TWI821742B - Apparatus and method for controlling dead time of active clamp flyback converter power supply - Google Patents

Apparatus and method for controlling dead time of active clamp flyback converter power supply Download PDF

Info

Publication number
TWI821742B
TWI821742B TW110133280A TW110133280A TWI821742B TW I821742 B TWI821742 B TW I821742B TW 110133280 A TW110133280 A TW 110133280A TW 110133280 A TW110133280 A TW 110133280A TW I821742 B TWI821742 B TW I821742B
Authority
TW
Taiwan
Prior art keywords
voltage signal
signal
dead time
active clamp
power supply
Prior art date
Application number
TW110133280A
Other languages
Chinese (zh)
Other versions
TW202241044A (en
Inventor
林元
康曉智
楊東澤
Original Assignee
大陸商昂寶電子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商昂寶電子(上海)有限公司 filed Critical 大陸商昂寶電子(上海)有限公司
Publication of TW202241044A publication Critical patent/TW202241044A/en
Application granted granted Critical
Publication of TWI821742B publication Critical patent/TWI821742B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Details Of Television Scanning (AREA)

Abstract

本公開涉及用於控制有源鉗位返馳變換器電源的死區時間的裝置和方法。一種用於控制有源鉗位返馳變換器電源中的死區時間的裝置,包括:電壓信號生成模組,用於:獲取當前脈寬調變(Pulse Width Modulation,PWM)週期的死區時間;以及基於所述死區時間來生成電壓信號;參考電壓信號生成模組,用於基於預設的參考死區時間來生成參考電壓信號;以及控制信號生成模組,用於基於所述電壓信號和所述參考電壓信號來生成控制信號,其中,所述控制信號用於控制所述有源鉗位返馳變換器電源中的有源鉗位電力MOS場效電晶體的導通時間。 The present disclosure relates to apparatus and methods for controlling dead time of an active clamp flyback converter power supply. A device for controlling the dead time in an active clamp flyback converter power supply, including: a voltage signal generation module, used to: obtain the dead time of the current pulse width modulation (Pulse Width Modulation, PWM) cycle ; and generate a voltage signal based on the dead time; a reference voltage signal generation module for generating a reference voltage signal based on the preset reference dead time; and a control signal generation module for generating a reference voltage signal based on the voltage signal and the reference voltage signal to generate a control signal, wherein the control signal is used to control the conduction time of the active clamp power MOS field effect transistor in the active clamp flyback converter power supply.

Description

用於控制有源鉗位返馳變換器電源的死區時間的裝置和方法 Apparatus and method for controlling dead time of active clamp flyback converter power supply

本公開涉及積體電路,更具體地,涉及用於控制有源鉗位返馳(Active Clamping Flyback,ACF)變換器電源中的死區時間的裝置和方法。 The present disclosure relates to integrated circuits, and more particularly, to devices and methods for controlling dead time in an Active Clamping Flyback (ACF) converter power supply.

有源鉗位返馳變換器電源可以在較高的開關頻率下工作。在有源鉗位返馳變換器電源的系統層面上,可以通過減小變壓器的尺寸來提升功率密度,實現零電壓開關(Zero Voltage Switch,ZVS),提高系統效率。傳統的有源鉗位返馳變換器電源具有固定的開關頻率,整個系統只能設計在連續導通模式(Continuous Conduction Mode,CCM)或者非連續導通模式(Discontinuous Conduction Mode,DCM)下,有源鉗位返馳變換器電源中的死區時間會隨輸入電壓、輸出電壓以及輸出負載而變化,導致系統效率無法達到最佳。 Active clamp flyback converter power supplies can operate at higher switching frequencies. At the system level of the active clamp flyback converter power supply, the power density can be increased by reducing the size of the transformer, achieving Zero Voltage Switch (ZVS), and improving system efficiency. The traditional active clamp flyback converter power supply has a fixed switching frequency, and the entire system can only be designed in continuous conduction mode (Continuous Conduction Mode, CCM) or discontinuous conduction mode (Discontinuous Conduction Mode, DCM). The dead time in a flyback converter power supply will vary with input voltage, output voltage, and output load, resulting in suboptimal system efficiency.

鑒於以上所述的問題,本公開提供了一種新穎的用於控制有源鉗位返馳變換器電源中的死區時間的裝置和方法。 In view of the above-mentioned problems, the present disclosure provides a novel device and method for controlling dead time in an active clamp flyback converter power supply.

根據本公開的實施例的一方面,提供了一種用於控制有源鉗位返馳變換器電源中的死區時間的方法,包括:獲取當前脈寬調變PWM週期的死區時間;基於所述死區時間來生成電壓信號;基於預設的參考死區時間來生成參考電壓信號;以及基於所述電壓信號和所述參考電壓信號來生成控制信號,其中,所述控制信號用於控制所述有源鉗位返馳變換器電源中的有源鉗位電力MOS場效電晶體的導通時間。 According to an aspect of an embodiment of the present disclosure, a method for controlling dead time in an active clamp flyback converter power supply is provided, including: obtaining the dead time of the current pulse width modulation PWM cycle; based on the generate a voltage signal based on the dead time; generate a reference voltage signal based on a preset reference dead time; and generate a control signal based on the voltage signal and the reference voltage signal, wherein the control signal is used to control the Describes the conduction time of the active clamp power MOS field effect transistor in the active clamp flyback converter power supply.

根據本公開的實施例的另一方面,提供了一種用於控制有源 鉗位返馳變換器電源中的死區時間的裝置,包括:電壓信號生成模組,用於:獲取當前脈寬調變PWM週期的死區時間;以及基於所述死區時間來生成電壓信號;參考電壓信號生成模組,用於基於預設的參考死區時間來生成參考電壓信號;以及控制信號生成模組,用於基於所述電壓信號和所述參考電壓信號來生成控制信號,其中,所述控制信號用於控制所述有源鉗位返馳變換器電源中的有源鉗位電力MOS場效電晶體的導通時間。 According to another aspect of embodiments of the present disclosure, a method for controlling an active A device for clamping the dead time in a flyback converter power supply, including: a voltage signal generation module for: obtaining the dead time of the current pulse width modulation PWM cycle; and generating a voltage signal based on the dead time ; a reference voltage signal generation module, used to generate a reference voltage signal based on a preset reference dead time; and a control signal generation module, used to generate a control signal based on the voltage signal and the reference voltage signal, wherein , the control signal is used to control the conduction time of the active clamp power MOS field effect transistor in the active clamp flyback converter power supply.

根據本公開的實施例的又一方面,提供了一種有源鉗位返馳變換器電源,包括如上所述的用於控制有源鉗位返馳變換器電源中的死區時間的裝置。 According to yet another aspect of an embodiment of the present disclosure, an active clamp flyback converter power supply is provided, including the device for controlling the dead time in the active clamp flyback converter power supply as described above.

根據本公開的實施例的用於控制有源鉗位返馳變換器電源中的死區時間的裝置和方法能夠通過控制有源鉗位返馳變換器電源中的有源鉗位電力MOS場效電晶體的導通時間,來實現對有源鉗位返馳變換器電源中的死區時間的精確控制,使得有源鉗位返馳變換器電源中的死區時間不會隨輸入電壓、輸出電壓以及輸出負載而變化,從而實現ZVS,同時避免由於變壓器的主電感的過大負向電流而引起的能耗,提高系統效率。 The apparatus and method for controlling the dead time in the active clamp flyback converter power supply according to the embodiments of the present disclosure can control the active clamp power MOS field effect in the active clamp flyback converter power supply. The conduction time of the transistor is used to achieve precise control of the dead time in the active clamp flyback converter power supply, so that the dead time in the active clamp flyback converter power supply does not vary with the input voltage and output voltage. And the output load changes, thereby achieving ZVS, while avoiding energy consumption caused by excessive negative current of the main inductor of the transformer, and improving system efficiency.

T:變壓器 T: Transformer

QL:主PWM功率電力MOS場效電晶體 Q L : Main PWM power MOS field effect transistor

QH:有源鉗位電力MOS場效電晶體 Q H : Active clamp power MOS field effect transistor

Cclamp:有源鉗位電容 C clamp : active clamp capacitor

Rsense、Rf:電阻 R sense , Rf: resistance

D1:副邊整流二極體 D1: Secondary side rectifier diode

VD、DEM、CS:端 VD, DEM, CS: terminal

FB:輸入端 FB: input terminal

GateL:主PWM驅動輸出端(QL的閘極驅動信號) GateL: Main PWM drive output terminal (gate drive signal of Q L )

GateH:有源鉗位驅動輸出端(QH的閘極驅動信號) GateH: Active clamp drive output terminal (gate drive signal of Q H )

IM:變壓器的電感激磁電流 IM : Inductor magnetizing current of transformer

VD:QL的汲極電壓信號 V D : Drain voltage signal of Q L

Vin:輸入電壓 Vin: input voltage

N*Vout:Cclamp上的電壓 N*V out : voltage on C clamp

Vth:閾值電壓 V th :threshold voltage

Td、Td_det:死區時間 Td, Td_det: dead time

Td_ref:預設的參考死區時間 Td_ref: preset reference dead time

Vtd_det:電壓信號 Vtd_det: voltage signal

Vth_ref:參考電壓信號 Vth_ref: reference voltage signal

Cf:電容 Cf: capacitance

GateH off:控制信號 GateH off: control signal

Comp:誤差放大器的輸出端的電壓信號 Comp: voltage signal at the output of the error amplifier

Vout:有源鉗位返馳變換器電源的輸出電壓 Vout: the output voltage of the active clamp flyback converter power supply

900:用於控制有源鉗位返馳變換器電源中的死區時間的裝置 900: Device for controlling dead time in active clamp flyback converter power supplies

910:電壓信號生成模組 910: Voltage signal generation module

920:參考電壓信號生成模組 920: Reference voltage signal generation module

930:控制信號生成模組 930: Control signal generation module

1010、1020、1030、1040:步驟 1010, 1020, 1030, 1040: steps

S1:Vref_ref信號生成的充電開關 S1: Charging switch generated by Vref_ref signal

S2:Vref_ref信號生成的採樣開關 S2: Sampling switch for Vref_ref signal generation

S3:Vtd_det信號生成的充電開關 S3: Charging switch generated by Vtd_det signal

S4:Vtd_det信號生成的採樣開關 S4: Sampling switch for Vtd_det signal generation

C1:Vref_ref信號生成的充電電容 C1: Charging capacitor generated by Vref_ref signal

C2:Vref_ref信號生成的採樣電容 C2: Sampling capacitor generated by Vref_ref signal

C3:Vtd_det信號生成的充電電容 C3: Charging capacitor generated by Vtd_det signal

C4:Vtd_det信號生成的採樣電容 C4: Sampling capacitor generated by Vtd_det signal

GM:跨導放大器(OTA) GM: Transconductance Amplifier (OTA)

Cloop:環路補償電容 Cloop: loop compensation capacitor

從下面結合圖式對本公開的具體實施方式的描述中,可以更好地理解本公開,其中:圖1示出了傳統的有源鉗位返馳變換器電源的結構示意圖;圖2示出了圖1的有源鉗位返馳變換器電源的ACF控制器的結構示意圖;圖3示出了圖1的有源鉗位返馳變換器電源的部分信號的波形示意圖;圖4示出了根據本公開的一個實施例的有源鉗位返馳變換器電源的ACF控制器中的自我調整死區時間控制環路模組的結構示意圖;圖5示出了根據本公開的一個實施例的有源鉗位返馳變換器電源的ACF控制器中的自我調整死區時間控制環路模組中的誤差放大器的輸出電 流和輸入電壓的示意圖;圖6-7示出了根據本公開的一個實施例的有源鉗位返馳變換器電源中的死區時間從偏大到穩態的調節過程中的部分信號的波形示意圖;圖8示出了根據本公開的一個實施例的有源鉗位返馳變換器電源的ACF控制器中的自我調整死區時間控制環路模組的結構示意圖;圖9示出了根據本公開的一個實施例的用於控制有源鉗位返馳變換器電源中的死區時間的裝置的結構示意圖;以及圖10示出了根據本公開的一個實施例的用於控制有源鉗位返馳變換器電源中的死區時間的方法的流程示意圖。 The present disclosure can be better understood from the following description of specific embodiments of the present disclosure in conjunction with the drawings, in which: Figure 1 shows a schematic structural diagram of a traditional active clamp flyback converter power supply; Figure 2 shows The structural schematic diagram of the ACF controller of the active clamp flyback converter power supply of Figure 1; Figure 3 shows the waveform schematic diagram of some signals of the active clamp flyback converter power supply of Figure 1; Figure 4 shows the waveform diagram according to A schematic structural diagram of the self-adjusting dead time control loop module in the ACF controller of the active clamp flyback converter power supply according to an embodiment of the present disclosure; Figure 5 shows an active clamp flyback converter power supply according to an embodiment of the present disclosure. The self-adjusting dead time in the ACF controller of the source clamp flyback converter power supply controls the output voltage of the error amplifier in the loop module. schematic diagrams of currents and input voltages; Figures 6-7 show part of the signals during the adjustment process of the dead time in the active clamp flyback converter power supply from too large to a steady state according to one embodiment of the present disclosure. Waveform schematic diagram; Figure 8 shows a schematic structural diagram of the self-adjusting dead time control loop module in the ACF controller of the active clamp flyback converter power supply according to an embodiment of the present disclosure; Figure 9 shows A schematic structural diagram of a device for controlling dead time in an active clamp flyback converter power supply according to an embodiment of the present disclosure; and FIG. 10 shows a device for controlling an active clamp flyback converter power supply according to an embodiment of the present disclosure. Flow diagram of a method for clamping dead time in a flyback converter power supply.

下面將參考圖式詳細描述本公開的各個方面的特徵和示例性實施例。示例實現方式能夠以多種形式實施,且不應被理解為限於本文闡述的實現方式;相反,提供這些實現方式以使得本公開更全面和完整,並將示例實現方式的構思全面地傳達給本領域技術人員。在圖式中,為了清晰,可能誇大了區域和元件的尺寸。此外,在圖式中,相同的圖式標記表示相同或相似的結構,因而將省略它們的詳細描述。 Features and exemplary embodiments of various aspects of the present disclosure will be described in detail below with reference to the drawings. Example implementations can be implemented in various forms and should not be construed as limited to the implementations set forth herein; rather, these implementations are provided so that this disclosure will be thorough and complete, and to fully convey the concepts of example implementations to those skilled in the art. technical staff. In the drawings, the size of areas and components may be exaggerated for clarity. Furthermore, in the drawings, the same drawing symbols represent the same or similar structures, and thus their detailed descriptions will be omitted.

此外,所描述的特徵、結構、或特性可以以任何合適的方式結合在一個或多個實施例中。在下面的描述中,提供許多具體細節以給出對本公開的實施例的充分理解。然而,本領域技術人員將意識到,可以在沒有所述具體細節中的一個或多個的情況下實施本公開的技術方案,或者可以採用其他方法、元件、材料等。在其他情況下,未詳細示出或描述公知的結構、材料、或操作,以避免模糊本公開的主要技術創意。 Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided to provide a thorough understanding of embodiments of the present disclosure. However, those skilled in the art will appreciate that the technical solutions of the present disclosure may be practiced without one or more of the specific details, or other methods, components, materials, etc. may be employed. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring the main technical ideas of the disclosure.

如前所述,為了解決傳統有源鉗位返馳變換器電源中的死區時間會隨輸入電壓、輸出電壓以及輸出負載而變化的問題,提出了用於控制有源鉗位返馳變換器電源中的死區時間的裝置和方法。 As mentioned before, in order to solve the problem that the dead time in the power supply of the traditional active clamp flyback converter changes with the input voltage, output voltage and output load, a method for controlling the active clamp flyback converter is proposed. Apparatus and method for dead time in power supplies.

圖1示出了傳統的有源鉗位返馳變換器電源的結構示意圖。如圖1所示,傳統的有源鉗位返馳變換器電源可以包括變壓器T、主脈寬調 變(PWM)功率電力MOS場效電晶體QL、有源鉗位電力MOS場效電晶體QH、有源鉗位電容Cclamp、ACF控制器、電阻Rsense、副邊整流二極體D1、Vref_ref信號生成的充電電容C1和副邊側的誤差放大器及光耦。 Figure 1 shows the structural schematic diagram of a traditional active clamp flyback converter power supply. As shown in Figure 1, the traditional active clamp flyback converter power supply can include a transformer T, a main pulse width modulation (PWM) power MOS field effect transistor Q L , and an active clamp power MOS field effect transistor. Q H , active clamping capacitor C clamp , ACF controller, resistor R sense , secondary side rectifier diode D1, charging capacitor C1 generated by Vref_ref signal, error amplifier and optocoupler on the secondary side.

圖2示出了圖1的有源鉗位返馳變換器電源的ACF控制器的結構示意圖。如圖2所示,圖1的有源鉗位返馳變換器電源的ACF控制器可以包括VD端、DEM端、CS端、FB輸入端、主PWM驅動輸出端GateL、以及有源鉗位驅動輸出端GateH。ACF控制器內部可以包括VD下降沿檢測模組、峰值電流控制模組、自我調整死區時間控制環路模組、主PWM驅動模組、以及有源鉗位驅動模組。 FIG. 2 shows a schematic structural diagram of the ACF controller of the active clamp flyback converter power supply of FIG. 1 . As shown in Figure 2, the ACF controller of the active clamp flyback converter power supply in Figure 1 can include the VD terminal, the DEM terminal, the CS terminal, the FB input terminal, the main PWM drive output terminal GateL, and the active clamp driver Output terminal GateH. The ACF controller can include a VD falling edge detection module, a peak current control module, a self-adjusting dead time control loop module, a main PWM drive module, and an active clamp drive module.

圖3示出了圖1的有源鉗位返馳變換器電源的部分信號的波形示意圖。具體地,圖3分別示出了主PWM功率電力MOS場效電晶體QL的閘極驅動信號GateL、有源鉗位電力MOS場效電晶體QH的閘極驅動信號GateH、變壓器的電感激磁電流IM、以及主PWM功率電力MOS場效電晶體QL的汲極電壓信號VD的波形示意圖。 FIG. 3 shows a schematic waveform diagram of some signals of the active clamp flyback converter power supply of FIG. 1 . Specifically, Figure 3 respectively shows the gate drive signal GateL of the main PWM power MOS field effect transistor Q L , the gate drive signal GateH of the active clamp power MOS field effect transistor Q H , and the inductance of the transformer. Schematic diagram of the waveforms of the magnetic current IM and the drain voltage signal V D of the main PWM power MOS field effect transistor Q L.

如圖3所示,在T0時刻,主PWM功率電力MOS場效電晶體QL導通,輸入電壓Vin加在變壓器的電感兩端,變壓器的電感激磁電流IM線性上升。在T1時刻,主PWM功率電力MOS場效電晶體QL斷開,在經過很短的固定延時之後,有源鉗位電力MOS場效電晶體QH導通。有源鉗位電力MOS場效電晶體QH導通時,變壓器的電感激磁電流IM線性下降,副邊整流二極體D1導通,變壓器的副邊對Vref_ref信號生成的充電電容C1充電。當變壓器的電感激磁電流IM下降到零時,變壓器的電感存儲的能量全部釋放完畢,副邊整流二極體D1自然斷開。此時有源鉗位電力MOS場效電晶體QH處於導通狀態,變壓器的主電感和有源鉗位電容Cclamp諧振,有源鉗位電容Cclamp上的電壓N*Vout反向加在變壓器的電感兩端,變壓器的電感激磁電流IM降到零後繼續反向線性增大。在T2時刻,有源鉗位電力MOS場效電晶體QH斷開,變壓器的主電感和VD端的寄生電容諧振,寄生電容放電,電壓VD下降。當電壓VD下降達到設定的閾值電壓 Vth時,主PWM功率電力MOS場效電晶體QL導通,其中,電壓VD下降達到設定的閾值電壓Vth與主PWM功率電力MOS場效電晶體QL導通之間的延時時間是固定的而且延時時間很小。從有源鉗位電力MOS場效電晶體QH斷開到電壓VD下降達到設定的閾值電壓Vth的時間為死區時間Td,即T3-T2。增大有源鉗位電力MOS場效電晶體QH的導通時間可以減小死區時間,減小有源鉗位電力MOS場效電晶體QH的導通時間可以增大死區時間。 As shown in Figure 3, at time T0, the main PWM power MOS field effect transistor Q L is turned on, the input voltage Vin is applied to both ends of the inductor of the transformer, and the inductor magnetizing current IM of the transformer rises linearly. At time T1, the main PWM power MOS field effect transistor Q L is turned off, and after a short fixed delay, the active clamping power MOS field effect transistor Q H is turned on. When the active clamp power MOS field effect transistor Q H is turned on, the inductor magnetizing current IM of the transformer decreases linearly, the secondary rectifier diode D1 is turned on, and the secondary side of the transformer charges the charging capacitor C1 generated by the Vref_ref signal. When the inductor magnetizing current IM of the transformer drops to zero, all the energy stored in the inductor of the transformer is released, and the secondary rectifier diode D1 is naturally disconnected. At this time, the active clamp power MOS field effect transistor Q H is in the on state, the main inductor of the transformer resonates with the active clamp capacitor C clamp , and the voltage N*V out on the active clamp capacitor C clamp is added in reverse. At both ends of the inductor of the transformer, the inductor magnetizing current IM of the transformer drops to zero and continues to increase linearly in the reverse direction. At time T2, the active clamping power MOS field effect transistor QH is disconnected, the main inductance of the transformer resonates with the parasitic capacitance at the VD end, the parasitic capacitance is discharged, and the voltage VD drops. When the voltage V D drops to the set threshold voltage V th , the main PWM power MOS field effect transistor Q L is turned on, where the voltage V D drops to the set threshold voltage V th and is in contact with the main PWM power MOS field effect transistor. The delay time between Q L turn-on is fixed and very small. The time from when the active clamping power MOS field effect transistor Q H is turned off to when the voltage V D drops to reach the set threshold voltage V th is the dead time Td, that is, T3-T2. Increasing the conduction time of the active clamp power MOS field effect transistor Q H can reduce the dead time, and decreasing the conduction time of the active clamp power MOS field effect transistor Q H can increase the dead time.

圖4示出了根據本公開的一個實施例的有源鉗位返馳變換器電源的ACF控制器中的自我調整死區時間控制環路模組的結構示意圖。如圖4所示,根據本公開的一個實施例的有源鉗位返馳變換器電源的ACF控制器中的自我調整死區時間控制環路模組將每個PWM週期檢測到的死區時間Td_det、以及內部預設的參考死區時間Td_ref作為輸入。每個PWM週期檢測到的死區時間Td_det被轉換成電壓信號Vtd_det,預設的參考死區時間Td_ref被轉換成參考電壓信號Vth_ref。電阻Rf和電容Cf組成低通濾波器以對電壓信號Vtd_det進行濾波。經濾波的電壓信號Vtd_det與參考電壓信號Vth_ref被輸入到GM結構的誤差放大器,所產生的輸出信號與由斜坡生成器所生成的具有固定斜率的三角波信號一起被輸入到比較器,以生成控制信號GateH off,該控制信號GateH off用於控制關斷有源鉗位電力MOS場效電晶體QHFIG. 4 shows a schematic structural diagram of a self-adjusting dead time control loop module in an ACF controller of an active clamp flyback converter power supply according to an embodiment of the present disclosure. As shown in Figure 4, the self-adjusting dead time control loop module in the ACF controller of the active clamp flyback converter power supply according to one embodiment of the present disclosure adjusts the dead time detected in each PWM cycle. Td_det, and the internally preset reference dead time Td_ref are used as inputs. The dead time Td_det detected in each PWM cycle is converted into a voltage signal Vtd_det, and the preset reference dead time Td_ref is converted into a reference voltage signal Vth_ref. The resistor Rf and the capacitor Cf form a low-pass filter to filter the voltage signal Vtd_det. The filtered voltage signal Vtd_det and the reference voltage signal Vth_ref are input to the error amplifier of the GM structure, and the generated output signal is input to the comparator together with the triangular wave signal with a fixed slope generated by the slope generator to generate a control signal GateH off, the control signal GateH off is used to control to turn off the active clamping power MOS field effect transistor Q H.

根據本公開的一個實施例的有源鉗位返馳變換器電源的ACF控制器通過採用如圖4所示的自我調整死區時間控制環路模組,來構建控制環路調節有源鉗位電力MOS場效電晶體QH的導通時間,從而精確地控制死區時間以使其達到設定的時間。利用如圖4所示的自我調整死區時間控制環路模組來控制有源鉗位返馳變換器電源中的死區時間,能夠實現在穩態下實際的死區時間無限接近設定的閾值,從而可以實現很精確地控制死區時間,不會使死區時間隨輸入電壓、輸出電壓和輸出負載而變化,這可以簡化系統設計。由於可以將死區時間精確控制在最理想的值,可以實 現ZVS,同時避免由於變壓器的主電感的過大負向電流而引起的能耗,從而可以提高系統的效率。 According to an embodiment of the present disclosure, the ACF controller of the active clamp flyback converter power supply uses a self-adjusting dead time control loop module as shown in Figure 4 to construct a control loop to adjust the active clamp. The conduction time of the power MOS field effect transistor Q H is precisely controlled to accurately control the dead time to achieve the set time. By using the self-adjusting dead time control loop module as shown in Figure 4 to control the dead time in the active clamp flyback converter power supply, the actual dead time in steady state can be infinitely close to the set threshold. , so that the dead time can be controlled very accurately, and the dead time will not change with the input voltage, output voltage and output load, which can simplify the system design. Since the dead time can be precisely controlled at the most ideal value, ZVS can be achieved while avoiding energy consumption caused by excessive negative current in the main inductor of the transformer, thereby improving the efficiency of the system.

圖5示出了根據本公開的一個實施例的有源鉗位返馳變換器電源的ACF控制器中的自我調整死區時間控制環路模組中的誤差放大器的輸出電流和輸入電壓的示意圖。如圖4和5所示,GM結構的誤差放大器的反向輸入端電壓為參考電壓信號Vth_ref。在GM結構的誤差放大器的同向輸入端電壓在Vth_L1到Vth_H1之間線性變化的情況下,對應於較小的Gm值。在GM結構的誤差放大器的同向輸入端電壓在Vth_L2到Vth_L1之間或者在Vth_H1到Vth_H2之間變化的情況下,對應於更大的Gm值,同時限制輸出端的最大電流幅度。Gm被設計成這樣的具有分段變化的Gm值,既能夠兼顧穩態下的環路頻寬,也能夠在動態切換時加快環路回應的速度。 5 shows a schematic diagram of the output current and input voltage of the error amplifier in the self-adjusting dead time control loop module in the ACF controller of the active clamp flyback converter power supply according to one embodiment of the present disclosure. . As shown in Figures 4 and 5, the reverse input terminal voltage of the GM structure error amplifier is the reference voltage signal Vth_ref. In the case where the non-inverting input voltage of the error amplifier of the GM structure changes linearly between Vth_L1 and Vth_H1, it corresponds to a smaller Gm value. In the case where the non-inverting input voltage of the error amplifier in the GM structure changes between Vth_L2 and Vth_L1 or between Vth_H1 and Vth_H2, it corresponds to a larger Gm value and at the same time limits the maximum current amplitude at the output end. Gm is designed to have such a Gm value with segmented changes, which can not only take into account the loop bandwidth in the steady state, but also speed up the loop response during dynamic switching.

圖6-7示出了根據本公開的一個實施例的有源鉗位返馳變換器電源中的死區時間從偏大到穩態的調節過程中的部分信號的波形示意圖。具體地,圖6-7示出了利用根據本公開的一個實施例的有源鉗位返馳變換器電源的ACF控制器中的自我調整死區時間控制環路模組來將死區時間從偏大調節到穩態的調節過程中的部分信號的波形示意圖。最初,檢測到的死區時間大於預設的參考死區時間,因而被輸入到GM結構的誤差放大器的同向輸入端的電壓Vtd_det信號也大於被輸入到GM結構的誤差放大器的反向輸入端的參考電壓信號Vth_ref,使得GM結構的誤差放大器的輸出端的輸出信號(電壓Comp)慢慢增大,進而使得有源鉗位電力MOS場效電晶體QH的導通時間增大,變壓器的電感的負向電流的幅值增大,即有源鉗位電力MOS場效電晶體QH斷開後對VD端的放電電流幅度增大,因而VD的下降斜率的絕對值增大即下降速度更快,從而使得死區時間減小。 6-7 show schematic waveform diagrams of some signals during the adjustment process of the dead time in the active clamp flyback converter power supply from too large to a steady state according to one embodiment of the present disclosure. Specifically, FIGS. 6-7 illustrate the use of a self-adjusting dead time control loop module in an ACF controller of an active clamp flyback converter power supply according to one embodiment of the present disclosure to change the dead time from A schematic diagram of the waveforms of some signals during the adjustment process from excessive adjustment to steady state. Initially, the detected dead time is greater than the preset reference dead time, so the voltage Vtd_det signal input to the non-inverting input terminal of the error amplifier of the GM structure is also greater than the reference input to the inverting input terminal of the error amplifier of the GM structure. The voltage signal Vth_ref causes the output signal (voltage Comp) at the output end of the GM structure error amplifier to slowly increase, which in turn increases the conduction time of the active clamping power MOS field effect transistor Q H , and the negative direction of the inductance of the transformer. The amplitude of the current increases, that is, the amplitude of the discharge current to the VD terminal increases after the active clamp power MOS field effect transistor Q H is disconnected. Therefore, the absolute value of the falling slope of VD increases, that is, the falling speed is faster, thus making Dead time is reduced.

圖8示出了根據本公開的一個實施例的有源鉗位返馳變換器電源的ACF控制器中的自我調整死區時間控制環路模組的結構示意圖。有源鉗位返馳變換器電源的輸出電壓Vout不同時,例如輸出電壓Vout在3V到 20V之間變化時,由於變壓器的電感電流的下降斜率和電壓N*Vout成反比,因此輸出電壓越低,有源鉗位電力MOS場效電晶體QH的導通時間越長。由於對於GM結構的誤差放大器的輸出端的輸出信號(電壓Comp)的範圍和由斜坡生成器所生成的三角波信號的斜率的參數要求很高,因而很難兼顧輸出電壓高低變化和不同輸出負載的變化,即輸出電壓對於自我調整死區時間控制環路模組的控制環路的頻寬的影響很大。如圖8所示,根據本公開的一個實施例的有源鉗位返馳變換器電源的ACF控制器中的自我調整死區時間控制環路模組通過變壓器繞組採樣輸出電壓,基於所採樣的輸出電壓來調節由斜坡生成器所生成的三角波信號的斜率,由斜坡生成器所生成的三角波信號的斜率被設置為與輸出電壓成正比,由此減小了輸出電壓對自我調整死區時間控制環路模組的控制環路的影響。 8 shows a schematic structural diagram of a self-adjusting dead time control loop module in an ACF controller of an active clamp flyback converter power supply according to an embodiment of the present disclosure. When the output voltage Vout of the active clamp flyback converter power supply is different, for example, when the output voltage Vout changes between 3V and 20V, since the decreasing slope of the inductor current of the transformer is inversely proportional to the voltage N*Vout, the lower the output voltage , the longer the conduction time of the active clamp power MOS field effect transistor Q H. Due to the very high parameter requirements for the range of the output signal (voltage Comp) at the output end of the GM structure error amplifier and the slope of the triangular wave signal generated by the slope generator, it is difficult to take into account changes in the output voltage level and changes in different output loads. , that is, the output voltage has a great influence on the bandwidth of the control loop of the self-adjusting dead time control loop module. As shown in Figure 8, the self-adjusting dead time control loop module in the ACF controller of the active clamp flyback converter power supply according to one embodiment of the present disclosure samples the output voltage through the transformer winding, based on the sampled The output voltage is used to adjust the slope of the triangular wave signal generated by the ramp generator. The slope of the triangular wave signal generated by the ramp generator is set to be proportional to the output voltage, thereby reducing the effect of the output voltage on the self-adjusting dead time control. The influence of the control loop of the loop module.

圖9示出了根據本公開的一個實施例的用於控制有源鉗位返馳變換器電源中的死區時間的裝置的結構示意圖。如圖9所示,根據本公開的一個實施例的用於控制有源鉗位返馳變換器電源中的死區時間的裝置900可以包括電壓信號生成模組910、參考電壓信號生成模組920以及控制信號生成模組930。 FIG. 9 shows a schematic structural diagram of a device for controlling dead time in an active clamp flyback converter power supply according to an embodiment of the present disclosure. As shown in FIG. 9 , an apparatus 900 for controlling dead time in an active clamp flyback converter power supply according to an embodiment of the present disclosure may include a voltage signal generation module 910 and a reference voltage signal generation module 920 and a control signal generation module 930.

電壓信號生成模組910可以用於獲取當前PWM週期的死區時間,並且基於所獲取的死區時間來生成電壓信號。參考電壓信號生成模組920可以用於基於預設的參考死區時間來生成參考電壓信號。控制信號生成模組930可以用於基於由電壓信號生成模組910所生成的電壓信號和由參考電壓信號生成模組920所生成的參考電壓信號來生成控制信號,其中,該控制信號可以用於控制有源鉗位返馳變換器電源中的有源鉗位電力MOS場效電晶體的導通時間。 The voltage signal generation module 910 may be used to obtain the dead time of the current PWM cycle, and generate a voltage signal based on the obtained dead time. The reference voltage signal generation module 920 may be used to generate a reference voltage signal based on a preset reference dead time. The control signal generation module 930 may be used to generate a control signal based on the voltage signal generated by the voltage signal generation module 910 and the reference voltage signal generated by the reference voltage signal generation module 920, wherein the control signal may be used for Controls the conduction time of the active clamp power MOS field effect transistor in the active clamp flyback converter power supply.

在一個示例實施例中,根據本公開的一個實施例的用於控制有源鉗位返馳變換器電源中的死區時間的裝置900還可以包括濾波模組(未示出)。該濾波模組可以用於對由電壓信號生成模組910所生成的電 壓信號進行濾波以生成經濾波的電壓信號。控制信號生成模組930可以用於基於經濾波的電壓信號和參考電壓信號來生成控制信號。 In an example embodiment, the apparatus 900 for controlling dead time in an active clamp flyback converter power supply according to an embodiment of the present disclosure may further include a filter module (not shown). The filter module can be used to filter the voltage generated by the voltage signal generation module 910 The voltage signal is filtered to generate a filtered voltage signal. The control signal generation module 930 may be used to generate a control signal based on the filtered voltage signal and the reference voltage signal.

在一個示例實施例中,控制信號生成模組930可以包括輸出信號生成子模組、三角波信號生成子模組以及控制信號生成子模組。輸出信號生成子模組可以用於基於電壓信號和參考電壓信號來生成輸出信號,三角波信號生成子模組可以用於生成三角波信號,控制信號生成子模組可以用於基於由輸出信號生成子模組所生成的輸出信號和由三角波信號生成子模組所生成的三角波信號來生成控制信號。在一個示例實施例中,三角波信號生成子模組可以用於基於有源鉗位返馳變換器電源的輸出電壓來生成三角波信號。在另一示例實施例中,三角波信號可以具有固定的斜率。 In an example embodiment, the control signal generation module 930 may include an output signal generation sub-module, a triangular wave signal generation sub-module, and a control signal generation sub-module. The output signal generation sub-module can be used to generate an output signal based on the voltage signal and the reference voltage signal, the triangular wave signal generation sub-module can be used to generate a triangular wave signal, and the control signal generation sub-module can be used to generate a sub-module based on the output signal. The control signal is generated by combining the generated output signal and the triangular wave signal generated by the triangular wave signal generation sub-module. In an example embodiment, the triangle wave signal generation sub-module may be used to generate a triangle wave signal based on the output voltage of the active clamp flyback converter power supply. In another example embodiment, the triangle wave signal may have a fixed slope.

圖10示出了根據本公開的一個實施例的用於控制有源鉗位返馳變換器電源中的死區時間的方法的流程示意圖。如圖10所示,在步驟1010中,可以獲取當前PWM週期的死區時間。在步驟1020中,可以基於死區時間來生成電壓信號。在步驟1030中,可以基於預設的參考死區時間來生成參考電壓信號。在步驟1040中,可以基於電壓信號和參考電壓信號來生成控制信號,其中,控制信號用於控制有源鉗位返馳變換器電源中的有源鉗位電力MOS場效電晶體的導通時間。 10 illustrates a flow diagram of a method for controlling dead time in an active clamp flyback converter power supply according to one embodiment of the present disclosure. As shown in Figure 10, in step 1010, the dead time of the current PWM cycle can be obtained. In step 1020, a voltage signal may be generated based on the dead time. In step 1030, a reference voltage signal may be generated based on a preset reference dead time. In step 1040, a control signal may be generated based on the voltage signal and the reference voltage signal, wherein the control signal is used to control the conduction time of the active clamp power MOS field effect transistor in the active clamp flyback converter power supply.

在一個示例實施例中,根據本公開的一個實施例的用於控制有源鉗位返馳變換器電源中的死區時間的方法還可以包括:對步驟1010中生成的電壓信號進行濾波以生成經濾波的電壓信號,其中,步驟1040中的基於電壓信號和參考電壓信號來生成控制信號可以包括:基於經濾波的電壓信號和參考電壓信號來生成控制信號。 In an example embodiment, the method for controlling dead time in an active clamp flyback converter power supply according to an embodiment of the present disclosure may further include: filtering the voltage signal generated in step 1010 to generate The filtered voltage signal, wherein generating the control signal based on the voltage signal and the reference voltage signal in step 1040 may include: generating the control signal based on the filtered voltage signal and the reference voltage signal.

在一個示例實施例中,步驟1040中的基於電壓信號和參考電壓信號來生成控制信號可以包括:基於電壓信號和參考電壓信號來生成輸出信號,生成三角波信號,以及基於輸出信號和三角波信號來生成控制信號。在一個示例實施例中,生成三角波信號包括:基於有源鉗位返馳變換 器電源的輸出電壓來生成三角波信號。在另一示例實施例中,三角波信號具有固定的斜率。 In an example embodiment, generating the control signal based on the voltage signal and the reference voltage signal in step 1040 may include: generating an output signal based on the voltage signal and the reference voltage signal, generating a triangular wave signal, and generating based on the output signal and the triangular wave signal. control signal. In an example embodiment, generating the triangular wave signal includes: based on an active clamp flyback transform The output voltage of the device power supply is used to generate a triangular wave signal. In another example embodiment, the triangle wave signal has a fixed slope.

結合圖9和圖10所述的根據本公開的實施例的用於控制有源鉗位返馳變換器電源中的死區時間的裝置和方法可以參照如上結合其他圖式所詳細描述的本公開的實施例,為了簡潔起見,將不再重複贅述某些細節。可以理解的是,如上所述的結構和流程示意圖中所示的功能塊和方法步驟可以實現為硬體、軟體、固件或者它們的組合。 The apparatus and method for controlling dead time in an active clamp flyback converter power supply according to embodiments of the present disclosure described in conjunction with FIGS. 9 and 10 may refer to the disclosure as described in detail above in conjunction with other figures. For the sake of brevity, certain details will not be repeated. It can be understood that the function blocks and method steps shown in the above-mentioned structure and flow diagrams can be implemented as hardware, software, firmware or a combination thereof.

因此,根據本公開的實施例的用於控制有源鉗位返馳變換器電源中的死區時間的裝置和方法能夠通過控制有源鉗位返馳變換器電源中的有源鉗位電力MOS場效電晶體的導通時間,來實現對有源鉗位返馳變換器電源中的死區時間的精確控制,使得有源鉗位返馳變換器電源中的死區時間不會隨輸入電壓、輸出電壓以及輸出負載而變化,從而實現ZVS,同時避免由於變壓器的主電感的過大負向電流而引起的能耗,提高系統效率。 Therefore, the apparatus and method for controlling the dead time in the active clamp flyback converter power supply according to the embodiments of the present disclosure can control the active clamp power MOS in the active clamp flyback converter power supply. The conduction time of the field effect transistor is used to achieve precise control of the dead time in the active clamp flyback converter power supply, so that the dead time in the active clamp flyback converter power supply does not vary with the input voltage, The output voltage and output load change, thereby achieving ZVS, while avoiding energy consumption caused by excessive negative current of the main inductor of the transformer, and improving system efficiency.

本公開可以以其他的具體形式實現,而不脫離其精神和本質特徵。因此,當前的實施例在所有方面都被看作是示例性的而非限定性的,本公開的範圍由所附請求項而非上述描述定義,並且,落入請求項的含義和等同物的範圍內的全部改變從而都被包括在本公開的範圍之中。 The present disclosure may be implemented in other specific forms without departing from its spirit and essential characteristics. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the disclosure being defined by the appended claims rather than the foregoing description, and the meanings and equivalents falling within the claims are All changes within the scope are therefore included in the scope of the present disclosure.

Rf:電阻 Rf: resistance

Td_det:死區時間 Td_det: dead time

Td_ref:預設的參考死區時間 Td_ref: preset reference dead time

Vtd_det:電壓信號 Vtd_det: voltage signal

Vth_ref:參考電壓信號 Vth_ref: reference voltage signal

Cf:電容 Cf: capacitance

GateH off:控制信號 GateH off: control signal

Comp:誤差放大器的輸出端的電壓信號 Comp: voltage signal at the output of the error amplifier

S1:Vref_ref信號生成的充電開關 S1: Charging switch generated by Vref_ref signal

S2:Vref_ref信號生成的採樣開關 S2: Sampling switch for Vref_ref signal generation

S3:Vtd_det信號生成的充電開關 S3: Charging switch generated by Vtd_det signal

S4:Vtd_det信號生成的採樣開關 S4: Sampling switch for Vtd_det signal generation

C1:Vref_ref信號生成的充電電容 C1: Charging capacitor generated by Vref_ref signal

C2:Vref_ref信號生成的採樣電容 C2: Sampling capacitor generated by Vref_ref signal

C3:Vtd_det信號生成的充電電容 C3: Charging capacitor generated by Vtd_det signal

C4:Vtd_det信號生成的採樣電容 C4: Sampling capacitor generated by Vtd_det signal

GM:跨導放大器(OTA) GM: Transconductance Amplifier (OTA)

Cloop:環路補償電容 Cloop: loop compensation capacitor

Claims (11)

一種用於控制有源鉗位返馳變換器電源中的死區時間的方法,包括:獲取當前脈寬調變PWM週期的所述死區時間;基於所述死區時間來生成電壓信號;基於預設的參考死區時間來生成參考電壓信號;以及基於所述電壓信號和所述參考電壓信號來生成控制信號,其中,所述控制信號用於控制所述有源鉗位返馳變換器電源中的有源鉗位電力MOS場效電晶體的導通時間。 A method for controlling dead time in an active clamp flyback converter power supply, including: obtaining the dead time of the current pulse width modulation PWM cycle; generating a voltage signal based on the dead time; a preset reference dead time to generate a reference voltage signal; and generate a control signal based on the voltage signal and the reference voltage signal, wherein the control signal is used to control the active clamp flyback converter power supply The conduction time of the active clamp power MOS field effect transistor. 如請求項1所述的方法,還包括:對所述電壓信號進行濾波以生成經濾波的電壓信號,其中,基於所述電壓信號和所述參考電壓信號來生成所述控制信號包括:基於所述經濾波的電壓信號和所述參考電壓信號來生成所述控制信號。 The method of claim 1, further comprising: filtering the voltage signal to generate a filtered voltage signal, wherein generating the control signal based on the voltage signal and the reference voltage signal includes: based on the The filtered voltage signal and the reference voltage signal are used to generate the control signal. 如請求項1所述的方法,其中,基於所述電壓信號和所述參考電壓信號來生成所述控制信號包括:基於所述電壓信號和所述參考電壓信號來生成輸出信號;生成三角波信號;以及基於所述輸出信號和所述三角波信號來生成所述控制信號。 The method of claim 1, wherein generating the control signal based on the voltage signal and the reference voltage signal includes: generating an output signal based on the voltage signal and the reference voltage signal; generating a triangular wave signal; and generating the control signal based on the output signal and the triangular wave signal. 如請求項3所述的方法,其中,所述生成三角波信號包括:基於所述有源鉗位返馳變換器電源的輸出電壓來生成所述三角波信號。 The method of claim 3, wherein the generating a triangular wave signal includes generating the triangular wave signal based on an output voltage of the active clamp flyback converter power supply. 如請求項3所述的方法,其中,所述三角波信號具有固定的斜率。 The method of claim 3, wherein the triangular wave signal has a fixed slope. 一種用於控制有源鉗位返馳變換器電源中的死區時間的裝置,包括:電壓信號生成模組,用於:獲取當前脈寬調變PWM週期的所述死區時間;以及基於所述死區時間來生成電壓信號;參考電壓信號生成模組,用於基於預設的參考死區時間來生成參考電壓信號;以及控制信號生成模組,用於基於所述電壓信號和所述參考電壓信號來生 成控制信號,其中,所述控制信號用於控制所述有源鉗位返馳變換器電源中的有源鉗位電力MOS場效電晶體的導通時間。 A device for controlling the dead time in an active clamp flyback converter power supply, including: a voltage signal generation module for: obtaining the dead time of the current pulse width modulation PWM cycle; and based on the The dead time is used to generate a voltage signal; a reference voltage signal generation module is used to generate a reference voltage signal based on the preset reference dead time; and a control signal generation module is used to generate a reference voltage signal based on the voltage signal and the reference Voltage signal afterlife into a control signal, wherein the control signal is used to control the conduction time of the active clamp power MOS field effect transistor in the active clamp flyback converter power supply. 如請求項6所述的裝置,還包括:濾波模組,用於對所述電壓信號進行濾波以生成經濾波的電壓信號,其中,所述控制信號生成模組用於:基於經濾波的電壓信號和所述參考電壓信號來生成所述控制信號。 The device according to claim 6, further comprising: a filtering module, configured to filter the voltage signal to generate a filtered voltage signal, wherein the control signal generating module is configured to: based on the filtered voltage signal and the reference voltage signal to generate the control signal. 如請求項6所述的裝置,其中,所述控制信號生成模組包括:輸出信號生成子模組,用於基於所述電壓信號和所述參考電壓信號來生成輸出信號;三角波信號生成子模組,用於生成三角波信號;以及控制信號生成子模組,用於基於所述輸出信號和所述三角波信號來生成所述控制信號。 The device of claim 6, wherein the control signal generation module includes: an output signal generation sub-module for generating an output signal based on the voltage signal and the reference voltage signal; a triangular wave signal generation sub-module A group for generating a triangular wave signal; and a control signal generation sub-module for generating the control signal based on the output signal and the triangular wave signal. 如請求項8所述的裝置,其中,所述三角波信號生成子模組用於:基於所述有源鉗位返馳變換器電源的輸出電壓來生成所述三角波信號。 The device of claim 8, wherein the triangle wave signal generating sub-module is configured to generate the triangle wave signal based on the output voltage of the active clamp flyback converter power supply. 如請求項8所述的裝置,其中,所述三角波信號具有固定的斜率。 The device of claim 8, wherein the triangular wave signal has a fixed slope. 一種有源鉗位返馳變換器電源,包括如請求項6-10中任一項所述的用於控制有源鉗位返馳變換器電源中的死區時間的裝置。 An active clamp flyback converter power supply includes the device for controlling the dead time in the active clamp flyback converter power supply as described in any one of claims 6 to 10.
TW110133280A 2021-04-13 2021-09-07 Apparatus and method for controlling dead time of active clamp flyback converter power supply TWI821742B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110394033.9 2021-04-13
CN202110394033.9A CN113162425A (en) 2021-04-13 2021-04-13 Apparatus and method for controlling dead time of active clamp flyback switching power supply

Publications (2)

Publication Number Publication Date
TW202241044A TW202241044A (en) 2022-10-16
TWI821742B true TWI821742B (en) 2023-11-11

Family

ID=76890318

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110133280A TWI821742B (en) 2021-04-13 2021-09-07 Apparatus and method for controlling dead time of active clamp flyback converter power supply

Country Status (2)

Country Link
CN (1) CN113162425A (en)
TW (1) TWI821742B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659823B (en) * 2021-10-19 2022-02-08 茂睿芯(深圳)科技有限公司 Dead time determination method of active clamp flyback circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201225495A (en) * 2010-12-15 2012-06-16 Richtek Technology Corp Shunt regulator, flyback converter and control method for its output feedback
US9099952B2 (en) * 2011-12-12 2015-08-04 Hyundai Motor Company Apparatus and method for controlling switching devices for DC motor
US20190020269A1 (en) * 2016-01-12 2019-01-17 Danmarks Tekniske Universitet Resonant power converter with dead-time control of synchronous rectification circuit
TW201944712A (en) * 2018-04-08 2019-11-16 大陸商昂寶電子(上海)有限公司 Quasi-resonance flyback switching power supply system
US20200287456A1 (en) * 2019-03-06 2020-09-10 Infineon Technologies Ag Analog predictive dead-time

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176594A (en) * 1991-12-19 1993-07-13 Matsushita Electric Works Ltd Inverter device for induction motor
CN101820231B (en) * 2010-04-15 2012-06-06 浙江大学 Current zero-crossing detection and dead zone compensation method used for frequency converter
CN102723872B (en) * 2011-03-29 2014-09-03 华为技术有限公司 Power supply apparatus and method for adjusting dead time
US9577525B2 (en) * 2014-03-04 2017-02-21 Maxim Integrated Products, Inc. Adaptive dead time control
CN112117905B (en) * 2019-06-20 2021-12-21 东南大学 Control system and method of active clamp flyback converter
KR102182886B1 (en) * 2019-11-11 2020-11-25 주식회사 솔루엠 Dead-time control system of converter, and dead-time control method using same
CN111817545B (en) * 2020-07-24 2022-03-18 深圳市海浦蒙特科技有限公司 Driving dead zone detection circuit, peak absorption circuit and switching tube protection circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201225495A (en) * 2010-12-15 2012-06-16 Richtek Technology Corp Shunt regulator, flyback converter and control method for its output feedback
US9099952B2 (en) * 2011-12-12 2015-08-04 Hyundai Motor Company Apparatus and method for controlling switching devices for DC motor
US20190020269A1 (en) * 2016-01-12 2019-01-17 Danmarks Tekniske Universitet Resonant power converter with dead-time control of synchronous rectification circuit
TW201944712A (en) * 2018-04-08 2019-11-16 大陸商昂寶電子(上海)有限公司 Quasi-resonance flyback switching power supply system
US20200287456A1 (en) * 2019-03-06 2020-09-10 Infineon Technologies Ag Analog predictive dead-time

Also Published As

Publication number Publication date
TW202241044A (en) 2022-10-16
CN113162425A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
US11671020B2 (en) Flyback converter, control circuit and control method thereof
US10819226B2 (en) Systems and methods for reducing electromagnetic interference using switching frequency jittering
US11190108B2 (en) Switching circuit, synchronous rectification control circuit and control method thereof
US9431906B2 (en) Voltage converter circuit and associated control method to improve transient performance
US11424687B2 (en) Switching control circuit, switching control method and flyback converter thereof
US8880969B2 (en) Switching converter with pulse skipping mode and control method thereof
US20220069718A1 (en) System and method for controlling active clamp flyback converter
WO2019085548A1 (en) Synchronous rectification boost converter, and synchronous rectification control circuit and method
US11411506B2 (en) Control circuit and switching converter
US9647541B2 (en) Hysteretic control DC/DC converter switching frequency with reduced dependence on voltage and current
CN103312200A (en) Power converter, current limiting unit, control circuit and related control method
US20090231889A1 (en) Method and apparatus for ac to dc power conversion with reduced harmonic current
CN109004840B (en) Control method for improving output precision of switching power supply
US11075579B2 (en) Switching converter, switching time generation circuit and switching time control method thereof
CN112134461A (en) Multi-mode control for multiple output voltage power converters
CN109067178B (en) Control system and method for mode smooth switching of in-phase buck-boost converter
CN203352469U (en) Power Converter, Current Limiting Unit and Control Circuit
TW202110058A (en) Method For Driving An Electronic Switch In A Power Converter Circuit And Control Circuit
CN110912405A (en) Four-switch buck-boost converter based on voltage mode control
Cheng et al. 10.6 A 30MHz hybrid buck converter with 36mV droop and 125ns 1% settling time for a 1.25 A/2ns load transient
US20110254537A1 (en) Method and Apparatus for Detecting CCM Operation of a Magnetic Device
TWI821742B (en) Apparatus and method for controlling dead time of active clamp flyback converter power supply
TW202333440A (en) Dynamic intra-pulse-sequence switch transition-time controller
CN115051577A (en) Flyback converter and IGBT (insulated Gate Bipolar transistor) driving power supply
CN110768533B (en) Power supply controller and related control method