TWI823860B - Light emitting device - Google Patents
Light emitting device Download PDFInfo
- Publication number
- TWI823860B TWI823860B TW107126025A TW107126025A TWI823860B TW I823860 B TWI823860 B TW I823860B TW 107126025 A TW107126025 A TW 107126025A TW 107126025 A TW107126025 A TW 107126025A TW I823860 B TWI823860 B TW I823860B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- blocking layer
- emitting device
- hole blocking
- electron blocking
- Prior art date
Links
- 230000000903 blocking effect Effects 0.000 claims abstract description 135
- 239000000463 material Substances 0.000 claims description 83
- 230000004888 barrier function Effects 0.000 claims description 78
- 239000000758 substrate Substances 0.000 claims description 45
- 229910052738 indium Inorganic materials 0.000 claims description 21
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 14
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 description 32
- 239000000956 alloy Substances 0.000 description 32
- 229910052782 aluminium Inorganic materials 0.000 description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
- 238000010586 diagram Methods 0.000 description 13
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 11
- 239000013078 crystal Substances 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 8
- 239000000969 carrier Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 229910001096 P alloy Inorganic materials 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 5
- 230000004807 localization Effects 0.000 description 5
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000007665 sagging Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/14—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
- H01L33/145—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/14—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/0004—Devices characterised by their operation
- H01L33/0008—Devices characterised by their operation having p-n or hi-lo junctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/12—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
- Led Device Packages (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
本發明係關於發光裝置,且更特定言之,本發明係關於用於發光裝置中之高效率電子及電洞阻擋之應變AlGaInP層。 The present invention relates to light emitting devices, and more particularly, the present invention relates to strained AlGaInP layers for high efficiency electron and hole blocking in light emitting devices.
發光二極體(「LED」)常用作各種應用中之光源。一LED之主要功能部分可為包含相反導電性類型(p型及n型)之兩個注入層之一半導體晶片及用於輻射複合之一發光主動層(其中發生載子注入)。注入層以及主動層之組合物可由所要波長變動。就紅色至琥珀色可見波長中之光發射而言,可使用來自(AlxGa1-x)1-yInyP合金系之材料。 Light emitting diodes ("LEDs") are commonly used as light sources in a variety of applications. The main functional part of an LED may be a semiconductor wafer containing two injection layers of opposite conductivity types (p-type and n-type) and a light-emitting active layer for radiative recombination (in which carrier injection occurs). The composition of the injection layer and the active layer can be varied depending on the desired wavelength. For light emission in red to amber visible wavelengths, materials from the ( AlxGa1 -x ) 1- yInyP alloy family can be used.
根據本發明之態樣,揭示一種發光裝置,其包括一電子阻擋層、一電洞阻擋層及安置於該電洞阻擋層與該電子阻擋層之間之一主動層。該發光裝置可由來自(AlxGa1-x)1-yInyP合金系之材料及/或任何其他適合類型之材料形成。在一些實施方案中,該電洞阻擋層之至少一部分可經配置以具有一壓縮應變。另外或替代地,在一些實施方案中,該主動層可具有至少一井結構,其包括:一第一障壁層,其經配置以具有一拉伸應變;一第二障壁層,其經配置以具有一拉伸應變;及一井層,其安置於該第一障壁層與該第二障壁層之間。According to aspects of the present invention, a light-emitting device is disclosed, which includes an electron blocking layer, a hole blocking layer, and an active layer disposed between the hole blocking layer and the electron blocking layer. The light emitting device may be formed from materials from the ( AlxGa1 -x ) 1- yInyP alloy system and/or any other suitable type of material. In some embodiments, at least a portion of the hole blocking layer can be configured to have a compressive strain. Additionally or alternatively, in some embodiments, the active layer can have at least one well structure including: a first barrier layer configured to have a tensile strain; a second barrier layer configured to have a tensile strain. having a tensile strain; and a well layer disposed between the first barrier layer and the second barrier layer.
相關申請案之交叉參考Cross-references to related applications
本申請案主張2017年7月28日申請之美國專利申請案第15/662,952號及2018年1月18日申請之歐洲專利申請案第18152290.5號之權利,該等案之內容以引用的方式併入本文中。This application claims the rights of U.S. Patent Application No. 15/662,952 filed on July 28, 2017 and European Patent Application No. 18152290.5 filed on January 18, 2018, the contents of which are incorporated by reference. into this article.
下文將參考附圖來更完全描述不同發光二極體(「LED」)實施方案之實例。此等實例不相互排斥,且一實例中所見之特徵可與一或多個其他實例中所見之特徵組合以達成額外實施方案。因此,應瞭解,附圖中所展示之實例僅供說明且其決不意欲限制本發明。相同元件符號係指所有圖中之相同元件。Examples of different light emitting diode ("LED") implementations are described more fully below with reference to the accompanying drawings. These examples are not mutually exclusive, and features found in one example may be combined with features found in one or more other examples to achieve additional implementations. Therefore, it should be understood that the examples shown in the drawings are illustrative only and are in no way intended to limit the invention. The same reference numbers refer to the same components throughout the drawings.
應瞭解,儘管術語第一、第二等等可在本文中用於描述各種元件,但此等元件不應受限於此等術語。此等術語僅用於使元件彼此區分。例如,在不背離本發明之範疇之情況下,一第一元件可稱為一第二元件,且類似地,一第二元件可稱為一第一元件。如本文所使用,術語「及/或」包括一或多個相關聯列項之任何及所有組合。It should be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish elements from each other. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of the invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
應瞭解,當諸如一層、區域或基板之一元件被視為「位於另一元件上」或「延伸至另一元件上方」時,其可直接位於另一元件上或直接延伸至另一元件上或亦可存在介入元件。相比而言,當一元件被視為「直接位於另一元件上」或「直接延伸至另一元件上」時,不存在介入元件。亦應瞭解,當一元件被視為「連接」或「耦合」至另一元件時,其可直接連接或耦合至另一元件或可存在介入元件。相比而言,當一元件被視為「直接連接」或「直接耦合」至另一元件時,不存在介入元件。應瞭解,除圖中所描繪之任何定向之外,此等術語亦意欲涵蓋元件之不同定向。It will be understood that when an element such as a layer, region, or substrate is referred to as being "on" or "extending over" another element, it can be directly on or extending directly over the other element. Or intervening elements may be present. In contrast, when an element is considered to be "directly on" or "directly extending directly onto" another element, there are no intervening elements present. It should also be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when one element is considered to be "directly connected" or "directly coupled" to another element, there are no intervening components present. It will be understood that these terms are intended to cover different orientations of the component in addition to any orientation depicted in the figures.
諸如「下方」或「上方」或「上」或「下」或「水平」或「垂直」之相對術語可在本文中用於描述一元件、層或區域與另一元件、層或區域之一關係,如圖中所繪示。應瞭解,除圖中所描繪之定向之外,此等術語亦意欲涵蓋裝置之不同定向。Relative terms such as “below” or “above” or “on” or “lower” or “horizontal” or “vertical” may be used herein to describe one element, layer or region in relation to another element, layer or region relationship, as depicted in the figure. It will be understood that these terms are intended to cover different orientations of the device in addition to the orientation depicted in the figures.
III族-P半導體裝置(諸如使用(Alx Ga1-x )1-y Iny P合金系之III族-P半導體裝置)產生自琥珀色至紅色(例如約570 nm至約680 nm)之可見光波長。藉由在合金之生長期間調整鋁鎵比來達成光之波長範圍。Group III-P semiconductor devices, such as those using the ( AlxGa1 -x ) 1- yInyP alloy system, are produced from amber to red (eg, about 570 nm to about 680 nm) Visible light wavelength. The wavelength range of light is achieved by adjusting the aluminum to gallium ratio during the growth of the alloy.
圖1描繪根據本發明之態樣之使用(Alx Ga1-x )1-y Iny P合金系來產生之一發光裝置100之一實例。裝置100包括其上形成一無應變電洞阻擋層(HBL) 120之一基板110。基板110包括一吸收砷化鎵(GaAs)基板。電洞阻擋層(HBL) 120由來自(Alx Ga1-x )1-y Iny P合金系之一n型材料形成。一主動層130形成於HBL 120上方。主動層130具有(Alx Ga1-x )1-y Iny P組合物且包括經配置以形成複數個井結構之多個障壁層130a及井層130b。一電子阻擋層(EBL) 140形成於主動層130上方。電子阻擋層(EBL) 140由來自(Alx Ga1-x )1-y Iny P合金系之一p型材料形成。接點150a及150b分別安置於HBL 120及EBL 140上以提供用於加偏壓於裝置100之構件。Figure 1 depicts an example of a light emitting device 100 produced using the ( AlxGa1 -x ) 1- yInyP alloy system in accordance with aspects of the present invention. Device 100 includes a substrate 110 on which a strain-free hole blocking layer (HBL) 120 is formed. The substrate 110 includes an absorbing gallium arsenide (GaAs) substrate. The hole blocking layer (HBL) 120 is formed of an n-type material from the ( AlxGa1 -x ) 1- yInyP alloy system. An active layer 130 is formed above the HBL 120 . The active layer 130 has an ( AlxGa1 -x ) 1- yInyP composition and includes a plurality of barrier layers 130a and well layers 130b configured to form a plurality of well structures. An electron blocking layer (EBL) 140 is formed above the active layer 130 . The electron blocking layer (EBL) 140 is formed of a p-type material from the ( AlxGa1 -x ) 1- yInyP alloy system. Contacts 150a and 150b are disposed on HBL 120 and EBL 140 respectively to provide means for biasing device 100 .
當將一正向偏壓施加於裝置100時,將載子注入至主動層130中,其中載子複合且將其過量能量轉換為光。因此,裝置100之高效率操作取決於載子至主動層130中之高效率注入及主動層130內之注入載子之一高效率複合。為提高載子複合之效率,主動層130經配置以包括複數個井結構。各井結構由夾置於兩個障壁層130a之間之一井層130b形成。在一些實施方案中,各障壁層130a可由一第一(Alx Ga1-x )1-y InP材料形成,而各井層130b可由一第二(Alx Ga1-x )1-y InP材料形成。在一些實施方案中,第一(Alx Ga1-x )1-y InP材料可具有0%至30%之範圍內之一鋁比率(0<x<0.3)。另外或替代地,在一些實施方案中,第二(Alx Ga1-x )1-y InP材料可具有40%至100%之範圍內之一鋁比率(0.4<x<1)。When a forward bias is applied to device 100, carriers are injected into active layer 130, where they recombine and convert their excess energy into light. Therefore, high-efficiency operation of device 100 depends on high-efficiency injection of carriers into active layer 130 and high-efficiency recombination of injected carriers within active layer 130 . In order to improve the efficiency of carrier recombination, the active layer 130 is configured to include a plurality of well structures. Each well structure is formed by a well layer 130b sandwiched between two barrier layers 130a. In some embodiments, each barrier layer 130a may be formed of a first ( AlxGa1 -x ) 1- yInP material, and each well layer 130b may be formed of a second ( AlxGa1 -x ) 1- yInP material. Material formation. In some embodiments, the first ( AlxGa1 -x ) 1-y InP material can have an aluminum ratio in the range of 0% to 30% (0<x<0.3). Additionally or alternatively, in some embodiments, the second ( AlxGa1 -x ) 1-y InP material can have an aluminum ratio in the range of 40% to 100% (0.4<x<1).
在一些態樣中,由障壁層130a提供之電子侷限量由障壁層130a與井層130b之間之導電帶補償(conduction band offsets;CBO)判定。類似地,由障壁層提供之電洞侷限量由障壁層130a與井層130b之間之價帶補償(valence band offsets;VBO)判定。就一高效率主動層設計而言,障壁層130a與井層130b之間之CBO必須足夠大以侷限裝置100之高電流注入及高溫操作中之電子。類似地,障壁層130a與井層130b之間之VBO必須足夠大以侷限高電流及/或高溫操作環境中之電洞。In some aspects, the amount of electron confinement provided by barrier layer 130a is determined by conduction band offsets (CBO) between barrier layer 130a and well layer 130b. Similarly, the amount of hole confinement provided by the barrier layer is determined by the valence band offsets (VBO) between the barrier layer 130a and the well layer 130b. For a high-efficiency active layer design, the CBO between barrier layer 130a and well layer 130b must be large enough to confine electrons in high current injection and high temperature operation of device 100. Similarly, the VBO between barrier layer 130a and well layer 130b must be large enough to confine holes in high current and/or high temperature operating environments.
在高溫及/或高電流操作環境中,儘管主動蹭130中存在井結構,但載子可逃脫主動層130。為此,將EBL 140及HBL 120提供於主動層130之側上以補充障壁層130a之功能且防止載子自主動層130溢出。如下文將相對於圖2進一步討論,由EBL 140提供之電子侷限度與EBL 140與主動層130內之井結構之間之CBO成比例。類似地,由HBL 120提供之電洞侷限度與HBL 120與主動層130之井結構之間之VBO成比例。In high temperature and/or high current operating environments, carriers may escape the active layer 130 despite the presence of well structures in the active layer 130 . To this end, EBL 140 and HBL 120 are provided on the side of the active layer 130 to supplement the function of the barrier layer 130a and prevent carriers from overflowing from the active layer 130. As will be discussed further below with respect to FIG. 2 , the degree of electron confinement provided by EBL 140 is proportional to the CBO between EBL 140 and the well structure within active layer 130 . Similarly, the hole confinement provided by HBL 120 is proportional to the VBO between HBL 120 and the well structure of active layer 130 .
在圖1及圖2之實例中,HBL 120係裝置100之下侷限層(LCL),而EBL 140係裝置100之上侷限層(UCL)。然而,在一些實施方案中,HBL 120可與裝置100之LCL分離。另外或替代地,在一些實施方案中,EBL 140可與裝置100之UCL分離。在此等例項中,EBL及HBL亦可不摻雜或不同於UCL及LCL摻雜。另外或替代地,在一些實施方案中,除EBL 140之外,UCL中亦可存在一或多個其他層。另外或替代地,在一些實施方案中,除HBL 120之外,LCL中亦可存在一或多個其他層。此外,應注意,裝置100不受限於上述層,而是可具有在主動層130之前或主動層130之後生長之額外磊晶層。據此而言,HBL 120可為除主動層130之外之裝置100中之任何n型層。類似地,EBL 140可為除主動層130之外之裝置100中之任何p型層。In the examples of FIGS. 1 and 2 , HBL 120 is the lower localization layer (LCL) of device 100 and EBL 140 is the upper localization layer (UCL) of device 100 . However, in some embodiments, HBL 120 may be separated from the LCL of device 100. Additionally or alternatively, in some embodiments, EBL 140 may be separate from the UCL of device 100. In these examples, EBL and HBL may also be undoped or doped differently than UCL and LCL. Additionally or alternatively, in some embodiments, in addition to EBL 140, one or more other layers may be present in the UCL. Additionally or alternatively, in some embodiments, in addition to HBL 120, one or more other layers may be present in the LCL. Furthermore, it should be noted that device 100 is not limited to the layers described above, but may have additional epitaxial layers grown before or after active layer 130 . In this regard, HBL 120 may be any n-type layer in device 100 except active layer 130 . Similarly, EBL 140 may be any p-type layer in device 100 except active layer 130 .
圖2係裝置100之一能帶圖200,其中針對層之各自空間位置繪製層120至140之價帶(Vb)及導電帶(Cb)能量。導電帶Cb及價帶Vb之能量由層120至140之晶格中之原子之化學鍵判定。在本實例中,導電帶Cb由層120至140中之電子之X帶及Γ帶能量之最低者界定。Figure 2 is an energy band diagram 200 of device 100 in which the valence band (Vb) and conductive band (Cb) energies of layers 120-140 are plotted against their respective spatial locations. The energies of the conductive band Cb and the valence band Vb are determined by the chemical bonds of the atoms in the crystal lattice of layers 120 to 140. In this example, the conductive band Cb is defined by the lowest of the X-band and Γ-band energies of the electrons in layers 120 to 140.
如圖中所繪示,能帶圖200被分成區段220、230a、230b及240。區段240展示EBL 140之價帶Vb及導電帶Cb。區段230a展示障壁層130a之各自價帶Vb及導電帶Cb。區段230b展示井層130b之各自價帶Vb及導電帶。且區段220展示HBL 120之導電帶Cb及價帶Vb。圖2中亦展示相對於主動區域井材料之EBL 140之導電帶補償CBO1 及HBL 120之價帶補償VBO1 。如上文所指示,VBO1 及CBO1 之量值判定分別由HBL 120及EBL 140提供之主動層130中之載子侷限度。As shown in the figure, band diagram 200 is divided into segments 220, 230a, 230b, and 240. Section 240 shows the valence band Vb and conductive band Cb of EBL 140 . Section 230a shows the respective valence band Vb and conductive band Cb of barrier layer 130a. Section 230b shows the respective valence band Vb and conductive band of well layer 130b. And section 220 shows the conductive band Cb and the valence band Vb of HBL 120 . Also shown in Figure 2 are the conductive band compensation CBO 1 of EBL 140 and the valence band compensation VBO 1 of HBL 120 relative to the active zone well material. As indicated above, the magnitudes of VBO 1 and CBO 1 determine the carrier localization limits in active layer 130 provided by HBL 120 and EBL 140 respectively.
導電帶補償CBO2 及價帶補償VBO2 分別係由障壁層130a及井結構130b形成之井結構之導電帶及價帶補償。如圖中所繪示,井層130b之帶隙比障壁層130a之帶隙窄,其允許載子垂直於晶體生長但非沿相同方向移動。此繼而導致井層130b中較高濃度之電荷載子受侷限及輻射複合之機率增大。The conductive band compensation CBO 2 and the valence band compensation VBO 2 are respectively the conductive band and the valence band compensation of the well structure formed by the barrier layer 130a and the well structure 130b. As shown in the figure, the band gap of well layer 130b is narrower than the band gap of barrier layer 130a, which allows carriers to move perpendicular to the crystal growth but not in the same direction. This in turn results in the higher concentration of charge carriers in the well layer 130b being localized and increasing the probability of radiative recombination.
如上所述,主動層130中之井結構之CBO2 及VBO2 之量值判定由此等結構提供之電荷載子之侷限度。一般而言,可用於(Alx Ga1-x )1-y Iny P合金系之最大導電帶補償係約196 meV,其可在井層130b具有0%之鋁比率(x)且障壁層130a具有53%之鋁比率(x)時達成。井層130b中之鋁(Al)及鎵(Ga)之此組合提供發射波長約650 nm至約680 nm。為達成較短波長之發射,需要提高井層130b中之鋁比率(x),其會減小主動層130中之井結構之導電帶及價帶補償。帶補償減小會給主動層130中之井結構之電子阻擋及電洞阻擋能力帶來嚴重損失。此損失僅在高注入及高溫操作時增加。As discussed above, the magnitude of CBO 2 and VBO 2 of well structures in active layer 130 determines the extent of charge carrier confinement provided by these structures. Generally speaking, the maximum conductive band compensation system that can be used for the ( Al 130a is achieved with an aluminum ratio (x) of 53%. This combination of aluminum (Al) and gallium (Ga) in well layer 130b provides an emission wavelength of about 650 nm to about 680 nm. In order to achieve shorter wavelength emission, the aluminum ratio (x) in the well layer 130b needs to be increased, which will reduce the conductive band and valence band compensation of the well structure in the active layer 130. Reduced band compensation will bring serious losses to the electron blocking and hole blocking capabilities of the well structure in the active layer 130 . This loss only increases at high injection and high temperature operations.
圖3描繪經設計以抵消與增加鋁含量相關聯之一些損失之一發光裝置300之一實例。裝置300包括一基板310、一下侷限層(LCL) 320、一主動層330及一上侷限層(UCL) 340。根據本實例,基板210包括一吸收GaAs基板。此外,根據本實例,LCL 320、主動層330及UCL 340之各者可由來自(Alx Ga1-x )1-y Iny P合金系之一材料形成。Figure 3 depicts an example of a light emitting device 300 designed to offset some of the losses associated with increasing aluminum content. The device 300 includes a substrate 310, a lower confinement layer (LCL) 320, an active layer 330, and an upper confinement layer (UCL) 340. According to this example, substrate 210 includes an absorbing GaAs substrate. Furthermore, according to this example, each of the LCL 320, the active layer 330, and the UCL 340 may be formed of a material from the ( AlxGa1 -x ) 1- yInyP alloy system.
在一些態樣中,來自(Alx Ga1-x )1-y Iny P合金系之材料之導電帶能量受該等材料之鋁比率影響。更特定言之,就具有低於53% (0<x<0.53)之鋁比率之來自(Alx Ga1-x )1-y Iny P合金系之材料而言,Γ帶係最低導電帶且合金表現為一直接帶隙材料。相比而言,當(Alx Ga1-x )1-y Iny P合金系中之鋁比率大於53% (0.53<x<1)時,X帶界定主動層330及主動層330內之個別井結構及EBL (或UCL)中之電子侷限。因此,當鋁比率大於53% (0.53<x<1)時,障壁層330a及UCL 340中之X帶之能階越大,主動層330及其內之個別井結構中之電子之侷限效率越高。In some aspects, the conductive band energy of materials from the ( AlxGa1 -x ) 1- yInyP alloy series is affected by the aluminum ratio of the materials. More specifically, the Γ band is the lowest conductive band for materials from the ( Al And the alloy behaves as a direct bandgap material. In comparison, when the aluminum ratio in the (Al x Ga 1-x ) 1-y In y P alloy system is greater than 53% (0.53<x<1), the X band defines the active layer 330 and the Individual well structures and electronic localization in EBL (or UCL). Therefore, when the aluminum ratio is greater than 53% (0.53<x<1), the greater the energy level of the high.
提高來自(Alx Ga1-x )1-y Iny P合金系之材料之X帶之能階之一方式係誘發該等材料之晶格之一拉伸應變。當銦比率係49% (y=0.49)時,來自(Alx Ga1-x )1-y Iny P合金系之材料晶格匹配於0>x>1時之GaAs基板。當銦比率降至49%以下(0<y<0.49)時,可在來自(Alx Ga1-x )1-y Iny P合金系之材料形成於一GaAs或Si基板上時於該等材料中誘發拉伸應變以適當調整Si晶格與AlGaInP之間之晶格失配。若存在拉伸應變,則材料之Γ帶之能量依約85 meV/GPa之速率相對於導電帶邊緣減少且X帶之能量依25 meV/GPa之速率相對於導電帶邊緣增加。X帶能量增加量取決於拉伸應變量,但受限於應變材料之關鍵厚度。One way of raising the energy level of the X-band of materials from the ( AlxGa1 -x ) 1- yInyP alloy system is to induce a tensile strain in the crystal lattice of these materials. When the indium ratio is 49% (y=0.49), the material from the (Al x Ga 1-x ) 1-y In y P alloy system is lattice matched to the GaAs substrate when 0>x>1. When the indium ratio drops below 49% (0<y<0.49), materials from the (Al x Ga 1-x ) 1-y In y P alloy system can be formed on a GaAs or Si substrate. Tensile strains are induced in the material to properly adjust the lattice mismatch between the Si lattice and AlGaInP. If tensile strain is present, the energy of the Γ band of the material decreases relative to the conductive band edge at a rate of approximately 85 meV/GPa and the energy of the X band increases relative to the conductive band edge at a rate of 25 meV/GPa. The amount of X-band energy increase depends on the amount of tensile strain, but is limited by the critical thickness of the strained material.
裝置300併入一拉伸應變電子阻擋層以達成改良電子侷限。如圖3中所繪示,UCL 340包括一(p型)拉伸應變電子阻擋層340a及一(p型)無應變電子阻擋層340b。拉伸應變電子阻擋層340a由來自(Alx Ga1-x )1-y Iny P合金系之一材料形成且可具有小於49% (0<y<0.49)之一銦比率。存在百分比小於49%之銦引起電子阻擋層340a之晶格之拉伸應變累積,此繼而可加寬其帶隙且增強其電子阻擋能力。另外或替代地,在一些實施方案中,電子阻擋層340a可包括大於53% (0.53<x<1)之鋁比率。Device 300 incorporates a tensile strained electron blocking layer to achieve improved electron confinement. As shown in Figure 3, UCL 340 includes a (p-type) tensile strained electron blocking layer 340a and a (p-type) unstrained electron blocking layer 340b. Tensile strained electron blocking layer 340a is formed from one of the materials from the ( AlxGa1 -x ) 1- yInyP alloy system and may have an indium ratio of less than 49% (0<y<0.49). The presence of less than 49% indium causes the accumulation of tensile strain in the crystal lattice of electron blocking layer 340a, which in turn may broaden its band gap and enhance its electron blocking capabilities. Additionally or alternatively, in some embodiments, electron blocking layer 340a may include an aluminum ratio greater than 53% (0.53<x<1).
無應變電子阻擋層340b可由來自(Alx Ga1-x )1-y Iny P合金系之一材料形成。在一些實施方案中,無應變電子阻擋層340b之銦比率(y)可等於49% (y=0.49),藉此引起無應變電子阻擋層340b晶格匹配於GaAs基板310。另外或替代地,在一些實施方案中,無應變電子阻擋層340b之鋁比率(x)可在40%至100%之範圍內(0.4≤x≤1)。Strain-free electron blocking layer 340b may be formed of one of the materials from the ( AlxGa1 -x ) 1- yInyP alloy system. In some embodiments, the indium ratio (y) of the unstrained electron blocking layer 340b may be equal to 49% (y=0.49), thereby causing the unstrained electron blocking layer 340b to be lattice matched to the GaAs substrate 310. Additionally or alternatively, in some embodiments, the aluminum ratio (x) of the unstrained electron blocking layer 340b may be in the range of 40% to 100% (0.4≤x≤1).
轉至主動層330,主動層330包括經配置以形成一組井結構之多個應變障壁層330a及井層330b。各井結構包括安置於兩個應變障壁層330a之間之一井層330b。至少一些障壁層330a包括一應變結構330a-1及一無應變結構330a-2,如圖中所展示。應變結構330a-1之各者可由具有小於49% (0<y<0.49)之一銦比率及大於53% (0.53<x<1)之鋁比率之來自(Alx Ga1-x )1-y Iny P合金系之一材料形成。應變結構330a-1之各者可具有低於形成其之材料之關鍵厚度之厚度以避免鬆弛。各無應變障壁層結構320a-2可由具有49% (y=0.49)之一銦比率(y)及大於40% (0.4<x<1)之鋁比率(x)之來自(Alx Ga1-x )1-y Iny P合金系之一材料形成。如上文所討論,障壁層330a (或其部分)中存在百分比小於49%之銦可誘發障壁層330a之各自晶格之拉伸應變之累積,藉此加寬其帶隙且增強其電子阻擋能力。Turning to active layer 330, active layer 330 includes a plurality of strain barrier layers 330a and well layers 330b configured to form a set of well structures. Each well structure includes a well layer 330b disposed between two strain barrier layers 330a. At least some of the barrier layers 330a include a strained structure 330a-1 and an unstrained structure 330a-2, as shown in the figure. Each of the strained structures 330a - 1 may be derived from ( Al y In y P alloy system is formed of one of the materials. Each of the strained structures 330a-1 may have a thickness less than the critical thickness of the material from which they are formed to avoid relaxation. Each strain-free barrier layer structure 320a-2 may be formed from (Al x Ga 1- x ) 1-y In y P alloy system is formed of one of the materials. As discussed above, the presence of less than 49% indium in barrier layer 330a (or portions thereof) may induce the accumulation of tensile strain in the respective lattice of barrier layer 330a, thereby widening its bandgap and enhancing its electron-blocking capabilities. .
在一些實施方案中,所有障壁層330a可具有相同厚度。另外或替代地,在一些實施方案中,至少兩個障壁層330a可具有不同厚度。在一些實施方案中,所有井層330b可具有相同厚度。另外或替代地,在一些實施方案中,至少兩個井層330b可具有不同厚度。據此而言,本發明不受限於障壁層330a及井層330b之任何特定絕對或相對實體尺寸。In some implementations, all barrier layers 330a may have the same thickness. Additionally or alternatively, in some implementations, at least two barrier layers 330a may have different thicknesses. In some embodiments, all well layers 330b may have the same thickness. Additionally or alternatively, in some embodiments, at least two well layers 330b may have different thicknesses. In this regard, the present invention is not limited to any particular absolute or relative physical dimensions of barrier layer 330a and well layer 330b.
儘管在本實例中,描繪為緊鄰HBL 320b之障壁層320包括一單一無應變結構320a-1,但替代實施方案係可行的,其中描繪為緊鄰HBL 320b之障壁層320a除包括無應變結構320-1之外,亦包括一或多個應變結構。此外,其中各障壁層320a由一單一應變結構320a-1組成之替代實施方案係可行的。此外,其中障壁層320a之任何者中存在任何數目個應變及/或無應變結構之替代實施方案係可行的。簡言之,本發明不受限於障壁層320a之任何者中所見之結構之數目及/或類型。Although in this example, barrier layer 320 depicted proximate HBL 320b includes a single unstrained structure 320a-1, alternative embodiments are possible in which barrier layer 320a depicted proximate HBL 320b includes in addition unstrained structure 320-1. In addition to 1, one or more strain structures are also included. Additionally, alternative embodiments are possible in which each barrier layer 320a consists of a single strained structure 320a-1. Furthermore, alternative implementations are possible in which any number of strained and/or unstrained structures are present in any of barrier layer 320a. In short, the present invention is not limited by the number and/or type of structures seen in any of barrier layer 320a.
如上文所討論,至少一些障壁層330a及電子阻擋層340a經應變以將電子較佳地侷限於主動層330及主動層330內之個別井結構內。然而,僅增加電子侷限不足以高效率操作裝置300。為高效率操作裝置,高溫及高電流操作中之電洞阻擋與電子阻擋一樣重要。As discussed above, at least some of barrier layer 330a and electron blocking layer 340a are strained to better confine electrons within active layer 330 and individual well structures within active layer 330. However, merely increasing the electronic limitations is not sufficient to operate device 300 efficiently. For high-efficiency operating devices, hole blocking is as important as electron blocking in high-temperature and high-current operations.
為使HBL高效率阻擋電洞,價帶之能量應相對於量子井之價帶減少以增大VBO1。與電子阻擋相反,可藉由將一壓縮應變引入至電洞阻擋層之晶格中來達成高效率電洞阻擋。更特定言之,可藉由將銦比率(y)增大至高於49% (0.49<y<1)來達成(Alx Ga1-x )1-y Iny P材料之壓縮應變。In order for HBL to block holes efficiently, the energy of the valence band should be reduced relative to the valence band of the quantum well to increase VBO1. In contrast to electron blocking, high efficiency hole blocking can be achieved by introducing a compressive strain into the lattice of the hole blocking layer. More specifically, the compressive strain of the (Al x Ga 1-x ) 1-y In y P material can be achieved by increasing the indium ratio (y) above 49% (0.49<y<1).
裝置300併入一壓縮應變電洞阻擋層(HBL) 320b以達成改良電洞侷限。更特定言之,LCL 320由(Alx Ga1-x )1-y Iny P合金系中之材料形成且其包括一(n型)無應變電洞阻擋層320a及一(n型)壓縮應變電洞阻擋層320b。無應變電洞阻擋層之銦比率係49% (y=0.49),其導致無應變電洞阻擋層(HBL) 320a與GaAs基板310晶格匹配。壓縮應變HBL 320b之銦比率可高於49% (0.49<y<1),其導致電洞阻擋層320b之壓縮應變累積。在一些實施方案中,壓縮應變電洞阻擋層之厚度可低於層之材料之關鍵厚度以避免會在晶體中產生缺陷之鬆弛。Device 300 incorporates a compressively strained hole blocking layer (HBL) 320b to achieve improved hole localization. More specifically, LCL 320 is formed from a material in the ( Al Strained hole blocking layer 320b. The indium ratio of the strain-free hole blocking layer is 49% (y=0.49), which causes the strain-free hole blocking layer (HBL) 320a to lattice match the GaAs substrate 310. Compressive Strain The indium ratio of HBL 320b may be higher than 49% (0.49<y<1), which results in accumulation of compressive strain in hole blocking layer 320b. In some embodiments, the thickness of the compressively strained hole blocking layer may be less than the critical thickness of the material of the layer to avoid relaxation that would create defects in the crystal.
圖4係裝置300之一能帶圖400,其中針對層之各自空間位置繪製層320至340之價帶(Vb)及導電帶(Cb)能量。如圖中所繪示,能帶圖400包括區段420a、420b、430a、430b、440a及440b。區段440b展示無應變電子阻擋層(EBL) 340b之價帶Vb及導電帶Cb。區段440a展示拉伸應變電子阻擋層(EBL) 340a之價帶Vb及導電帶Cb。區段430a展示應變障壁層330a之各自價帶Vb及導電帶Cb。區段430b展示井層330b之各自價帶Vb及導電帶Cb。驅動420b展示應變電洞阻擋層(HBL) 320b之價帶Vb及導電帶Cb。且區段420a展示無應變電洞阻擋層320a之價帶Vb及導電帶Cb。Figure 4 is an energy band diagram 400 of device 300 in which the valence band (Vb) and conductive band (Cb) energies of layers 320-340 are plotted against their respective spatial locations. As shown in the figure, band diagram 400 includes segments 420a, 420b, 430a, 430b, 440a, and 440b. Section 440b shows the valence band Vb and conductive band Cb of strain-free electron blocking layer (EBL) 340b. Section 440a shows the valence band Vb and conductive band Cb of tensile strained electron blocking layer (EBL) 340a. Section 430a shows the respective valence band Vb and conductive band Cb of strain barrier layer 330a. Section 430b shows the respective valence band Vb and conductive band Cb of well layer 330b. The driver 420b displays the valence band Vb and the conductive band Cb of the strained hole blocking layer (HBL) 320b. And the section 420a shows the valence band Vb and the conductive band Cb of the strain-free hole blocking layer 320a.
在圖3及圖4之實例中,層320至340由來自(Alx Ga1-x )1-y Iny P合金系之材料形成。更特定言之,應變障壁層結構330a-1及電子阻擋層340a各由來自(Alx Ga1-x )1-y Iny P合金系之一材料形成,其中材料之鋁比率超過53% (0.53<x<1)且銦比率低於49% (0<y<0.49)。層330a及340a中存在大於53%鋁引起該等層之導電帶Cb由其X帶之能量界定,而層中存在小於49%銦引入層之晶格之拉伸應變且因此引起其X帶能量相對於導電帶增加。如上所述,應變障壁層結構330a-1及電子阻擋層340a之X帶能量之增加加寬其各自帶隙且增強其電子阻擋能力。In the example of Figures 3 and 4, layers 320 to 340 are formed from materials from the ( AlxGa1 -x ) 1- yInyP alloy system. More specifically, the strain barrier layer structure 330a-1 and the electron blocking layer 340a are each formed from a material from the ( AlxGa1 -x ) 1- yInyP alloy system, wherein the aluminum ratio of the material exceeds 53% ( 0.53<x<1) and the indium ratio is less than 49% (0<y<0.49). The presence of greater than 53% aluminum in layers 330a and 340a causes the conductive band Cb of those layers to be defined by the energy of their Increased relative to the conductive strip. As mentioned above, the increase in the X-band energy of the strain barrier layer structure 330a-1 and the electron blocking layer 340a widens their respective band gaps and enhances their electron blocking capabilities.
能帶圖400之區段440a及430a中繪示應變障壁層結構330a-1之X帶能量之增加。此等區段之各者展示不存在於能帶圖200之區段240a及230b中之X帶能量之一突跳。顯而易見,X帶能量之各突跳由存在一各自應變障壁層結構330a-1引起,如圖中所展示。應記得,能帶圖200之區段240及230b展示無應變障壁層120a及無應變電子阻擋層(EBL) 140之X帶能量,而區段440a及430a展示拉伸應變障壁層結構330a-1及拉伸應變電子阻擋層(EBL) 340a之X帶能量。因此,區段440a及430a繪示在來自(Alx Ga1-x )1-y Iny P合金系之材料中誘發拉伸應變時產生之X帶能量(及因此導電帶能量)之增加。如上所述,藉由在使層330a及340a生長於一GaAs基板上時維持其銦比率低於49% (0<y<0.49)來誘發障壁層結構330a-1及電子阻擋層340a之拉伸應變。The increase in X-band energy of the strain barrier layer structure 330a-1 is shown in sections 440a and 430a of the energy band diagram 400. Each of these segments exhibits a jump in X-band energy that is not present in segments 240a and 230b of energy band diagram 200. It is apparent that each jump in X-band energy is caused by the presence of a respective strain barrier layer structure 330a-1, as shown in the figure. It should be recalled that sections 240 and 230b of the energy band diagram 200 show the X-band energies of the unstrained barrier layer 120a and the unstrained electron blocking layer (EBL) 140, while sections 440a and 430a show the tensile strained barrier layer structure 330a-1 and the X-band energy of the tensile strained electron blocking layer (EBL) 340a. Thus, sections 440a and 430a illustrate the increase in X-band energy (and therefore conductive band energy) that occurs when tensile strain is induced in materials from the ( AlxGa1 -x ) 1- yInyP alloy system. As described above, stretching of barrier layer structure 330a-1 and electron blocking layer 340a is induced by maintaining the indium ratio below 49% (0<y<0.49) while growing layers 330a and 340a on a GaAs substrate. Strain.
圖4中亦展示應變電子阻擋層440a之導電帶補償CBO1 及應變障壁層結構330a-1之導電帶補償CBO2 。如圖中所繪示,應變電子阻擋層440a及應變障壁層結構330a-1之X帶能量之增加增大其各自導電帶補償,藉此增強其防止電子逃脫主動層330及主動層330內之個別井結構之能力。Also shown in FIG. 4 are the conductive band compensation CBO 1 of the strained electron barrier layer 440 a and the conductive band compensation CBO 2 of the strained barrier layer structure 330 a - 1 . As shown in the figure, the increase in the X-band energy of the strained electron blocking layer 440a and the strained barrier layer structure 330a-1 increases their respective conductive band compensation, thereby enhancing their ability to prevent electrons from escaping the active layer 330 and within the active layer 330. Capabilities of individual well structures.
在圖3及圖4之實例中,應變電洞阻擋層320b由來自(Alx Ga1-x )1-y Iny P合金系之一材料形成,其中銦比率高於49% (0.49<y<1)。將銦比率增大至高於49%誘發電洞阻擋層320b之晶格之壓縮應變,此繼而引起其價帶能量Vb減少。能帶圖400之區段420b中繪示價帶能量相對於量子井之價帶邊緣之減少。如區段420b中所繪示,壓縮應變HBL 320b之價帶能量僅相對於無應變HBL 320a之價帶能量下降。此與能帶圖200之區段220形成對比,能帶圖200展示HBL 120之價帶之能量缺乏區段420b中可見之能量下降。如上文所討論,電洞阻擋層320b之價帶能量之減少增強其電洞阻擋能力以使裝置300更適合用於高溫及/或高電流應用中。In the examples of Figures 3 and 4, the strained hole blocking layer 320b is formed of a material from the ( AlxGa1 -x ) 1- yInyP alloy system, in which the indium ratio is higher than 49% (0.49<y <1). Increasing the indium ratio above 49% induces compressive strain in the lattice of hole blocking layer 320b, which in turn causes a reduction in its valence band energy Vb. The decrease in valence band energy relative to the valence band edge of the quantum well is plotted in section 420b of the energy band diagram 400 . As depicted in section 420b, the valence band energy of compressively strained HBL 320b only decreases relative to the valence band energy of unstrained HBL 320a. This is in contrast to region 220 of energy band diagram 200, which shows the energy drop visible in the energy deficient region 420b of the valence band of HBL 120. As discussed above, the reduction in the valence band energy of the hole blocking layer 320b enhances its hole blocking capability so that the device 300 is more suitable for use in high temperature and/or high current applications.
另外,圖4中展示應變電洞阻擋層320b之價帶補償VBOs 。如圖中所繪示,電洞阻擋層320b之價帶能量之減少導致一增大價帶補償以及防止電洞自主動層330溢出之一增強能力。In addition, the valence band compensation VBO s of the strained hole blocking layer 320b is shown in FIG. 4 . As shown in the figure, the reduction in valence band energy of the hole blocking layer 320b results in an increased valence band compensation and an enhanced ability to prevent holes from overflowing from the active layer 330.
簡言之,在圖3及圖4之實例中,裝置300係藉由使層320a至340b沿垂直於基板平面之一軸線磊晶生長於一基板310上來形成之一發光裝置,該軸線自基板平面朝向層340延伸。層320a至340b之各者以一各自厚度為特徵,該厚度係層沿生長軸線之寬度。在圖3及圖4之實例中,基板310包括一GaAs基板。HBL 320a形成於基板310上方且包括來自(Alx Ga1-x )1-y Iny P合金系之一材料,其中(0.4<x<1.00)且(y=0.49)。在一些實施方案中,HBL 320b可具有0 nm至1000 nm之範圍內之一厚度。HBL 320b形成於HBL 320a上方且包括來自(Alx Ga1-x )1-y Iny P合金系之一材料,其中(0.4<x<1.00)且(0.49<y<0.7)。在一些實施方案中,HBL 320b可具有0 nm至1000 nm之範圍內之一厚度。在一些實施方案中,HBL 320b之厚度可低於形成其之材料之關鍵厚度以避免鬆弛。Briefly, in the example of FIGS. 3 and 4 , device 300 forms a light emitting device by epitaxially growing layers 320 a to 340 b on a substrate 310 along an axis perpendicular to the plane of the substrate, the axis extending from the substrate. The plane extends towards layer 340. Each of layers 320a-340b is characterized by a respective thickness, which is the width of the layer along the growth axis. In the examples of FIGS. 3 and 4 , the substrate 310 includes a GaAs substrate. HBL 320a is formed over substrate 310 and includes one of the materials from the ( AlxGa1 -x ) 1- yInyP alloy series, where (0.4<x<1.00) and (y=0.49). In some embodiments, HBL 320b can have a thickness in the range of 0 nm to 1000 nm. HBL 320b is formed over HBL 320a and includes one of the materials from the ( AlxGa1 -x ) 1- yInyP alloy system, where (0.4<x<1.00) and (0.49<y<0.7). In some embodiments, HBL 320b can have a thickness in the range of 0 nm to 1000 nm. In some embodiments, the thickness of HBL 320b may be lower than the critical thickness of the material from which it is formed to avoid sagging.
障壁層330a形成於HBL 320b上方且可具有1 nm至1000 nm之範圍內之一厚度。障壁層330a之各者可包括一或多個應變結構330a-1及/或一或多個無應變結構330a-2。各應變結構330a-1可由來自(Alx Ga1-x )1-y Iny P合金系之一材料形成,其中材料之鋁比率超過53% (0.53<x<1)且銦比率低於49% (0<y<0.49)。應變結構之厚度可低於形成應變結構之材料之關鍵厚度以避免鬆弛。各無應變障壁層結構330a-2可由來自(Alx Ga1-x )1-y Iny P合金系之一材料形成,其中(y=0.49)且(0.4<x<1)。此外,如上所述,障壁層330a之任何者可包括一或多個應變結構。應變層可由具有不同應變量或跨應變層之漸變應變之多個層組成。井層330b與障壁層330a交錯以形成複數個井結構。井層330b之任何者可包括來自(Alx Ga1-x )1-y Iny P合金系之一材料,其中(0<x<0.3)且(0<y<0.49)。在一些實施方案中,井層330b之任何者可具有1 nm至100 nm之範圍內之一厚度。Barrier layer 330a is formed over HBL 320b and may have a thickness in the range of 1 nm to 1000 nm. Each of the barrier layers 330a may include one or more strained structures 330a-1 and/or one or more unstrained structures 330a-2. Each strained structure 330a-1 may be formed from a material from the ( AlxGa1 -x ) 1- yInyP alloy family, where the aluminum ratio of the material exceeds 53% (0.53<x<1) and the indium ratio is less than 49 % (0<y<0.49). The thickness of the strained structure may be less than the critical thickness of the material forming the strained structure to avoid relaxation. Each strain-free barrier layer structure 330a-2 may be formed from one of the materials from the ( AlxGa1 -x ) 1- yInyP alloy system, where (y=0.49) and (0.4<x<1). Additionally, as described above, any of the barrier layers 330a may include one or more strained structures. The strained layer may be composed of multiple layers with different amounts of strain or graduated strain across the strained layer. The well layers 330b and the barrier layers 330a are staggered to form a plurality of well structures. Any of the well layers 330b may include a material from the ( AlxGa1 -x ) 1- yInyP alloy series, where (0<x<0.3) and (0<y<0.49). In some embodiments, any of the well layers 330b may have a thickness in the range of 1 nm to 100 nm.
EBL 340a形成於障壁層330a及井層330b上方且可包括來自(Alx Ga1-x )1-y Iny P合金系之一材料,其中(0.53<x<1.00)且(0.2<y<0.49)。在一些實施方案中,EBL 340a可具有0 nm至1000 nm之範圍內之一厚度。在一些實施方案中,EBL 340a之厚度可在形成EBL 340a之材料之關鍵厚度內以避免鬆弛。EBL 340b形成於EBL 340a上方且包括來自(Alx Ga1-x )1-y Iny P合金系之一材料,其中(0.40<x<1.00)且(y=0.49)。在一些實施方案中,EBL 340b可具有0 nm至1000 nm之範圍內之一厚度。EBL 340a is formed over barrier layer 330a and well layer 330b and may include a material from the ( AlxGa1 -x ) 1- yInyP alloy system, where (0.53<x<1.00) and (0.2<y< 0.49). In some embodiments, EBL 340a may have a thickness in the range of 0 nm to 1000 nm. In some embodiments, the thickness of EBL 340a may be within the critical thickness of the material forming EBL 340a to avoid sagging. EBL 340b is formed over EBL 340a and includes one of the materials from the ( AlxGa1 -x ) 1- yInyP alloy system, where (0.40<x<1.00) and (y=0.49). In some embodiments, EBL 340b can have a thickness in the range of 0 nm to 1000 nm.
在本實例中,層320a至320b係裝置300之下侷限層(LCL)之部分,而層340a至340b係裝置300之上侷限層(UCL)之部分。然而,在一些實施方案中,層320a至320b及340a至340b之任何者可與裝置300之LCL及UCL分離。儘管在本實例中,電洞阻擋層320a至320b形成為比電子阻擋層340a至340b更靠近基板310,但其中電子阻擋層340a至340b形成為比電洞阻擋層320a至320b更靠近基板310之替代實施方案係可行的。另外或替代地,在一些實施方案中,層320a至320b之任何者可為裝置300之UCL之部分,而層340a至340b之任何者可為裝置300之LCL之部分。In this example, layers 320a-320b are part of the lower confinement layer (LCL) of device 300, while layers 340a-340b are part of the upper confinement layer (UCL) of device 300. However, in some implementations, any of layers 320a-320b and 340a-340b may be separate from the LCL and UCL of device 300. Although in this example, the hole blocking layers 320a to 320b are formed closer to the substrate 310 than the electron blocking layers 340a to 340b; Alternative embodiments are possible. Additionally or alternatively, in some implementations, any of layers 320a - 320b may be part of the UCL of device 300 and any of layers 340a - 340b may be part of the LCL of device 300 .
此外,應注意,上述厚度範圍、鋁比率及銦比率僅供例示。此外,應注意,其中省略上文所討論之層之一或多者之替代實施方案係可行的。下文將相對於圖5至圖7來進一步討論此等實施方案之非限制性實例。In addition, it should be noted that the thickness ranges, aluminum ratios, and indium ratios described above are only examples. Furthermore, it should be noted that alternative embodiments are possible in which one or more of the layers discussed above are omitted. Non-limiting examples of such embodiments are discussed further below with respect to Figures 5-7.
圖5描繪根據本發明之態樣之一發光裝置500之一實例。如圖中所繪示,裝置500包括一基板510、一(n型)電洞阻擋層(HBL) 520、一主動層530、一(p型)電子阻擋層(EBL) 540及分別形成於EBL 540及HBL 520上之接點550a及550b。基板510可包括一GaAs基板或任何適合類型之基板。HBL 520形成於基板510上方且其晶格可經壓縮應變。HBL 520可包括來自(Alx Ga1-x )1-y Iny P合金系之一材料及/或任何適合類型之材料。當HBL 520包括來自(Alx Ga1-x )1-y Iny P合金系之一材料時,層520之銦比率可超過49% (0.49<y),其導致HBL 520之晶格之壓縮應變累積。在一些實施方案中,壓縮應變HBL之厚度可低於層之材料之關鍵厚度以避免會在晶體中產生缺陷之鬆弛。Figure 5 depicts an example of a light emitting device 500 in accordance with aspects of the invention. As shown in the figure, the device 500 includes a substrate 510, a (n-type) hole blocking layer (HBL) 520, an active layer 530, a (p-type) electron blocking layer (EBL) 540 and each formed on the EBL. Contacts 550a and 550b on 540 and HBL 520. Substrate 510 may include a GaAs substrate or any suitable type of substrate. HBL 520 is formed over substrate 510 and its lattice can be compressively strained. HBL 520 may include one of the materials from the ( AlxGa1 -x ) 1- yInyP alloy family and/or any suitable type of material. When HBL 520 includes one of the materials from the ( Al Strain accumulates. In some embodiments, the thickness of the compressively strained HBL may be less than the critical thickness of the material of the layer to avoid relaxation that would create defects in the crystal.
主動層530形成於HBL 520上方。主動層530可由具有一(Alx Ga1-x )1-y Iny P組合物之一材料及/或任何其他適合類型之材料形成。在本實例中,主動層530具有一同質結構,但其中主動層530之結構係異質之替代實施方案係可行的。電子阻擋層(EBL) 540形成於主動層530上方。EBL 540可包括來自(Alx Ga1-x )1-y Iny P合金系之一材料及/或任何其他適合類型之材料。儘管在本實例中EBL 540具有一同質結構,但其中EBL 540之結構係異質之替代實施方案係可行的。儘管在本實例中EBL 540無應變,但其中在EBL 540之晶格中誘發拉伸應變之替代實施方案係可行的。Active layer 530 is formed over HBL 520 . Active layer 530 may be formed from a material having an ( AlxGa1 -x ) 1- yInyP composition and/or any other suitable type of material. In this example, the active layer 530 has a homogeneous structure, but alternative embodiments are possible in which the structure of the active layer 530 is heterogeneous. An electron blocking layer (EBL) 540 is formed over the active layer 530 . EBL 540 may include one of the materials from the ( AlxGa1 -x ) 1- yInyP alloy family and/or any other suitable type of material. Although in this example EBL 540 has a homogeneous structure, alternative embodiments are possible in which the structure of EBL 540 is heterogeneous. Although the EBL 540 is unstrained in this example, alternative embodiments are possible in which tensile strain is induced in the lattice of the EBL 540.
圖6描繪根據本發明之態樣之一發光裝置600之一實例。如圖中所繪示,裝置600包括一基板610、一(n型)電洞阻擋層(HBL) 620、一主動層630、一(p型)電子阻擋層(EBL) 640及分別形成於EBL 640及HBL 620上之接點650a及650b。基板610可包括一GaAs基板或任何其他適合類型之基板。電洞阻擋層(HBL) 620形成於基板610上方。HBL 620可由來自(Alx Ga1-x )1-y Iny P合金系之一材料及/或任何其他適合類型之材料形成。儘管在本實例中HBL 620具有一同質結構,但其中HBL 620具有一異質結構之替代實施方案係可行的。儘管在本實例中HBL 620無應變,但其中誘發HBL 620之晶格具有一壓縮應變之替代實施方案係可行的。主動層630形成於HBL 620上方且其可由來自(Alx Ga1-x )1-y Iny P合金系之一材料及/或任何其他適合類型之材料形成。電子阻擋層(EBL) 640形成於主動層630上方。電子阻擋層(EBL) 640可包括來自(Alx Ga1-x )1-y Iny P合金系之一材料及/或任何其他適合類型之材料。儘管在本實例中EBL 640具有一同質結構,但其中EBL 640之結構係異質之替代實施方案係可行的。儘管在本實例中EBL 640無應變,但其中在EBL 640之晶格中誘發拉伸應變之替代實施方案係可行的。Figure 6 depicts an example of a light emitting device 600 in accordance with aspects of the invention. As shown in the figure, the device 600 includes a substrate 610, a (n-type) hole blocking layer (HBL) 620, an active layer 630, a (p-type) electron blocking layer (EBL) 640 and each formed on the EBL Contacts 650a and 650b on 640 and HBL 620. Substrate 610 may include a GaAs substrate or any other suitable type of substrate. A hole blocking layer (HBL) 620 is formed above the substrate 610 . HBL 620 may be formed from one of the materials from the ( AlxGa1 -x ) 1- yInyP alloy family and/or any other suitable type of material. Although in this example HBL 620 has a homogeneous structure, alternative embodiments are possible in which HBL 620 has a heterostructure. Although the HBL 620 is unstrained in this example, alternative embodiments are possible in which the crystal lattice of the HBL 620 is induced to have a compressive strain. Active layer 630 is formed over HBL 620 and may be formed from a material from the ( AlxGa1 -x ) 1- yInyP alloy system and/or any other suitable type of material. An electron blocking layer (EBL) 640 is formed over the active layer 630 . Electron blocking layer (EBL) 640 may include a material from the ( AlxGa1 -x ) 1- yInyP alloy family and/or any other suitable type of material. Although in this example EBL 640 has a homogeneous structure, alternative embodiments are possible in which the structure of EBL 640 is heterogeneous. Although the EBL 640 is unstrained in this example, alternative embodiments are possible in which tensile strain is induced in the lattice of the EBL 640.
根據圖6之實例,主動層630包括經配置以形成複數個井結構之複數個障壁層630a及複數個井層630b。各井結構可包括安置於兩個應變障壁層630a之間之一井層630b。障壁層之各者可由具有低於49% (0<y<0.49)之一銦比率之來自(Alx Ga1-x )1-y Iny P合金系之一材料及/或任何其他適合類型之材料形成。如上文所討論,障壁層630a之組合物中存在小於49%之銦可導致其各自晶格之拉伸應變累積,此繼而可加寬障壁層630a之帶隙且增強其電子阻擋能力。儘管在本實例中障壁層630a之各者包括一單一應變結構,但其中障壁層630a之各者包括應變結構及無應變結構兩者之替代實施方案係可行的。According to the example of FIG. 6, the active layer 630 includes a plurality of barrier layers 630a and a plurality of well layers 630b configured to form a plurality of well structures. Each well structure may include a well layer 630b disposed between two strain barrier layers 630a. Each of the barrier layers may be made of a material from the ( Al of materials formed. As discussed above, the presence of less than 49% indium in the composition of barrier layer 630a can lead to the accumulation of tensile strain in its respective crystal lattice, which in turn can widen the band gap of barrier layer 630a and enhance its electron blocking capabilities. Although in this example each of the barrier layers 630a includes a single strained structure, alternative embodiments are possible in which each of the barrier layers 630a includes both a strained structure and an unstrained structure.
圖7描繪根據本發明之態樣之一發光裝置700之一實例。如圖中所繪示,裝置700可包括一基板710、一(n型)電洞阻擋層(HBL)720、一主動層730、一(p型)拉伸應變電子阻擋層(EBL) 740及分別形成於EBL 740及HBL 720上之接點750a及750b。Figure 7 depicts an example of a light emitting device 700 in accordance with aspects of the invention. As shown in the figure, device 700 may include a substrate 710, a (n-type) hole blocking layer (HBL) 720, an active layer 730, a (p-type) tensile strained electron blocking layer (EBL) 740, and Contacts 750a and 750b are formed on EBL 740 and HBL 720 respectively.
基板710可包括一GaAs基板或任何適合類型之基板,諸如(例如)一Si基板。HBL 720形成於基板710上方且其可包括來自(Alx Ga1-x )1-y Iny P合金系之一材料及/或任何適合類型之材料。主動層730形成電洞阻擋層上方。主動層730可由具有一(Alx Ga1-x )1-y Iny P組合物之一材料及/或任何其他適合類型之材料形成。在本實例中,主動層730具有一同質結構,但其中主動層730之結構係異質之替代實施方案係可行的。EBL 740形成於主動層730上方。EBL 740可包括具有大於53% (0.53<x<1)之一鋁比率及低於49% (0<y<0.49)之銦比率之來自(Alx Ga1-x )1-y Iny P合金系之一材料。如上文所討論,在EBL 740之組合物中存在小於49%之銦可導致其晶格之拉伸應變累積,此繼而可增強其電子阻擋能力。儘管在本實例中,EBL 740具有一異質結構,但其中EBL 740之結構係異質之替代實施方案係可行的。Substrate 710 may include a GaAs substrate or any suitable type of substrate, such as, for example, a Si substrate. HBL 720 is formed over substrate 710 and may include a material from the ( AlxGa1 -x ) 1- yInyP alloy family and/or any suitable type of material. Active layer 730 forms above the hole blocking layer. Active layer 730 may be formed from a material having an ( AlxGa1 -x ) 1- yInyP composition and/or any other suitable type of material. In this example, active layer 730 has a homogeneous structure, but alternative embodiments are possible in which the structure of active layer 730 is heterogeneous. EBL 740 is formed over active layer 730 . EBL 740 may include a material from ( Al A material in the alloy system. As discussed above, the presence of less than 49% indium in the composition of EBL 740 can lead to the accumulation of tensile strain in its crystal lattice, which in turn can enhance its electron blocking capabilities. Although in this example, EBL 740 has a heterogeneous structure, alternative embodiments are possible in which the structure of EBL 740 is heterogeneous.
圖1至圖7僅供例示。相對於此等圖所討論之至少一些元件可依不同順序配置、組合及/或完全省略。應瞭解,提供本文所描述之實例以及表述為「諸如」、「例如」、「包括」、「在一些態樣中」、「在一些實施方案中」及其類似者之子句不應被解譯為使所揭示之標的受限於特定實例。Figures 1 to 7 are for illustration only. At least some of the elements discussed with respect to these figures may be arranged in a different order, combined, and/or omitted entirely. It should be understood that clauses providing examples described herein and phrases such as "such as," "for example," "including," "in some aspects," "in some embodiments," and the like should not be construed. The subject matter disclosed is limited to the specific examples.
儘管在(Alx Ga1-x )1-y Iny P合金系之背景中描述本發明中所提供之實例,但應注意,本發明不僅受限於此系。此外,儘管在上述實例中使電洞阻擋層比電子阻擋層更靠近基板,但其中電子阻擋層生長為比電洞阻擋層更靠近基板之替代實施方案係可行的。Although the examples provided in the present invention are described in the context of the ( AlxGa1 -x ) 1- yInyP alloy system, it should be noted that the present invention is not limited only to this system. Furthermore, although in the above examples the hole blocking layer is grown closer to the substrate than the electron blocking layer, alternative embodiments are possible in which the electron blocking layer is grown closer to the substrate than the hole blocking layer.
儘管已詳細描述實施例,但熟習技術者應瞭解,可在不背離本文所描述之發明概念之精神之情況下鑑於本發明來作出修改。特定言之,本文所描述之不同裝置之不同特徵及組件可用於其他裝置之任何者中,或特徵及組件可自裝置之任何者省略。一實施例之內文中所描述之一結構之一特性可應用於任何實施例。因此,本發明之範疇不意欲受限於所繪示及描述之特定實施例。Although embodiments have been described in detail, those skilled in the art will appreciate that modifications may be made in view of the invention without departing from the spirit of the inventive concepts described herein. In particular, different features and components of the different devices described herein may be used in any of the other devices, or features and components may be omitted from any of the devices. A feature of a structure described herein within one embodiment may be applied to any embodiment. Therefore, the scope of the invention is not intended to be limited to the specific embodiments illustrated and described.
儘管上文在特定組合中描述特徵及元件,但一般技術者應瞭解,各特徵或元件可單獨或依與其他特徵及元件之任何組合使用。另外,本文所描述之方法可實施於併入於一電腦可讀媒體中之一電腦程式、軟體或韌體中以由一電腦或處理器執行。電腦可讀媒體之實例包括電子信號(經由有線或無線連接傳輸)及電腦可讀儲存媒體。電腦可讀儲存媒體之實例包括(但不限於)一唯讀記憶體(ROM)、一隨機存取記憶體(RAM)、一暫存器、快取記憶體、半導體記憶體裝置、磁性媒體(諸如內部硬碟及可抽換式磁碟)、磁光媒體及光學媒體(諸如CD-ROM磁碟及數位多功能光碟(DVD))。Although features and elements are described above in specific combinations, one of ordinary skill will understand that each feature or element may be used alone or in any combination with other features and elements. Additionally, the methods described herein may be implemented in a computer program, software, or firmware incorporated in a computer-readable medium for execution by a computer or processor. Examples of computer-readable media include electronic signals (transmitted over wired or wireless connections) and computer-readable storage media. Examples of computer-readable storage media include (but are not limited to) a read-only memory (ROM), a random-access memory (RAM), a temporary register, cache memory, semiconductor memory devices, magnetic media ( such as internal hard drives and removable disks), magneto-optical media and optical media (such as CD-ROM disks and digital versatile discs (DVD)).
100‧‧‧發光裝置110‧‧‧基板120‧‧‧無應變電洞阻擋層(HBL)130‧‧‧主動層130a‧‧‧障壁層130b‧‧‧井層140‧‧‧電子阻擋層(EBL)150a‧‧‧接點150b‧‧‧接點200‧‧‧能帶圖220‧‧‧區段230a‧‧‧區段230b‧‧‧區段240‧‧‧區段300‧‧‧發光裝置310‧‧‧基板320‧‧‧下侷限層(LCL)320a‧‧‧無應變HBL320b‧‧‧壓縮應變HBL330‧‧‧主動層330a‧‧‧應變障壁層330a-1‧‧‧應變障壁層結構330a-2‧‧‧無應變障壁層結構330b‧‧‧井層340‧‧‧上侷限層(UCL)340a‧‧‧拉伸應變EBL340b‧‧‧無應變EBL400‧‧‧能帶圖420a‧‧‧區段420b‧‧‧區段430a‧‧‧區段430b‧‧‧區段440a‧‧‧區段440b‧‧‧區段500‧‧‧發光裝置510‧‧‧基板520‧‧‧HBL530‧‧‧主動層540‧‧‧EBL550a‧‧‧接點550b‧‧‧接點600‧‧‧發光裝置610‧‧‧基板620‧‧‧HBL630‧‧‧主動層630a‧‧‧障壁層630b‧‧‧井層640‧‧‧EBL650a‧‧‧接點650b‧‧‧接點700‧‧‧發光裝置710‧‧‧基板720‧‧‧電洞阻擋層(HBL)730‧‧‧主動層740‧‧‧拉伸應變電子阻擋層(EBL)750a‧‧‧接點750b‧‧‧接點Cb‧‧‧ 導電帶CBO1‧‧‧導電帶補償CBO2‧‧‧導電帶補償Vb‧‧‧價帶VBO1‧‧‧價帶補償VBO2‧‧‧價帶補償VBOs‧‧‧價帶補償100‧‧‧Light-emitting device 110‧‧‧Substrate 120‧‧‧Strain-free hole blocking layer (HBL) 130‧‧‧Active layer 130a‧‧‧Barrier layer 130b‧‧‧Well layer 140‧‧‧Electron blocking layer ( EBL) 150a‧‧‧Contact 150b‧‧‧Contact 200‧‧‧Energy Band Diagram 220‧‧‧ Section 230a‧‧‧Section 230b‧‧‧Section 240‧‧‧Section 300‧‧‧Emit light Device 310‧‧‧Substrate 320‧‧‧Lower confinement layer (LCL) 320a‧‧‧Unstrained HBL320b‧‧‧Compressive strain HBL330‧‧‧Active layer 330a‧‧‧Strain barrier layer 330a-1‧‧‧Strain barrier layer Structure 330a-2‧‧‧Strainless barrier layer Structure 330b‧‧‧Well layer 340‧‧‧Upper confinement layer (UCL) 340a‧‧‧Tensile strain EBL340b‧‧‧No strain EBL400‧‧‧Energy band diagram 420a‧ ‧‧Section 420b‧‧‧Section 430a‧‧‧Section 430b‧‧‧Section 440a‧‧‧Section 440b‧‧‧Section 500‧‧‧Light-emitting device 510‧‧‧Substrate 520‧‧‧ HBL530 ‧‧‧Active layer 540‧‧‧EBL550a‧‧‧Contact 550b‧‧‧Contact 600‧‧‧Light-emitting device 610‧‧‧Substrate 620‧‧‧HBL630‧‧‧Active layer 630a‧‧ ‧Barrier layer 630b‧ ‧‧Well layer 640‧‧‧EBL650a‧‧‧Contact 650b‧‧‧Contact 700‧‧‧Light-emitting device 710‧‧‧Substrate 720‧‧‧Hole blocking layer (HBL) 730‧‧‧Active layer 740‧ ‧‧Tensile strain electron barrier layer (EBL) 750a‧‧‧Contact 750b‧‧‧Contact Cb‧‧‧ Conductive tape CBO 1 ‧‧‧Conductive tape compensation CBO 2 ‧‧‧Conductive tape compensation Vb‧‧‧Valence With VBO 1 ‧‧‧Valence band compensation VBO 2 ‧‧‧Valence band compensation VBO s ‧‧‧Valence band compensation
可自依舉例方式結合附圖給出之以下描述獲得一更詳細理解,其中圖中之相同元件符號指示相同元件,且其中:A more detailed understanding may be obtained from the following description, given by way of example in conjunction with the accompanying drawings, in which like reference numerals refer to like elements, and in which:
圖1係根據本發明之態樣之一發光裝置之一實例之一橫截面圖;Figure 1 is a cross-sectional view of an example of a light-emitting device according to an aspect of the present invention;
圖2係根據本發明之態樣之圖1之發光裝置之一能帶圖;FIG. 2 is an energy band diagram of the light-emitting device of FIG. 1 according to an aspect of the present invention;
圖3係根據本發明之態樣之一發光裝置之一實例之一橫截面圖;Figure 3 is a cross-sectional view of an example of a light-emitting device according to an aspect of the present invention;
圖4係根據本發明之態樣之圖3之發光裝置之一能帶圖;Figure 4 is an energy band diagram of the light-emitting device of Figure 3 according to an aspect of the present invention;
圖5係根據本發明之態樣之一發光裝置之一實例之一橫截面圖;Figure 5 is a cross-sectional view of an example of a light-emitting device according to an aspect of the present invention;
圖6係根據本發明之態樣之一發光裝置之一實例之一橫截面圖;及Figure 6 is a cross-sectional view of an example of a light-emitting device according to aspects of the present invention; and
圖7係根據本發明之態樣之一發光裝置之一實例之一橫截面圖。7 is a cross-sectional view of an example of a light emitting device according to aspects of the present invention.
700:發光裝置 700:Lighting device
710:基板 710:Substrate
720:電洞阻擋層(HBL) 720: Hole blocking layer (HBL)
730:主動層 730:Active layer
740‧‧‧拉伸應變電子阻擋層(EBL) 740‧‧‧Tensile strained electron blocking layer (EBL)
750a‧‧‧接點 750a‧‧‧Contact
750b‧‧‧接點 750b‧‧‧Contact
Claims (20)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/662,952 US10141477B1 (en) | 2017-07-28 | 2017-07-28 | Strained AlGaInP layers for efficient electron and hole blocking in light emitting devices |
US15/662,952 | 2017-07-28 | ||
EP18152290.5 | 2018-01-18 | ||
EP18152290 | 2018-01-18 | ||
??18152290.5 | 2018-01-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201921717A TW201921717A (en) | 2019-06-01 |
TWI823860B true TWI823860B (en) | 2023-12-01 |
Family
ID=63047470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107126025A TWI823860B (en) | 2017-07-28 | 2018-07-27 | Light emitting device |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3659187B1 (en) |
JP (1) | JP6999024B2 (en) |
KR (1) | KR102294202B1 (en) |
CN (1) | CN111108614B (en) |
TW (1) | TWI823860B (en) |
WO (1) | WO2019022960A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230131918A1 (en) * | 2021-10-25 | 2023-04-27 | Meta Platforms Technologies, Llc | Strain management of iii-p micro-led epitaxy towards higher efficiency and low bow |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6597017B1 (en) * | 1999-03-26 | 2003-07-22 | Fuji Xerox Co., Ltd. | Semiconductor device, surface emitting semiconductor laser and edge emitting semiconductor laser |
US20070170442A1 (en) * | 2001-07-27 | 2007-07-26 | Sanyo Electric Co., Ltd. | Nitride-based semiconductor light-emitting device and method of fabricating the same |
TW200742216A (en) * | 2006-04-28 | 2007-11-01 | Bo-Xun Lei | Active layer structure of high-speed laser diode |
US20110222568A1 (en) * | 2010-03-15 | 2011-09-15 | Panasonic Corporation | Semiconductor light emitting device |
US20120112204A1 (en) * | 2009-05-11 | 2012-05-10 | Sumitomo Electric Industries, Ltd. | Nitride semiconductor light emitting device and epitaxial substrate |
US20130044783A1 (en) * | 2011-08-16 | 2013-02-21 | Rajaram Bhat | Hole blocking layers in non-polar and semi-polar green light emitting devices |
US20140138614A1 (en) * | 2012-11-22 | 2014-05-22 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5139543A (en) * | 1991-02-22 | 1992-08-18 | Sowinski Richard F | Method for filtering benz-a-anthracene from a gas stream |
JP3135960B2 (en) * | 1991-12-20 | 2001-02-19 | シャープ株式会社 | Semiconductor laser device |
JP3209786B2 (en) * | 1992-04-09 | 2001-09-17 | シャープ株式会社 | Semiconductor light emitting device |
BE1007251A3 (en) * | 1993-06-28 | 1995-05-02 | Philips Electronics Nv | Radiation-emitting semiconductor diode and method of manufacturing it. |
JPH07111366A (en) * | 1993-10-14 | 1995-04-25 | Hitachi Ltd | Semiconductor laser device |
US5739543A (en) * | 1993-11-24 | 1998-04-14 | The Furukawa Electric Co., Ltd. | Optical semiconductive device with inplanar compressive strain |
JPH07235733A (en) * | 1993-12-27 | 1995-09-05 | Sanyo Electric Co Ltd | Semiconductor laser element |
JP3461893B2 (en) * | 1994-02-21 | 2003-10-27 | 富士通株式会社 | Optical semiconductor device |
JPH09246654A (en) * | 1996-03-01 | 1997-09-19 | Mitsubishi Electric Corp | Semiconductor laser |
JPH1187831A (en) * | 1997-09-02 | 1999-03-30 | Sony Corp | Semiconductor light emitting element, optical pickup device and optical recording and/or reproducing device |
JP2000261098A (en) * | 1999-03-09 | 2000-09-22 | Nec Corp | Self-oscillating type semiconductor laser |
US6759689B2 (en) * | 2002-08-07 | 2004-07-06 | Shin-Etsu Handotai Co., Ltd. | Light emitting element and method for manufacturing the same |
JP4262549B2 (en) * | 2003-07-22 | 2009-05-13 | シャープ株式会社 | Semiconductor laser device and manufacturing method thereof |
JP2005327907A (en) * | 2004-05-14 | 2005-11-24 | Fuji Photo Film Co Ltd | Semiconductor laser element |
JP2008516456A (en) * | 2004-10-08 | 2008-05-15 | ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア | High efficiency light emitting diode |
JP2008078340A (en) * | 2006-09-21 | 2008-04-03 | Opnext Japan Inc | Semiconductor laser element and manufacturing method therefor |
JP2008288248A (en) * | 2007-05-15 | 2008-11-27 | Hitachi Cable Ltd | Semiconductor light-emitting element |
KR100865740B1 (en) * | 2007-05-28 | 2008-10-29 | 우리엘에스티 주식회사 | Light emitting device and method for manufacture thereof |
-
2018
- 2018-07-12 WO PCT/US2018/041771 patent/WO2019022960A1/en active Application Filing
- 2018-07-12 EP EP18747086.9A patent/EP3659187B1/en active Active
- 2018-07-12 KR KR1020207005466A patent/KR102294202B1/en active IP Right Grant
- 2018-07-12 JP JP2020504124A patent/JP6999024B2/en active Active
- 2018-07-12 CN CN201880063257.8A patent/CN111108614B/en active Active
- 2018-07-27 TW TW107126025A patent/TWI823860B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6597017B1 (en) * | 1999-03-26 | 2003-07-22 | Fuji Xerox Co., Ltd. | Semiconductor device, surface emitting semiconductor laser and edge emitting semiconductor laser |
US20070170442A1 (en) * | 2001-07-27 | 2007-07-26 | Sanyo Electric Co., Ltd. | Nitride-based semiconductor light-emitting device and method of fabricating the same |
TW200742216A (en) * | 2006-04-28 | 2007-11-01 | Bo-Xun Lei | Active layer structure of high-speed laser diode |
US20120112204A1 (en) * | 2009-05-11 | 2012-05-10 | Sumitomo Electric Industries, Ltd. | Nitride semiconductor light emitting device and epitaxial substrate |
US20110222568A1 (en) * | 2010-03-15 | 2011-09-15 | Panasonic Corporation | Semiconductor light emitting device |
US20130044783A1 (en) * | 2011-08-16 | 2013-02-21 | Rajaram Bhat | Hole blocking layers in non-polar and semi-polar green light emitting devices |
US20140138614A1 (en) * | 2012-11-22 | 2014-05-22 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device |
Also Published As
Publication number | Publication date |
---|---|
JP2020529129A (en) | 2020-10-01 |
EP3659187B1 (en) | 2021-09-08 |
KR102294202B1 (en) | 2021-08-25 |
TW201921717A (en) | 2019-06-01 |
CN111108614B (en) | 2024-02-06 |
CN111108614A (en) | 2020-05-05 |
KR20200035085A (en) | 2020-04-01 |
WO2019022960A1 (en) | 2019-01-31 |
JP6999024B2 (en) | 2022-01-18 |
EP3659187A1 (en) | 2020-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10522717B2 (en) | Strained AlGaInP layers for efficient electron and hole blocking in light emitting devices | |
JP3063756B1 (en) | Nitride semiconductor device | |
WO2016011924A1 (en) | EPITAXIAL STRUCTURE FOR IMPROVING EFFICIENCY DROP OF GaN-BASED LED | |
JP2000244013A (en) | Nitride semiconductor element | |
JP2011187591A (en) | Nitride semiconductor ultraviolet light-emitting element | |
RU2007132477A (en) | SEMICONDUCTOR HETEROSTRUCTURE | |
US10115859B2 (en) | Nitride based devices including a symmetrical quantum well active layer having a central low bandgap delta-layer | |
TW201351689A (en) | Semiconductor light emitting structure | |
US20150162493A1 (en) | Semiconductor light emitting device | |
TWI823860B (en) | Light emitting device | |
KR102358403B1 (en) | A light emitting diode comprising at least one wider bandgap interlayer located within at least one barrier layer of the light emitting region. | |
US11322650B2 (en) | Strained AlGaInP layers for efficient electron and hole blocking in light emitting devices | |
Zhang et al. | Study on Carrier transportation in InGaN based green LEDs with V-pits structure in the active region | |
KR20120022280A (en) | Nitride semiconductor light emitting device | |
US10217896B2 (en) | Light emitting diode chip having temperature compensation of the wavelength | |
Zhang et al. | Effect of Mg doping in GaN interlayer on the performance of green light-emitting diodes | |
JP2001298215A (en) | Light-emitting element | |
Meneghini et al. | Electroluminescence analysis and simulation of the effects of injection and temperature on carrier distribution in InGaN-based light-emitting diodes with color-coded quantum wells | |
Usman et al. | Reduction in efficiency droop/decline of green GaN-based light-emitting diodes by employing heterostructure cap layer | |
KR101784109B1 (en) | Quantum well structure and blue light emitting diode including the same | |
US20130292637A1 (en) | Multi-quantum well led structure with varied barrier layer composition | |
KR101861218B1 (en) | High efficiency light emitting diode | |
Bouchachia et al. | Improvement of InGaN/GaN Blue LED Performance by a BGaN Back-Barrier Layer: Simulation Study | |
Jain et al. | Electron blocking layer free full-color InGaN/GaN white light-emitting diodes | |
Kuo et al. | Effect of normal and reversed polarizations on optical characteristics of ultraviolet-violet InGaN laser diodes |