TWI824788B - System and method of integrating traffic accident assistance investigation and safety of the intended functionality scene establishment - Google Patents
System and method of integrating traffic accident assistance investigation and safety of the intended functionality scene establishment Download PDFInfo
- Publication number
- TWI824788B TWI824788B TW111140084A TW111140084A TWI824788B TW I824788 B TWI824788 B TW I824788B TW 111140084 A TW111140084 A TW 111140084A TW 111140084 A TW111140084 A TW 111140084A TW I824788 B TWI824788 B TW I824788B
- Authority
- TW
- Taiwan
- Prior art keywords
- accident
- data
- information
- signal
- vehicle
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 206010039203 Road traffic accident Diseases 0.000 title abstract description 6
- 238000011835 investigation Methods 0.000 title abstract 8
- 238000012545 processing Methods 0.000 claims abstract description 72
- 230000009471 action Effects 0.000 claims abstract description 63
- 238000012790 confirmation Methods 0.000 claims abstract description 46
- 238000004458 analytical method Methods 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 230000003542 behavioural effect Effects 0.000 claims description 16
- 230000002159 abnormal effect Effects 0.000 claims description 15
- 238000013480 data collection Methods 0.000 claims description 15
- 230000001133 acceleration Effects 0.000 claims description 14
- 238000007405 data analysis Methods 0.000 claims description 14
- 238000010586 diagram Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 230000007613 environmental effect Effects 0.000 claims description 11
- 230000004913 activation Effects 0.000 claims description 10
- 238000010494 dissociation reaction Methods 0.000 claims description 5
- 230000005593 dissociations Effects 0.000 claims description 5
- 230000007257 malfunction Effects 0.000 claims description 3
- 102100034112 Alkyldihydroxyacetonephosphate synthase, peroxisomal Human genes 0.000 claims 2
- 101000799143 Homo sapiens Alkyldihydroxyacetonephosphate synthase, peroxisomal Proteins 0.000 claims 2
- 238000000848 angular dependent Auger electron spectroscopy Methods 0.000 claims 2
- 238000003745 diagnosis Methods 0.000 claims 2
- 230000004927 fusion Effects 0.000 claims 1
- 230000006399 behavior Effects 0.000 description 44
- 238000004590 computer program Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000000454 anti-cipatory effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Traffic Control Systems (AREA)
- Time Recorders, Dirve Recorders, Access Control (AREA)
- Alarm Systems (AREA)
Abstract
Description
本發明是關於一種融合事故輔助鑑別與場景建立的系統及方法,特別是關於一種融合事故輔助鑑別與預期功能安全場景建立的系統及方法。The present invention relates to a system and method that integrates accident auxiliary identification and scene establishment, and in particular, relates to a system and method that integrates accident auxiliary identification and expected functional safety scene establishment.
現行道路交通事故肇事原因鑑定,其方式僅由員警記錄事故後資料進行研判,並採以行車記錄器進行輔助。員警須透過龐大且複雜的資料(如筆錄、現場道路狀況、車體痕跡、人體損傷、路面痕跡、監控錄影、行車記錄裝置等資訊),對事故發生過程進行推演與印證,這使得現行事故人工鑑定報告的產製曠日廢時,人力成本居高不下,且易造成隱瞞不實。此外,自動駕駛車輛數量越來越多,但自動駕駛車輛因系統功能的局限,導致在某些情況下的行為與最初的預期不同,事故發生後無法釐清事故主因。由此可知,目前市場上缺乏一種能有效快速地自動產製鑑定報告、降低人力成本並釐清事故主因的融合事故輔助鑑別與預期功能安全場景建立的系統及方法,故相關業者均在尋求其解決之道。The current method of identifying the causes of road traffic accidents is only for police officers to record post-accident data for analysis and judgment, and use driving recorders for assistance. Police officers must use huge and complex data (such as records, on-site road conditions, car body marks, human injuries, road marks, surveillance videos, driving recording devices, etc.) to deduce and verify the accident process. This makes current accidents The production of manual appraisal reports takes a long time, the labor cost remains high, and it is easy to conceal the truth. In addition, the number of self-driving vehicles is increasing. However, due to the limitations of the system functions of self-driving vehicles, the behavior of self-driving vehicles is different from the initial expectations in some situations. After the accident, the main cause of the accident cannot be clarified. It can be seen that the current market lacks a system and method that can effectively and quickly automatically produce identification reports, reduce labor costs, and clarify the main causes of accidents that integrates accident auxiliary identification and the establishment of expected functional safety scenarios. Therefore, relevant industries are seeking solutions. way.
因此,本發明的目的在於提供一種融合事故輔助鑑別與預期功能安全場景建立的系統及方法,其透過車載診斷裝置及數位影像錄影機適時提出車輛發生交通事故時的即時數據,進行事故簡易重現著重於事故當下的車輛狀態、駕駛意圖及天氣情況,以釐清系統故障(控制器)、機械故障或人為誤操作,提供鑑識人員進行評估。另外,本發明可協助自動(輔助)駕駛控制器釐清肇因,並收集預期功能安全場景,提供技術精進對策,以增加應用層面、提高市場性。綜上,本發明可解決習知技術中人工鑑定報告的產製曠日廢時、人力成本居高不下、易造成隱瞞不實以及自動駕駛車輛於事故發生後無法釐清事故主因的問題。Therefore, the purpose of the present invention is to provide a system and method that integrates accident auxiliary identification and the establishment of expected functional safety scenarios, which uses on-board diagnostic devices and digital video recorders to timely extract real-time data when a vehicle is involved in a traffic accident, so as to easily reproduce the accident. Focus on the vehicle status, driving intention and weather conditions at the moment of the accident to clarify system failures (controllers), mechanical failures or human misoperations, and provide forensic personnel for evaluation. In addition, the present invention can assist the automatic (assisted) driving controller to clarify the cause, collect expected functional safety scenarios, and provide technical improvement countermeasures to increase the application level and improve marketability. In summary, the present invention can solve the problems in the conventional technology that the production of manual appraisal reports is time-consuming, the labor cost remains high, it is easy to conceal the truth, and the self-driving vehicle cannot clarify the main cause of the accident after the accident.
依據本發明的結構態樣的一實施方式提供一種融合事故輔助鑑別與預期功能安全場景建立的系統,其應用於車輛。融合事故輔助鑑別與預期功能安全場景建立的系統包含車載診斷(On-Board Diagnostic;OBD)裝置、數位影像錄影機(Digital Video Recorder;DVR)、控制器以及雲端運算處理單元。車載診斷裝置設置於車輛並擷取車載診斷資料。數位影像錄影機設置於車輛並擷取錄影資料。控制器設置於車輛並產生控制資料。雲端運算處理單元訊號連接車載診斷裝置、數位影像錄影機及控制器,並經配置以實施包含以下步驟的操作:事故資料收集步驟、資料解析步驟、鑑別資料自動產製步驟以及場景資料庫建立步驟。事故資料收集步驟包含驅動雲端運算處理單元收集來自車載診斷裝置、數位影像錄影機及控制器的車載診斷資料、錄影資料及控制資料。資料解析步驟包含驅動雲端運算處理單元將車載診斷資料、錄影資料及控制資料解析為事故記錄資訊及作動確認資訊,事故記錄資訊包含車輛行為資訊與駕駛意圖資訊。鑑別資料自動產製步驟包含驅動雲端運算處理單元依據車輛行為資訊、駕駛意圖資訊及作動確認資訊自動產製成事故輔助鑑別資料。事故輔助鑑別資料包含事故現場圖與行為特徵報告書。場景資料庫建立步驟包含驅動雲端運算處理單元依據作動確認資訊建立事故場景資料庫。事故場景資料庫包含預期功能安全(Safety Of The Intended Functionality;SOTIF)場景。An embodiment according to the structural aspect of the present invention provides a system that integrates accident auxiliary identification and establishment of expected functional safety scenarios, which is applied to vehicles. The system established by integrating accident auxiliary identification and expected functional safety scenarios includes an on-board diagnostic (OBD) device, a digital video recorder (DVR), a controller and a cloud computing processing unit. The vehicle-mounted diagnostic device is installed in the vehicle and acquires vehicle-mounted diagnostic data. A digital video recorder is installed in the vehicle and captures video data. The controller is installed in the vehicle and generates control data. The cloud computing processing unit signals are connected to the on-board diagnostic device, the digital video recorder and the controller, and is configured to perform operations including the following steps: the accident data collection step, the data analysis step, the automatic identification data production step and the scene database creation step. . The accident data collection step includes driving the cloud computing processing unit to collect vehicle diagnostic data, video data and control data from the vehicle diagnostic device, digital video recorder and controller. The data parsing step includes driving the cloud computing processing unit to parse vehicle diagnostic data, video data and control data into accident record information and action confirmation information. The accident record information includes vehicle behavior information and driving intention information. The step of automatically producing identification data includes driving the cloud computing processing unit to automatically produce accident auxiliary identification data based on vehicle behavior information, driving intention information and action confirmation information. Auxiliary accident identification materials include accident scene diagrams and behavioral characteristics reports. The scene database creation step includes driving the cloud computing processing unit to create an accident scene database based on the action confirmation information. The accident scenario database contains intended functional safety (Safety Of The Intended Functionality; SOTIF) scenarios.
藉此,本發明的融合事故輔助鑑別與預期功能安全場景建立的系統不但能有效快速地自動產製事故輔助鑑別資料並降低人力成本,還能釐清事故主因。In this way, the system established by integrating accident auxiliary identification and expected functional safety scenarios of the present invention can not only effectively and quickly automatically produce accident auxiliary identification data and reduce labor costs, but also clarify the main cause of the accident.
前述實施方式的其他實施例如下:前述雲端運算處理單元經配置以實施更包含事故判斷步驟,其包含驅動雲端運算處理單元接收車輛的事故作動資訊而產生事故判斷結果,事故判斷結果代表車輛於肇事時間發生事故。Other examples of the aforementioned implementation are as follows: the aforementioned cloud computing processing unit is configured to implement an accident judgment step, which includes driving the cloud computing processing unit to receive accident action information of the vehicle to generate an accident judgment result, and the accident judgment result represents the vehicle involved in the accident. Time for accidents.
前述實施方式的其他實施例如下:前述事故作動資訊包含安全氣囊作動資訊、加速度感測器感測資訊及感測器失效資訊的至少一者。Other examples of the aforementioned implementation are as follows: the aforementioned accident activation information includes at least one of airbag activation information, acceleration sensor sensing information, and sensor failure information.
前述實施方式的其他實施例如下:前述控制器包含自動駕駛系統(Autonomous Driving System;ADS)、先進駕駛輔助系統(Advanced Driver Assistance Systems;ADAS)及電子控制單元(Electronic Control Unit;ECU)的一者。Other examples of the aforementioned embodiments are as follows: the aforementioned controller includes one of an automatic driving system (Autonomous Driving System; ADS), an advanced driving assistance system (Advanced Driver Assistance Systems; ADAS), and an electronic control unit (Electronic Control Unit; ECU) .
前述實施方式的其他實施例如下:當前述控制器包含自動駕駛系統與先進駕駛輔助系統的一者時,作動確認資訊包含異常未作動資料與誤作動資料。異常未作動資料代表控制器在應作動但卻未作動的狀況下所產生的資料。誤作動資料代表控制器在不應作動但卻作動的狀況下所產生的資料。預期功能安全場景對應異常未作動資料與誤作動資料的一者。Other examples of the aforementioned implementation are as follows: when the aforementioned controller includes one of an automatic driving system and an advanced driving assistance system, the operation confirmation information includes abnormal non-operation data and misoperation data. Abnormal non-action data represents the data generated when the controller should act but does not act. Misoperation data represents the data generated by the controller when it should not operate but does. The expected functional safety scenario corresponds to one of abnormal non-action data and mis-action data.
前述實施方式的其他實施例如下:前述車載診斷資料包含車輛負載、轉速、車速、節氣門位置、引擎運轉時間、煞車訊號、方向盤轉角、胎壓、汽車喇叭訊號、全球定位系統(Global Positioning System;GPS)位置及緊急警示燈光訊號的至少一者。控制資料包含電子控制單元電壓、電池電量狀態(State of Charge;SOC)、側向誤差、縱向誤差、光達訊號、雷達訊號、診斷訊號、方向盤訊號、電/油門訊號、解離事件原因、緊急按鈕訊號及車身訊號的至少一者。Other examples of the aforementioned embodiments are as follows: the aforementioned on-board diagnostic data includes vehicle load, rotational speed, vehicle speed, throttle position, engine running time, braking signal, steering wheel angle, tire pressure, car horn signal, and Global Positioning System (Global Positioning System); At least one of GPS) position and emergency warning light signal. Control data includes electronic control unit voltage, battery status (State of Charge; SOC), lateral error, longitudinal error, lidar signal, radar signal, diagnostic signal, steering wheel signal, electric/throttle signal, cause of dissociation event, and emergency button At least one of signal and body signal.
前述實施方式的其他實施例如下:前述車輛行為資訊包含蛇行行為、超速行為、急加減速行為及闖紅燈行為的至少一者。駕駛意圖資訊包含手動駕駛訊號與自動駕駛訊號的一者。Other examples of the aforementioned implementation are as follows: the aforementioned vehicle behavior information includes at least one of snaking behavior, speeding behavior, sudden acceleration and deceleration behavior, and red light running behavior. The driving intention information includes one of a manual driving signal and an automatic driving signal.
前述實施方式的其他實施例如下:前述事故現場圖包含肇事時間、肇事地點、現場處理摘要資料。行為特徵報告書包含肇事原因、事故當時環境狀況、事故肇事經過及肇事分析。肇事分析包含行駛行為、佐證資料、路權歸屬及法規依據的至少一者。肇事時間、肇事地點及現場處理摘要資料透過車載診斷裝置與數位影像錄影機提供。事故當時環境狀況透過數位影像錄影機提供。肇事原因、事故肇事經過及肇事分析透過車載診斷裝置、數位影像錄影機及控制器提供。Other examples of the foregoing implementation are as follows: the foregoing accident scene map includes the time of the accident, the location of the accident, and on-site processing summary information. The behavioral characteristics report includes the cause of the accident, the environmental conditions at the time of the accident, the process of the accident and the analysis of the accident. The accident analysis includes at least one of driving behavior, supporting information, right-of-way ownership and legal basis. The time of the accident, the location of the accident and on-site processing summary information are provided through the on-board diagnostic device and digital video recorder. The environmental conditions at the time of the accident were provided through a digital video recorder. The cause of the accident, the course of the accident and the analysis of the accident are provided through the on-board diagnostic device, digital video recorder and controller.
前述實施方式的其他實施例如下:前述融合事故輔助鑑別與預期功能安全場景建立的系統更包含路側設施與道路號誌。路側設施訊號連接雲端運算處理單元,路側設施設置於道路,且偵測道路而產生外部資料。道路號誌訊號連接雲端運算處理單元,道路號誌設置於道路,且產生號誌訊號。外部資料包含地圖資訊,行為特徵報告書包含外部資料與號誌訊號。Other examples of the foregoing embodiments are as follows: the foregoing system that integrates accident auxiliary identification and expected functional safety scenarios further includes roadside facilities and road signs. The roadside facility signal is connected to the cloud computing processing unit. The roadside facility is installed on the road and detects the road to generate external data. The road signal signal is connected to the cloud computing processing unit, the road signal is installed on the road, and the road signal signal is generated. External data includes map information, and behavioral characteristics reports include external data and signaling signals.
依據本發明的方法態樣的一實施方式提供一種融合事故輔助鑑別與預期功能安全場景建立的方法,其應用於車輛。融合事故輔助鑑別與預期功能安全場景建立的方法包含事故資料收集步驟、資料解析步驟、鑑別資料自動產製步驟以及場景資料庫建立步驟。其中事故資料收集步驟包含驅動雲端運算處理單元收集來自車載診斷(On-Board Diagnostic;OBD)裝置、數位影像錄影機(Digital Video Recorder;DVR)及控制器的車載診斷資料、錄影資料及控制資料。資料解析步驟包含驅動雲端運算處理單元將車載診斷資料、錄影資料及控制資料解析為事故記錄資訊及作動確認資訊。事故記錄資訊包含車輛行為資訊與駕駛意圖資訊。鑑別資料自動產製步驟包含驅動雲端運算處理單元依據車輛行為資訊、駕駛意圖資訊及作動確認資訊自動產製成事故輔助鑑別資料。事故輔助鑑別資料包含事故現場圖與行為特徵報告書。場景資料庫建立步驟包含驅動雲端運算處理單元依據作動確認資訊建立事故場景資料庫。事故場景資料庫包含預期功能安全(Safety Of The Intended Functionality;SOTIF)場景。An implementation method according to the method aspect of the present invention provides a method that integrates accident auxiliary identification and establishment of expected functional safety scenarios, which is applied to vehicles. The method that integrates accident auxiliary identification and expected functional safety scenario establishment includes accident data collection steps, data analysis steps, identification data automatic production steps, and scenario database establishment steps. The accident data collection step includes driving the cloud computing processing unit to collect on-board diagnostic data, video data and control data from the on-board diagnostic (On-Board Diagnostic; OBD) device, Digital Video Recorder (DVR) and controller. The data parsing step includes driving the cloud computing processing unit to parse vehicle-mounted diagnostic data, video data and control data into accident record information and action confirmation information. Accident record information includes vehicle behavior information and driving intention information. The step of automatically producing identification data includes driving the cloud computing processing unit to automatically produce accident auxiliary identification data based on vehicle behavior information, driving intention information and action confirmation information. Auxiliary accident identification materials include accident scene diagrams and behavioral characteristics reports. The scene database creation step includes driving the cloud computing processing unit to create an accident scene database based on the action confirmation information. The accident scenario database contains intended functional safety (Safety Of The Intended Functionality; SOTIF) scenarios.
藉此,本發明的融合事故輔助鑑別與預期功能安全場景建立的方法不但能有效快速地自動產製事故輔助鑑別資料並降低人力成本,還能釐清事故主因。Thus, the method of the present invention that integrates accident auxiliary identification and expected functional safety scenario establishment can not only effectively and quickly automatically produce accident auxiliary identification data and reduce labor costs, but also clarify the main cause of the accident.
前述實施方式的其他實施例如下:前述融合事故輔助鑑別與預期功能安全場景建立的方法更包含事故判斷步驟,其包含驅動雲端運算處理單元接收車輛的事故作動資訊而產生事故判斷結果,事故判斷結果代表車輛於肇事時間發生事故。Other examples of the foregoing embodiments are as follows: the foregoing method of integrating accident auxiliary identification and expected functional safety scene establishment further includes an accident judgment step, which includes driving the cloud computing processing unit to receive the accident action information of the vehicle to generate an accident judgment result, and the accident judgment result It represents a vehicle that was involved in an accident at the time of the accident.
前述實施方式的其他實施例如下:前述事故作動資訊包含安全氣囊作動資訊、加速度感測器感測資訊及感測器失效資訊的至少一者。Other examples of the aforementioned implementation are as follows: the aforementioned accident activation information includes at least one of airbag activation information, acceleration sensor sensing information, and sensor failure information.
前述實施方式的其他實施例如下:前述控制器包含自動駕駛系統(Autonomous Driving System;ADS)、先進駕駛輔助系統(Advanced Driver Assistance Systems;ADAS)及電子控制單元(Electronic Control Unit;ECU)的一者。Other examples of the aforementioned embodiments are as follows: the aforementioned controller includes one of an automatic driving system (Autonomous Driving System; ADS), an advanced driving assistance system (Advanced Driver Assistance Systems; ADAS), and an electronic control unit (Electronic Control Unit; ECU) .
前述實施方式的其他實施例如下:當前述控制器包含自動駕駛系統與先進駕駛輔助系統的一者時,作動確認資訊包含異常未作動資料與誤作動資料。其中異常未作動資料代表控制器在應作動但卻未作動的狀況下所產生的資料。誤作動資料代表控制器在不應作動但卻作動的狀況下所產生的資料。預期功能安全場景對應異常未作動資料與誤作動資料的一者。Other examples of the aforementioned implementation are as follows: when the aforementioned controller includes one of an automatic driving system and an advanced driving assistance system, the operation confirmation information includes abnormal non-operation data and misoperation data. The abnormal non-actuated data represents the data generated when the controller should act but does not act. Misoperation data represents the data generated by the controller when it should not operate but does. The expected functional safety scenario corresponds to one of abnormal non-action data and mis-action data.
前述實施方式的其他實施例如下:前述車載診斷資料包含車輛負載、轉速、車速、節氣門位置、引擎運轉時間、煞車訊號、方向盤轉角、胎壓、汽車喇叭訊號、全球定位系統(Global Positioning System;GPS)位置及緊急警示燈光訊號的至少一者。控制資料包含電子控制單元電壓、電池電量狀態(State of Charge;SOC)、側向誤差、縱向誤差、光達訊號、雷達訊號、診斷訊號、方向盤訊號、電/油門訊號、解離事件原因、緊急按鈕訊號及車身訊號的至少一者。Other examples of the aforementioned embodiments are as follows: the aforementioned on-board diagnostic data includes vehicle load, rotational speed, vehicle speed, throttle position, engine running time, braking signal, steering wheel angle, tire pressure, car horn signal, and Global Positioning System (Global Positioning System); At least one of GPS) position and emergency warning light signal. Control data includes electronic control unit voltage, battery status (State of Charge; SOC), lateral error, longitudinal error, lidar signal, radar signal, diagnostic signal, steering wheel signal, electric/throttle signal, cause of dissociation event, and emergency button At least one of signal and body signal.
前述實施方式的其他實施例如下:前述車輛行為資訊包含蛇行行為、超速行為、急加減速行為及闖紅燈行為的至少一者。駕駛意圖資訊包含手動駕駛訊號與自動駕駛訊號的一者。Other examples of the aforementioned implementation are as follows: the aforementioned vehicle behavior information includes at least one of snaking behavior, speeding behavior, sudden acceleration and deceleration behavior, and red light running behavior. The driving intention information includes one of a manual driving signal and an automatic driving signal.
前述實施方式的其他實施例如下:前述事故現場圖包含肇事時間、肇事地點、現場處理摘要資料。行為特徵報告書包含肇事原因、事故當時環境狀況、事故肇事經過及肇事分析,肇事分析包含行駛行為、佐證資料、路權歸屬及法規依據的至少一者。肇事時間、肇事地點及現場處理摘要資料透過車載診斷裝置與數位影像錄影機提供。事故當時環境狀況透過數位影像錄影機提供。肇事原因、事故肇事經過及肇事分析透過車載診斷裝置、數位影像錄影機及控制器提供。Other examples of the foregoing implementation are as follows: the foregoing accident scene map includes the time of the accident, the location of the accident, and on-site processing summary information. The behavioral characteristics report includes the cause of the accident, the environmental conditions at the time of the accident, the process of the accident and the analysis of the accident. The accident analysis includes at least one of driving behavior, supporting information, right-of-way ownership and legal basis. The time of the accident, the location of the accident and on-site processing summary information are provided through the on-board diagnostic device and digital video recorder. The environmental conditions at the time of the accident were provided through a digital video recorder. The cause of the accident, the course of the accident and the analysis of the accident are provided through the on-board diagnostic device, digital video recorder and controller.
前述實施方式的其他實施例如下:前述行為特徵報告書包含外部資料與號誌訊號。其中外部資料包含地圖資訊,外部資料由路側設施偵測道路而產生。號誌訊號由道路號誌產生。Other examples of the foregoing implementation are as follows: the foregoing behavioral characteristics report includes external data and signaling signals. The external data includes map information, and the external data is generated by roadside facilities detecting roads. Signal signals are generated by road signs.
以下將參照圖式說明本發明的複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示的;並且重複的元件將可能使用相同的編號表示的。Several embodiments of the present invention will be described below with reference to the drawings. For the sake of clarity, many practical details will be explained together in the following narrative. However, it will be understood that these practical details should not limit the invention. That is to say, in some embodiments of the present invention, these practical details are not necessary. In addition, for the sake of simplifying the drawings, some commonly used structures and components are shown in the drawings in a simple schematic manner; and repeated components may be represented by the same numbers.
此外,本文中當某一元件(或單元或模組等)「連接」於另一元件,可指所述元件是直接連接於另一元件,亦可指某一元件是間接連接於另一元件,意即,有其他元件介於所述元件及另一元件之間。而當有明示某一元件是「直接連接」於另一元件時,才表示沒有其他元件介於所述元件及另一元件之間。而第一、第二、第三等用語只是用來描述不同元件,而對元件本身並無限制,因此,第一元件亦可改稱為第二元件。且本文中的元件/單元/電路的組合非此領域中的一般周知、常規或習知的組合,不能以元件/單元/電路本身是否為習知,來判定其組合關係是否容易被技術領域中的通常知識者輕易完成。In addition, when a certain component (or unit or module, etc.) is "connected" to another component in this article, it may mean that the component is directly connected to the other component, or it may mean that one component is indirectly connected to the other component. , meaning that there are other elements between the said element and another element. When it is stated that an element is "directly connected" to another element, it means that no other elements are interposed between the element and the other element. Terms such as first, second, third, etc. are only used to describe different components without limiting the components themselves. Therefore, the first component can also be renamed the second component. Moreover, the combination of components/units/circuit in this article is not a combination that is generally known, conventional or customary in this field. Whether the component/unit/circuit itself is common knowledge cannot be used to determine whether its combination relationship is easily understood in the technical field. Easily accomplished by the average person with knowledge.
請參閱第1圖,第1圖係繪示本發明的第一實施例的融合事故輔助鑑別與預期功能安全場景建立的系統100的示意圖。融合事故輔助鑑別與預期功能安全場景建立的系統100應用於車輛110,且包含車載診斷(On-Board Diagnostic;OBD)裝置200、數位影像錄影機(Digital Video Recorder;DVR)300、控制器400以及雲端平台500。其中車載診斷裝置200設置於車輛110並擷取車載診斷資料。數位影像錄影機300設置於車輛110並擷取錄影資料。控制器400設置於車輛110並產生控制資料。雲端平台500包含雲端運算處理單元510與雲端記憶體520。雲端運算處理單元510訊號連接車載診斷裝置200、數位影像錄影機300及控制器400。首先,雲端運算處理單元510收集來自車載診斷裝置200、數位影像錄影機300及控制器400的車載診斷資料、錄影資料及控制資料。然後,雲端運算處理單元510將車載診斷資料、錄影資料及控制資料解析為事故記錄資訊及作動確認資訊,事故記錄資訊包含車輛行為資訊與駕駛意圖資訊。接著,雲端運算處理單元510依據車輛行為資訊、駕駛意圖資訊及作動確認資訊自動產製成事故輔助鑑別資料,事故輔助鑑別資料包含事故現場圖與行為特徵報告書。另外,雲端運算處理單元510依據作動確認資訊建立事故場景資料庫,此事故場景資料庫包含預期功能安全(Safety Of The Intended Functionality;SOTIF)場景。雲端記憶體520訊號連接雲端運算處理單元510,並用以存取車載診斷資料、錄影資料、控制資料、事故記錄資訊、作動確認資訊以及事故輔助鑑別資料。Please refer to Figure 1 . Figure 1 is a schematic diagram of a
在一實施例中(配合參閱第6圖),融合事故輔助鑑別與預期功能安全場景建立的系統100可更包含路側設施610與道路號誌620。路側設施610訊號連接雲端運算處理單元510,路側設施610設置於道路,且偵測道路而產生外部資料612,並將外部資料612傳送至雲端運算處理單元510。道路號誌620訊號連接雲端運算處理單元510,道路號誌620設置於道路,且產生號誌訊號622,並將號誌訊號622傳送至雲端運算處理單元510。外部資料612包含地圖資訊612a,行為特徵報告書516b包含外部資料612與號誌訊號622。In one embodiment (refer to FIG. 6 ), the
上述雲端運算處理單元510可為處理器(Processor)、微處理器(Microprocessor)、電子控制單元(Electronic Control Unit;ECU)、電腦、行動裝置處理器或其他運算處理器,但本發明不以此為限。雲端運算處理單元510可執行融合事故輔助鑑別與預期功能安全場景建立的方法。此外,雲端記憶體520可為能儲存供雲端運算處理單元510執行的資訊和指令的隨機存取記憶體(Random Access Memory;RAM)或其它型式的動態儲存裝置,但本發明不以此為限。The above-mentioned cloud
請一併參閱第1圖與第2圖,其中第2圖係繪示本發明的第二實施例的融合事故輔助鑑別與預期功能安全場景建立的方法S0的流程示意圖。融合事故輔助鑑別與預期功能安全場景建立的方法S0應用於車輛110,且包含事故資料收集步驟S02、資料解析步驟S04、鑑別資料自動產製步驟S06以及場景資料庫建立步驟S08。其中事故資料收集步驟S02包含驅動雲端運算處理單元510收集來自車載診斷裝置200、數位影像錄影機300及控制器400的車載診斷資料210、錄影資料310及控制資料410。資料解析步驟S04包含驅動雲端運算處理單元510將車載診斷資料210、錄影資料310及控制資料410解析為事故記錄資訊512及作動確認資訊514,事故記錄資訊512包含車輛行為資訊512a與駕駛意圖資訊512b。鑑別資料自動產製步驟S06包含驅動雲端運算處理單元510依據車輛行為資訊512a、駕駛意圖資訊512b及作動確認資訊514自動產製成事故輔助鑑別資料516,事故輔助鑑別資料516包含事故現場圖516a與行為特徵報告書516b。場景資料庫建立步驟S08包含驅動雲端運算處理單元510依據作動確認資訊514建立事故場景資料庫518。事故場景資料庫518包含SOTIF場景518a。Please refer to Figure 1 and Figure 2 together. Figure 2 is a schematic flowchart illustrating the method S0 of integrating accident auxiliary identification and expected functional safety scenario establishment according to the second embodiment of the present invention. The method S0 that integrates accident auxiliary identification and expected functional safety scenario creation is applied to the
藉此,本發明的融合事故輔助鑑別與預期功能安全場景建立的系統100及融合事故輔助鑑別與預期功能安全場景建立的方法S0不但能有效快速地自動產製事故輔助鑑別資料516並降低人力成本,還能釐清事故主因。Thus, the
請一併參閱第1圖、第2圖及第3圖,其中第3圖係繪示本發明的第三實施例的融合事故輔助鑑別與預期功能安全場景建立的方法S2的流程示意圖。融合事故輔助鑑別與預期功能安全場景建立的方法S2應用於車輛110,且包含事故判斷步驟S20、事故資料收集步驟S22、資料解析步驟S24、鑑別資料自動產製步驟S26以及場景資料庫建立步驟S28。Please refer to Figures 1, 2 and 3 together. Figure 3 is a schematic flowchart illustrating the method S2 of integrating accident auxiliary identification and expected functional safety scenario creation according to the third embodiment of the present invention. The method S2 that integrates accident auxiliary identification and expected functional safety scenario establishment is applied to the
事故判斷步驟S20為「事故發生」,其包含驅動雲端運算處理單元510接收車輛110的事故作動資訊511而產生事故判斷結果,事故判斷結果代表車輛110於肇事時間發生事故。在一實施例中,事故作動資訊511可包含安全氣囊作動資訊、加速度感測器感測資訊及感測器失效資訊的至少一者。安全氣囊作動資訊代表車輛110的安全氣囊爆開所產生的資訊,加速度感測器感測資訊代表加速度感測器(G-sensor)作動(感測值超過一預設值)所產生的資訊,感測器失效資訊代表感測器發生失效所產生的資訊,但本發明不以此為限。The accident determination step S20 is "accident occurrence", which includes driving the cloud
事故資料收集步驟S22為「資料收集」,其包含驅動雲端運算處理單元510收集來自車載診斷裝置200、數位影像錄影機300及控制器400的車載診斷資料210、錄影資料310及控制資料410。詳細地說,雲端運算處理單元510在車輛110發生事故的當下(即肇事時間)會收集來自車載診斷裝置200的車載診斷資料210、數位影像錄影機300的錄影資料310及控制器400的控制資料410。車載診斷資料210可包含車輛負載、轉速、車速、節氣門位置、引擎運轉時間、煞車訊號、方向盤轉角、胎壓、汽車喇叭訊號、全球定位系統(Global Positioning System;GPS)位置及緊急警示燈光訊號的至少一者。錄影資料310可具有一錄影畫面頻率(如每秒一張畫面)。控制器400可包含自動駕駛系統(Autonomous Driving System;ADS)、先進駕駛輔助系統(Advanced Driver Assistance Systems;ADAS)及電子控制單元(Electronic Control Unit;ECU)的一者。控制資料410可包含電子控制單元電壓(即ECU電壓)、電池電量狀態(State of Charge;SOC)、側向誤差、縱向誤差、光達訊號、雷達訊號、診斷訊號、方向盤訊號、電/油門訊號、解離事件原因、緊急按鈕訊號及車身訊號的至少一者。The accident data collection step S22 is "data collection", which includes driving the cloud
資料解析步驟S24包含驅動雲端運算處理單元510將車載診斷資料210、錄影資料310及控制資料410解析為事故記錄資訊512及作動確認資訊514,事故記錄資訊512包含車輛行為資訊512a與駕駛意圖資訊512b。詳細地說,車輛行為資訊512a可包含蛇行行為、超速行為、急加減速行為及闖紅燈行為的至少一者。駕駛意圖資訊512b可包含手動駕駛訊號與自動駕駛訊號的一者。舉例來說,當車輛行為資訊512a為車頭左右搖晃偏擺(蛇行行為)時,車載診斷資料210為方向盤轉角。當車輛行為資訊512a為加減速突急遽增減(急加減速行為)時,車載診斷資料210為節氣門位置變化、噴油量訊號及油門踏板訊號與煞車訊號變化。當車輛行為資訊512a為車輛轉向行為時,車載診斷資料210為方向燈作動訊號。此外,資料解析步驟S24會分析各場景的原因(HW/SW故障分析),以供後續判斷。HW代表硬體造成的原因;SW代表軟體造成的原因。The data parsing step S24 includes driving the cloud
鑑別資料自動產製步驟S26包含驅動雲端運算處理單元510依據車輛行為資訊512a、駕駛意圖資訊512b及作動確認資訊514自動產製成事故輔助鑑別資料516,事故輔助鑑別資料516包含事故現場圖516a與行為特徵報告書516b。詳細地說,事故現場圖516a可包含肇事時間、肇事地點、現場處理摘要資料。行為特徵報告書516b可包含肇事原因(初判表)、事故當時環境狀況(天候、號誌)、事故肇事經過(鑑定書)及肇事分析,肇事分析包含行駛行為、佐證資料、路權歸屬及法規依據的至少一者。表一顯示事故輔助鑑別資料516的資訊項目、提供佐證內容及硬體裝置的關係,由表一可知,事故輔助鑑別資料516的肇事時間、肇事地點及現場處理摘要資料透過車載診斷裝置200與數位影像錄影機300提供;事故當時環境狀況透過數位影像錄影機300提供;肇事原因、事故肇事經過及肇事分析透過車載診斷裝置200、數位影像錄影機300及控制器400提供。
表一
場景資料庫建立步驟S28包含驅動雲端運算處理單元510依據作動確認資訊514建立事故場景資料庫518。事故場景資料庫518包含SOTIF場景518a。藉此,本發明的融合事故輔助鑑別與預期功能安全場景建立的方法S2透過車載診斷裝置200、數位影像錄影機300、控制器400、路側設施610及道路號誌620適時提出車輛110發生事故時的即時數據,進行事故簡易重現著重於事故當下的車輛狀態、駕駛意圖及天氣情況,以釐清系統故障、機械故障或人為誤操作,提供鑑識人員進行評估。另外,本發明可協助自動(輔助)駕駛控制器400釐清肇因,並收集SOTIF場景518a,提供技術精進對策,以增加應用層面、提高市場性。因此,本發明可解決習知技術中人工鑑定報告的產製曠日廢時、人力成本居高不下、易造成隱瞞不實以及自動駕駛車輛110於事故發生後無法釐清事故主因的問題。The scene database creation step S28 includes driving the cloud
請一併參閱第1圖、第2圖、第3圖、第4圖及第5圖,其中第4圖係繪示第3圖的融合事故輔助鑑別與預期功能安全場景建立的方法S2的第一範例的流程示意圖;及第5圖係繪示第4圖的控制器400(ADS/ADAS)的作動確認與場景資料庫建立步驟S28a的示意圖。如圖所示,融合事故輔助鑑別與預期功能安全場景建立的方法S2包含事故判斷步驟S20、事故資料收集步驟S22、資料解析步驟S24、鑑別資料自動產製步驟S26以及場景資料庫建立步驟S28a。其中場景資料庫建立步驟S28a為第3圖的場景資料庫建立步驟S28的一實施例。場景資料庫建立步驟S28a包含作動確認步驟S282,並驅動雲端運算處理單元510依據作動確認資訊514建立事故場景資料庫518。事故場景資料庫518包含SOTIF場景518a。控制器400訊號連接感測器(Sensor)與作動器(Actuator)。當控制器400包含自動駕駛系統(ADS)與先進駕駛輔助系統(ADAS)的一者時,作動確認資訊514包含異常未作動資料514a與誤作動資料514b。其中異常未作動資料514a代表控制器400在應作動但卻未作動的狀況下所產生的資料(感測器誤判)。誤作動資料514b代表控制器400在不應作動但卻作動的狀況下所產生的資料(作動器誤判)。SOTIF場景518a對應異常未作動資料514a與誤作動資料514b的一者。作動確認步驟S282為「作動確認」,其包含驅動控制器400確認控制資料410是否屬於作動確認資訊514而產生作動確認結果。當作動確認結果為是時,控制資料410代表異常未作動或誤作動,雲端運算處理單元510會依據作動確認資訊514建立事故場景資料庫518;當事故確認結果為否時,控制資料410代表正常作動。另外值得一提的是,事故場景資料庫518的SOTIF場景518a可供後續的上路與校驗測試使用(允許上路與校驗測試場景與報告);換言之,SOTIF場景518a的資訊可傳送至感測器、作動器或控制器400的製造廠商(製造端),使製造廠商可依據SOTIF場景518a的資訊進行上路與校驗測試。Please refer to Figures 1, 2, 3, 4 and 5 together. Figure 4 illustrates the method S2 of Figure 3 that integrates accident auxiliary identification and expected functional safety scenario creation. An example flow chart; and Figure 5 is a schematic diagram illustrating the action confirmation and scene database creation step S28a of the controller 400 (ADS/ADAS) in Figure 4 . As shown in the figure, the method S2 that integrates accident auxiliary identification and expected functional safety scenario creation includes an accident judgment step S20, an accident data collection step S22, a data analysis step S24, an identification data automatic production step S26, and a scenario database creation step S28a. The scene database creation step S28a is an embodiment of the scene database creation step S28 in Figure 3 . The scene database creation step S28a includes the action confirmation step S282, and drives the cloud
請一併參閱第1圖、第2圖、第3圖、第4圖及第6圖,其中第6圖係繪示第4圖的資料解析步驟S24與鑑別資料自動產製步驟S26的示意圖。如圖所示,資料解析步驟S24包含匯入車(車輛110)、人、路各項狀態參數;執行車輛行為鑑別,其係以車速、陀螺儀及加速規作為車輛110各種行駛狀態鑑別;執行駕駛意圖解析,其係透過煞車、油門、車速、轉速及方向燈判別,完整呈現駕駛意圖;執行外部環境識別與目標物軌跡,其係以車聯網(如V2X或V2V)連接道路號誌620、車輛110及路側設施610,進而獲得外部資料612。目標物軌跡代表車輛110以外的目標物(事故當時的另一車輛)於事故經過的行駛軌跡,其可由數位影像錄影機300或路側設施610得知。此外,鑑別資料自動產製步驟S26的事故現場圖516a為動態碰撞軌跡還原圖像,其可提供車輛110碰撞前、後1分鐘逐秒事故經過(提供動態車輛110行駛軌跡及碰撞前後歷程,上述碰撞前、後時間(各1分鐘)與取樣時間間隔(每秒)可依需求調整)。行為特徵報告書516b包含外部資料612與號誌訊號622。外部資料612包含地圖資訊612a,外部資料612由路側設施610偵測道路而產生。號誌訊號622由道路號誌620產生。藉此,本發明的資料解析步驟S24與鑑別資料自動產製步驟S26可依據匯入資料,自動產製事故碰撞型態、時間、車種等,並結合地圖資訊612a(如Google Map),以地理資訊系統(Geographic Information System;GIS)進行地點分析。Please refer to Figure 1, Figure 2, Figure 3, Figure 4 and Figure 6 together. Figure 6 is a schematic diagram illustrating the data analysis step S24 and the automatic identification data generation step S26 of Figure 4. As shown in the figure, the data analysis step S24 includes various state parameters of the incoming vehicle (vehicle 110), people, and roads; performs vehicle behavior identification, which uses vehicle speed, gyroscope, and accelerometer as various driving status identifications of the
請一併參閱第1圖、第2圖、第3圖、第4圖、第5圖、第6圖及第7圖,其中第7圖係繪示第4圖的融合事故輔助鑑別與預期功能安全場景建立的方法S2應用於一事故狀態的流程示意圖。事故狀態為第一車輛(前車)與第二車輛(後車)於道路上運行,第一車輛搭載自動緊急煞車(Autonomous Emergency Braking;AEB)系統,亦即第一車輛的控制器400包含ADAS。第一車輛與第二車輛之間保持行車安全距離。第一車輛的AEB因誤作動(前方無障礙物卻急煞)造成第二車輛追撞的交通事故。依據上述事故狀態,本發明的融合事故輔助鑑別與預期功能安全場景建立的方法S2透過車載診斷裝置200、數位影像錄影機300及控制器400訊息,得知事故過程特徵包含:第一車輛搭載AEB系統且功能開啟,外部環境為大晴天、無逆光、平滑道路、速限70kph、無闖紅燈、車前無障物、第一車輛急煞且依據控制資料410得知AEB確實有啟動訊息,因此判定為AEB誤作動(作動器誤判),故同步列入SOTIF場景518a,如第7圖的粗框及粗線所示。在事故肇責判別釐清方面,由於前車任意驟然減速,前車分攤70%肇責、後車分攤30%肇責。藉此,透過本發明的融合事故輔助鑑別與預期功能安全場景建立的方法S2可以釐清事故真正原因,且後車可降低肇責(原本後車須負100%肇責)。Please refer to Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7 together. Figure 7 shows the integrated accident auxiliary identification and anticipatory functions of Figure 4. A schematic flowchart of the method S2 for establishing a safety scenario applied to an accident state. The accident state is that the first vehicle (front vehicle) and the second vehicle (rear vehicle) are running on the road. The first vehicle is equipped with an automatic emergency braking (Autonomous Emergency Braking; AEB) system, that is, the
請一併參閱第1圖、第2圖、第3圖及第8圖,其中第8圖係繪示第3圖的融合事故輔助鑑別與預期功能安全場景建立的方法S2的第二範例的流程示意圖。如圖所示,融合事故輔助鑑別與預期功能安全場景建立的方法S2包含事故判斷步驟S20、事故資料收集步驟S22、資料解析步驟S24、鑑別資料自動產製步驟S26以及場景資料庫建立步驟S28b。其中場景資料庫建立步驟S28b為第3圖的場景資料庫建立步驟S28的另一實施例。場景資料庫建立步驟S28b包含驅動雲端運算處理單元510依據作動確認資訊514建立事故場景資料庫518。當控制器400包含電子控制單元(ECU)時,作動確認資訊514包含車載診斷裝置200產生的車載診斷資料210、數位影像錄影機300產生的錄影資料310及ECU產生的控制資料410。藉此,本發明透過控制器400的ECU結合車載診斷裝置200及數位影像錄影機300,可記錄車輛110事故當時的場景,並自動產製事故輔助鑑別資料516以作為肇事分析依據。Please refer to Figures 1, 2, 3 and 8 together. Figure 8 illustrates the process of the second example of the method S2 of integrating accident auxiliary identification and expected functional safety scenario creation in Figure 3. Schematic diagram. As shown in the figure, the method S2 that integrates accident auxiliary identification and expected functional safety scenario creation includes an accident judgment step S20, an accident data collection step S22, a data analysis step S24, an identification data automatic production step S26, and a scenario database creation step S28b. The scene database creation step S28b is another embodiment of the scene database creation step S28 in Figure 3 . The scene database creation step S28b includes driving the cloud
可理解的是,本發明的融合事故輔助鑑別與預期功能安全場景建立的方法S0、S2可透過電腦程式產品實現。上述實施例所說明的各實施步驟的次序可依實際需要而調動、結合或省略。上述實施例可利用電腦程式產品來實現,其可包含儲存有多個指令的機器可讀取媒體,這些指令可程式化(programming)電腦來進行上述實施例中的步驟。機器可讀取媒體可為但不限定於軟碟、光碟、唯讀光碟、磁光碟、唯讀記憶體、隨機存取記憶體、可抹除可程式唯讀記憶體(EPROM)、電子可抹除可程式唯讀記憶體(EEPROM)、光卡(optical card)或磁卡、快閃記憶體、或任何適於儲存電子指令的機器可讀取媒體。再者,本發明的實施例也可做為電腦程式產品來下載,其可藉由使用通訊連接(例如網路連線之類的連接)的資料訊號來從遠端電腦轉移本發明的電腦程式產品至請求電腦。It is understandable that the methods S0 and S2 of the present invention that integrate accident auxiliary identification and expected functional safety scenario establishment can be implemented through computer program products. The order of the implementation steps described in the above embodiments can be adjusted, combined or omitted according to actual needs. The above embodiments may be implemented using a computer program product, which may include a machine-readable medium storing a plurality of instructions that can program a computer to perform the steps in the above embodiments. Machine-readable media may be, but are not limited to, floppy disks, optical disks, CD-ROMs, magneto-optical disks, read-only memory, random access memory, erasable programmable read-only memory (EPROM), electronically erasable Except programmable read-only memory (EEPROM), optical or magnetic card, flash memory, or any machine-readable medium suitable for storing electronic instructions. Furthermore, embodiments of the present invention can also be downloaded as computer program products, which can transfer the computer program of the present invention from a remote computer by using data signals of a communication connection (such as a network connection or the like). Products to request computer.
由上述實施方式可知,本發明具有下列優點:其一,透過車載診斷裝置及數位影像錄影機適時提出車輛發生交通事故時的即時數據,進行事故簡易重現著重於事故當下的車輛狀態、駕駛意圖及天氣情況,以釐清系統故障、機械故障或人為誤操作,提供鑑識人員進行評估。其二,本發明可協助自動(輔助)駕駛控制器釐清肇因,並收集SOTIF場景,提供技術精進對策,以增加應用層面、提高市場性,且可解決習知技術中人工鑑定報告的產製曠日廢時、人力成本居高不下、易造成隱瞞不實以及自動駕駛車輛於事故發生後無法釐清事故主因的問題。其三,透過車輛上的設備詳實記錄行駛過程資訊,除了可釐清肇事責任外、精簡採證作業時程及降低人力成本之外,更可提供自動駕駛車輛在事故中作動情形,以供主管機關及車廠後續改善的參考。It can be seen from the above embodiments that the present invention has the following advantages: First, through the on-board diagnostic device and the digital video recorder, real-time data when the vehicle is involved in a traffic accident can be extracted in a timely manner, and the accident can be easily reproduced focusing on the vehicle status and driving intention at the moment of the accident. and weather conditions to clarify system failures, mechanical failures or human errors and provide forensic personnel for evaluation. Secondly, the present invention can assist the automatic (assisted) driving controller to clarify the cause, collect SOTIF scenarios, and provide technical improvement countermeasures to increase the application level, improve marketability, and can solve the problem of manual identification report production in the conventional technology. It takes a long time, high labor costs, easy concealment, and the inability of self-driving vehicles to clarify the main cause of an accident after an accident occurs. Third, by recording the driving process information in detail through the equipment on the vehicle, in addition to clarifying the responsibility for the accident, streamlining the certification work schedule and reducing labor costs, it can also provide the operating conditions of the autonomous vehicle in the accident to the competent authorities. and reference for subsequent improvements by the car manufacturer.
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make various modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention is The scope shall be determined by the appended patent application scope.
100:融合事故輔助鑑別與預期功能安全場景建立的系統
110:車輛
200:車載診斷裝置
210:車載診斷資料
300:數位影像錄影機
310:錄影資料
400:控制器
410:控制資料
500:雲端平台
510:雲端運算處理單元
511:事故作動資訊
512:事故記錄資訊
512a:車輛行為資訊
512b:駕駛意圖資訊
514:作動確認資訊
514a:異常未作動資料
514b:誤作動資料
516:事故輔助鑑別資料
516a:事故現場圖
516b:行為特徵報告書
518:事故場景資料庫
518a:SOTIF場景
520:雲端記憶體
610:路側設施
612:外部資料
612a:地圖資訊
620:道路號誌
622:號誌訊號
S0,S2:融合事故輔助鑑別與預期功能安全場景建立的方法
S02,S22:事故資料收集步驟
S04,S24:資料解析步驟
S06,S26:鑑別資料自動產製步驟
S08,S28,S28a,S28b:場景資料庫建立步驟
S20:事故判斷步驟
S282:作動確認步驟
100: A system that integrates accident auxiliary identification and expected functional safety scenarios
110:Vehicle
200: On-board diagnostic device
210: On-board diagnostic data
300:Digital video recorder
310:Video data
400:Controller
410:Control data
500:Cloud platform
510: Cloud computing processing unit
511:Accident action information
512:
第1圖係繪示本發明的第一實施例的融合事故輔助鑑別與預期功能安全場景建立的系統的示意圖; 第2圖係繪示本發明的第二實施例的融合事故輔助鑑別與預期功能安全場景建立的方法的流程示意圖; 第3圖係繪示本發明的第三實施例的融合事故輔助鑑別與預期功能安全場景建立的方法的流程示意圖; 第4圖係繪示第3圖的融合事故輔助鑑別與預期功能安全場景建立的方法的第一範例的流程示意圖; 第5圖係繪示第4圖的控制器的作動確認與場景資料庫建立步驟的示意圖; 第6圖係繪示第4圖的資料解析步驟與鑑別資料自動產製步驟的示意圖; 第7圖係繪示第4圖的融合事故輔助鑑別與預期功能安全場景建立的方法應用於一事故狀態的流程示意圖;以及 第8圖係繪示第3圖的融合事故輔助鑑別與預期功能安全場景建立的方法的第二範例的流程示意圖。 Figure 1 is a schematic diagram illustrating a system that integrates accident auxiliary identification and expected functional safety scenario establishment according to the first embodiment of the present invention; Figure 2 is a schematic flowchart illustrating a method for integrating accident auxiliary identification and expected functional safety scenario establishment according to the second embodiment of the present invention; Figure 3 is a schematic flowchart illustrating a method for integrating accident auxiliary identification and expected functional safety scenario establishment according to the third embodiment of the present invention; Figure 4 is a flow diagram illustrating a first example of the method of integrating accident auxiliary identification and expected functional safety scenario establishment in Figure 3; Figure 5 is a schematic diagram illustrating the steps of controller action confirmation and scene database creation in Figure 4; Figure 6 is a schematic diagram illustrating the data analysis steps and the automatic production steps of identification data in Figure 4; Figure 7 is a schematic process diagram illustrating the application of the method of integrating accident auxiliary identification and expected functional safety scenario creation in Figure 4 to an accident state; and FIG. 8 is a flow chart illustrating a second example of the method of integrating accident auxiliary identification and expected functional safety scenario creation in FIG. 3 .
210:車載診斷資料 210: On-board diagnostic data
310:錄影資料 310:Video data
410:控制資料 410:Control data
512:事故記錄資訊 512:Accident record information
512a:車輛行為資訊 512a: Vehicle behavior information
512b:駕駛意圖資訊 512b: Driving intention information
514:作動確認資訊 514: Action confirmation information
516:事故輔助鑑別資料 516: Auxiliary identification information for accidents
516a:事故現場圖 516a: Accident scene map
516b:行為特徵報告書 516b: Behavioral Characteristics Report
518:事故場景資料庫 518:Accident scene database
518a:SOTIF場景 518a:SOTIF scene
S0:融合事故輔助鑑別與預期功能安全場景建立的方法 S0: A method that integrates accident auxiliary identification and establishment of expected functional safety scenarios
S02:事故資料收集步驟 S02: Accident data collection steps
S04:資料解析步驟 S04: Data analysis steps
S06:鑑別資料自動產製步驟 S06: Steps for automatic production of identification data
S08:場景資料庫建立步驟 S08: Steps to create scene database
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111140084A TWI824788B (en) | 2022-10-21 | 2022-10-21 | System and method of integrating traffic accident assistance investigation and safety of the intended functionality scene establishment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111140084A TWI824788B (en) | 2022-10-21 | 2022-10-21 | System and method of integrating traffic accident assistance investigation and safety of the intended functionality scene establishment |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI824788B true TWI824788B (en) | 2023-12-01 |
TW202418237A TW202418237A (en) | 2024-05-01 |
Family
ID=90053001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111140084A TWI824788B (en) | 2022-10-21 | 2022-10-21 | System and method of integrating traffic accident assistance investigation and safety of the intended functionality scene establishment |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI824788B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103559745A (en) * | 2013-06-19 | 2014-02-05 | 深圳市东宝嘉科技有限公司 | System for reversely reconstructing scene of vehicle accident |
TWM545723U (en) * | 2017-03-23 | 2017-07-21 | 新昇汽車科技股份有限公司 | Driving surveillance system supporting Internet-of-Vehicle application service |
CN110009903A (en) * | 2019-03-05 | 2019-07-12 | 同济大学 | A kind of scene of a traffic accident restoring method |
CN110047286A (en) * | 2019-04-20 | 2019-07-23 | 深圳市元征科技股份有限公司 | A kind of analyzing vehicle accident method and device |
US20220327833A1 (en) * | 2020-08-04 | 2022-10-13 | Verizon Connect Development Limited | Systems and methods for utilizing machine learning models to reconstruct a vehicle accident scene from video |
-
2022
- 2022-10-21 TW TW111140084A patent/TWI824788B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103559745A (en) * | 2013-06-19 | 2014-02-05 | 深圳市东宝嘉科技有限公司 | System for reversely reconstructing scene of vehicle accident |
TWM545723U (en) * | 2017-03-23 | 2017-07-21 | 新昇汽車科技股份有限公司 | Driving surveillance system supporting Internet-of-Vehicle application service |
CN110009903A (en) * | 2019-03-05 | 2019-07-12 | 同济大学 | A kind of scene of a traffic accident restoring method |
CN110047286A (en) * | 2019-04-20 | 2019-07-23 | 深圳市元征科技股份有限公司 | A kind of analyzing vehicle accident method and device |
US20220327833A1 (en) * | 2020-08-04 | 2022-10-13 | Verizon Connect Development Limited | Systems and methods for utilizing machine learning models to reconstruct a vehicle accident scene from video |
Also Published As
Publication number | Publication date |
---|---|
TW202418237A (en) | 2024-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110570538B (en) | Method, device and equipment for managing black box data in intelligent driving automobile | |
CN106157614B (en) | Automobile accident responsibility determination method and system | |
CN104103100B (en) | Driving behavior analysis system | |
CN111524362A (en) | Vehicle safety driving guarantee system and method based on multi-data fusion | |
CN110356344A (en) | A kind of vehicle-mounted event recording method, system and automobile applied to panorama system | |
CN110147946B (en) | Data analysis method and device | |
TW202101344A (en) | Systems And Method For Calculating Liability Of A Driver Of A Vehicle | |
US10977882B1 (en) | Driver health profile | |
US20220135059A1 (en) | Method and apparatus for generating test case for dynamic verification of autonomous driving system | |
CN105346529A (en) | Intelligent automatic emergency brake system and method | |
DE112018005030T5 (en) | ADMINISTRATIVE DEVICE, VEHICLE, INSPECTION DEVICE, AND VEHICLE INSPECTION SYSTEM, AND INFORMATION PROCESSING METHOD THEREFOR | |
US10643407B1 (en) | Driving event recording method and system for non-image-based car accident cause determination | |
CN110675633B (en) | Method for determining an illegal driving behavior, control unit and storage medium | |
CN111681336A (en) | Traffic accident traceability system | |
TWI824788B (en) | System and method of integrating traffic accident assistance investigation and safety of the intended functionality scene establishment | |
CN117565882A (en) | Dangerous driving behavior analysis and accident prevention system and method for automobile | |
CN112883500A (en) | Intelligent vehicle system early function safety assessment method based on fault injection | |
CN109308802A (en) | Abnormal vehicles management method and device | |
Chang et al. | A deep learning-based intelligent anti-collision system for car door | |
CN115145246B (en) | Method and device for testing controller, vehicle, storage medium and chip | |
Messerschmidt et al. | Simulating the effect of collision-related power loss on the event data recorders of heavy trucks | |
CN118046848A (en) | System and method for establishing safety scene by combining accident auxiliary identification and expected function | |
US20240177537A1 (en) | System and method of integrating traffic accident assistance identification and safety of intended functionality scene establishment | |
CN212220190U (en) | Traffic accident traceability system | |
CN104636723B (en) | Driving method for early warning based on certain objects image analysing computer in video image |