TWI824398B - 一種肌動蛋白重組調節物之抑制劑用於製備治療睡眠剝奪引起之記憶退化之藥物之用途 - Google Patents

一種肌動蛋白重組調節物之抑制劑用於製備治療睡眠剝奪引起之記憶退化之藥物之用途 Download PDF

Info

Publication number
TWI824398B
TWI824398B TW111103522A TW111103522A TWI824398B TW I824398 B TWI824398 B TW I824398B TW 111103522 A TW111103522 A TW 111103522A TW 111103522 A TW111103522 A TW 111103522A TW I824398 B TWI824398 B TW I824398B
Authority
TW
Taiwan
Prior art keywords
administration
experimental mice
gsn
group
content
Prior art date
Application number
TW111103522A
Other languages
English (en)
Other versions
TW202330018A (zh
Inventor
茉莉 蘇瑞卡
薩拉尤特 帕蘇克
普里特維拉傑 喬卡林甘
劉怡均
Original Assignee
慈濟學校財團法人慈濟大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 慈濟學校財團法人慈濟大學 filed Critical 慈濟學校財團法人慈濟大學
Priority to TW111103522A priority Critical patent/TWI824398B/zh
Priority to US17/697,263 priority patent/US20230233647A1/en
Publication of TW202330018A publication Critical patent/TW202330018A/zh
Application granted granted Critical
Publication of TWI824398B publication Critical patent/TWI824398B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • A61K38/1761Apoptosis related proteins, e.g. Apoptotic protease-activating factor-1 (APAF-1), Bax, Bax-inhibitory protein(s)(BI; bax-I), Myeloid cell leukemia associated protein (MCL-1), Inhibitor of apoptosis [IAP] or Bcl-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Anesthesiology (AREA)
  • Psychiatry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Dermatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本發明係一種肌動蛋白重組調節物之抑制劑之用途,係用於製備治療睡眠剝奪引起之記憶退化之藥物。

Description

一種肌動蛋白重組調節物之抑制劑用於製備治療睡眠剝奪引起之記憶退化之藥物之用途
本發明係一種肌動蛋白重組調節物之抑制劑之用途,係用於製備治療睡眠剝奪引起之記憶退化之藥物。
睡眠剝奪(sleep deprivation),又稱為睡眠不足,係由於自願性失眠、非自願性失眠,或者睡眠清醒周期(sleep-wake cycle)中斷而導致生理疲勞,難以維持清醒狀態。目前睡眠剝奪已被認為和記憶與學習功能降低、注意力不集中、判斷力受損等認知功能不全(cognitive dysfunction)的發生有關,並造成日常生活中的意外事故、人為錯誤(human error)發生的可能性。
美國疾病管制中心(Centers for Disease Control and Prevention,CDC)在2009年已將睡眠剝奪納入行為風險因子監測系統(Behavioural Risk Factor Surveillance System,BRFSS)中,根據美國國家睡眠基金會(National Sleep Foundation)的睡眠時間建議,18~64歲成年人每日需要7~9小時的睡眠時間,超過65歲老年人需要7~8小時的睡眠時間(Max Hirshkowitz 2015),然而現 今平均睡眠時間僅為6.8小時,全球約一半的人口皆有睡眠剝奪的問題(Strine,T.W 2005)(Chattu,V.K.2018)。在臺灣根據全國自殺防治中心(National Suicide Prevention Centre,NSPC)在2020年7月的調查顯示,約25%的人口在調查前曾有過失眠問題,屬於睡眠障礙的一種,並且有420萬人口長期使用助眠藥物。
睡眠具有處理是情緒記憶並整合儲存為長期記憶重要功能(Cunningham,T.J.2017)。已有研究指出在進行記憶獲取(acquisition)前和記憶鞏固(consolidation)期間進行完全睡眠剝奪,會損害後續的記憶檢索(retrieval),並降低海馬體(hippocampus)和杏仁核(amygdala)中與情節記憶檢索與記憶鞏固有關的神經元活化指標c-Fos的含量(Graves,L.A.2003)(Montes-Rodríguez,C.J.2019)。另一研究指出在恐懼記憶再活化前使用中樞神經興奮劑誘發睡眠剝奪,會損害記憶再鞏固(reconsolidation)的能力(Sharma,R.2020)。
快速動眼期(rapid eye movement,REM)睡眠對於學習和發展過程是必需的,REM睡眠剝奪已被證實會影響腦部記憶形成和記憶學習的重要區域,包含腦部的海馬體(hippocampus)和皮質(cortex)(Prince,T.M.2013)。已有研究指出,在對大鼠進行空間記憶訓練或非空間記憶訓練後,在快速動眼期(rapid eye movement,REM)進行睡眠剝奪,會損害海馬體依賴性記憶(hippocampal-dependent memory),但不影響非海馬體依賴性記憶(Hippocampus-independent memory)(Smith,C.1997)。另有研究指出,睡眠時間減少會降低突觸後密度蛋白95(postsynaptic density protein 95,PSD-95)的含量,其中,PSD-95係突觸中一種重要的支架蛋白質(scaffold protein)(Lopez,J.2008)。另外,與突觸可塑性相關,作用於PSD-95上游的分子大腦衍生神經滋養因子(brain-derived neurotrophic factor,BDNF)也容易受到REM睡眠剝奪影響而下降(Yoshii,A.2014)(Schmitt, K.2016)。睡眠剝奪會影響突觸結構,影響切割蛋白(cofilin)和前纖維蛋白(profilin)等肌動蛋白調節因子的平衡(Havekes,R.2016)(Raven,F.2019)
綜上所述,睡眠剝奪可能係通過改變突觸蛋白機制影響突觸的結構和維持,並因此造成記憶退化的問題。
目前雖然已知快速動眼期睡眠剝奪會影響記憶鞏固,但REM睡眠剝奪對記憶檢索和記憶再鞏固的破壞性影響尚未被完整闡述。另外,雖然目前有研究試圖揭示profilin、cofilin和其他肌動蛋白調節蛋白在睡眠和記憶中的作用(Havekes,R.2016)(Michaelsen-Preusse,K.2016),但是尚未有人揭示凝溶膠蛋白(gelsolin,GSN)在睡眠和記憶中的作用。
肌動蛋白,係一種具有多種功能的蛋白質,可以形成微絲(microfilament)結構,其中,微絲係細胞執行基本功能的必要結構,包含:移動、囊泡形成、肌肉收縮、信號傳導和維持細胞形狀等(Dominguez,R.2011)。肌動蛋白也存在於神經元細胞中,協助新神經突觸形成和誘導長效增益(long-term potentiation,LTP)的功能。肌動蛋白聚合(Actin polymerization)也是形成突觸結構和促進突觸移動性發展突觸連結的重要過程,且已被證明和形成長期記憶有關(Havekes,R.2016),在海馬體中恐懼記憶處理和突觸傳遞(synaptic transmission)皆需要經由肌動蛋白進行(Lamprecht,R.2011)。
恐懼制約(Fear Conditioning)實驗,係一種習知通過聯想使動物對特定的條件刺激與非條件刺激造成的恐懼形成連結,使動物對特定的條件刺激感到恐懼,即動物模型通過訓練使動物對特定條件和恐懼反應進行連結,用以研究和評估記憶學習的效果(Sanders,M.J.2003)。通過訓練使動物對特定條件刺激和恐懼反應連結的記憶會儲存在腦部皮質中,當該動物再次暴露在條件刺 激下,鞏固的記憶會通過海馬體依賴性的路徑進行檢索,進而喚起恐懼反應(Izquierdo,I.,C.2016)。即使經過數日,這些記憶可以通過檢索(retrieve)和再鞏固(reconsolidate)重新喚起遠程恐懼記憶,也可能在記憶消退(memory extinction)過程中逐漸消退(Myers,K.M.2007)。因此可以通過恐懼制約實驗研究記憶在記憶檢索(retrieval)、記憶再鞏固(reconsolidation)和遠程恐懼記憶檢索(remote fear memory retrieval)的功能。
恐懼記憶的形成,係通過突觸樣激酶(synapse-like kinase)信號傳遞分子調控記憶的檢索(retrieval)、再鞏固(reconsolidation)和遠程記憶檢索(remote memory retrieval)的功能。細胞外調節蛋白激酶(extracellular regulated protein kinase,ERK)和三磷酸肌醇激酶(phosphoinositol triphosphate kinase,PI3K)等激酶,和親神經性分子如大腦衍生神經滋養因子(brain-derived neurotrophic factor,BDNF)對於恐懼記憶的形成和檢索是必要的(Liu,I.Y.2004)(Chen,X.2005)(Antoine,B.2014)。大腦衍生神經滋養因子前體(pro-BDNF)經酵素活化後可以形成成熟大腦衍生神經滋養因子(mature BDNF,m-BDNF),並通過與原肌凝蛋白受體激酶B受體(tropomyosin receptor kinase B receptor,TrKB receptor)結合後,經由三磷酸肌醇激酶/蛋白激酶B路徑(phosphoinositol triphosphate kinase/protein kinase B pathway,PI3K/AKT pathway)來活化雷帕黴素機制靶(the mechanistic target of rapamycin,mTOR)等結構蛋白(Hempstead BL.2015);且其亦能通過攜鈣蛋白調節酶II(Ca2+/calmodulin-dependent protein kinase II,CaMKII)/環腺苷單磷酸反應結合蛋白(cAMP responsive element-binding protein,CREB)信號傳遞調節自身基因表達(Cunha,C.2010)。目前已知BDNF、蛋白激酶B(protein kinase B,又名AKT)和CAMKII等分子,對於感覺系統(sensory system)將接收到的信息整合與處理為長期記憶的功能上扮演重要角色(Itoh,N.2016)。
其中,AKT被磷酸化後,係可進一步磷酸化下游因子,促進突觸可塑性;而CaMKII被磷酸化後係可磷酸化突觸蛋白1(synapsinI,SYN 1)的上游分子,且CAMKII包含的4種亞型,α型、β型、δ型,及γ型之中,以α型及β型係為具有腦部特異性之亞型。SYN 1係一種突觸前蛋白質標記,受到磷酸化後會參與突觸囊泡的運輸和囊泡中神經傳遞物(neurotransmitter)的釋放(Wang,Z.-W.2008)(Zalcman G.2018)。因此在組織中檢測磷酸化的AKT(p-AKT)、磷酸化的CAMKII(p-CAMKII)及磷酸化的SYN 1(p-SYN 1),可以用於確認突觸功能表現,磷酸化的CAMKII及磷酸化的SYN 1的含量越高,代表突觸功能表現越活躍。
目前對於睡眠剝奪導致記憶缺陷的分子機制有多種因素,包含細胞凋亡(apoptosis)、神經發炎(neuroinflammation)、神經新生(neurogenesis)、氧化壓力、表觀遺傳修飾(epigenetic modification)和細胞骨架重組(cytoskeleton remodeling)(Nelson,J.C.2013)(Mirescu,C.2006)(Wessel M A van Leeuwen 2009)(Lahtinen,A.2019)(Wong,L.W.2019)(Vaccaro,A.2020)。
凝溶膠蛋白(gelsolin,GSN)係一種82千道耳頓(kDa)的蛋白質,功能係為肌動蛋白重組(actin modulating protein)調節物,以2種型態存在於人體內,分別為細胞溶質(cytosol)和血漿(plasma),且2種型態的GSN皆源自相同的基因(alternative splicing)(Wang,W.2019)。GSN對纖維狀肌動蛋白(filamentous actin,F-actin)進行加帽(capping),會使纖維狀肌動蛋白解聚合為單體球狀肌動蛋白(globular actin,G-actin)(Angliker,N.2013)。在腦部,GSN被發現存在於神 經元(neuron)和寡樹突細胞(oligodendrocyte)中(Michaelsen-Preusse,K.2016)(Kamali,A.2016),並且具有減少腦內發炎和抑制神經膠質母細胞瘤(glioblastoma)的功能(Kruijssen,D.L.H.2019)(Fitzgerald,P.J.2015)。但是,目前GSN對於記憶和突觸可塑性(synaptic plasticity)的影響尚未被闡明。
參考文獻:
1. Hirshkowitz, M., et al., National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health, 2015. 1(1): p. 40-43.
2. Strine, T.W. and D.P. Chapman, Associations of frequent sleep insufficiency with health-related quality of life and health behaviors. Sleep Med, 2005. 6(1): p. 23-7.
3. Chattu, V.K., et al., The Global Problem of Insufficient Sleep and Its Serious Public Health Implications. Healthcare (Basel), 2018. 7(1).
4. Cunningham, T.J. and J.D. Payne, Emotional Memory Consolidation During Sleep, in Cognitive Neuroscience of Memory Consolidation, N. Axmacher and B. Rasch, Editors. 2017, Springer International Publishing: Cham. P. 133-159.
5. Graves, L.A., et al., Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn Mem, 2003. 10(3): p. 168-76.
6. Montes-Rodríguez, C.J., P.E. Rueda-Orozco, and O. Prospéro-García, Total sleep deprivation impairs fear memory retrieval by decreasing the basolateral amygdala activity. Brain Research, 2019. 1719: p. 17-23.
7. Sharma, R., P. Sahota, and M.M. Thakkar, Sleep Loss Immediately After Fear Memory Reactivation Attenuates Fear Memory Reconsolidation. Neuroscience, 2020. 428: p. 70-75.
8. Prince, T.M. and T. Abel, The impact of sleep loss on hippocampal function. Learn Mem, 2013. 20(10): p. 558-69.
9. Smith, C. and G.M. Rose, Posttraining paradoxical sleep in rats is increased after spatial learning in the Morris water maze. Behav Neurosci, 1997. 111(6): p. 1197-204.
10. Lopez, J., et al., Rapid eye movement sleep deprivation decreases long-term potentiation stability and affects some glutamatergic signaling proteins during hippocampal development.Neuroscience, 2008. 153(1): p. 44-53.
11. Yoshii, A. and M. Constantine-Paton, Postsynaptic localization of PSD-95 is regulated by all three pathways downstream of TrkB signaling. Front Synaptic Neurosci, 2014. 6: p. 6.
12. Schmitt, K., E. Holsboer-Trachsler, and A. Eckert, BDNF in sleep, insomnia, and sleep deprivation. Ann Med, 2016. 48(1-2): p. 42-51.
13. Havekes, R., et al., Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1. eLife, 2016. 5: p. e13424.
14. Raven, F., et al., A brief period of sleep deprivation causes spine loss in the dentate gyrus of mice. Neurobiology of Learning and Memory, 2019. 160: p. 83-90.
15. Michaelsen-Preusse, K., et al., Neuronal profilins in health and disease: Relevance for spine plasticity and Fragile X syndrome. 2016. 113(12): p. 3365-3370.
16. Dominguez, R. and K.C. Holmes, Actin structure and function. Annu Rev Biophys, 2011. 40: p. 169-86.
17. Lamprecht, R., The roles of the actin cytoskeleton in fear memory formation. Front Behav Neurosci, 2011. 5: p. 39.
18. Sanders, M.J., B.J. Wiltgen, and M.S. Fanselow, The place of the hippocampus in fear conditioning. Eur J Phannacol, 2003. 463(1-3): p. 217-23.
19. Izquierdo, I., C.R.G. Furini, and J.C. Myskiw, Fear Memory. 2016. 96(2): p. 695-750.
20. Myers, K.M. and M. Davis, Mechanisms of fear extinction. Molecular Psychiatry, 2007. 12(2): p. 120-150.
21. Liu, I.Y., et al., Brain-derived neurotrophic factor plays a critical role in contextual fear conditioning. J Neurosci, 2004. 24(36): p. 7958-63.
22. Chen, X., et al., PI3 kinase signaling is required for retrieval and extinction of contextual memory. Nature Neuroscience, 2005. 8(7): p. 925-931.
23. Antoine, B., L. Serge, and C. Jocelyne, Comparative dynamics of MAPK/ERK signalling components and immediate early genes in the hippocampus and amygdala following contextual fear conditioning and retrieval. Brain Structure and Function, 2014. 219(1): p. 415-430.
24. Hempstead BL. Brain-Derived Neurotrophic Factor: Three Ligands, Many Actions. Trans Am Clin Climatol Assoc. 2015;126:9-19. PMID: 26330656; PMCID: PMC4530710.
25. Cunha, C., R. Brambilla, and K.L. Thomas, A simple role for BDNF in leaming and memory? Front Mol Neurosci, 2010. 3: p. 1.
26. Itoh, N., et al., Molecular mechanism linking BDNF/TrkB signaling with the NMDA receptor in memory: the role of Girdin in the CNS. Reviews in the Neurosciences, 2016. 27(5): p. 481-490.
27. Wang, Z.-W., Regulation of synaptic transmission by presynaptic CaMKII and BK channels.Molecular neurobiology, 2008. 38(2): p. 153-166.
28. Zalcman G, Federman N, Romano A. CaMKII Isoforms in Learning and Memory: Localization and Function. Front Mol Neurosci. 2018 Dec 4;11:445. Doi: 10.3389/fnmol.2018.00445. PMID: 30564099; PMCID: PMC6288437.
29. Nelson, J.C., A.K.H. Stavoe, and D.A. Colón-Ramos, The actin cytoskeleton in presynaptic assembly. Cell adhesion & migration, 2013. 7(4): p. 379-387.
30. Mirescu, C., et al., Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticoids. Proceedings of the National Academy of Sciences, 2006. 103(50): p. 19170.
31. van Leeuwen, W.M., et al., Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PloS One, 2009. 4(2): p. e4589.
32. Lahtinen, A., et al., A distinctive DNA methylation pattern in insufficient sleep. Scientific Reports, 2019. 9(1): p. 1193.
33. Wong, L.W., et al., The p75 Neurotrophin Receptor Is an Essential Mediator of Impairments in Hippocampal-Dependent Associative Plasticity and Memory Induced by Sleep Deprivation. J Neurosci, 2019. 39(28): p. 5452-5465.
34. Vaccaro, A., et al., Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell, 2020. 181(6): p. 1307-1328.e15.
35. Wang, W., E. Halasz, and E. Townes-Anderson, Actin Dynamics, Regulated by RhoA-LIMKCofilin Signaling, Mediates Rod Photoreceptor Axonal Retraction After Retinal Injury. Investigative Ophthalmology & Visual Science, 2019. 60(6): p. 2274-2285.
36. Angliker, N. and M.A. Rüegg, In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons. Bioarchitecture, 2013. 3(4): p. 113-8.
37. Kamali, A., et al., Methodological Aspects of REM Sleep-Deprivation and Stereological Protocols in the Brain-Stem Respiratory Nuclei2016..
38. Kruijssen, D.L.H. and C.J. Wierenga, Single Synapse LTP: A Matter of Context? 2019. 13(496).
39. Fitzgerald, P.J., et al., Durable fear memories require PSD-95. Mol Psychiatry, 2015. 20(7): p. 901-12.
鑒於睡眠剝奪係全球盛行的問題,且尚未有藥物可以治療睡眠剝奪造成記憶退化的問題,因此本發明之一目的,係為解決睡眠剝奪造成之記憶退化。
根據本發明之目的,係提供一種肌動蛋白重組調節物之抑制劑之用途,係用於製備治療睡眠剝奪引起之記憶退化之藥物。
其中,該肌動蛋白重組調節物係凝溶膠蛋白。
其中,該肌動蛋白重組調節物之抑制劑包含短髮夾RNA(short hairpin RNA,shRNA)、微小RNA(microRNA,miRNA)、短小干擾RNA(small interfering RNA,siRNA)、抗體、拮抗劑或其組合。
其中,肌動蛋白重組調節物之抑制劑之給藥方式,係選自以下組成之群組:腦室給藥、腦內給藥、鞘內給藥、動脈給藥、皮內給藥、肌內給藥、灌胃給藥、腹膜腔內給藥、靜脈給藥、口服給藥、皮下給藥、外用給藥、全身性給藥。
其中,進一步肌動蛋白重組調節物之抑制劑可與安眠藥物併用。
其中,安眠藥物係選自苯二氮平類藥物、非苯二氮平類藥物、巴比妥酸鹽類藥物,以及褪黑激素受體促效劑所組成之群組。
綜上所述,本發明可以改善睡眠剝奪引起的記憶退化。
圖1係情境恐懼制約(contextual fear conditioning,CFC)實驗流程。
圖2係情境恐懼制約實驗,在不同時間點,包含:CFC、Ret-1、Ret-2,以及Ret-3中,實驗小鼠產生僵直反應時間的百分比之量化直方圖。
圖3係長效增益實驗之fEPSP測量結果圖。
圖4係長效增益實驗之fEPSP測量結果圖之量化直方圖合併圓點圖。
圖5係fEPSP的振幅變化(振幅變化單位:毫伏特(mV))與刺激強度(刺激強度單位:微安培(μA))的關係圖。
圖6係於不同刺激間隔進行成對脈衝刺激(pair pulse facilitation,PPF),獲得的成對脈衝刺激比率關係圖。
圖7係確認睡眠剝奪造成腦部突觸前傳遞受損在分子層次的影響之實驗流程示意圖。
圖8A係西方墨點分析實驗小鼠的海馬體中磷酸化的SYN 1(p-SYN 1)的含量、總體的SYN 1的含量,以及甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)的含量之顯影圖。
圖8B係西方墨點分析實驗小鼠的海馬體中磷酸化的磷酸化的α亞型CAMKII(p-CAMKIIα)的含量、磷酸化的β亞型CAMKII(p-CAMKIIβ)的含量,以及GAPDH的含量之顯影圖。
圖8C係圖8A之西方墨點分析實驗小鼠的海馬體中p-SYN 1的含量,經GAPDH的含量校正後之量化直方圖合併圓點圖。
圖8D係圖8A之西方墨點分析實驗小鼠的海馬體中總體的SYN 1的含量,經GAPDH的含量校正後之量化直方圖合併圓點圖。
圖8E係圖8B之西方墨點分析實驗小鼠的海馬體中p-CAMKIIα的含量及p-CAMKIIβ的含量,經GAPDH的含量校正後,並合併為p-CAMKII的含量進行表示之量化直方圖合併圓點圖。
圖9A係免疫螢光染色分析實驗小鼠的海馬體的CA1中的p-SYN 1的螢光染色圖。
圖9B係圖9A免疫螢光染色分析實驗小鼠的海馬體的CA1中的p-SYN 1的螢光染色圖之量化直方圖合併圓點圖。
圖10A係免疫螢光染色分析實驗小鼠的海馬體的CA2中的p-SYN 1的螢光染色圖。
圖10B係圖10A免疫螢光染色分析實驗小鼠的海馬體的CA2中的p-SYN 1的螢光染色圖之量化直方圖合併圓點圖。
圖11A係免疫螢光染色分析實驗小鼠的海馬體的CA3中的p-SYN 1的螢光染色圖。
圖11B係圖11A免疫螢光染色分析實驗小鼠的海馬體的CA3中的p-SYN 1的螢光染色圖之量化直方圖合併圓點圖。
圖12A係免疫螢光染色分析實驗小鼠的海馬體的齒狀迴(dentate gyrus,DG)中的p-SYN 1的螢光染色圖。
圖12B係圖12A免疫螢光染色分析實驗小鼠的海馬體的齒狀迴(dentate gyrus,DG)中的p-SYN 1的螢光染色圖之量化直方圖合併圓點圖。
圖13A係免疫螢光染色分析實驗小鼠的海馬體的皮質(cortex)中的p-SYN 1的螢光染色圖。
圖13B係圖13A免疫螢光染色分析實驗小鼠的海馬體的皮質(cortex)中的p-SYN 1的螢光染色圖之量化直方圖合併圓點圖。
圖14A係免疫螢光染色分析實驗小鼠的杏仁核(amygdala)中的p-SYN 1的螢光染色圖。
圖14B係圖14A免疫螢光染色分析實驗小鼠的杏仁核(amygdala)中的p-SYN 1的螢光染色圖之量化直方圖合併圓點圖。
圖15係確認凝溶膠蛋白(gelsolin,GSN)和相關蛋白的含量在記憶檢索前是否有變化之實驗流程示意圖。
圖16A係西方墨點分析實驗小鼠在訓練後2小時後進行記憶檢索之前,海馬體中GSN的含量、磷酸化的AKT(p-AKT)的含量,以及GAPDH的含量之顯影圖。
圖16B係之西方墨點分析實驗小鼠在訓練後2小時後進行記憶檢索之前,海馬體中成熟的BDNF(m-BDNF)的含量、突觸後密度蛋白95(postsynaptic density protein 95,PSD-95)的含量,以及GAPDH的含量之顯影圖。
圖16C係圖16A之西方墨點分析實驗小鼠在訓練後2小時後進行記憶檢索之前,海馬體中GSN的含量經GAPDH的含量校正後之量化直方圖合併圓點圖。
圖16D係圖16A之西方墨點分析實驗小鼠在訓練後2小時後進行記憶檢索之前,海馬體中p-AKT的含量經GAPDH的含量校正後之量化直方圖合併圓點圖。
圖16E係圖16B之西方墨點分析實驗小鼠在訓練後2小時後進行記憶檢索之前,海馬體中m-BDNF的含量經GAPDH的含量校正後之量化直方圖合併圓點圖。
圖16F係圖16B之西方墨點分析實驗小鼠在訓練後2小時後進行記憶檢索之前,海馬體中PSD-95的含量經GAPDH的含量校正後之量化直方圖合併圓點圖。
圖17係確認GSN和相關蛋白的含量在遠程恐懼記憶檢索後,是否有變化之實驗流程示意圖。
圖18A係西方墨點分析實驗小鼠在遠程恐懼記憶檢索後,海馬體中GSN的含量,以及GAPDH的含量之顯影圖。
圖18B係西方墨點分析實驗小鼠在遠程恐懼記憶檢索後,海馬體中p-AKT的含量,以及GAPDH的含量之顯影圖。
圖18C係西方墨點分析實驗小鼠在遠程恐懼記憶檢索後,海馬體中m-BDNF、PSD-95的含量,以及GAPDH的含量之顯影圖。
圖18D係圖18A係西方墨點分析實驗小鼠在遠程恐懼記憶檢索後,海馬體中GSN的含量經GAPDH的含量校正後之量化直方圖合併圓點圖。
圖18E係圖18B係西方墨點分析實驗小鼠在遠程恐懼記憶檢索後,海馬體中p-AKT的含量經GAPDH的含量校正後之量化直方圖合併圓點圖。
圖18F係圖18C係西方墨點分析實驗小鼠在遠程恐懼記憶檢索後,海馬體中m-BDNF的含量經GAPDH的含量校正後之量化直方圖合併圓點圖。
圖18G係圖18C係西方墨點分析實驗小鼠在遠程恐懼記憶檢索後,海馬體中PSD-95的含量經GAPDH的含量校正後之量化直方圖合併圓點圖。
圖19A係免疫螢光染色分析NSD組的實驗小鼠在遠程恐懼記憶檢索測試後,全腦切片的GSN的螢光染色圖。
圖19B係免疫螢光染色分析SD組的實驗小鼠在遠程恐懼記憶檢索測試後,全腦切片的GSN的螢光染色圖。
圖20A係免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體切片的CA1的GSN的螢光染色圖。
圖20B係圖20A免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體切片的CA1的GSN的螢光染色圖之量化直方圖合併圓點圖。
圖21A係免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體切片的CA2的的GSN螢光染色圖。
圖21B係圖21A免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體切片的CA2的的GSN螢光染色圖之量化直方圖合併圓點圖。
圖22A係免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體切片的CA3的的GSN螢光染色圖。
圖22B係圖22A免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體切片的CA3的的GSN螢光染色圖之量化直方圖合併圓點圖。
圖23A係免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體切片的齒狀迴(dentate gyrus,DG)的上部顆粒層(superior granular layer)、下部顆粒層(inferior granular layer)、整體顆粒層和門(hilus)的GSN螢光染色圖。
圖23B係圖23A之免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體切片的齒狀迴(dentate gyrus,DG)的上部外顆粒層(superior granular layer)的GSN螢光染色圖之量化直方圖合併圓點圖。
圖23C係圖23A之免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體切片的齒狀迴(dentate gyrus,DG)的下部內顆粒層(inferior granular layer)的GSN螢光染色圖之量化直方圖合併圓點圖。
圖23D係圖23A之免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體切片的齒狀迴(dentate gyrus,DG)的整體顆粒層的GSN螢光染色圖之量化直方圖合併圓點圖。
圖23E係圖23A之免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體切片的門(hilus)的GSN螢光染色圖之量化直方圖合併圓點圖。
圖24A係免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,腦部皮質切片的外顆粒層(external granular layer)、外錐體層(external pyramidal layer),以及內顆粒層(internal granular layer)中GSN的螢光染色圖。
圖24B係圖24A之免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,腦部皮質切片的外顆粒層(external granular layer)中GSN的螢光染色圖之量化直方圖合併圓點圖。
圖24C係圖24A之免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,腦部皮質切片的外錐體層(external pyramidal layer)中GSN的螢光染色圖之量化直方圖合併圓點圖。
圖24D係圖24A之免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,腦部皮質切片的內顆粒層(internal granular layer)中GSN的螢光染色圖之量化直方圖合併圓點圖。
圖25A係免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,杏仁核中GSN的螢光染色圖。
圖25B係圖25A係免疫螢光染色分析實驗小鼠在遠程恐懼記憶檢索測試後,杏仁核中GSN的螢光染色圖之量化直方圖合併圓點圖。
圖26A係免疫組織分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體的CA1、CA3,以及DG中的纖維狀肌動蛋白(filamentous actin,F-actin)的免疫組織染色圖。
圖26B係圖26A之免疫組織分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體的CA1中的纖維狀肌動蛋白的免疫組織染色圖之量化直方圖合併圓點圖。
圖26C係圖26A之免疫組織分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體的CA3中的纖維狀肌動蛋白的免疫組織染色圖之量化直方圖合併圓點圖。
圖26D係圖26A之免疫組織分析實驗小鼠在遠程恐懼記憶檢索測試後,海馬體的DG中的纖維狀肌動蛋白的免疫組織染色圖之量化直方圖合併圓點圖。
圖27A係西方墨點分析注射GSN siRNA的SD組的實驗小鼠在海馬體和杏仁核中GSN的含量,以及GAPDH的含量的顯影圖。
圖27B係圖27A西方墨點分析注射GSN siRNA的SD組的實驗小鼠在海馬體和杏仁核中GSN的含量,經GAPDH的含量校正後之量化直方圖合併圓點圖。
圖28A係西方墨點分析注射GSN siRNA的SD組的實驗小鼠在海馬體和杏仁核中GSN的顯影圖。
圖28B係圖28A西方墨點分析注射GSN siRNA的SD組的實驗小鼠在海馬體和杏仁核中GSN的含量,經GAPDH的含量校正後之量化直方圖合併圓點圖。
圖29係對SD組的實驗小鼠注射GSN siRNA後進行情境恐懼制約實驗之實驗流程示意圖。
圖30係對SD組的實驗小鼠注射GSN siRNA後進行情境恐懼制約實驗,在不同時間點,包含:CFC、Ret-1、Ret-2,以及Ret-3中,實驗小鼠產生僵直反應時間的百分比之量化直方圖合併圓點圖。
在本說明書中所提之「一」表示一種、至少一種、一個或至少一個。
本文中所述的「大約」、「約略」或「近似地」一般係指20%,較佳為10%,最佳為5%的範圍內。本文中的數值係為近似值,在未明確定義的情況下可隱含「大約」「約略」或「近似地」之含義。
本實施例所述的短小干擾RNA(small interfering RNA,siRNA),係為雙股的RNA分子,具有20至25個鹼基的長度,可以經由RNA干擾(RNA interference,RNAi)路徑中抑制與siRNA序列互補的基因的表現。
除上述定義外,本說明書中所使用的技術上或科學上的用語,皆為該領域具有通常知識者所理解在本發明所涉及的一般定義。
鑒於睡眠剝奪係全球盛行的問題,且尚未有藥物可以治療睡眠剝奪造成記憶退化的問題,因此本發明之一目的,係為解決睡眠剝奪造成之記憶退化。為了達到本發明之目的,本發明提供一種肌動蛋白重組調節物之抑制劑之用途,係用於製備治療睡眠剝奪引起之記憶退化之藥物。
在本發明一較佳實施例中,該肌動蛋白重組調節物係凝溶膠蛋白。
在本發明一較佳實施例中,該肌動蛋白重組調節物之抑制劑包含shRNA、miRNA、siRNA、抗體、拮抗劑或其組合。
在本發明一較佳實施例中,肌動蛋白重組調節物之抑制劑之給藥方式,係選自以下組成之群組:腦室給藥、腦內給藥、鞘內給藥、動脈給藥、皮內給藥、肌內給藥、灌胃給藥、腹膜腔內給藥、靜脈給藥、口服給藥、皮下給藥、外用給藥、全身性給藥。
在本發明一較佳實施例中,進一步肌動蛋白重組調節物之抑制劑可與安眠藥物併用。
在本發明一較佳實施例中,安眠藥物係選自苯二氮平類藥物、非苯二氮平類藥物、巴比妥酸鹽類藥物,以及褪黑激素受體促效劑所組成之群組。
為能更清楚理解本發明內容,以下結合附圖以詳細說明本發明的具體實施例。
以下提供一實施例,該等實施例提供動蛋白重組調節物之抑制劑用於治療睡眠剝奪引起之記憶退化的例示方案。
以下實施例中呈現的數據結果以平均值作為中心與標準差進行圖表繪製,並以學生t檢定(Student’s t-test)比較兩組之間的實驗結果是否達統計 上之顯著性意義,其中,統計的顯著性定義為p<0.05,以下各實施例之圖式中皆以「*」表示,而當p≧0.05時代表未達顯著性差異,以「ns」表示。
在本實施例中使用的實驗動物,係由臺灣的國家實驗動物中心(National Laboratory Animal Center,Taiwan)提供之C57BL/B6野生型雄性小鼠,以下稱為實驗小鼠。實驗小鼠係於慈濟大學(Tzu Chi University,Taiwan)的實驗動物中心進行照護,實驗小鼠可自由獲取食物和飲用水,並處於7:7光暗週期(L/D cycle),並定義校時器時間(zeitgeber time,ZT)時間,以早上7點為起始,定義為ZT0,其他時間如早上8點定義為ZT1、早上9點為ZT2,其他依此類推。所有有關實驗小鼠處置均由慈濟大學的實驗動物照護及使用委員會(Institutional Animal Care and Use Committee)審核批准。
在本實施例中,首先建立快速動眼期(rapid eye movement,REM)睡眠剝奪實驗小鼠模型,並通過情境恐懼制約(contextual fear conditioning,CFC)實驗,確認建立的REM睡眠剝奪對恐懼記憶形成的影響,再來,通過長效增益(long-term potentiation,LTP)實驗評估突觸可塑性(synaptic plasticity),接著,確認REM睡眠剝奪對遠程恐懼記憶檢索過程的突觸可塑性的影響,再來,確認睡眠剝奪造成腦部突觸前傳遞受損在分子層次的影響,接著,確認凝溶膠蛋白(gelsolin,GSN)和相關蛋白的含量在記憶檢索前是否有變化,再來,確認GSN和相關蛋白的含量在遠程恐懼記憶檢索前是否有變化,接著,確認遠程恐懼記憶檢索測試後凝溶膠蛋白分布在腦部的位置,再來,確認遠程恐懼記憶檢索測試後睡眠剝奪是否造成肌動蛋白解聚(depolymerization)現象,接著,確認降低GSN的含量是否可改善睡眠剝奪造成的記憶退化的問題。
一、建立REM睡眠剝奪實驗小鼠模型:
在建立REM睡眠剝奪實驗小鼠模型中,實驗小鼠在情境恐懼情境訓練後分為2個組別,分別為睡眠剝奪(sleep-deprived,SD)組與非睡眠剝奪(not sleep deprived,NSD)組。SD組在上午7點(ZT0)至上午11點(ZT4)期間,放置於多重平台室(multiple-platform chambers)進行睡眠剝奪處置;其中,多重平台室有至少一個以上直徑2.5公分,且高於2.5公分的圓形平台。首先,將SD組的實驗小鼠放入多重平台後,會於多重平台室內注入深度2.5公分的水,基於實驗小鼠厭惡水,以及進入REM期時肌肉會失去張力無法維持站立在平台上的特性,藉以建立REM睡眠剝奪的小鼠模型(Kamali,A.2016)。
情境恐懼制約(contextual fear conditioning,CFC)實驗:
情境恐懼制約實驗中,其中,實驗小鼠會先放置在制約室(conditioning chamber)15分鐘/天,持續3天,使實驗小鼠適應制約室環境。在第4天時對實驗小鼠進行情境恐懼制約實驗,讓實驗小鼠對厭惡事件進行記憶形成,其中,厭惡事件為將實驗小鼠放入制約箱達2.5分鐘時,對實驗小鼠進行單次0.3毫安培(mA)的足部電擊,持續2秒,隨後停止電擊,直到第3分鐘時將實驗小鼠移出制約室,期間觀察實驗小鼠出現僵直反應時間的百分比,獲得實驗小鼠對厭惡事件產生僵直反應時間的百分比,以下稱該實驗階段為CFC。在第5天時,將實驗小鼠放置於制約室進行5分鐘的恐懼情境測試,期間不進行足部電擊,期間觀察實驗小鼠出現僵直反應時間的百分比,獲得實驗小鼠對厭惡事件(aversion event)進行記憶檢索(retrieval)的反應結果,以下稱該實驗階段為Ret-1。在第6天時,將實驗小鼠放置於制約室進行5分鐘的情境測試,期間不進行足部電擊,期間觀察實驗小鼠出現僵直反應時間的百分比,獲得實驗小鼠對厭惡事件進行記憶再鞏固(reconsolidation)的反應結果,以下稱該實驗階段為Ret-2。在第13天時, 將實驗小鼠放置於制約室進行5分鐘的情境測試,期間不進行足部電擊,期間觀察實驗小鼠出現僵直反應時間的百分比,獲得實驗小鼠對厭惡事件進行遠程恐懼記憶檢索(remote fear memory retrieval)的反應結果,以下稱該實驗階段為Ret-3。實驗流程如圖1。
二、確認REM睡眠剝奪對恐懼記憶形成的影響:
在建立睡眠剝奪小鼠模型後,為了確認REM睡眠剝奪對恐懼記憶形成的影響,針對NSD組和SD組的實驗小鼠進行情境恐懼制約實驗,確認在不同實驗階段,包含:CFC、Ret-1、Ret-2,以及Ret-3中,實驗小鼠產生僵直反應時間的百分比,以評估實驗小鼠的記憶功能。
實驗數值皆以情境測試中的僵直反應時間的百分比表示,計算僵直反應時間的百分比:僵直反應時間的百分比(%)=(總僵直時間/總情境測試時間)×100。
圖2顯示在CFC實驗階段(NSD組:n=8;SD組:n=9),NSD組和SD組間沒有顯著差異(p>0.05)。其中,在Ret-1實驗階段,SD組僵直反應時間的百分比較NSD組僵直反應時間的百分比顯著減少(p=0.003)。其中,在Ret-2實驗階段,SD組僵直反應時間的百分比較NSD組僵直反應時間的百分比顯著減少(p=0.01)。其中,在Ret-3實驗階段,SD組僵直反應時間的百分比較NSD組僵直反應時間的百分比顯著減少(p=0.01)。結果證明SD組的實驗小鼠在記憶檢索(retrieve)、記憶再鞏固(reconsolidate),以及遠程記憶檢索(retrieve the remote fear memory)的能力皆有受損。
三、通過長效增益(long-term potentiation,LTP)實驗評估突觸可塑性(synaptic plasticity):
在確認REM睡眠剝奪對會損害恐懼記憶在記憶檢索(retrieve)、記憶再鞏固(reconsolidate),以及遠程記憶檢索(retrieve the remote fear memory)的功能後,再來,通過長效增益實驗評估突觸可塑性。
長效增益實驗,係用於評估突觸可塑性(synaptic plasticity),即通過連續快速的動作電位傳遞至突觸前神經元末梢,讓神經傳導物質由突觸前神經元的末梢釋放,引發突觸後神經元去極化反應後,該突觸前神經元與該突觸後神經元間信號傳導強度長時間增強的現象(Kruijssen,D.L.H.2019),可用於評估突觸可塑性,以及記憶學習功能。
完成恐懼制約實驗記錄後,會將各組的實驗小鼠實施斷頭術(head decapitation)並取出腦部,腦部取出後立即放置於在冰冷的人工腦脊髓液(ice-cold artificial cerebrospinal fluid,ACSF)中冷卻3~5分鐘,再來,使用震動式切片機(Micro slicer DTK-1000,Dosaka EM Co.Ltd.,Kyoto,Japan)將實驗小鼠的腦部切割為約350微米(μm)厚度的切片,切片會保存在ACSF中,在28℃溫度下以2~3毫升/分鐘(mL/min)的速度持續鼓泡(bubble),持續2小時。
長效增益實驗中,記錄電擊(recording electrode)放置在海馬體的CA1區域,用於記錄場域興奮性突觸電位(field excitatory postsynaptic potential,fEPSP),單極不鏽鋼微電極(unipolar stainless-steel microelectrodes)(Frederick Haer Company,Bowdoinham,ME,USA)作為刺激電極(stimulus electrode),對各個切片的刺激強度在3~10伏特(V)調整,以誘發fEPSP最大響應強度的30~40%。首先,實驗會在開始的10分鐘或20分鐘內,每20秒進行一次誘發,以相同的刺激強度及頻率進行刺激,將期間測得之fEPSP之平均值作為對照組,以下稱為基線(baseline);完成基線記錄後會進行高頻率刺激(high-frequency stimulation,HFS), 其中,HFS係以100赫茲(Hz)的刺激,持續60秒,之後每20秒進行一次刺激誘發fEPSP,持續60分鐘,結果係以測得之fEPSP之下降斜率除以基線之下降斜率,並以百分比進行表示,圖式中簡稱為「fEPSP之下降斜率百分比」;其中記錄信號經由放大器放大(Axon Multiclamp 700B amplifier),設定過濾信號閾值為1千赫茲(kHz),並通過信號轉換接口(CED Micropower 1401 MKII interface,Cambridge Electronic Design,Cambridge,UK)使用信號數位化軟體記錄fEPSP之下降斜率(downward slope),若在進行HFS後之fEPSP能維持在高於基線的水平(level),代表突觸訊號傳遞良好,若在進行HFS後之fEPSP隨著時間逐漸趨近於基線的水平,代表突觸訊號傳遞功能受損。
圖3顯示在通過100赫茲(Hz)對NSD組和SD組的實驗小鼠進行HFS(NSD:n=8切片/4實驗小鼠;SD:n=9切片/4實驗小鼠)。NSD組的實驗小鼠在HFS結束後在80分鐘時之fEPSP之下降斜率維持在約基線之下降斜率的1.5倍,SD組的實驗小鼠在刺激結束後在80分鐘時之fEPSP之下降斜率則逐漸衰退至和基線之下降斜率相近的程度。結果證明SD組的實驗小鼠的突觸傳遞能力受損。
圖4係為各個時間點或各個時間區間(基線:基線;HFS後:高頻率刺激後;0-20:0~20分鐘;20-40:20~40分鐘;40-60:40~60分鐘),fEPSP之下降斜率相對於基線之下降斜率的百分比表示,並以直方圖合併圓點圖表示。其中,在HFS後、0-20、20-40,以及40-60組別中,SD組的實驗小鼠的fEPSP之下降斜率皆較NSD組顯著降低。結果證明SD組的實驗小鼠的突觸傳遞能力受損。
四、確認REM睡眠剝奪對遠程恐懼記憶檢索過程的突觸可塑性的影響:
在確認REM睡眠剝奪會使突觸傳遞能力受損後,再來,要確認REM睡眠剝奪對遠程恐懼記憶檢索過程的突觸可塑性的影響。
為了確認REM睡眠剝奪對遠程恐懼記憶檢索過程的突觸可塑性的影響,因此通過對遠程恐懼記憶檢索的測試後,對各組的實驗小鼠進行細胞外記錄(extra-cellular recording),係通過測量海馬體的fEPSP隨著不同刺激強度下的振幅變化,以及成對脈衝刺激(pair pulse facilitation,PPF)實驗評估基礎神經傳導能力(basal neurotransmission ability)和突觸前功能(presynaptic function)。
其中,基礎神經傳導能力係通過不同刺激強度的範圍,評估實驗小鼠突觸的基礎傳輸效率,並將其繪製為fEPSP的振幅變化(振幅變化單位:mV)與刺激強度(刺激強度單位:μA)的關係圖。
圖5係fEPSP的振幅變化(振幅變化單位:mV)與刺激強度(刺激強度單位:μA)的關係圖顯示遠程恐懼記憶檢索測試後(NSD:n=10切片/4實驗小鼠;SD:n=4切片/3實驗小鼠),SD組的實驗小鼠在各個刺激強度下的fEPSP的振幅變化皆較NSD組的實驗小鼠的fEPSP的振幅變化大,且在大於10微安培(μA)的刺激強度下,SD組的實驗小鼠的fEPSP的振幅變化於各個信號採集時間點皆顯著小於NSD組的實驗小鼠的fEPSP的振幅變化。結果代表SD組的實驗小鼠無法維持基礎神經傳導能力。
成對脈衝加成(pair pulse facilitation,PPF)實驗,係在遠程恐懼記憶檢索記錄結束後實施,係用於確認短期突觸可塑性,以及確認突觸後反應,成對脈衝加成實驗之記錄方法和前述長效增益實驗相同,差異僅在成對脈衝加成實驗中,對NSD組和SD組的實驗小鼠的海馬體進行不同刺激間隔(15,30,50,100,150,200及250毫秒(ms))的刺激,並提升刺激強度至3.5~15mA,以誘發fEPSP最 大響應強度的40~60%,並於各個不同刺激間隔記錄成對脈衝比率(Paired pulse ratio,PPF ratio)的軌跡圖(trace figure)(NSD:n=8切片/4實驗小鼠;SD:n=10切片/4實驗小鼠)。
圖6中顯示NSD組和SD組的實驗小鼠在各個刺激間隔的成對脈衝比率關係圖(NSD:n=8切片/4實驗小鼠;SD:n=10切片/4實驗小鼠),並發現在各個15~250ms不同刺激間隔中,SD組的成對脈衝比率皆較NSD組的成對脈衝比率低。結果代表SD組時實驗小鼠的短期突觸可塑性受損。
五、確認睡眠剝奪造成腦部突觸前傳遞受損在分子層次的影響:
在確認REM睡眠剝奪對遠程恐懼記憶檢索過程的突觸可塑性,會造成無法維持基礎神經傳導能力,以及短期突觸可塑性受損的狀況後,再來,更進一步確認睡眠剝奪造成腦部突觸前傳遞受損在分子層次的影響。
為了確認磷酸化的SYN 1和磷酸化的CAMKII的蛋白質含量,在遠程恐懼記憶檢索後對實驗小鼠進行腦部切片,使用西方墨點分析和免疫螢光染色分析進行確認。圖7為實驗流程示意圖。
蛋白質萃取和灌流:
實驗小鼠在實施斷頭術後取出腦部,海馬體取出後浸泡於500μL放射免疫沉澱法緩衝液(RIPA buffer)中,之後於4℃以13,000rpm離心15分鐘以分離蛋白質,分離蛋白質放置於-20℃保存。大腦係通過心肌灌注法(cardiac perfusion method)使用0.9%生理食鹽水和4%多聚甲醛固定液(Paraformaldehyde Fix Solution,PFA)提取。提取後的大腦保存於4%PFA中2天,再來,轉移至蔗糖溶液中,保存於4℃。
西方墨點(Western Blot)分析:
西方墨點分析中,首先,將蛋白質樣品進行10倍稀釋進行布拉德福蛋白質定量法(Bradford protein assay)定量以取出30微克(μg)樣品至微量離心管。再來,以10%或12%十二烷基硫酸鈉聚丙烯酰胺凝膠電泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE),以80V電泳20分鐘後,改以140V電泳60分鐘,藉以通過凝膠電泳分離不同分子量大小的蛋白質。接著,使用轉印系統在4℃轉印2小時,將蛋白質由凝膠轉印至聚偏二氟乙烯(polyvinylidene difluoride,PVDF)。再來,使用5%牛奶或1%牛血清白蛋白(Bovine serum albumin,BSA)對PVDF進行封閉(blocking)1小時。接著,根據欲觀察的蛋白質種類加入一級抗體(primary antibody),以含有吐溫-20的磷酸鹽緩衝液(Phosphate-Buffered Saline with tween 20,PBST)根據不同抗體適合的稀釋倍率進行稀釋,一級抗體針對的蛋白質標的和稀釋倍率如下所述:GSN(1:500)(Cell signaling Technology,Inc.,USA)、磷酸化的AKT(p-AKT)(1:1000)(Cell signaling Technology,Inc.,USA)、PSD-95(1:1000)(Thermo Fisher Scientific Inc.,USA),甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)(1:5000,GeneTex,Inc.,USA)、BDNF(1:1000,Cell signaling Technology,Inc.,USA)、SYN 1(1:2000,Cell signaling Technology,Inc.,USA),以及磷酸化的SYN 1(p-SYN 1)(1:2000,Cell signaling Technology,Inc.,USA),與PVDF於4℃作用18小時。再來,使用含有吐溫-20的托立斯緩衝液(tris-buffered saline with tween 20,TBST)沖洗PVDF3次,每次10分鐘。接著,使用0.1%牛奶-TBST以1:10000的比例稀釋二級抗體(secondary antibody)和沖洗後的PVDF於室溫反應10分鐘。最後,將PVDF浸泡於電致化學發光(electrochemiluminescence,ECL)顯影液避光反應5分鐘後,以 冷光影像擷取分析系統(WS-High Sensitivity program)擷取PVDF上的顯影結果。顯影結果數據量化以圖像處理軟體(Image J software)進行分析。
免疫螢光分析:
免疫螢光分析中,首先,將腦部的切片浸泡於0.1% PFA保存,再來,以冷的磷酸鹽緩衝液(Phosphate-Buffered Saline,PBS)沖洗3分鐘。接著,將切片浸泡在滲透緩衝液(permeating buffer)於室溫反應30分鐘,其中,滲透緩衝液係由1%曲拉通X-100(Triton X-100)和2%TBST所構成。再來,將切片浸泡在封閉劑於室溫反應60分鐘,其中,封閉劑係由1%正常山羊血清(normal goat serum,NGS)和含有0.3%Triton X-100的PBS。接著,使用抗體稀釋緩衝液(antibody dilution buffer)對抗GSN之一級抗體進行50倍稀釋,以及對抗p-SYN 1之一級抗體進行100倍稀釋,其中,稀釋緩衝液係由1%NGS和含有0.25% Triton X-100的PBS所構成。再來,移除封閉劑並加入稀釋後的一級抗體,在冰箱中反應過夜。接著,使用洗滌緩衝液(Washing buffer)沖洗3次,每次5分鐘,其中,洗滌緩衝液係為含有0.25% Triton X-100的PBS。再來,使用抗體稀釋緩衝液對二級抗體進行稀釋(1:200)。接著,移除洗滌緩衝液後的一級抗體並加入稀釋後的二級抗體於室溫避光反應1~2小時,使二級抗體結合上一級抗體。再來,使用洗滌緩衝液(Washing buffer)沖洗3次,每次5分鐘。接著,使用PBS製備5mg/mL的4',6-二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole,DAPI)溶液。再來,移除洗滌沖洗液後加入DAPI溶液於室溫避光反應1小時。最後,使用洗滌緩衝液(Washing buffer)沖洗3次,每次5分鐘。切片成像係使用共軛焦顯微鏡(confocal microscope)觀察。數據係以圖像處理軟體(Image J software)進行分析,並以圖表繪製軟體(GraphPad Prism 8)進行圖表繪製。影像裁減和對比度調整係使用影像處理軟體(Adobe photoshop),其中DAPI係用於進行細胞核染色,於圖式中顏色為藍色螢光;其中二級抗體上帶有綠色螢光基團或紅色螢光基團,因此於以下免疫螢光染色分析圖式中,顯示為綠色螢光或紅色螢光;以下各圖式中所述之「螢光染色面積百分比」係指綠色螢光分布面積佔拍攝區域面積的百分比,或紅色螢光分布面積佔拍攝區域面積的百分比。
圖8A、圖8B、圖8C、圖8D及圖8E顯示在西方墨點分析中(n=3切片/3實驗小鼠),SD組的實驗小鼠中作為內部控制(internal control)組的GAPDH的含量無顯著差異,而以GAPDH的含量進行校正後之磷酸化的SYN 1(p-SYN 1)的含量(p=0.0007)(圖8C)、總體的SYN 1含量(p=0.003)(圖8D),以及p-CAMKII的含量(p=0.018)(圖8E)皆較NSD組的實驗小鼠顯著降低,結果代表SD組的實驗小鼠的突觸前功能受損。其中「p-CAMKII的含量」係為合併磷酸化的α亞型CAMKII(p-CAMKIIα)的含量和磷酸化的β亞型CAMKII(p-CAMKIIβ)的含量之簡稱。
圖9A、圖9B、圖10A、圖10B、圖11A、圖11 B、圖12A及圖12B分別顯示顯示在免疫螢光染色分析中,SD組中磷酸化的SYN 1的含量在海馬體的CA1(p=0.01)(NSD:n=5切片/3實驗小鼠;SD:n=6切片/3實驗小鼠)(圖9A及圖9B)、CA2(p=0.04)(NSD:n=4切片/3實驗小鼠;SD:n=5切片/3實驗小鼠)(圖10A及圖10B)、CA3(p=0.03)(NSD:n=6切片/3實驗小鼠;SD:n=6切片/3實驗小鼠)(圖11A及圖11B),以及齒狀迴(dentate gyrus,DG)(p=0.08)(NSD:n=6切片/3實驗小鼠;SD:n=6切片/3實驗小鼠)(圖12A及圖12B)皆較NSD組的實驗小鼠降低。結果代表SD組的海馬體的突觸前功能受損。
圖13A、圖13B、圖14A及圖14B分別顯示在免疫螢光染色分析中,SD組中磷酸化的SYN 1(p-SYN 1)的含量在皮質(p=0.08)(NSD:n=5切片/3實驗小 鼠;SD:n=6切片/3實驗小鼠)(圖13A及圖13B),以及杏仁核(p=0.04)(圖14A及圖14B)(NSD:n=6切片/3實驗小鼠;SD:n=6切片/3實驗小鼠)皆較NSD組顯著降低。結果代表SD組的實驗小鼠在杏仁核和皮質的突觸前功能受損。
六、確認凝溶膠蛋白(gelsolin,GSN)和相關蛋白的含量在記憶檢索前是否有變化:
由分子層次確認睡眠剝奪會造成腦部海馬體、杏仁核和皮質的突觸前傳遞受損後,再來,確認凝溶膠蛋白和相關蛋白的含量在Ret-1前是否有變化。
為了確認凝溶膠蛋白(gelsolin,GSN)和相關蛋白的含量在記憶檢索前是否有變化,在進行情境恐懼訓練2小時後,在Ret-1之前採集實驗小鼠的海馬體樣本,通過西方墨點分析確認GSN、GSN的上游目標的含量,以及突觸相關蛋白質的含量。其中,GSN的上游目標為p-AKT。其中,突觸相關蛋白質包含PSD-95、m-BDNF。實驗流程圖如圖15。
圖16A、圖16B、圖16C、圖16D、圖16E及圖16F顯示在西方墨點分析中(NSD:n=5;SD:n=5),在訓練後2小時後進行記憶檢索之前,SD組和NSD組的實驗小鼠的海馬體中,以GAPDH的含量進行校正後,顯示GSN的含量(p=0.695)(圖16C)、磷酸化的AKT的含量(p-AKT)(p=0.919)(圖16D)、成熟的BDNF的含量(m-BDNF)(p=0.06)(圖16E),以及PSD-95的含量(p=0.281)(圖16F)皆沒有顯著差異。結果代表睡眠剝奪並不影響記憶檢索前的突觸相關的結構分子表現。
七、確認凝溶膠蛋白和相關蛋白的含量在遠程恐懼記憶檢索後是否有變化:
確認睡眠剝奪並不影響記憶檢索前的突觸相關的結構分子表現後,再來,確認GSN和相關蛋白的含量在遠程恐懼記憶檢索後是否有變化,在Ret-3後採集全腦樣本,通過西方墨點分析確認GSN、GSN的上游目標的含量,以及突觸相關蛋白質的含量。其中,GSN的上游目標為p-AKT。其中,突觸相關蛋白質包含PSD-95、m-BDNF。流程圖如圖17。
圖18A、圖18B、圖18C、圖18D、圖18E、圖18F及圖18G顯示在西方墨點分析中(NSD:n=5;SD:n=5),在Ret-3後,各組以GAPDH的含量進行校正後,顯示SD組較NSD組的實驗小鼠在GSN的含量(p=0.023)(圖18D)、p-AKT的含量(p=0.013)(圖18E)、m-BDNF的含量(p=0.023)(圖18F)皆顯著增加,而PSD-95的含量(p=0.019)(圖18G)則顯著下降,代表SD組的實驗小鼠之突觸後功能受損。
圖19A、圖19B分別顯示NSD組的實驗小鼠、SD組的實驗小鼠在遠程恐懼記憶檢索測試後,進行全腦切片的GSN的螢光染色圖,顯示SD組較NSD組在不同腦區,包含:皮質、上視丘韁核(Medial habenula)、海馬體、視丘、杏仁核、尾殼(caudoputamen)中的GSN皆有增加趨勢;結果代表睡眠剝奪會影響遠程恐懼記憶檢索的突觸相關的結構分子表現。
八、確認遠程恐懼記憶檢索測試後凝溶膠蛋白分布在腦部的位置:
確認睡眠剝奪會影響遠程恐懼記憶檢索的突觸相關的結構分子表現後,再來,進一步確認遠程恐懼記憶檢索測試後GSN分布在腦部的位置,在Ret-3後採集海馬體樣本進行免疫螢光染色分析。所有圖像皆以20倍和40倍的放大倍率拍攝。
圖20A、圖20B、圖21A、圖21B、圖22A、圖22B、圖23A、圖23B、圖23C、圖23D及圖23E顯示SD組的GSN的含量和NSD組GSN的含量相較(NSD:9切片/3實驗小鼠;SD:9切片/3實驗小鼠),在海馬體的CA1(p=1.09)(圖20A及圖20B)、CA2(p=0.37)(圖21A及圖21B)、CA3(p=0.28)(圖22A及圖22B)和海馬體的齒狀迴(dentate gyrus)的上部顆粒層(superior granular layer)(p=0.27)(圖23A)和下部顆粒層(inferior granular layer)(p=0.31)(圖23B)、整體顆粒層(圖23C)均呈現上升趨勢,海馬體的門(hilus)(圖23D)則呈現下降趨勢(圖23E)。
圖24A、圖24B、圖24C、圖24D、圖25A及圖25B顯示SD組的GSN的含量和NSD組GSN的含量相較(NSD:9切片/3實驗小鼠;SD:9切片/3實驗小鼠),在腦部皮質的外顆粒層(external granular layer)(p=0.329)(圖24B)和外錐體層(external pyramidal layer)(p=0.328)(圖24C)均呈現上升趨勢,在腦部皮質的內顆粒層(internal granular layer)(p=0.11)(圖24D),以及杏仁核(p=0.04)(圖25A及圖25B)則呈現下降趨勢。結果代表在SD組的實驗小鼠中,大多數腦部皮質區域GSN的含量均呈現增加趨勢。
九、確認遠程恐懼記憶檢索測試後睡眠剝奪是否造成肌動蛋白解聚(depolymerization)現象:
確認遠程恐懼記憶檢索測試後凝溶膠蛋白分布在腦部的位置後,再來,確認遠程恐懼記憶檢索測試後睡眠剝奪是否造成肌動蛋白解聚(depolymerization)現象。
為了確認遠程恐懼記憶檢索測試後睡眠剝奪是否造成肌動蛋白解聚(depolymerization)現象,使用免疫組織分析確認纖維狀肌動蛋白(filamentous actin,F-actin)在遠程恐懼記憶檢索測試後,在SD組和NSD組的實驗小鼠中的含量。所有圖像皆以10倍和40倍的放大倍率拍攝。
免疫組織分析:
免疫組織分析中,首先,將腦部的切片浸泡於0.1%多聚甲醛固定液(Paraformaldehyde Fix Solution,PFA)保存。再來,以PBS沖洗切片5分鐘。接著,以非二甲苯溶液(non-xylene solution)(Humuto Chemical Co.,Ltd)沖洗5分鐘。再來,移除非二甲苯溶液並使切麵在85%乙醇中脫水30秒。接著,移除85%乙醇並以PBS沖洗切片10分鐘。再來,將組織浸泡於檸檬酸緩衝液(citrate buffer)於95℃作用30分鐘。接著,移除檸檬酸緩衝液並將切片浸泡於過氧化氫封閉液(hydrogen peroxide block)在室溫作用10分鐘。再來,移除過氧化氫封閉液並以PBS沖洗切片3次,每次10分鐘。接著,將切片浸泡於高效封閉劑(Ultra V block,Thermo Fisher Scientific,USA)5分鐘。再來,以PBS沖洗3次,每次10分鐘。接著,將切片和辨識纖維狀肌動蛋白(filamentous actin,F-actin)的一級抗體(1:100)(LSBio,USA)於4℃作用18小時。再來移除一級抗體的稀釋液後,以PBS沖洗3次,每次10分鐘。接著,將切片浸泡在一級抗體信號放大劑(primary antibody amplifier Quanto,Thermo Fisher Scientific,USA)於室溫反應10分鐘。再來,以PBS沖洗3次,每次10分鐘。接著,將切片浸泡在山葵過氧化酶試劑(HRP polymer Quanto,Thermo Fisher Scientific,USA)於室溫避光反應10分鐘。再來,以PBS沖洗3次,每次10分鐘。接著,將切片浸泡於二氨基聯苯胺(Diaminobenzidine,DAB)作用20秒。最後,使切片貼附載玻片並蓋上蓋玻片後進行觀察。切片成像係使用亮視野顯微鏡檢(bright field microscope)觀察。數據量化係以圖像處理軟體(Image J software)進行分析, 並以圖表繪製軟體(GraphPad Prism 8)進行圖表繪製。影像裁減和對比度調整係使用影像處理軟體(Adobe photoshop)。
圖26A、圖26B、圖26C及圖26D顯示SD組與NSD組的實驗小鼠相較(n=3切片/2實驗小鼠),在海馬體的CA1(p=0.05)(圖26B)、CA3(p=0.04)(圖26C)、DG(p=0.06)(圖26D)的F-actin含量皆呈現下降趨勢,尤其在海馬體的CA1和CA3呈現顯著下降。結果代表在SD組的實驗小鼠中,肌動蛋白解聚現象增加,該結果與前述GSN的增加具有正相關性。
十、確認降低GSN的含量是否可改善睡眠剝奪造成的記憶退化的問題:
在確認遠程恐懼記憶檢索測試後睡眠剝奪是否造成肌動蛋白解聚(depolymerization)現象後,再來,確認降低GSN的含量是否可改善睡眠剝奪造成的記憶退化的問題。
立體定向輸液(Stereotaxic infusion):
首先,通過靜脈注射對小鼠注射麻醉藥,其中,麻醉藥係由0.64mL的氯胺酮(ketamine)、0.4mL的甲苯噻嗪(xylazine),以及9.36mL的0.9%生理食鹽水所構成。麻醉20分鐘後,首先,去除實驗小鼠顱骨(skull)上方的毛髮以露出頭皮(scalp),並在眼部塗抹鹽酸四環素(tetracycline HCl)防止乾燥。再來,將小鼠固定在立體定位裝置中,在顱骨上方切出1吋的切口,並用碘染劑防止感染。前囟(bregma)通過前側-後側(Anterior-Posterior,AP)、內側-外側(Medial-Lateral,ML)和背側-腹側(Dorsal-Ventral,DV)的座標使用導管(guide cannula)進行記錄。根據小鼠腦圖譜(mouse-brain atlas)確定三個平面座標,根據座標在實驗小鼠的腦部的兩個位置(AP=-1.5mm,ML=+/-1.5mm)鑽開直徑0.1mm孔洞,並使用導管記錄位置。 將導管置換為注射管(injection cannula),並連接至固定在注射泵(syringe pump)的100μL注射器(syringe)。將注射管放置在上述座標並且放置在海馬體位置的深度(DV=-0.8mm)。完成設置後,為了測試部位注射的準確性,使用注射泵以1.5μL/分鐘的流速將考馬斯亮藍染劑(Coomassie blue dye)注射至腦部兩側的海馬體後,將開口縫合,並對實驗小鼠立即實施斷頭術,並進行腦部切片確認染劑位置。最後,通過調整測試,確認後續注射肌動蛋白重組調節物之抑制劑之最終座標(AP=-0.8mm,LM=+/-1.5mm,以及前囟下方1.5mm)。
肌動蛋白重組調節物之抑制劑製備:
肌動蛋白重組調節物之抑制劑製備中,將購買之原始濃度為5奈米莫耳(nanomolar,nmole)的GSN siRNA(s105802,Thermofisher Ambion,Life technologies cooperation,USA),以無核酸酶水(nuclease-free water)將原始濃度稀釋為工作濃度(working concentration),即1μg/μL的GSN siRNA後,在實驗小鼠腦部兩側海馬體各注入1μg的GSN siRNA。其中,GSN siRNA之分子量係13,400道爾頓(Dalton,Da)。其中,GSN siRNA係用於抑制實驗小鼠的GSN基因(2號染色體:35256359-35307902 on Build GRCm38)表達,降低GSN蛋白的表現。縫合開口後,對小鼠注射1mL的0.9%生理食鹽水和止痛藥(painkiller)(meloxicam)後,將實驗小鼠放置回鼠籠並監測實驗小鼠狀況2天。
為了確認降低GSN的含量是否可改善睡眠剝奪造成的記憶退化的問題,因此將GSN siRNA直接注射至SD組的實驗小鼠的海馬體中,藉以通過siRNA降低GSN的含量,另包含一組SD組的實驗小鼠注射雜序之siRNA(scramble siRNA)作為陰性控制組(SD+Scramble:n=3;SD+siRNA:n=4),並觀察第7天和 第13天海馬體和杏仁核中GSN的含量;以下圖式中陰性控制組係以「NC」表示,注射GSN siRNA之組別係以「GSN siRNA」表示。
圖27A及圖27B顯示第7天時,以GAPDH的含量進行校正後,顯示GSN siRNA可以顯著抑制海馬體中GSN的含量(p=0.023),但無法抑制杏仁核中凝溶膠蛋白的含量(p=0.27);圖27A及圖27B中「ns」代表未達統計上之顯著差異。
圖28A及圖28B顯示第13天時,以GAPDH的含量進行校正後,顯示在海馬體和杏仁核中GSN siRNA沒有顯著改變GSN的含量;圖28A及圖28B中「ns」代表未達統計上之顯著差異。
在確認注射GSN siRNA第7天時可以降低實驗小鼠海馬體中GSN的含量後,在進行情境恐懼制約實驗前,先將GSN siRNA注射至SD組的實驗小鼠中,並在休息兩天恢復後進行情境恐懼制約實驗,與未注射GSN siRNA的SD組的實驗小鼠比較在檢索、再鞏固,以及遠程恐懼記憶檢索的表現。實驗流程如圖29。
圖30顯示注射GSN siRNA可以逆轉Ret-1(p=0.04)(檢索)和Ret-2(p=0.05)(再鞏固),引起的恐懼記憶退化,但在Ret-3(遠程恐懼記憶檢索)則與控制組沒有顯著差異;圖30中「ns」代表未達統計上之顯著差異。
經由上述實施例可證實,通過抑制凝溶膠蛋白(肌動蛋白重組調節物)的含量可以改善睡眠剝奪引起的記憶退化。
以上僅為提供一較佳的實施例用於揭示本發明之內容,然並非用以限定本發明,對於本發明所屬技術領域中具有通常知識者可輕易思及之修正,亦落入本案之發明內容和申請之專利範圍內。

Claims (3)

  1. 一種肌動蛋白重組調節物之抑制劑之用途,係用於製備治療睡眠剝奪引起之記憶退化之藥物;其中,該肌動蛋白重組調節物係凝溶膠蛋白;其中,該肌動蛋白重組調節物之抑制劑包含shRNA、miRNA、siRNA、抗體、拮抗劑或其組合;其中,該肌動蛋白重組調節物之抑制劑為siRNA。
  2. 如請求項1所述之肌動蛋白重組調節物之抑制劑之用途,其中,肌動蛋白重組調節物之抑制劑之給藥方式,係選自以下組成之群組:腦室給藥、腦內給藥、鞘內給藥、動脈給藥、皮內給藥、肌內給藥、灌胃給藥、腹膜腔內給藥、靜脈給藥、口服給藥、皮下給藥、外用給藥、全身性給藥。
  3. 如請求項2所述之肌動蛋白重組調節物之抑制劑之用途,其中,肌動蛋白重組調節物之抑制劑之給藥方式,係選自以下組成之群組:腦室給藥、腦內給藥、鞘內給藥。
TW111103522A 2022-01-27 2022-01-27 一種肌動蛋白重組調節物之抑制劑用於製備治療睡眠剝奪引起之記憶退化之藥物之用途 TWI824398B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111103522A TWI824398B (zh) 2022-01-27 2022-01-27 一種肌動蛋白重組調節物之抑制劑用於製備治療睡眠剝奪引起之記憶退化之藥物之用途
US17/697,263 US20230233647A1 (en) 2022-01-27 2022-03-17 Use of an inhibitor of actin remodeling modulator for the manufacture of a medicament for treatment of sleep deprivation-induced memory deficit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111103522A TWI824398B (zh) 2022-01-27 2022-01-27 一種肌動蛋白重組調節物之抑制劑用於製備治療睡眠剝奪引起之記憶退化之藥物之用途

Publications (2)

Publication Number Publication Date
TW202330018A TW202330018A (zh) 2023-08-01
TWI824398B true TWI824398B (zh) 2023-12-01

Family

ID=87313166

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111103522A TWI824398B (zh) 2022-01-27 2022-01-27 一種肌動蛋白重組調節物之抑制劑用於製備治療睡眠剝奪引起之記憶退化之藥物之用途

Country Status (2)

Country Link
US (1) US20230233647A1 (zh)
TW (1) TWI824398B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101091795A (zh) * 1999-06-01 2007-12-26 神经实验室有限公司 淀粉样变性疾病的预防和治疗

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101091795A (zh) * 1999-06-01 2007-12-26 神经实验室有限公司 淀粉样变性疾病的预防和治疗

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Pontrello CG, Ethell IM, "Accelerators, Brakes, and Gears of Actin Dynamics in Dendritic Spines", Open Neurosci J., Vol. 3, 2009 Jan 1, page 67-86. *

Also Published As

Publication number Publication date
TW202330018A (zh) 2023-08-01
US20230233647A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
Bosch et al. Oxytocin in the nucleus accumbens shell reverses CRFR2-evoked passive stress-coping after partner loss in monogamous male prairie voles
Avery et al. The human BNST: functional role in anxiety and addiction
Shumyatsky et al. Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear
Zhou et al. Activation of β2-adrenoceptor enhances synaptic potentiation and behavioral memory via cAMP-PKA signaling in the medial prefrontal cortex of rats
Balschun et al. Interleukin-6: a cytokine to forget
Ma et al. Heterogeneous responses of nucleus incertus neurons to corticotrophin‐releasing factor and coherent activity with hippocampal theta rhythm in the rat
Romine et al. The proliferation of amplifying neural progenitor cells is impaired in the aging brain and restored by the mTOR pathway activation
Kastman et al. Nucleus incertus Orexin2 receptors mediate alcohol seeking in rats
Bender et al. Astrocyte plasticity induced by emotional stress: A new partner in psychiatric physiopathology?
Yin et al. Up‐regulated basigin‐2 in microglia induced by hypoxia promotes retinal angiogenesis
Liu et al. An inhibitory brainstem input to dopamine neurons encodes nicotine aversion
Borie et al. Social experience alters oxytocinergic modulation in the nucleus accumbens of female prairie voles
Tian et al. An extended amygdala-midbrain circuit controlling cocaine withdrawal-induced anxiety and reinstatement
Marchese et al. Brain angiotensin II AT 1 receptors are involved in the acute and long-term amphetamine-induced neurocognitive alterations
Wada et al. Acute restraint stress augments the rewarding memory of cocaine through activation of α1 adrenoceptors in the medial prefrontal cortex of mice
Li et al. A thalamic-primary auditory cortex circuit mediates resilience to stress
Fleming et al. Cholinergic interneurons mediate cocaine extinction in male mice through plasticity across medium spiny neuron subtypes
Guo et al. MicroRNA-133b-3p targets purinergic P2X4 receptor to regulate central poststroke pain in rats
TWI824398B (zh) 一種肌動蛋白重組調節物之抑制劑用於製備治療睡眠剝奪引起之記憶退化之藥物之用途
Braz et al. Properties of the corticostriatal long term depression induced by medial prefrontal cortex high frequency stimulation in vivo
CN107596371A (zh) P2y1受体及其阻断剂在预防和治疗抗抑郁症和/或抗焦虑症中的应用
CN108853509A (zh) 抑郁症的治疗和药物组合物
Hu et al. A developmental critical period for ocular dominance plasticity of binocular neurons in mouse superior colliculus
El Hajji Insulin-induced retinal ganglion cell dendrite regeneration: characterization and identification of novel molecular mechanisms
Chokshi Molecular Mechanisms and Activity Patterns Required for Input-Specific Homeostatic Plasticity