TWI820090B - semiconductor memory device - Google Patents

semiconductor memory device Download PDF

Info

Publication number
TWI820090B
TWI820090B TW108107098A TW108107098A TWI820090B TW I820090 B TWI820090 B TW I820090B TW 108107098 A TW108107098 A TW 108107098A TW 108107098 A TW108107098 A TW 108107098A TW I820090 B TWI820090 B TW I820090B
Authority
TW
Taiwan
Prior art keywords
channel transistor
data latch
type layer
gate
wiring
Prior art date
Application number
TW108107098A
Other languages
Chinese (zh)
Other versions
TW202011574A (en
Inventor
中圭祐
佐貫朋也
前田高志
四方剛
青地英明
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202011574A publication Critical patent/TW202011574A/en
Application granted granted Critical
Publication of TWI820090B publication Critical patent/TWI820090B/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

實施形態提供一種可達成小型化的資料鎖存電路及半導體記憶裝置。 The embodiment provides a data latch circuit and a semiconductor memory device that can be miniaturized.

實施形態之資料鎖存電路,具備第1n通道型電晶體、及第1p通道型電晶體。前述第1n通道型電晶體的閘極和前述第1p通道型電晶體的閘極為共通。 The data latch circuit of the embodiment includes a first n-channel transistor and a first p-channel transistor. The gate of the first n-channel transistor and the gate of the first p-channel transistor are common.

Description

半導體記憶裝置 semiconductor memory device [關連申請案] [Related Application]

本申請案,享受以日本專利申請案2018-172343號(申請日:2018年9月14日)為基礎申請案之優先權。本申請案藉由參照此基礎申請案而包含基礎申請案的全部內容。 This application enjoys the priority of the application based on Japanese Patent Application No. 2018-172343 (filing date: September 14, 2018). This application incorporates the entire contents of the basic application by reference to this basic application.

實施形態有關資料鎖存電路及半導體記憶裝置。 The embodiment relates to a data latch circuit and a semiconductor memory device.

近年,搭載了NAND型的快閃記憶體之半導體記憶裝置中,為了讀出蓄積於各記憶體單元(cell)之資料,會使用感測放大器。若欲將記憶體單元高度積體化,同時維持資料轉送速度,則連接至感測放大器的資料鎖存電路的數量會增加,導致全體的面積增大。 In recent years, in semiconductor memory devices equipped with NAND flash memory, sense amplifiers are used in order to read data stored in each memory cell. If the memory unit is to be highly integrated while maintaining data transfer speed, the number of data latch circuits connected to the sense amplifier will increase, resulting in an increase in the overall area.

實施形態提供一種可達成小型化的資料鎖存電路及半導體記憶裝置。 The embodiment provides a data latch circuit and a semiconductor memory device that can be miniaturized.

實施形態之資料鎖存電路,具備第1n通道型電晶體、及第1p通道型電晶體。前述第1n通道型電晶體的閘極和前 述第1p通道型電晶體的閘極為共通。 The data latch circuit of the embodiment includes a first n-channel transistor and a first p-channel transistor. The gate and front of the aforementioned 1n-channel transistor The gate electrodes of the first p-channel transistors are common.

實施形態之半導體記憶裝置,具備:感測放大器、及前述資料鎖存電路、及相互隔離而層積之複數個電極膜、及貫通前述複數個電極膜之半導體構件、及設於前述電極膜與前述半導體構件之間之電荷蓄積構件、及連接至前述半導體構件的一端之源極線、及連接至前述半導體構件的另一端與前述感測放大器之間之位元線。 A semiconductor memory device according to an embodiment includes a sense amplifier, the data latch circuit, a plurality of electrode films separated from each other and laminated, a semiconductor member penetrating the plurality of electrode films, and a semiconductor member provided between the electrode film and A charge accumulation member between the semiconductor members, a source line connected to one end of the semiconductor member, and a bit line connected between the other end of the semiconductor member and the sense amplifier.

(第1實施形態) 以下,說明第1實施形態。 圖1為本實施形態之半導體記憶裝置示意截面圖。 圖2為本實施形態之半導體記憶裝置的感測放大器電路示意平面圖。 圖3為本實施形態之資料鎖存電路示意平面圖。 圖4(a)為1個資料鎖存電路示意平面圖,(b)為其電路圖。 圖5為本實施形態之半導體記憶裝置的記憶體單元示意截面圖。 另,各圖為模型化之物,構成要素適當地被省略或強調。此外,圖面之間,各構成要素的數量及尺寸比未必一致。 如圖1所示,本實施形態之半導體記憶裝置1中,設有控制電路基板10及記憶體陣列基板80。控制電路基板10中,層積有矽基板11與層間絕緣膜12,記憶體陣列基板80中,層積有矽基板81與層間絕緣膜82。控制電路基板10與記憶體陣列基板80,是以層間絕緣膜12和層間絕緣膜82相互面對面之方向被貼合。 首先,說明控制電路基板10。 如圖2所示,控制電路基板10中,在矽基板11的上層部分與層間絕緣膜12(參照圖1)內,形成有控制電路。在控制電路設定有感測放大器區域13,在感測放大器區域13設有複數個感測放大器電路14。各感測放大器電路14中,1個感測放大器15、及複數個例如5個資料鎖存電路16排列成一列。感測放大器15,將從記憶體陣列基板80傳達而來的電子訊號循序地(sequential)檢測成為二元值的資料。各資料鎖存電路16,將感測放大器15檢測到的資料暫時性地保持。另,圖2、圖3、圖4(a)中,為求圖示簡便,省略層間絕緣膜12。 以下,有關控制電路基板10,為求說明簡便,採用XYZ正交座標系。將複數個感測放大器電路14被排列之方向訂為「X方向」,將各感測放大器電路14中感測放大器15及資料鎖存電路16被排列之方向訂為「Y方向」,將相對於X方向及Y方向雙方而言正交之方向訂為「Z方向」。Z方向當中,亦將從矽基板11朝向層間絕緣膜12之方向稱為「上」,而將其相反方向稱為「下」,但此表現僅是為了方便,和重力的方向無關。 如圖2及圖3所示,感測放大器區域13中,複數個資料鎖存電路16沿著X方向及Y方向被排列成矩陣狀。沿著Y方向被排列之複數個資料鎖存電路16,隸屬於相同的感測放大器電路14,沿著X方向被排列之複數個資料鎖存電路16,隸屬於相異的感測放大器電路14。沿著Y方向被排列之複數個資料鎖存電路16的佈局,為同一。另一方面,於X方向相鄰之資料鎖存電路16的佈局,相互呈鏡像。 如圖4(a)所示,在矽基板11上,導電型為n型的n井21與導電型為p型的p井22各自設有複數個。n井21與p井22沿著X方向交互排列。各n井21及各p井22朝Y方向延伸,橫跨沿著Y方向排列之所有資料鎖存電路16而配置。 各資料鎖存電路16,橫跨於X方向相鄰之1道n井21與1道p井22而形成。某一資料鎖存電路16,和配置於X方向的一方側之另一資料鎖存電路16共有1道n井21,和配置於X方向的另一方側之另一資料鎖存電路16共有p井22。 以下,說明各資料鎖存電路16的構成。 如圖3及圖4(a)所示,各資料鎖存電路16中,在n井21上,設有導電型為p型的p型層31~36。p型層31~36,係相互隔離,沿著Y方向依此順序被排列成一列。於Y方向相鄰之資料鎖存電路16間,p型層36和p型層31係接續。此外,在p型層31與p型層32之間、p型層32與p型層33之間、p型層34與p型層35之間、及p型層35與p型層36之間,各自介著n井21的一部分。另一方面,在p型層33與p型層34之間,設有STI(Shallow Trench Isolation:元件分離絕緣膜)23。 藉此,於Y方向相鄰之2個資料鎖存電路16當中,一方的資料鎖存電路16的p型層34、35、36,及另一方的資料鎖存電路16的p型層31、32、33,會和介於該些p型層之間的n井21共同形成1個島狀的半導體區域(主動區域)。但,在由構成各感測放大器電路14的複數個資料鎖存電路16所組成之列的兩端部,p型層31~33、或p型層34~36各自形成島狀的半導體區域。 此外,各資料鎖存電路16中,在p井22上,設有導電型為n型的n型層41~45。n型層41~45,係相互隔離,沿著Y方向依此順序被排列成一列。於Y方向相鄰之資料鎖存電路16,n型層45和n型層41係接續。此外,在n型層41與n型層42之間、n型層42與n型層43之間、n型層43與n型層44之間、n型層44與n型層45之間,各自介著p井22的一部分。 藉此,於各p井22上,沿著Y方向被排列之複數組的n型層41~45,會和介於該些n型層之間的p井22共同形成1道線狀的半導體區域(主動區域)。 於感測放大器區域13,在藉由p型層34~36、p型層31~33、及介於該些p型層之間的n井21而各自形成之複數個島狀的半導體區域,與藉由n型層41~45及介於該些n型層之間的p井22而各自形成之複數個線狀的半導體區域的相互間,配置有STI23。 各資料鎖存電路16中,設有閘極51~56。閘極51~56大致朝X方向延伸,橫斷上述的半導體區域。在閘極51~56與半導體區域之間設有閘極絕緣膜(未圖示)。以下,說明閘極51~56、與p型層31~36及n型層41~45之位置關係。 如圖3所示,閘極51,以橫斷n井21中的p型層31與p型層32之間的部分的正上方區域之方式配置。於X方向相鄰之資料鎖存電路16,閘極51為共通。也就是說,朝X方向延伸之1道閘極51,在於X方向相鄰而佈局相互為鏡像的2個資料鎖存電路16的各者,係配置於n井21中的p型層31與p型層32之間的部分的正上方區域。具體而言,複數個資料鎖存電路16當中,當將於X方向相鄰而共有n井21的2個資料鎖存電路16訂為「資料鎖存電路16a」及「資料鎖存電路16b」時,隸屬於資料鎖存電路16a之p型層31a及p型層32a,和隸屬於資料鎖存電路16b之p型層31b及p型層32b係共有1道閘極51。 閘極52,以橫斷p井22中的n型層41與n型層42之間的部分的正上方區域之方式配置。於X方向相鄰之資料鎖存電路16,閘極52為共通。也就是說,朝X方向延伸之1道閘極52,在於X方向相鄰而佈局相互為鏡像的2個資料鎖存電路16的各者,係配置於p井22中的n型層41與n型層42之間的部分的正上方區域。具體而言,複數個資料鎖存電路16當中,當將於X方向相鄰而共有p井22的2個資料鎖存電路16訂為「資料鎖存電路16a」及「資料鎖存電路16c」時,隸屬於資料鎖存電路16a之n型層41a及n型層42a,和隸屬於資料鎖存電路16c之n型層41c及n型層42c係共有1道閘極52。 共有閘極51的2個資料鎖存電路16、和共有閘極52的2個資料鎖存電路16,其組合係相異。如上述般,某一資料鎖存電路16a,和X方向一方側的資料鎖存電路16b共有閘極51,和X方向另一方側的資料鎖存電路16c共有閘極52。感測放大器區域13全體中,閘極51與閘極52沿著X方向交互且相互隔離而排列。 閘極53,以橫斷n井21中的p型層32與p型層33之間的部分的正上方區域、及橫斷p井22中的n型層42與n型層43之間的部分的正上方區域之方式配置。從Z方向看來,閘極53的形狀例如為曲柄狀。 閘極54,以橫斷n井21中的p型層32與p型層35之間的部分的正上方區域、及橫斷p井22中的n型層43與n型層44之間的部分的正上方區域之方式配置。從Z方向看來,閘極54的形狀例如為曲柄狀。 閘極55,以橫斷n井21中的p型層35與p型層36之間的部分的正上方區域之方式配置。於X方向相鄰之資料鎖存電路16,閘極55為共通。也就是說,若以上述例子來說,在資料鎖存電路16a與資料鎖存電路16b之間,閘極55為共通。 閘極56,以橫斷p井22中的n型層44與n型層45之間的部分的正上方區域之方式配置。於X方向相鄰之資料鎖存電路16,閘極56為共通。也就是說,若以上述例子來說,在資料鎖存電路16a與資料鎖存電路16c之間,閘極56為共通。 如同上述的閘極51與閘極52之關係般,共有閘極55的2個資料鎖存電路16、和共有閘極56的2個資料鎖存電路16,其組合係相異。如上述般,某一資料鎖存電路16a,和X方向一方側的資料鎖存電路16b共有閘極55,和X方向另一方側的資料鎖存電路16c共有閘極56。感測放大器區域13全體中,閘極55與閘極56沿著X方向交互且相互隔離而排列。 藉此,於各資料鎖存電路16,會形成4個p通道型電晶體p1~p4、及4個n通道型電晶體n1~n4。 更詳細地說,藉由p型層31、p型層32、n井21中的p型層31與p型層32之間的部分、及閘極51,來形成p通道型電晶體p3。藉由p型層32、p型層33、n井21中的p型層32與p型層33之間的部分、及閘極53,來形成p通道型電晶體p4。藉由p型層34、p型層35、n井21中的p型層34與p型層35之間的部分、及閘極54,來形成p通道型電晶體p2。藉由p型層35、p型層36、井21中的p型層35與p型層36之間的部分、及閘極55,來形成p通道型電晶體p1。 此外,藉由n型層41、n型層42、p井22中的n型層41與n型層42之間的部分、及閘極52,來形成n通道型電晶體n4。藉由n型層42、n型層43、p井22中的n型層42與n型層43之間的部分、及閘極53,來形成n通道型電晶體n3。藉由n型層43、n型層44、p井22中的n型層43與n型層44之間的部分、及閘極54,來形成n通道型電晶體n2。藉由n型層44、n型層45、p井22中的n型層44與n型層45之間的部分、及閘極56,來形成n通道型電晶體n1。 像這樣,p通道型電晶體p4和n通道型電晶體n3,共有1道閘極53。此外,p通道型電晶體p2和n通道型電晶體n2,共有1道閘極54。 在各資料鎖存電路16,設有觸點61~73。 觸點61的下端連接至p型層31及p型層36。觸點62的下端連接至n型層41及n型層45。觸點61及62,被於Y方向相鄰之2個資料鎖存電路16共有。 觸點63的下端連接至閘極51。觸點63,如同閘極51般,被於X方向相鄰之2個資料鎖存電路16共有。觸點64連接至閘極52的下端。觸點64,如同閘極52般,被於X方向相鄰之2個資料鎖存電路16共有。 觸點65的下端連接至n型層42。觸點66的下端連接至閘極53。觸點67的下端連接至p型層33。觸點68的下端連接至n型層43。觸點69的下端連接至p型層34。觸點70的下端連接至閘極54。觸點71的下端連接至n型層44。 觸點72的下端連接至閘極55。觸點72,如同閘極55般,被於X方向相鄰之2個資料鎖存電路16共有。觸點73的下端連接至閘極56。觸點73,如同閘極56般,被於X方向相鄰之2個資料鎖存電路16共有。 在各資料鎖存電路16,設有配線76及77。 如圖4(a)所示,配線76,連接至觸點70的上端、及比此觸點70還配置於圖示的上側之觸點65的上端及觸點67的上端。配線77,連接至觸點66的上端、及比此觸點66還配置於圖示的下側之觸點71的上端及觸點69的上端。另,上述的各觸點,亦可包含朝Z方向排列之複數段的觸點,該些複數段的觸點亦可透過中間配線而連接。例如,觸點61~64、72及73,亦可各自包含朝Z方向排列之2段以上的觸點,和配線76及77透過設於同層之中間配線而連接。 各電晶體如上述般接線的結果,於各資料鎖存電路16,會構成圖4(b)所示之電路。 也就是說,p通道型電晶體p1的源極/汲極的一方,和p通道型電晶體p2的源極/汲極的一方,為共通的p型層35,因此相互連接。p通道型電晶體p2的源極/汲極的另一方,透過觸點69、配線77、觸點71,連接至n通道型電晶體n1的源極/汲極的一方,及n通道型電晶體n2的源極/汲極的一方,並且透過觸點69、配線77、觸點66,連接至p通道型電晶體p4及n通道型電晶體n3的共通閘極53。 另一方面,p通道型電晶體p3的源極/汲極的一方,和p通道型電晶體p4的源極/汲極的一方,為共通的p型層32,因此相互連接。p通道型電晶體p4的源極/汲極的另一方,透過觸點67、配線76、觸點65,連接至n通道型電晶體n4的源極/汲極的一方,及n通道型電晶體n3的源極/汲極的一方,並且透過觸點67、配線76、觸點70,連接至p通道型電晶體p2及n通道型電晶體n2的共通閘極54。 此外,在p通道型電晶體p1的源極/汲極的另一方(p型層36),及p通道型電晶體p3的源極/汲極的另一方(p型層31),透過觸點61而被施加第1基準電位亦即電源電位VDD。n通道型電晶體n2的源極/汲極的另一方,及n通道型電晶體n3的源極/汲極的另一方,為共通的n型層43,透過觸點68而被施加第2基準電位亦即接地電位GND。另,第2基準電位不限定於接地電位,但為比第1基準電位還低的電位。 在n通道型電晶體n1的閘極56,及n通道型電晶體n4的閘極52,各自透過觸點73及觸點64而被輸入控制訊號Vc。在p通道型電晶體p1的閘極55及p通道型電晶體p3的閘極51,各自透過觸點72及觸點63而被輸入選擇訊號Vs1及Vs2。n通道型電晶體n1的源極/汲極的另一方(n型層45),及n通道型電晶體n4的源極/汲極的另一方(n型層41),可透過觸點62而連接至感測放大器15,而被施加從感測放大器15輸出之資料訊號SA。資料鎖存電路16中,n通道型電晶體n1及n4作用成為轉移閘、n通道型電晶體n2及n3作用成為驅動器、p通道型電晶體p1~p4作用成為負載。 接下來,說明記憶體陣列基板80。 如圖5所示,記憶體陣列基板80中,在矽基板81上設有由導電性材料所構成之源極線83。在源極線83上,設有層積體85。層積體85中,絕緣膜86及電極膜87交互層積。 在層積體85內,設有朝絕緣膜86及電極膜87的層積方向延伸之芯構件90。芯構件90例如由氧化矽物等的絕緣性材料所構成。芯構件90的形狀為柱狀,例如為略圓柱狀。在芯構件90的周圍及下面上,設有矽柱91。矽柱91的下端連接至源極線83。 在矽柱91的周圍,依序層積有穿隧絕緣膜92、電荷蓄積膜93、阻擋絕緣膜94。穿隧絕緣膜92,為一通常是絕緣性,但若被施加在半導體記憶裝置1的驅動電壓的範圍內之規定的電壓則會流通穿隧電流之膜,例如為單層的氧化矽膜,或依序層積氧化矽層、氮化矽層及氧化矽層而成之ONO膜。 電荷蓄積膜93為具有蓄積電荷的能力之膜,例如由包含電子的捕陷區(trap site)之材料所構成,例如由氮化矽物所構成。另,作為電荷蓄積部,亦可設置導電性的浮遊閘極,來取代絕緣性的電荷蓄積膜93。在此情形下,浮遊閘極會依每一電極膜87被隔斷。阻擋絕緣膜94,為一即使在半導體記憶裝置1的驅動電壓的範圍內被施加電壓仍實質上不會有電流流通之膜。阻擋絕緣膜94,例如包含介電率比氧化矽物還高的材料。 在層積體85的側方及上方設有層間絕緣膜82。在層間絕緣膜82內且層積體85上,設有插栓96及位元線97。矽柱91的上端,透過插栓96連接至位元線97。位元線97,連接至控制電路基板10的感測放大器15(參照圖2)。 藉由這樣的構成,在電極膜87與矽柱91的每一交叉部分,會形成記憶體單元電晶體。記憶體單元電晶體中,矽柱91成為通道,電極膜87成為閘極,阻擋絕緣膜94成為閘極絕緣膜。 又,藉由將電荷蓄積在電荷蓄積膜93,使記憶體單元電晶體的閾值變化,來記憶資料。記憶體單元電晶體的閾值,例如能夠取8水準的值。藉由,在1個記憶體單元電晶體能夠記憶3位元的資料。 接下來,說明本實施形態之半導體記憶裝置的動作。 如圖4(b)所示,初始狀態中,選擇訊號Vs1及Vs2、控制訊號Vc1及Vc2、資料訊號SA皆為「L」(低位準)。因此,p通道型電晶體p1及p3為ON狀態,n通道型電晶體n1及n4為OFF狀態。 由此狀態,針對使資料保持之資料鎖存電路16,將選擇訊號Vs2設為「H」(高位準),將p通道電晶體p3設為OFF狀態。此外,將控制訊號Vc2設為「H」,將n通道型電晶體n4設為ON狀態。藉此,p通道型電晶體p4和n通道型電晶體n3的連接點N2的電位會成為「L」。其結果,p通道型電晶體p2成為ON狀態,n通道型電晶體n2成為OFF狀態,因此p通道型電晶體p2和n通道型電晶體n2的連接點N1的電位會成為「H」。藉此,p通道型電晶體p4成為OFF狀態,n通道型電晶體n3成為ON狀態,因此連接點N2的電位會穩定在「L」。其後,將選擇訊號Vs2返回「L」,將p通道電晶體p3設為ON狀態。此外,將控制訊號Vc2返回「L」,將n通道型電晶體n4設為OFF狀態。 如圖5所示,當從記憶體單元電晶體讀出資料時,在源極線83與位元線97之間電流會流通,此電流被輸入至圖2所示感測放大器電路14的感測放大器15。感測放大器15,基於被輸入的電流來檢測值,對資料鎖存電路16輸出成為資料訊號SA。此時,感測放大器15,是將資料訊號SA暫且設為「H」後,再輸出原本的資料訊號SA。接下來,將控制訊號Vc1設為「H」,將n通道型電晶體n1設為ON狀態,而將資料訊號SA的值寫入資料鎖存電路16。 當資料訊號SA為「H」的情形下,因n通道型電晶體n1為ON狀態,連接點N1的電位會維持「H」,是故連接點N2的電位會維持「L」而被固定。 當資料訊號SA為「L」的情形下,因n通道型電晶體n1為ON狀態,連接點N1的電位會成為「L」。因此,p通道型電晶體p4成為ON狀態,n通道型電晶體n3成為OFF狀態。是故,連接點N2的電位成為「H」。藉此,p通道型電晶體p2成為OFF狀態,n通道型電晶體n2成為ON狀態。其結果,連接點N1的電位被固定在「L」。 總結之,當資料訊號SA為「H」的情形下,連接點N1的電位被固定在「H」、連接點N2的電位被固定在「L」。另一方面,當資料訊號SA為「L」的情形下,連接點N1的電位被固定在「L」、連接點N2的電位被固定在「H」。依此方式,資料鎖存電路16能夠記憶資料訊號SA的電位,而能夠保持資料訊號SA所表示之值。例如,令資料訊號SA的電位「H」對應至值「0」,令電位「L」對應至值「1」,藉此便能保持二元值的資料。 接下來,說明本實施形態之效果。 本實施形態中,藉由1道閘極53,來實現p通道型電晶體p4的閘極及n通道型電晶體n3的閘極這兩者。此外,藉由1道閘極54,來實現p通道型電晶體p2的閘極及n通道型電晶體n2的閘極這兩者。藉此,會減少資料鎖存電路16內的閘極的道數,能夠謀求資料鎖存電路16的小型化。 此外,於各資料鎖存電路16內,將p通道型電晶體p1~p4與n通道型電晶體n1~n4在X方向分開配置,將於X方向相鄰之資料鎖存電路16的佈局做成相互鏡像。藉此,在於X方向相鄰之資料鎖存電路16間,能夠將閘極51、52、55、56共通化。藉此,也能謀求資料鎖存電路16的小型化。 又,本實施形態中,將包含感測放大器區域13之控制電路設於控制電路基板10,將記憶體單元電晶體設於記憶體陣列基板80。像這樣,若將控制電路形成於專用的基板,則在其製造過程中,不會受到記憶體單元電晶體的形成所必要之熱歷程,因此能夠將p通道型電晶體p1~p4及n通道型電晶體n1~n4本體微細化。藉此,也能將資料鎖存電路16小型化。 藉由將資料鎖存電路16小型化,能夠將感測放大器電路14小型化,乃至於將半導體記憶裝置1全體小型化。反過來說,若將感測放大器電路14的面積設為一定,則在各感測放大器電路14能夠設置更多的資料鎖存電路16。藉此,即使伴隨記憶體單元電晶體的微細化,而造成通道面積變小、電荷蓄積膜93中蓄積的1個電子的增減所致之閾值變動變大、資料的寫入及讀出需要長時間,各感測放大器電路14仍能保持許多的資料,因此能夠將資料的轉送速度保持一定。 (第2實施形態) 接下來,說明第2實施形態。 圖6為本實施形態之資料鎖存電路示意平面圖。 圖7(a)為1個資料鎖存電路示意平面圖,(b)為其電路圖。 如圖6及圖7(a)所示,本實施形態之半導體記憶裝置2,相較於前述的第1實施形態之半導體記憶裝置1(參照圖1~圖5),p通道型電晶體p1~p4、及n通道型電晶體n1~n4的構成相同,但配線的形狀相異。其結果,本實施形態之資料鎖存電路18形成的區域,和第1實施形態之資料鎖存電路16形成的區域相異。 以下具體說明之。 本實施形態之感測放大器區域13中,n井21、p井22、p型層31~36、n型層41~45、閘極51~56、觸點61~73的形狀、位置關係及連接關係,和第1實施形態同樣。 但,本實施形態中,設有配線78及79,來取代第1實施形態的配線76及77。配線78,連接至觸點70的上端、及比此觸點70還配置於圖示的下側之觸點65的上端及觸點67的上端。配線79,連接至觸點66的上端、及比此觸點66還配置於圖示的上側之觸點71的上端及觸點69的上端。 藉此,各資料鎖存電路18,對應於矩形的區域,該矩形的區域涵括配置於n井21而周圍藉由STI23被包圍之1個島狀的半導體區域、及配置於p井22之帶狀的半導體區域的一部分。島狀的半導體區域中,p型層34、35、36、31、32、33依此順序排列。p型層36和p型層31接續,但其以外的p型層則相互隔離,在相鄰之p型層之間介著n井21的一部分。帶狀的半導體區域的一部分中,n型層43、44、45、41、42依此順序排列。n型層45和n型層41接續,但其以外的n型層則相互隔離,在相鄰之n型層之間介著p井22的一部分。 如圖7(b)所示,按照這樣的構成,也能實現和第1實施形態同樣的電路。 本實施形態中的上述以外之構成、動作及效果,和前述的第1實施形態相同。 (第3實施形態) 接下來,說明第3實施形態。 圖8為本實施形態之資料鎖存電路中的半導體區域、閘極及觸點示意平面圖。 圖9為本實施形態之資料鎖存電路中的半導體區域、閘極、觸點及第1配線層示意平面圖。 圖10為本實施形態之資料鎖存電路中的半導體區域、閘極、觸點、第1配線層、第2配線層及第3配線層示意平面圖。 圖11(a)~(c)為本實施形態之1個資料鎖存電路示意平面圖,(a)示意半導體區域、閘極及觸點,(b)在(a)中更示意第1配線層,(c)在(b)中更示意第2配線層及第3配線層。 圖12為本實施形態之4個資料鎖存電路示意平面圖。 圖13(a)為本實施形態之1個資料鎖存電路示意平面圖,(b)為其電路圖。 另,圖8~圖10,為複數個資料鎖存電路間的佈局的關係概略性示意圖,為便於觀看圖面,各資料鎖存電路的詳細構成被一部分省略。另一方面,圖11(a)~(c)及圖13(a),為1個資料鎖存電路的構成詳細示意圖,未示意和其他資料鎖存電路之關係。圖12示意它們的中間的概念,揭示2行2列的4個資料鎖存電路。 本實施形態之半導體記憶裝置3,相較於前述的第1實施形態之半導體記憶裝置1(參照圖1~圖5),資料鎖存電路的構成相異。記憶體陣列基板80的構成,和第1實施形態相同。 首先,說明設於矽基板11上的井、n型層、p型層及閘極。 如圖8所示,本實施形態之半導體記憶裝置3中,在矽基板11上,n井21與p井22沿著X方向交互排列。各n井21及各p井22朝Y方向延伸。又,各資料鎖存電路116,被設定橫跨1道n井21、及配置於其兩側的2道p井22的各自的一半的區域。X方向之資料鎖存電路116的長度,等於1道n井21的長度及1道p井22的長度之合計。 半導體記憶裝置3的感測放大器區域13中,複數個資料鎖存電路1沿著X方向及Y方向被排列成矩陣狀。於X方向相鄰之2個資料鎖存電路116的佈局相互為鏡像,於Y方向相鄰之2個資料鎖存電路116的佈局亦相互為鏡像。 針對圖11(a)~(c)及圖13(a),為便於說明,將各資料鎖存電路116中包含的p井22,分成p井22a及p井22b來說明。於各資料鎖存電路116內,p井22a和p井22b介著n井21而相互隔離。另一方面,某一資料鎖存電路116的p井22a,和此資料鎖存電路116於X方向相鄰之資料鎖存電路116的p井22b接續。 如圖11(a)所示,在p井22a上,設有導電型為n型的n型層141~143。n型層141~143,係相互隔離,沿著Y方向依此順序被排列成一列。於Y方向相鄰之資料鎖存電路116中,n型層141彼此接續,n型層143彼此亦接續。此外,在n型層141與n型層142之間、n型層142與n型層143之間,各自介著p井22a的一部分。 藉此,於各p井22a上,沿著Y方向被排列之複數組的n型層141~143,會和介於該些n型層之間的p井22a共同形成1道線狀的半導體區域(主動區域)111。半導體區域111,包含各資料鎖存電路116中的n型層141、p井22a中的n型層141與n型層142之間的部分、n型層142、p井22a中的n型層142與n型層143之間的部分、及n型層143。1道半導體區域111,橫跨沿著Y方向排列之複數個資料鎖存電路116而朝Y方向延伸。 在n井21上,設有導電型為p型的p型層131及132。p型層131和p型層132於Y方向隔離。於Y方向相鄰之資料鎖存電路116中,p型層132彼此接續。在p型層131與p型層132之間,介著n井21的一部分。 藉此,於各n井21上,橫跨於Y方向相鄰之2個資料鎖存電路116,p型層131、n井21中的p型層131與p型層132之間的部分、共通的p型層132、n井21中的p型層132與p型層131之間的部分、及p型層131,會沿著Y方向依此順序接續性地排列,形成島狀的半導體區域(主動區域)112。 此外,在n井21上,設有導電型為p型的p型層133及134。p型層133和p型層134於Y方向隔離。於Y方向相鄰之資料鎖存電路116中,p型層133彼此接續。在p型層133與p型層134之間,介著n井21的一部分。 藉此,於各n井21上,橫跨於Y方向相鄰之2個資料鎖存電路116,p型層134、n井21中的p型層134與p型層133之間的部分、共通的p型層133、n井21中的p型層133與p型層134之間的部分、及p型層134,會沿著Y方向依此順序接續性地排列,形成島狀的半導體區域(主動區域)113。 在p井22b上,設有導電型為n型的n型層144~146。n型層144~146,係相互隔離,沿著Y方向依此順序被排列成一列。於Y方向相鄰之資料鎖存電路116中,n型層144彼此接續,n型層146彼此亦接續。此外,在n型層144與n型層145之間、n型層145與n型層146之間,各自介著p井22b的一部分。 藉此,於各p井22b上,沿著Y方向被排列之複數組的n型層144~146,會和介於該些n型層之間的p井22b共同形成1道線狀的半導體區域(主動區域)114。半導體區域114,包含各資料鎖存電路116中的n型層144、p井22b中的n型層144與n型層145之間的部分、n型層145、p井22b中的n型層145與n型層146之間的部分、及n型層146。1道半導體區域114,橫跨沿著Y方向排列之複數個資料鎖存電路116而延伸。 感測放大器區域13全體中,半導體區域111沿著Y方向接續性地延伸。半導體區域112沿著Y方向斷續性地排列成一列。半導體區域113亦沿著Y方向斷續性地排列成一列。半導體區域114沿著Y方向接續性地延伸。 半導體區域111~114,沿著X方向依此順序排列,相互隔離。n型層141、p型層133、及n型層144的Y方向之位置相互略相同,n型層142、p型層131、p型層134、及n型層145的Y方向之位置相互略相同,n型層143、p型層132、及n型層146的Y方向之位置相互略相同。 在半導體區域111~114的相互間,配置有STI23。共有半導體區域112的2個資料鎖存電路116、和共有半導體區域113的2個資料鎖存電路116,其組合係相異。也就是說,某一資料鎖存電路116,和Y方向一方側的資料鎖存電路116共有半導體區域112,和Y方向另一方側的資料鎖存電路116共有半導體區域113。 於各資料鎖存電路116,設有閘極151~154。閘極151~154大致朝X方向延伸,橫斷上述的半導體區域111~114。從Z方向看來,閘極151~154的形狀為朝X方向延伸之帶狀。在閘極151~154與半導體區域111~114之間設有閘極絕緣膜(未圖示)。以下,說明閘極151~154、與半導體區域111~114之位置關係。 閘極151橫斷半導體區域111。具體而言,閘極151的一部分被配置於p井22a中的n型層141與n型層142之間的部分的正上方區域。於X方向相鄰之資料鎖存電路116,閘極151為共通。也就是說,朝X方向延伸之1道閘極151,在於X方向相鄰而佈局相互鏡像之2個資料鎖存電路116的各者,將半導體區域111橫斷。 閘極152將半導體區域111及半導體區域112橫斷。具體而言,閘極152的一部分被配置於p井22a中的n型層142與n型層143之間的部分的正上方區域,其他一部分被配置於n井21中的p型層131與p型層132之間的部分的正上方區域。閘極152,被配置於各資料鎖存電路116的內部,並未跨越相鄰之資料鎖存電路116間。 閘極153將半導體區域113及半導體區域114橫斷。具體而言,閘極153的一部分被配置於n井21中的p型層133與p型層144之間的部分的正上方區域,其他一部分被配置於p井22b中的n型層144與n型層145之間的部分的正上方區域。閘極153,被配置於各資料鎖存電路116的內部,並未跨越相鄰之資料鎖存電路116間。 閘極154橫斷半導體區域114。具體而言,閘極154的一部分被配置於p井22b中的n型層145與n型層146之間的部分的正上方區域。於X方向相鄰之資料鎖存電路116,閘極154為共通。也就是說,朝X方向延伸之1道閘極154,在於X方向相鄰而佈局相互鏡像之2個資料鎖存電路116的各者,將半導體區域114橫斷。 共有閘極151的2個資料鎖存電路116、和共有閘極154的2個資料鎖存電路116,其組合係相異。某一資料鎖存電路116,和X方向一方側的資料鎖存電路116共有閘極151,和X方向另一方側的資料鎖存電路116共有閘極154。感測放大器區域13全體中,閘極151和閘極153沿著X方向被排列成一列,閘極152和閘極154沿著X方向被排列成一列。 如圖13(a)及(b)所示,藉由上述的構成,於各資料鎖存電路116,形成2個p通道型電晶體p2及p4,與4個n通道型電晶體n1~n4。 更詳細地說,藉由n型層141、n型層142、p井22a中的n型層141與n型層142之間的部分、及閘極151,形成n通道型電晶體n1。藉由n型層142、n型層143、p井22a中的n型層142與n型層143之間的部分、及閘極152,形成n通道型電晶體n2。藉由n型層144、n型層145、p井22b中的n型層144與n型層145之間的部分、及閘極153,形成n通道型電晶體n3。藉由n型層145、n型層146、p井22b中的n型層145與n型層146之間的部分、及閘極154,形成n通道型電晶體n4。 此外,藉由p型層131、p型層132、n井21中的p型層131與p型層132之間的部分、及閘極152,形成p通道型電晶體p2。藉由p型層133、p型層134、n井21中的p型層133與p型層134之間的部分、及閘極153,來形成p通道型電晶體p4。 像這樣,n通道型電晶體n2和p通道型電晶體p2,共有1道閘極152。n通道型電晶體n3和p通道型電晶體p4,共有1道閘極153。此外,於X方向相鄰之2個資料鎖存電路116中設置的2個n通道型電晶體n1,共有1道閘極151。於X方向相鄰之2個資料鎖存電路116中設置的2個n通道型電晶體n4,共有1道閘極154。 接下來,說明觸點。 如圖11(a)、圖12、圖13(a)所示,在各資料鎖存電路116,設有觸點161~172。從Z方向觀看,觸點165及觸點168的形狀,為Y方向的長度比X方向的長度還長之長圓形。其以外的觸點的形狀,為略圓形。但,圖13(a)中,僅隸屬於1個資料鎖存電路116之觸點以圓或長圓表示,和相鄰的資料鎖存電路116共有之觸點以半圓表示。另,如同第1實施形態般,各觸點亦可包含朝Z方向排列之複數段的觸點,該些複數段的觸點亦可透過中間配線而被連接。中間配線,亦可和後述的第1配線層121或第2配線層122設於同層。 觸點161的下端連接至閘極151。觸點161被於X方向相鄰之2個資料鎖存電路116共有。觸點162的下端連接至n型層141。觸點162被於Y方向相鄰之2個資料鎖存電路116共有。觸點163的下端連接至n型層142。觸點164的下端連接至n型層143。觸點164被於Y方向相鄰之2個資料鎖存電路116共有。像這樣,觸點162、163、164連接至同一半導體區域111,沿著Y方向排列。 觸點165,在Z方向的中間部分連接至閘極153,下端連接至p型層131。從Z方向觀看,觸點165的形狀,為Y方向的長度比X方向的長度還長之長圓形。觸點166的下端連接至p型層132。觸點166被於Y方向相鄰之2個資料鎖存電路116共有。像這樣,觸點165及166連接至同一半導體區域112,沿著Y方向排列。 觸點167的下端連接至p型層133。觸點167被於Y方向相鄰之2個資料鎖存電路116共有。觸點168,在Z方向的中間部分連接至閘極152,下端連接至p型層134。從Z方向觀看,觸點168的形狀,為Y方向的長度比X方向的長度還長之長圓形。像這樣,觸點167及168連接至同一半導體區域113,沿著Y方向排列。 觸點169的下端連接至n型層144。觸點169被於Y方向相鄰之2個資料鎖存電路116共有。觸點170的下端連接至n型層145。觸點171的下端連接至n型層146。觸點171被於Y方向相鄰之2個資料鎖存電路116共有。像這樣,觸點169、170、171連接至同一半導體區域114,沿著Y方向排列。觸點172的下端連接至閘極154。觸點172被於X方向相鄰之2個資料鎖存電路116共有。 在矽基板11及閘極的上方,依序層積有第1配線層121、第2配線層122、第3配線層123。也就是說,第1配線層121位於比閘極151~154還上方,第2配線層122位於比第1配線層121還上層,第3配線層123位於比第2配線層122還上層。 以下,說明第1配線層121。 如圖9、圖11(b)、圖12及圖13(a)所示,第1配線層121中,設有配線121a、配線121b、配線121c。配線121a中,設有幹部121d、枝部121e及121f。配線121a的幹部121d,在各資料鎖存電路116的X方向中央部,亦即半導體區域112與半導體區域113之間,朝Y方向延伸。 幹部121d,跨越沿著Y方向排列的複數個資料鎖存電路116而設置。幹部121d通過閘極152的正上方區域及閘極153的正上方區域。配線121a的枝部121e,從幹部121d朝X方向的一方側延伸出,連接至觸點162的上端。枝部121e被於Y方向相鄰之2個資料鎖存電路116共有。配線121a的枝部121f,從幹部121d朝X方向的另一方側延伸出,連接至觸點171的上端。枝部121f被於Y方向相鄰之2個資料鎖存電路116共有。像這樣,配線121a,透過觸點162連接至n型層141,並且透過觸點171連接至n型層146。 配線121b朝X方向延伸,連接至觸點163的上端及觸點165的上端。藉此,n型層142、p型層131及閘極153,透過觸點163、配線121b及觸點165而相互連接。配線121c亦朝X方向延伸,連接至觸點168的上端及觸點170的上端。藉此,n型層145、p型層134及閘極152,透過觸點170、配線121c、觸點168而相互連接。 接下來,說明第2配線層122。 如圖10、圖12及圖13(a)所示,第2配線層122中,設有配線122a及配線122b。配線122a及122b的形狀,為朝X方向延伸之線狀,橫跨沿著X方向排列的複數個資料鎖存電路116而設置。 配線122a配置成通過閘極151的正上方區域及閘極153的正上方區域,連接至觸點161的上端。另,配線122a亦通過觸點165的正上方區域,但未連接至觸點165。藉此,配線122a透過觸點161連接至閘極151。 配線122b配置成通過閘極152的正上方區域及閘極154的正上方區域,連接至觸點172的上端。另,配線122b亦通過觸點168的正上方區域,但未連接至觸點168。藉此,配線122b透過觸點172連接至閘極154。 接下來,說明第3配線層123。 如圖10、圖11(c)、圖12、圖13(a)所示,第3配線層123中,設有配線123a及配線123b。配線123a及123b的形狀,為朝Y方向延伸之線狀,橫跨沿著Y方向排列的複數個資料鎖存電路116而設置。配線123a及配線123b,沿著X方向交互排列。 配線123a,沿著於X方向相鄰之資料鎖存電路116的交界線而配置,例如隸屬於X方向相鄰之2個資料鎖存電路116,配置於介著STI23而相鄰之半導體區域111及半導體區域114的正上方區域。配線123a,連接至觸點164的上端及觸點169的上端。藉此,配線123a,透過觸點164連接至n型層143,並且透過觸點169連接至n型層144。 配線123b,配置於資料鎖存電路116的X方向中央部,例如配置於各資料鎖存電路116的半導體區域112的正上方區域及半導體區域113的正上方區域。配線123b,連接至觸點166的上端及觸點167的上端。藉此,配線123b,透過觸點166連接至p型層132,並且透過觸點167連接至p型層133。 各電晶體如上述般接線的結果,於各資料鎖存電路116,會構成圖13(b)所示之電路。 也就是說,n通道型電晶體n1的源極/汲極的一方,和n通道型電晶體n2的源極/汲極的一方,為共通之n型層142,因此相互連接。n型層142,透過觸點163、配線121b及觸點165,連接至p通道型電晶體p2的源極/汲極的一方(p型層131)、以及p通道型電晶體p4及n通道型電晶體n3的共通的閘極153。 同樣地,n通道型電晶體n3的源極/汲極的一方,和n通道型電晶體n4的源極/汲極的一方,為共通之n型層145,因此相互連接。n型層145,透過觸點170、配線121c及觸點168,連接至p通道型電晶體p4的源極/汲極的一方(p型層134)、以及p通道型電晶體p2及n通道型電晶體n2的共通的閘極152。 n通道型電晶體n1的源極/汲極的另一方(n型層141)、及n通道型電晶體n4的源極/汲極的另一方(n型層146),各自透過觸點162及觸點171連接至配線121a。配線121a,可連接至感測放大器15,被施加從感測放大器15輸出的資料訊號SA。 n通道型電晶體n2的源極/汲極的另一方(n型層143),透過觸點164連接至第3配線層123的配線123a。n通道型電晶體n3的源極/汲極的另一方(n型層144),透過觸點169連接至第3配線層123的配線123a。在配線123a,被施加作為第2基準電位的接地電位GND之p通道型電晶體p2的源極/汲極的另一方(p型層132),透過觸點166連接至第3配線層123的配線123b。p通道型電晶體n4的源極/汲極的另一方(p型層133),透過觸點167連接至第3配線層123的配線123b。在配線123b,被施加作為第1基準電位之電源電位VDD。 n通道型電晶體n1的閘極151,透過觸點161連接至第2配線層122的配線122a。在配線122a,被輸入控制訊號Vc1。n通道型電晶體n4的閘極154,透過觸點172連接至第2配線層122的配線122b。在配線122b,被輸入控制訊號Vc2。 接下來,說明本實施形態之半導體記憶裝置的動作。 如圖13(b)所示,初始狀態下,控制訊號Vc1及Vc2、資料訊號SA均為「L」。因此,n通道型電晶體n1及n4為OFF狀態。 由此狀態,針對令資料保持之資料鎖存電路116,將控制訊號Vc2設為「H」,將n通道型電晶體n4設為ON狀態。藉此,p通道型電晶體p4和n通道型電晶體n3的連接點N2的電位會成為「L」。其結果,p通道型電晶體p2成為ON狀態,n通道型電晶體n2成為OFF狀態,因此p通道型電晶體p2和n通道型電晶體n2的連接點N1的電位會成為「H」。藉此,p通道型電晶體p4成為OFF狀態,n通道型電晶體n3成為ON狀態,因此連接點N2的電位會穩定在「L」。其後,將控制訊號Vc2返回「L」,將n通道型電晶體n4設為OFF狀態。 然後,感測放大器15,將資料訊號SA暫且設為「H」後,輸出原本的資料訊號SA。接下來,將控制訊號Vc1設為「H」,將n通道型電晶體n1設為ON狀態,而將資料訊號SA的值寫入資料鎖存電路16。 當資料訊號SA為「H」的情形下,因n通道型電晶體n1為ON狀態,連接點N1的電位會維持「H」,是故連接點N2的電位會維持「L」而被固定。 當資料訊號SA為「L」的情形下,因n通道型電晶體n1為ON狀態,連接點N1的電位會成為「L」。因此,p通道型電晶體p4成為ON狀態,n通道型電晶體n3成為OFF狀態。是故,連接點N2的電位成為「H」。藉此,p通道型電晶體p2成為OFF狀態,n通道型電晶體n2成為ON狀態,因此連接點N1的電位被固定在「L」。 依此方式,當資料訊號SA為「H」的情形下,連接點N1的電位被固定在「H」、連接點N2的電位被固定在「L」,當資料訊號SA為「L」的情形下,連接點N1的電位被固定在「L」、連接點N2的電位被固定在「H」。其結果,資料鎖存電路116,能夠保持資料訊號SA所表示之值。 接下來,說明本實施形態之效果。 本實施形態中,能夠藉由6個電晶體,構成資料鎖存電路116。藉此,相較於第1實施形態,能夠將資料鎖存電路116小型化。 此外,本實施形態中,藉由1道閘極152,來實現n通道電晶體n2的閘極及p通道型電晶體p2的閘極的兩者。此外,藉由1道閘極153,來實現n通道型電晶體n3的閘極及p通道型電晶體p4的閘極的兩者。藉此,會減少資料鎖存電路116內的閘極的道數,能夠謀求資料鎖存電路116的小型化。 又,本實施形態中,閘極151及閘極153的形狀為朝X方向延伸之帶狀,沿著X方向排列。此外,閘極152及閘極154的形狀亦為朝X方向延伸之帶狀,沿著X方向排列。藉此,各資料鎖存電路116中的閘極的列成為2列,能夠將資料鎖存電路116的Y方向之尺寸縮小。 再者,本實施形態中,是將於X方向相鄰之資料鎖存電路116的佈局做成相互鏡像。藉此,在於X方向相鄰之資料鎖存電路116間,能夠將閘極151共通化,並且能夠將閘極154共通化。此外,是將於Y方向相鄰之資料鎖存電路116的佈局做成相互鏡像。藉此,在於Y方向相鄰之資料鎖存電路116間,能夠將n型層141、n型層143、p型層132、p型層133、n型層144、n型層146各自共通化。藉此,也能謀求資料鎖存電路16的小型化。 本實施形態中的上述以外之構成、動作及效果,和前述的第1實施形態相同。 (第4實施形態) 接下來,說明第4實施形態。 圖14為本實施形態之4個資料鎖存電路中的半導體區域、閘極、觸點及第1配線層示意平面圖。 圖15為本實施形態之4個資料鎖存電路中的半導體區域、閘極、觸點、第1配線層及第2配線層示意平面圖。 圖16為本實施形態之4個資料鎖存電路中的半導體區域、閘極、觸點、第1配線層、第2配線層及第3配線層示意平面圖。 圖17(a)為本實施形態之1個資料鎖存電路示意平面圖,(b)為其電路圖。 如圖14~圖16、圖17(a)所示,本實施形態之半導體記憶裝置4,相較於前述的第3實施形態之半導體記憶裝置3(參照圖8~圖13(b)),資料鎖存電路118的構成相異。 資料鎖存電路118當中,n井21、p井22、p型層131~134、n型層141~146、閘極151~54、觸點161~172的形狀、位置關係及連接關係,如同第3實施形態之資料鎖存電路116。另一方面,資料鎖存電路118,相較於資料鎖存電路116,第1配線層121、第2配線層122及第3配線層123的構成相異。此外,在資料鎖存電路118,設有通孔181及182。 首先,說明第1配線層121。 如圖14及圖17(a)所示,資料鎖存電路118的第1配線層121中,設有配線121b、配線121c、配線121g、配線121h及配線121i。配線121b及配線121c的位置及形狀,如同第3實施形態。配線121h連接至觸點162的上端及通孔181的下端。配線121i連接至觸點171的上端及通孔182的下端。 配線121g中,設有幹部121j、枝部121m及121n。配線121g的幹部121j,在各資料鎖存電路118的X方向中央部,亦即半導體區域112與半導體區域113之間,朝Y方向延伸。幹部121j,跨越沿著Y方向排列的複數個資料鎖存電路118而設置。幹部121j配置成通過閘極152的正上方區域及閘極153的正上方區域。 配線121g的枝部121m,從幹部121j朝X方向的一方側延伸出,連接至觸點167的上端。枝部121m被於Y方向相鄰之2個資料鎖存電路118共有。配線121g的枝部121n,從幹部121j朝X方向的另一方側延伸出,連接至觸點166的上端。枝部121m被於Y方向相鄰之2個資料鎖存電路118共有。像這樣,配線121g,透過觸點167連接至p型層133,並且透過觸點166連接至p型層132。 接下來,說明第2配線層122。 如圖15所示,資料鎖存電路118的第2配線層122中,設有配線122c。配線122c中,設有幹部122d、枝部122e及122f。配線122c的幹部122d朝X方向延伸。幹部122d,跨越沿著X方向排列的複數個資料鎖存電路118而設置。幹部122d配置成通過第1配線層121的配線121b的正上方區域及配線121c的正上方區域。 配線122c的枝部122e,從幹部122d朝Y方向的一方側延伸出,連接至觸點161的上端。配線122c的枝部122f,從幹部122d朝Y方向的另一方側延伸出,連接至觸點172的上端。像這樣,配線122c,透過觸點161連接至閘極151,並且透過觸點172連接至閘極154。 接下來,說明第3配線層123。 如圖16所示,資料鎖存電路118的第3配線層123中,設有配線123a、123c及123d。配線123a、123c及123d的形狀,為朝Y方向延伸之線狀,橫跨沿著Y方向排列的複數個資料鎖存電路118而設置。 配線123a的位置及形狀,如同第3實施形態。也就是說,配線123a,沿著於X方向相鄰之資料鎖存電路118的交界線而配置,例如隸屬於X方向之相鄰2個資料鎖存電路118,配置於介著STI23而相鄰之半導體區域111及半導體區域114的正上方區域。配線123a,連接至觸點164的上端及觸點169的上端。藉此,配線123a,透過觸點164連接至n型層143,並且透過觸點169連接至n型層144。 配線123c,配置於半導體區域112的正上方區域附近,連接至通孔181的上端。藉此,配線123c透過通孔181、配線121h及觸點162連接至n型層141。 配線123d,配置於半導體區域113與半導體區域114之間的部分的正上方區域附近,連接至通孔182的上端。藉此,配線123d透過通孔182、配線121i及觸點172連接至n型層146。 各電晶體如上述般接線的結果,於各資料鎖存電路118,會構成圖17(b)所示之電路。 資料鎖存電路118中的電晶體間的連接,如同第3實施形態之資料鎖存電路116。此外,n通道型電晶體n2及n3與接地電位GND之連接,亦如同資料鎖存電路116。 另一方面,資料鎖存電路118相較於資料鎖存電路116,對於各電晶體輸入電源電位VDD、控制訊號Vc、資料訊號SA及bSA之態樣相異。此外,資料鎖存電路118相較於資料鎖存電路116,在控制訊號Vc為共通這點、及資料訊號SA及bSA在互補訊號這點相異。資料訊號SA及bSA當中,若一方為「H」,則另一方為「L」。 p通道型電晶體p2的源極/汲極的另一方(p型層132),透過觸點166及枝部121n連接至配線121g。p通道型電晶體p4的源極/汲極的另一方(p型層133),透過觸點169及枝部121m連接至配線121g。在配線121g,被施加作為第1基準電位之電源電位VDD。 n通道型電晶體n1的閘極151,透過觸點161連接至配線122c。n通道型電晶體n4的閘極154,透過觸點172連接至配線122c。在配線122c,被施加共通的控制訊號Vc。 n通道型電晶體n1的源極/汲極的另一方(n型層141),透過觸點162、配線121h及通孔181連接至配線123b。在配線123b,被施加資料訊號SA。 n通道型電晶體n1的源極/汲極的另一方(n型層146),透過觸點171、配線121i及通孔182連接至配線123c。在配線123c,被施加資料訊號bSA。 接下來,說明本實施形態之半導體記憶裝置的動作。 如圖17(b)所示,初始狀態下,控制訊號Vc、資料訊號SA均為「L」。因此,n通道型電晶體n1及n4為OFF狀態。由此狀態,針對令資料保持之資料鎖存電路118,將控制訊號Vc設為「H」,將n通道型電晶體n1及n4設為ON狀態。然後,感測放大器15,將資料訊號SA及bSA對資料鎖存電路118輸出。n通道型電晶體n2及n3、以及p通道型電晶體p2及p4所致之資料的保持方法,如同第3實施形態。 按照本實施形態,也能獲得和第3實施形態同樣的效果。 按照以上說明的實施形態,能夠實現達成小型化的資料鎖存電路及半導體記憶裝置。 以上雖已說明了本發明的幾個實施形態,但該些實施形態是提出作為例子,並非意圖限定發明的範圍。該些新穎的實施形態,可以其他各式各樣的形態來實施,在不脫離發明的要旨之範圍內,能夠進行種種省略、置換、變更。該些實施形態或其變形,被涵括於發明的範圖或要旨內,並且被涵括於申請專利範圍記載之發明及其均等物的範圍內。 (First Embodiment) Next, the first embodiment will be described. FIG. 1 is a schematic cross-sectional view of the semiconductor memory device of this embodiment. FIG. 2 is a schematic plan view of the sense amplifier circuit of the semiconductor memory device of this embodiment. Figure 3 is a schematic plan view of the data latch circuit of this embodiment. Figure 4(a) is a schematic plan view of a data latch circuit, and (b) is its circuit diagram. FIG. 5 is a schematic cross-sectional view of a memory unit of the semiconductor memory device of this embodiment. In addition, each figure is a model, and components are omitted or emphasized as appropriate. In addition, the number and size ratio of each component may not be consistent between drawings. As shown in FIG. 1 , the semiconductor memory device 1 of this embodiment includes a control circuit substrate 10 and a memory array substrate 80 . In the control circuit substrate 10, a silicon substrate 11 and an interlayer insulating film 12 are laminated, and in the memory array substrate 80, a silicon substrate 81 and an interlayer insulating film 82 are laminated. The control circuit substrate 10 and the memory array substrate 80 are bonded in such a direction that the interlayer insulating film 12 and the interlayer insulating film 82 face each other. First, the control circuit board 10 will be described. As shown in FIG. 2 , in the control circuit board 10 , a control circuit is formed in the upper portion of the silicon substrate 11 and the interlayer insulating film 12 (see FIG. 1 ). The control circuit is provided with a sense amplifier region 13 , and a plurality of sense amplifier circuits 14 are provided in the sense amplifier region 13 . In each sense amplifier circuit 14, one sense amplifier 15 and a plurality of, for example, five data latch circuits 16 are arranged in a line. The sense amplifier 15 sequentially detects electronic signals transmitted from the memory array substrate 80 into binary value data. Each data latch circuit 16 temporarily holds the data detected by the sense amplifier 15 . In addition, in FIG. 2, FIG. 3, and FIG. 4(a), the interlayer insulating film 12 is omitted for simplicity of illustration. Hereinafter, regarding the control circuit board 10, for the sake of simplicity of explanation, the XYZ orthogonal coordinate system is used. The direction in which the plurality of sense amplifier circuits 14 are arranged is defined as the "X direction", the direction in which the sense amplifier 15 and the data latch circuit 16 in each sense amplifier circuit 14 are arranged is defined as the "Y direction", and the relative direction is defined as the "Y direction". The direction that is orthogonal to both the X direction and the Y direction is designated as the "Z direction". In the Z direction, the direction from the silicon substrate 11 to the interlayer insulating film 12 is also called "up", and the opposite direction is called "down". However, this expression is only for convenience and has nothing to do with the direction of gravity. As shown in FIGS. 2 and 3 , in the sense amplifier region 13 , a plurality of data latch circuits 16 are arranged in a matrix along the X direction and the Y direction. A plurality of data latch circuits 16 arranged along the Y direction belong to the same sense amplifier circuit 14 , and a plurality of data latch circuits 16 arranged along the X direction belong to different sense amplifier circuits 14 . The layouts of the plurality of data latch circuits 16 arranged along the Y direction are the same. On the other hand, the layouts of data latch circuits 16 adjacent in the X direction are mirror images of each other. As shown in FIG. 4(a) , on the silicon substrate 11, a plurality of n-wells 21 having an n-type conductivity type and a plurality of p-wells 22 having a p-type conductivity type are provided. The n wells 21 and the p wells 22 are alternately arranged along the X direction. Each n-well 21 and each p-well 22 extend in the Y direction and are arranged across all the data latch circuits 16 arranged along the Y direction. Each data latch circuit 16 is formed across one adjacent n-well 21 and one p-well 22 in the X direction. A certain data latch circuit 16 shares one n-well 21 with another data latch circuit 16 arranged on one side in the X direction, and shares p with another data latch circuit 16 arranged on the other side in the X direction. Well 22. Next, the structure of each data latch circuit 16 will be described. As shown in FIG. 3 and FIG. 4(a), in each data latch circuit 16, p-type layers 31 to 36 having p-type conductivity are provided on the n-well 21. The p-type layers 31 to 36 are isolated from each other and arranged in a row along the Y direction in this order. Between adjacent data latch circuits 16 in the Y direction, the p-type layer 36 and the p-type layer 31 are connected. In addition, between the p-type layer 31 and the p-type layer 32, between the p-type layer 32 and the p-type layer 33, between the p-type layer 34 and the p-type layer 35, and between the p-type layer 35 and the p-type layer 36 Between them, each is interposed with a part of the n well 21. On the other hand, an STI (Shallow Trench Isolation) 23 is provided between the p-type layer 33 and the p-type layer 34 . Thereby, among the two data latch circuits 16 adjacent in the Y direction, the p-type layers 34, 35, and 36 of one of the data latch circuits 16 and the p-type layers 31 and 31 of the other data latch circuit 16 are 32 and 33, together with the n-well 21 between the p-type layers, form an island-shaped semiconductor region (active region). However, at both ends of the row of the plurality of data latch circuits 16 constituting each sense amplifier circuit 14, the p-type layers 31 to 33 or the p-type layers 34 to 36 each form an island-shaped semiconductor region. In addition, in each data latch circuit 16, n-type layers 41 to 45 having n-type conductivity are provided on the p-well 22. The n-type layers 41 to 45 are isolated from each other and arranged in a row along the Y direction in this order. In the data latch circuit 16 adjacent in the Y direction, the n-type layer 45 and the n-type layer 41 are connected. In addition, between n-type layer 41 and n-type layer 42, between n-type layer 42 and n-type layer 43, between n-type layer 43 and n-type layer 44, between n-type layer 44 and n-type layer 45 , each interposing a part of the p well 22. Thus, on each p-well 22, a plurality of sets of n-type layers 41 to 45 arranged along the Y direction will together form a linear semiconductor with the p-well 22 between the n-type layers. area (active area). In the sense amplifier region 13, there are a plurality of island-shaped semiconductor regions each formed by the p-type layers 34 to 36, the p-type layers 31 to 33, and the n-well 21 between the p-type layers. The STI 23 is arranged between a plurality of linear semiconductor regions each formed by the n-type layers 41 to 45 and the p-well 22 between the n-type layers. Each data latch circuit 16 is provided with gates 51 to 56. The gates 51 to 56 extend generally in the X direction and cross the above-mentioned semiconductor region. A gate insulating film (not shown) is provided between the gates 51 to 56 and the semiconductor region. The following describes the positional relationship between the gates 51 to 56 and the p-type layers 31 to 36 and the n-type layers 41 to 45. As shown in FIG. 3 , the gate 51 is disposed across a region directly above the portion of the n-well 21 between the p-type layer 31 and the p-type layer 32 . The data latch circuits 16 adjacent in the X direction have a common gate 51 . That is to say, one gate 51 extending in the X direction and two data latch circuits 16 adjacent in the X direction and having mirror images of each other are arranged between the p-type layer 31 and the n-well 21 The area directly above the portion between p-type layers 32 . Specifically, among the plurality of data latch circuits 16, two data latch circuits 16 adjacent in the X direction and sharing n wells 21 are designated as "data latch circuit 16a" and "data latch circuit 16b" At this time, the p-type layer 31a and p-type layer 32a belonging to the data latch circuit 16a and the p-type layer 31b and p-type layer 32b belonging to the data latch circuit 16b share one gate 51. The gate 52 is disposed across a region directly above a portion of the p-well 22 between the n-type layer 41 and the n-type layer 42 . The data latch circuits 16 adjacent in the X direction have a common gate 52 . That is to say, one gate 52 extending in the X direction and two data latch circuits 16 adjacent in the X direction and having mirror images of each other are arranged between the n-type layer 41 and the n-type layer 41 in the p-well 22 The area directly above the portion between n-type layers 42 . Specifically, among the plurality of data latch circuits 16, two data latch circuits 16 that are adjacent in the X direction and share the p well 22 are designated as "data latch circuit 16a" and "data latch circuit 16c". At this time, the n-type layer 41a and n-type layer 42a belonging to the data latch circuit 16a and the n-type layer 41c and n-type layer 42c belonging to the data latch circuit 16c share one gate 52. The two data latch circuits 16 sharing the gate 51 and the two data latch circuits 16 sharing the gate 52 have different combinations. As described above, a certain data latch circuit 16a shares a gate 51 with the data latch circuit 16b on one side in the X direction, and shares a gate 52 with the data latch circuit 16c on the other side in the X direction. In the entire sense amplifier region 13 , gates 51 and gates 52 are arranged alternately and isolated from each other along the X direction. The gate 53 is used to cross the area directly above the part between the p-type layer 32 and the p-type layer 33 in the n-well 21 and to cross the area between the n-type layer 42 and the n-type layer 43 in the p-well 22. The area directly above the part is configured. Viewed from the Z direction, the shape of the gate 53 is, for example, a crank shape. The gate 54 is used to cross the area directly above the part between the p-type layer 32 and the p-type layer 35 in the n-well 21 and to cross the area between the n-type layer 43 and the n-type layer 44 in the p-well 22. The area directly above the part is configured. Viewed from the Z direction, the shape of the gate 54 is, for example, a crank shape. The gate 55 is disposed across a region directly above a portion of the n-well 21 between the p-type layer 35 and the p-type layer 36 . The data latch circuits 16 adjacent in the X direction have a common gate 55 . That is to say, taking the above example, the gate 55 is common between the data latch circuit 16a and the data latch circuit 16b. The gate 56 is disposed across a region directly above the portion between the n-type layer 44 and the n-type layer 45 in the p-well 22 . Data latch circuits 16 adjacent in the X direction have a common gate 56 . That is to say, taking the above example, the gate 56 is common between the data latch circuit 16a and the data latch circuit 16c. Just like the relationship between the gate 51 and the gate 52 described above, the two data latch circuits 16 sharing the gate 55 and the two data latch circuits 16 sharing the gate 56 have different combinations. As described above, a certain data latch circuit 16a shares a gate 55 with the data latch circuit 16b on one side in the X direction, and shares a gate 56 with the data latch circuit 16c on the other side in the X direction. In the entire sense amplifier region 13 , the gates 55 and 56 are alternately arranged along the X direction and are isolated from each other. In this way, four p-channel transistors p1 to p4 and four n-channel transistors n1 to n4 are formed in each data latch circuit 16 . In more detail, the p-channel transistor p3 is formed by the p-type layer 31 , the p-type layer 32 , the portion between the p-type layer 31 and the p-type layer 32 in the n-well 21 , and the gate 51 . The p-channel transistor p4 is formed by the p-type layer 32, the p-type layer 33, the portion between the p-type layer 32 and the p-type layer 33 in the n-well 21, and the gate electrode 53. The p-channel transistor p2 is formed by the p-type layer 34, the p-type layer 35, the portion of the n-well 21 between the p-type layer 34 and the p-type layer 35, and the gate electrode 54. The p-channel transistor p1 is formed by the p-type layer 35 , the p-type layer 36 , the portion between the p-type layer 35 and the p-type layer 36 in the well 21 , and the gate electrode 55 . In addition, the n-channel transistor n4 is formed by the n-type layer 41 , the n-type layer 42 , the portion of the p-well 22 between the n-type layer 41 and the n-type layer 42 , and the gate electrode 52 . An n-channel transistor n3 is formed by the n-type layer 42 , the n-type layer 43 , the portion of the p-well 22 between the n-type layer 42 and the n-type layer 43 , and the gate electrode 53 . An n-channel transistor n2 is formed by the n-type layer 43 , the n-type layer 44 , the portion of the p-well 22 between the n-type layer 43 and the n-type layer 44 , and the gate electrode 54 . The n-channel transistor n1 is formed by the n-type layer 44 , the n-type layer 45 , the portion of the p-well 22 between the n-type layer 44 and the n-type layer 45 , and the gate electrode 56 . In this way, the p-channel transistor p4 and the n-channel transistor n3 have one gate 53 in total. In addition, the p-channel transistor p2 and the n-channel transistor n2 have a gate 54 in total. Each data latch circuit 16 is provided with contacts 61 to 73. The lower end of the contact 61 is connected to the p-type layer 31 and the p-type layer 36 . The lower end of the contact 62 is connected to the n-type layer 41 and the n-type layer 45 . Contacts 61 and 62 are shared by two data latch circuits 16 adjacent in the Y direction. The lower end of contact 63 is connected to gate 51 . The contact 63, like the gate 51, is shared by two adjacent data latch circuits 16 in the X direction. Contact 64 is connected to the lower end of gate 52 . The contact 64, like the gate 52, is shared by two adjacent data latch circuits 16 in the X direction. The lower end of contact 65 is connected to n-type layer 42 . The lower end of contact 66 is connected to gate 53 . The lower end of contact 67 is connected to p-type layer 33 . The lower end of contact 68 is connected to n-type layer 43 . The lower end of contact 69 is connected to p-type layer 34 . The lower end of contact 70 is connected to gate 54 . The lower end of contact 71 is connected to n-type layer 44 . The lower end of contact 72 is connected to gate 55 . The contact 72, like the gate 55, is shared by two adjacent data latch circuits 16 in the X direction. The lower end of contact 73 is connected to gate 56 . The contact 73, like the gate 56, is shared by two adjacent data latch circuits 16 in the X direction. Each data latch circuit 16 is provided with wirings 76 and 77 . As shown in FIG. 4(a) , the wiring 76 is connected to the upper end of the contact 70 and to the upper end of the contact 65 and the upper end of the contact 67 arranged above the contact 70 in the figure. The wiring 77 is connected to the upper end of the contact 66 and is arranged at the upper end of the contact 71 and the upper end of the contact 69 on the lower side than the contact 66 in the figure. In addition, each of the above-mentioned contacts may also include a plurality of segments of contacts arranged in the Z direction, and the plurality of segments of contacts may also be connected through intermediate wirings. For example, the contacts 61 to 64, 72, and 73 may each include two or more stages of contacts arranged in the Z direction, and may be connected to the wirings 76 and 77 through an intermediate wiring provided on the same layer. As a result of each transistor being connected as described above, each data latch circuit 16 will form a circuit as shown in FIG. 4(b). That is, the source/drain of the p-channel transistor p1 and the source/drain of the p-channel transistor p2 share the same p-type layer 35 and are therefore connected to each other. The other side of the source/drain of the p-channel transistor p2 is connected to the source/drain of the n-channel transistor n1 through the contact 69, the wiring 77, and the contact 71, and the other side of the source/drain of the n-channel transistor n1. The source/drain of the crystal n2 is connected to the common gate 53 of the p-channel transistor p4 and the n-channel transistor n3 through the contact 69, the wiring 77, and the contact 66. On the other hand, the source/drain of the p-channel transistor p3 and the source/drain of the p-channel transistor p4 share the same p-type layer 32 and are therefore connected to each other. The other side of the source/drain of the p-channel transistor p4 is connected to one of the source/drain of the n-channel transistor n4 and the n-channel transistor through the contact 67, the wiring 76, and the contact 65. The source/drain of the crystal n3 is connected to the common gate 54 of the p-channel transistor p2 and the n-channel transistor n2 through the contact 67, the wiring 76, and the contact 70. In addition, on the other side of the source/drain of the p-channel transistor p1 (p-type layer 36), and on the other side of the source/drain (p-type layer 31) of the p-channel transistor p3, through the contact The first reference potential, which is the power supply potential VDD, is applied to point 61 . The other side of the source/drain of the n-channel transistor n2 and the other side of the source/drain of the n-channel transistor n3 are a common n-type layer 43, and the second layer is applied through the contact 68. The reference potential is the ground potential GND. In addition, the second reference potential is not limited to the ground potential, but is a potential lower than the first reference potential. The control signal Vc is input to the gate 56 of the n-channel transistor n1 and the gate 52 of the n-channel transistor n4 through the contact 73 and the contact 64 respectively. Select signals Vs1 and Vs2 are input to the gate 55 of the p-channel transistor p1 and the gate 51 of the p-channel transistor p3 through the contact 72 and the contact 63 respectively. The other side of the source/drain of the n-channel transistor n1 (n-type layer 45), and the other side of the source/drain (n-type layer 41) of the n-channel transistor n4 can pass through the contact 62 And connected to the sense amplifier 15, the data signal SA output from the sense amplifier 15 is applied. In the data latch circuit 16, n-channel transistors n1 and n4 function as transfer gates, n-channel transistors n2 and n3 function as drivers, and p-channel transistors p1 to p4 function as loads. Next, the memory array substrate 80 will be described. As shown in FIG. 5 , in the memory array substrate 80 , a source line 83 made of a conductive material is provided on the silicon substrate 81 . On the source line 83, a laminated body 85 is provided. In the laminated body 85, the insulating film 86 and the electrode film 87 are alternately laminated. In the laminated body 85, a core member 90 extending in the laminating direction of the insulating film 86 and the electrode film 87 is provided. The core member 90 is made of an insulating material such as silicon oxide, for example. The core member 90 has a columnar shape, for example, a substantially cylindrical shape. Silicon pillars 91 are provided around and on the lower surface of the core member 90 . The lower end of the silicon pillar 91 is connected to the source line 83 . Around the silicon pillar 91, a tunnel insulating film 92, a charge accumulation film 93, and a barrier insulating film 94 are laminated in this order. The tunnel insulating film 92 is usually insulating, but allows tunneling current to flow when a predetermined voltage within the driving voltage range of the semiconductor memory device 1 is applied, such as a single-layer silicon oxide film. Or an ONO film formed by sequentially stacking a silicon oxide layer, a silicon nitride layer and a silicon oxide layer. The charge accumulation film 93 is a film capable of accumulating charges, and is made of, for example, a material containing a trap site for electrons, such as silicon nitride. In addition, as the charge accumulation portion, a conductive floating gate may be provided instead of the insulating charge accumulation film 93 . In this case, the floating gates will be isolated according to each electrode film 87 . The barrier insulating film 94 is a film through which current does not substantially flow even if a voltage is applied within the driving voltage range of the semiconductor memory device 1 . The barrier insulating film 94 contains, for example, a material with a higher dielectric constant than silicon oxide. An interlayer insulating film 82 is provided on the sides and above the laminated body 85 . In the interlayer insulating film 82 and on the laminated body 85 , plugs 96 and bit lines 97 are provided. The upper end of the silicon pillar 91 is connected to the bit line 97 through the plug 96 . The bit line 97 is connected to the sense amplifier 15 of the control circuit board 10 (see FIG. 2 ). With this configuration, a memory cell transistor is formed at each intersection between the electrode film 87 and the silicon pillar 91 . In the memory cell transistor, the silicon pillar 91 becomes the channel, the electrode film 87 becomes the gate, and the barrier insulating film 94 becomes the gate insulating film. In addition, by accumulating charges in the charge accumulation film 93, the threshold value of the memory cell transistor is changed, thereby storing data. The threshold value of the memory cell transistor can take a value of 8 levels, for example. By this, 3 bits of data can be stored in one memory cell transistor. Next, the operation of the semiconductor memory device of this embodiment will be described. As shown in Figure 4(b), in the initial state, the selection signals Vs1 and Vs2, the control signals Vc1 and Vc2, and the data signal SA are all "L" (low level). Therefore, the p-channel transistors p1 and p3 are in the ON state, and the n-channel transistors n1 and n4 are in the OFF state. From this state, the selection signal Vs2 is set to "H" (high level) for the data latch circuit 16 that holds the data, and the p-channel transistor p3 is set to the OFF state. In addition, the control signal Vc2 is set to "H" and the n-channel transistor n4 is set to the ON state. Thereby, the potential of the connection point N2 between the p-channel transistor p4 and the n-channel transistor n3 becomes "L". As a result, the p-channel transistor p2 is in the ON state and the n-channel transistor n2 is in the OFF state. Therefore, the potential of the connection point N1 of the p-channel transistor p2 and the n-channel transistor n2 becomes "H". This causes the p-channel transistor p4 to be in the OFF state and the n-channel transistor n3 to be in the ON state. Therefore, the potential of the connection point N2 is stabilized at "L". Thereafter, the selection signal Vs2 is returned to "L", and the p-channel transistor p3 is set to the ON state. In addition, the control signal Vc2 is returned to "L", and the n-channel transistor n4 is set to the OFF state. As shown in FIG. 5 , when data is read from the memory cell transistor, current flows between the source line 83 and the bit line 97 , and this current is input to the sense amplifier circuit 14 shown in FIG. 2 . Test amplifier 15. The sense amplifier 15 detects a value based on the input current, and outputs the data signal SA to the data latch circuit 16 . At this time, the sense amplifier 15 temporarily sets the data signal SA to "H" and then outputs the original data signal SA. Next, the control signal Vc1 is set to "H", the n-channel transistor n1 is set to the ON state, and the value of the data signal SA is written into the data latch circuit 16 . When the data signal SA is "H", since the n-channel transistor n1 is in the ON state, the potential of the connection point N1 will maintain "H", so the potential of the connection point N2 will maintain "L" and be fixed. When the data signal SA is "L", because the n-channel transistor n1 is in the ON state, the potential of the connection point N1 becomes "L". Therefore, the p-channel transistor p4 is in the ON state, and the n-channel transistor n3 is in the OFF state. Therefore, the potential of the connection point N2 becomes "H". Thereby, the p-channel transistor p2 becomes an OFF state, and the n-channel transistor n2 becomes an ON state. As a result, the potential of the connection point N1 is fixed at "L". In summary, when the data signal SA is "H", the potential of the connection point N1 is fixed at "H", and the potential of the connection point N2 is fixed at "L". On the other hand, when the data signal SA is "L", the potential of the connection point N1 is fixed at "L" and the potential of the connection point N2 is fixed at "H". In this way, the data latch circuit 16 can memorize the potential of the data signal SA and maintain the value represented by the data signal SA. For example, by making the potential "H" of the data signal SA correspond to the value "0" and making the potential "L" correspond to the value "1", binary value data can be maintained. Next, the effects of this embodiment will be described. In this embodiment, one gate 53 is used to realize both the gate of the p-channel transistor p4 and the gate of the n-channel transistor n3. In addition, one gate 54 realizes both the gate of the p-channel transistor p2 and the gate of the n-channel transistor n2. This reduces the number of gates in the data latch circuit 16 and allows the data latch circuit 16 to be miniaturized. In addition, in each data latch circuit 16, p-channel transistors p1~p4 and n-channel transistors n1~n4 are arranged separately in the X direction, and the layout of the adjacent data latch circuits 16 in the X direction is adjusted. mirror each other. Thereby, the gates 51, 52, 55, and 56 can be shared among the data latch circuits 16 adjacent in the X direction. This also enables the data latch circuit 16 to be miniaturized. Furthermore, in this embodiment, the control circuit including the sense amplifier region 13 is provided on the control circuit substrate 10 , and the memory cell transistor is provided on the memory array substrate 80 . In this way, if the control circuit is formed on a dedicated substrate, it will not be subjected to the thermal history necessary for the formation of the memory cell transistor during the manufacturing process. Therefore, the p-channel transistors p1 to p4 and the n-channel transistors can be The bodies of type transistors n1~n4 are miniaturized. Thereby, the data latch circuit 16 can also be miniaturized. By miniaturizing the data latch circuit 16, the sense amplifier circuit 14 can be miniaturized, and thus the entire semiconductor memory device 1 can be miniaturized. On the other hand, if the area of the sense amplifier circuit 14 is kept constant, more data latch circuits 16 can be provided in each sense amplifier circuit 14 . As a result, even if the memory cell transistor becomes miniaturized, the channel area becomes smaller, the threshold value changes due to the increase or decrease of one electron accumulated in the charge storage film 93, and the writing and reading of data becomes necessary. Each sense amplifier circuit 14 can still retain a large amount of data for a long time, so the data transfer speed can be kept constant. (Second Embodiment) Next, the second embodiment will be described. FIG. 6 is a schematic plan view of the data latch circuit of this embodiment. Figure 7(a) is a schematic plan view of a data latch circuit, and (b) is its circuit diagram. As shown in FIGS. 6 and 7(a) , the semiconductor memory device 2 of this embodiment has a p-channel transistor p1 compared to the semiconductor memory device 1 of the first embodiment (see FIGS. 1 to 5 ). ~p4 and n-channel transistors n1~n4 have the same structure, but the shapes of the wiring are different. As a result, the area formed by the data latch circuit 18 of this embodiment is different from the area formed by the data latch circuit 16 of the first embodiment. It is explained in detail below. In the sense amplifier region 13 of this embodiment, the shapes, positional relationships and The connection relationship is the same as that of the first embodiment. However, in this embodiment, wirings 78 and 79 are provided instead of the wirings 76 and 77 in the first embodiment. The wiring 78 is connected to the upper end of the contact 70 , and is arranged at the upper end of the contact 65 and the upper end of the contact 67 on the lower side than the contact 70 in the figure. The wiring 79 is connected to the upper end of the contact 66, and is disposed above the contact 66 in the figure at the upper end of the contact 71 and the upper end of the contact 69. Accordingly, each data latch circuit 18 corresponds to a rectangular area including an island-shaped semiconductor area arranged in the n-well 21 and surrounded by the STI 23 and an island-shaped semiconductor area arranged in the p-well 22 . A portion of a strip-shaped semiconductor region. In the island-shaped semiconductor region, p-type layers 34, 35, 36, 31, 32, and 33 are arranged in this order. The p-type layer 36 and the p-type layer 31 are connected, but the other p-type layers are isolated from each other, and a part of the n-well 21 is interposed between adjacent p-type layers. In a part of the strip-shaped semiconductor region, n-type layers 43, 44, 45, 41, and 42 are arranged in this order. The n-type layer 45 and the n-type layer 41 are connected, but the other n-type layers are isolated from each other, and a part of the p-well 22 is interposed between adjacent n-type layers. As shown in Fig. 7(b), with this configuration, the same circuit as the first embodiment can be realized. The structure, operation, and effect of this embodiment other than those mentioned above are the same as those of the aforementioned first embodiment. (Third Embodiment) Next, a third embodiment will be described. FIG. 8 is a schematic plan view of the semiconductor region, gates and contacts in the data latch circuit of this embodiment. FIG. 9 is a schematic plan view of the semiconductor region, gate, contact and first wiring layer in the data latch circuit of this embodiment. FIG. 10 is a schematic plan view of the semiconductor region, gate, contacts, first wiring layer, second wiring layer and third wiring layer in the data latch circuit of this embodiment. Figure 11(a)~(c) is a schematic plan view of a data latch circuit in this embodiment. (a) shows the semiconductor region, gate and contact, (b) in (a) also shows the first wiring layer , (c) further illustrates the second wiring layer and the third wiring layer in (b). Figure 12 is a schematic plan view of four data latch circuits in this embodiment. Figure 13 (a) is a schematic plan view of a data latch circuit in this embodiment, and (b) is a circuit diagram thereof. In addition, FIGS. 8 to 10 are schematic diagrams of the layout relationship between a plurality of data latch circuits. To facilitate viewing of the drawings, part of the detailed structure of each data latch circuit is omitted. On the other hand, Figure 11(a)~(c) and Figure 13(a) are detailed schematic diagrams of the structure of a data latch circuit, and the relationship with other data latch circuits is not shown. Figure 12 illustrates their intermediate concepts, showing four data latch circuits in 2 rows and 2 columns. The semiconductor memory device 3 of this embodiment is different from the semiconductor memory device 1 of the first embodiment (see FIGS. 1 to 5 ) in the structure of the data latch circuit. The structure of the memory array substrate 80 is the same as that of the first embodiment. First, the well, n-type layer, p-type layer and gate provided on the silicon substrate 11 will be described. As shown in FIG. 8 , in the semiconductor memory device 3 of this embodiment, n-wells 21 and p-wells 22 are alternately arranged along the X direction on the silicon substrate 11 . Each n well 21 and each p well 22 extend in the Y direction. In addition, each data latch circuit 116 is set across half of the area of one n-well 21 and two p-wells 22 arranged on both sides. The length of the data latch circuit 116 in the X direction is equal to the total length of one n-well 21 and one p-well 22 . In the sense amplifier region 13 of the semiconductor memory device 3, a plurality of data latch circuits 1 are arranged in a matrix along the X direction and the Y direction. The layouts of the two data latch circuits 116 adjacent in the X direction are mirror images of each other, and the layouts of the two data latch circuits 116 adjacent in the Y direction are also mirror images of each other. Regarding FIGS. 11(a) to 13(a) and 13(a), for convenience of explanation, the p-well 22 included in each data latch circuit 116 is divided into a p-well 22a and a p-well 22b for description. In each data latch circuit 116, p-well 22a and p-well 22b are isolated from each other via n-well 21. On the other hand, the p-well 22a of a certain data latch circuit 116 is connected to the p-well 22b of the data latch circuit 116 adjacent to the data latch circuit 116 in the X direction. As shown in FIG. 11(a) , n-type layers 141 to 143 having n-type conductivity are provided on the p-well 22a. The n-type layers 141 to 143 are isolated from each other and arranged in a row along the Y direction in this order. In the data latch circuits 116 adjacent in the Y direction, the n-type layers 141 are connected to each other, and the n-type layers 143 are also connected to each other. In addition, a part of the p-well 22a is interposed between the n-type layer 141 and the n-type layer 142 and between the n-type layer 142 and the n-type layer 143. Thereby, on each p-well 22a, a plurality of sets of n-type layers 141~143 arranged along the Y direction will together form a linear semiconductor with the p-well 22a between the n-type layers. Area (Active Area) 111. The semiconductor region 111 includes the n-type layer 141 in each data latch circuit 116, the portion between the n-type layer 141 and the n-type layer 142 in the p-well 22a, the n-type layer 142, and the n-type layer in the p-well 22a. 142 and the n-type layer 143, and the n-type layer 143. One semiconductor region 111 extends in the Y direction across a plurality of data latch circuits 116 arranged along the Y direction. On the n-well 21, p-type layers 131 and 132 having p-type conductivity are provided. The p-type layer 131 and the p-type layer 132 are isolated in the Y direction. In the data latch circuits 116 adjacent in the Y direction, the p-type layers 132 are connected to each other. A part of the n-well 21 is interposed between the p-type layer 131 and the p-type layer 132 . Thereby, on each n-well 21, across the two adjacent data latch circuits 116 in the Y direction, the p-type layer 131, and the portion between the p-type layer 131 and the p-type layer 132 in the n-well 21, The common p-type layer 132, the portion between the p-type layer 132 and the p-type layer 131 in the n-well 21, and the p-type layer 131 are continuously arranged in this order along the Y direction to form an island-shaped semiconductor. Area (active area) 112. In addition, p-type layers 133 and 134 whose conductivity type is p-type are provided on the n-well 21 . The p-type layer 133 and the p-type layer 134 are isolated in the Y direction. In the data latch circuits 116 adjacent in the Y direction, the p-type layers 133 are connected to each other. A part of the n-well 21 is interposed between the p-type layer 133 and the p-type layer 134 . Thereby, on each n-well 21, across the two adjacent data latch circuits 116 in the Y direction, the p-type layer 134, and the portion between the p-type layer 134 and the p-type layer 133 in the n-well 21, The common p-type layer 133, the portion between the p-type layer 133 and the p-type layer 134 in the n-well 21, and the p-type layer 134 are continuously arranged in this order along the Y direction to form an island-shaped semiconductor. Area (active area) 113. On the p-well 22b, n-type layers 144 to 146 having n-type conductivity are provided. The n-type layers 144~146 are isolated from each other and arranged in a row along the Y direction in this order. In the data latch circuits 116 adjacent in the Y direction, the n-type layers 144 are connected to each other, and the n-type layers 146 are also connected to each other. In addition, a part of the p-well 22b is interposed between the n-type layer 144 and the n-type layer 145 and between the n-type layer 145 and the n-type layer 146. Therefore, on each p-well 22b, a plurality of sets of n-type layers 144~146 arranged along the Y direction will together form a linear semiconductor with the p-well 22b between the n-type layers. Area (active area) 114. The semiconductor region 114 includes the n-type layer 144 in each data latch circuit 116, the portion between the n-type layer 144 and the n-type layer 145 in the p-well 22b, the n-type layer 145, and the n-type layer in the p-well 22b. 145 and the n-type layer 146, and the n-type layer 146. One semiconductor region 114 extends across a plurality of data latch circuits 116 arranged along the Y direction. In the entire sense amplifier region 13 , the semiconductor region 111 extends continuously along the Y direction. The semiconductor regions 112 are intermittently arranged in a row along the Y direction. The semiconductor regions 113 are also intermittently arranged in a row along the Y direction. The semiconductor region 114 extends continuously along the Y direction. The semiconductor regions 111 to 114 are arranged in this order along the X direction and are isolated from each other. The Y-direction positions of n-type layer 141, p-type layer 133, and n-type layer 144 are approximately the same as each other. The Y-direction positions of n-type layer 142, p-type layer 131, p-type layer 134, and n-type layer 145 are mutually similar. The positions of the n-type layer 143, the p-type layer 132, and the n-type layer 146 in the Y direction are approximately the same. The STI 23 is arranged between the semiconductor regions 111 to 114. The two data latch circuits 116 sharing the semiconductor region 112 and the two data latch circuits 116 sharing the semiconductor region 113 have different combinations. That is, a certain data latch circuit 116 shares the semiconductor region 112 with the data latch circuit 116 on one side in the Y direction, and shares the semiconductor region 113 with the data latch circuit 116 on the other side in the Y direction. Each data latch circuit 116 is provided with gates 151 to 154. The gates 151 to 154 extend generally in the X direction and cross the above-mentioned semiconductor regions 111 to 114. Viewed from the Z direction, the shapes of the gates 151 to 154 are strips extending toward the X direction. A gate insulating film (not shown) is provided between the gates 151 to 154 and the semiconductor regions 111 to 114. The following describes the positional relationship between the gates 151 to 154 and the semiconductor regions 111 to 114. Gate 151 traverses semiconductor region 111 . Specifically, a part of the gate 151 is disposed in a region directly above the portion between the n-type layer 141 and the n-type layer 142 in the p-well 22a. The data latch circuits 116 adjacent in the X direction have a common gate 151 . That is to say, one gate 151 extending in the X direction crosses the semiconductor region 111 with each of the two data latch circuits 116 whose layouts are adjacent in the X direction and mirror each other. The gate 152 crosses the semiconductor region 111 and the semiconductor region 112 . Specifically, a part of the gate 152 is disposed directly above the portion between the n-type layer 142 and the n-type layer 143 in the p-well 22a, and the other part is disposed between the p-type layer 131 and the n-type layer 131 in the n-well 21. The area directly above the portion between p-type layers 132 . The gate 152 is disposed inside each data latch circuit 116 and does not span between adjacent data latch circuits 116 . The gate 153 crosses the semiconductor region 113 and the semiconductor region 114 . Specifically, a part of the gate 153 is disposed directly above the portion between the p-type layer 133 and the p-type layer 144 in the n-well 21, and the other part is disposed between the n-type layer 144 and the p-type layer 144 in the p-well 22b. The area directly above the portion between n-type layers 145 . The gate 153 is disposed inside each data latch circuit 116 and does not span between adjacent data latch circuits 116 . Gate 154 traverses semiconductor region 114 . Specifically, a part of the gate 154 is disposed in a region directly above the portion between the n-type layer 145 and the n-type layer 146 in the p-well 22b. Data latch circuits 116 adjacent in the X direction have a common gate 154 . That is to say, one gate 154 extending in the X direction crosses the semiconductor region 114 with each of the two data latch circuits 116 adjacent in the X direction and having mirror-image layouts. The two data latch circuits 116 sharing the gate 151 and the two data latch circuits 116 sharing the gate 154 have different combinations. A certain data latch circuit 116 shares a gate 151 with the data latch circuit 116 on one side in the X direction, and shares a gate 154 with the data latch circuit 116 on the other side in the X direction. In the entire sense amplifier region 13 , gates 151 and 153 are arranged in a row along the X direction, and gates 152 and gates 154 are arranged in a row along the X direction. As shown in Figures 13(a) and (b), with the above configuration, two p-channel transistors p2 and p4 and four n-channel transistors n1~n4 are formed in each data latch circuit 116. . In more detail, the n-channel transistor n1 is formed by the n-type layer 141, the n-type layer 142, the portion between the n-type layer 141 and the n-type layer 142 in the p-well 22a, and the gate electrode 151. An n-channel transistor n2 is formed by the n-type layer 142, the n-type layer 143, the portion between the n-type layer 142 and the n-type layer 143 in the p-well 22a, and the gate electrode 152. An n-channel transistor n3 is formed by the n-type layer 144, the n-type layer 145, the portion between the n-type layer 144 and the n-type layer 145 in the p-well 22b, and the gate electrode 153. An n-channel transistor n4 is formed by the n-type layer 145, the n-type layer 146, the portion between the n-type layer 145 and the n-type layer 146 in the p-well 22b, and the gate electrode 154. In addition, a p-channel transistor p2 is formed by the p-type layer 131, the p-type layer 132, the portion between the p-type layer 131 and the p-type layer 132 in the n-well 21, and the gate 152. The p-channel transistor p4 is formed by the p-type layer 133 , the p-type layer 134 , the portion between the p-type layer 133 and the p-type layer 134 in the n-well 21 , and the gate 153 . In this way, the n-channel transistor n2 and the p-channel transistor p2 have one gate 152 in total. The n-channel transistor n3 and the p-channel transistor p4 have one gate 153 in total. In addition, the two n-channel transistors n1 provided in the two adjacent data latch circuits 116 in the X direction have one gate 151 in total. The two n-channel transistors n4 provided in the two adjacent data latch circuits 116 in the X direction have a total of one gate 154. Next, the contacts are explained. As shown in FIG. 11(a), FIG. 12, and FIG. 13(a), each data latch circuit 116 is provided with contacts 161~172. Viewed from the Z direction, the shape of the contact point 165 and the contact point 168 is an oblong shape in which the length in the Y direction is longer than the length in the X direction. The shape of the other contacts is slightly round. However, in FIG. 13(a) , contacts belonging to only one data latch circuit 116 are represented by circles or ellipses, and contacts shared by adjacent data latch circuits 116 are represented by semicircles. In addition, like the first embodiment, each contact may include a plurality of segments of contacts arranged in the Z direction, and the plurality of segments of contacts may be connected through an intermediate wiring. The intermediate wiring may be provided on the same layer as the first wiring layer 121 or the second wiring layer 122 described later. The lower end of contact 161 is connected to gate 151 . The contact 161 is shared by two data latch circuits 116 adjacent in the X direction. The lower end of contact 162 is connected to n-type layer 141 . The contact 162 is shared by two data latch circuits 116 adjacent in the Y direction. The lower end of contact 163 is connected to n-type layer 142 . The lower end of contact 164 is connected to n-type layer 143 . The contact 164 is shared by two data latch circuits 116 adjacent in the Y direction. In this way, the contacts 162, 163, and 164 are connected to the same semiconductor region 111 and are arranged along the Y direction. The middle part of the contact 165 in the Z direction is connected to the gate 153, and the lower end is connected to the p-type layer 131. Viewed from the Z direction, the shape of the contact 165 is an oblong shape in which the length in the Y direction is longer than the length in the X direction. The lower end of contact 166 is connected to p-type layer 132 . The contact 166 is shared by two data latch circuits 116 adjacent in the Y direction. In this way, the contacts 165 and 166 are connected to the same semiconductor region 112 and are arranged along the Y direction. The lower end of contact 167 is connected to p-type layer 133 . The contact 167 is shared by two data latch circuits 116 adjacent in the Y direction. The middle part of the contact 168 in the Z direction is connected to the gate 152 , and the lower end is connected to the p-type layer 134 . Viewed from the Z direction, the shape of the contact 168 is an oblong shape in which the length in the Y direction is longer than the length in the X direction. In this way, the contacts 167 and 168 are connected to the same semiconductor region 113 and are arranged along the Y direction. The lower end of contact 169 is connected to n-type layer 144 . The contact 169 is shared by two data latch circuits 116 adjacent in the Y direction. The lower end of contact 170 is connected to n-type layer 145 . The lower end of contact 171 is connected to n-type layer 146 . The contact 171 is shared by two data latch circuits 116 adjacent in the Y direction. In this way, the contacts 169, 170, and 171 are connected to the same semiconductor region 114 and are arranged along the Y direction. The lower end of contact 172 is connected to gate 154 . The contact 172 is shared by two data latch circuits 116 adjacent in the X direction. Above the silicon substrate 11 and the gate, a first wiring layer 121, a second wiring layer 122, and a third wiring layer 123 are sequentially stacked. That is, the first wiring layer 121 is located above the gates 151 to 154 , the second wiring layer 122 is located above the first wiring layer 121 , and the third wiring layer 123 is located above the second wiring layer 122 . Next, the first wiring layer 121 will be described. As shown in FIG. 9, FIG. 11(b), FIG. 12, and FIG. 13(a), the first wiring layer 121 is provided with wiring 121a, wiring 121b, and wiring 121c. The wiring 121a is provided with a stem portion 121d and branch portions 121e and 121f. The trunk portion 121d of the wiring 121a extends in the Y direction between the semiconductor region 112 and the semiconductor region 113 at the center portion of each data latch circuit 116 in the X direction. The stem 121d is provided across a plurality of data latch circuits 116 arranged along the Y direction. The stem 121d passes through the area directly above the gate 152 and the area directly above the gate 153. The branch portion 121e of the wiring 121a extends from the trunk portion 121d toward one side in the X direction and is connected to the upper end of the contact 162. The branch portion 121e is shared by two data latch circuits 116 adjacent in the Y direction. The branch portion 121f of the wiring 121a extends from the trunk portion 121d toward the other side in the X direction and is connected to the upper end of the contact 171. The branch portion 121f is shared by two data latch circuits 116 adjacent in the Y direction. In this way, the wiring 121a is connected to the n-type layer 141 through the contact 162, and is connected to the n-type layer 146 through the contact 171. The wiring 121b extends in the X direction and is connected to the upper end of the contact 163 and the upper end of the contact 165. Thereby, the n-type layer 142, the p-type layer 131 and the gate 153 are connected to each other through the contact 163, the wiring 121b and the contact 165. The wiring 121c also extends in the X direction and is connected to the upper end of the contact 168 and the upper end of the contact 170. Thereby, the n-type layer 145, the p-type layer 134, and the gate 152 are connected to each other through the contact 170, the wiring 121c, and the contact 168. Next, the second wiring layer 122 will be described. As shown in FIGS. 10, 12 and 13(a), the second wiring layer 122 is provided with wiring 122a and wiring 122b. The shapes of the wirings 122a and 122b are linear extending in the X direction, and are provided across the plurality of data latch circuits 116 arranged along the X direction. The wiring 122 a is arranged to pass through the area directly above the gate 151 and the area directly above the gate 153 and is connected to the upper end of the contact 161 . In addition, the wiring 122a also passes through the area directly above the contact 165, but is not connected to the contact 165. Thereby, the wiring 122a is connected to the gate 151 through the contact 161. The wiring 122b is arranged to pass through the area directly above the gate 152 and the area directly above the gate 154, and is connected to the upper end of the contact 172. In addition, the wiring 122b also passes through the area directly above the contact 168, but is not connected to the contact 168. Thereby, the wiring 122b is connected to the gate 154 through the contact 172 . Next, the third wiring layer 123 will be described. As shown in FIGS. 10, 11(c), 12, and 13(a), the third wiring layer 123 is provided with wiring 123a and wiring 123b. The shapes of the wirings 123a and 123b are linear extending in the Y direction, and are provided across the plurality of data latch circuits 116 arranged along the Y direction. The wiring 123a and the wiring 123b are alternately arranged along the X direction. The wiring 123a is arranged along the boundary line of the data latch circuits 116 adjacent in the X direction. For example, it belongs to two adjacent data latch circuits 116 in the X direction and is arranged in the adjacent semiconductor region 111 across the STI 23. and the area directly above the semiconductor region 114 . The wiring 123a is connected to the upper end of the contact 164 and the upper end of the contact 169. Thereby, the wiring 123a is connected to the n-type layer 143 through the contact 164, and is connected to the n-type layer 144 through the contact 169. The wiring 123b is disposed at the center of the data latch circuit 116 in the X direction, for example, in the region directly above the semiconductor region 112 and the region directly above the semiconductor region 113 of each data latch circuit 116. The wiring 123b is connected to the upper end of the contact 166 and the upper end of the contact 167. Thereby, the wiring 123b is connected to the p-type layer 132 through the contact 166, and is connected to the p-type layer 133 through the contact 167. As a result of each transistor being connected as described above, each data latch circuit 116 will form a circuit as shown in FIG. 13(b). In other words, the source/drain of the n-channel transistor n1 and the source/drain of the n-channel transistor n2 share the same n-type layer 142 and are thus connected to each other. The n-type layer 142 is connected to the source/drain side of the p-channel transistor p2 (p-type layer 131), as well as to the p-channel transistor p4 and the n-channel through the contact 163, the wiring 121b and the contact 165. A common gate 153 of type transistor n3. Similarly, the source/drain of the n-channel transistor n3 and the source/drain of the n-channel transistor n4 share the same n-type layer 145 and are thus connected to each other. The n-type layer 145 is connected to the source/drain side of the p-channel transistor p4 (p-type layer 134), as well as to the p-channel transistor p2 and the n-channel through the contact 170, the wiring 121c, and the contact 168. A common gate 152 of type transistor n2. The other side of the source/drain of the n-channel transistor n1 (n-type layer 141) and the other side of the source/drain (n-type layer 146) of the n-channel transistor n4 pass through the contact 162, respectively. And the contact 171 is connected to the wiring 121a. The wiring 121 a may be connected to the sense amplifier 15 and be supplied with the data signal SA output from the sense amplifier 15 . The other side of the source/drain of the n-channel transistor n2 (n-type layer 143) is connected to the wiring 123a of the third wiring layer 123 through the contact 164. The other side of the source/drain of the n-channel transistor n3 (n-type layer 144) is connected to the wiring 123a of the third wiring layer 123 through the contact 169. In the wiring 123a, the other side (p-type layer 132) of the source/drain of the p-channel transistor p2 to which the ground potential GND as the second reference potential is applied is connected to the third wiring layer 123 through the contact 166. Wiring 123b. The other side of the source/drain of the p-channel transistor n4 (p-type layer 133) is connected to the wiring 123b of the third wiring layer 123 through the contact 167. The power supply potential VDD as the first reference potential is applied to the wiring 123b. The gate 151 of the n-channel transistor n1 is connected to the wiring 122a of the second wiring layer 122 through the contact 161. The control signal Vc1 is input to the wiring 122a. The gate 154 of the n-channel transistor n4 is connected to the wiring 122b of the second wiring layer 122 through the contact 172. The control signal Vc2 is input to the wiring 122b. Next, the operation of the semiconductor memory device of this embodiment will be described. As shown in Figure 13(b), in the initial state, the control signals Vc1 and Vc2 and the data signal SA are both "L". Therefore, the n-channel transistors n1 and n4 are in the OFF state. From this state, the control signal Vc2 is set to "H" for the data latch circuit 116 that holds the data, and the n-channel transistor n4 is set to the ON state. Thereby, the potential of the connection point N2 between the p-channel transistor p4 and the n-channel transistor n3 becomes "L". As a result, the p-channel transistor p2 is in the ON state and the n-channel transistor n2 is in the OFF state. Therefore, the potential of the connection point N1 of the p-channel transistor p2 and the n-channel transistor n2 becomes "H". This causes the p-channel transistor p4 to be in the OFF state and the n-channel transistor n3 to be in the ON state. Therefore, the potential of the connection point N2 is stabilized at "L". Thereafter, the control signal Vc2 is returned to "L", and the n-channel transistor n4 is set to the OFF state. Then, the sense amplifier 15 temporarily sets the data signal SA to "H" and then outputs the original data signal SA. Next, the control signal Vc1 is set to "H", the n-channel transistor n1 is set to the ON state, and the value of the data signal SA is written into the data latch circuit 16 . When the data signal SA is "H", since the n-channel transistor n1 is in the ON state, the potential of the connection point N1 will maintain "H", so the potential of the connection point N2 will maintain "L" and be fixed. When the data signal SA is "L", because the n-channel transistor n1 is in the ON state, the potential of the connection point N1 becomes "L". Therefore, the p-channel transistor p4 is in the ON state, and the n-channel transistor n3 is in the OFF state. Therefore, the potential of the connection point N2 becomes "H". This causes the p-channel transistor p2 to be in the OFF state and the n-channel transistor n2 to be in the ON state. Therefore, the potential of the connection point N1 is fixed at "L". In this way, when the data signal SA is "H", the potential of the connection point N1 is fixed at "H", and the potential of the connection point N2 is fixed at "L". , the potential of the connection point N1 is fixed at "L", and the potential of the connection point N2 is fixed at "H". As a result, the data latch circuit 116 can retain the value represented by the data signal SA. Next, the effects of this embodiment will be described. In this embodiment, the data latch circuit 116 can be composed of six transistors. Thereby, compared with the first embodiment, the data latch circuit 116 can be miniaturized. In addition, in this embodiment, one gate 152 is used to realize both the gate of the n-channel transistor n2 and the gate of the p-channel transistor p2. In addition, one gate 153 realizes both the gate of the n-channel transistor n3 and the gate of the p-channel transistor p4. Thereby, the number of gates in the data latch circuit 116 is reduced, and the data latch circuit 116 can be miniaturized. In addition, in this embodiment, the shape of the gate 151 and the gate 153 is a strip extending in the X direction, and are arranged along the X direction. In addition, the gate 152 and the gate 154 are also in the shape of strips extending in the X direction and are arranged along the X direction. Thereby, the number of gate electrodes in each data latch circuit 116 becomes two, and the size of the data latch circuit 116 in the Y direction can be reduced. Furthermore, in this embodiment, the layouts of adjacent data latch circuits 116 in the X direction are mirrored to each other. Thereby, the gate 151 can be made common between the data latch circuits 116 adjacent in the X direction, and the gate 154 can be made common. In addition, the layouts of adjacent data latch circuits 116 in the Y direction are mirrored to each other. Thereby, the n-type layer 141, the n-type layer 143, the p-type layer 132, the p-type layer 133, the n-type layer 144, and the n-type layer 146 can be shared between adjacent data latch circuits 116 in the Y direction. . This also enables the data latch circuit 16 to be miniaturized. The structure, operation, and effect of this embodiment other than those mentioned above are the same as those of the aforementioned first embodiment. (Fourth Embodiment) Next, the fourth embodiment will be described. FIG. 14 is a schematic plan view of the semiconductor region, gate, contact and first wiring layer in the four data latch circuits of this embodiment. FIG. 15 is a schematic plan view of the semiconductor region, gate, contact, first wiring layer, and second wiring layer in the four data latch circuits of this embodiment. FIG. 16 is a schematic plan view of the semiconductor region, gate, contact, first wiring layer, second wiring layer and third wiring layer in the four data latch circuits of this embodiment. Figure 17 (a) is a schematic plan view of a data latch circuit in this embodiment, and (b) is a circuit diagram thereof. As shown in FIGS. 14 to 16 and 17(a), the semiconductor memory device 4 of this embodiment is, compared with the semiconductor memory device 3 of the third embodiment mentioned above (see FIGS. 8 to 13(b)), The structure of the data latch circuit 118 is different. In the data latch circuit 118, the shapes, positional relationships and connection relationships of the n-well 21, the p-well 22, the p-type layers 131~134, the n-type layers 141~146, the gates 151~54, and the contacts 161~172 are as follows Data latch circuit 116 of the third embodiment. On the other hand, the data latch circuit 118 has a different configuration from the data latch circuit 116 in the first wiring layer 121, the second wiring layer 122, and the third wiring layer 123. In addition, the data latch circuit 118 is provided with through holes 181 and 182. First, the first wiring layer 121 will be described. As shown in FIG. 14 and FIG. 17(a) , the first wiring layer 121 of the data latch circuit 118 is provided with wiring 121b, wiring 121c, wiring 121g, wiring 121h, and wiring 121i. The positions and shapes of the wiring 121b and the wiring 121c are the same as those in the third embodiment. The wiring 121h is connected to the upper end of the contact 162 and the lower end of the through hole 181. The wiring 121i is connected to the upper end of the contact 171 and the lower end of the through hole 182. The wiring 121g is provided with a trunk portion 121j, and branch portions 121m and 121n. The trunk portion 121j of the wiring 121g extends in the Y direction between the semiconductor region 112 and the semiconductor region 113 in the X-direction central portion of each data latch circuit 118. The stem 121j is provided across a plurality of data latch circuits 118 arranged along the Y direction. The stem 121 j is arranged to pass through the area directly above the gate 152 and the area directly above the gate 153 . The branch portion 121m of the wiring 121g extends toward one side in the X direction from the trunk portion 121j and is connected to the upper end of the contact 167. The branch portion 121m is shared by two data latch circuits 118 adjacent in the Y direction. The branch portion 121n of the wiring 121g extends from the trunk portion 121j toward the other side in the X direction and is connected to the upper end of the contact 166. The branch portion 121m is shared by two data latch circuits 118 adjacent in the Y direction. In this way, the wiring 121g is connected to the p-type layer 133 through the contact 167, and is connected to the p-type layer 132 through the contact 166. Next, the second wiring layer 122 will be described. As shown in FIG. 15 , the second wiring layer 122 of the data latch circuit 118 is provided with wiring 122c. The wiring 122c is provided with a stem portion 122d and branch portions 122e and 122f. The trunk portion 122d of the wiring 122c extends in the X direction. The stem 122d is provided across a plurality of data latch circuits 118 arranged along the X direction. The stem 122d is arranged so as to pass through the area directly above the wiring 121b and the area directly above the wiring 121c of the first wiring layer 121. The branch portion 122e of the wiring 122c extends from the trunk portion 122d toward one side in the Y direction and is connected to the upper end of the contact 161. The branch portion 122f of the wiring 122c extends from the trunk portion 122d toward the other side in the Y direction and is connected to the upper end of the contact 172. In this way, the wiring 122c is connected to the gate 151 through the contact 161, and is connected to the gate 154 through the contact 172. Next, the third wiring layer 123 will be described. As shown in FIG. 16 , the third wiring layer 123 of the data latch circuit 118 is provided with wirings 123a, 123c, and 123d. The shapes of the wirings 123a, 123c, and 123d are linear extending in the Y direction, and are provided across the plurality of data latch circuits 118 arranged along the Y direction. The position and shape of the wiring 123a are the same as those in the third embodiment. That is, the wiring 123a is arranged along the boundary line of the adjacent data latch circuits 118 in the X direction. For example, two adjacent data latch circuits 118 belonging to the X direction are arranged adjacent to each other across the STI 23. The area directly above the semiconductor region 111 and the semiconductor region 114 . The wiring 123a is connected to the upper end of the contact 164 and the upper end of the contact 169. Thereby, the wiring 123a is connected to the n-type layer 143 through the contact 164, and is connected to the n-type layer 144 through the contact 169. The wiring 123 c is arranged near the area directly above the semiconductor region 112 and is connected to the upper end of the through hole 181 . Thereby, the wiring 123c is connected to the n-type layer 141 through the through hole 181, the wiring 121h and the contact 162. The wiring 123d is disposed near the area directly above the portion between the semiconductor region 113 and the semiconductor region 114, and is connected to the upper end of the through hole 182. Thereby, the wiring 123d is connected to the n-type layer 146 through the via hole 182, the wiring 121i, and the contact 172. As a result of each transistor being connected as described above, each data latch circuit 118 will form a circuit as shown in FIG. 17(b). The connection between the transistors in the data latch circuit 118 is the same as that in the data latch circuit 116 of the third embodiment. In addition, the connection between the n-channel transistors n2 and n3 and the ground potential GND is also like the data latch circuit 116. On the other hand, compared with the data latch circuit 116, the data latch circuit 118 has different input power supply potential VDD, control signal Vc, data signals SA and bSA to each transistor. In addition, the data latch circuit 118 is different from the data latch circuit 116 in that the control signal Vc is common and that the data signals SA and bSA are complementary signals. Among the data signals SA and bSA, if one is "H", the other is "L". The other side of the source/drain of the p-channel transistor p2 (p-type layer 132) is connected to the wiring 121g through the contact 166 and the branch portion 121n. The other side of the source/drain of the p-channel transistor p4 (p-type layer 133) is connected to the wiring 121g through the contact 169 and the branch portion 121m. The power supply potential VDD as the first reference potential is applied to the wiring 121g. The gate 151 of the n-channel transistor n1 is connected to the wiring 122c through the contact 161. The gate 154 of the n-channel transistor n4 is connected to the wiring 122c through the contact 172. A common control signal Vc is applied to the wiring 122c. The other side of the source/drain of the n-channel transistor n1 (n-type layer 141) is connected to the wiring 123b through the contact 162, the wiring 121h, and the through hole 181. The data signal SA is applied to the wiring 123b. The other side of the source/drain of the n-channel transistor n1 (n-type layer 146) is connected to the wiring 123c through the contact 171, the wiring 121i, and the through hole 182. The data signal bSA is applied to the wiring 123c. Next, the operation of the semiconductor memory device of this embodiment will be described. As shown in Figure 17(b), in the initial state, the control signal Vc and the data signal SA are both "L". Therefore, the n-channel transistors n1 and n4 are in the OFF state. From this state, the control signal Vc is set to "H" for the data latch circuit 118 that holds the data, and the n-channel transistors n1 and n4 are set to the ON state. Then, the sense amplifier 15 outputs the data signals SA and bSA to the data latch circuit 118 . The data retention method of n-channel transistors n2 and n3 and p-channel transistors p2 and p4 is the same as in the third embodiment. According to this embodiment, the same effect as that of the third embodiment can be obtained. According to the above-described embodiment, it is possible to realize a miniaturized data latch circuit and semiconductor memory device. Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments or their modifications are included within the scope or gist of the invention, and are included within the scope of the invention described in the patent application and its equivalents.

1、2、3、4:半導體記憶裝置 10:控制電路基板 11:矽基板 12:層間絕緣膜 13:感測放大器區域 14:感測放大器電路 15:感測放大器 16、16a、16b、16c:資料鎖存電路 18:資料鎖存電路 21:n井 22、22a、22b:p井 23:STI 31~36、31a、31b、32a、32b:p型層 41~45、41a、41c、42a、42c:n型層 51~56:閘極 61~73:觸點 76、77、78、79:配線 80:記憶體陣列基板 81:矽基板 82:層間絕緣膜 83:源極線 85:層積體 86:絕緣膜 87:電極膜 90:芯構件 91:矽柱 92:穿隧絕緣膜 93:電荷蓄積膜 94:阻擋絕緣膜 96:插栓 97:位元線 111~114:半導體區域(主動區域) 116:資料鎖存電路 118:資料鎖存電路 121:第1配線層 121a、121b、121c:配線 121d:幹部 121e、121f:枝部 121g、121h、121i:配線 121j:幹部 121m、121n:枝部 122:第2配線層 122a、122b、122c:配線 122d:幹部 122e、122f:枝部 123:第3配線層 123a、123b、123c、123d:配線 131~134:p型層 141~146:n型層 151~154:閘極 161~172:觸點 181、182:通孔 GND:接地電位 N1、N2:連接點 n1~n4:n通道型電晶體 p1~p4:p通道型電晶體 SA、bSA:資料訊號 VDD:電源電位 Vc、Vc1、Vc2:控制訊號 Vs1、Vs2:選擇訊號1, 2, 3, 4: Semiconductor memory device 10:Control circuit substrate 11:Silicon substrate 12: Interlayer insulation film 13: Sense amplifier area 14: Sense amplifier circuit 15: Sense amplifier 16, 16a, 16b, 16c: Data latch circuit 18: Data latch circuit 21:n well 22, 22a, 22b:p well 23: STI 31~36, 31a, 31b, 32a, 32b: p-type layer 41~45, 41a, 41c, 42a, 42c: n-type layer 51~56: Gate 61~73:Contact 76, 77, 78, 79: Wiring 80:Memory array substrate 81:Silicon substrate 82: Interlayer insulation film 83: Source line 85: Laminated body 86:Insulating film 87:Electrode film 90: Core component 91:Silicon pillar 92: Tunnel insulation film 93: Charge accumulation film 94: Barrier insulation film 96:Plug 97:Bit line 111~114: Semiconductor area (active area) 116: Data latch circuit 118: Data latch circuit 121: 1st wiring layer 121a, 121b, 121c: Wiring 121d:cadre 121e, 121f: branches 121g, 121h, 121i: Wiring 121j:cadres 121m, 121n: branches 122: 2nd wiring layer 122a, 122b, 122c: Wiring 122d:cadre 122e, 122f: branches 123: 3rd wiring layer 123a, 123b, 123c, 123d: Wiring 131~134: p-type layer 141~146: n-type layer 151~154: Gate 161~172:Contact 181, 182:Through hole GND: ground potential N1, N2: connection point n1~n4: n-channel transistor p1~p4:p channel transistor SA, bSA: data signal VDD: power supply potential Vc, Vc1, Vc2: control signal Vs1, Vs2: selection signal

[圖1]第1實施形態之半導體記憶裝置示意截面圖。 [Fig. 1] Schematic cross-sectional view of the semiconductor memory device according to the first embodiment.

[圖2]第1實施形態之半導體記憶裝置的感測放大器電路示意平面圖。 [Fig. 2] A schematic plan view of the sense amplifier circuit of the semiconductor memory device according to the first embodiment.

[圖3]第1實施形態之資料鎖存電路示意平面圖。 [Fig. 3] A schematic plan view of the data latch circuit of the first embodiment.

[圖4](a)為1個資料鎖存電路示意平面圖,(b)為其電路圖。 [Figure 4] (a) is a schematic plan view of a data latch circuit, and (b) is its circuit diagram.

[圖5]第1實施形態之半導體記憶裝置的記憶體單元示意截面圖。 [Fig. 5] A schematic cross-sectional view of a memory cell of the semiconductor memory device according to the first embodiment.

[圖6]第2實施形態之資料鎖存電路示意平面圖。 [Fig. 6] Schematic plan view of the data latch circuit of the second embodiment.

[圖7](a)為1個資料鎖存電路示意平面圖,(b)為其電路圖。 [Fig. 7] (a) is a schematic plan view of a data latch circuit, and (b) is its circuit diagram.

[圖8]第3實施形態之資料鎖存電路中的半導體區域、閘極及觸點示意平面圖。 [Fig. 8] A schematic plan view of the semiconductor region, gates, and contacts in the data latch circuit of the third embodiment.

[圖9]第3實施形態之資料鎖存電路中的半導體區域、閘極、觸點及第1配線層示意平面圖。 [Fig. 9] A schematic plan view of the semiconductor region, gate, contact and first wiring layer in the data latch circuit of the third embodiment.

[圖10]第3實施形態之資料鎖存電路中的半導體區域、閘極、觸點、第1配線層、第2配線層及第3配線層示意平面圖。[Fig. 10] A schematic plan view of the semiconductor region, gate, contact, first wiring layer, second wiring layer, and third wiring layer in the data latch circuit of the third embodiment.

[圖11]第3實施形態之1個資料鎖存電路示意平面圖,(a)示意半導體區域、閘極及觸點,(b)在(a)中更示意第1配線層,(c)在(b)中更示意第2配線層及第3配線層。[Fig. 11] A schematic plan view of a data latch circuit in the third embodiment, (a) shows the semiconductor region, gate and contacts, (b) in (a) further shows the first wiring layer, (c) in (b) further illustrates the second wiring layer and the third wiring layer.

[圖12]第3實施形態之4個資料鎖存電路示意平面圖。[Fig. 12] Schematic plan view of four data latch circuits of the third embodiment.

[圖13](a)為第3實施形態之1個資料鎖存電路示意平面圖,(b)為其電路圖。[Fig. 13] (a) is a schematic plan view of a data latch circuit in the third embodiment, and (b) is a circuit diagram thereof.

[圖14]第4實施形態之4個資料鎖存電路中的半導體區域、閘極、觸點及第1配線層示意平面圖。[Fig. 14] A schematic plan view of the semiconductor region, gate, contact and first wiring layer in the four data latch circuits of the fourth embodiment.

[圖15]第4實施形態之4個資料鎖存電路中的半導體區域、閘極、觸點、第1配線層及第2配線層示意平面圖。[Fig. 15] A schematic plan view of the semiconductor region, gate, contact, first wiring layer, and second wiring layer in the four data latch circuits of the fourth embodiment.

[圖16]第4實施形態之4個資料鎖存電路中的半導體區域、閘極、觸點、第1配線層、第2配線層及第3配線層示意平面圖。[Fig. 16] A schematic plan view of the semiconductor region, gate, contact, first wiring layer, second wiring layer, and third wiring layer in the four data latch circuits of the fourth embodiment.

[圖17](a)為第4實施形態之1個資料鎖存電路示意平面圖,(b)為其電路圖。[Fig. 17] (a) is a schematic plan view of a data latch circuit in the fourth embodiment, and (b) is a circuit diagram thereof.

11:矽基板 11:Silicon substrate

16:資料鎖存電路 16: Data latch circuit

21:n井 21:n well

22:p井 22:p well

23:STI 23: STI

31~36:p型層 31~36: p-type layer

41~45:n型層 41~45: n-type layer

51~56:閘極 51~56: Gate

61~73:觸點 61~73:Contact

76、77:配線 76, 77: Wiring

GND:接地電位 GND: ground potential

N1、N2:連接點 N1, N2: connection point

n1~n4:n通道型電晶體 n1~n4: n-channel transistor

p1~p4:p通道型電晶體 p1~p4:p channel transistor

SA:資料訊號 SA: data signal

VDD:電源電位 VDD: power supply potential

Vc、Vc1、Vc2:控制訊號 Vc, Vc1, Vc2: control signal

Vs1、Vs2:選擇訊號 Vs1, Vs2: selection signal

Claims (4)

一種半導體記憶裝置,具備:感測放大器;及資料鎖存電路;及相互隔離而層積之複數個電極膜;及貫通前述複數個電極膜之半導體構件;及設於前述電極膜與前述半導體構件之間之電荷蓄積構件;及連接至前述半導體構件之源極線;及連接至前述半導體構件與前述感測放大器之間之位元線;前述感測放大器及前述資料鎖存電路,設於第1基板,前述複數個電極膜、前述半導體構件、前述電荷蓄積構件、前述源極線及前述位元線,設於第2基板,前述第1基板與前述第2基板相互貼合,前述資料鎖存電路,具備:第1n通道型電晶體;及第1p通道型電晶體;及第2n通道型電晶體;及第3n通道型電晶體;及第4n通道型電晶體;及第2p通道型電晶體; 前述第1n通道型電晶體的閘極和前述第1p通道型電晶體的閘極為共通的第1共通閘極,前述第1共通閘極的形狀為曲柄狀,前述第1n通道型電晶體為驅動器,前述第1p通道型電晶體為負載,前述第2n通道型電晶體的閘極和前述第2p通道型電晶體的閘極為共通的第2共通閘極,前述第3n通道型電晶體的源極/汲極的一方,連接至前述第2n通道型電晶體的前述第2共通閘極及前述第2p通道型電晶體的前述第2共通閘極、以及前述第1n通道型電晶體的源極/汲極的一方及前述第1p通道型電晶體的源極/汲極的一方,前述第3n通道型電晶體的源極/汲極的另一方連接至前述感測放大器,前述第4n通道型電晶體的源極/汲極的一方,連接至前述第1n通道型電晶體的前述第1共通閘極及前述第1p通道型電晶體的前述第1共通閘極、以及前述第2n通道型電晶體的源極/汲極的一方及前述第2p通道型電晶體的源極/汲極的一方,前述第4n通道型電晶體的源極/汲極的另一方連接至前述感測放大器,在前述第1p通道型電晶體的源極/汲極的另一方及前述第2p通道型電晶體的源極/汲極的另一方,可施加第1基準電位,前述第1n通道型電晶體的源極/汲極的另一方及前述第2n通道型電晶體的源極/汲極的另一方,為共通的n型 層,被施加第2基準電位。 A semiconductor memory device, including: a sense amplifier; and a data latch circuit; and a plurality of electrode films separated from each other and laminated; and a semiconductor member penetrating the plurality of electrode films; and provided between the electrode film and the semiconductor member The charge accumulation component between; and the source line connected to the aforementioned semiconductor component; and the bit line connected between the aforementioned semiconductor component and the aforementioned sense amplifier; the aforementioned sense amplifier and the aforementioned data latch circuit are provided in the first 1 substrate, the plurality of electrode films, the semiconductor member, the charge storage member, the source line and the bit line are provided on a second substrate, the first substrate and the second substrate are bonded to each other, and the data lock A storage circuit, including: a 1n-channel transistor; and a 1p-channel transistor; and a 2n-channel transistor; and a 3n-channel transistor; and a 4n-channel transistor; and a 2p-channel transistor. crystal; The gate of the first n-channel transistor and the gate of the first p-channel transistor are a common first common gate, the shape of the first common gate is a crank shape, and the first n-channel transistor is a driver , the aforementioned 1st p-channel transistor is a load, the gate of the aforementioned 2nd n-channel transistor and the gate of the aforementioned 2nd p-channel transistor are a common second common gate, and the source of the aforementioned 3rd n-channel transistor is /The drain side is connected to the second common gate of the second n-channel transistor, the second common gate of the second p-channel transistor, and the source of the first n-channel transistor/ One side of the drain electrode and one side of the source/drain electrode of the aforementioned 1st p-channel type transistor, the other side of the aforementioned source/drain electrode of the aforementioned 3rd n-channel type transistor are connected to the aforementioned sense amplifier, and the aforementioned 4th n-channel type transistor is connected to the sense amplifier. One of the source/drain of the crystal is connected to the first common gate of the first n-channel transistor, the first common gate of the first p-channel transistor, and the second n-channel transistor. One of the source/drain electrodes and one of the source/drain electrodes of the aforementioned 2nd p-channel type transistor, and the other side of the source/drain electrode of the aforementioned 4th n-channel type transistor are connected to the aforementioned sense amplifier. A first reference potential can be applied to the other side of the source/drain of the first p-channel transistor and the other side of the source/drain of the second p-channel transistor, and the source of the first n-channel transistor The other side of the drain electrode and the other side of the source electrode/drain electrode of the second n-channel transistor are of the common n-type layer, the second reference potential is applied. 如申請專利範圍第1項所述之半導體記憶裝置,其中,前述第1p通道型電晶體的源極/汲極的一方及前述第2p通道型電晶體的源極/汲極的一方,藉由絕緣膜而被相互分離。 The semiconductor memory device according to claim 1, wherein one of the source/drain of the first p-channel transistor and one of the source/drain of the second p-channel transistor are connected by are separated from each other by the insulating film. 如申請專利範圍第2項所述之半導體記憶裝置,其中,前述絕緣膜為元件分離絕緣膜。 In the semiconductor memory device described in claim 2 of the patent application, the insulating film is an element isolation insulating film. 如申請專利範圍第2項所述之半導體記憶裝置,其中,前述第2n通道型電晶體及前述第2p通道型電晶體所共通的前述第2共通閘極的形狀為曲柄狀,前述第1n通道型電晶體及前述第1p通道型電晶體所共通的前述第1共通閘極當中的前述第1p通道型電晶體側的部分與前述第2共通閘極當中的前述第2p通道型電晶體側的部分之第1距離,比前述第1共通閘極當中的前述第1n通道型電晶體側的部分與前述第2共通閘極當中的前述第2n通道型電晶體側的部分之第2距離還大,前述絕緣膜,配置於前述第1共通閘極當中的前述第1p通道型電晶體側的部分與前述第2共通閘極當中的前述第2p通道型電晶體側的部分之間。 The semiconductor memory device described in claim 2, wherein the second common gate shared by the 2n-channel transistor and the 2p-channel transistor has a crank shape, and the 1n-channel transistor has a crank shape. The part on the first p-channel transistor side of the first common gate shared by the first p-channel transistor and the part on the second p-channel transistor side of the second common gate The first distance of the portion is larger than the second distance between the portion of the first common gate on the side of the first n-channel transistor and the portion of the second common gate on the side of the second n-channel transistor. The insulating film is disposed between a portion of the first common gate on the side of the first p-channel transistor and a portion of the second common gate on the side of the second p-channel transistor.
TW108107098A 2018-09-14 2019-03-04 semiconductor memory device TWI820090B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-172343 2018-09-14
JP2018172343 2018-09-14

Publications (2)

Publication Number Publication Date
TW202011574A TW202011574A (en) 2020-03-16
TWI820090B true TWI820090B (en) 2023-11-01

Family

ID=69814373

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108107098A TWI820090B (en) 2018-09-14 2019-03-04 semiconductor memory device

Country Status (3)

Country Link
JP (1) JP7481808B2 (en)
CN (1) CN110912552B (en)
TW (1) TWI820090B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI843310B (en) * 2021-12-16 2024-05-21 日商鎧俠股份有限公司 Data latch circuit and semiconductor storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0315301A2 (en) * 1987-11-02 1989-05-10 Advanced Micro Devices, Inc. CMOS latch circuits
TW311278B (en) * 1996-05-08 1997-07-21 Mitsubishi Electric Corp Semiconductor memory device
US7460099B2 (en) * 1998-04-28 2008-12-02 Sharp Kabushiki Kaisha Latch circuit, shift register circuit, logical circuit and image display device operated with a low consumption of power
TW201804600A (en) * 2011-07-26 2018-02-01 瑞薩電子股份有限公司 Semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041203A1 (en) * 2003-10-27 2005-05-06 Nec Corporation Semiconductor storage device
JP2009238332A (en) * 2008-03-27 2009-10-15 Renesas Technology Corp Semiconductor memory device
JP5518879B2 (en) * 2009-09-21 2014-06-11 株式会社東芝 Three-dimensional integrated circuit manufacturing method and apparatus
JP2011248932A (en) * 2010-05-21 2011-12-08 Panasonic Corp Semiconductor memory device
JP6765313B2 (en) * 2017-01-23 2020-10-07 キオクシア株式会社 Semiconductor storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0315301A2 (en) * 1987-11-02 1989-05-10 Advanced Micro Devices, Inc. CMOS latch circuits
TW311278B (en) * 1996-05-08 1997-07-21 Mitsubishi Electric Corp Semiconductor memory device
US7460099B2 (en) * 1998-04-28 2008-12-02 Sharp Kabushiki Kaisha Latch circuit, shift register circuit, logical circuit and image display device operated with a low consumption of power
TW201804600A (en) * 2011-07-26 2018-02-01 瑞薩電子股份有限公司 Semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
網路文獻 The Department of Electrical Engineering and Computer Science vlsi_senseAmp Tufts University 2011/08/27 https://www.eecs.tufts.edu/~ddemeo01/ee103/vlsi_senseAmp.htm *

Also Published As

Publication number Publication date
JP2020048179A (en) 2020-03-26
CN110912552B (en) 2023-12-08
JP7481808B2 (en) 2024-05-13
TW202011574A (en) 2020-03-16
CN110912552A (en) 2020-03-24

Similar Documents

Publication Publication Date Title
JP6645940B2 (en) Nonvolatile semiconductor memory device
US7599214B2 (en) Semiconductor memory device
KR100468780B1 (en) Double port semiconductor memory device
US20120182779A1 (en) Semiconductor memory device
US6414872B1 (en) Compact non-volatile memory device and memory array
US6717206B2 (en) Structure of an embedded channel write/erase flash memory cell and fabricating method thereof
JPH10223777A (en) Semiconductor memory device
US7777263B2 (en) Semiconductor integrated circuit device comprising SRAM and capacitors
US5341327A (en) Static random access type semiconductor memory device
KR20060049592A (en) Nonvolatile memory device
US8552763B2 (en) Switch array including active regions being adjacent to each other in channel width direction of memory cell transistor
US20130193583A1 (en) Semiconductor device having metal lines with slits
US8072833B2 (en) Semiconductor memory device
US20240112746A1 (en) Semiconductor storage device
TW200403838A (en) Static semiconductor memory device
KR20160145587A (en) Nonvolatile semiconductor storage device
JP2003078037A (en) Semiconductor memory
KR20040002438A (en) Semiconductor memory device
TWI820090B (en) semiconductor memory device
US9455273B2 (en) Semiconductor device
JP2006344735A (en) Semiconductor device
US11398257B2 (en) Header layout design including backside power rail
US10777564B2 (en) Non-volatile memory device
US10867641B2 (en) Data latch circuit and semiconductor memory device
US11715501B2 (en) Header layout design including backside power rail