TWI824891B - Sub-pixel pattern detection method, display driver chip, display device and information processing device - Google Patents
Sub-pixel pattern detection method, display driver chip, display device and information processing device Download PDFInfo
- Publication number
- TWI824891B TWI824891B TW111148777A TW111148777A TWI824891B TW I824891 B TWI824891 B TW I824891B TW 111148777 A TW111148777 A TW 111148777A TW 111148777 A TW111148777 A TW 111148777A TW I824891 B TWI824891 B TW I824891B
- Authority
- TW
- Taiwan
- Prior art keywords
- sub
- pixel
- code
- style
- driver chip
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 62
- 230000010365 information processing Effects 0.000 title claims description 6
- 239000011159 matrix material Substances 0.000 claims abstract description 39
- 230000008901 benefit Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 19
- 238000009877 rendering Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
Landscapes
- Liquid Crystal Display Device Control (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
本發明主要揭示一種子畫素樣式檢測方法,應用於包括一顯示面板和至少一個顯示驅動晶片的一顯示裝置之中,且由該顯示驅動晶片執行。所述子畫素樣式檢測方法包括:對一輸入圖像數據執行一對齊操作,從而獲得至少一n×m灰階值矩陣;對所述灰階值矩陣的每一行灰階值執行一編碼操作,從而生成n組包含m個位元的二進制碼;將該n組二進制碼合併為一編碼,並將該編碼轉換成一十六進制的樣式碼;以及將該樣式碼和一參考樣式碼進行比對,從而確定一子畫素樣式。本發明之子畫素樣式檢測方法具有以下優點:樣式碼長度短、低運算量、調整灰階值矩陣的大小可適用檢測各種子畫素樣式、以及低誤檢率。The present invention mainly discloses a sub-pixel pattern detection method, which is applied in a display device including a display panel and at least one display driver chip, and is executed by the display driver chip. The sub-pixel pattern detection method includes: performing an alignment operation on an input image data to obtain at least an n×m gray-scale value matrix; performing an encoding operation on each row of gray-scale values in the gray-scale value matrix , thereby generating n groups of binary codes containing m bits; combining the n groups of binary codes into one code, and converting the code into a hexadecimal pattern code; and combining the pattern code with a reference pattern code Compare to determine a sub-pixel style. The sub-pixel pattern detection method of the present invention has the following advantages: short pattern code length, low computational complexity, adaptability to detect various sub-pixel patterns by adjusting the size of the grayscale value matrix, and low false detection rate.
Description
本發明為顯示驅動晶片的相關技術領域,尤指整合在顯示驅動晶片之中的一種子畫素樣式檢測方法。The present invention relates to the technical field related to display driver chips, and in particular, to a sub-pixel pattern detection method integrated in the display driver chip.
已知,平面顯示裝置已被應用在包括智慧型電視、筆記型電腦、平板電腦、頭戴式顯示裝置、自動櫃員機、視訊式門口機、智慧型手機、車載娛樂裝置等各式電子裝置之中。圖1為習知的一種平面顯示裝置的方塊圖。如圖1所示,習知的平面顯示裝置1a包括:一顯示面板11a以及至少一顯示驅動晶片12a,其中該顯示面板11a包括X×Y個子畫素,且所述X×Y個子畫素經排列而具有一特定子畫素樣式(sub-pixel pattern)。It is known that flat display devices have been used in various electronic devices including smart TVs, notebook computers, tablet computers, head-mounted display devices, automatic teller machines, video door stations, smart phones, car entertainment devices, etc. . FIG. 1 is a block diagram of a conventional flat display device. As shown in Figure 1, a conventional flat display device 1a includes: a display panel 11a and at least one display driver chip 12a, wherein the display panel 11a includes X×Y sub-pixels, and the X×Y sub-pixels are Arranged to have a specific sub-pixel pattern.
一般而言,可通過提高該顯示面板11a的每英寸畫素數目(Pixels Per Inch, PPI)來提高該平面顯示裝置1a的分辨率(Resolution),而爲達到提高PPI之最終效果則需要盡可能減小各所述子畫素的尺寸及其彼此之間的間距。然而,受到製程工藝以及成本的限制,子畫素尺寸和間距不可能無限縮小。因此,子畫素渲染 (Sub Pixel Rendering, SPR)乃被提出。具體而言,子畫素渲染為一種算法(methodology),其以一子畫素渲染單元121a的形式整合在該顯示驅動晶片12a之中,且用以通過相鄰二畫素共用部分子畫素的方法實現感官分辨率的提升,使得低PPI的顯示面板11a可以和高PPI的顯示面板11a具有同樣的顯示效果。Generally speaking, the resolution (Resolution) of the flat display device 1a can be improved by increasing the number of pixels per inch (PPI) of the display panel 11a. In order to achieve the final effect of increasing the PPI, it is necessary to increase the resolution as much as possible. Reduce the size of each of the sub-pixels and the spacing between them. However, due to limitations in process technology and cost, sub-pixel size and spacing cannot be reduced infinitely. Therefore, Sub Pixel Rendering (SPR) was proposed. Specifically, sub-pixel rendering is an algorithm (methodology), which is integrated into the display driver chip 12a in the form of a sub-pixel rendering unit 121a, and is used to share part of the sub-pixels by two adjacent pixels. This method achieves an improvement in sensory resolution, so that the low-PPI display panel 11a can have the same display effect as the high-PPI display panel 11a.
目前,經常採用子畫素樣式包括Real樣式(或稱RGB樣式)Delta樣式和Diamond樣式等。應可理解,不同的子畫素樣式必須採用不同的SPR算法。因此,為了讓所述顯示驅動晶片12a可以適用具不同子畫素樣式的顯示面板11a,現有技術進一步地在該顯示驅動晶片12a之中設置一子畫素樣式檢測單元122a,用以偵測該顯示面板11a的子畫素樣式。圖2為圖1所示之子畫素樣式檢測單元122a的方塊圖。如圖2所示,該子畫素樣式檢測單元122a包括:一對齊單元1221a、一編碼單元1222a以及一比對單元1223a。在該顯示驅動晶片12a自一上位機(如:智慧型手機的應用處理器)接收一輸入圖像數據之後,該對齊單元1221a對該輸入圖像數據所包含之X×Y個子畫素灰階值進行一對齊操作,從而獲得複數個3×3灰階值矩陣,圖3為一個3×3灰階值矩陣的示圖。Currently, sub-pixel styles are often used, including Real style (or RGB style), Delta style, and Diamond style. It should be understood that different sub-pixel styles must use different SPR algorithms. Therefore, in order to make the display driver chip 12a applicable to the display panel 11a with different sub-pixel patterns, the prior art further provides a sub-pixel pattern detection unit 122a in the display driver chip 12a to detect the The sub-pixel pattern of the display panel 11a. FIG. 2 is a block diagram of the sub-pixel pattern detection unit 122a shown in FIG. 1 . As shown in Figure 2, the sub-pixel pattern detection unit 122a includes: an alignment unit 1221a, a coding unit 1222a and a comparison unit 1223a. After the display driver chip 12a receives an input image data from a host computer (such as an application processor of a smartphone), the alignment unit 1221a adjusts the X×Y sub-pixel grayscale contained in the input image data. An alignment operation is performed on the values to obtain a plurality of 3×3 gray-scale value matrices. Figure 3 is a diagram of a 3×3 gray-scale value matrix.
接著,該編碼單元1222a分別依一水平(h)方向、一左上右下(l)方向、一垂直(v)方向、以及一右上左下(r)方向對該3×3灰階值矩陣進行編碼,以產生一組十六進制碼。舉例而言,如圖3所示,依水平(h)方向對該3×3灰階值矩陣進行編碼時,以H(f(V3-V4), f(V5-V4), f(V4-V3), f(V4-V5))表示水平方向編碼,其中,f()為一函數,其值輸出值為0或1。具體地,V0~V8為子畫素灰階值,其值為0~255。當‘V3-V4’、‘V5-V4’、‘V4-V3’、‘V4-V5’的值大於一預定上閥值時,f()=1;反之,若當‘V3-V4’、‘V5-V4’、‘V4-V3’、‘V4-V5’的值小於一預定下閥值時,f()=0。因此,4個f()會輸出一位元寬度為4的二進制碼,並將此二進制碼轉換成一組十六進制碼即為水平方向編碼。在獲得水平方向編碼之後,再接著計算左上右下方向編碼、一垂直方向編碼與右上左下方向編碼,最後,將4組十六進制碼合併為一樣式碼(pattern code)。Then, the encoding unit 1222a encodes the 3×3 grayscale value matrix in a horizontal (h) direction, an upper left and lower right (l) direction, a vertical (v) direction, and an upper right and lower left (r) direction respectively. , to generate a set of hexadecimal codes. For example, as shown in Figure 3, when encoding the 3×3 gray-scale value matrix in the horizontal (h) direction, H(f(V3-V4), f(V5-V4), f(V4- V3), f(V4-V5)) represents horizontal direction encoding, where f() is a function whose value output value is 0 or 1. Specifically, V0 to V8 are sub-pixel gray scale values, and their values are 0 to 255. When the values of 'V3-V4', 'V5-V4', 'V4-V3' and 'V4-V5' are greater than a predetermined upper threshold, f()=1; conversely, if when 'V3-V4', When the values of 'V5-V4', 'V4-V3' and 'V4-V5' are less than a predetermined threshold, f()=0. Therefore, 4 f() will output a binary code with a bit width of 4, and convert this binary code into a set of hexadecimal codes, which is the horizontal direction encoding. After obtaining the horizontal direction code, then calculate the upper left and lower right direction code, a vertical direction code and the upper right and lower left direction code. Finally, the four sets of hexadecimal codes are combined into a pattern code.
接著,該比對單元1223a將該樣式碼和一參考樣式碼進行比對,以確認子畫素樣式。如此,在確定子畫素樣式之後,該子畫素渲染單元121a便可依據子畫素樣式而啟用對應的SPR算法,從而對所述輸入圖像數據進行一子畫素渲染處理以產生一輸出圖像數據,使該顯示驅動晶片12a依據該輸出圖像數據對該顯示面板11a進行顯示驅動,從而使該顯示面板11a顯示高品質及高解析度之圖像。Next, the comparison unit 1223a compares the style code with a reference style code to confirm the sub-pixel style. In this way, after determining the sub-pixel style, the sub-pixel rendering unit 121a can activate the corresponding SPR algorithm according to the sub-pixel style, thereby performing a sub-pixel rendering process on the input image data to generate an output. The image data enables the display driver chip 12a to perform display driving on the display panel 11a based on the output image data, so that the display panel 11a displays high-quality and high-resolution images.
然而,該子畫素樣式檢測單元122a所採用的子畫素樣式檢測方法的主要缺陷在於:編碼運算佔用該顯示驅動晶片12a過多運算資源,因此無法適用在低階的顯示驅動晶片12a。另一方面,請見圖4A,其為習用於該顯示面板11a的一種子畫素樣式的示圖。並且,在圖4A中,一虛線方框用以標示一個3×3灰階值矩陣。實務經驗指出,該子畫素樣式檢測單元122a所採用的子畫素樣式檢測方法無法對該3×3灰階值矩陣的子畫素樣式進行編碼,因此無法產出對應的樣式碼(pattern code)。However, the main drawback of the sub-pixel pattern detection method used by the sub-pixel pattern detection unit 122a is that the encoding operation takes up too much computing resources of the display driver chip 12a, and therefore cannot be applied to low-end display driver chips 12a. On the other hand, please see FIG. 4A , which is a diagram of a sub-pixel pattern commonly used in the display panel 11a. Moreover, in Figure 4A, a dotted box is used to mark a 3×3 grayscale value matrix. Practical experience points out that the sub-pixel pattern detection method used by the sub-pixel pattern detection unit 122a cannot encode the sub-pixel pattern of the 3×3 grayscale value matrix, and therefore cannot generate the corresponding pattern code. ).
此外,圖4B和圖4C為習用於該顯示面板11a的另外兩種子畫素樣式的示圖。在圖4B中,一虛線方框用以標示一個第一3×3灰階值矩陣。並且,在圖4C中,一虛線方框用以標示一個第二3×3灰階值矩陣。實務經驗指出,對圖4B的該第一3×3灰階值矩陣進行一子畫素樣式檢測操作之後會產生一第一樣式碼,對圖4C的該第二3×3灰階值矩陣進行一子畫素樣式檢測操作之後會產生一第二樣式碼,然而該第一樣式碼和該第二樣式碼具有相同的編碼內容。換句話說,習知的子畫素樣式檢測單元122a無法對圖4B的子畫素樣式和圖4C的子畫素樣式作出有效區別。In addition, FIG. 4B and FIG. 4C are diagrams of two other sub-pixel styles commonly used in the display panel 11a. In FIG. 4B, a dotted box is used to mark a first 3×3 grayscale value matrix. Moreover, in Figure 4C, a dotted box is used to mark a second 3×3 grayscale value matrix. Practical experience points out that after performing a sub-pixel pattern detection operation on the first 3×3 gray-scale value matrix in Figure 4B, a first pattern code will be generated. For the second 3×3 gray-scale value matrix in Figure 4C, a first pattern code will be generated. A second style code will be generated after performing a sub-pixel style detection operation. However, the first style code and the second style code have the same encoding content. In other words, the conventional sub-pixel pattern detection unit 122a cannot make an effective distinction between the sub-pixel pattern of FIG. 4B and the sub-pixel pattern of FIG. 4C.
由上述說明可知,本領域亟需的一種子畫素樣式檢測方法。From the above description, it can be seen that a sub-pixel pattern detection method is urgently needed in this field.
本發明之主要目的在於提供一種子畫素樣式檢測方法。和現有技術所採用的檢測方法相比,本發明之子畫素樣式檢測方法具有以下優點:樣式碼長度短、低運算量、調整灰階值矩陣的大小可適用檢測各種子畫素樣式、以及低誤檢率。另外,對於特定複雜的子畫素樣式可通過增大灰階值矩陣的大小以提高檢測可信度。The main purpose of the present invention is to provide a sub-pixel pattern detection method. Compared with the detection methods used in the prior art, the sub-pixel pattern detection method of the present invention has the following advantages: short pattern code length, low computational complexity, adjusting the size of the grayscale value matrix to be suitable for detecting various sub-pixel patterns, and low cost. False detection rate. In addition, for certain complex sub-pixel patterns, the detection reliability can be improved by increasing the size of the grayscale value matrix.
為達成上述目的,本發明提出所述子畫素樣式檢測方法的一實施例,其係由一顯示驅動晶片執行,且包括以下步驟: 對一輸入圖像數據執行一對齊操作,從而獲得至少一n×m灰階值矩陣; 對所述灰階值矩陣的每一行子畫素灰階值執行一編碼操作,從而生成n組二進制碼,其中各所述二進制碼包含m個位元,且n、m皆為正整數; 將該n組二進制碼合併為一編碼,接著將該編碼轉換成一十六進制碼;以及 以該十六進制碼作為一樣式碼,接著將該樣式碼和一參考樣式碼進行比對,從而確定一子畫素樣式。 To achieve the above object, the present invention proposes an embodiment of the sub-pixel pattern detection method, which is executed by a display driver chip and includes the following steps: Perform an alignment operation on an input image data to obtain at least an n×m grayscale value matrix; Perform an encoding operation on the sub-pixel grayscale values of each row of the grayscale value matrix, thereby generating n sets of binary codes, where each binary code contains m bits, and n and m are both positive integers; Combine the n sets of binary codes into a code, and then convert the code into a hexadecimal code; and The hexadecimal code is used as a style code, and then the style code is compared with a reference style code to determine a sub-pixel style.
在一實施例中,所述位元為0或1,且其係透過執行以下條件判斷式(1)和(2)而生成:f(V ij )=0,if V ij <Dark_th...........................(1) In one embodiment, the bit is 0 or 1, and is generated by executing the following conditional judgments (1) and (2 ) : f( Vij ) =0,if Vij < Dark_th . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
f(V ij )=1,if V ij >light_th...........................(2) f( V ij )=1,if V ij > light_th . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
其中,f()為一函數,V ij 所述灰階值矩陣內的一個子畫素灰階值,in,jm,Dark_th為一低灰階閥值,且light_th為一高灰階閥值。 Among them, f() is a function, a sub-pixel grayscale value in the grayscale value matrix V ij , i n, j m, Dark_th is a low grayscale threshold, and light_th is a high grayscale threshold.
在一實施例中,當Dark_th≦V ij ≦light_th,所述函數的輸出值為2,此時所述編碼操作停止進行。 In one embodiment, when Dark_th≦ Vij ≦ light_th, the output value of the function is 2, and the encoding operation stops at this time.
在一實施例中,該低灰階閥值為1,且該高灰階閥值為254。 In one embodiment, the low grayscale threshold is 1, and the high grayscale threshold is 254.
並且,本發明同時提供一種顯示驅動晶片的一實施例,其特徵在於,包含一檢測單元用於執行一子畫素樣式檢測方法以確定一子畫素樣式,且所述子畫素樣式檢測方法包括以下步驟:對一輸入圖像數據執行一對齊操作,從而獲得至少一n×m灰階值矩陣;對所述灰階值矩陣的每一行子畫素灰階值執行一編碼操作,從而生成n組二進制碼,其中各所述二進制碼包含m個位元,且n、m皆為正整數;將該n組二進制碼合併為一編碼,接著將該編碼轉換成一十六進制碼;以及以該十六進制碼作為一樣式碼,接著將該樣式碼和一參考樣式碼進行比對,從而確定一子畫素樣式。 Furthermore, the present invention also provides an embodiment of a display driver chip, which is characterized in that it includes a detection unit for executing a sub-pixel pattern detection method to determine a sub-pixel pattern, and the sub-pixel pattern detection method The method includes the following steps: performing an alignment operation on an input image data to obtain at least an n×m grayscale value matrix; performing an encoding operation on sub-pixel grayscale values in each row of the grayscale value matrix to generate n sets of binary codes, where each binary code contains m bits, and n and m are both positive integers; combine the n sets of binary codes into one code, and then convert the code into a hexadecimal code; And using the hexadecimal code as a style code, then comparing the style code with a reference style code to determine a sub-pixel style.
在一實施例中,所述位元為0或1,且其係透過執行以下條件判斷式(1)和(2)而生成:f(V ij )=0,if V ij <Dark_th...........................(1) In one embodiment, the bit is 0 or 1, and is generated by executing the following conditional judgments (1) and (2 ) : f( Vij ) =0,if Vij < Dark_th . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
f(V ij )=1,if V ij >light_th...........................(2) f( V ij )=1,if V ij > light_th . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
其中,f()為一函數,V ij 所述灰階值矩陣內的一個子畫素灰階值,in,jm,Dark_th為一低灰階閥值,且light_th為一高灰階閥值。 Among them, f() is a function, a sub-pixel grayscale value in the grayscale value matrix V ij , i n, j m, Dark_th is a low grayscale threshold, and light_th is a high grayscale threshold.
在一實施例中,當Dark_th≦V ij ≦light_th,所述函數的輸出值為2,此時該檢測單元停止所述編碼操作。 In one embodiment, when Dark_th≦ Vij ≦ light_th, the output value of the function is 2, and the detection unit stops the encoding operation at this time.
在一實施例中,該低灰階閥值為1,且該高灰階閥值為254。 In one embodiment, the low grayscale threshold is 1, and the high grayscale threshold is 254.
進一步地,本發明還提出一種顯示裝置的一實施例,其包括一顯示面板以及至少一個顯示驅動晶片,其特徵在於,該顯示驅動晶片執行如前所述本發明之子畫素樣式檢測方法以確定一子畫素樣式。 Further, the present invention also proposes an embodiment of a display device, which includes a display panel and at least one display driver chip, characterized in that the display driver chip executes the sub-pixel pattern detection method of the present invention as described above to determine A pixel style.
此外,本發明還提出一種資訊處理裝置,其包含一顯示裝置,並且,其特徵在於,該顯示裝置包括一顯示面板以及至少一個如前所述本發明之顯示驅動晶片。在一實施例中,該資訊處理裝置為選自於由智慧型電視、智慧型手機、智慧型手錶、平板電腦、一體式電腦、筆記型電腦、自動櫃員機、車載娛樂裝置、和視訊式門口機所組成群組之中的一種電子裝置。 In addition, the present invention also provides an information processing device, which includes a display device, and is characterized in that the display device includes a display panel and at least one display driver chip of the present invention as described above. In one embodiment, the information processing device is selected from the group consisting of a smart TV, a smart phone, a smart watch, a tablet computer, an all-in-one computer, a notebook computer, an automatic teller machine, a car entertainment device, and a video door station. An electronic device within a group.
為使 貴審查委員能進一步瞭解本發明之結構、特徵、目的、與其優點,茲附以圖式及較佳具體實施例之詳細說明如後。In order to enable the review committee to further understand the structure, characteristics, purpose, and advantages of the present invention, drawings and detailed descriptions of preferred embodiments are attached below.
圖5為應用本發明之一種子畫素樣式檢測方法的一平面顯示裝置的方塊圖。如圖5所示,該平面顯示裝置1包括:一顯示面板11以及至少一顯示驅動晶片12,其中該顯示面板11包括X×Y個子畫素,X、Y皆為正整數,所述X×Y個子畫素經排列而具有一特定子畫素樣式(sub-pixel pattern),且該顯示驅動晶片12具有一子畫素渲染 (Sub Pixel Rendering, SPR)單元121。特別地,在該顯示驅動晶片12自一上位機(如:智慧型手機的應用處理器)接收一輸入顯示數據之後,該顯示驅動晶片12執行本發明之子畫素樣式檢測方法以確定一子畫素樣式,接著,該子畫素渲染單元121便可依據子畫素樣式而啟用對應的SPR算法,從而對所述輸入圖像數據進行一子畫素渲染處理以產生一輸出圖像數據,使該顯示驅動晶片12依據該輸出圖像數據對該顯示面板11進行顯示驅動,從而使該顯示面板11顯示高品質及高解析度之圖像。 FIG. 5 is a block diagram of a flat display device applying a seed pixel pattern detection method of the present invention. As shown in FIG. 5 , the flat display device 1 includes: a display panel 11 and at least one display driver chip 12 , wherein the display panel 11 includes X×Y sub-pixels, X and Y are both positive integers, and the X× The Y sub-pixels are arranged to have a specific sub-pixel pattern, and the display driver chip 12 has a sub-pixel rendering (Sub Pixel Rendering, SPR) unit 121. In particular, after the display driver chip 12 receives an input display data from a host computer (such as an application processor of a smartphone), the display driver chip 12 executes the sub-pixel pattern detection method of the present invention to determine a sub-pixel. Then, the sub-pixel rendering unit 121 can activate the corresponding SPR algorithm according to the sub-pixel style, thereby performing a sub-pixel rendering process on the input image data to generate an output image data, so that The display driver chip 12 performs display driving on the display panel 11 based on the output image data, so that the display panel 11 displays high-quality and high-resolution images.
如圖5所示,本發明之子畫素樣式檢測方法係以一子畫素樣式檢測單元122的形式存在於該顯示驅動晶片12之中。進一步地,圖6為圖5所示之子畫素樣式檢測單元122的方塊圖。如圖6所示,該子畫素樣式檢測單元122包括:一對齊單元1221、一編碼單元1222以及一比對單元1223。 As shown in FIG. 5 , the sub-pixel pattern detection method of the present invention exists in the display driver chip 12 in the form of a sub-pixel pattern detection unit 122 . Further, FIG. 6 is a block diagram of the sub-pixel pattern detection unit 122 shown in FIG. 5 . As shown in FIG. 6 , the sub-pixel pattern detection unit 122 includes: an alignment unit 1221 , a coding unit 1222 and a comparison unit 1223 .
圖7為本發明之一種子畫素樣式檢測方法的流程圖。如圖6與圖7所示,本發明之子畫素樣式檢測方法首先執行步驟S1:對一輸入圖像數據執行一對齊操作,從而獲得至少一n×m灰階值矩陣。圖8為步驟S1的操作示意圖。具體地,如圖6、圖7與圖8所示,在自一上位機接收一輸入圖像數據之後,該顯示驅動晶片12啟用其子畫素樣式檢測單元122,使該子畫素樣式檢測單元122啟用其對齊單元1221對該輸入圖像數據所包含的X×Y個子畫素灰階值進行一對齊操作,從而獲得複數個灰階值矩陣,其中各所述灰階值矩陣包含n行m列子畫素灰階值,n、m皆為正整數。 FIG. 7 is a flow chart of a seed pixel pattern detection method according to the present invention. As shown in FIGS. 6 and 7 , the sub-pixel pattern detection method of the present invention first performs step S1: perform an alignment operation on an input image data, thereby obtaining at least an n×m grayscale value matrix. Figure 8 is a schematic diagram of the operation of step S1. Specifically, as shown in Figures 6, 7 and 8, after receiving an input image data from a host computer, the display driver chip 12 activates its sub-pixel pattern detection unit 122 to enable the sub-pixel pattern detection The unit 122 enables its alignment unit 1221 to perform an alignment operation on the X×Y sub-pixel grayscale values contained in the input image data, thereby obtaining a plurality of grayscale value matrices, wherein each grayscale value matrix contains n rows. m columns of sub-pixel grayscale values, n and m are both positive integers.
完成步驟S1之後,方法流程接著執行步驟S2:對所述灰階值矩陣的每一行子畫素灰階值執行一編碼操作,從而生成n組二進制碼。圖9為步驟S2的操作示意圖。如圖6、圖7與圖9所示,舉例而言,所述灰階值矩陣的大小為3×4,亦即包含3行4列子畫素灰階值。在步驟S2中,該子畫素樣式檢測單元122啟用其編碼單元1222以對此3×4灰階值矩陣的第1行至第3行子畫素灰階值執行編碼操作。具體地,對第1行子畫素灰階值進行編碼,以H( , , , )表示第1行水平方向編碼,其中,f()為一函數,且其輸出值係透過執行以下條件判斷式(1)和(2)而生成: ···························· (1) ···························· (2) After completing step S1, the method flow then proceeds to step S2: perform an encoding operation on the sub-pixel grayscale values of each row of the grayscale value matrix, thereby generating n sets of binary codes. Figure 9 is a schematic diagram of the operation of step S2. As shown in FIG. 6 , FIG. 7 and FIG. 9 , for example, the size of the gray scale value matrix is 3×4, that is, it includes 3 rows and 4 columns of sub-pixel gray scale values. In step S2, the sub-pixel pattern detection unit 122 enables its encoding unit 1222 to perform an encoding operation on the sub-pixel gray-scale values in rows 1 to 3 of the 3×4 gray-scale value matrix. Specifically, the sub-pixel grayscale value of the first row is encoded as H( , , , ) represents the horizontal encoding of the first row, where f() is a function, and its output value is generated by executing the following conditional judgments (1) and (2): ···························· (1) ···························· (2)
在上式(1)、(2)之中, 所述灰階值矩陣內的一個子畫素灰階值,i∈n,j∈m,Dark_th為一低灰階閥值,且light_th為一高灰階閥值。在一實施例中,可將Dark_th設為1,並將light_th設為254。另一方面,依據圖9可知, 、 、 、 、 、 、 、 、 、 、 、 。因此,第1行的4個子畫素灰階值經函數f()轉換之後成為4個位元,此4個位元組成一位元寬度為4的二進制碼。依前述方式,接著再對第2行、第3行子畫素灰階值進行編碼以生成另二位元寬度為4的二進制碼。 In the above formulas (1) and (2), For a sub-pixel grayscale value in the grayscale value matrix, i∈n, j∈m, Dark_th is a low grayscale threshold, and light_th is a high grayscale threshold. In one embodiment, Dark_th can be set to 1 and light_th can be set to 254. On the other hand, according to Figure 9, it can be seen that , , , , , , , , , , , . Therefore, the grayscale values of the four sub-pixels in the first row become 4 bits after being converted by the function f(), and these 4 bits form a binary code with a one-bit width of 4. According to the aforementioned method, the sub-pixel grayscale values of the second and third rows are then encoded to generate another two-bit binary code with a width of 4.
完成步驟S2之後,方法流程接著執行步驟S3:將該n組二進制碼合併為一編碼,接著將該編碼轉換成一十六進制碼。具體地,如圖6與圖9所示,在獲得對應n行子畫素灰階值的n組包括m個位元的二進制碼之後,該編碼單元1222將此n組m位元二進制碼進行合併成一編碼,接著將該編碼轉換成一十六進制碼。例如,將0011、1001和1100合併為001110011100,接著將001110011100轉換成0x39C。補充說明的是,依據本發明之設計,Dark_th≦ ≦light_th的情況下,函數f()的輸出值為2,此時所述編碼操作停止進行。 After completing step S2, the method flow proceeds to step S3: merging the n sets of binary codes into one code, and then converting the code into a hexadecimal code. Specifically, as shown in FIG. 6 and FIG. 9 , after obtaining n groups of m-bit binary codes corresponding to n rows of sub-pixel gray scale values, the encoding unit 1222 processes the n groups of m-bit binary codes. Combined into a code, and then convert the code into a hexadecimal code. For example, combine 0011, 1001, and 1100 into 001110011100, and then convert 001110011100 into 0x39C. It should be supplemented that according to the design of the present invention, Dark_th≦ In the case of ≦light_th, the output value of function f() is 2, and the encoding operation stops at this time.
最終,方法流程係執行步驟S4:以該十六進制碼作為一樣式碼(pattern code),接著將該樣式碼和一參考樣式碼進行比對,從而確定一子畫素樣式。具體地,在步驟S4中,該子畫素樣式檢測單元122啟用其比對單元1223以將該樣式碼和一參考樣式碼進行比對,從而完成子畫素樣式之確認。如此,在確定子畫素樣式之後,該子畫素渲染單元121便可依據子畫素樣式而啟用對應的SPR算法,以對所述輸入圖像數據進行一子畫素渲染處理以產生一輸出圖像數據,使該顯示驅動晶片12依據該輸出圖像數據對該顯示面板11進行顯示驅動,從而使該顯示面板11顯示高品質及高解析度之圖像。Finally, the method flow proceeds to step S4: using the hexadecimal code as a pattern code, and then comparing the pattern code with a reference pattern code to determine a sub-pixel pattern. Specifically, in step S4, the sub-pixel pattern detection unit 122 activates its comparison unit 1223 to compare the pattern code with a reference pattern code, thereby completing the confirmation of the sub-pixel pattern. In this way, after determining the sub-pixel style, the sub-pixel rendering unit 121 can activate the corresponding SPR algorithm according to the sub-pixel style to perform a sub-pixel rendering process on the input image data to generate an output. The image data enables the display driver chip 12 to perform display driving on the display panel 11 according to the output image data, so that the display panel 11 displays high-quality and high-resolution images.
如此,上述已完整且清楚地說明本發明之子畫素樣式檢測方法;並且,經由上述可得知本發明具有下列優點:In this way, the above has completely and clearly explained the sub-pixel pattern detection method of the present invention; and from the above, it can be seen that the present invention has the following advantages:
(1)本發明提供一種子畫素樣式檢測方法,其係應用於包括一顯示面板和至少一個顯示驅動晶片的一顯示裝置之中,且由該顯示驅動晶片執行。和現有技術所採用的檢測方法相比,本發明之子畫素樣式檢測方法具有以下優點:樣式碼長度短、低運算量、調整灰階值矩陣的大小可適用檢測各種子畫素樣式、以及低誤檢率。另外,對於特定複雜的子畫素樣式可通過增大灰階值矩陣的大小以提高檢測可信度。(1) The present invention provides a sub-pixel pattern detection method, which is applied in a display device including a display panel and at least one display driver chip, and is executed by the display driver chip. Compared with the detection methods used in the prior art, the sub-pixel pattern detection method of the present invention has the following advantages: short pattern code length, low computational complexity, adjusting the size of the grayscale value matrix to be suitable for detecting various sub-pixel patterns, and low cost. False detection rate. In addition, for certain complex sub-pixel patterns, the detection reliability can be improved by increasing the size of the grayscale value matrix.
(2)本發明同時提供一種顯示裝置,其包括一顯示面板以及至少一個顯示驅動晶片,其特徵在於,該顯示驅動晶片執行如前所述本發明之子畫素樣式檢測方法以確定一子畫素樣式。(2) The present invention also provides a display device, which includes a display panel and at least one display driver chip. It is characterized in that the display driver chip executes the sub-pixel pattern detection method of the present invention as described above to determine a sub-pixel. style.
(3)進一步地,本發明還提供一種資訊處理裝置,其包含一顯示裝置,並且,其特徵在於,該顯示裝置包括一顯示面板以及至少一個如前所述本發明之顯示驅動晶片。在可行的實施例中,該資訊處理裝置為選自於由智慧型電視、智慧型手機、智慧型手錶、平板電腦、一體式電腦、筆記型電腦、自動櫃員機、車載娛樂裝置、和視訊式門口機所組成群組之中的一種電子裝置。(3) Further, the present invention also provides an information processing device, which includes a display device, and is characterized in that the display device includes a display panel and at least one display driver chip of the present invention as described above. In a feasible embodiment, the information processing device is selected from a smart TV, a smart phone, a smart watch, a tablet computer, an all-in-one computer, a notebook computer, an automatic teller machine, a car entertainment device, and a video doorway An electronic device in a group of machines.
必須加以強調的是,前述本案所揭示者乃為較佳實施例,舉凡局部之變更或修飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。It must be emphasized that the foregoing disclosed in this case are preferred embodiments. Any partial changes or modifications derived from the technical ideas of this case and easily inferred by those familiar with the art do not deviate from the patent of this case. category of rights.
綜上所陳,本案無論目的、手段與功效,皆顯示其迥異於習知技術,且其首先發明合於實用,確實符合發明之專利要件,懇請 貴審查委員明察,並早日賜予專利俾嘉惠社會,是為至禱。To sum up, regardless of the purpose, means and effects of this case, it shows that it is completely different from the conventional technology, and that the invention is practical first, and indeed meets the patent requirements for inventions. I sincerely ask the review committee to take a clear look and grant the patent as soon as possible for your benefit. Society is a prayer for the Supreme Being.
1a:平面顯示裝置 11a:顯示面板 12a:顯示驅動晶片 121a:子畫素渲染單元 122a:子畫素樣式檢測單元 1221a:對齊單元 1222a:編碼單元 1223a:比對單元 1:平面顯示裝置 11:顯示面板 12:顯示驅動晶片 121:子畫素渲染單元 122:子畫素樣式檢測單元 1221:對齊單元 1222:編碼單元 1223:比對單元 S1:對一輸入圖像數據執行一對齊操作,從而獲得至少一n×m灰階值矩陣 S2:對所述灰階值矩陣的每一行子畫素灰階值執行一編碼操作,從而生成n組二進制碼 S3:將該n組二進制碼合併為一編碼,接著將該編碼轉換成一十六進制碼 S4:以該十六進制碼作為一樣式碼,接著將該樣式碼和一參考樣式碼進行比對,從而確定一子畫素樣式 1a: Flat display device 11a:Display panel 12a: Display driver chip 121a: Sub-pixel rendering unit 122a: Sub-pixel pattern detection unit 1221a: Alignment unit 1222a: Coding unit 1223a: Comparison unit 1: Flat display device 11:Display panel 12:Display driver chip 121: Sub-pixel rendering unit 122: Sub-pixel style detection unit 1221: Alignment unit 1222: coding unit 1223:Comparison unit S1: Perform an alignment operation on an input image data to obtain at least an n×m grayscale value matrix. S2: Perform an encoding operation on each row of sub-pixel grayscale values in the grayscale value matrix, thereby generating n sets of binary codes. S3: Combine the n sets of binary codes into one code, and then convert the code into a hexadecimal code S4: Use the hexadecimal code as a style code, and then compare the style code with a reference style code to determine a sub-pixel style.
圖1為習知的一種平面顯示裝置的方塊圖;圖2為圖1所示之子畫素樣式檢測單元的方塊圖;圖3為一個3×3灰階值矩陣的示圖;圖4A為習用於如圖1所示的顯示面板之中的一種子畫素樣式的示圖;圖4B為習用於如圖1所示的顯示面板之中的另一種子畫素樣式的示圖; 圖4C為習用於如圖1所示的顯示面板之中的又一種子畫素樣式的示圖; 圖5為應用本發明之一種子畫素樣式檢測方法的一平面顯示裝置的方塊圖; 圖6為圖5所示之子畫素樣式檢測單元的方塊圖; 圖7為本發明之一種子畫素樣式檢測方法的流程圖; 圖8為步驟S1的操作示意圖;以及 圖9為步驟S2的操作示意圖。 Figure 1 is a block diagram of a conventional flat display device; Figure 2 is a block diagram of the sub-pixel pattern detection unit shown in Figure 1; Figure 3 is a diagram of a 3×3 grayscale value matrix; Figure 4A is a conventional A diagram of a sub-pixel pattern in the display panel as shown in Figure 1; Figure 4B is a diagram of another sub-pixel pattern commonly used in the display panel as shown in Figure 1; FIG. 4C is a diagram of another sub-pixel style commonly used in the display panel shown in FIG. 1; Figure 5 is a block diagram of a flat display device applying a seed pixel pattern detection method of the present invention; Figure 6 is a block diagram of the sub-pixel pattern detection unit shown in Figure 5; Figure 7 is a flow chart of a seed pixel pattern detection method according to the present invention; Figure 8 is a schematic diagram of the operation of step S1; and Figure 9 is a schematic diagram of the operation of step S2.
S1:對一輸入圖像數據執行一對齊操作,從而獲得至少一n×m灰階值矩陣 S1: Perform an alignment operation on an input image data to obtain at least an n×m grayscale value matrix.
S2:對所述灰階值矩陣的每一行子畫素灰階值執行一編碼操作,從而生成n組二進制碼 S2: Perform an encoding operation on each row of sub-pixel grayscale values in the grayscale value matrix, thereby generating n sets of binary codes.
S3:將該n組二進制碼合併為一編碼,接著將該編碼轉換成一十六進制碼 S3: Combine the n sets of binary codes into one code, and then convert the code into a hexadecimal code
S4:以該十六進制碼作為一樣式碼,接著將該樣式碼和一參考樣式碼進行比對,從而確定一子畫素樣式 S4: Use the hexadecimal code as a style code, and then compare the style code with a reference style code to determine a sub-pixel style.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111148777A TWI824891B (en) | 2022-12-19 | 2022-12-19 | Sub-pixel pattern detection method, display driver chip, display device and information processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111148777A TWI824891B (en) | 2022-12-19 | 2022-12-19 | Sub-pixel pattern detection method, display driver chip, display device and information processing device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI824891B true TWI824891B (en) | 2023-12-01 |
TW202427422A TW202427422A (en) | 2024-07-01 |
Family
ID=90053134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111148777A TWI824891B (en) | 2022-12-19 | 2022-12-19 | Sub-pixel pattern detection method, display driver chip, display device and information processing device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI824891B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020080144A1 (en) * | 2000-02-17 | 2002-06-27 | Xerox Corporation | Adaptive thresholding using loose gray scale template matching |
CN1469303A (en) * | 2002-06-05 | 2004-01-21 | ���ǵ�����ʽ���� | Apparatus for conducting binary coding to image and using method thereof |
US20180061301A1 (en) * | 2013-07-26 | 2018-03-01 | Darwin Hu | Method and apparatus for increasing perceived display resolutions from an input image |
CN108923853A (en) * | 2018-06-29 | 2018-11-30 | 京东方科技集团股份有限公司 | Display methods and device, visible light communication transmission method and device |
CN111223438A (en) * | 2020-03-11 | 2020-06-02 | Tcl华星光电技术有限公司 | Compression method and device of pixel compensation table |
CN114493983A (en) * | 2021-12-06 | 2022-05-13 | 深圳市乐升半导体有限公司 | Compression method and device of character data, storage medium and electronic equipment |
-
2022
- 2022-12-19 TW TW111148777A patent/TWI824891B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020080144A1 (en) * | 2000-02-17 | 2002-06-27 | Xerox Corporation | Adaptive thresholding using loose gray scale template matching |
CN1469303A (en) * | 2002-06-05 | 2004-01-21 | ���ǵ�����ʽ���� | Apparatus for conducting binary coding to image and using method thereof |
US20180061301A1 (en) * | 2013-07-26 | 2018-03-01 | Darwin Hu | Method and apparatus for increasing perceived display resolutions from an input image |
CN108923853A (en) * | 2018-06-29 | 2018-11-30 | 京东方科技集团股份有限公司 | Display methods and device, visible light communication transmission method and device |
CN111223438A (en) * | 2020-03-11 | 2020-06-02 | Tcl华星光电技术有限公司 | Compression method and device of pixel compensation table |
CN114493983A (en) * | 2021-12-06 | 2022-05-13 | 深圳市乐升半导体有限公司 | Compression method and device of character data, storage medium and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
TW202427422A (en) | 2024-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103531176B (en) | A kind of font display optimization method and system of Android terminal | |
US9058539B2 (en) | Systems and methods for quantifying graphics or text in an image | |
US11158287B2 (en) | Methods and systems for compressing and decompressing display demura compensation data | |
CN101689356A (en) | Image processing device, display, image processing method, and program | |
CN110235176A (en) | Processing method and processing device, data transmission method and device, the storage medium of image | |
JP2006261835A (en) | Image transmission apparatus, image reception apparatus, and image transmission system | |
CN103902553A (en) | Method and device for comparing video | |
CN101675414A (en) | Modulation apparatus and image display apparatus | |
TWI824891B (en) | Sub-pixel pattern detection method, display driver chip, display device and information processing device | |
CN102067204A (en) | Image processing device, display device, image processing method, program, and recording medium | |
CN109992221B (en) | Method for realizing processor chip for vector font operation | |
CN115909353A (en) | Image binarization processing method and device | |
CN113240585B (en) | Image processing method, device and storage medium based on generation countermeasure network | |
CN111683213B (en) | Self-adaptive character superposition system and method based on region-of-interest gray level image | |
CN100353413C (en) | Liquid crystal driving system and method | |
CN112882672A (en) | Near-eye display control method and device and near-eye display equipment | |
CN111598198A (en) | Image two-dimensional code generation method and reading method based on LSB information hiding | |
TWI834462B (en) | Display data processing method, display driver chip, display device and information processing device | |
TWI856806B (en) | Under-screen fingerprint recognition area display method, display drive circuit and information processing device | |
TWI831188B (en) | Brightness control method of OLED display panel, OLED display device, and information processing device | |
CN109829545B (en) | Quantum preparation method of video data | |
TWI832572B (en) | Display data compensation method, display device and information processing device | |
TW202410016A (en) | Low-luminance image enhancement method, electronic chip and information processing apparatus in which a low-luminance image enhancement process on a luminance datum corresponding to the input grayscale data is carried out | |
US20240275907A1 (en) | Method of inspecting image quality, image quality inspection system performing the same, and display device to which the same is applied | |
CN115643348B (en) | Method and device for certifiable safety natural steganography based on reversible image processing network |