TWI823135B - 光譜感測裝置遠端功能擴充系統 - Google Patents
光譜感測裝置遠端功能擴充系統 Download PDFInfo
- Publication number
- TWI823135B TWI823135B TW110131773A TW110131773A TWI823135B TW I823135 B TWI823135 B TW I823135B TW 110131773 A TW110131773 A TW 110131773A TW 110131773 A TW110131773 A TW 110131773A TW I823135 B TWI823135 B TW I823135B
- Authority
- TW
- Taiwan
- Prior art keywords
- spectrum
- data
- artificial intelligence
- function expansion
- remote function
- Prior art date
Links
- 238000001228 spectrum Methods 0.000 title claims abstract description 139
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 81
- 230000003595 spectral effect Effects 0.000 claims abstract description 70
- 238000006243 chemical reaction Methods 0.000 claims abstract description 44
- 230000006870 function Effects 0.000 claims description 85
- 238000000034 method Methods 0.000 claims description 19
- 238000012549 training Methods 0.000 claims description 19
- 238000005259 measurement Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 17
- 230000004044 response Effects 0.000 claims description 11
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 10
- 238000013480 data collection Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 230000000295 complement effect Effects 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 230000002159 abnormal effect Effects 0.000 claims description 5
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- OCDGBSUVYYVKQZ-UHFFFAOYSA-N gramine Chemical compound C1=CC=C2C(CN(C)C)=CNC2=C1 OCDGBSUVYYVKQZ-UHFFFAOYSA-N 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 5
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 claims description 4
- 238000013135 deep learning Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 2
- 235000013399 edible fruits Nutrition 0.000 description 10
- 238000007781 pre-processing Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000008267 milk Substances 0.000 description 5
- 210000004080 milk Anatomy 0.000 description 5
- 235000013336 milk Nutrition 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000013136 deep learning model Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- YZAAUZMWCZGKMQ-UHFFFAOYSA-N 2,2,6,6,8,8-hexamethylchromene-5,7-dione Chemical compound O=C1C(C)(C)C(=O)C(C)(C)C2=C1C=CC(C)(C)O2 YZAAUZMWCZGKMQ-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Spectrometry And Color Measurement (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
一種光譜感測裝置遠端功能擴充系統,其包含:一光譜感測單元,用以感測出一預設範圍中對應複數個光譜頻段的一光譜數據集合; 一第一使用者單元,信號連接該光譜感測單元,用以接收該光譜數據集合;以及一遠端功能擴充伺服器,其中運作有複數個人工智慧引擎以及至少一光譜數據轉換單元,透過網路而信號連接至該使用者單元,用以接收該第一使用者單元所傳送出之該光譜數據集合,該光譜數據轉換單元將該光譜數據集合轉換成至少一二維影像,複數個人工智慧引擎中之一第一人工智慧引擎根據該二維影像而運算出一組數據而回傳給該第一使用者單元。
Description
本案係為一種光譜感測裝置遠端功能擴充系統,尤指可應用於智慧手機、個人電腦或是物聯網系統上之光譜感測裝置遠端功能擴充系統。
通過使用不同波長的光來照射物體,然後使用光譜儀來測量其透射或反射的光譜數據,便可藉此分析物體的各種特徵。相關的應用例如有各種人體生理信號測量以及膚色測量等等。隨著光譜儀的生產技術的演進,光譜儀的造價與體積都逐步縮減,因此可應用的場域也隨之增加。雖然使用者可以透過光譜儀測得物件反射或穿透的光譜數據,但一般用戶要有效地使用它來開發相關的應用程式則是一個相當艱難的挑戰。因為這需要許多相關科學背景知識與相關工程訓練,例如,使用者需要選擇適合的演算法,來有效地進行頻譜特徵的分析,並使用分析結果來做相對應的應用。換句話說,使用不同類型的光譜資料,使用者就必須選尋找對應的判別方法,對於使用者來說相當耗費時間與精力。因此,如何發展出找到一種方法,來降低光譜感測應用的難度,促進光譜感測應用的發展,便是本案的一個主要目的。
而如何解決傳統的光譜儀之缺失,係為發展本案技術手段之主要目的。本發明主要係有關於一種光譜感測裝置遠端功能擴充系統,其包含:一光譜感測單元,用以感測出一預設範圍中對應複數個光譜頻段的一光譜數據集合; 一第一使用者單元,信號連接該光譜感測單元,用以接收該光譜數據集合;以及一遠端功能擴充伺服器,其中運作有複數個人工智慧引擎以及至少一光譜數據轉換單元,透過網路而信號連接至該使用者單元,用以接收該第一使用者單元所傳送出之該光譜數據集合,該光譜數據轉換單元將該光譜數據集合轉換成至少一二維影像,複數個人工智慧引擎中之一第一人工智慧引擎根據該二維影像而運算出一組數據而回傳給該第一使用者單元。
根據上述構想,本案所述之光譜感測裝置遠端功能擴充系統,其中該光譜感測單元由一微型光譜感測晶片或是複數個不同帶通頻率之濾光片與一光感測器晶片所組合完成,用以針對複數個特定波長範圍的光來進行強度的偵測,進而產生出對應各個光譜的光譜數據集合,其中該光感測器晶片為一互補金氧半影像感測器(CMOS Image Sensor ),則轉換波長範圍為 200nm~1000nm,該光感測器晶片為砷化銦鎵影像感測器(InGaAs Image Sensor) 則轉換波長範圍為900nm~1700nm。
根據上述構想,本案所述之光譜感測裝置遠端功能擴充系統,其中該第一使用者單元為一智慧手機或一個人電腦,其上運作有一應用程式,該應用程式信號連接該光譜感測單元與該遠端功能擴充伺服器,該應用程式用以接收該光譜數據集合而轉傳至該遠端功能擴充伺服器,當該光譜感測單元的使用時間超過一預設時間或是使用次數超過一預設次數時,該第一使用者單元或該遠端功能擴充伺服器便對該光譜感測單元進行一校正程序,或是以一專用功能的人工智慧引擎來進行判斷,進而發現該量測結果明顯不正常時,便對該光譜感測單元進行一校正程序或一重新量測程序,提供該遠端功能擴充伺服器的廠商,根據該第一人工智慧引擎的計算成本費來估計出一使用費,然後向該第一使用者請款。
根據上述構想,本案所述之光譜感測裝置遠端功能擴充系統,其中該遠端功能擴充伺服器中設有一開放式的應用程式介面及/或一網站使用者介面,用來提供一第二使用者單元將複數筆光譜數據集合檔案以及訓練材料上傳,再以一未完成訓練之人工智慧引擎來根據上傳之光譜數據集合檔案以及訓練材料來進行深度學習,進而完成一第二人工智慧引擎,而該第一人工智慧引擎與該第二人工智慧引擎是人工智慧分類回歸(classification/regression)引擎,可以根據光譜數據集合來辨析預測出該組數據或因應該組數據所產生之該組指令。
根據上述構想,本案所述之光譜感測裝置遠端功能擴充系統,其中該第二人工智慧引擎可以接收該第一使用者單元所傳送出之該光譜數據集合所轉換成之二維影像,運算出一組數據而回傳給該第一使用者單元,且根據使用該第二人工智慧引擎所花費的運算成本為一底價而運算出一使用費,該第一使用者單元向該第二使用者單元付出該使用費。
根據上述構想,本案所述之光譜感測裝置遠端功能擴充系統,其中該光譜數據轉換單元透過一演算法來將一維訊號轉成二維影像,而該演算法是格拉姆角場(Gramian Angular Field, GAM) 演算法、馬可夫轉換場(Markov Transition Field, MTF) 演算法、遞迴圖(Recurence Plots, RP) 演算法、經驗模態分解(Empirical Mode Decomposition, EMD) 演算法或是希爾伯特-黃轉換搭配格拉姆角場(Hilbert-Huang Transform with Gramin Angular Field, HHT with GAF)演算法中之一。
根據上述構想,本案所述之光譜感測裝置遠端功能擴充系統,其中該光譜數據轉換單元透過該複數個演算法來將一維訊號轉成複數個二維影像,並將該複數個二維影像分別送入相對應之人工智慧引擎中,再分別根據該複數個二維影像進行一聯合估計(jointly estimation) 後而運算出該組數據再回傳給該第一使用者單元。
本案之另一方面係為一種光譜感測裝置遠端功能擴充系統,其包含:一物聯網感測層物件,其包含有一光譜感測單元,用以感測出一預設範圍中對應複數個光譜頻段的一光譜數據集合;以及一遠端功能擴充伺服器,其中運作有複數個人工智慧引擎以及至少一光譜數據轉換單元,透過網路而信號連接至該物聯網感測層物件,用以接收該物聯網感測層物件所傳送出之該光譜數據集合,該光譜數據轉換單元將該光譜數據集合轉換成至少一二維影像,複數個人工智慧引擎中之一第一人工智慧引擎根據該二維影像而運算出一組數據,並將該組數據或因應該組數據所產生之一組指令傳出。
根據上述構想,本案所述之光譜感測裝置遠端功能擴充系統,其中該光譜數據轉換單元透過一演算法來將一維訊號轉成二維影像,而該演算法是格拉姆角場(Gramian Angular Field, GAM)、馬可夫轉換場(Markov Transition Field, MTF)、遞迴圖(Recurence Plots, RP)、經驗模態分解(Empirical Mode Decomposition, EMD)或是希爾伯特-黃轉換搭配格拉姆角場(Hilbert-Huang Transform with Gramin Angular Field, HHT with GAF)等多種演算法中之一,而該第一人工智慧引擎是人工智慧分類回歸(classification/regression)引擎,可以根據光譜數據集合來辨析預測出該組數據或因應該組數據所產生之該組指令。
根據上述構想,本案所述之光譜感測裝置遠端功能擴充系統,其中該光譜數據轉換單元透過該複數個演算法來將一維訊號轉成複數個二維影像,並將該複數個二維影像分別送入相對應之人工智慧引擎中,再分別根據該複數個二維影像進行一聯合估計(jointly estimation) 後而運算出該組數據,並將該組數據或因應該組數據所產生之一組指令傳出。
根據上述構想,本案所述之光譜感測裝置遠端功能擴充系統,其中該光譜感測單元由一微型光譜感測晶片或是複數個不同帶通頻率之濾光片與一光感測器晶片所組合完成,用以針對複數個特定波長範圍的光來進行強度的偵測,進而產生出對應各個光譜的光譜數據集合,其中該光感測器晶片為一互補金氧半影像感測器(CMOS Image Sensor ),則轉換波長範圍為 200nm~1000nm,該光感測器晶片為砷化銦鎵影像感測器(InGaAs Image Sensor) 則轉換波長範圍為900nm~1700nm,當光譜感測單元的使用時間超過一預設時間或是使用次數超過一預設次數時,便對該光譜感測單元進行一校正程序,或是以一專用功能的人工智慧引擎來進行判斷,進而發現該量測結果明顯不正常時,該第一使用者單元或該遠端功能擴充伺服器便對該光譜感測單元進行一校正程序或一重新量測程序,提供該遠端功能擴充伺服器的廠商,根據該第一人工智慧引擎的計算成本費來估計出一使用費,然後向該第一使用者請款。
為了能對本發明之上述構想有更清楚的理解,下文特舉出多個實施例,並配合對應圖式詳細說明如下。
為了解決上述的問題,本案發明人係發展出具有如圖1所示之一種光譜感測裝置遠端功能擴充系統的功能方塊示意圖,其主要包含有光譜感測單元10、使用者單元11以及遠端功能擴充伺服器12。其中該光譜感測單元10,可用以感測出一預設範圍100中對應複數個光譜頻段的一光譜數據集合;而使用者單元11,則信號連接該光譜感測單元10,用以接收該光譜數據集合。至於該遠端功能擴充伺服器12中則運作有由複數個不同功能的人工智慧引擎120-12N,可透過網路19(例如網際網路)而信號連接至該使用者單元11,用以接收該使用者單元11所傳送出之該光譜數據集合,複數個人工智慧引擎中之某一個人工智慧引擎121則可根據該光譜數據集合而運算出一組數據或因應該組數據所產生之一組指令而回傳給使用者單元11。而上述系統內建的複數個人工智慧引擎120-12N主要是複數個人工智慧分類回歸(classification/regression)引擎,可以根據光譜數據集合來辨析預測出該組數據或因應該組數據所產生之該組指令。舉例來說,人工智慧引擎120可以對一杯牛奶所感測到之一組光譜數據集合進行分類/回歸(classification/regression)等辨析運算後,預測出一組代表牛奶新鮮度的數據或因應該組數據所產生之一組指令,該組指令可以代表是將該杯牛奶進行新鮮度等級分類並裝瓶,或者廢棄該杯牛奶。
而上述之光譜感測單元10可以是由一微型光譜感測晶片或是複數個不同帶通頻率之濾光片與光感測器晶片所組合完成,用以針對複數個特定波長範圍的光來進行強度的偵測,進而產生出對應各個光譜的光譜數據集合。其中若光感測器晶片為互補金氧半影像感測器(CMOS Image Sensor ),則轉換波長範圍為 200nm~1000nm。若光感測器晶片為砷化銦鎵影像感測器(InGaAs Image Sensor) 則轉換波長範圍為900nm~1700nm。
而使用者單元11則可以是其上運作有專屬應用程式110的智慧手機或平板電腦。該專屬應用程式110主要是用以與光譜感測單元10達成信號連接,並可利用智慧手機或平板電腦上的顯示器來提供人機操作介面。該專屬應用程式110更可由建立該遠端功能擴充伺服器12的廠商或協會來發行,進而讓該專屬應用程式110更可以透過網路19(例如網際網路)來與該遠端功能擴充伺服器12順利完成對接。如此一來,光譜感測單元10透過與使用者單元11上的專屬應用程式110之間的搭配,便可完成具有人機操作介面的光譜感測儀器。至於要讓此一具有人機操作介面的光譜感測儀器達成何種功能的測量儀器,便可再透過與遠端功能擴充伺服器12的合作來完成。
舉例來說,果農或水果商想要完成水果甜度檢測的功能,便可利用使用者單元11上的專屬應用程式110來連接至該遠端功能擴充伺服器12,從眾多功能不同的人工智慧引擎中選出相對應水果甜度檢測的一個人工智慧引擎,而將該光譜感測單元10所測得之該光譜數據集合傳送給選定的該人工智慧引擎進行處理,進而得出相對應水果甜度的一筆數據後再傳回該專屬應用程式110。如此一來,果農或水果商手中的使用者單元11與光譜感測單元10便與該遠端功能擴充伺服器12組合成了一個水果甜度檢測儀器,大大地降低了果農或水果商使用光譜感測單元10的技術門檻。在同樣的概念下,牛奶新鮮度檢測、用於美妝產品之皮膚色彩量測、或非侵入式血壓以及心律感測等等應用,都可以預先訓練完成後,以各式人工智慧引擎而建置在該遠端功能擴充伺服器12中。如此一來,各種不同需求的使用者便可以透過遠端功能擴充的成果,將原本功能尚未定義的光譜感測單元10推廣到各式應用中。至於提供該遠端功能擴充伺服器12的服務的廠商,則可以根據該使用者所使用的人工智慧引擎的計算成本費來估計出一使用費,然後向該使用者請款。
再者,為能保持光譜感測單元10的正確運作,使用者單元11或是遠端功能擴充伺服器12可以根據光譜感測單元10的使用時間、次數及/或對其進行實時監控(on-the-fly monitoring) ,進而決定該光譜感測單元10是否要進行校正。舉例來說,當光譜感測單元10的使用時間超過一預設時間或是使用次數超過一預設次數時,便可對該光譜感測單元10進行校正。或是以一專用功能的人工智慧引擎對量測結果進行實時監控(on-the-fly monitoring),若專用功能的人工智慧引擎根據先前的資料來進行判斷,進而發現該量測結果明顯不正常(abnormal),例如信號強度分佈的範圍平移過多,代表該光譜感測單元10故障的機率高於一預設值,代表量測可能已存在過大的誤差。如此一來,使用者單元11或是遠端功能擴充伺服器12也可發出通知而使光譜感測單元10進行一校正程序 ,進而使該光譜感測單元10可以回復正常運作。
另外,雖然光譜感測單元10正確運作,但感測環境或感測過程有狀況時,例如樣品錯置、光源故障或是操作步驟失誤等等,也可能使得專用功能的人工智慧引擎根據先前的資料來進行判斷,進而發現該量測結果明顯為另一種不正常,例如信號強度分佈的峰值數量不符或是峰值間距明顯過大或過小,代表量測過程已存在過大的失誤。如此一來,使用者單元11或是遠端功能擴充伺服器12也可發出通知而使光譜感測單元10進行一重新量測程序 ,進而使該光譜感測單元10可以產生正常的光譜數據集合。
再請參見圖2A,其係本案所發展出之遠端功能擴充伺服器12的第一較佳實施例的內部功能方塊示意圖。除了複數個人工智慧引擎120-12N所組成之人工智慧引擎伺服器20之外,其中更設有網頁伺服器21、資料庫伺服器22、資料預處理伺服器23、郵件伺服器24以及廣播伺服器25。使用者可透過網頁伺服器21所提供之註冊網頁來完成帳號註冊,網頁伺服器21會將完成帳號註冊之使用者的相關資訊寫入資料庫伺服器22中來完成記錄,同時可透過郵件伺服器24來發送帳號認證信件給使用者,用以確認使用者是透過本人信箱來進行帳號註冊。確認完畢後,便可以透過網頁登入並藉由設計好的人機介面,來從複數個人工智慧引擎120-12N所組成之人工智慧引擎伺服器20中,選擇想要的人工智慧引擎來使用。而當選擇完成後,網頁伺服器21會將該光譜感測單元10所測得並送出之該光譜數據集合寫入資料庫伺服器22中。而資料預處理伺服器23中之光譜數據轉換單元230可以將資料庫伺服器22中之該光譜數據集合讀出並將一維型態的光譜數據集合轉換為二維影像,然後再傳送至人工智慧引擎伺服器20中選定之該人工智慧引擎進行處理。如此一來,各種不同需求的使用者便可以透過遠端功能擴充的成果,將原本功能尚未定義的光譜感測單元10變身成可滿足某一應用場景的感測裝置。至於光譜數據轉換單元230的角色,則是由於過去在進行光譜資料辨識分析時,主要的方法都是將其視為一維資料來進行處理,而本案則使用光譜數據轉換單元230,先將一維型態的光譜數據集合轉換為二維影像,然後在對應的影像分類中使用不同的深度學習模型的來執行訓練,再用訓練完成的模型來進行預測。
另外,如圖2B之所示,其係本案所發展出之遠端功能擴充伺服器12的第二較佳實施例的內部功能方塊示意圖。為能服務無法從預設功能中找到合用的人工智慧引擎的使用者,本實施例之遠端功能擴充伺服器12中增設有可自行訓練的選項來供使用者選擇。例如可在網頁伺服器21中設有一資料上傳介面30(例如是一個開放式的應用程式介面(Application Programming Interface,縮寫為API) 及/或一網站使用者介面(Website User Interface) ),用來提供例如圖中之使用者單元11,來將複數筆光譜數據集合檔案以及訓練材料上傳,進而儲存於資料庫伺服器22中。而再以一未完成訓練之人工智慧引擎為基礎,再根據上傳之光譜數據集合檔案以及訓練材料來進行深度學習,進而訓練完成具有新功能的人工智慧引擎。詳言之,資料預處理伺服器23中的光譜數據轉換單元230可將已上傳資料預處理伺服器23中之光譜數據集合檔案轉換成二維影像 , 而使用者單元11可選用資料預處理伺服器23 中不同類型的預處理演算法模組231-23N中之一未完成訓練的人工智慧引擎,利用轉換完成之二維影像與訓練材料來進行深度學習,最後訓練完成而具有新功能的人工智慧引擎。
另外,訓練完成而具有新功能的人工智慧引擎,也可以接收另一使用者單元31所傳送出之該光譜數據集合所轉換成之二維影像,運算出一組數據而回傳給該使用者單元31,且根據使用該人工智慧引擎所花費的運算成本為一底價而運算出一使用費,該使用者單元31向該使用者單元11付出該使用費。當然,遠端功能擴充伺服器12也可以收取中介處理費用。至於光譜數據轉換單元230,可針對使用者所選擇的模型對資料做不同的處理,例如將一維型態的光譜數據集合轉換為二維影像,再將處理過後的資料(例如二維影像)傳至某一預處理演算法模組(例如AWS SageMaker提供的類神經網路伺服器 )做訓練,最後便可用訓練完成的模型來進行預測。而當訓練完成後,可以透過郵件伺服器24或廣播伺服器25來告知使用者,其中廣播伺服器25可以主動更新網頁資料,此時使用者便可透過網頁觀看到詳細的訓練結果並將訓練完成的模型下載做使用,而郵件伺服器24則是可以將訓練完成的訊息,透過電子郵件或簡訊來傳達給相對應的使用者。
如圖 3 所示,光譜數據轉換單元230可透過不同的演算法來將一維訊號轉成二維影像,用以將不同的一維信號特徵給萃取出來。由於光譜數據基本上是屬於一維訊號,而透過不同種資料演算法,將一維的光譜訊號有效的轉換成二維影像,並藉著卷積神經網路或是其他網路模型在影像處理上的成功,將其應用在光譜資料辨識上面,使得光譜資料辨識的精準度能夠有效的提升。而上述演算法可以是格拉姆角場(Gramian Angular Field, GAM)、馬可夫轉換場(Markov Transition Field, MTF)、遞迴圖(Recurence Plots, RP)、經驗模態分解(Empirical Mode Decomposition, EMD)或是希爾伯特-黃轉換搭配格拉姆角場(Hilbert-Huang Transform with Gramin Angular Field, HHT with GAF)等多種演算法中之一。而將一維光譜數據轉換為二維數據后,再將它們輸入不同的深度學習模型,這些模型可以是自行定義的CNN、LeNet 和 ResNet。另外,其中該光譜數據轉換單元230還可透過該複數個演算法來將同一個一維訊號來轉成複數個二維影像,並將該複數個二維影像分別送入相對應之人工智慧引擎中,再分別根據該複數個二維影像進行一聯合估計(jointly estimation) 後而運算出該組數據再回傳給該第一使用者單元。如此可以更增加估計的準確度。
再請參見圖4,其係本案發明人係發展出之另一種光譜感測裝置遠端功能擴充系統的實施例方塊示意圖,其主要是可以符合在物聯網應用上的需求,該光譜感測裝置遠端功能擴充系統4主要包含有一物聯網感測層物件41以及遠端功能擴充伺服器42。遠端功能擴充伺服器42與上述第一個實施例的設計相同,故不再贅述。至於該物聯網感測層物件41則取代使用者單元11的角色,而該物聯網感測層物件41中裝設有光譜感測單元410,用以感測出一預設範圍100中對應複數個光譜頻段的光譜數據集合。遠端功能擴充伺服器42中同樣運作有包含複數個人工智慧引擎420-42N的人工智慧引擎伺服器40以及至少一光譜數據轉換單元4220,可透過網路19(例如網際網路)而信號連接至該物聯網感測層物件41,光譜數據轉換單元4220用以接收該物聯網感測層物件41所傳送出之該光譜數據集合,該光譜數據轉換單元4220將該光譜數據集合轉換成至少一二維影像,複數個人工智慧引擎中之某一個人工智慧引擎根據該二維影像而運算出一組數據,並將該組數據或因應該組數據所產生之一組指令傳出。而上述之光譜感測單元410可以是由一微型光譜感測晶片或是複數個不同帶通頻率之濾光片與光感測器晶片所組合完成,用以針對複數個特定波長範圍的光來進行強度的偵測,進而產生出對應各個光譜的光譜數據集合。其中若光感測器晶片為互補金氧半影像感測器(CMOS Image Sensor ),則轉換波長範圍為 200nm~1000nm。若光感測器晶片為砷化銦鎵影像感測器(InGaAs Image Sensor) 則轉換波長範圍為900nm~1700nm。
本案成功將網頁伺服器21、資料庫伺服器22、資料預處理伺服器23、郵件伺服器24以及廣播伺服器25組合成一遠端功能擴充伺服器12中,該光譜數據轉換單元230透過該複數個演算法來將同一個一維訊號來轉成複數個二維影像配合多個預處理演算法來進行光譜分析動作。本案還可以完成一個可以接收使用者上傳的光譜,分析並訓練人工智慧模型,再產出可以預測相同類別光譜的AI模型供使用者下載,讓使用者能夠簡易操作的本案提供的光譜分析服務,藉此可以降低開發頻譜應用的難度,以達到推廣光譜應用的目的。
綜上所述,雖然本發明以實施例揭露如上,但並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之技術精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍請求項所界定者為準。
10:光譜感測單元
11使用者單元
110:專屬應用程式
12:遠端功能擴充伺服器
100:預設範圍
11:使用者單元
120-12N:人工智慧引擎
19:網路
20:人工智慧引擎伺服器
21:網頁伺服器
22:資料庫伺服器
23:資料預處理伺服器
24:郵件伺服器
25:廣播伺服器
30:資料上傳介面
31:使用者單元
230:光譜數據轉換單元
41:物聯網感測層物件
42:遠端功能擴充伺服器
410:光譜感測單元
420-42N:複數個人工智慧引擎
40:人工智慧引擎伺服器
4220:光譜數據轉換單元
圖1,其係本案所發展出來關於光譜感測裝置遠端功能擴充系統的功能方塊示意圖。
圖2A,其係本案所發展出之遠端功能擴充伺服器的第一較佳實施例的內部功能方塊示意圖。
圖2B,其係本案所發展出之遠端功能擴充伺服器12的第二較佳實施例的內部功能方塊示意圖。
圖 3 ,其係本案所發展出光譜數據轉換單元將一維訊號轉成二維影像的示意圖。
圖4,其係本案發明人係發展出之另一種光譜感測裝置遠端功能擴充系統的實施例方塊示意圖。
10:光譜感測單元
11:使用者單元
110:專屬應用程式
12:遠端功能擴充伺服器
100:預設範圍
11:使用者單元
120-12N:人工智慧引擎
19:網路
Claims (11)
- 一種光譜感測裝置遠端功能擴充系統,其包含: 一光譜感測單元,用以感測出一預設範圍中對應複數個光譜頻段的一光譜數據集合; 一第一使用者單元,信號連接該光譜感測單元,用以接收該光譜數據集合;以及 一遠端功能擴充伺服器,其中運作有複數個人工智慧引擎以及至少一光譜數據轉換單元,透過網路而信號連接至該使用者單元,用以接收該第一使用者單元所傳送出之該光譜數據集合,該光譜數據轉換單元將該光譜數據集合轉換成至少一二維影像,複數個人工智慧引擎中之一第一人工智慧引擎根據該二維影像而運算出一組數據而回傳給該第一使用者單元。
- 如請求項1所述之光譜感測裝置遠端功能擴充系統,其中該光譜感測單元由一微型光譜感測晶片或是複數個不同帶通頻率之濾光片與一光感測器晶片所組合完成,用以針對複數個特定波長範圍的光來進行強度的偵測,進而產生出對應各個光譜的光譜數據集合,其中該光感測器晶片為一互補金氧半影像感測器(CMOS Image Sensor ),則轉換波長範圍為 200nm~1000nm,該光感測器晶片為砷化銦鎵影像感測器(InGaAs Image Sensor) 則轉換波長範圍為900nm~1700nm。
- 如請求項1所述之光譜感測裝置遠端功能擴充系統,其中該第一使用者單元為一智慧手機或一個人電腦,其上運作有一應用程式,該應用程式信號連接該光譜感測單元與該遠端功能擴充伺服器,該應用程式用以接收該光譜數據集合而轉傳至該遠端功能擴充伺服器,當該光譜感測單元的使用時間超過一預設時間或是使用次數超過一預設次數時,該第一使用者單元或該遠端功能擴充伺服器便對該光譜感測單元進行一校正程序,或是以一專用功能的人工智慧引擎來進行判斷,進而發現該量測結果明顯不正常時,便對該光譜感測單元進行一校正程序或一重新量測程序,提供該遠端功能擴充伺服器的廠商,根據該第一人工智慧引擎的計算成本費來估計出一使用費,然後向該第一使用者請款。
- 如請求項1所述之光譜感測裝置遠端功能擴充系統,其中該遠端功能擴充伺服器中設有一開放式的應用程式介面及/或一網站使用者介面,用來提供一第二使用者單元將複數筆光譜數據集合檔案以及訓練材料上傳,再以一未完成訓練之人工智慧引擎來根據上傳之光譜數據集合檔案以及訓練材料來進行深度學習,進而完成一第二人工智慧引擎,而該第一人工智慧引擎與該第二人工智慧引擎是人工智慧分類回歸(classification/regression)引擎,可以根據光譜數據集合來辨析預測出該組數據或因應該組數據所產生之該組指令。
- 如請求項4所述之光譜感測裝置遠端功能擴充系統,其中該第二人工智慧引擎可以接收該第一使用者單元所傳送出之該光譜數據集合所轉換成之二維影像,運算出一組數據而回傳給該第一使用者單元,且根據使用該第二人工智慧引擎所花費的運算成本為一底價而運算出一使用費,該第一使用者單元向該第二使用者單元付出該使用費。
- 如請求項1所述之光譜感測裝置遠端功能擴充系統,其中該光譜數據轉換單元透過一演算法來將一維訊號轉成二維影像,而該演算法是格拉姆角場(Gramian Angular Field, GAM) 演算法、馬可夫轉換場(Markov Transition Field, MTF) 演算法、遞迴圖(Recurence Plots, RP) 演算法、經驗模態分解(Empirical Mode Decomposition, EMD) 演算法或是希爾伯特-黃轉換搭配格拉姆角場(Hilbert-Huang Transform with Gramin Angular Field, HHT with GAF)演算法中之一。
- 如請求項6所述之光譜感測裝置遠端功能擴充系統,其中該光譜數據轉換單元透過該複數個演算法來將一維訊號轉成複數個二維影像,並將該複數個二維影像分別送入相對應之人工智慧引擎中,再分別根據該複數個二維影像進行一聯合估計(jointly estimation) 後而運算出該組數據再回傳給該第一使用者單元。
- 一種光譜感測裝置遠端功能擴充系統,其包含: 一物聯網感測層物件,其包含有一光譜感測單元,用以感測出一預設範圍中對應複數個光譜頻段的一光譜數據集合;以及 一遠端功能擴充伺服器,其中運作有複數個人工智慧引擎以及至少一光譜數據轉換單元,透過網路而信號連接至該物聯網感測層物件,用以接收該物聯網感測層物件所傳送出之該光譜數據集合,該光譜數據轉換單元將該光譜數據集合轉換成至少一二維影像,複數個人工智慧引擎中之一第一人工智慧引擎根據該二維影像而運算出一組數據,並將該組數據或因應該組數據所產生之一組指令傳出。
- 如請求項8所述之光譜感測裝置遠端功能擴充系統,其中該光譜數據轉換單元透過一演算法來將一維訊號轉成二維影像,而該演算法是格拉姆角場(Gramian Angular Field, GAM)、馬可夫轉換場(Markov Transition Field, MTF)、遞迴圖(Recurence Plots, RP)、經驗模態分解(Empirical Mode Decomposition, EMD)或是希爾伯特-黃轉換搭配格拉姆角場(Hilbert-Huang Transform with Gramin Angular Field, HHT with GAF)等多種演算法中之一,而該第一人工智慧引擎是人工智慧分類回歸(classification/regression)引擎,可以根據光譜數據集合來辨析預測出該組數據或因應該組數據所產生之該組指令。
- 如請求項9所述之光譜感測裝置遠端功能擴充系統,其中該光譜數據轉換單元透過該複數個演算法來將一維訊號轉成複數個二維影像,並將該複數個二維影像分別送入相對應之人工智慧引擎中,再分別根據該複數個二維影像進行一聯合估計(jointly estimation) 後而運算出該組數據,並將該組數據或因應該組數據所產生之一組指令傳出。
- 如請求項8所述之光譜感測裝置遠端功能擴充系統,其中該光譜感測單元由一微型光譜感測晶片或是複數個不同帶通頻率之濾光片與一光感測器晶片所組合完成,用以針對複數個特定波長範圍的光來進行強度的偵測,進而產生出對應各個光譜的光譜數據集合,其中該光感測器晶片為一互補金氧半影像感測器(CMOS Image Sensor ),則轉換波長範圍為 200nm~1000nm,該光感測器晶片為砷化銦鎵影像感測器(InGaAs Image Sensor) 則轉換波長範圍為900nm~1700nm,當光譜感測單元的使用時間超過一預設時間或是使用次數超過一預設次數時,便對該光譜感測單元進行一校正程序,或是以一專用功能的人工智慧引擎來進行判斷,進而發現該量測結果明顯不正常時,該第一使用者單元或該遠端功能擴充伺服器便對該光譜感測單元進行一校正程序或一重新量測程序,提供該遠端功能擴充伺服器的廠商,根據該第一人工智慧引擎的計算成本費來估計出一使用費,然後向該第一使用者請款。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110131773A TWI823135B (zh) | 2021-08-27 | 2021-08-27 | 光譜感測裝置遠端功能擴充系統 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110131773A TWI823135B (zh) | 2021-08-27 | 2021-08-27 | 光譜感測裝置遠端功能擴充系統 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202309501A TW202309501A (zh) | 2023-03-01 |
TWI823135B true TWI823135B (zh) | 2023-11-21 |
Family
ID=86690726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110131773A TWI823135B (zh) | 2021-08-27 | 2021-08-27 | 光譜感測裝置遠端功能擴充系統 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI823135B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201524151A (zh) * | 2013-12-12 | 2015-06-16 | Inventec Corp | 雲端運算的動態計費系統及其方法 |
TW201913069A (zh) * | 2017-09-06 | 2019-04-01 | 群燿科技股份有限公司 | 光學檢測裝置與光學檢測系統 |
TW201937138A (zh) * | 2018-03-01 | 2019-09-16 | 美商梅瑞堤儀器公司 | 基於可適應性模組化光學感測器的製程控制系統及其操作方法 |
US20190353587A1 (en) * | 2013-03-21 | 2019-11-21 | Viavi Solutions Inc. | Spectroscopic characterization of seafood |
-
2021
- 2021-08-27 TW TW110131773A patent/TWI823135B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190353587A1 (en) * | 2013-03-21 | 2019-11-21 | Viavi Solutions Inc. | Spectroscopic characterization of seafood |
TW201524151A (zh) * | 2013-12-12 | 2015-06-16 | Inventec Corp | 雲端運算的動態計費系統及其方法 |
TW201913069A (zh) * | 2017-09-06 | 2019-04-01 | 群燿科技股份有限公司 | 光學檢測裝置與光學檢測系統 |
TW201937138A (zh) * | 2018-03-01 | 2019-09-16 | 美商梅瑞堤儀器公司 | 基於可適應性模組化光學感測器的製程控制系統及其操作方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202309501A (zh) | 2023-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113168541A (zh) | 用于成像系统的深度学习推理系统和方法 | |
WO2018165605A1 (en) | Hyperspectral imaging sensor | |
US20150278590A1 (en) | System and method for determining the characteristics of human personality and providing real-time recommendations | |
US20200372639A1 (en) | Method and system for identifying skin texture and skin lesion using artificial intelligence cloud-based platform | |
CN104346503A (zh) | 一种基于人脸图像的情感健康监控方法及手机 | |
US20160109295A1 (en) | Portable electronic apparatus, spectrometer combined therewith, and method for detecting quality of test object by using the same | |
EP3933774A1 (en) | Digital imaging systems and methods of analyzing pixel data of an image of a user's body for determining a user-specific skin irritation value of the user's skin after removing hair | |
CN107563997B (zh) | 一种皮肤病诊断系统、构建方法、分类方法和诊断装置 | |
US20220005227A1 (en) | Digital imaging systems and methods of analyzing pixel data of an image of a user's body for determining a user-specific skin redness value of the user's skin after removing hair | |
CN112788200B (zh) | 频谱信息的确定方法及装置、存储介质、电子装置 | |
CN116849612B (zh) | 一种多光谱舌象图像采集分析系统 | |
CN111507939A (zh) | 一种水果外部缺陷类型的检测方法、装置和终端 | |
CN117617921B (zh) | 基于物联网的智能血压监控系统及方法 | |
CN109419498A (zh) | 一种多功能人体感知系统 | |
US20220415002A1 (en) | Three-dimensional (3d) image modeling systems and methods for determining respective mid-section dimensions of individuals | |
CN111623878A (zh) | 体温测量方法、装置、计算机可读介质及电子设备 | |
CN117577270A (zh) | 患者的智能化营养管理方法及系统 | |
Chitra et al. | Investigation and classification of chronic wound tissue images using random forest algorithm (RF) | |
TWI823135B (zh) | 光譜感測裝置遠端功能擴充系統 | |
KR101976494B1 (ko) | 개인 건강 분석 방법 및 유아용 스마트 변기 | |
TWI731689B (zh) | 基於時域光譜的斷層攝影方法、系統及裝置 | |
Mekala et al. | Leaf Disease Detection and Remedy Recommendation Using CNN Algorithm. | |
CN114120311A (zh) | 食物烘焙的控制方法和装置 | |
Abdullah et al. | Multiple linear regression and deep learning in body temperature detection and mask detection | |
KR102303862B1 (ko) | 인공지능 기반 온라인 가축 경매 장치 및 방법 |