TWI824788B - System and method of integrating traffic accident assistance investigation and safety of the intended functionality scene establishment - Google Patents

System and method of integrating traffic accident assistance investigation and safety of the intended functionality scene establishment Download PDF

Info

Publication number
TWI824788B
TWI824788B TW111140084A TW111140084A TWI824788B TW I824788 B TWI824788 B TW I824788B TW 111140084 A TW111140084 A TW 111140084A TW 111140084 A TW111140084 A TW 111140084A TW I824788 B TWI824788 B TW I824788B
Authority
TW
Taiwan
Prior art keywords
accident
data
information
signal
vehicle
Prior art date
Application number
TW111140084A
Other languages
Chinese (zh)
Other versions
TW202418237A (en
Inventor
陳建安
莊志偉
Original Assignee
財團法人車輛研究測試中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人車輛研究測試中心 filed Critical 財團法人車輛研究測試中心
Priority to TW111140084A priority Critical patent/TWI824788B/en
Application granted granted Critical
Publication of TWI824788B publication Critical patent/TWI824788B/en
Publication of TW202418237A publication Critical patent/TW202418237A/en

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Time Recorders, Dirve Recorders, Access Control (AREA)
  • Alarm Systems (AREA)

Abstract

A method of integrating a traffic accident assistance investigation and a Safety Of The Intended Functionality (SOTIF) scene establishment is proposed. The method is applied to a vehicle and includes performing an accident data collecting step, a data analyzing step, an investigation data automatically generating step and a scene database establishing step. The accident data collecting step includes configuring a cloud computing processing unit to collect an on-board diagnostic data, a digital video data and a control data from an on-board diagnostic device, a digital video recorder and a controller. The data analyzing step includes configuring the cloud computing processing unit to analyze the on-board diagnostic data, the digital video data and the control data to generate an accident record message and an action confirmation message. The accident record message includes a vehicle behavior message and a driving intention message. The investigation data automatically generating step includes configuring the cloud computing processing unit to automatically generate an accident assistance investigation data according to the vehicle behavior message, the driving intention message and the action confirmation message. The accident assistance investigation data includes an accident scene picture and a behavior characteristic report. The scene database establishing step includes configuring the cloud computing processing unit to establish an accident scene database according to the action confirmation message. The accident scene database includes a SOTIF scene. Therefore, the method of integrating the traffic accident assistance investigation and the SOTIF scene establishment of the present disclosure can generate the accident assistance investigation data effectively and quickly, reduce the labor cost and clarify the main cause of the accident.

Description

融合事故輔助鑑別與預期功能安全場景建立的系統及方法System and method integrating accident auxiliary identification and expected functional safety scenario establishment

本發明是關於一種融合事故輔助鑑別與場景建立的系統及方法,特別是關於一種融合事故輔助鑑別與預期功能安全場景建立的系統及方法。The present invention relates to a system and method that integrates accident auxiliary identification and scene establishment, and in particular, relates to a system and method that integrates accident auxiliary identification and expected functional safety scene establishment.

現行道路交通事故肇事原因鑑定,其方式僅由員警記錄事故後資料進行研判,並採以行車記錄器進行輔助。員警須透過龐大且複雜的資料(如筆錄、現場道路狀況、車體痕跡、人體損傷、路面痕跡、監控錄影、行車記錄裝置等資訊),對事故發生過程進行推演與印證,這使得現行事故人工鑑定報告的產製曠日廢時,人力成本居高不下,且易造成隱瞞不實。此外,自動駕駛車輛數量越來越多,但自動駕駛車輛因系統功能的局限,導致在某些情況下的行為與最初的預期不同,事故發生後無法釐清事故主因。由此可知,目前市場上缺乏一種能有效快速地自動產製鑑定報告、降低人力成本並釐清事故主因的融合事故輔助鑑別與預期功能安全場景建立的系統及方法,故相關業者均在尋求其解決之道。The current method of identifying the causes of road traffic accidents is only for police officers to record post-accident data for analysis and judgment, and use driving recorders for assistance. Police officers must use huge and complex data (such as records, on-site road conditions, car body marks, human injuries, road marks, surveillance videos, driving recording devices, etc.) to deduce and verify the accident process. This makes current accidents The production of manual appraisal reports takes a long time, the labor cost remains high, and it is easy to conceal the truth. In addition, the number of self-driving vehicles is increasing. However, due to the limitations of the system functions of self-driving vehicles, the behavior of self-driving vehicles is different from the initial expectations in some situations. After the accident, the main cause of the accident cannot be clarified. It can be seen that the current market lacks a system and method that can effectively and quickly automatically produce identification reports, reduce labor costs, and clarify the main causes of accidents that integrates accident auxiliary identification and the establishment of expected functional safety scenarios. Therefore, relevant industries are seeking solutions. way.

因此,本發明的目的在於提供一種融合事故輔助鑑別與預期功能安全場景建立的系統及方法,其透過車載診斷裝置及數位影像錄影機適時提出車輛發生交通事故時的即時數據,進行事故簡易重現著重於事故當下的車輛狀態、駕駛意圖及天氣情況,以釐清系統故障(控制器)、機械故障或人為誤操作,提供鑑識人員進行評估。另外,本發明可協助自動(輔助)駕駛控制器釐清肇因,並收集預期功能安全場景,提供技術精進對策,以增加應用層面、提高市場性。綜上,本發明可解決習知技術中人工鑑定報告的產製曠日廢時、人力成本居高不下、易造成隱瞞不實以及自動駕駛車輛於事故發生後無法釐清事故主因的問題。Therefore, the purpose of the present invention is to provide a system and method that integrates accident auxiliary identification and the establishment of expected functional safety scenarios, which uses on-board diagnostic devices and digital video recorders to timely extract real-time data when a vehicle is involved in a traffic accident, so as to easily reproduce the accident. Focus on the vehicle status, driving intention and weather conditions at the moment of the accident to clarify system failures (controllers), mechanical failures or human misoperations, and provide forensic personnel for evaluation. In addition, the present invention can assist the automatic (assisted) driving controller to clarify the cause, collect expected functional safety scenarios, and provide technical improvement countermeasures to increase the application level and improve marketability. In summary, the present invention can solve the problems in the conventional technology that the production of manual appraisal reports is time-consuming, the labor cost remains high, it is easy to conceal the truth, and the self-driving vehicle cannot clarify the main cause of the accident after the accident.

依據本發明的結構態樣的一實施方式提供一種融合事故輔助鑑別與預期功能安全場景建立的系統,其應用於車輛。融合事故輔助鑑別與預期功能安全場景建立的系統包含車載診斷(On-Board Diagnostic;OBD)裝置、數位影像錄影機(Digital Video Recorder;DVR)、控制器以及雲端運算處理單元。車載診斷裝置設置於車輛並擷取車載診斷資料。數位影像錄影機設置於車輛並擷取錄影資料。控制器設置於車輛並產生控制資料。雲端運算處理單元訊號連接車載診斷裝置、數位影像錄影機及控制器,並經配置以實施包含以下步驟的操作:事故資料收集步驟、資料解析步驟、鑑別資料自動產製步驟以及場景資料庫建立步驟。事故資料收集步驟包含驅動雲端運算處理單元收集來自車載診斷裝置、數位影像錄影機及控制器的車載診斷資料、錄影資料及控制資料。資料解析步驟包含驅動雲端運算處理單元將車載診斷資料、錄影資料及控制資料解析為事故記錄資訊及作動確認資訊,事故記錄資訊包含車輛行為資訊與駕駛意圖資訊。鑑別資料自動產製步驟包含驅動雲端運算處理單元依據車輛行為資訊、駕駛意圖資訊及作動確認資訊自動產製成事故輔助鑑別資料。事故輔助鑑別資料包含事故現場圖與行為特徵報告書。場景資料庫建立步驟包含驅動雲端運算處理單元依據作動確認資訊建立事故場景資料庫。事故場景資料庫包含預期功能安全(Safety Of The Intended Functionality;SOTIF)場景。An embodiment according to the structural aspect of the present invention provides a system that integrates accident auxiliary identification and establishment of expected functional safety scenarios, which is applied to vehicles. The system established by integrating accident auxiliary identification and expected functional safety scenarios includes an on-board diagnostic (OBD) device, a digital video recorder (DVR), a controller and a cloud computing processing unit. The vehicle-mounted diagnostic device is installed in the vehicle and acquires vehicle-mounted diagnostic data. A digital video recorder is installed in the vehicle and captures video data. The controller is installed in the vehicle and generates control data. The cloud computing processing unit signals are connected to the on-board diagnostic device, the digital video recorder and the controller, and is configured to perform operations including the following steps: the accident data collection step, the data analysis step, the automatic identification data production step and the scene database creation step. . The accident data collection step includes driving the cloud computing processing unit to collect vehicle diagnostic data, video data and control data from the vehicle diagnostic device, digital video recorder and controller. The data parsing step includes driving the cloud computing processing unit to parse vehicle diagnostic data, video data and control data into accident record information and action confirmation information. The accident record information includes vehicle behavior information and driving intention information. The step of automatically producing identification data includes driving the cloud computing processing unit to automatically produce accident auxiliary identification data based on vehicle behavior information, driving intention information and action confirmation information. Auxiliary accident identification materials include accident scene diagrams and behavioral characteristics reports. The scene database creation step includes driving the cloud computing processing unit to create an accident scene database based on the action confirmation information. The accident scenario database contains intended functional safety (Safety Of The Intended Functionality; SOTIF) scenarios.

藉此,本發明的融合事故輔助鑑別與預期功能安全場景建立的系統不但能有效快速地自動產製事故輔助鑑別資料並降低人力成本,還能釐清事故主因。In this way, the system established by integrating accident auxiliary identification and expected functional safety scenarios of the present invention can not only effectively and quickly automatically produce accident auxiliary identification data and reduce labor costs, but also clarify the main cause of the accident.

前述實施方式的其他實施例如下:前述雲端運算處理單元經配置以實施更包含事故判斷步驟,其包含驅動雲端運算處理單元接收車輛的事故作動資訊而產生事故判斷結果,事故判斷結果代表車輛於肇事時間發生事故。Other examples of the aforementioned implementation are as follows: the aforementioned cloud computing processing unit is configured to implement an accident judgment step, which includes driving the cloud computing processing unit to receive accident action information of the vehicle to generate an accident judgment result, and the accident judgment result represents the vehicle involved in the accident. Time for accidents.

前述實施方式的其他實施例如下:前述事故作動資訊包含安全氣囊作動資訊、加速度感測器感測資訊及感測器失效資訊的至少一者。Other examples of the aforementioned implementation are as follows: the aforementioned accident activation information includes at least one of airbag activation information, acceleration sensor sensing information, and sensor failure information.

前述實施方式的其他實施例如下:前述控制器包含自動駕駛系統(Autonomous Driving System;ADS)、先進駕駛輔助系統(Advanced Driver Assistance Systems;ADAS)及電子控制單元(Electronic Control Unit;ECU)的一者。Other examples of the aforementioned embodiments are as follows: the aforementioned controller includes one of an automatic driving system (Autonomous Driving System; ADS), an advanced driving assistance system (Advanced Driver Assistance Systems; ADAS), and an electronic control unit (Electronic Control Unit; ECU) .

前述實施方式的其他實施例如下:當前述控制器包含自動駕駛系統與先進駕駛輔助系統的一者時,作動確認資訊包含異常未作動資料與誤作動資料。異常未作動資料代表控制器在應作動但卻未作動的狀況下所產生的資料。誤作動資料代表控制器在不應作動但卻作動的狀況下所產生的資料。預期功能安全場景對應異常未作動資料與誤作動資料的一者。Other examples of the aforementioned implementation are as follows: when the aforementioned controller includes one of an automatic driving system and an advanced driving assistance system, the operation confirmation information includes abnormal non-operation data and misoperation data. Abnormal non-action data represents the data generated when the controller should act but does not act. Misoperation data represents the data generated by the controller when it should not operate but does. The expected functional safety scenario corresponds to one of abnormal non-action data and mis-action data.

前述實施方式的其他實施例如下:前述車載診斷資料包含車輛負載、轉速、車速、節氣門位置、引擎運轉時間、煞車訊號、方向盤轉角、胎壓、汽車喇叭訊號、全球定位系統(Global Positioning System;GPS)位置及緊急警示燈光訊號的至少一者。控制資料包含電子控制單元電壓、電池電量狀態(State of Charge;SOC)、側向誤差、縱向誤差、光達訊號、雷達訊號、診斷訊號、方向盤訊號、電/油門訊號、解離事件原因、緊急按鈕訊號及車身訊號的至少一者。Other examples of the aforementioned embodiments are as follows: the aforementioned on-board diagnostic data includes vehicle load, rotational speed, vehicle speed, throttle position, engine running time, braking signal, steering wheel angle, tire pressure, car horn signal, and Global Positioning System (Global Positioning System); At least one of GPS) position and emergency warning light signal. Control data includes electronic control unit voltage, battery status (State of Charge; SOC), lateral error, longitudinal error, lidar signal, radar signal, diagnostic signal, steering wheel signal, electric/throttle signal, cause of dissociation event, and emergency button At least one of signal and body signal.

前述實施方式的其他實施例如下:前述車輛行為資訊包含蛇行行為、超速行為、急加減速行為及闖紅燈行為的至少一者。駕駛意圖資訊包含手動駕駛訊號與自動駕駛訊號的一者。Other examples of the aforementioned implementation are as follows: the aforementioned vehicle behavior information includes at least one of snaking behavior, speeding behavior, sudden acceleration and deceleration behavior, and red light running behavior. The driving intention information includes one of a manual driving signal and an automatic driving signal.

前述實施方式的其他實施例如下:前述事故現場圖包含肇事時間、肇事地點、現場處理摘要資料。行為特徵報告書包含肇事原因、事故當時環境狀況、事故肇事經過及肇事分析。肇事分析包含行駛行為、佐證資料、路權歸屬及法規依據的至少一者。肇事時間、肇事地點及現場處理摘要資料透過車載診斷裝置與數位影像錄影機提供。事故當時環境狀況透過數位影像錄影機提供。肇事原因、事故肇事經過及肇事分析透過車載診斷裝置、數位影像錄影機及控制器提供。Other examples of the foregoing implementation are as follows: the foregoing accident scene map includes the time of the accident, the location of the accident, and on-site processing summary information. The behavioral characteristics report includes the cause of the accident, the environmental conditions at the time of the accident, the process of the accident and the analysis of the accident. The accident analysis includes at least one of driving behavior, supporting information, right-of-way ownership and legal basis. The time of the accident, the location of the accident and on-site processing summary information are provided through the on-board diagnostic device and digital video recorder. The environmental conditions at the time of the accident were provided through a digital video recorder. The cause of the accident, the course of the accident and the analysis of the accident are provided through the on-board diagnostic device, digital video recorder and controller.

前述實施方式的其他實施例如下:前述融合事故輔助鑑別與預期功能安全場景建立的系統更包含路側設施與道路號誌。路側設施訊號連接雲端運算處理單元,路側設施設置於道路,且偵測道路而產生外部資料。道路號誌訊號連接雲端運算處理單元,道路號誌設置於道路,且產生號誌訊號。外部資料包含地圖資訊,行為特徵報告書包含外部資料與號誌訊號。Other examples of the foregoing embodiments are as follows: the foregoing system that integrates accident auxiliary identification and expected functional safety scenarios further includes roadside facilities and road signs. The roadside facility signal is connected to the cloud computing processing unit. The roadside facility is installed on the road and detects the road to generate external data. The road signal signal is connected to the cloud computing processing unit, the road signal is installed on the road, and the road signal signal is generated. External data includes map information, and behavioral characteristics reports include external data and signaling signals.

依據本發明的方法態樣的一實施方式提供一種融合事故輔助鑑別與預期功能安全場景建立的方法,其應用於車輛。融合事故輔助鑑別與預期功能安全場景建立的方法包含事故資料收集步驟、資料解析步驟、鑑別資料自動產製步驟以及場景資料庫建立步驟。其中事故資料收集步驟包含驅動雲端運算處理單元收集來自車載診斷(On-Board Diagnostic;OBD)裝置、數位影像錄影機(Digital Video Recorder;DVR)及控制器的車載診斷資料、錄影資料及控制資料。資料解析步驟包含驅動雲端運算處理單元將車載診斷資料、錄影資料及控制資料解析為事故記錄資訊及作動確認資訊。事故記錄資訊包含車輛行為資訊與駕駛意圖資訊。鑑別資料自動產製步驟包含驅動雲端運算處理單元依據車輛行為資訊、駕駛意圖資訊及作動確認資訊自動產製成事故輔助鑑別資料。事故輔助鑑別資料包含事故現場圖與行為特徵報告書。場景資料庫建立步驟包含驅動雲端運算處理單元依據作動確認資訊建立事故場景資料庫。事故場景資料庫包含預期功能安全(Safety Of The Intended Functionality;SOTIF)場景。An implementation method according to the method aspect of the present invention provides a method that integrates accident auxiliary identification and establishment of expected functional safety scenarios, which is applied to vehicles. The method that integrates accident auxiliary identification and expected functional safety scenario establishment includes accident data collection steps, data analysis steps, identification data automatic production steps, and scenario database establishment steps. The accident data collection step includes driving the cloud computing processing unit to collect on-board diagnostic data, video data and control data from the on-board diagnostic (On-Board Diagnostic; OBD) device, Digital Video Recorder (DVR) and controller. The data parsing step includes driving the cloud computing processing unit to parse vehicle-mounted diagnostic data, video data and control data into accident record information and action confirmation information. Accident record information includes vehicle behavior information and driving intention information. The step of automatically producing identification data includes driving the cloud computing processing unit to automatically produce accident auxiliary identification data based on vehicle behavior information, driving intention information and action confirmation information. Auxiliary accident identification materials include accident scene diagrams and behavioral characteristics reports. The scene database creation step includes driving the cloud computing processing unit to create an accident scene database based on the action confirmation information. The accident scenario database contains intended functional safety (Safety Of The Intended Functionality; SOTIF) scenarios.

藉此,本發明的融合事故輔助鑑別與預期功能安全場景建立的方法不但能有效快速地自動產製事故輔助鑑別資料並降低人力成本,還能釐清事故主因。Thus, the method of the present invention that integrates accident auxiliary identification and expected functional safety scenario establishment can not only effectively and quickly automatically produce accident auxiliary identification data and reduce labor costs, but also clarify the main cause of the accident.

前述實施方式的其他實施例如下:前述融合事故輔助鑑別與預期功能安全場景建立的方法更包含事故判斷步驟,其包含驅動雲端運算處理單元接收車輛的事故作動資訊而產生事故判斷結果,事故判斷結果代表車輛於肇事時間發生事故。Other examples of the foregoing embodiments are as follows: the foregoing method of integrating accident auxiliary identification and expected functional safety scene establishment further includes an accident judgment step, which includes driving the cloud computing processing unit to receive the accident action information of the vehicle to generate an accident judgment result, and the accident judgment result It represents a vehicle that was involved in an accident at the time of the accident.

前述實施方式的其他實施例如下:前述事故作動資訊包含安全氣囊作動資訊、加速度感測器感測資訊及感測器失效資訊的至少一者。Other examples of the aforementioned implementation are as follows: the aforementioned accident activation information includes at least one of airbag activation information, acceleration sensor sensing information, and sensor failure information.

前述實施方式的其他實施例如下:前述控制器包含自動駕駛系統(Autonomous Driving System;ADS)、先進駕駛輔助系統(Advanced Driver Assistance Systems;ADAS)及電子控制單元(Electronic Control Unit;ECU)的一者。Other examples of the aforementioned embodiments are as follows: the aforementioned controller includes one of an automatic driving system (Autonomous Driving System; ADS), an advanced driving assistance system (Advanced Driver Assistance Systems; ADAS), and an electronic control unit (Electronic Control Unit; ECU) .

前述實施方式的其他實施例如下:當前述控制器包含自動駕駛系統與先進駕駛輔助系統的一者時,作動確認資訊包含異常未作動資料與誤作動資料。其中異常未作動資料代表控制器在應作動但卻未作動的狀況下所產生的資料。誤作動資料代表控制器在不應作動但卻作動的狀況下所產生的資料。預期功能安全場景對應異常未作動資料與誤作動資料的一者。Other examples of the aforementioned implementation are as follows: when the aforementioned controller includes one of an automatic driving system and an advanced driving assistance system, the operation confirmation information includes abnormal non-operation data and misoperation data. The abnormal non-actuated data represents the data generated when the controller should act but does not act. Misoperation data represents the data generated by the controller when it should not operate but does. The expected functional safety scenario corresponds to one of abnormal non-action data and mis-action data.

前述實施方式的其他實施例如下:前述車載診斷資料包含車輛負載、轉速、車速、節氣門位置、引擎運轉時間、煞車訊號、方向盤轉角、胎壓、汽車喇叭訊號、全球定位系統(Global Positioning System;GPS)位置及緊急警示燈光訊號的至少一者。控制資料包含電子控制單元電壓、電池電量狀態(State of Charge;SOC)、側向誤差、縱向誤差、光達訊號、雷達訊號、診斷訊號、方向盤訊號、電/油門訊號、解離事件原因、緊急按鈕訊號及車身訊號的至少一者。Other examples of the aforementioned embodiments are as follows: the aforementioned on-board diagnostic data includes vehicle load, rotational speed, vehicle speed, throttle position, engine running time, braking signal, steering wheel angle, tire pressure, car horn signal, and Global Positioning System (Global Positioning System); At least one of GPS) position and emergency warning light signal. Control data includes electronic control unit voltage, battery status (State of Charge; SOC), lateral error, longitudinal error, lidar signal, radar signal, diagnostic signal, steering wheel signal, electric/throttle signal, cause of dissociation event, and emergency button At least one of signal and body signal.

前述實施方式的其他實施例如下:前述車輛行為資訊包含蛇行行為、超速行為、急加減速行為及闖紅燈行為的至少一者。駕駛意圖資訊包含手動駕駛訊號與自動駕駛訊號的一者。Other examples of the aforementioned implementation are as follows: the aforementioned vehicle behavior information includes at least one of snaking behavior, speeding behavior, sudden acceleration and deceleration behavior, and red light running behavior. The driving intention information includes one of a manual driving signal and an automatic driving signal.

前述實施方式的其他實施例如下:前述事故現場圖包含肇事時間、肇事地點、現場處理摘要資料。行為特徵報告書包含肇事原因、事故當時環境狀況、事故肇事經過及肇事分析,肇事分析包含行駛行為、佐證資料、路權歸屬及法規依據的至少一者。肇事時間、肇事地點及現場處理摘要資料透過車載診斷裝置與數位影像錄影機提供。事故當時環境狀況透過數位影像錄影機提供。肇事原因、事故肇事經過及肇事分析透過車載診斷裝置、數位影像錄影機及控制器提供。Other examples of the foregoing implementation are as follows: the foregoing accident scene map includes the time of the accident, the location of the accident, and on-site processing summary information. The behavioral characteristics report includes the cause of the accident, the environmental conditions at the time of the accident, the process of the accident and the analysis of the accident. The accident analysis includes at least one of driving behavior, supporting information, right-of-way ownership and legal basis. The time of the accident, the location of the accident and on-site processing summary information are provided through the on-board diagnostic device and digital video recorder. The environmental conditions at the time of the accident were provided through a digital video recorder. The cause of the accident, the course of the accident and the analysis of the accident are provided through the on-board diagnostic device, digital video recorder and controller.

前述實施方式的其他實施例如下:前述行為特徵報告書包含外部資料與號誌訊號。其中外部資料包含地圖資訊,外部資料由路側設施偵測道路而產生。號誌訊號由道路號誌產生。Other examples of the foregoing implementation are as follows: the foregoing behavioral characteristics report includes external data and signaling signals. The external data includes map information, and the external data is generated by roadside facilities detecting roads. Signal signals are generated by road signs.

以下將參照圖式說明本發明的複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示的;並且重複的元件將可能使用相同的編號表示的。Several embodiments of the present invention will be described below with reference to the drawings. For the sake of clarity, many practical details will be explained together in the following narrative. However, it will be understood that these practical details should not limit the invention. That is to say, in some embodiments of the present invention, these practical details are not necessary. In addition, for the sake of simplifying the drawings, some commonly used structures and components are shown in the drawings in a simple schematic manner; and repeated components may be represented by the same numbers.

此外,本文中當某一元件(或單元或模組等)「連接」於另一元件,可指所述元件是直接連接於另一元件,亦可指某一元件是間接連接於另一元件,意即,有其他元件介於所述元件及另一元件之間。而當有明示某一元件是「直接連接」於另一元件時,才表示沒有其他元件介於所述元件及另一元件之間。而第一、第二、第三等用語只是用來描述不同元件,而對元件本身並無限制,因此,第一元件亦可改稱為第二元件。且本文中的元件/單元/電路的組合非此領域中的一般周知、常規或習知的組合,不能以元件/單元/電路本身是否為習知,來判定其組合關係是否容易被技術領域中的通常知識者輕易完成。In addition, when a certain component (or unit or module, etc.) is "connected" to another component in this article, it may mean that the component is directly connected to the other component, or it may mean that one component is indirectly connected to the other component. , meaning that there are other elements between the said element and another element. When it is stated that an element is "directly connected" to another element, it means that no other elements are interposed between the element and the other element. Terms such as first, second, third, etc. are only used to describe different components without limiting the components themselves. Therefore, the first component can also be renamed the second component. Moreover, the combination of components/units/circuit in this article is not a combination that is generally known, conventional or customary in this field. Whether the component/unit/circuit itself is common knowledge cannot be used to determine whether its combination relationship is easily understood in the technical field. Easily accomplished by the average person with knowledge.

請參閱第1圖,第1圖係繪示本發明的第一實施例的融合事故輔助鑑別與預期功能安全場景建立的系統100的示意圖。融合事故輔助鑑別與預期功能安全場景建立的系統100應用於車輛110,且包含車載診斷(On-Board Diagnostic;OBD)裝置200、數位影像錄影機(Digital Video Recorder;DVR)300、控制器400以及雲端平台500。其中車載診斷裝置200設置於車輛110並擷取車載診斷資料。數位影像錄影機300設置於車輛110並擷取錄影資料。控制器400設置於車輛110並產生控制資料。雲端平台500包含雲端運算處理單元510與雲端記憶體520。雲端運算處理單元510訊號連接車載診斷裝置200、數位影像錄影機300及控制器400。首先,雲端運算處理單元510收集來自車載診斷裝置200、數位影像錄影機300及控制器400的車載診斷資料、錄影資料及控制資料。然後,雲端運算處理單元510將車載診斷資料、錄影資料及控制資料解析為事故記錄資訊及作動確認資訊,事故記錄資訊包含車輛行為資訊與駕駛意圖資訊。接著,雲端運算處理單元510依據車輛行為資訊、駕駛意圖資訊及作動確認資訊自動產製成事故輔助鑑別資料,事故輔助鑑別資料包含事故現場圖與行為特徵報告書。另外,雲端運算處理單元510依據作動確認資訊建立事故場景資料庫,此事故場景資料庫包含預期功能安全(Safety Of The Intended Functionality;SOTIF)場景。雲端記憶體520訊號連接雲端運算處理單元510,並用以存取車載診斷資料、錄影資料、控制資料、事故記錄資訊、作動確認資訊以及事故輔助鑑別資料。Please refer to Figure 1 . Figure 1 is a schematic diagram of a system 100 that integrates accident auxiliary identification and expected functional safety scenario creation according to the first embodiment of the present invention. The system 100 established by integrating accident auxiliary identification and expected functional safety scenarios is applied to the vehicle 110 and includes an on-board diagnostic (On-Board Diagnostic; OBD) device 200, a digital video recorder (Digital Video Recorder; DVR) 300, a controller 400 and Cloud platform 500. The vehicle-mounted diagnostic device 200 is installed on the vehicle 110 and captures vehicle-mounted diagnostic data. The digital video recorder 300 is installed on the vehicle 110 and captures video data. The controller 400 is disposed on the vehicle 110 and generates control data. The cloud platform 500 includes a cloud computing processing unit 510 and a cloud memory 520 . The cloud computing processing unit 510 is connected to the vehicle diagnostic device 200, the digital video recorder 300 and the controller 400 via signals. First, the cloud computing processing unit 510 collects vehicle-mounted diagnostic data, video data and control data from the vehicle-mounted diagnostic device 200, the digital video recorder 300 and the controller 400. Then, the cloud computing processing unit 510 parses the vehicle diagnostic data, video data and control data into accident record information and action confirmation information. The accident record information includes vehicle behavior information and driving intention information. Then, the cloud computing processing unit 510 automatically generates accident auxiliary identification data based on the vehicle behavior information, driving intention information and action confirmation information. The accident auxiliary identification data includes accident scene diagrams and behavioral characteristics reports. In addition, the cloud computing processing unit 510 establishes an accident scene database based on the action confirmation information. The accident scene database includes expected functional safety (Safety Of The Intended Functionality; SOTIF) scenes. The cloud memory 520 is connected to the cloud computing processing unit 510 via signals, and is used to access vehicle diagnostic data, video data, control data, accident record information, action confirmation information, and accident auxiliary identification data.

在一實施例中(配合參閱第6圖),融合事故輔助鑑別與預期功能安全場景建立的系統100可更包含路側設施610與道路號誌620。路側設施610訊號連接雲端運算處理單元510,路側設施610設置於道路,且偵測道路而產生外部資料612,並將外部資料612傳送至雲端運算處理單元510。道路號誌620訊號連接雲端運算處理單元510,道路號誌620設置於道路,且產生號誌訊號622,並將號誌訊號622傳送至雲端運算處理單元510。外部資料612包含地圖資訊612a,行為特徵報告書516b包含外部資料612與號誌訊號622。In one embodiment (refer to FIG. 6 ), the system 100 that integrates accident auxiliary identification and expected functional safety scenario establishment may further include roadside facilities 610 and road signs 620 . The roadside facility 610 is connected with a signal to the cloud computing processing unit 510. The roadside facility 610 is installed on the road and detects the road to generate external data 612, and transmits the external data 612 to the cloud computing processing unit 510. The road signal 620 signal is connected to the cloud computing processing unit 510. The road signal 620 is installed on the road, generates a signal signal 622, and transmits the signal signal 622 to the cloud computing processing unit 510. The external data 612 includes the map information 612a, and the behavior characteristic report 516b includes the external data 612 and the signaling signal 622.

上述雲端運算處理單元510可為處理器(Processor)、微處理器(Microprocessor)、電子控制單元(Electronic Control Unit;ECU)、電腦、行動裝置處理器或其他運算處理器,但本發明不以此為限。雲端運算處理單元510可執行融合事故輔助鑑別與預期功能安全場景建立的方法。此外,雲端記憶體520可為能儲存供雲端運算處理單元510執行的資訊和指令的隨機存取記憶體(Random Access Memory;RAM)或其它型式的動態儲存裝置,但本發明不以此為限。The above-mentioned cloud computing processing unit 510 can be a processor (Processor), a microprocessor (Microprocessor), an Electronic Control Unit (ECU), a computer, a mobile device processor or other computing processors, but the present invention does not use this is limited. The cloud computing processing unit 510 can execute a method that integrates accident auxiliary identification and establishment of expected functional safety scenarios. In addition, the cloud memory 520 can be a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions for execution by the cloud computing processing unit 510, but the invention is not limited thereto. .

請一併參閱第1圖與第2圖,其中第2圖係繪示本發明的第二實施例的融合事故輔助鑑別與預期功能安全場景建立的方法S0的流程示意圖。融合事故輔助鑑別與預期功能安全場景建立的方法S0應用於車輛110,且包含事故資料收集步驟S02、資料解析步驟S04、鑑別資料自動產製步驟S06以及場景資料庫建立步驟S08。其中事故資料收集步驟S02包含驅動雲端運算處理單元510收集來自車載診斷裝置200、數位影像錄影機300及控制器400的車載診斷資料210、錄影資料310及控制資料410。資料解析步驟S04包含驅動雲端運算處理單元510將車載診斷資料210、錄影資料310及控制資料410解析為事故記錄資訊512及作動確認資訊514,事故記錄資訊512包含車輛行為資訊512a與駕駛意圖資訊512b。鑑別資料自動產製步驟S06包含驅動雲端運算處理單元510依據車輛行為資訊512a、駕駛意圖資訊512b及作動確認資訊514自動產製成事故輔助鑑別資料516,事故輔助鑑別資料516包含事故現場圖516a與行為特徵報告書516b。場景資料庫建立步驟S08包含驅動雲端運算處理單元510依據作動確認資訊514建立事故場景資料庫518。事故場景資料庫518包含SOTIF場景518a。Please refer to Figure 1 and Figure 2 together. Figure 2 is a schematic flowchart illustrating the method S0 of integrating accident auxiliary identification and expected functional safety scenario establishment according to the second embodiment of the present invention. The method S0 that integrates accident auxiliary identification and expected functional safety scenario creation is applied to the vehicle 110 and includes an accident data collection step S02, a data analysis step S04, an identification data automatic production step S06, and a scenario database creation step S08. The accident data collection step S02 includes driving the cloud computing processing unit 510 to collect vehicle diagnostic data 210, video data 310 and control data 410 from the vehicle diagnostic device 200, the digital video recorder 300 and the controller 400. The data parsing step S04 includes driving the cloud computing processing unit 510 to parse the on-board diagnostic data 210, video data 310 and control data 410 into accident record information 512 and action confirmation information 514. The accident record information 512 includes vehicle behavior information 512a and driving intention information 512b. . The step S06 of automatically producing the identification data includes driving the cloud computing processing unit 510 to automatically produce the accident auxiliary identification data 516 based on the vehicle behavior information 512a, the driving intention information 512b and the action confirmation information 514. The accident auxiliary identification data 516 includes the accident scene map 516a and Behavioral Characteristics Report 516b. The scene database creation step S08 includes driving the cloud computing processing unit 510 to create an accident scene database 518 based on the action confirmation information 514 . Incident scenario database 518 contains SOTIF scenarios 518a.

藉此,本發明的融合事故輔助鑑別與預期功能安全場景建立的系統100及融合事故輔助鑑別與預期功能安全場景建立的方法S0不但能有效快速地自動產製事故輔助鑑別資料516並降低人力成本,還能釐清事故主因。Thus, the system 100 that integrates accident auxiliary identification and expected functional safety scenario establishment and the method S0 that integrates accident auxiliary identification and expected functional safety scenario establishment of the present invention can not only effectively and quickly automatically produce accident auxiliary identification data 516 but also reduce labor costs. , and can also clarify the main cause of the accident.

請一併參閱第1圖、第2圖及第3圖,其中第3圖係繪示本發明的第三實施例的融合事故輔助鑑別與預期功能安全場景建立的方法S2的流程示意圖。融合事故輔助鑑別與預期功能安全場景建立的方法S2應用於車輛110,且包含事故判斷步驟S20、事故資料收集步驟S22、資料解析步驟S24、鑑別資料自動產製步驟S26以及場景資料庫建立步驟S28。Please refer to Figures 1, 2 and 3 together. Figure 3 is a schematic flowchart illustrating the method S2 of integrating accident auxiliary identification and expected functional safety scenario creation according to the third embodiment of the present invention. The method S2 that integrates accident auxiliary identification and expected functional safety scenario establishment is applied to the vehicle 110 and includes an accident determination step S20, an accident data collection step S22, a data analysis step S24, an identification data automatic production step S26, and a scenario database creation step S28. .

事故判斷步驟S20為「事故發生」,其包含驅動雲端運算處理單元510接收車輛110的事故作動資訊511而產生事故判斷結果,事故判斷結果代表車輛110於肇事時間發生事故。在一實施例中,事故作動資訊511可包含安全氣囊作動資訊、加速度感測器感測資訊及感測器失效資訊的至少一者。安全氣囊作動資訊代表車輛110的安全氣囊爆開所產生的資訊,加速度感測器感測資訊代表加速度感測器(G-sensor)作動(感測值超過一預設值)所產生的資訊,感測器失效資訊代表感測器發生失效所產生的資訊,但本發明不以此為限。The accident determination step S20 is "accident occurrence", which includes driving the cloud computing processing unit 510 to receive the accident action information 511 of the vehicle 110 to generate an accident determination result. The accident determination result represents that the vehicle 110 was involved in an accident at the time of the accident. In one embodiment, the accident activation information 511 may include at least one of airbag activation information, acceleration sensor sensing information, and sensor failure information. The airbag activation information represents the information generated by the explosion of the airbag of the vehicle 110, and the acceleration sensor sensing information represents the information generated by the acceleration sensor (G-sensor) activation (the sensing value exceeds a preset value). The sensor failure information represents information generated when the sensor fails, but the present invention is not limited to this.

事故資料收集步驟S22為「資料收集」,其包含驅動雲端運算處理單元510收集來自車載診斷裝置200、數位影像錄影機300及控制器400的車載診斷資料210、錄影資料310及控制資料410。詳細地說,雲端運算處理單元510在車輛110發生事故的當下(即肇事時間)會收集來自車載診斷裝置200的車載診斷資料210、數位影像錄影機300的錄影資料310及控制器400的控制資料410。車載診斷資料210可包含車輛負載、轉速、車速、節氣門位置、引擎運轉時間、煞車訊號、方向盤轉角、胎壓、汽車喇叭訊號、全球定位系統(Global Positioning System;GPS)位置及緊急警示燈光訊號的至少一者。錄影資料310可具有一錄影畫面頻率(如每秒一張畫面)。控制器400可包含自動駕駛系統(Autonomous Driving System;ADS)、先進駕駛輔助系統(Advanced Driver Assistance Systems;ADAS)及電子控制單元(Electronic Control Unit;ECU)的一者。控制資料410可包含電子控制單元電壓(即ECU電壓)、電池電量狀態(State of Charge;SOC)、側向誤差、縱向誤差、光達訊號、雷達訊號、診斷訊號、方向盤訊號、電/油門訊號、解離事件原因、緊急按鈕訊號及車身訊號的至少一者。The accident data collection step S22 is "data collection", which includes driving the cloud computing processing unit 510 to collect vehicle diagnostic data 210, video data 310 and control data 410 from the vehicle diagnostic device 200, the digital video recorder 300 and the controller 400. Specifically, the cloud computing processing unit 510 will collect the on-board diagnostic data 210 from the on-board diagnostic device 200, the video data 310 of the digital video recorder 300, and the control data of the controller 400 when the vehicle 110 has an accident (i.e., the time of the accident). 410. The on-board diagnostic data 210 may include vehicle load, rotational speed, vehicle speed, throttle position, engine running time, braking signal, steering wheel angle, tire pressure, car horn signal, Global Positioning System (GPS) position and emergency warning light signal. At least one of. The video data 310 may have a video frame frequency (eg, one frame per second). The controller 400 may include one of an autonomous driving system (Autonomous Driving System; ADS), an advanced driver assistance system (Advanced Driver Assistance Systems; ADAS), and an electronic control unit (Electronic Control Unit; ECU). The control data 410 may include electronic control unit voltage (ie, ECU voltage), battery state of charge (State of Charge; SOC), lateral error, longitudinal error, lidar signal, radar signal, diagnostic signal, steering wheel signal, electric/throttle signal , at least one of the cause of the dissociation event, the emergency button signal and the body signal.

資料解析步驟S24包含驅動雲端運算處理單元510將車載診斷資料210、錄影資料310及控制資料410解析為事故記錄資訊512及作動確認資訊514,事故記錄資訊512包含車輛行為資訊512a與駕駛意圖資訊512b。詳細地說,車輛行為資訊512a可包含蛇行行為、超速行為、急加減速行為及闖紅燈行為的至少一者。駕駛意圖資訊512b可包含手動駕駛訊號與自動駕駛訊號的一者。舉例來說,當車輛行為資訊512a為車頭左右搖晃偏擺(蛇行行為)時,車載診斷資料210為方向盤轉角。當車輛行為資訊512a為加減速突急遽增減(急加減速行為)時,車載診斷資料210為節氣門位置變化、噴油量訊號及油門踏板訊號與煞車訊號變化。當車輛行為資訊512a為車輛轉向行為時,車載診斷資料210為方向燈作動訊號。此外,資料解析步驟S24會分析各場景的原因(HW/SW故障分析),以供後續判斷。HW代表硬體造成的原因;SW代表軟體造成的原因。The data parsing step S24 includes driving the cloud computing processing unit 510 to parse the on-board diagnostic data 210, video data 310 and control data 410 into accident record information 512 and action confirmation information 514. The accident record information 512 includes vehicle behavior information 512a and driving intention information 512b. . Specifically, the vehicle behavior information 512a may include at least one of snaking behavior, speeding behavior, sudden acceleration and deceleration behavior, and red light running behavior. The driving intention information 512b may include one of a manual driving signal and an automatic driving signal. For example, when the vehicle behavior information 512a is the vehicle's head turning left and right (snaking behavior), the on-board diagnostic data 210 is the steering wheel angle. When the vehicle behavior information 512a indicates a sudden increase or decrease in acceleration and deceleration (sudden acceleration and deceleration behavior), the vehicle-mounted diagnostic data 210 includes changes in throttle position, fuel injection amount signal, accelerator pedal signal, and brake signal change. When the vehicle behavior information 512a is the vehicle's steering behavior, the on-board diagnostic data 210 is the turn signal activation signal. In addition, the data analysis step S24 will analyze the causes of each scenario (HW/SW failure analysis) for subsequent judgment. HW represents the cause caused by hardware; SW represents the cause caused by software.

鑑別資料自動產製步驟S26包含驅動雲端運算處理單元510依據車輛行為資訊512a、駕駛意圖資訊512b及作動確認資訊514自動產製成事故輔助鑑別資料516,事故輔助鑑別資料516包含事故現場圖516a與行為特徵報告書516b。詳細地說,事故現場圖516a可包含肇事時間、肇事地點、現場處理摘要資料。行為特徵報告書516b可包含肇事原因(初判表)、事故當時環境狀況(天候、號誌)、事故肇事經過(鑑定書)及肇事分析,肇事分析包含行駛行為、佐證資料、路權歸屬及法規依據的至少一者。表一顯示事故輔助鑑別資料516的資訊項目、提供佐證內容及硬體裝置的關係,由表一可知,事故輔助鑑別資料516的肇事時間、肇事地點及現場處理摘要資料透過車載診斷裝置200與數位影像錄影機300提供;事故當時環境狀況透過數位影像錄影機300提供;肇事原因、事故肇事經過及肇事分析透過車載診斷裝置200、數位影像錄影機300及控制器400提供。 表一 資訊項目 提供佐證內容 硬體裝置 肇事時間與肇事地點 車輛行為、駕駛意圖、外部環境識別與目標物軌跡 OBD、DVR 現場處理摘要資料 車輛行為、駕駛意圖、外部環境識別與目標物軌跡 OBD、DVR 肇事原因 車輛行為、駕駛意圖、外部環境識別、控制器作動狀態 OBD、DVR、控制器 事故當時環境狀況 外部環境識別 DVR 事故肇事經過 車輛行為、駕駛意圖、外部環境識別、控制器作動狀態 OBD、DVR、控制器 肇事分析 車輛行為、駕駛意圖、外部環境識別、控制器作動狀態 OBD、DVR、控制器 The step S26 of automatically producing the identification data includes driving the cloud computing processing unit 510 to automatically produce the accident auxiliary identification data 516 based on the vehicle behavior information 512a, the driving intention information 512b and the action confirmation information 514. The accident auxiliary identification data 516 includes the accident scene map 516a and Behavioral Characteristics Report 516b. Specifically, the accident scene map 516a may include the time of the accident, the location of the accident, and on-site processing summary information. The behavioral characteristics report 516b can include the cause of the accident (preliminary judgment form), the environmental conditions at the time of the accident (weather, traffic signals), the course of the accident (identification certificate) and the accident analysis. The accident analysis includes driving behavior, supporting information, right-of-way ownership and At least one of the legal basis. Table 1 shows the relationship between the information items of the accident auxiliary identification data 516, the supporting evidence content and the hardware devices. From Table 1, it can be seen that the accident time, accident location and on-site processing summary data of the accident auxiliary identification data 516 are communicated with the digital through the on-board diagnostic device 200. The video recorder 300 provides; the environmental conditions at the time of the accident are provided through the digital video recorder 300; the cause of the accident, the accident process and the accident analysis are provided through the on-board diagnostic device 200, the digital video recorder 300 and the controller 400. Table I Information items Provide supporting content Hardware device Time and location of the accident Vehicle behavior, driving intention, external environment recognition and target trajectory OBD, DVR On-site processing summary information Vehicle behavior, driving intention, external environment recognition and target trajectory OBD, DVR Cause of the accident Vehicle behavior, driving intention, external environment recognition, controller action status OBD, DVR, controller Environmental conditions at the time of the accident External environment identification DVR What happened after the accident Vehicle behavior, driving intention, external environment recognition, controller action status OBD, DVR, controller Accident analysis Vehicle behavior, driving intention, external environment recognition, controller action status OBD, DVR, controller

場景資料庫建立步驟S28包含驅動雲端運算處理單元510依據作動確認資訊514建立事故場景資料庫518。事故場景資料庫518包含SOTIF場景518a。藉此,本發明的融合事故輔助鑑別與預期功能安全場景建立的方法S2透過車載診斷裝置200、數位影像錄影機300、控制器400、路側設施610及道路號誌620適時提出車輛110發生事故時的即時數據,進行事故簡易重現著重於事故當下的車輛狀態、駕駛意圖及天氣情況,以釐清系統故障、機械故障或人為誤操作,提供鑑識人員進行評估。另外,本發明可協助自動(輔助)駕駛控制器400釐清肇因,並收集SOTIF場景518a,提供技術精進對策,以增加應用層面、提高市場性。因此,本發明可解決習知技術中人工鑑定報告的產製曠日廢時、人力成本居高不下、易造成隱瞞不實以及自動駕駛車輛110於事故發生後無法釐清事故主因的問題。The scene database creation step S28 includes driving the cloud computing processing unit 510 to create an accident scene database 518 based on the action confirmation information 514 . Incident scenario database 518 contains SOTIF scenarios 518a. Thereby, the method S2 of the present invention that integrates accident auxiliary identification and expected functional safety scene establishment uses the on-board diagnostic device 200, the digital video recorder 300, the controller 400, the roadside facilities 610 and the road signs 620 to timely propose when an accident occurs in the vehicle 110 Using real-time data, simple reconstruction of the accident focuses on the vehicle status, driving intention and weather conditions at the moment of the accident to clarify system failures, mechanical failures or human misoperations, and provide forensic personnel for evaluation. In addition, the present invention can assist the automatic (assisted) driving controller 400 to clarify the cause, collect SOTIF scenarios 518a, and provide technical improvement countermeasures to increase the application level and improve marketability. Therefore, the present invention can solve the problems in the conventional technology that the production of manual appraisal reports is time-consuming, the labor cost remains high, it is easy to conceal the truth, and the self-driving vehicle 110 cannot clarify the main cause of the accident after the accident.

請一併參閱第1圖、第2圖、第3圖、第4圖及第5圖,其中第4圖係繪示第3圖的融合事故輔助鑑別與預期功能安全場景建立的方法S2的第一範例的流程示意圖;及第5圖係繪示第4圖的控制器400(ADS/ADAS)的作動確認與場景資料庫建立步驟S28a的示意圖。如圖所示,融合事故輔助鑑別與預期功能安全場景建立的方法S2包含事故判斷步驟S20、事故資料收集步驟S22、資料解析步驟S24、鑑別資料自動產製步驟S26以及場景資料庫建立步驟S28a。其中場景資料庫建立步驟S28a為第3圖的場景資料庫建立步驟S28的一實施例。場景資料庫建立步驟S28a包含作動確認步驟S282,並驅動雲端運算處理單元510依據作動確認資訊514建立事故場景資料庫518。事故場景資料庫518包含SOTIF場景518a。控制器400訊號連接感測器(Sensor)與作動器(Actuator)。當控制器400包含自動駕駛系統(ADS)與先進駕駛輔助系統(ADAS)的一者時,作動確認資訊514包含異常未作動資料514a與誤作動資料514b。其中異常未作動資料514a代表控制器400在應作動但卻未作動的狀況下所產生的資料(感測器誤判)。誤作動資料514b代表控制器400在不應作動但卻作動的狀況下所產生的資料(作動器誤判)。SOTIF場景518a對應異常未作動資料514a與誤作動資料514b的一者。作動確認步驟S282為「作動確認」,其包含驅動控制器400確認控制資料410是否屬於作動確認資訊514而產生作動確認結果。當作動確認結果為是時,控制資料410代表異常未作動或誤作動,雲端運算處理單元510會依據作動確認資訊514建立事故場景資料庫518;當事故確認結果為否時,控制資料410代表正常作動。另外值得一提的是,事故場景資料庫518的SOTIF場景518a可供後續的上路與校驗測試使用(允許上路與校驗測試場景與報告);換言之,SOTIF場景518a的資訊可傳送至感測器、作動器或控制器400的製造廠商(製造端),使製造廠商可依據SOTIF場景518a的資訊進行上路與校驗測試。Please refer to Figures 1, 2, 3, 4 and 5 together. Figure 4 illustrates the method S2 of Figure 3 that integrates accident auxiliary identification and expected functional safety scenario creation. An example flow chart; and Figure 5 is a schematic diagram illustrating the action confirmation and scene database creation step S28a of the controller 400 (ADS/ADAS) in Figure 4 . As shown in the figure, the method S2 that integrates accident auxiliary identification and expected functional safety scenario creation includes an accident judgment step S20, an accident data collection step S22, a data analysis step S24, an identification data automatic production step S26, and a scenario database creation step S28a. The scene database creation step S28a is an embodiment of the scene database creation step S28 in Figure 3 . The scene database creation step S28a includes the action confirmation step S282, and drives the cloud computing processing unit 510 to create the accident scene database 518 based on the action confirmation information 514. Incident scenario database 518 contains SOTIF scenarios 518a. The controller 400 signals connect the sensor and the actuator. When the controller 400 includes one of an automated driving system (ADS) and an advanced driving assistance system (ADAS), the operation confirmation information 514 includes abnormal non-operation data 514a and misoperation data 514b. The abnormal non-actuation data 514a represents data generated when the controller 400 should act but does not act (sensor misjudgment). The misoperation data 514b represents data generated when the controller 400 operates when it should not operate but does (actuator misjudgment). The SOTIF scene 518a corresponds to one of the abnormal non-action data 514a and the malfunction data 514b. The action confirmation step S282 is "action confirmation", which includes the drive controller 400 confirming whether the control data 410 belongs to the action confirmation information 514 and generating an action confirmation result. When the action confirmation result is yes, the control data 410 represents abnormal non-action or misoperation. The cloud computing processing unit 510 will establish an accident scene database 518 based on the action confirmation information 514; when the accident confirmation result is no, the control data 410 represents normal operation. Action. It is also worth mentioning that the SOTIF scenario 518a of the accident scene database 518 can be used for subsequent on-road and verification tests (allowing on-road and verification test scenarios and reports); in other words, the information of the SOTIF scenario 518a can be transmitted to the sensor The manufacturer (manufacturing end) of the device, actuator or controller 400 allows the manufacturer to conduct on-road and verification tests based on the information of the SOTIF scenario 518a.

請一併參閱第1圖、第2圖、第3圖、第4圖及第6圖,其中第6圖係繪示第4圖的資料解析步驟S24與鑑別資料自動產製步驟S26的示意圖。如圖所示,資料解析步驟S24包含匯入車(車輛110)、人、路各項狀態參數;執行車輛行為鑑別,其係以車速、陀螺儀及加速規作為車輛110各種行駛狀態鑑別;執行駕駛意圖解析,其係透過煞車、油門、車速、轉速及方向燈判別,完整呈現駕駛意圖;執行外部環境識別與目標物軌跡,其係以車聯網(如V2X或V2V)連接道路號誌620、車輛110及路側設施610,進而獲得外部資料612。目標物軌跡代表車輛110以外的目標物(事故當時的另一車輛)於事故經過的行駛軌跡,其可由數位影像錄影機300或路側設施610得知。此外,鑑別資料自動產製步驟S26的事故現場圖516a為動態碰撞軌跡還原圖像,其可提供車輛110碰撞前、後1分鐘逐秒事故經過(提供動態車輛110行駛軌跡及碰撞前後歷程,上述碰撞前、後時間(各1分鐘)與取樣時間間隔(每秒)可依需求調整)。行為特徵報告書516b包含外部資料612與號誌訊號622。外部資料612包含地圖資訊612a,外部資料612由路側設施610偵測道路而產生。號誌訊號622由道路號誌620產生。藉此,本發明的資料解析步驟S24與鑑別資料自動產製步驟S26可依據匯入資料,自動產製事故碰撞型態、時間、車種等,並結合地圖資訊612a(如Google Map),以地理資訊系統(Geographic Information System;GIS)進行地點分析。Please refer to Figure 1, Figure 2, Figure 3, Figure 4 and Figure 6 together. Figure 6 is a schematic diagram illustrating the data analysis step S24 and the automatic identification data generation step S26 of Figure 4. As shown in the figure, the data analysis step S24 includes various state parameters of the incoming vehicle (vehicle 110), people, and roads; performs vehicle behavior identification, which uses vehicle speed, gyroscope, and accelerometer as various driving status identifications of the vehicle 110; execute Driving intention analysis, which is based on the judgment of braking, accelerator, vehicle speed, rotation speed and direction lights, fully presents the driving intention; performs external environment recognition and target trajectory, which is connected to road signs 620, Vehicle 110 and roadside facilities 610, and then obtain external data 612. The target object trajectory represents the driving trajectory of a target object other than the vehicle 110 (another vehicle at the time of the accident) through the accident, which can be obtained by the digital video recorder 300 or the roadside facility 610 . In addition, the accident scene map 516a in the identification data automatic production step S26 is a dynamic collision trajectory restored image, which can provide the accident process one minute before and after the collision of the vehicle 110 (providing the dynamic vehicle 110 driving trajectory and the process before and after the collision, as mentioned above The time before and after collision (1 minute each) and the sampling interval (per second) can be adjusted according to needs). Behavioral characteristics report 516b includes external data 612 and signaling signals 622. The external data 612 includes map information 612a, and the external data 612 is generated by the roadside facility 610 detecting the road. Signal signal 622 is generated by road sign 620 . Thereby, the data analysis step S24 and the identification data automatic production step S26 of the present invention can automatically produce the accident collision type, time, vehicle type, etc. based on the imported data, and combine it with the map information 612a (such as Google Map) to geographically Geographic Information System (GIS) for location analysis.

請一併參閱第1圖、第2圖、第3圖、第4圖、第5圖、第6圖及第7圖,其中第7圖係繪示第4圖的融合事故輔助鑑別與預期功能安全場景建立的方法S2應用於一事故狀態的流程示意圖。事故狀態為第一車輛(前車)與第二車輛(後車)於道路上運行,第一車輛搭載自動緊急煞車(Autonomous Emergency Braking;AEB)系統,亦即第一車輛的控制器400包含ADAS。第一車輛與第二車輛之間保持行車安全距離。第一車輛的AEB因誤作動(前方無障礙物卻急煞)造成第二車輛追撞的交通事故。依據上述事故狀態,本發明的融合事故輔助鑑別與預期功能安全場景建立的方法S2透過車載診斷裝置200、數位影像錄影機300及控制器400訊息,得知事故過程特徵包含:第一車輛搭載AEB系統且功能開啟,外部環境為大晴天、無逆光、平滑道路、速限70kph、無闖紅燈、車前無障物、第一車輛急煞且依據控制資料410得知AEB確實有啟動訊息,因此判定為AEB誤作動(作動器誤判),故同步列入SOTIF場景518a,如第7圖的粗框及粗線所示。在事故肇責判別釐清方面,由於前車任意驟然減速,前車分攤70%肇責、後車分攤30%肇責。藉此,透過本發明的融合事故輔助鑑別與預期功能安全場景建立的方法S2可以釐清事故真正原因,且後車可降低肇責(原本後車須負100%肇責)。Please refer to Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7 together. Figure 7 shows the integrated accident auxiliary identification and anticipatory functions of Figure 4. A schematic flowchart of the method S2 for establishing a safety scenario applied to an accident state. The accident state is that the first vehicle (front vehicle) and the second vehicle (rear vehicle) are running on the road. The first vehicle is equipped with an automatic emergency braking (Autonomous Emergency Braking; AEB) system, that is, the controller 400 of the first vehicle includes ADAS. . Maintain a safe driving distance between the first vehicle and the second vehicle. The first vehicle's AEB malfunctioned (sharp braking despite no obstacles ahead), causing a collision with the second vehicle. Based on the above accident status, the method S2 of the present invention that integrates accident auxiliary identification and expected functional safety scene establishment uses information from the on-board diagnostic device 200, the digital video recorder 300 and the controller 400 to learn that the characteristics of the accident process include: the first vehicle is equipped with AEB The system and functions are turned on, the external environment is sunny, no backlighting, smooth roads, the speed limit is 70kph, no red lights are run, there are no obstacles in front of the car, the first vehicle brakes suddenly and according to the control data 410, it is known that AEB does have a start message, so it is determined It is AEB misoperation (actuator misjudgment), so it is simultaneously included in SOTIF scenario 518a, as shown in the thick box and thick line in Figure 7. In terms of determining the fault of the accident, due to the sudden and sudden deceleration of the vehicle in front, the vehicle in front shared 70% of the fault and the vehicle behind shared 30% of the fault. In this way, the real cause of the accident can be clarified through the method S2 of the present invention that integrates accident auxiliary identification and expected functional safety scenario establishment, and the vehicle behind can reduce the liability (originally the vehicle behind has to bear 100% responsibility).

請一併參閱第1圖、第2圖、第3圖及第8圖,其中第8圖係繪示第3圖的融合事故輔助鑑別與預期功能安全場景建立的方法S2的第二範例的流程示意圖。如圖所示,融合事故輔助鑑別與預期功能安全場景建立的方法S2包含事故判斷步驟S20、事故資料收集步驟S22、資料解析步驟S24、鑑別資料自動產製步驟S26以及場景資料庫建立步驟S28b。其中場景資料庫建立步驟S28b為第3圖的場景資料庫建立步驟S28的另一實施例。場景資料庫建立步驟S28b包含驅動雲端運算處理單元510依據作動確認資訊514建立事故場景資料庫518。當控制器400包含電子控制單元(ECU)時,作動確認資訊514包含車載診斷裝置200產生的車載診斷資料210、數位影像錄影機300產生的錄影資料310及ECU產生的控制資料410。藉此,本發明透過控制器400的ECU結合車載診斷裝置200及數位影像錄影機300,可記錄車輛110事故當時的場景,並自動產製事故輔助鑑別資料516以作為肇事分析依據。Please refer to Figures 1, 2, 3 and 8 together. Figure 8 illustrates the process of the second example of the method S2 of integrating accident auxiliary identification and expected functional safety scenario creation in Figure 3. Schematic diagram. As shown in the figure, the method S2 that integrates accident auxiliary identification and expected functional safety scenario creation includes an accident judgment step S20, an accident data collection step S22, a data analysis step S24, an identification data automatic production step S26, and a scenario database creation step S28b. The scene database creation step S28b is another embodiment of the scene database creation step S28 in Figure 3 . The scene database creation step S28b includes driving the cloud computing processing unit 510 to create an accident scene database 518 based on the action confirmation information 514. When the controller 400 includes an electronic control unit (ECU), the operation confirmation information 514 includes on-board diagnostic data 210 generated by the on-board diagnostic device 200 , video data 310 generated by the digital video recorder 300 , and control data 410 generated by the ECU. In this way, the present invention can record the scene of the vehicle 110 accident through the ECU of the controller 400 combined with the on-board diagnostic device 200 and the digital video recorder 300, and automatically generate the accident auxiliary identification data 516 as a basis for accident analysis.

可理解的是,本發明的融合事故輔助鑑別與預期功能安全場景建立的方法S0、S2可透過電腦程式產品實現。上述實施例所說明的各實施步驟的次序可依實際需要而調動、結合或省略。上述實施例可利用電腦程式產品來實現,其可包含儲存有多個指令的機器可讀取媒體,這些指令可程式化(programming)電腦來進行上述實施例中的步驟。機器可讀取媒體可為但不限定於軟碟、光碟、唯讀光碟、磁光碟、唯讀記憶體、隨機存取記憶體、可抹除可程式唯讀記憶體(EPROM)、電子可抹除可程式唯讀記憶體(EEPROM)、光卡(optical card)或磁卡、快閃記憶體、或任何適於儲存電子指令的機器可讀取媒體。再者,本發明的實施例也可做為電腦程式產品來下載,其可藉由使用通訊連接(例如網路連線之類的連接)的資料訊號來從遠端電腦轉移本發明的電腦程式產品至請求電腦。It is understandable that the methods S0 and S2 of the present invention that integrate accident auxiliary identification and expected functional safety scenario establishment can be implemented through computer program products. The order of the implementation steps described in the above embodiments can be adjusted, combined or omitted according to actual needs. The above embodiments may be implemented using a computer program product, which may include a machine-readable medium storing a plurality of instructions that can program a computer to perform the steps in the above embodiments. Machine-readable media may be, but are not limited to, floppy disks, optical disks, CD-ROMs, magneto-optical disks, read-only memory, random access memory, erasable programmable read-only memory (EPROM), electronically erasable Except programmable read-only memory (EEPROM), optical or magnetic card, flash memory, or any machine-readable medium suitable for storing electronic instructions. Furthermore, embodiments of the present invention can also be downloaded as computer program products, which can transfer the computer program of the present invention from a remote computer by using data signals of a communication connection (such as a network connection or the like). Products to request computer.

由上述實施方式可知,本發明具有下列優點:其一,透過車載診斷裝置及數位影像錄影機適時提出車輛發生交通事故時的即時數據,進行事故簡易重現著重於事故當下的車輛狀態、駕駛意圖及天氣情況,以釐清系統故障、機械故障或人為誤操作,提供鑑識人員進行評估。其二,本發明可協助自動(輔助)駕駛控制器釐清肇因,並收集SOTIF場景,提供技術精進對策,以增加應用層面、提高市場性,且可解決習知技術中人工鑑定報告的產製曠日廢時、人力成本居高不下、易造成隱瞞不實以及自動駕駛車輛於事故發生後無法釐清事故主因的問題。其三,透過車輛上的設備詳實記錄行駛過程資訊,除了可釐清肇事責任外、精簡採證作業時程及降低人力成本之外,更可提供自動駕駛車輛在事故中作動情形,以供主管機關及車廠後續改善的參考。It can be seen from the above embodiments that the present invention has the following advantages: First, through the on-board diagnostic device and the digital video recorder, real-time data when the vehicle is involved in a traffic accident can be extracted in a timely manner, and the accident can be easily reproduced focusing on the vehicle status and driving intention at the moment of the accident. and weather conditions to clarify system failures, mechanical failures or human errors and provide forensic personnel for evaluation. Secondly, the present invention can assist the automatic (assisted) driving controller to clarify the cause, collect SOTIF scenarios, and provide technical improvement countermeasures to increase the application level, improve marketability, and can solve the problem of manual identification report production in the conventional technology. It takes a long time, high labor costs, easy concealment, and the inability of self-driving vehicles to clarify the main cause of an accident after an accident occurs. Third, by recording the driving process information in detail through the equipment on the vehicle, in addition to clarifying the responsibility for the accident, streamlining the certification work schedule and reducing labor costs, it can also provide the operating conditions of the autonomous vehicle in the accident to the competent authorities. and reference for subsequent improvements by the car manufacturer.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make various modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention is The scope shall be determined by the appended patent application scope.

100:融合事故輔助鑑別與預期功能安全場景建立的系統 110:車輛 200:車載診斷裝置 210:車載診斷資料 300:數位影像錄影機 310:錄影資料 400:控制器 410:控制資料 500:雲端平台 510:雲端運算處理單元 511:事故作動資訊 512:事故記錄資訊 512a:車輛行為資訊 512b:駕駛意圖資訊 514:作動確認資訊 514a:異常未作動資料 514b:誤作動資料 516:事故輔助鑑別資料 516a:事故現場圖 516b:行為特徵報告書 518:事故場景資料庫 518a:SOTIF場景 520:雲端記憶體 610:路側設施 612:外部資料 612a:地圖資訊 620:道路號誌 622:號誌訊號 S0,S2:融合事故輔助鑑別與預期功能安全場景建立的方法 S02,S22:事故資料收集步驟 S04,S24:資料解析步驟 S06,S26:鑑別資料自動產製步驟 S08,S28,S28a,S28b:場景資料庫建立步驟 S20:事故判斷步驟 S282:作動確認步驟 100: A system that integrates accident auxiliary identification and expected functional safety scenarios 110:Vehicle 200: On-board diagnostic device 210: On-board diagnostic data 300:Digital video recorder 310:Video data 400:Controller 410:Control data 500:Cloud platform 510: Cloud computing processing unit 511:Accident action information 512:Accident record information 512a: Vehicle behavior information 512b: Driving intention information 514: Action confirmation information 514a: Abnormal unaction data 514b: Malfunction data 516: Auxiliary identification information for accidents 516a: Accident scene map 516b: Behavioral Characteristics Report 518:Accident scene database 518a:SOTIF scene 520:Cloud memory 610:Roadside facilities 612:External information 612a:Map information 620:Road Signal 622: Signal signal S0, S2: Method of integrating accident auxiliary identification and establishment of expected functional safety scenarios S02, S22: Accident data collection steps S04, S24: Data analysis steps S06, S26: Automatic production steps of identification data S08, S28, S28a, S28b: Scenario database creation steps S20: Accident judgment steps S282: Action confirmation steps

第1圖係繪示本發明的第一實施例的融合事故輔助鑑別與預期功能安全場景建立的系統的示意圖; 第2圖係繪示本發明的第二實施例的融合事故輔助鑑別與預期功能安全場景建立的方法的流程示意圖; 第3圖係繪示本發明的第三實施例的融合事故輔助鑑別與預期功能安全場景建立的方法的流程示意圖; 第4圖係繪示第3圖的融合事故輔助鑑別與預期功能安全場景建立的方法的第一範例的流程示意圖; 第5圖係繪示第4圖的控制器的作動確認與場景資料庫建立步驟的示意圖; 第6圖係繪示第4圖的資料解析步驟與鑑別資料自動產製步驟的示意圖; 第7圖係繪示第4圖的融合事故輔助鑑別與預期功能安全場景建立的方法應用於一事故狀態的流程示意圖;以及 第8圖係繪示第3圖的融合事故輔助鑑別與預期功能安全場景建立的方法的第二範例的流程示意圖。 Figure 1 is a schematic diagram illustrating a system that integrates accident auxiliary identification and expected functional safety scenario establishment according to the first embodiment of the present invention; Figure 2 is a schematic flowchart illustrating a method for integrating accident auxiliary identification and expected functional safety scenario establishment according to the second embodiment of the present invention; Figure 3 is a schematic flowchart illustrating a method for integrating accident auxiliary identification and expected functional safety scenario establishment according to the third embodiment of the present invention; Figure 4 is a flow diagram illustrating a first example of the method of integrating accident auxiliary identification and expected functional safety scenario establishment in Figure 3; Figure 5 is a schematic diagram illustrating the steps of controller action confirmation and scene database creation in Figure 4; Figure 6 is a schematic diagram illustrating the data analysis steps and the automatic production steps of identification data in Figure 4; Figure 7 is a schematic process diagram illustrating the application of the method of integrating accident auxiliary identification and expected functional safety scenario creation in Figure 4 to an accident state; and FIG. 8 is a flow chart illustrating a second example of the method of integrating accident auxiliary identification and expected functional safety scenario creation in FIG. 3 .

210:車載診斷資料 210: On-board diagnostic data

310:錄影資料 310:Video data

410:控制資料 410:Control data

512:事故記錄資訊 512:Accident record information

512a:車輛行為資訊 512a: Vehicle behavior information

512b:駕駛意圖資訊 512b: Driving intention information

514:作動確認資訊 514: Action confirmation information

516:事故輔助鑑別資料 516: Auxiliary identification information for accidents

516a:事故現場圖 516a: Accident scene map

516b:行為特徵報告書 516b: Behavioral Characteristics Report

518:事故場景資料庫 518:Accident scene database

518a:SOTIF場景 518a:SOTIF scene

S0:融合事故輔助鑑別與預期功能安全場景建立的方法 S0: A method that integrates accident auxiliary identification and establishment of expected functional safety scenarios

S02:事故資料收集步驟 S02: Accident data collection steps

S04:資料解析步驟 S04: Data analysis steps

S06:鑑別資料自動產製步驟 S06: Steps for automatic production of identification data

S08:場景資料庫建立步驟 S08: Steps to create scene database

Claims (16)

一種融合事故輔助鑑別與預期功能安全場景建立的系統,應用於一車輛,該融合事故輔助鑑別與預期功能安全場景建立的系統包含:一車載診斷(On-Board Diagnostic;OBD)裝置,設置於該車輛並擷取一車載診斷資料;一數位影像錄影機(Digital Video Recorder;DVR),設置於該車輛並擷取一錄影資料;一控制器,設置於該車輛並產生一控制資料;以及一雲端運算處理單元,訊號連接該車載診斷裝置、該數位影像錄影機及該控制器,並經配置以實施包含以下步驟的操作:一事故資料收集步驟,包含驅動該雲端運算處理單元收集來自該車載診斷裝置、該數位影像錄影機及該控制器的該車載診斷資料、該錄影資料及該控制資料;一資料解析步驟,包含驅動該雲端運算處理單元將該車載診斷資料、該錄影資料及該控制資料解析為一事故記錄資訊及一作動確認資訊,該事故記錄資訊包含一車輛行為資訊與一駕駛意圖資訊;一鑑別資料自動產製步驟,包含驅動該雲端運算處理單元依據該車輛行為資訊、該駕駛意圖資訊及該作動確認資訊自動產製成一事故輔助鑑別資料,該事故輔助鑑別資料包含一事故現場圖與一行為特徵報告書;及一場景資料庫建立步驟,包含驅動該雲端運算處理單 元依據該作動確認資訊建立一事故場景資料庫;其中,該作動確認資訊包含:一異常未作動資料,其代表該控制器在應作動但卻未作動的狀況下所產生的資料;及一誤作動資料,其代表該控制器在不應作動但卻作動的狀況下所產生的資料;其中,該事故場景資料庫包含一預期功能安全(Safety Of The Intended Functionality;SOTIF)場景,該預期功能安全場景對應該異常未作動資料與該誤作動資料的一者。 A system that integrates accident auxiliary identification and the establishment of expected functional safety scenarios is applied to a vehicle. The system that integrates accident auxiliary identification and the establishment of expected functional safety scenarios includes: an on-board diagnostic (On-Board Diagnostic; OBD) device, which is provided in the The vehicle captures on-board diagnostic data; a Digital Video Recorder (DVR) is mounted on the vehicle and captures video data; a controller is mounted on the vehicle and generates control data; and a cloud A computing processing unit, the signal is connected to the on-board diagnostic device, the digital video recorder and the controller, and is configured to perform an operation including the following steps: an accident data collection step, including driving the cloud computing processing unit to collect data from the on-board diagnosis The on-board diagnostic data, the video data and the control data of the device, the digital video recorder and the controller; a data analysis step includes driving the cloud computing processing unit to process the on-board diagnostic data, the video data and the control data Parsed into an accident record information and an action confirmation information, the accident record information includes a vehicle behavior information and a driving intention information; an identification data automatic production step includes driving the cloud computing processing unit according to the vehicle behavior information, the driving intention information; The intention information and the action confirmation information are automatically generated into an accident auxiliary identification data. The accident auxiliary identification data includes an accident scene diagram and a behavior characteristic report; and a scene database creation step includes driving the cloud computing processing unit. The element establishes an accident scene database based on the action confirmation information; wherein the action confirmation information includes: an abnormal non-action data, which represents data generated when the controller should act but does not act; and an error Action data represents data generated by the controller when it should not act but does act. Among them, the accident scenario database contains an expected functional safety (Safety Of The Intended Functionality; SOTIF) scenario. The expected functional safety The scene corresponds to one of the abnormal non-action data and the erroneous action data. 如請求項1所述的融合事故輔助鑑別與預期功能安全場景建立的系統,其中該雲端運算處理單元經配置以實施更包含:一事故判斷步驟,包含驅動該雲端運算處理單元接收該車輛的一事故作動資訊而產生一事故判斷結果,該事故判斷結果代表該車輛於一肇事時間發生事故。 The system that integrates accident auxiliary identification and expected functional safety scenario establishment as described in claim 1, wherein the cloud computing processing unit is configured to implement further includes: an accident determination step, including driving the cloud computing processing unit to receive an The accident action information is used to generate an accident judgment result, and the accident judgment result represents that the vehicle was involved in an accident at an accident time. 如請求項2所述的融合事故輔助鑑別與預期功能安全場景建立的系統,其中該事故作動資訊包含一安全氣囊作動資訊、一加速度感測器感測資訊及一感測器失效資訊的至少一者。 The system established by integrating accident auxiliary identification and expected functional safety scenarios as described in claim 2, wherein the accident operation information includes at least one of an airbag operation information, an acceleration sensor sensing information and a sensor failure information. By. 如請求項1所述的融合事故輔助鑑別與預期 功能安全場景建立的系統,其中該控制器包含一自動駕駛系統(Autonomous Driving System;ADS)與一先進駕駛輔助系統(Advanced Driver Assistance Systems;ADAS)的一者。 Fusion of accident-assisted identification and anticipation as described in request 1 A system established in a functional safety scenario, in which the controller includes one of an autonomous driving system (Autonomous Driving System; ADS) and an advanced driver assistance system (Advanced Driver Assistance Systems; ADAS). 如請求項1所述的融合事故輔助鑑別與預期功能安全場景建立的系統,其中,該車載診斷資料包含一車輛負載、一轉速、一車速、一節氣門位置、一引擎運轉時間、一煞車訊號、一方向盤轉角、一胎壓、一汽車喇叭訊號、一全球定位系統(Global Positioning System;GPS)位置及一緊急警示燈光訊號的至少一者;及該控制資料包含一電子控制單元電壓、一電池電量狀態(State of Charge;SOC)、一側向誤差、一縱向誤差、一光達訊號、一雷達訊號、一診斷訊號、一方向盤訊號、一電/油門訊號、一解離事件原因、一緊急按鈕訊號及一車身訊號的至少一者。 The system established by integrating accident auxiliary identification and expected functional safety scenarios as described in claim 1, wherein the on-board diagnostic data includes a vehicle load, a rotational speed, a vehicle speed, a throttle position, an engine running time, a braking signal, At least one of a steering wheel angle, a tire pressure, a car horn signal, a Global Positioning System (GPS) position and an emergency warning light signal; and the control data includes an electronic control unit voltage and a battery power State of Charge (SOC), lateral error, longitudinal error, a radar signal, a radar signal, a diagnostic signal, a steering wheel signal, an electric/throttle signal, a dissociation event cause, and an emergency button signal and at least one of a body signal. 如請求項1所述的融合事故輔助鑑別與預期功能安全場景建立的系統,其中,該車輛行為資訊包含一蛇行行為、一超速行為、一急加減速行為及一闖紅燈行為的至少一者;及該駕駛意圖資訊包含一手動駕駛訊號與一自動駕駛訊號的一者。 The system established by integrating accident auxiliary identification and expected functional safety scenarios as described in claim 1, wherein the vehicle behavior information includes at least one of a snaking behavior, a speeding behavior, a sudden acceleration and deceleration behavior, and a red light running behavior; and The driving intention information includes one of a manual driving signal and an automatic driving signal. 如請求項1所述的融合事故輔助鑑別與預期功能安全場景建立的系統,其中,該事故現場圖包含一肇事時間、一肇事地點、一現場處理摘要資料;及該行為特徵報告書包含一肇事原因、一事故當時環境狀況、一事故肇事經過及一肇事分析,該肇事分析包含一行駛行為、一佐證資料、一路權歸屬及一法規依據的至少一者;其中,該肇事時間、該肇事地點及該現場處理摘要資料透過該車載診斷裝置與該數位影像錄影機提供,該事故當時環境狀況透過該數位影像錄影機提供,該肇事原因、該事故肇事經過及該肇事分析透過該車載診斷裝置、該數位影像錄影機及該控制器提供。 The system established by integrating accident auxiliary identification and expected functional safety scenarios as described in request 1, wherein the accident scene map includes an accident time, an accident location, and an on-site processing summary information; and the behavioral characteristics report includes an accident The cause, the environmental conditions at the time of the accident, the course of the accident, and the accident analysis. The accident analysis includes at least one of a driving behavior, supporting information, ownership of the right of way, and a legal basis; among them, the time of the accident, the location of the accident And the on-site processing summary information is provided through the on-board diagnostic device and the digital video recorder, the environmental conditions at the time of the accident are provided through the digital video recorder, the cause of the accident, the course of the accident and the accident analysis are provided through the on-board diagnostic device, The digital video recorder and the controller are provided. 如請求項1所述的融合事故輔助鑑別與預期功能安全場景建立的系統,更包含:一路側設施,訊號連接該雲端運算處理單元,該路側設施設置於一道路,且偵測該道路而產生一外部資料;及一道路號誌,訊號連接該雲端運算處理單元,該道路號誌設置於該道路,且產生一號誌訊號;其中,該外部資料包含一地圖資訊,該行為特徵報告書包含該外部資料與該號誌訊號。 The system established by integrating accident auxiliary identification and expected functional safety scenarios as described in claim 1 further includes: a roadside facility, the signal is connected to the cloud computing processing unit, the roadside facility is installed on a road, and detects the road to generate An external data; and a road sign, the signal is connected to the cloud computing processing unit, the road sign is installed on the road, and a traffic signal signal is generated; wherein, the external data includes a map information, and the behavior characteristic report includes The external data and the semaphore signal. 一種融合事故輔助鑑別與預期功能安全場景 建立的方法,應用於一車輛,該融合事故輔助鑑別與預期功能安全場景建立的方法包含:一事故資料收集步驟,包含驅動一雲端運算處理單元收集來自一車載診斷(On-Board Diagnostic;OBD)裝置、一數位影像錄影機(Digital Video Recorder;DVR)及一控制器的一車載診斷資料、一錄影資料及一控制資料;一資料解析步驟,包含驅動該雲端運算處理單元將該車載診斷資料、該錄影資料及該控制資料解析為一事故記錄資訊及一作動確認資訊,該事故記錄資訊包含一車輛行為資訊與一駕駛意圖資訊;一鑑別資料自動產製步驟,包含驅動該雲端運算處理單元依據該車輛行為資訊、該駕駛意圖資訊及該作動確認資訊自動產製成一事故輔助鑑別資料,該事故輔助鑑別資料包含一事故現場圖與一行為特徵報告書;以及一場景資料庫建立步驟,包含驅動該雲端運算處理單元依據該作動確認資訊建立一事故場景資料庫;其中,該作動確認資訊包含:一異常未作動資料,其代表該控制器在應作動但卻未作動的狀況下所產生的資料;及一誤作動資料,其代表該控制器在不應作動但卻作動的狀況下所產生的資料;其中,該事故場景資料庫包含一預期功能安全(Safety Of The Intended Functionality;SOTIF)場景,該 預期功能安全場景對應該異常未作動資料與該誤作動資料的一者。 A scenario that integrates accident auxiliary identification and expected functional safety The established method is applied to a vehicle. The method that integrates accident auxiliary identification and expected functional safety scenario establishment includes: an accident data collection step, including driving a cloud computing processing unit to collect data from an on-board diagnosis (On-Board Diagnostic; OBD) a device, a digital video recorder (DVR) and a controller, a vehicle-mounted diagnostic data, a recording data and a control data; a data parsing step including driving the cloud computing processing unit to process the vehicle-mounted diagnostic data, The video data and the control data are parsed into an accident record information and an action confirmation information. The accident record information includes a vehicle behavior information and a driving intention information; an identification data automatic production step includes driving the cloud computing processing unit based on The vehicle behavior information, the driving intention information and the action confirmation information are automatically generated into an accident auxiliary identification data. The accident auxiliary identification data includes an accident scene map and a behavior characteristic report; and a scene database creation step, including Driving the cloud computing processing unit to establish an accident scene database based on the action confirmation information; wherein the action confirmation information includes: an abnormal non-action data, which represents the controller generated under the situation that it should act but does not act. data; and a misoperation data, which represents the data generated by the controller when it should not operate but does operate; wherein the accident scenario database includes an expected functional safety (Safety Of The Intended Functionality; SOTIF) scenario , the The expected functional safety scenario corresponds to one of the abnormal non-action data and the malfunction data. 如請求項9所述的融合事故輔助鑑別與預期功能安全場景建立的方法,更包含:一事故判斷步驟,包含驅動該雲端運算處理單元接收該車輛的一事故作動資訊而產生一事故判斷結果,該事故判斷結果代表該車輛於一肇事時間發生事故。 The method of integrating accident auxiliary identification and expected functional safety scenario establishment as described in claim 9 further includes: an accident judgment step, including driving the cloud computing processing unit to receive an accident action information of the vehicle to generate an accident judgment result, The accident determination result means that the vehicle was involved in an accident at the time of the accident. 如請求項10所述的融合事故輔助鑑別與預期功能安全場景建立的方法,其中該事故作動資訊包含一安全氣囊作動資訊、一加速度感測器感測資訊及一感測器失效資訊的至少一者。 The method of integrating accident auxiliary identification and expected functional safety scenario establishment as described in claim 10, wherein the accident action information includes at least one of an airbag activation information, an acceleration sensor sensing information and a sensor failure information. By. 如請求項9所述的融合事故輔助鑑別與預期功能安全場景建立的方法,其中該控制器包含一自動駕駛系統(Autonomous Driving System;ADS)與一先進駕駛輔助系統(Advanced Driver Assistance Systems;ADAS)的一者。 The method of integrating accident assistance identification and expected functional safety scenario establishment as described in claim 9, wherein the controller includes an automatic driving system (Autonomous Driving System; ADS) and an advanced driver assistance system (Advanced Driver Assistance Systems; ADAS) one of. 如請求項9所述的融合事故輔助鑑別與預期功能安全場景建立的方法,其中,該車載診斷資料包含一車輛負載、一轉速、一車速、一節氣門位置、一引擎運轉時間、一煞車訊號、一方向盤轉 角、一胎壓、一汽車喇叭訊號、一全球定位系統(Global Positioning System;GPS)位置及一緊急警示燈光訊號的至少一者;及該控制資料包含一電子控制單元電壓、一電池電量狀態(State of Charge;SOC)、一側向誤差、一縱向誤差、一光達訊號、一雷達訊號、一診斷訊號、一方向盤訊號、一電/油門訊號、一解離事件原因、一緊急按鈕訊號及一車身訊號的至少一者。 The method of integrating accident auxiliary identification and expected functional safety scenario establishment as described in claim 9, wherein the on-board diagnostic data includes a vehicle load, a rotational speed, a vehicle speed, a throttle position, an engine running time, a braking signal, One wheel turns Angle, a tire pressure, a car horn signal, a Global Positioning System (GPS) position and at least one of an emergency warning light signal; and the control data includes an electronic control unit voltage, a battery power status ( State of Charge (SOC), a lateral error, a longitudinal error, a lidar signal, a radar signal, a diagnostic signal, a steering wheel signal, an electric/throttle signal, a dissociation event cause, an emergency button signal and a At least one of the body signals. 如請求項9所述的融合事故輔助鑑別與預期功能安全場景建立的方法,其中,該車輛行為資訊包含一蛇行行為、一超速行為、一急加減速行為及一闖紅燈行為的至少一者;及該駕駛意圖資訊包含一手動駕駛訊號與一自動駕駛訊號的一者。 The method of integrating accident auxiliary identification and expected functional safety scenario establishment as described in claim 9, wherein the vehicle behavior information includes at least one of a snaking behavior, a speeding behavior, a sudden acceleration and deceleration behavior, and a red light running behavior; and The driving intention information includes one of a manual driving signal and an automatic driving signal. 如請求項9所述的融合事故輔助鑑別與預期功能安全場景建立的方法,其中,該事故現場圖包含一肇事時間、一肇事地點、一現場處理摘要資料;及該行為特徵報告書包含一肇事原因、一事故當時環境狀況、一事故肇事經過及一肇事分析,該肇事分析包含一行駛行為、一佐證資料、一路權歸屬及一法規依據的至少一者; 其中,該肇事時間、該肇事地點及該現場處理摘要資料透過該車載診斷裝置與該數位影像錄影機提供,該事故當時環境狀況透過該數位影像錄影機提供,該肇事原因、該事故肇事經過及該肇事分析透過該車載診斷裝置、該數位影像錄影機及該控制器提供。 The method of integrating accident auxiliary identification and expected functional safety scenario establishment as described in request item 9, wherein the accident scene map includes an accident time, an accident location, and an on-site processing summary information; and the behavioral characteristics report includes an accident The cause, the environmental conditions at the time of the accident, the course of the accident, and the accident analysis. The accident analysis includes at least one of a driving behavior, supporting information, right-of-way ownership, and a legal basis; Among them, the time of the accident, the location of the accident and the on-site processing summary information are provided through the on-board diagnostic device and the digital video recorder, the environmental conditions at the time of the accident are provided through the digital video recorder, the cause of the accident, the process of the accident and The accident analysis is provided through the on-board diagnostic device, the digital video recorder and the controller. 如請求項9所述的融合事故輔助鑑別與預期功能安全場景建立的方法,其中該行為特徵報告書包含:一外部資料,包含一地圖資訊,該外部資料由一路側設施偵測一道路而產生;及一號誌訊號,由一道路號誌產生。 The method of integrating accident auxiliary identification and expected functional safety scenario establishment as described in claim 9, wherein the behavioral characteristic report includes: an external data, including a map information, the external data is generated by a roadside facility detecting a road ; and a sign signal, generated by a road sign.
TW111140084A 2022-10-21 2022-10-21 System and method of integrating traffic accident assistance investigation and safety of the intended functionality scene establishment TWI824788B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111140084A TWI824788B (en) 2022-10-21 2022-10-21 System and method of integrating traffic accident assistance investigation and safety of the intended functionality scene establishment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111140084A TWI824788B (en) 2022-10-21 2022-10-21 System and method of integrating traffic accident assistance investigation and safety of the intended functionality scene establishment

Publications (2)

Publication Number Publication Date
TWI824788B true TWI824788B (en) 2023-12-01
TW202418237A TW202418237A (en) 2024-05-01

Family

ID=90053001

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111140084A TWI824788B (en) 2022-10-21 2022-10-21 System and method of integrating traffic accident assistance investigation and safety of the intended functionality scene establishment

Country Status (1)

Country Link
TW (1) TWI824788B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103559745A (en) * 2013-06-19 2014-02-05 深圳市东宝嘉科技有限公司 System for reversely reconstructing scene of vehicle accident
TWM545723U (en) * 2017-03-23 2017-07-21 新昇汽車科技股份有限公司 Driving surveillance system supporting Internet-of-Vehicle application service
CN110009903A (en) * 2019-03-05 2019-07-12 同济大学 A kind of scene of a traffic accident restoring method
CN110047286A (en) * 2019-04-20 2019-07-23 深圳市元征科技股份有限公司 A kind of analyzing vehicle accident method and device
US20220327833A1 (en) * 2020-08-04 2022-10-13 Verizon Connect Development Limited Systems and methods for utilizing machine learning models to reconstruct a vehicle accident scene from video

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103559745A (en) * 2013-06-19 2014-02-05 深圳市东宝嘉科技有限公司 System for reversely reconstructing scene of vehicle accident
TWM545723U (en) * 2017-03-23 2017-07-21 新昇汽車科技股份有限公司 Driving surveillance system supporting Internet-of-Vehicle application service
CN110009903A (en) * 2019-03-05 2019-07-12 同济大学 A kind of scene of a traffic accident restoring method
CN110047286A (en) * 2019-04-20 2019-07-23 深圳市元征科技股份有限公司 A kind of analyzing vehicle accident method and device
US20220327833A1 (en) * 2020-08-04 2022-10-13 Verizon Connect Development Limited Systems and methods for utilizing machine learning models to reconstruct a vehicle accident scene from video

Also Published As

Publication number Publication date
TW202418237A (en) 2024-05-01

Similar Documents

Publication Publication Date Title
CN110570538B (en) Method, device and equipment for managing black box data in intelligent driving automobile
CN106157614B (en) Automobile accident responsibility determination method and system
CN104103100B (en) Driving behavior analysis system
CN111524362A (en) Vehicle safety driving guarantee system and method based on multi-data fusion
CN110356344A (en) A kind of vehicle-mounted event recording method, system and automobile applied to panorama system
CN110147946B (en) Data analysis method and device
TW202101344A (en) Systems And Method For Calculating Liability Of A Driver Of A Vehicle
US10977882B1 (en) Driver health profile
US20220135059A1 (en) Method and apparatus for generating test case for dynamic verification of autonomous driving system
CN105346529A (en) Intelligent automatic emergency brake system and method
DE112018005030T5 (en) ADMINISTRATIVE DEVICE, VEHICLE, INSPECTION DEVICE, AND VEHICLE INSPECTION SYSTEM, AND INFORMATION PROCESSING METHOD THEREFOR
US10643407B1 (en) Driving event recording method and system for non-image-based car accident cause determination
CN110675633B (en) Method for determining an illegal driving behavior, control unit and storage medium
CN111681336A (en) Traffic accident traceability system
TWI824788B (en) System and method of integrating traffic accident assistance investigation and safety of the intended functionality scene establishment
CN117565882A (en) Dangerous driving behavior analysis and accident prevention system and method for automobile
CN112883500A (en) Intelligent vehicle system early function safety assessment method based on fault injection
CN109308802A (en) Abnormal vehicles management method and device
Chang et al. A deep learning-based intelligent anti-collision system for car door
CN115145246B (en) Method and device for testing controller, vehicle, storage medium and chip
Messerschmidt et al. Simulating the effect of collision-related power loss on the event data recorders of heavy trucks
CN118046848A (en) System and method for establishing safety scene by combining accident auxiliary identification and expected function
US20240177537A1 (en) System and method of integrating traffic accident assistance identification and safety of intended functionality scene establishment
CN212220190U (en) Traffic accident traceability system
CN104636723B (en) Driving method for early warning based on certain objects image analysing computer in video image