 107119216-A0305-02-0168-119
<400> 74
Figure 107119216-A0305-02-0168-119

<210> 75 <210> 75

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 75

Figure 107119216-A0305-02-0168-121
<400> 75
Figure 107119216-A0305-02-0168-121

<210> 76 <210> 76

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 76

Figure 107119216-A0305-02-0169-122
<400> 76
Figure 107119216-A0305-02-0169-122

<210> 77 <210> 77

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 77

Figure 107119216-A0305-02-0169-123
<400> 77
Figure 107119216-A0305-02-0169-123

<210> 78 <210> 78

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 78

Figure 107119216-A0305-02-0169-124
<400> 78
Figure 107119216-A0305-02-0169-124

<210> 79 <210> 79

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 79

Figure 107119216-A0305-02-0169-125
<400> 79
Figure 107119216-A0305-02-0169-125

<210> 80 <210> 80

<211> 14 <211> 14

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 80

Figure 107119216-A0305-02-0170-126
<400> 80
Figure 107119216-A0305-02-0170-126

<210> 81 <210> 81

<211> 14 <211> 14

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 81

Figure 107119216-A0305-02-0170-127
<400> 81
Figure 107119216-A0305-02-0170-127

<210> 82 <210> 82

<211> 14 <211> 14

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 82

Figure 107119216-A0305-02-0170-128
<400> 82
Figure 107119216-A0305-02-0170-128

<210> 83 <210> 83

<211> 14 <211> 14

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 83

Figure 107119216-A0305-02-0170-129
<400> 83
Figure 107119216-A0305-02-0170-129

<210> 84 <210> 84

<211> 14 <211> 14

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 84

Figure 107119216-A0305-02-0170-130
<400> 84
Figure 107119216-A0305-02-0170-130

<210> 85 <210> 85

<211> 14 <211> 14

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 85

Figure 107119216-A0305-02-0170-131
<400> 85
Figure 107119216-A0305-02-0170-131

<210> 86 <210> 86

<211> 14 <211> 14

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 86

Figure 107119216-A0305-02-0171-132
<400> 86
Figure 107119216-A0305-02-0171-132

<210> 87 <210> 87

<211> 14 <211> 14

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 87

Figure 107119216-A0305-02-0171-133
<400> 87
Figure 107119216-A0305-02-0171-133

<210> 88 <210> 88

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 88

Figure 107119216-A0305-02-0171-134
<400> 88
Figure 107119216-A0305-02-0171-134

<210> 89 <210> 89

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 89

Figure 107119216-A0305-02-0171-136
<400> 89
Figure 107119216-A0305-02-0171-136

<210> 90 <210> 90

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 90

Figure 107119216-A0305-02-0172-138
<400> 90
Figure 107119216-A0305-02-0172-138

<210> 91 <210> 91

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 91

Figure 107119216-A0305-02-0172-139
<400> 91
Figure 107119216-A0305-02-0172-139

<210> 92 <210> 92

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 92

Figure 107119216-A0305-02-0172-141
<400> 92
Figure 107119216-A0305-02-0172-141

<210> 93 <210> 93

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 93

Figure 107119216-A0305-02-0172-144
<400> 93
Figure 107119216-A0305-02-0172-144

<210> 94 <210> 94

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 94

Figure 107119216-A0305-02-0173-147
<400> 94
Figure 107119216-A0305-02-0173-147

<210> 95 <210> 95

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 95

Figure 107119216-A0305-02-0173-148
<400> 95
Figure 107119216-A0305-02-0173-148

<210> 96 <210> 96

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 96

Figure 107119216-A0305-02-0173-149
<400> 96
Figure 107119216-A0305-02-0173-149

<210> 97 <210> 97

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 97

Figure 107119216-A0305-02-0173-150
<400> 97
Figure 107119216-A0305-02-0173-150

<210> 98 <210> 98

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 98

Figure 107119216-A0305-02-0174-152
<400> 98
Figure 107119216-A0305-02-0174-152

<210> 99 <210> 99

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 99

Figure 107119216-A0305-02-0174-155
<400> 99
Figure 107119216-A0305-02-0174-155

<210> 100 <210> 100

<211> 11 <211> 11

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 100

Figure 107119216-A0305-02-0174-158
<400> 100
Figure 107119216-A0305-02-0174-158

<210> 101 <210> 101

<211> 11 <211> 11

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 101

Figure 107119216-A0305-02-0174-159
<400> 101
Figure 107119216-A0305-02-0174-159

<210> 102 <210> 102

<211> 11 <211> 11

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 102

Figure 107119216-A0305-02-0174-160
Figure 107119216-A0305-02-0175-4
<400> 102
Figure 107119216-A0305-02-0174-160
Figure 107119216-A0305-02-0175-4

<210> 103 <210> 103

<211> 11 <211> 11

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 103

Figure 107119216-A0305-02-0175-161
<400> 103
Figure 107119216-A0305-02-0175-161

<210> 104 <210> 104

<211> 11 <211> 11

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 104

Figure 107119216-A0305-02-0175-162
<400> 104
Figure 107119216-A0305-02-0175-162

<210> 105 <210> 105

<211> 2415 <211> 2415

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 105

Figure 107119216-A0305-02-0175-163
Figure 107119216-A0305-02-0176-6
Figure 107119216-A0305-02-0177-7
Figure 107119216-A0305-02-0178-9
Figure 107119216-A0305-02-0179-10
Figure 107119216-A0305-02-0180-11
<400> 105
Figure 107119216-A0305-02-0175-163
Figure 107119216-A0305-02-0176-6
Figure 107119216-A0305-02-0177-7
Figure 107119216-A0305-02-0178-9
Figure 107119216-A0305-02-0179-10
Figure 107119216-A0305-02-0180-11

<210> 106 <210> 106

<211> 20 <211> 20

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 106

Figure 107119216-A0305-02-0180-164
<400> 106
Figure 107119216-A0305-02-0180-164

<210> 107 <210> 107

<211> 18 <211> 18

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 107

Figure 107119216-A0305-02-0180-165
<400> 107
Figure 107119216-A0305-02-0180-165

<210> 108 <210> 108

<211> 14 <211> 14

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 108

Figure 107119216-A0305-02-0180-166
<400> 108
Figure 107119216-A0305-02-0180-166

<210> 109 <210> 109

<211> 123 <211> 123

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 109

Figure 107119216-A0305-02-0180-167
Figure 107119216-A0305-02-0181-168
<400> 109
Figure 107119216-A0305-02-0180-167
Figure 107119216-A0305-02-0181-168

<210> 110 <210> 110

<211> 129 <211> 129

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 110

Figure 107119216-A0305-02-0181-169
<400> 110
Figure 107119216-A0305-02-0181-169

<210> 111 <210> 111

<211> 121 <211> 121

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 111

Figure 107119216-A0305-02-0181-170
<400> 111
Figure 107119216-A0305-02-0181-170

<210> 112 <210> 112

<211> 128 <211> 128

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 112

Figure 107119216-A0305-02-0182-173
<400> 112
Figure 107119216-A0305-02-0182-173

<210> 113 <210> 113

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 113

Figure 107119216-A0305-02-0182-174
<400> 113
Figure 107119216-A0305-02-0182-174

<210> 114 <210> 114

<211> 39 <211> 39

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 114

Figure 107119216-A0305-02-0182-175
<400> 114
Figure 107119216-A0305-02-0182-175

<210> 115 <210> 115

<211> 471 <211> 471

<212> PRT <212> PRT

<213> 智人 <213> Homo sapiens

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 115

Figure 107119216-A0305-02-0183-179
<400> 115
Figure 107119216-A0305-02-0183-179

<210> 116 <210> 116

<211> 471 <211> 471

<212> PRT <212> PRT

<213> 黑猩猩 <213> Chimpanzee

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 116

Figure 107119216-A0305-02-0184-180
Figure 107119216-A0305-02-0185-12
<400> 116
Figure 107119216-A0305-02-0184-180
Figure 107119216-A0305-02-0185-12

<210> 117 <210> 117

<211> 471 <211> 471

<212> PRT <212> PRT

<213> 恆河獼猴 <213> Rhesus macaque

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 117

Figure 107119216-A0305-02-0185-181
Figure 107119216-A0305-02-0186-182
<400> 117
Figure 107119216-A0305-02-0185-181
Figure 107119216-A0305-02-0186-182

<210> 118 <210> 118

<211> 496 <211> 496

<212> PRT <212> PRT

<213> 狼 <213> Wolf

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 118

Figure 107119216-A0305-02-0186-183
Figure 107119216-A0305-02-0187-184
<400> 118
Figure 107119216-A0305-02-0186-183
Figure 107119216-A0305-02-0187-184

<210> 119 <210> 119

<211> 471 <211> 471

<212> PRT <212> PRT

<213> 家牛 <213> Cattle

<220> <220>

<223> 人工序列 <223> Artificial sequence

<400> 119

Figure 107119216-A0305-02-0187-185
Figure 107119216-A0305-02-0188-186
<400> 119
Figure 107119216-A0305-02-0187-185
Figure 107119216-A0305-02-0188-186

<210> 120 <210> 120

<211> 472 <211> 472

<212> PRT <212> PRT

<213> 小鼠 <213> mice

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 120

Figure 107119216-A0305-02-0188-187
Figure 107119216-A0305-02-0189-188
<400> 120
Figure 107119216-A0305-02-0188-187
Figure 107119216-A0305-02-0189-188

<210> 121 <210> 121

<211> 472 <211> 472

<212> PRT <212> PRT

<213> 褐鼠 <213> Brown Rat

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 121

Figure 107119216-A0305-02-0189-190
Figure 107119216-A0305-02-0190-191
<400> 121
Figure 107119216-A0305-02-0189-190
Figure 107119216-A0305-02-0190-191

<210> 122 <210> 122

<211> 471 <211> 471

<212> PRT <212> PRT

<213> 雞 <213> Chicken

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 122

Figure 107119216-A0305-02-0190-192
Figure 107119216-A0305-02-0191-193
<400> 122
Figure 107119216-A0305-02-0190-192
Figure 107119216-A0305-02-0191-193

<210> 123 <210> 123

<211> 23 <211> 23

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 123

Figure 107119216-A0305-02-0191-195
<400> 123
Figure 107119216-A0305-02-0191-195

<210> 124 <210> 124

<211> 34 <211> 34

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 124

Figure 107119216-A0305-02-0191-196
<400> 124
Figure 107119216-A0305-02-0191-196

<210> 125 <210> 125

<400> 125 <400> 125

000 000

<210> 126 <210> 126

<211> 5 <211> 5

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 126

Figure 107119216-A0305-02-0192-199
<400> 126
Figure 107119216-A0305-02-0192-199

<210> 127 <210> 127

<211> 7 <211> 7

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 127

Figure 107119216-A0305-02-0192-202
<400> 127
Figure 107119216-A0305-02-0192-202

<210> 128 <210> 128

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 128

Figure 107119216-A0305-02-0192-204
<400> 128
Figure 107119216-A0305-02-0192-204

<210> 129 <210> 129

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 129

Figure 107119216-A0305-02-0192-205
<400> 129
Figure 107119216-A0305-02-0192-205

<210> 130 <210> 130

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 130

Figure 107119216-A0305-02-0192-207
<400> 130
Figure 107119216-A0305-02-0192-207

<210> 131 <210> 131

<211> 15 <211> 15

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 131

Figure 107119216-A0305-02-0193-209
<400> 131
Figure 107119216-A0305-02-0193-209

<210> 132 <210> 132

<211> 18 <211> 18

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 132

Figure 107119216-A0305-02-0193-211
<400> 132
Figure 107119216-A0305-02-0193-211

<210> 133 <210> 133

<211> 20 <211> 20

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 133

Figure 107119216-A0305-02-0193-213
<400> 133
Figure 107119216-A0305-02-0193-213

<210> 134 <210> 134

<211> 25 <211> 25

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 134

Figure 107119216-A0305-02-0193-215
<400> 134
Figure 107119216-A0305-02-0193-215

<210> 135 <210> 135

<211> 30 <211> 30

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 135

Figure 107119216-A0305-02-0193-217
Figure 107119216-A0305-02-0194-218
<400> 135
Figure 107119216-A0305-02-0193-217
Figure 107119216-A0305-02-0194-218

<210> 136 <210> 136

<211> 35 <211> 35

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 136

Figure 107119216-A0305-02-0194-219
<400> 136
Figure 107119216-A0305-02-0194-219

<210> 137 <210> 137

<211> 40 <211> 40

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 137

Figure 107119216-A0305-02-0194-220
<400> 137
Figure 107119216-A0305-02-0194-220

<210> 138 <210> 138

<211> 15 <211> 15

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 138

Figure 107119216-A0305-02-0194-221
<400> 138
Figure 107119216-A0305-02-0194-221

<210> 139 <210> 139

<211> 24 <211> 24

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 139

Figure 107119216-A0305-02-0194-223
<400> 139
Figure 107119216-A0305-02-0194-223

<210> 140 <210> 140

<211> 12 <211> 12

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 140

Figure 107119216-A0305-02-0195-224
<400> 140
Figure 107119216-A0305-02-0195-224

<210> 141 <210> 141

<211> 62 <211> 62

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 141

Figure 107119216-A0305-02-0195-225
<400> 141
Figure 107119216-A0305-02-0195-225

<210> 142 <210> 142

<211> 115 <211> 115

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 142

Figure 107119216-A0305-02-0195-226
<400> 142
Figure 107119216-A0305-02-0195-226

<210> 143 <210> 143

<211> 115 <211> 115

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 143

Figure 107119216-A0305-02-0196-227
<400> 143
Figure 107119216-A0305-02-0196-227

<210> 144 <210> 144

<211> 116 <211> 116

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 144

Figure 107119216-A0305-02-0196-228
<400> 144
Figure 107119216-A0305-02-0196-228

<210> 145 <210> 145

<211> 116 <211> 116

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 145

Figure 107119216-A0305-02-0196-231
Figure 107119216-A0305-02-0197-232
<400> 145
Figure 107119216-A0305-02-0196-231
Figure 107119216-A0305-02-0197-232

<210> 146 <210> 146

<211> 115 <211> 115

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 146

Figure 107119216-A0305-02-0197-235
<400> 146
Figure 107119216-A0305-02-0197-235

<210> 147 <210> 147

<211> 116 <211> 116

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 147

Figure 107119216-A0305-02-0197-236
<400> 147
Figure 107119216-A0305-02-0197-236

<210> 148 <210> 148

<211> 115 <211> 115

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 148

Figure 107119216-A0305-02-0198-238
<400> 148
Figure 107119216-A0305-02-0198-238

<210> 149 <210> 149

<211> 116 <211> 116

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 149

Figure 107119216-A0305-02-0198-239
<400> 149
Figure 107119216-A0305-02-0198-239

<210> 150 <210> 150

<211> 117 <211> 117

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 150

Figure 107119216-A0305-02-0198-240
Figure 107119216-A0305-02-0199-241
<400> 150
Figure 107119216-A0305-02-0198-240
Figure 107119216-A0305-02-0199-241

<210> 151 <210> 151

<211> 118 <211> 118

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 151

Figure 107119216-A0305-02-0199-242
<400> 151
Figure 107119216-A0305-02-0199-242

<210> 152 <210> 152

<211> 116 <211> 116

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 152

Figure 107119216-A0305-02-0199-243
<400> 152
Figure 107119216-A0305-02-0199-243

<210> 153 <210> 153

<211> 117 <211> 117

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 153

Figure 107119216-A0305-02-0200-247
<400> 153
Figure 107119216-A0305-02-0200-247

<210> 154 <210> 154

<211> 118 <211> 118

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 154

Figure 107119216-A0305-02-0200-248
<400> 154
Figure 107119216-A0305-02-0200-248

<210> 155 <210> 155

<211> 115 <211> 115

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 155

Figure 107119216-A0305-02-0200-249
Figure 107119216-A0305-02-0201-250
<400> 155
Figure 107119216-A0305-02-0200-249
Figure 107119216-A0305-02-0201-250

<210> 156 <210> 156

<211> 116 <211> 116

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 156

Figure 107119216-A0305-02-0201-251
<400> 156
Figure 107119216-A0305-02-0201-251

<210> 157 <210> 157

<211> 5 <211> 5

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 157

Figure 107119216-A0305-02-0201-252
<400> 157
Figure 107119216-A0305-02-0201-252

<210> 158 <210> 158

<211> 17 <211> 17

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 158

Figure 107119216-A0305-02-0201-253
<400> 158
Figure 107119216-A0305-02-0201-253

<210> 159 <210> 159

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 159

Figure 107119216-A0305-02-0202-254
<400> 159
Figure 107119216-A0305-02-0202-254

<210> 160 <210> 160

<211> 278 <211> 278

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 160

Figure 107119216-A0305-02-0202-336
<400> 160
Figure 107119216-A0305-02-0202-336

<210> 161 <210> 161

<211> 269 <211> 269

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 161

Figure 107119216-A0305-02-0202-258
Figure 107119216-A0305-02-0203-259
<400> 161
Figure 107119216-A0305-02-0202-258
Figure 107119216-A0305-02-0203-259

<210> 162 <210> 162

<211> 270 <211> 270

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 162

Figure 107119216-A0305-02-0203-260
Figure 107119216-A0305-02-0204-261
<400> 162
Figure 107119216-A0305-02-0203-260
Figure 107119216-A0305-02-0204-261

<210> 163 <210> 163

<211> 278 <211> 278

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 163

Figure 107119216-A0305-02-0204-262
<400> 163
Figure 107119216-A0305-02-0204-262

<210> 164 <210> 164

<211> 269 <211> 269

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 164

Figure 107119216-A0305-02-0205-263
<400> 164
Figure 107119216-A0305-02-0205-263

<210> 165 <210> 165

<211> 270 <211> 270

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 165

Figure 107119216-A0305-02-0205-264
Figure 107119216-A0305-02-0206-265
<400> 165
Figure 107119216-A0305-02-0205-264
Figure 107119216-A0305-02-0206-265

<210> 166 <210> 166

<211> 121 <211> 121

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 166

Figure 107119216-A0305-02-0206-266
<400> 166
Figure 107119216-A0305-02-0206-266

<210> 167 <210> 167

<211> 122 <211> 122

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 167

Figure 107119216-A0305-02-0206-267
<400> 167
Figure 107119216-A0305-02-0206-267

<210> 168 <210> 168

<211> 125 <211> 125

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 168

Figure 107119216-A0305-02-0207-269
<400> 168
Figure 107119216-A0305-02-0207-269

<210> 169 <210> 169

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 169

Figure 107119216-A0305-02-0207-271
<400> 169
Figure 107119216-A0305-02-0207-271

<210> 170 <210> 170

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 170

Figure 107119216-A0305-02-0207-272
<400> 170
Figure 107119216-A0305-02-0207-272

<210> 171 <210> 171

<211> 13 <211> 13

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 171

Figure 107119216-A0305-02-0207-274
<400> 171
Figure 107119216-A0305-02-0207-274

<210> 172 <210> 172

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 172

Figure 107119216-A0305-02-0208-276
<400> 172
Figure 107119216-A0305-02-0208-276

<210> 173 <210> 173

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 173

Figure 107119216-A0305-02-0208-278
<400> 173
Figure 107119216-A0305-02-0208-278

<210> 174 <210> 174

<211> 15 <211> 15

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 174

Figure 107119216-A0305-02-0208-280
<400> 174
Figure 107119216-A0305-02-0208-280

<210> 175 <210> 175

<211> 17 <211> 17

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 175

Figure 107119216-A0305-02-0208-283
<400> 175
Figure 107119216-A0305-02-0208-283

<210> 176 <210> 176

<211> 277 <211> 277

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 176

Figure 107119216-A0305-02-0208-284
Figure 107119216-A0305-02-0209-285
<400> 176
Figure 107119216-A0305-02-0208-284
Figure 107119216-A0305-02-0209-285

<210> 177 <210> 177

<211> 433 <211> 433

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 177

Figure 107119216-A0305-02-0209-287
Figure 107119216-A0305-02-0210-288
<400> 177
Figure 107119216-A0305-02-0209-287
Figure 107119216-A0305-02-0210-288

<210> 178 <210> 178

<211> 280 <211> 280

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 178

Figure 107119216-A0305-02-0210-290
Figure 107119216-A0305-02-0211-291
<400> 178
Figure 107119216-A0305-02-0210-290
Figure 107119216-A0305-02-0211-291

<210> 179 <210> 179

<211> 284 <211> 284

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 179

Figure 107119216-A0305-02-0211-292
<400> 179
Figure 107119216-A0305-02-0211-292

<210> 180 <210> 180

<211> 440 <211> 440

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 180

Figure 107119216-A0305-02-0212-294
<400> 180
Figure 107119216-A0305-02-0212-294

<210> 181 <210> 181

<211> 287 <211> 287

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 181

Figure 107119216-A0305-02-0213-295
<400> 181
Figure 107119216-A0305-02-0213-295

<210> 182 <210> 182

<211> 438 <211> 438

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 182

Figure 107119216-A0305-02-0213-298
Figure 107119216-A0305-02-0214-299
<400> 182
Figure 107119216-A0305-02-0213-298
Figure 107119216-A0305-02-0214-299

<210> 183 <210> 183

<211> 434 <211> 434

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 183

Figure 107119216-A0305-02-0214-302
Figure 107119216-A0305-02-0215-303
<400> 183
Figure 107119216-A0305-02-0214-302
Figure 107119216-A0305-02-0215-303

<210> 184 <210> 184

<211> 590 <211> 590

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 184

Figure 107119216-A0305-02-0215-305
Figure 107119216-A0305-02-0216-308
<400> 184
Figure 107119216-A0305-02-0215-305
Figure 107119216-A0305-02-0216-308

<210> 185 <210> 185

<211> 437 <211> 437

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 185

Figure 107119216-A0305-02-0217-307
<400> 185
Figure 107119216-A0305-02-0217-307

<210> 186 <210> 186

<211> 278 <211> 278

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 186

Figure 107119216-A0305-02-0218-311
<400> 186
Figure 107119216-A0305-02-0218-311

<210> 187 <210> 187

<211> 278 <211> 278

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 187

Figure 107119216-A0305-02-0218-312
Figure 107119216-A0305-02-0219-313
<400> 187
Figure 107119216-A0305-02-0218-312
Figure 107119216-A0305-02-0219-313

<210> 188 <210> 188

<211> 283 <211> 283

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 188

Figure 107119216-A0305-02-0219-315
<400> 188
Figure 107119216-A0305-02-0219-315

<210> 189 <210> 189

<211> 279 <211> 279

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 189

Figure 107119216-A0305-02-0220-317
<400> 189
Figure 107119216-A0305-02-0220-317

<210> 190 <210> 190

<211> 435 <211> 435

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 190

Figure 107119216-A0305-02-0220-318
Figure 107119216-A0305-02-0221-319
<400> 190
Figure 107119216-A0305-02-0220-318
Figure 107119216-A0305-02-0221-319

<210> 191 <210> 191

<211> 282 <211> 282

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 191

Figure 107119216-A0305-02-0221-320
Figure 107119216-A0305-02-0222-321
<400> 191
Figure 107119216-A0305-02-0221-320
Figure 107119216-A0305-02-0222-321

<210> 192 <210> 192

<211> 434 <211> 434

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 192

Figure 107119216-A0305-02-0222-325
Figure 107119216-A0305-02-0223-326
<400> 192
Figure 107119216-A0305-02-0222-325
Figure 107119216-A0305-02-0223-326

<210> 193 <210> 193

<211> 116 <211> 116

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 193

Figure 107119216-A0305-02-0223-327
<400> 193
Figure 107119216-A0305-02-0223-327

<210> 194 <210> 194

<211> 155 <211> 155

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 194

Figure 107119216-A0305-02-0223-328
Figure 107119216-A0305-02-0224-329
<400> 194
Figure 107119216-A0305-02-0223-328
Figure 107119216-A0305-02-0224-329

<210> 195 <210> 195

<211> 162 <211> 162

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 195

Figure 107119216-A0305-02-0224-331
<400> 195
Figure 107119216-A0305-02-0224-331

<210> 196 <210> 196

<211> 312 <211> 312

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 196

Figure 107119216-A0305-02-0224-332
Figure 107119216-A0305-02-0225-333
<400> 196
Figure 107119216-A0305-02-0224-332
Figure 107119216-A0305-02-0225-333

<210> 197 <210> 197

<211> 157 <211> 157

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸序列 <223> Amino acid sequence

<400> 197

Figure 107119216-A0305-02-0225-334
<400> 197
Figure 107119216-A0305-02-0225-334

Claims (41)

一種多肽,其包含至少1個與基質金屬蛋白酶(MMP)結合之免疫球蛋白單可變域(ISVD),其中該MMP係MMP13,且其中與MMP13結合之該ISVD包含3個互補決定區(分別為CDR1至CDR3),其中該ISVD包含選自由下列所組成之群組的CDR1、CDR2及CDR3組合:- CDR1為SEQ ID NO:27、CDR2為SEQ ID NO:42、及CDR3為SEQ ID NO:56;- CDR1為SEQ ID NO:28、CDR2為SEQ ID NO:43、及CDR3為SEQ ID NO:107;- CDR1為SEQ ID NO:28、CDR2為SEQ ID NO:43、及CDR3為SEQ ID NO:57;- CDR1為SEQ ID NO:25、CDR2為SEQ ID NO:40、及CDR3為SEQ ID NO:54;- CDR1為SEQ ID NO:26、CDR2為SEQ ID NO:41、及CDR3為SEQ ID NO:106;- CDR1為SEQ ID NO:26、CDR2為SEQ ID NO:41、及CDR3為SEQ ID NO:55;以及- CDR1為SEQ ID NO:23、CDR2為SEQ ID NO:37、及CDR3為SEQ ID NO:52。 A polypeptide comprising at least 1 immunoglobulin single variable domain (ISVD) that binds to a matrix metalloproteinase (MMP), wherein the MMP is MMP13, and wherein the ISVD that binds to MMP13 includes 3 complementarity determining regions (respectively are CDR1 to CDR3), wherein the ISVD includes a combination of CDR1, CDR2 and CDR3 selected from the group consisting of: - CDR1 is SEQ ID NO: 27, CDR2 is SEQ ID NO: 42, and CDR3 is SEQ ID NO: 56; - CDR1 is SEQ ID NO: 28, CDR2 is SEQ ID NO: 43, and CDR3 is SEQ ID NO: 107; - CDR1 is SEQ ID NO: 28, CDR2 is SEQ ID NO: 43, and CDR3 is SEQ ID NO. NO: 57; - CDR1 is SEQ ID NO: 25, CDR2 is SEQ ID NO: 40, and CDR3 is SEQ ID NO: 54; - CDR1 is SEQ ID NO: 26, CDR2 is SEQ ID NO: 41, and CDR3 is SEQ ID NO: 106; - CDR1 is SEQ ID NO: 26, CDR2 is SEQ ID NO: 41, and CDR3 is SEQ ID NO: 55; and - CDR1 is SEQ ID NO: 23, CDR2 is SEQ ID NO: 37, and CDR3 is SEQ ID NO: 52. 根據申請專利範圍第1項之多肽,其中與MMP13結合之該ISVD不與MMP1或MMP14(膜型)結合。 According to the polypeptide of claim 1, the ISVD that binds to MMP13 does not bind to MMP1 or MMP14 (membrane type). 根據申請專利範圍第1或2項之多肽,其中該ISVD係由或基本上由4個框架區(分別為FR1至FR4)及該3個互補決定區CDR1、CDR2與CDR3所組成。 According to the polypeptide of claim 1 or 2, the ISVD is composed of or essentially consists of 4 framework regions (FR1 to FR4 respectively) and the 3 complementarity determining regions CDR1, CDR2 and CDR3. 根據申請專利範圍第1或2項之多肽,其中該多肽為SEQ ID NO:1或與SEQ ID NO:1具有至少95%之序列同一性的多肽。 The polypeptide according to claim 1 or 2, wherein the polypeptide is SEQ ID NO: 1 or a polypeptide having at least 95% sequence identity with SEQ ID NO: 1. 根據申請專利範圍第1或2項之多肽,其中CDR1為SEQ ID NO:27,CDR2為SEQ ID NO:42,及CDR3為SEQ ID NO:56。 According to the polypeptide of claim 1 or 2, CDR1 is SEQ ID NO: 27, CDR2 is SEQ ID NO: 42, and CDR3 is SEQ ID NO: 56. 根據申請專利範圍第1或2項之多肽,其中該ISVD係選自由下列所組成之群組:SEQ ID NO:111、11、112、12、109、9、110、10及1。 According to the polypeptide of claim 1 or 2, the ISVD is selected from the group consisting of: SEQ ID NO: 111, 11, 112, 12, 109, 9, 110, 10 and 1. 根據申請專利範圍第1或2項之多肽,其中該多肽係以介於1E-07M與1E-13M之間的KD與MMP13結合。 The polypeptide according to claim 1 or 2, wherein the polypeptide binds to MMP13 with a K D between 1E -07 M and 1E -13 M. 根據申請專利範圍第7項之多肽,其中該多肽係以選自下列所組成之群組的KD與MMP13結合:至多1E-07M、低於1E-08M或1E-09M、或甚至低於1E-10M。 The polypeptide according to claim 7, wherein the polypeptide binds to MMP13 with a KD selected from the group consisting of: at most 1E -07 M, less than 1E -08 M or 1E -09 M, or even Below 1E -10 M. 根據申請專利範圍第1或2項之多肽,其中該多肽係以介於1E-07M與1E-12M之間的IC50抑制MMP13之活性。 The polypeptide according to claim 1 or 2, wherein the polypeptide inhibits the activity of MMP13 with an IC 50 between 1E -07 M and 1E -12 M. 根據申請專利範圍第9項之多肽,其中該多肽係以至多1E-07M的IC50抑制MMP13之活性。 The polypeptide according to claim 9 of the patent application, wherein the polypeptide inhibits the activity of MMP13 with an IC 50 of at most 1E -07 M. 根據申請專利範圍第10項之多肽,其中該多肽係以1E-08M、5E-09M或4E-9M、3E-9M、2E-9M、或1E-9M的IC50抑制MMP13之活性。 The polypeptide according to item 10 of the patent application, wherein the polypeptide inhibits MMP13 with an IC 50 of 1E -08 M, 5E -09 M, or 4E -9 M, 3E -9 M, 2E -9 M, or 1E -9 M of activity. 根據申請專利範圍第1或2項之多肽,其中該多肽係以介於1E-07M與1E-12M之間的EC50與MMP13結合。 The polypeptide according to claim 1 or 2, wherein the polypeptide binds to MMP13 with an EC 50 between 1E -07 M and 1E -12 M. 根據申請專利範圍第1或2項之多肽,其中該多肽係以低於5E-04s-1之解離速率(off-rate)與MMP13結合。 The polypeptide according to claim 1 or 2, wherein the polypeptide binds to MMP13 with an off-rate lower than 5E -04 s -1 . 根據申請專利範圍第1或2項之多肽,其中該MMP13為人類MMP13、大鼠MMP13、狗MMP13、牛MMP13、食蟹獼猴MMP13。 According to the polypeptide of item 1 or 2 of the patent application, the MMP13 is human MMP13, rat MMP13, dog MMP13, bovine MMP13, or crab-eating macaque MMP13. 根據申請專利範圍第14項之多肽,其中該人類MMP13為SEQ ID NO:115。 According to the polypeptide of claim 14, the human MMP13 is SEQ ID NO: 115. 根據申請專利範圍第1或2項之多肽,其中該多肽拮抗 MMP13之活性,其中該活性係選自:(i)蛋白酶活性;及(ii)膠原蛋白與類凝血酶域之結合。 A polypeptide according to item 1 or 2 of the patent application, wherein the polypeptide antagonizes The activity of MMP13, wherein the activity is selected from: (i) protease activity; and (ii) binding of collagen to a thrombin-like domain. 根據申請專利範圍第16項之多肽,其中該多肽阻斷MMP13與膠原蛋白及/或聚集蛋白聚糖之至少20%之結合。 The polypeptide according to claim 16, wherein the polypeptide blocks at least 20% of the binding of MMP13 to collagen and/or aggrecan. 根據申請專利範圍第1或2項之多肽,其中該多肽抑制MMP13之蛋白酶活性。 The polypeptide according to claim 1 or 2, wherein the polypeptide inhibits the protease activity of MMP13. 根據申請專利範圍第18項之多肽,其中該蛋白酶活性為第II型膠原蛋白之蛋白分解。 According to the polypeptide of claim 18 of the patent application, the protease activity is proteolysis of type II collagen. 根據申請專利範圍第1或2項之多肽,其包含至少2個ISVD,其中至少1個ISVD係與MMP13特異性結合,其中該多肽包含2、3或4個ISVD。 The polypeptide according to item 1 or 2 of the patent application, which contains at least 2 ISVDs, wherein at least 1 ISVD specifically binds to MMP13, and wherein the polypeptide contains 2, 3 or 4 ISVDs. 根據申請專利範圍第20項之多肽,其中該至少2個ISVD係與MMP13特異性結合。 According to the polypeptide of claim 20, the at least two ISVDs specifically bind to MMP13. 根據申請專利範圍第1項之多肽,其包含2、3或4個ISVD,其各自單獨地與MMP13特異性結合,其中a)至少「第一」ISVD係與MMP13之第一抗原決定子、抗原決定區、部分、域、次單元或構形特異性結合; 及其中b)至少「第二」ISVD係與MMP13之第二抗原決定子、抗原決定區、部分、域、次單元或構形特異性結合,其分別不同於該第一抗原決定子、抗原決定區、部分、域、次單元或構形。 The polypeptide according to item 1 of the patent application, which contains 2, 3 or 4 ISVDs, each of which specifically binds to MMP13 individually, wherein a) at least the "first" ISVD is bound to the first antigenic determinant and antigen of MMP13 determines specific binding of a region, portion, domain, subunit or conformation; and wherein b) at least the "second" ISVD specifically binds to a second epitope, epitope, part, domain, subunit or configuration of MMP13 that is different from the first epitope, epitope, respectively. Region, part, domain, subunit or configuration. 根據申請專利範圍第22項之多肽,其中與MMP13特異性結合之該「第一」ISVD係選自由下列所組成之群組:SEQ ID NO:111、11、110、10、112、12、109及9。 According to the polypeptide of claim 22, the "first" ISVD that specifically binds to MMP13 is selected from the group consisting of: SEQ ID NO: 111, 11, 110, 10, 112, 12, 109 and 9. 根據申請專利範圍第22或23項之多肽,其中與MMP13特異性結合之該「第二」ISVD係SEQ ID NO:1。 According to the polypeptide of claim 22 or 23, the "second" ISVD that specifically binds to MMP13 is SEQ ID NO: 1. 根據前述申請專利範圍第1或2項之多肽,其另包含一或二個與聚集蛋白聚糖特異性結合之ISVD,其中與聚集蛋白聚糖特異性結合之該ISVD可為相同或不同,其中與聚集蛋白聚糖特異性結合之該ISVD係獨立地選自:SEQ ID NO:166至168。 The polypeptide according to item 1 or 2 of the aforementioned patent application, further comprising one or two ISVDs that specifically bind to aggrecan, wherein the ISVDs that specifically bind to aggrecan can be the same or different, wherein The ISVD that specifically binds aggrecan is independently selected from: SEQ ID NO: 166 to 168. 根據申請專利範圍第25項之多肽,其中與聚集蛋白聚糖特異性結合之該ISVD係與人類聚集蛋白聚糖[SEQ ID NO:105]特異性結合。 According to the polypeptide of claim 25, the ISVD that specifically binds to aggrecan specifically binds to human aggrecan [SEQ ID NO: 105]. 根據申請專利範圍第25項之多肽,其中與聚集蛋白聚 糖特異性結合之該ISVD係與狗聚集蛋白聚糖、牛聚集蛋白聚糖、大鼠聚集蛋白聚糖、豬聚集蛋白聚糖、小鼠聚集蛋白聚糖、兔子聚集蛋白聚糖、食蟹獼猴聚集蛋白聚糖及/或恆河猴聚集蛋白聚糖特異性結合。 According to the polypeptide of claim 25 of the patent application, which is polymerized with aggregin The ISVD system specifically binds sugars to dog aggrecan, bovine aggrecan, rat aggrecan, porcine aggrecan, mouse aggrecan, rabbit aggrecan, and crab-eating macaque. Specific binding to aggrecan and/or rhesus aggrecan. 根據申請專利範圍第25項之多肽,其中與聚集蛋白聚糖特異性結合之該ISVD與軟骨組織結合。 According to the polypeptide of claim 25, the ISVD specifically binding to aggrecan binds to cartilage tissue. 根據申請專利範圍第1或2項之多肽,其中該多肽在37℃下於滑液(SF)中具有至少7天的穩定性。 The polypeptide according to claim 1 or 2, wherein the polypeptide has a stability of at least 7 days in synovial fluid (SF) at 37°C. 根據申請專利範圍第1或2項之多肽,其另包含與血清白蛋白結合之ISVD,其中與血清白蛋白結合之該ISVD基本上由4個框架區(分別為FR1至FR4)及3個互補決定區(分別為CDR1至CDR3)所組成,其中CDR1為SEQ ID NO:157,CDR2為SEQ ID NO:158,及CDR3為SEQ ID NO:159。 The polypeptide according to item 1 or 2 of the patent application further includes an ISVD that binds to serum albumin, wherein the ISVD that binds to serum albumin basically consists of 4 framework regions (FR1 to FR4 respectively) and 3 complementary regions. Determining regions (respectively CDR1 to CDR3), wherein CDR1 is SEQ ID NO: 157, CDR2 is SEQ ID NO: 158, and CDR3 is SEQ ID NO: 159. 根據申請專利範圍第30項之多肽,其中與血清白蛋白結合之該ISVD係選自由下列所組成之群組:ALB135(SEQ ID NO:193)、ALB129(SEQ ID NO:144)、ALB8(SEQ ID NO:142)、ALB23(SEQ ID NO:143)和ALB132(SEQ ID NO:145)。 According to the polypeptide of claim 30, the ISVD binding to serum albumin is selected from the group consisting of: ALB135 (SEQ ID NO: 193), ALB129 (SEQ ID NO: 144), ALB8 (SEQ ID NO:142), ALB23 (SEQ ID NO:143) and ALB132 (SEQ ID NO:145). 根據申請專利範圍第20項之多肽,其中該至少兩個ISVD彼此直接連結或經由連結子連結。 The polypeptide according to claim 20, wherein the at least two ISVDs are directly linked to each other or linked via a linker. 根據申請專利範圍第32項之多肽,其中該連結子係選自由下列所組成之群組:SEQ ID NO:125至141。 According to the polypeptide of claim 32, the linker is selected from the group consisting of: SEQ ID NO: 125 to 141. 根據申請專利範圍第32項之多肽,其中該連結子為SEQ ID NO:129。 According to the polypeptide of item 32 of the patent application, the linker is SEQ ID NO: 129. 根據申請專利範圍第1或2項之多肽,其另包含C-端延伸,其中該C-端延伸為C-端延伸(X)n,其中n為1至10;及各X為獨立地選擇的胺基酸殘基,其中該胺基酸殘基獨立地選自由下列所組成之群組:丙胺酸(A)、甘胺酸(G)、纈胺酸(V)、白胺酸(L)及異白胺酸(I)。 The polypeptide according to claim 1 or 2, further comprising a C-terminal extension, wherein the C-terminal extension is C-terminal extension (X)n, where n is 1 to 10; and each X is independently selected An amino acid residue, wherein the amino acid residue is independently selected from the group consisting of: alanine (A), glycine (G), valine (V), leucine (L) ) and isoleucine(I). 根據申請專利範圍第1或2項之多肽,其中該多肽係與SEQ ID NO:1、9、10、11、12、109、110、111、112、160、161、162、163、164、165、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191或192中任一者具有至少80%、90%、95%或100%之序列同一性。 The polypeptide according to item 1 or 2 of the patent application, wherein the polypeptide is the same as SEQ ID NO: 1, 9, 10, 11, 12, 109, 110, 111, 112, 160, 161, 162, 163, 164, 165 Any one of , 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192 has at least 80%, 90%, 95% or 100 % sequence identity. 一種根據申請專利範圍第1至36項中任一項之多肽於製造治療預防個體疾病或疾患的藥劑之用途,其中涉及 MMP13活性。 The use of a polypeptide according to any one of items 1 to 36 of the patent application in manufacturing a medicament for treating and preventing individual diseases or disorders, which involves MMP13 activity. 根據申請專利範圍第37項之用途,其中該疾病或疾患係選自由下列所組成之群組:關節病變和軟骨營養不良、關節炎疾病、骨關節炎、類風濕性關節炎、痛風性關節炎、乾癬性關節炎、創傷性破裂或脫離、軟骨發育不全、肋軟骨炎、脊椎骨端發育不全、椎間盤突出、腰椎間盤退化性疾病、退化性關節疾病和復發性多發性軟骨炎、剝離性骨軟骨炎及聚集蛋白聚糖病變(aggrecanopath)。 The use according to item 37 of the patent application, wherein the disease or disease is selected from the group consisting of: joint lesions and chondrodystrophies, arthritic diseases, osteoarthritis, rheumatoid arthritis, gouty arthritis , psoriatic arthritis, traumatic rupture or detachment, achondroplasia, costochondritis, spondylosis, intervertebral disc herniation, lumbar disc degenerative disease, degenerative joint disease and relapsing polychondritis, osteochondral dissecans inflammation and aggrecanopath. 一種根據申請專利範圍第1至36項中任一項之多肽用於製造藥劑之用途。 The use of a polypeptide according to any one of items 1 to 36 of the patent application for manufacturing a medicament. 根據申請專利範圍第1或2項之多肽,其係用於治療或預防由下列所組成之症狀:關節病變和軟骨營養不良、關節炎疾病、骨關節炎、類風濕性關節炎、痛風性關節炎、乾癬性關節炎、創傷性破裂或脫離、軟骨發育不全、肋軟骨炎、脊椎骨端發育不全、椎間盤突出、腰椎間盤退化性疾病、退化性關節疾病和復發性多發性軟骨炎、剝離性骨軟骨炎及聚集蛋白聚糖病變。 Polypeptides according to item 1 or 2 of the patent application, which are used for the treatment or prevention of symptoms consisting of: joint lesions and chondrodystrophies, arthritic diseases, osteoarthritis, rheumatoid arthritis, gouty joints arthritis, psoriatic arthritis, traumatic rupture or detachment, achondroplasia, costochondritis, aplasia of the vertebrae, disc herniation, degenerative lumbar disc disease, degenerative joint disease and relapsing polychondritis, osteosarcoma Chondritis and aggrecan lesions. 根據申請專利範圍第1或2項之多肽,其中該多肽交叉阻斷與根據SEQ ID NO:111、11、112、12、109、9、110、10及1中任一者之多肽的至少一者的MMP13結合及/ 或被根據SEQ ID NO:111、11、112、12、109、9、110、10及1中任一者之至少一種多肽交叉阻斷與MMP13結合。 The polypeptide according to claim 1 or 2, wherein the polypeptide cross-blocks with at least one of the polypeptides according to any one of SEQ ID NO: 111, 11, 112, 12, 109, 9, 110, 10 and 1 The MMP13 binding and/ Or is cross-blocked from binding to MMP13 by at least one polypeptide according to any one of SEQ ID NOs: 111, 11, 112, 12, 109, 9, 110, 10 and 1.
TW107119216A 2017-06-02 2018-06-04 Mmp13 binding immunoglobulins TWI825021B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17174402.2 2017-06-02
EP17174402 2017-06-02

Publications (2)

Publication Number Publication Date
TW201906870A TW201906870A (en) 2019-02-16
TWI825021B true TWI825021B (en) 2023-12-11

Family

ID=59014501

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107119216A TWI825021B (en) 2017-06-02 2018-06-04 Mmp13 binding immunoglobulins

Country Status (12)

Country Link
US (1) US20200190216A1 (en)
EP (1) EP3630178A1 (en)
JP (2) JP2020521804A (en)
KR (1) KR20200015601A (en)
CN (1) CN110997001A (en)
AU (1) AU2018278275A1 (en)
BR (1) BR112019025097A2 (en)
CA (1) CA3064469A1 (en)
IL (1) IL270955A (en)
MX (1) MX2019014448A (en)
TW (1) TWI825021B (en)
WO (1) WO2018220235A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111733140B (en) * 2020-04-04 2022-07-01 华中农业大学 Hybridoma cell strain resisting canine matrix metalloproteinase, preparation method thereof, monoclonal antibody and application thereof
CN114685655B (en) * 2020-12-28 2024-04-12 浙江纳米抗体技术中心有限公司 PD-1 binding molecules and uses thereof
WO2023049249A1 (en) * 2021-09-23 2023-03-30 Biomedit, Llc VHH ANTIBODIES TARGETING FimH AND METHODS OF USING THE SAME

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB335768A (en) 1929-10-24 1930-10-02 Jacoviac Maurice Improvements in protecting devices for gramophone disc records
US4938949A (en) 1988-09-12 1990-07-03 University Of New York Treatment of damaged bone marrow and dosage units therefor
WO1990005144A1 (en) 1988-11-11 1990-05-17 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US5399346A (en) 1989-06-14 1995-03-21 The United States Of America As Represented By The Department Of Health And Human Services Gene therapy
SE509359C2 (en) 1989-08-01 1999-01-18 Cemu Bioteknik Ab Use of stabilized protein or peptide conjugates for the preparation of a drug
DK1621554T4 (en) 1992-08-21 2012-12-17 Univ Bruxelles Immunoglobulins devoid of light chains
DK0698097T3 (en) 1993-04-29 2001-10-08 Unilever Nv Production of antibodies or (functionalized) fragments thereof derived from Camelidae heavy chain immunoglobulins
DK0702721T3 (en) 1993-06-09 2001-05-21 Unilever Nv Method for Preparation of Fusion Proteins Including ScFv Fragments Using a Transformed Mold
FR2708622B1 (en) 1993-08-02 1997-04-18 Raymond Hamers Recombinant vector containing a sequence of a structural lipoprotein gene for the expression of nucleotide sequences.
EP0739981A1 (en) 1995-04-25 1996-10-30 Vrije Universiteit Brussel Variable fragments of immunoglobulins - use for therapeutic or veterinary purposes
ES2294799T3 (en) 1996-06-27 2008-04-01 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw. MOLECULES OF ANTIBODIES THAT SPECIFICALLY INTERACT WITH THE ACTIVE SITE OR HIDIDURA OF A DIANA MOLECULA.
WO1998029560A1 (en) * 1996-12-26 1998-07-09 Fuji Yakuhin Kogyo Kabushiki Kaisha Monoclonal antibody against collagenase 3 and immunoassay method with the use of the same
US6329516B1 (en) 1997-04-28 2001-12-11 Fmc Corporation Lepidopteran GABA-gated chloride channels
CN1203178C (en) 1997-10-27 2005-05-25 尤尼利弗公司 Multivalent antigen-binding proteins
WO1999037681A2 (en) 1998-01-26 1999-07-29 Unilever Plc Method for producing antibody fragments
JP2003525016A (en) 1998-02-19 2003-08-26 エクサイト セラピーズ, インコーポレイテッド Compositions and methods for modulating lymphocyte activation
EP0967284A1 (en) 1998-05-28 1999-12-29 Pfizer Limited Phosphodiesterases
AU3041100A (en) 1999-01-05 2000-07-24 Unilever Plc Binding of antibody fragments to solid supports
DK1144616T4 (en) 1999-01-19 2009-03-30 Unilever Nv Method for producing antibody fragments
WO2000046383A2 (en) 1999-02-05 2000-08-10 Rijksuniversiteit Leiden Method of modulating metabolite biosynthesis in recombinant cells
AU784108B2 (en) 1999-03-15 2006-02-02 University Of British Columbia, The Methods and reagents for modulating cholesterol levels
AP1447A (en) 1999-04-22 2005-08-12 Unilever Plc Inhibition of viral infection using monovalent antigen-binding proteins.
CA2375787C (en) 1999-06-18 2007-03-27 Cv Therapeutics, Inc. Compositions and methods for increasing cholesterol efflux and raising hdl using atp binding cassette transporter protein abc1
AU6322900A (en) 1999-08-02 2001-02-19 Keygene N.V. Method for generating resistance against cgmmv in plants, genetic constructs for use in said method, and cgmmv-resistant plants obtained via said method
GB9922124D0 (en) 1999-09-17 1999-11-17 Pfizer Ltd Phosphodiesterase enzymes
US6479280B1 (en) 1999-09-24 2002-11-12 Vlaams Interuniversitair Institutuut Voor Biotechnologie Vzw Recombinant phages capable of entering host cells via specific interaction with an artificial receptor
DE19955408A1 (en) 1999-11-18 2001-05-23 Bayer Ag New invertebrate gamma-aminobutyric acid receptor proteins, useful in screening for potential insecticides, for plant protection or medicine, also related nucleic acid
EP1242460B1 (en) 1999-11-29 2006-10-18 Unilever Plc Immobilisation of proteins using a polypeptide segment
ATE440111T1 (en) 1999-11-29 2009-09-15 Bac Ip B V IMMOBILIZED ANTIGEN BINDING MOLECULES FROM A DOMAIN
ES2270893T3 (en) 1999-12-24 2007-04-16 Genentech, Inc. PROCEDURE AND COMPOSITIONS TO EXTEND THE AVERAGE LIFE OF BIOACTIVE COMPOUNDS.
DE60138333D1 (en) 2000-03-14 2009-05-28 Unilever Nv Variable heavy chain domains of an antibody to human nutritional lipases and their uses
CA2380443C (en) 2000-05-26 2013-03-12 Ginette Dubuc Single-domain antigen-binding antibody fragments derived from llama antibodies
AU2002229639A1 (en) 2000-12-13 2002-06-24 De Haard, Johannes Joseph Wilhelmus Camelidae antibody arrays
EP1377306A1 (en) 2001-03-09 2004-01-07 Dyax Corp. Serum albumin binding moieties
US20060073141A1 (en) 2001-06-28 2006-04-06 Domantis Limited Compositions and methods for treating inflammatory disorders
JP4303105B2 (en) 2001-06-28 2009-07-29 ドマンティス リミテッド Dual specific ligands and their use
US7371849B2 (en) 2001-09-13 2008-05-13 Institute For Antibodies Co., Ltd. Methods of constructing camel antibody libraries
JP2005289809A (en) 2001-10-24 2005-10-20 Vlaams Interuniversitair Inst Voor Biotechnologie Vzw (Vib Vzw) Mutant heavy-chain antibody
AU2002351896A1 (en) 2001-12-11 2003-06-23 Ablynx N.V. Method for displaying loops from immunoglobulin domains in different contexts
US20050037358A1 (en) 2001-12-21 2005-02-17 Serge Muyldermans Method for cloning of variable domain sequences
JP2005517674A (en) 2002-01-03 2005-06-16 フラームス・インテルウニフェルシタイル・インステイチュート・フォール・ビオテヒノロヒー・ヴェーゼットウェー Novel immunoconjugates useful for tumor treatment
AU2003284891A1 (en) 2002-10-23 2004-05-13 Ludwig Institute For Cancer Research A34 and a33-like 3 dna, proteins, antibodies thereto and methods of treatment using same
CA2505326A1 (en) * 2002-11-08 2004-05-21 Ablynx N.V. Camelidae antibodies against immunoglobulin e and use thereof for the treatment of allergic disorders
EP1558646A2 (en) 2002-11-08 2005-08-03 Ablynx N.V. Single domain antibodies directed against interferon- gamma and uses thereof
ATE444984T1 (en) 2002-12-31 2009-10-15 Nektar Therapeutics Al Corp HYDROLYSIS-STABLE POLYMERS CONTAINING MALEIMIDE END GROUPS
EP2390270A1 (en) 2003-01-10 2011-11-30 Ablynx N.V. Therapeutic polypeptides, homologues thereof, fragments thereof and for use in modulating platelet-mediated aggregation
US7461263B2 (en) 2003-01-23 2008-12-02 Unspam, Llc. Method and apparatus for a non-revealing do-not-contact list system
AU2004220325B2 (en) 2003-06-30 2011-05-12 Domantis Limited Polypeptides
EP1498133A1 (en) * 2003-07-18 2005-01-19 Aventis Pharma Deutschland GmbH Use of a pak inhibitor for the treatment of a joint disease
CA2535550A1 (en) 2003-08-12 2005-03-03 William M. Yarbrough Treatment for acne vulgaris and method of use
PT1687338E (en) 2003-11-07 2011-01-20 Ablynx Nv Camelidae single domain antibodies vhh directed against epidermal growth factor receptor and uses thereof
US7563443B2 (en) 2004-09-17 2009-07-21 Domantis Limited Monovalent anti-CD40L antibody polypeptides and compositions thereof
AU2005293752A1 (en) 2004-10-13 2006-04-20 Ablynx N.V. Single domain camelide anti-amyloid beta antibodies and polypeptides comprising the same for the treatment and diagnosis of degenarative neural diseases such as Alzheimer's disease
CA2595682A1 (en) 2005-01-31 2006-08-03 Ablynx N.V. Method for generating variable domain sequences of heavy chain antibodies
MX2007014359A (en) 2005-05-18 2008-02-06 Ablynx Nv Improved nanobodies against tumor necrosis factor -alpha.
SI2444424T1 (en) 2005-05-20 2018-10-30 Ablynx N.V. Improved nanobodies tm for the treatment of aggregation-mediated disorders
EP2057191A1 (en) 2006-08-18 2009-05-13 Ablynx N.V. Amino acid sequences directed against il-6r and polypeptides comprising the same for the treatment of deseases and disorders associated with il-6-mediated signalling
WO2008068280A1 (en) 2006-12-05 2008-06-12 Ablynx N.V. Peptides capable of binding to serum proteins
WO2008074840A2 (en) * 2006-12-19 2008-06-26 Ablynx N.V. Amino acid sequences directed against a metalloproteinase from the adam family and polypeptides comprising the same for the treatment of adam-related diseases and disorders
AU2008219216A1 (en) 2007-02-21 2008-08-28 Ablynx N.V. Amino acid sequences directed against vascular endothelial growth factor and polypeptides comprising the same for the treatment of conditions and diseases characterized by excessive and/or pathological angiogenesis or neovascularization
CA2687903C (en) 2007-05-24 2016-09-13 Ablynx N.V. Amino acid sequences directed against rank-l and polypeptides comprising the same for the treatment of bone diseases and disorders
WO2009008414A1 (en) * 2007-07-10 2009-01-15 Shionogi & Co., Ltd. Monoclonal antibody having neutralizing activity against mmp13
JP2011516603A (en) 2008-04-17 2011-05-26 アブリンクス エン.ヴェー. Peptides capable of binding to serum proteins and compounds, constructs and polypeptides containing them
MX2011010681A (en) 2009-04-10 2012-01-20 Ablynx Nv Improved amino acid sequences directed against il-6r and polypeptides comprising the same for the treatment of il-6r related diseases and disorders.
MX2012000055A (en) * 2009-07-02 2012-01-27 Glaxo Group Ltd Polypeptides and method of treatment.
WO2012048291A2 (en) * 2010-10-08 2012-04-12 Proteapex Therapeutics Llc Compositions and methods for inhibition of mmp:mmp-substrate interactions
CN108653728B (en) 2011-06-23 2022-11-18 埃博灵克斯股份有限公司 Techniques for predicting, detecting, and reducing non-specific protein interference in assays involving immunoglobulin single variable domains
FR2996003B1 (en) * 2012-09-25 2014-10-17 Commissariat Energie Atomique METHOD FOR SPECIFICALLY DETECTION IN SAMPLE MATRIX METALLOPROTEASE (MMP) OF INTEREST ONLY IN ACTIVE FORM
EP2985296A1 (en) * 2014-08-13 2016-02-17 Calypso Biotech SA Antibodies specific for MMP9
US11142569B2 (en) * 2015-11-13 2021-10-12 Ablynx N.V. Serum albumin-binding immunoglobulin variable domains
GB201617622D0 (en) * 2016-10-18 2016-11-30 VIB VZW and Universiteit Gent Means and methods to treat inflammation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Pivetta E., et al., "MMP-13 stimulates osteoclast differentiation and activation in tumour breast bone metastases", Breast Cancer Research, Vol. 13, 2011, http://breast-cancer-research.com/content/13/5/R105

Also Published As

Publication number Publication date
US20200190216A1 (en) 2020-06-18
RU2019144336A3 (en) 2021-11-12
AU2018278275A1 (en) 2019-12-19
TW201906870A (en) 2019-02-16
BR112019025097A2 (en) 2020-07-28
IL270955A (en) 2020-01-30
JP2020521804A (en) 2020-07-27
CN110997001A (en) 2020-04-10
EP3630178A1 (en) 2020-04-08
WO2018220235A1 (en) 2018-12-06
RU2019144336A (en) 2021-07-09
KR20200015601A (en) 2020-02-12
MX2019014448A (en) 2020-02-10
CA3064469A1 (en) 2018-12-06
JP2023113141A (en) 2023-08-15

Similar Documents

Publication Publication Date Title
US20220289860A1 (en) ADAMTS Binding Immunoglobulins
US20230312694A1 (en) Aggrecan binding immunoglobulins
JP2023113141A (en) Mmp13-binding immunoglobulins
TWI826376B (en) Polypeptides binding adamts5, mmp13 and aggrecan
RU2784069C2 (en) Mmp13-binding immunoglobulins
RU2781182C2 (en) Adamts-binding immunoglobulins
RU2771818C2 (en) Immunoglobulins binding aggrecan
RU2786659C2 (en) Polypeptides binding to adamts5, mmp13, and aggrecan
TW202413408A (en) Aggrecan binding immunoglobulins