TWI819980B - Electric energy distribution method for site and power conversion system - Google Patents

Electric energy distribution method for site and power conversion system Download PDF

Info

Publication number
TWI819980B
TWI819980B TW112111792A TW112111792A TWI819980B TW I819980 B TWI819980 B TW I819980B TW 112111792 A TW112111792 A TW 112111792A TW 112111792 A TW112111792 A TW 112111792A TW I819980 B TWI819980 B TW I819980B
Authority
TW
Taiwan
Prior art keywords
power
group
case
conversion system
site
Prior art date
Application number
TW112111792A
Other languages
Chinese (zh)
Inventor
楊宏澤
林於縉
謝賜福
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW112111792A priority Critical patent/TWI819980B/en
Application granted granted Critical
Publication of TWI819980B publication Critical patent/TWI819980B/en

Links

Abstract

A method for distributing electrical energy, suitable for distributing the electrical energy of Lsites, comprising the following steps: (A) For each site, an AFC frequency modulation service system calculates weights according to a historical execution data and multiple execution rates, and obtains a comprehensive execution; (B) For each site, the AFC frequency modulation service system obtain an evaluation score based on multiple evaluation calculation weights, the comprehensive execution rate, and a battery data; (C) According to the evaluation scores obtained in step (B), the AFC frequency modulation service system groups the sites into Ksite groups, LK>1; (D) The AFC frequency modulation service system sorts the site groups according to the evaluation scores obtained in step (B); (E) The AFC frequency modulation service system sequentially obtains multiple site groups power allocation execution amount according to a total power distribution amount and multiple site rated power; and (F) For each site group, the AFC frequency modulation service system obtains multiple site power allocation execution amount according to the site groups power allocation execution amount and multiple site rated power.

Description

案場及電力轉換系統的電能分配方法Electric energy distribution methods for case sites and power conversion systems

本發明是有關於一種有關電力的供應或分配之數據交換方法,特別是指一種案場及電力轉換系統的電能分配方法。The present invention relates to a data exchange method related to the supply or distribution of electric power, and in particular, to a method of electric energy distribution in a field and a power conversion system.

近年來,世界各國政府大力推動潔淨能源為能源轉型發展方向,其中潔淨能源項目包含風力、太陽能、生物燃料、地熱能、海洋能、水力發電等再生能源。但伴隨著再生能源裝置容量提高,再生能源的間歇性發電特性及不易預測性,可能對電力系統供需平衡與電網運轉產生影響。In recent years, governments around the world have vigorously promoted clean energy as the direction of energy transformation and development. Clean energy projects include wind power, solar energy, biofuels, geothermal energy, ocean energy, hydropower and other renewable energy sources. However, as the capacity of renewable energy devices increases, the intermittent power generation characteristics and unpredictability of renewable energy may have an impact on the supply and demand balance of the power system and the operation of the grid.

為持續穩定全國用電需求,台電與民間企業共同打造自動頻率控制(Automatic Frequency Control, 以下簡稱AFC)調頻服務系統。AFC調頻服務系統會主動偵測前一秒的電網頻率,若頻率突然下降,幾毫秒內就會從民間企業的案場調度電能進行快速反應、自動放電。AFC調頻服務系統可幫助維持電力系統因負載波動造成之頻率飄移,藉此維持電力系統平衡與提高電網穩定。In order to continue to stabilize the country's electricity demand, Taipower and private companies jointly created an Automatic Frequency Control (AFC) frequency modulation service system. The AFC frequency modulation service system will actively detect the power grid frequency of the previous second. If the frequency suddenly drops, it will dispatch electric energy from the private enterprise's site within a few milliseconds for rapid response and automatic discharge. The AFC frequency regulation service system can help maintain the frequency drift of the power system caused by load fluctuations, thereby maintaining the balance of the power system and improving grid stability.

此外,每一案場包括個多個電力轉換系統,及的一電連接該等電力轉換系統的能源管理系統。在案場被調度電能時,該能源管理系統會從該等電力轉換系統調度電能。In addition, each site includes a plurality of power conversion systems, and an energy management system that electrically connects these power conversion systems. When electric energy is dispatched at the site, the energy management system dispatches electric energy from the power conversion systems.

然而,現有的電能分配方法,僅考量儲能容量,使得調度電能時執行效率不佳,故實有必要提出一解決方案。However, existing electric energy distribution methods only consider energy storage capacity, resulting in poor efficiency when dispatching electric energy. Therefore, it is necessary to propose a solution.

因此,本發明的目的,即在提供一種能提高調度電能時的執行效率的電能分配方法。Therefore, an object of the present invention is to provide an electric energy distribution method that can improve execution efficiency when dispatching electric energy.

於是,本發明電能分配方法,適用於分配 L個案場的電能,由一自動頻率控制調頻服務系統來實施,該自動頻率控制調頻服務系統通訊連接該等案場,第 l個案場包括 M l 個電力轉換系統,第 m個電力轉換系統具有 N m 個電池管理系統, L, M l , N m >1, ,該自動頻率控制調頻服務系統儲存有多個分別對應該等案場的歷史案場執行資料、 L筆分別對應該等案場的電池資料,及一用於分配該等案場的總功率分配量,每一歷史案場執行資料包括多個分別對應多個不同時間點的歷史案場執行率,第 l個案場對應的電池資料包括一相關於所對應之案場的所有電池管理系統額定容量之總和的案場額定容量、一相關於所對應之案場的所有電力轉換系統之額定功率總和的案場額定功率、 M l × N m 個分別對應所對應之案場的所有電池管理系統的電池容量、 M l × N m 個分別對應所對應之案場的該等電池管理系統的額定容量,及 M l × N m 個分別對應所對應之案場的該等電池管理系統的電池健康度,該電能分配方法包含一步驟(A)、一步驟(B)、一步驟(C)、一步驟(D)、一步驟(E),及一步驟(F)。 Therefore, the electric energy distribution method of the present invention is suitable for distributing electric energy to L case sites, and is implemented by an automatic frequency control frequency modulation service system. The automatic frequency control frequency modulation service system is communicatively connected to the case sites. The l- th case site includes M l Power conversion system, the mth power conversion system has N m battery management systems, L , M l , N m >1, , , the automatic frequency control frequency modulation service system stores a plurality of historical case execution data corresponding to the case sites, L pieces of battery data corresponding to the case sites, and a total power allocation for allocating the case sites. Each historical case site execution data includes multiple historical case site execution rates corresponding to multiple different time points. The battery data corresponding to the l- th case site includes a rated capacity of all battery management systems related to the corresponding case site. M l Battery capacity, M l × N m corresponding to the rated capacity of the battery management system of the corresponding case, and M l , the electric energy distribution method includes a step (A), a step (B), a step (C), a step (D), a step (E), and a step (F).

在該步驟(A)中,對於每一案場,該自動頻率控制調頻服務系統根據該案場對應的歷史執行資料及多個執行率計算權重,獲得一綜合執行率。In step (A), for each case, the automatic frequency control frequency modulation service system calculates the weight based on the historical execution data and multiple execution rates corresponding to the case, and obtains a comprehensive execution rate.

在該步驟(B)中,對於每一案場,該自動頻率控制調頻服務系統根據多個評比計算權重、該案場對應的綜合執行率,及對應該案場的電池資料,獲得一對應該案場的評比分數。In this step (B), for each case site, the automatic frequency control frequency modulation service system calculates the weight based on multiple evaluations, the comprehensive execution rate corresponding to the case site, and the battery data corresponding to the case site, and obtains a pair of corresponding The evaluation score of the case.

在該步驟(C)中,該自動頻率控制調頻服務系統根據該等案場對應的評比分數,將該等案場分群成 K個案場群體, LK>1。 In this step (C), the automatic frequency control frequency modulation service system groups the case sites into K case site groups based on the evaluation scores corresponding to the case sites, LK > 1.

在該步驟(D)中,該自動頻率控制調頻服務系統根據該等案場群體的所有案場對應的評比分數,將該等案場群體進行排序。In step (D), the automatic frequency control frequency modulation service system sorts the case group groups according to the rating scores corresponding to all cases in the case group group.

在該步驟(E)中,該自動頻率控制調頻服務系統根據該總功率分配量及該等案場之電池資料的案場額定功率,依序獲得多個分別對應該等案場群體的案場群體功率分配執行量。In this step (E), the automatic frequency control frequency modulation service system sequentially obtains a plurality of case sites corresponding to the case group groups based on the total power allocation and the case site rated power of the battery data of the case sites. Group power allocation execution amount.

在該步驟(F)中,對於每一案場群體,該自動頻率控制調頻服務系統根據該案場群體對應的案場群體功率分配執行量,及該案場群體之所有案場的電池資料的案場額定功率,獲得多個分別對應該案場群體的該等案場的案場功率分配執行量。In this step (F), for each case group, the automatic frequency control frequency modulation service system allocates the execution amount according to the case group power corresponding to the case group and the battery data of all cases in the case group. The case site rated power is used to obtain the case site power allocation execution amounts of multiple case sites corresponding to the case site group.

本發明的另一目的,即在提供一種能提高執行效率的電能分配方法。Another object of the present invention is to provide a power distribution method that can improve execution efficiency.

於是,本發明電能分配方法,適用於分配一案場包括的 M個電力轉換系統的電能,由該案場包括的一電連接該等電力轉換系統的能源管理系統來實施,每一電力轉換系統具有 N m 個電池管理系統, M, N m >1, ,該能源管理系統儲存有一相關於該案場在一頻率點 f的案場規範輸出功率,及 M筆分別對應該等電力轉換系統的電池資料,每一電池資料所對應之電力轉換系統的電力轉換系統額定功率、 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的電池容量、 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的額定容量,及 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的電池健康度,該電能分配方法包含一步驟(G)、一步驟(H)、一步驟(I)、一步驟(J)、一步驟(K),及一步驟(L)。 Therefore, the electric energy distribution method of the present invention is suitable for distributing electric energy of M power conversion systems included in a project site, and is implemented by an energy management system included in the project site that is electrically connected to the power conversion systems. Each power conversion system There are N m battery management systems, M , N m > 1, , the energy management system stores a site specification output power related to the site at a frequency point f , and M pieces of battery data corresponding to the power conversion system. Each battery data corresponds to the power of the power conversion system. The rated power of the conversion system, N m respectively correspond to the battery capacities of all battery management systems of the corresponding power conversion system, N m respectively correspond to the rated capacities of all battery management systems of the corresponding power conversion system, and N m respectively Corresponding to the battery health of all battery management systems of the corresponding power conversion system, the power distribution method includes one step (G), one step (H), one step (I), one step (J), and one step (K). ), and one step (L).

在該步驟(G)中,該能源管理系統根據該等電池資料之電池容量及電池健康度,獲得 M個分別對應該等電池資料的平均電池容量,及 M個分別對應該等電池資料的平均電池健康度。 In this step (G), the energy management system obtains M average battery capacities corresponding to the battery data, and M average battery capacities corresponding to the battery data respectively, based on the battery capacity and battery health of the battery data. Battery health.

在該步驟(H)中,對於每一電力轉換系統,該能源管理系統根據該電力轉換系統對應的一平均電池容量與一平均電池健康度、多個分別對應多個充電優先級分數模糊語意的充電分數歸屬函數、多個分別對應多個電池容量模糊語意的容量歸屬函數、多個分別對應多個電池健康度模糊語意的健康度歸屬函數,及一包括多條規則的模糊規則庫,利用一模糊推論演算法推論出一相關於該電力轉換系統的充電優先級分數。In this step (H), for each power conversion system, the energy management system uses an average battery capacity and an average battery health corresponding to the power conversion system, and a plurality of charging priority scores corresponding to the fuzzy semantics. A charging score attribution function, a plurality of capacity attribution functions respectively corresponding to multiple battery capacity fuzzy semantics, a plurality of health attribution functions respectively corresponding to multiple battery health fuzzy semantics, and a fuzzy rule base including multiple rules, using a The fuzzy inference algorithm infers a charging priority score associated with the power conversion system.

在該步驟(I)中,該能源管理系統根據該等電力轉換系統對應的充電優先級分數將該等電力轉換系統分群成 P個電力群體, MP>1。 In step (I), the energy management system groups the power conversion systems into P power groups according to the charging priority scores corresponding to the power conversion systems, MP > 1.

在該步驟(J)中,該能源管理系統根據該等電力群體的所有電力轉換系統對應的充電優先級分數,將該等電力群體進行排序。In step (J), the energy management system sorts the power groups according to the charging priority scores corresponding to all power conversion systems of the power groups.

在該步驟(K)中,該能源管理系統根據該案場規範輸出功率及該等電池資料的電力轉換系統額定功率,依序獲得多個分別對應該等電力群體在該頻率點 f的電力群體規範輸出功率。 In this step (K), the energy management system sequentially obtains a plurality of power groups corresponding to the power groups at the frequency point f based on the site specification output power and the power conversion system rated power of the battery data. Standardized output power.

在該步驟(L)中,對於每一電力群體,該能源管理系統根據該案場規範輸出功率、該電力群體對應的電力群體規範輸出功率,及該等電池資料的電力轉換系統額定功率,獲得多個分別對應該電力群體的所有電力轉換系統在該頻率點 f的電力轉換系統規範輸出功率。 In this step (L), for each power group, the energy management system obtains based on the site specification output power, the power group specification output power corresponding to the power group, and the power conversion system rated power of the battery data. The multiple power conversion systems respectively corresponding to the power group have standardized output powers at the frequency point f .

本發明的再一目的,即在提供一種能提高執行效率的電能分配方法。Another object of the present invention is to provide a power distribution method that can improve execution efficiency.

於是,本發明電能分配方法,適用於分配一案場包括的 M個電力轉換系統的電能,由該案場包括的一電連接該等電力轉換系統的能源管理系統來實施,每一電力轉換系統具有 N m 個電池管理系統, M, N m >1, ,該能源管理系統儲存有一相關於該案場在一頻率點 f的案場規範輸出功率,及 M筆分別對應該等電力轉換系統的電池資料,每一電池資料所對應之電力轉換系統的電力轉換系統額定功率、 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的電池容量、 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的額定容量,及 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的電池健康度,該電能分配方法包含一步驟(G)、一步驟(H)、一步驟(I)、一步驟(J)、一步驟(K),及一步驟(L)。 Therefore, the electric energy distribution method of the present invention is suitable for distributing electric energy of M power conversion systems included in a project site, and is implemented by an energy management system included in the project site that is electrically connected to the power conversion systems. Each power conversion system There are N m battery management systems, M , N m > 1, , the energy management system stores a site specification output power related to the site at a frequency point f , and M pieces of battery data corresponding to the power conversion system. Each battery data corresponds to the power of the power conversion system. The rated power of the conversion system, N m respectively correspond to the battery capacities of all battery management systems of the corresponding power conversion system, N m respectively correspond to the rated capacities of all battery management systems of the corresponding power conversion system, and N m respectively Corresponding to the battery health of all battery management systems of the corresponding power conversion system, the power distribution method includes one step (G), one step (H), one step (I), one step (J), and one step (K). ), and one step (L).

在該步驟(G)中,該能源管理系統根據該等電池資料之電池容量及電池健康度,獲得 M個分別對應該等電池資料的平均電池容量,及 M個分別對應該等電池資料的平均電池健康度。 In this step (G), the energy management system obtains M average battery capacities corresponding to the battery data, and M average battery capacities corresponding to the battery data respectively, based on the battery capacity and battery health of the battery data. Battery health.

在該步驟(H)中,對於每一電力轉換系統,該能源管理系統根據該電力轉換系統對應的一平均電池容量與一平均電池健康度、多個分別對應多個放電優先級分數模糊語意的放電分數歸屬函數、多個分別對應多個電池容量模糊語意的容量歸屬函數、多個分別對應多個電池健康度模糊語意的健康度歸屬函數,及一包括多條規則的模糊規則庫,利用一模糊推論演算法推論出一相關於該電力轉換系統的放電優先級分數。In this step (H), for each power conversion system, the energy management system uses an average battery capacity and an average battery health corresponding to the power conversion system, and a plurality of fuzzy semantics corresponding to a plurality of discharge priority scores respectively. Discharge score attribution functions, multiple capacity attribution functions corresponding to multiple battery capacity fuzzy semantics, multiple health attribution functions corresponding to multiple battery health fuzzy semantics, and a fuzzy rule base including multiple rules, using a The fuzzy inference algorithm infers a discharge priority score associated with the power conversion system.

在該步驟(I)中,該能源管理系統根據該等電力轉換系統對應的放電優先級分數將該等電力轉換系統分群成 P個電力群體, MP>1。 In this step (I), the energy management system groups the power conversion systems into P power groups according to the discharge priority scores corresponding to the power conversion systems, MP > 1.

在該步驟(J)中,該能源管理系統根據該等電力群體的所有電力轉換系統對應的放電優先級分數,將該等電力群體進行排序。In step (J), the energy management system sorts the power groups according to the discharge priority scores corresponding to all power conversion systems of the power groups.

在該步驟(K)中,該能源管理系統根據該案場規範輸出功率及該等電池資料的電力轉換系統額定功率,依序獲得多個分別對應該等電力群體在該頻率點 f的電力群體規範輸出功率。 In this step (K), the energy management system sequentially obtains a plurality of power groups corresponding to the power groups at the frequency point f based on the site specification output power and the power conversion system rated power of the battery data. Standardized output power.

在該步驟(L)中,對於每一電力群體,該能源管理系統根據該案場規範輸出功率、該電力群體對應的電力群體規範輸出功率,及該等電池資料的電力轉換系統額定功率,獲得多個分別對應該電力群體的所有電力轉換系統在該頻率點 f的電力轉換系統規範輸出功率。 In this step (L), for each power group, the energy management system obtains based on the site specification output power, the power group specification output power corresponding to the power group, and the power conversion system rated power of the battery data. The multiple power conversion systems respectively corresponding to the power group have standardized output powers at the frequency point f .

本發明的功效在於:藉由該自動頻率控制調頻服務系統根據考量評比計算權重、綜合執行率,及電池資料所獲得的評比分數將該等案場分群,再根據該等案場群體的所有案場對應的評比分數,將該等案場群體進行排序,以依序獲得該等案場群體功率分配執行量,最後根據每一案場群體功率分配執行量獲得案場功率分配執行量,以提高該自動頻率控制調頻服務系統調度電能時的執行效率。此外,藉由該能源管理系統根據考量平均電池容量及平均電池健康度所獲得的充電或放電優先級分數將該等電力轉換系統分群,再根據該等電力群體的所有電力轉換系統對應的充電或放電優先級分數,將該等電力群體進行排序,以依序獲得該等電力群體規範輸出功率,最後根據每一電力群體規範輸出功率獲得電力轉換系統規範輸出功率,以提高該能源管理系統調度電能時的執行效率。The effect of the present invention is to use the automatic frequency control frequency modulation service system to divide the case sites into groups based on the evaluation scores calculated by considering the weights, comprehensive execution rates, and battery data, and then group the case sites according to all the cases in the case site groups. Based on the evaluation scores corresponding to each case, the case groups are sorted to obtain the power allocation execution amount of the case groups in order. Finally, the case power allocation execution amount is obtained based on the power allocation execution amount of each case group to improve The automatic frequency control frequency regulation service system performs efficiently when dispatching electric energy. In addition, the energy management system divides the power conversion systems into groups according to the charging or discharging priority scores obtained by considering the average battery capacity and average battery health, and then according to the charging or discharging priority scores corresponding to all the power conversion systems of the power groups. The discharge priority score is used to sort the power groups to obtain the standardized output power of the power groups in order. Finally, the standardized output power of the power conversion system is obtained according to the standardized output power of each power group, so as to improve the dispatching of electric energy by the energy management system. time execution efficiency.

在本發明被詳細描述前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are designated with the same numbering.

本發明案場及電力轉換系統的電能分配方法的一實施例包括一案場電能分配程序,及一電力轉換系統電能分配程序。An embodiment of the power distribution method for a site and a power conversion system of the present invention includes a site power distribution program and a power conversion system power distribution program.

參閱圖1,本發明案場及電力轉換系統的電能分配方法的該實施例之該案場電能分配程序,適用於分配 L個案場2的電能,由一自動頻率控制調頻服務系統1來實施。該自動頻率控制調頻服務系統1通訊連接該等案場2,第 l個案場2包括 M l 個電力轉換系統(Power Conversion System, PCS)21,第 m個電力轉換系統21具有 N m 個電池管理系統(Battery Management System, BMS)211, L, M l , N m >1, Referring to FIG. 1 , the electric energy distribution procedure of the case site according to this embodiment of the power distribution method of the case site and power conversion system of the present invention is suitable for distributing the power of L case site 2 and is implemented by an automatic frequency control frequency modulation service system 1 . The automatic frequency control frequency modulation service system 1 is communicatively connected to the case sites 2. The l-th case site 2 includes M l power conversion systems (PCS) 21, and the m -th power conversion system 21 has N m battery management System (Battery Management System, BMS) 211, L , M l , N m >1, , .

值得注意的是,在本實施例中,該自動頻率控制調頻服務系統1是以IEC61850標準與該等案場2通訊,但不以此為限。It is worth noting that in this embodiment, the automatic frequency control FM service system 1 communicates with the case sites 2 based on the IEC61850 standard, but it is not limited to this.

該自動頻率控制調頻服務系統1儲存有多個分別對應該等案場的歷史案場執行資料、 L筆分別對應該等案場的電池資料,及一用於分配該等案場的總功率分配量。要特別注意的是,該等案場的總得標量。 The automatic frequency control frequency modulation service system 1 stores a plurality of historical case execution data corresponding to the case sites respectively, L pieces of battery data corresponding to the case sites respectively, and a total power allocation for allocating the case sites. quantity. Special attention should be paid to the total scalar of such cases.

每一歷史案場執行資料包括多個分別對應多個不同時間點的歷史案場執行率。Each historical case execution data includes multiple historical case execution rates corresponding to multiple different time points.

l個案場對應的電池資料包括一相關於所對應之案場的所有電池管理系統額定容量之總和的案場額定容量、 M l 個分別對應所對應之案場的所有電力轉換系統的電力轉換系統額定功率、一相關於所對應之案場的所有電力轉換系統之額定功率總和的案場額定功率、 M l × N m 個分別對應所對應之案場的所有電池管理系統的電池容量、 M l × N m 個分別對應所對應之案場的該等電池管理系統的額定容量,及 M l × N m 個分別對應所對應之案場的該等電池管理系統的電池健康度。 The battery data corresponding to the l- th case site includes a case-site rated capacity corresponding to the sum of the rated capacities of all battery management systems in the corresponding case site, and M l power conversions corresponding to all power conversion systems in the corresponding case site. System rated power, a site rated power that is related to the sum of the rated powers of all power conversion systems of the corresponding site, M l × N m battery capacities respectively corresponding to all battery management systems of the corresponding site, M l × N m respectively correspond to the rated capacity of the battery management system of the corresponding case site, and M l × N m respectively correspond to the battery health of the battery management system of the corresponding case site.

參閱圖1與圖2,本發明案場及電力轉換系統的電能分配方法的該實施例之案場電能分配程序,包含下列步驟。Referring to FIGS. 1 and 2 , the power distribution process of the project site and the power distribution method of the power conversion system according to this embodiment of the present invention includes the following steps.

在步驟31中,該自動頻率控制調頻服務系統1根據該歷史執行資料及多個執行率計算權重,獲得一綜合執行率。In step 31, the automatic frequency control frequency modulation service system 1 calculates weights based on the historical execution data and multiple execution rates to obtain a comprehensive execution rate.

搭配參閱圖3,步驟31包括子步驟311~312。Referring to Figure 3, step 31 includes sub-steps 311~312.

在子步驟311中,對於每一案場,該自動頻率控制調頻服務系統1根據該案場對應的歷史執行資料計算出一過去1天平均執行率 、一過去7天平均執行率 ,及一過去14天平均執行率 ,如下式所示: , 其中, 為第 dh小時 s秒的歷史案場執行率, D為當前日期, H為當前小時。 In sub-step 311, for each case site, the automatic frequency control frequency modulation service system 1 calculates an average execution rate in the past day based on the historical execution data corresponding to the case site. , the average execution rate over the past 7 days , and an average execution rate of the past 14 days , as shown in the following formula: , , , in, is the historical case execution rate in h hours and s seconds on day d , D is the current date, and H is the current hour.

要特別注意的是,在本實施例中,為確認實際輸出功率點是否符合規範輸出功率,因此需要每秒計算執行率,第 dh小時 s秒的歷史案場執行率 計算方式如下式所示: , 其中, 為對應頻率 f的實際輸出總功率, 為對應頻率 f的期望輸出總功率, 為各頻率點的規範輸出百分比(如圖4所示), 案場的分配執行量, 為規範功率對照百分比, 為規範頻率對照,因 功率點介於 間,若 則規範輸出功率為 ,若 則規範輸出功率為 It is important to note that in this embodiment, in order to confirm whether the actual output power point meets the specified output power, it is necessary to calculate the execution rate every second, and the historical case execution rate of h hours and s seconds on day d The calculation method is as follows: , , , , , in, is the actual total output power corresponding to frequency f , is the expected total output power corresponding to frequency f , is the standard output percentage of each frequency point (as shown in Figure 4), The assigned execution volume of the case site, , , is the standard power comparison percentage, For standard frequency comparison, because The power point is between and time, if for Then the standard output power is ,like for Then the standard output power is .

在子步驟312中,對於每一案場,該自動頻率控制調頻服務系統1根據該等執行率計算權重、該過去1天平均執行率、該過去7天平均執行率,及該過去14天平均執行率計算出該綜合執行率 ,如下式所示: , 其中, 為該等執行率計算權重。 In sub-step 312, for each case, the automatic frequency control FM service system 1 calculates a weight based on the execution rates, the average execution rate in the past day, the average execution rate in the past 7 days, and the average execution rate in the past 14 days. Execution rate calculates the comprehensive execution rate , as shown in the following formula: , , , in, Calculate the weight for these execution rates.

在步驟32中,對於每一案場,該自動頻率控制調頻服務系統1根據多個評比計算權重、該綜合執行率,及對應該案場的電池資料,獲得一對應該案場的評比分數。對應第 l個案場的評比分數 S l 如下式所示: , 其中, 為該等評比計算權重, 為第 l個案場的第 m個電力轉換系統的第 n個電池管理系統的電池容量, 為第 l個案場的第 m個電力轉換系統的第 n個電池管理系統的額定容量, 為第 l個案場的第 m個電力轉換系統的第 n個電池管理系統的電池健康度, 為對應第 l個案場的綜合執行率, 為第 l個案場的案場額定容量。 In step 32, for each case site, the automatic frequency control frequency modulation service system 1 calculates weights based on multiple evaluations, the comprehensive execution rate, and the battery data corresponding to the case site, and obtains a rating score for the case site. The evaluation score S l corresponding to the l-th case field is as follows: , , , , , in, To calculate the weight for such evaluation, is the battery capacity of the n -th battery management system of the m- th power conversion system in the l- th case site, is the rated capacity of the n -th battery management system of the m- th power conversion system in the l- th case site, is the battery health of the n- th battery management system of the m- th power conversion system in the l- th case site, is the comprehensive execution rate corresponding to the l-th case site, It is the rated capacity of the case site of the lth case site.

在步驟33中,該自動頻率控制調頻服務系統1根據該等案場對應的評比分數,將該等案場分群成 K個案場群體, LK>1。 In step 33, the automatic frequency control frequency modulation service system 1 groups the case sites into K case site groups according to the evaluation scores corresponding to the case sites, LK > 1.

搭配參閱圖5,步驟33包括子步驟331~334。Referring to Figure 5, step 33 includes sub-steps 331~334.

在子步驟331中,該自動頻率控制調頻服務系統1根據該等案場對應的評比分數及一預定值,獲得一案場評比矩陣 A,如下式所示: , 其中, S i 為對應第 i個案場的評比分數, S j 為對應第 j個案場的評比分數, 為該預定值。 In sub-step 331, the automatic frequency control FM service system 1 obtains a case evaluation matrix A based on the evaluation scores corresponding to the cases and a predetermined value, as shown in the following formula: , , , where, S i is the evaluation score corresponding to the i-th case field, S j is the evaluation score corresponding to the j -th case field, is the predetermined value.

在子步驟332中,該自動頻率控制調頻服務系統1判定該案場評比矩陣 A扣除一單位矩陣 I後的非零列向量及非零行向量是否線性相依。當判定出扣除後的該案場評比矩陣 A- I的非零列向量及非零行向量線性相依時,表示未存在明確群組,流程進行子步驟333;而當判定出該扣除後的該案場評比矩陣 A- I的非零列向量及非零行向量線性不相依時,則流程進行步驟334。 In sub-step 332, the automatic frequency control frequency modulation service system 1 determines whether the non-zero column vectors and non-zero row vectors of the case evaluation matrix A after deducting an identity matrix I are linearly dependent. When it is determined that the non-zero column vectors and non-zero row vectors of the case evaluation matrix A - I after deduction are linearly dependent, it means that there is no clear group, and the process proceeds to sub-step 333; and when it is determined that the non-zero row vector of the case evaluation matrix A - I after deduction is When the non-zero column vectors and non-zero row vectors of the case evaluation matrix A - I are linearly independent of each other, the process proceeds to step 334.

值得注意的是,在本實例中,該案場評比矩陣 A扣除該單位矩陣後,會再扣除零列及零行,以產生一重構矩陣 A’,並判定該重構矩陣 A’的行/列數是否等於秩數,若該重構矩陣 A’的行/列數等於秩數,判定扣除後的該案場評比矩陣 A- I的非零列向量及非零行向量相依;若該重構矩陣 A’的行/列數不等於秩數,則判定扣除後的該案場評比矩陣 A- I的非零列向量及非零行向量不相依,但不以此為限。 It is worth noting that in this example, after deducting the unit matrix from the case evaluation matrix A , zero columns and zero rows will be deducted to generate a reconstruction matrix A ', and the rows of the reconstruction matrix A ' will be determined. /Whether the number of columns is equal to the rank number, if the number of rows/columns of the reconstructed matrix A ' is equal to the rank number, determine whether the non-zero column vectors and non-zero row vectors of the case evaluation matrix A - I after deduction are dependent; if If the number of rows/columns of the reconstructed matrix A ' is not equal to the rank number, it is determined that the non-zero column vectors and non-zero row vectors of the case evaluation matrix A - I after deduction are not dependent on each other, but this is not limited to this.

在子步驟333中,該自動頻率控制調頻服務系統1調整該預定值,並重複子步驟331~332,直到扣除後的該案場評比矩陣 A- I的非零列向量及非零行向量線性不相依。 In sub-step 333, the automatic frequency control frequency modulation service system 1 adjusts the predetermined value, and repeats sub-steps 331~332 until the non-zero column vector and non-zero row vector of the case evaluation matrix A - I after deduction are linear Not dependent on each other.

在子步驟334,該自動頻率控制調頻服務系統1根據該等案場對應的評比分數將該等案場分群成該等案場群體,如下式所示: , 其中, S l 為對應第 l個案場的評比分數, 表示第 l個案場是否屬於第 k個案場群體,當第 l個案場屬於第 k個案場群體時 ,當第 l個案場不屬於第 k個案場群體時 In sub-step 334, the automatic frequency control frequency modulation service system 1 groups the case sites into the case site groups according to the evaluation scores corresponding to the case sites, as shown in the following formula: , , , , , , , , where S l is the evaluation score corresponding to the l -th case field, Indicates whether the l-th case field belongs to the k- th case field group, when the l-th case field belongs to the k -th case field group , when the l-th case field does not belong to the k -th case field group .

舉例來說,假設 L=5, S 1=60, S 2=61, S 3=62, S 4=85, S 5=81, For example, suppose L =5, S 1 =60, S 2 =61, S 3 =62, S 4 =85, S 5 =81, .

在子步驟331中,該自動頻率控制調頻服務系統1獲得該案場評比矩陣 A如下式所示: In sub-step 331, the automatic frequency control frequency modulation service system 1 obtains the case evaluation matrix A as shown in the following formula:

在子步驟332中,扣除後的該案場評比矩陣 A- I、該重構矩陣 A’分別如下式: , 該重構矩陣 A’的行/列數為3且秩數為2,故判定扣除後的該案場評比矩陣 A- I的非零列向量及非零行向量相依,流程進行步驟333。 In sub-step 332, the deducted case evaluation matrix A - I and the reconstruction matrix A ' are as follows: , , the number of rows/columns of the reconstructed matrix A ' is 3 and the rank is 2, so it is determined that the non-zero column vectors and non-zero row vectors of the case evaluation matrix A - I after deduction are dependent on each other, and the process proceeds to step 333.

在子步驟333中,自動頻率控制調頻服務系統1調整該預定值,例如 。再重新進行子步驟331時,可獲得該案場評比矩陣 A如下式所示: In sub-step 333, the automatic frequency control FM service system 1 adjusts the predetermined value, for example . When sub-step 331 is performed again, the case evaluation matrix A can be obtained as follows: .

再舉例來說,假設 L=5, S 1=60, S 2=61, S 3=80, S 4=85, S 5=81, For another example, assume L =5, S 1 =60, S 2 =61, S 3 =80, S 4 =85, S 5 =81, .

在子步驟331中,該自動頻率控制調頻服務系統1獲得該案場評比矩陣 A如下式所示: In sub-step 331, the automatic frequency control frequency modulation service system 1 obtains the case evaluation matrix A as shown in the following formula: .

在子步驟332中,扣除後的該案場評比矩陣 A- I、該重構矩陣 A’分別如下式: , 該重構矩陣 A’的行/列數為4且秩數為4,故判定扣除後的該案場評比矩陣 A- I的非零列向量及非零行向量不相依,流程進行步驟334。 In sub-step 332, the deducted case evaluation matrix A - I and the reconstruction matrix A ' are as follows: , , the number of rows/columns of the reconstruction matrix A ' is 4 and the rank is 4, so it is determined that the non-zero column vectors and non-zero row vectors of the case evaluation matrix A - I after deduction are not dependent on each other, and the process proceeds to step 334 .

在子步驟334中,該自動頻率控制調頻服務系統1分群過程如下:In sub-step 334, the automatic frequency control FM service system 1 grouping process is as follows:

,因未有案場分到第 群組( ),故 ,因 ,因此 ,即第 案場分到第 群組。 when , , because no case has been assigned to the group( ), so ,because ,therefore , that is, the first The case scene is assigned to the first group.

,因有第 案場分到第 群組( ),故 ,因 ,因此 ,即第 案場分到第 群組。 when , , because there is no. The case scene is assigned to the first group( ), so ,because ,therefore , that is, the first The case scene is assigned to the first group.

,因有第 案場分到第 群組( ),故 ,因 ,因此 when , , because there is no. The case scene is assigned to the first group( and ), so ,because ,therefore .

,因有第 案場分到第 群組( ),故 ,因 ,因此 when , , because there is no. The case scene is assigned to the first group( and ), so ,because ,therefore .

,因有第 案場分到第 群組( ),故 ,因 ,因此 when , , because there is no. The case scene is assigned to the first group( and ), so ,because ,therefore .

,因第 案場已分到第 群組( , ),因此 , when , due to The case scene has been assigned to the group( , ),therefore , .

,因未有案場分到第 群組( ),故 ,因 ,因此 ,即第 案場分到第 群組。 when , , because no case has been assigned to the group( ), so ,because ,therefore , that is, the first The case scene is assigned to the first group.

,因有第 個案場分到第 群組( ),故 ,因 ,因此 when , , because there is no. Case sites are assigned to the group( ), so ,because ,therefore .

,因有第 個案場分到第 群組( ),故 ,因 ,因此 ,即第 案場分到第 群組。 when , , because there is no. Case sites are assigned to the group( ), so ,because ,therefore , that is, the first The case scene is assigned to the first group.

,因第 案場已分於第 群組( , ),因此 , ,因第 案場已分於第 群組( , ),因此 , when , due to The case scene has been divided into group( , ),therefore , , due to The case scene has been divided into group( , ),therefore , .

,因未有案場分到第 群組( ),故 ,因 ,因此 when , , because no case has been assigned to the group( ), so ,because ,therefore .

經由以上計算可知相近評比分數對應的案場分到同一群,目前可知第3群組內未有成員,並且第4個案場還未分組,因此第4個案場分為第三群組 ,即未有群組之案場則獨自成一群組。 From the above calculation, it can be seen that case sites with similar evaluation scores are classified into the same group. Currently, it can be seen that there are no members in the 3rd group, and the 4th case site has not been grouped yet, so the 4th case site is divided into the third group. , that is, if there is no group, the case scene will form a group by itself.

值得注意的是,在其他實施方式中,亦可以其他分群方式,將相近評比分數對應的案場分到同一群,不以此為限。It is worth noting that in other implementations, other grouping methods can also be used to group cases corresponding to similar evaluation scores into the same group, but this is not a limitation.

在步驟34中,該自動頻率控制調頻服務系統1根據該等案場群體的所有案場對應的評比分數,將該等案場群體進行排序。In step 34, the automatic frequency control frequency modulation service system 1 sorts the case group groups according to the rating scores corresponding to all cases in the case group groups.

搭配參閱圖6,步驟34包括子步驟341~342。Referring to Figure 6, step 34 includes sub-steps 341~342.

在子步驟341中,對於每一案場群體,該自動頻率控制調頻服務系統1根據對應該案場群體的所有案場對應的評比分數計算出一平均評比分數,其中第 k個案場群體對應的平均評比分數 如下式所示: , 其中, S l 為對應第 l個案場的評比分數。 In sub-step 341, for each case group, the automatic frequency control frequency modulation service system 1 calculates an average evaluation score based on the evaluation scores corresponding to all cases corresponding to the case group, wherein the kth case group corresponds to average review score As shown in the following formula: , in, , S l is the evaluation score corresponding to the l -th case field.

在子步驟342中,該自動頻率控制調頻服務系統1根據該等案場群體對應的平均評比分數之高低排序該等案場群體,其中對應的平均評比分數較高的案場群體有較前的順序。In sub-step 342, the automatic frequency control frequency modulation service system 1 sorts the case group groups according to the average rating scores corresponding to the case group groups, wherein the case group groups with the corresponding average rating scores are higher than the previous ones. order.

在步驟35中,該自動頻率控制調頻服務系統1根據該總功率分配量及該等案場之電池資料的案場額定功率,依序獲得多個分別對應該等案場群體的案場群體功率分配執行量。In step 35, the automatic frequency control frequency modulation service system 1 sequentially obtains a plurality of case group power corresponding to the case groups according to the total power allocation amount and the case rated power of the battery data of the case groups. Allocate execution volume.

搭配參閱圖7,步驟35包括子步驟351~357。Referring to Figure 7, step 35 includes sub-steps 351~357.

在子步驟351中,該自動頻率控制調頻服務系統1根據該等案場之電池資料的案場額定功率,獲得 K個分別對應該等案場群體的案場群體額定功率,其中第 k個案場群體額定功率 如下式所示: , 其中, 為第 l個案場之電池資料的案場額定功率。 In sub-step 351, the automatic frequency control frequency modulation service system 1 obtains K case group rated powers corresponding to the case groups based on the case rated power of the battery data of the case groups, among which the kth case group Group power rating As shown in the following formula: , in, It is the case site rated power of the battery data of the l case site.

在子步驟352中,初始時, k=1。 In sub-step 352, initially, k =1.

在子步驟353,對於排序第 k的案場群體,該自動頻率控制調頻服務系統1判定該案場群體對應的案場群體額定功率是否小於一案場群體剩餘功率分配量。其中初始時,即 k=1時,該案場群體剩餘功率分配量即為該總功率分配量。當判定出該案場群體對應的案場群體額定功率小於該案場群體剩餘功率分配量時,流程進行子步驟354;而當判定出該案場群體對應的案場群體額定功率不小於該案場群體剩餘功率分配量時,則流程進行子步驟355。 In sub-step 353, for the kth sorted case group, the automatic frequency control frequency modulation service system 1 determines whether the rated power of the case group corresponding to the case group is less than the remaining power allocation amount of a case group. At the initial time, that is, when k = 1, the remaining power allocation amount of the case group is the total power allocation amount. When it is determined that the rated power of the case group corresponding to the case group is less than the remaining power allocation amount of the case group, the process proceeds to sub-step 354; and when it is determined that the rated power of the case group corresponding to the case group is not less than the case group When the remaining power allocation amount of the field group is determined, the process proceeds to sub-step 355.

在子步驟354中,對於排序第 k的案場群體,該自動頻率控制調頻服務系統1將該案場群體對應的案場群體額定功率作為對應該案場群體的案場群體功率分配執行量,並將該案場群體剩餘功率分配量扣除該案場群體對應的案場群體額定功率,以更新該案場群體剩餘功率分配量。 In sub-step 354, for the kth sorted case group, the automatic frequency control frequency modulation service system 1 uses the case group rated power corresponding to the case group as the case group power allocation execution amount corresponding to the case group, The remaining power allocation amount of the case group is deducted from the rated power of the case group corresponding to the case group to update the remaining power allocation amount of the case group.

在子步驟355中,對於排序第 k的案場群體,該自動頻率控制調頻服務系統1將該剩餘功率分配量作為對應該案場群體的案場群體功率分配執行量,再將該電力群體剩餘功率分配量更新為0。 In sub-step 355, for the kth sorted site group, the automatic frequency control frequency modulation service system 1 uses the remaining power allocation amount as the site group power allocation execution amount corresponding to the site group, and then uses the remaining power allocation amount of the power group The power allocation amount is updated to 0.

在子步驟356中,該自動頻率控制調頻服務系統1判定排序第 k的案場群體是否為排序第 K的案場群體,即判定是否 k= K。當判定出時排序第 k的案場群體不為排序第 K的案場群體,即 kK時,流程進行子步驟357;而當判定出時排序第 k的案場群體為排序第 K的案場群體,即 k= K時,則進行步驟36。 In sub-step 356, the automatic frequency control frequency modulation service system 1 determines whether the k -th case group is the K -th case group, that is, it determines whether k = K. When it is determined that the k -th case group is not the K -th case group, that is, kK , the process proceeds to sub-step 357; and when it is determined that the k -th case group is the K -th case group, Case group, that is, when k = K , proceed to step 36.

在子步驟357中,該自動頻率控制調頻服務系統1對於排序第 k+1的案場群體,即 k= k+1,並重複子步驟353~355直到 k= KIn sub-step 357, the automatic frequency control FM service system 1 sorts the k + 1th case group, that is, k = k + 1, and repeats sub-steps 353 to 355 until k = K.

值得注意的是,子步驟351~356可以下式表示: , 其中, 為排序第 k的案場群體, 為排序第1的案場群體對應的案場群體功率分配執行量, 為排序第1的案場群體對應的案場群體額定功率, 為排序第1的案場群體對應的案場群體剩餘功率分配量, 為該總功率分配量, 為排序第 k+1的案場群體對應的案場群體功率分配執行量, 為排序第 k+1的案場群體對應的案場群體額定功率, 為排序第 k+1的案場群體對應的案場群體剩餘功率分配量, 為排序第 k的案場群體對應的案場群體額定功率, 為排序第 k的案場群體對應的案場群體額定功率。 It is worth noting that sub-steps 351~356 can be expressed as follows: , , , , , in, is the k -th case group in order, The power allocation execution amount is allocated to the case group power corresponding to the case group ranked first, is the rated power of the case group corresponding to the case group ranked first, is the remaining power allocation amount of the case group corresponding to the case group ranked first, is the total power allocation, Allocate the execution amount to the case group power corresponding to the k + 1th sorted case group, is the rated power of the case group corresponding to the k +1th sorted case group, is the remaining power allocation amount of the case group corresponding to the k +1th sorted case group, is the rated power of the case group corresponding to the kth sorted case group, is the rated power of the case group corresponding to the kth sorted case group.

要再注意的是,第 k個案場群體對應的案場群體備援量 如下式所示 , 其中, 為第 k個案場群體對應的案場群體額定功率, 為第 k個案場群體對應的案場群體功率分配執行量。 It should be noted again that the backup amount of the case group corresponding to the kth case group As shown in the following formula , in, is the rated power of the case group corresponding to the kth case group, The execution amount is allocated to the power of the case group corresponding to the kth case group.

在步驟36中,對於每一案場群體,該自動頻率控制調頻服務系統1根據該案場群體對應的案場群體功率分配執行量,及該案場群體之所有案場的電池資料的案場額定功率,獲得多個分別對應該案場群體的該等案場的案場功率分配執行量。其中第 k個案場群體的第 l個案場對應的案場功率分配執行量 如下式所示: , 其中, 為第 k個案場群體的第 l個案場所屬案場群體對應的案場群體額定功率。 In step 36, for each case group, the automatic frequency control frequency modulation service system 1 allocates the execution amount according to the case group power corresponding to the case group and the battery data of all cases in the case group. The rated power is used to obtain the case power allocation execution amounts of multiple case sites corresponding to the case site group. Among them, the case field power allocation execution amount corresponding to the l-th case field of the k-th case field group As shown in the following formula: , , , in, It is the rated power of the case group corresponding to the l- th case group of the k -th case group.

值得注意的是,在其他實施方式中,對於每一案場群體,該自動頻率控制調頻服務系統1亦可根據該案場群體對應的案場群體備援量、該案場群體對應的案場群體額定功率,及該案場群體之所有案場的電池資料的案場額定功率,獲得多個分別對應該案場群體的該等案場的案場備援量。其中第 k個案場群體的第 l個案場對應的案場備援量 如下式所示: It is worth noting that in other implementations, for each case group, the automatic frequency control frequency modulation service system 1 can also be based on the case group backup amount corresponding to the case group, the case group corresponding to the case group The group rated power, and the case rated power of the battery data of all cases in the case group, obtain multiple case backup volumes of the cases respectively corresponding to the case group. Among them, the case site backup amount corresponding to the l-th case site of the k- th case site group As shown in the following formula: , , .

參閱圖8,本發明案場及電力轉換系統的電能分配方法的該實施例之該電力轉換系統電能分配程序,適用於分配一案場2包括的 M個電力轉換系統21的電能,由該案場2包括的一電連接該等電力轉換系統21的能源管理系統(Energy Management System, EMS)22來實施,每一電力轉換系統21具有 N m 個電池管理系統211, M, N m >1, Referring to FIG. 8 , the power conversion system power distribution procedure of this embodiment of the power distribution method for a project site and a power conversion system according to the present invention is suitable for distributing the power of M power conversion systems 21 included in a project site 2 . The field 2 includes an energy management system (EMS) 22 electrically connected to the power conversion systems 21. Each power conversion system 21 has N m battery management systems 211, M , N m > 1, .

該能源管理系統22儲存有一相關於該案場2在一頻率點 f的案場規範輸出功率,及 M筆分別對應該等電力轉換系統21的電池資料。 The energy management system 22 stores a site specification output power related to the site 2 at a frequency point f , and M pieces of battery data corresponding to the power conversion system 21 respectively.

每一電池資料所對應之電力轉換系統的電力轉換系統額定功率、 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的電池容量、 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的額定容量,及 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的電池健康度。 Each battery data corresponds to the rated power of the power conversion system of the power conversion system, N m corresponds to the battery capacity of all battery management systems of the corresponding power conversion system, and N m corresponds to all the battery management systems of the corresponding power conversion system. The rated capacity of the battery management system, and the battery health of all battery management systems of N m corresponding to the corresponding power conversion system.

參閱圖8與圖9,本發明案場及電力轉換系統的電能分配方法的該實施例之該電力轉換系統電能分配程序,包含下列步驟。Referring to FIG. 8 and FIG. 9 , the power distribution process of the power conversion system of the embodiment of the power distribution method of the project site and the power conversion system of the present invention includes the following steps.

在步驟41中,該能源管理系統3根據該等電池資料之電池容量及電池健康度,獲得 M個分別對應該等電池資料的平均電池容量,及 M個分別對應該等電池資料的平均電池健康度。其中,第 m個電力轉換系統對應的平均電池容量 及平均電池健康度 如下式所示: , 其中, 為第 m個電力轉換系統的第 n個電池管理系統的額定容量, 為第 m個電力轉換系統的所有的電池管理系統的額定容量之總和。 In step 41, the energy management system 3 obtains M average battery capacities corresponding to the battery data and M average battery health respectively corresponding to the battery data based on the battery capacity and battery health of the battery data. Spend. Among them, the average battery capacity corresponding to the m- th power conversion system and average battery health As shown in the following formula: , , , in, is the rated capacity of the nth battery management system of the mth power conversion system, is the sum of the rated capacities of all battery management systems of the m- th power conversion system.

在步驟42中,對於每一電力轉換系統,該能源管理系統3根據該電力轉換系統對應的一平均電池容量與一平均電池健康度、多個分別對應多個充電優先級分數模糊語意的充電分數歸屬函數、多個分別對應多個電池容量模糊語意的容量歸屬函數、多個分別對應多個電池健康度模糊語意的健康度歸屬函數,及一包括多條規則的模糊規則庫,利用一模糊推論演算法推論出一相關於該電力轉換系統的充電優先級分數。In step 42, for each power conversion system, the energy management system 3 uses an average battery capacity and an average battery health level corresponding to the power conversion system, and a plurality of charging scores respectively corresponding to a plurality of charging priority scores with fuzzy semantics. Attribution functions, a plurality of capacity attribution functions corresponding to multiple battery capacity fuzzy semantics, a plurality of health attribution functions corresponding to multiple battery health fuzzy semantics, and a fuzzy rule base including multiple rules, using a fuzzy inference The algorithm derives a charging priority score associated with the power conversion system.

該等充電優先級分數模糊語意為一低速充電、一中速充電,及一高速充電,該等充電分數歸屬函數 如下式所示: 對應該低速充電的充電分數歸屬函數 , 對應該中速充電的充電分數歸屬函數 , 對應該高速充電的充電分數歸屬函數 The fuzzy semantics of the charging priority scores are one low-speed charging, one medium-speed charging, and one high-speed charging, and the charging scores belong to functions As shown in the following formula: The charging fraction attribution function corresponding to the low-speed charging : , corresponding to the charging fraction attribution function of the medium-speed charging : , corresponding to the charging fraction attribution function of the high-speed charging : .

該等電池容量模糊語意為一低容量、一中容量,及一高容量,該等容量歸屬函數 如下式所示: 對應該低容量的容量歸屬函數 , 對應該中容量的容量歸屬函數 , 對應該高容量的容量歸屬函數 The fuzzy semantics of these battery capacities are a low capacity, a medium capacity, and a high capacity, and the capacities belong to functions As shown in the following formula: Capacity attribution function corresponding to the low capacity : , the capacity attribution function corresponding to the medium capacity : , the capacity attribution function corresponding to the high capacity : .

該等電池健康度模糊語意為一低健康度、一中健康度,及一高健康度,該等健康度歸屬函數 如下式所示: 對應該低健康度的健康度歸屬函數 , 對應該中健康度的健康度歸屬函數 , 對應該高健康度的健康度歸屬函數 The fuzzy semantics of these battery health levels include a low health level, a medium health level, and a high health level, and these health levels are attributed to functions As shown in the following formula: The health attribution function corresponding to the low health : , corresponding to the health attribute function of the medium health : , the health attribution function corresponding to the high health : .

該模糊規則庫如下表1所示: 高容量 中容量 低容量 高健康度 中速充電 高速充電 高速充電 中健康度 低速充電 中速充電 高速充電 低健康度 低速充電 低速充電 中速充電 表1 The fuzzy rule base is shown in Table 1 below: high capacity medium capacity low capacity high health Medium speed charging high speed charging high speed charging medium health low speed charging Medium speed charging high speed charging low health low speed charging low speed charging Medium speed charging Table 1

搭配參閱圖10,步驟42包括子步驟421~423。Referring to Figure 10, step 42 includes sub-steps 421~423.

在子步驟421中,對於每一電力轉換系統,該能源管理系統3根據該電力轉換系統對應的該等充電分數歸屬函數、該等容量歸屬函數,及該等健康度歸屬函數,進行模糊化,以產生一包括多個分數狀態歸屬度的分數模糊集合、一包括多個容量狀態歸屬度的容量模糊集合,及一包括多個健康度狀態歸屬度的健康度模糊集合,如圖11所示。In sub-step 421, for each power conversion system, the energy management system 3 performs fuzzification according to the charging score attribution functions, the capacity attribution functions, and the health attribution functions corresponding to the power conversion system, To generate a fractional fuzzy set including multiple fractional state attributions, a capacity fuzzy set including multiple capacity state attributions, and a health fuzzy set including multiple health state attributions, as shown in Figure 11 .

在子步驟422中,對於每一電力轉換系統,該能源管理系統3根據該電力轉換系統對應的該平均電池容量、該平均電池健康度、該容量模糊集合、該健康度模糊集合、該分數模糊集合、及該模糊規則庫,獲得多個分別對應該模糊規則庫中的該等規則的推論結果。In sub-step 422, for each power conversion system, the energy management system 3 determines the average battery capacity, the average battery health, the capacity fuzzy set, the health fuzzy set, and the score fuzzy set corresponding to the power conversion system. The set, and the fuzzy rule base are used to obtain a plurality of inference results respectively corresponding to the rules in the fuzzy rule base.

在子步驟423中,對於每一電力轉換系統,該能源管理系統3根據該電力轉換系統對應的該等推論結果,進行解模糊化,以獲得該充電優先級分數。In sub-step 423, for each power conversion system, the energy management system 3 performs defuzzification based on the inference results corresponding to the power conversion system to obtain the charging priority score.

在步驟43中,該能源管理系統3根據該等電力轉換系統對應的充電優先級分數將該等電力轉換系統分群成 P個電力群體, MP>1。 In step 43, the energy management system 3 groups the power conversion systems into P power groups according to the charging priority scores corresponding to the power conversion systems, MP > 1.

搭配參閱圖12,步驟43包括子步驟431~434。Referring to Figure 12, step 43 includes sub-steps 431~434.

在子步驟431中,該能源管理系統3根據該等電力轉換系統對應的充電優先級分數及一預定值,獲得一電力轉換系統優先級矩陣 B,如下式所示: , 其中, 為第 i個電力轉換系統的充電優先級分數, 為第 j個電力轉換系統的充電優先級分數, 為該預定值。 In sub-step 431, the energy management system 3 obtains a power conversion system priority matrix B according to the charging priority scores corresponding to the power conversion systems and a predetermined value, as shown in the following formula: , , , in, is the charging priority score of the i- th power conversion system, is the charging priority score of the j- th power conversion system, is the predetermined value.

在子步驟432中,該能源管理系統3判定該電力轉換系統優先級矩陣 B扣除一單位矩陣 I後的非零列向量及非零行向量是否線性相依。當判定出扣除後的該電力轉換系統優先級矩陣 B- I的非零列向量及非零行向量線性相依時,表示未存在明確群組,流程進行子步驟432;而當判定出扣除後的該電力轉換系統優先級矩陣 B- I的非零列向量及非零行向量線性不相依時,則流程進行步驟434。 In sub-step 432, the energy management system 3 determines whether the non-zero column vectors and non-zero row vectors of the power conversion system priority matrix B minus an identity matrix I are linearly dependent. When it is determined that the non-zero column vector and the non-zero row vector of the deducted power conversion system priority matrix B - I are linearly dependent, it means that there is no clear group, and the process proceeds to sub-step 432; and when it is determined that the deducted When the non-zero column vectors and non-zero row vectors of the power conversion system priority matrix B - I are linearly independent, the process proceeds to step 434.

在子步驟433中,該能源管理系統3調整該預定值,並重複子步驟431~432,直到扣除後的該電力轉換系統優先級矩陣 B- I的非零列向量及非零行向量線性不相依。 In sub-step 433, the energy management system 3 adjusts the predetermined value and repeats sub-steps 431~432 until the non-zero column vectors and non-zero row vectors of the deducted power conversion system priority matrix B - I are linearly inconsistent. depend on each other.

在子步驟434中,該能源管理系統3根據該等電力轉換系統對應的充電優先級分數將該等電力轉換系統分群成該等電力群體,如下式所示: , 其中, 表示第 m個電力轉換系統是否屬於第 p個電力群體,當第 m個電力轉換系統屬於第 p個電力群體時 ,當第 m個電力轉換系統不屬於第 p個電力群體時 In sub-step 434, the energy management system 3 groups the power conversion systems into the power groups according to the charging priority scores corresponding to the power conversion systems, as shown in the following formula: , , , , , , , , in, Indicates whether the m -th power conversion system belongs to the p -th power group, when the m -th power conversion system belongs to the p -th power group , when the m -th power conversion system does not belong to the p- th power group .

在步驟44中,該能源管理系統3根據該等電力群體的所有電力轉換系統對應的充電優先級分數,將該等電力群體進行排序。In step 44 , the energy management system 3 sorts the power groups according to the charging priority scores corresponding to all power conversion systems of the power groups.

搭配參閱圖13,步驟44包括子步驟441~442。Referring to Figure 13, step 44 includes sub-steps 441~442.

在子步驟441中,對於每一電力群體,該能源管理系統3根據對應該電力群體的所有電力轉換系統對應的充電優先級分數計算出一平均優先級分數,其中第 p個電力群體對應的平均優先級分數 如下式所示: , 其中, S m 為對應第 m個電力轉換系統的充電優先級分數。 In sub-step 441, for each power group, the energy management system 3 calculates an average priority score based on the charging priority scores corresponding to all power conversion systems corresponding to the power group, where the average priority score corresponding to the p- th power group priority score As shown in the following formula: , in, , S m is the charging priority score corresponding to the m -th power conversion system.

在子步驟442中,該能源管理系統3根據該等電力群體對應的平均優先級分數之高低排序該等電力群體,其中對應的平均優先級分數較高的電力群體有較前的順序。In sub-step 442, the energy management system 3 sorts the power groups according to the average priority scores corresponding to the power groups, wherein the power groups with corresponding higher average priority scores have a higher order.

值得注意的是,在其他實施方式中,在步驟42中,對於每一電力轉換系統,該能源管理系統3亦可根據該平均電池容量、該平均電池健康度、多個分別對應多個放電優先級分數模糊語意的放電分數歸屬函數、該等容量歸屬函數、該等健康度歸屬函數,及另一模糊規則庫,利用該模糊推論演算法推論出一相關於該電力轉換系統的放電優先級分數。在步驟43中,該能源管理系統3亦可根據該等電力轉換系統對應的放電優先級分數將該等電力轉換系統分群成 P’個電力群體, MP’>1。在步驟44中,該能源管理系統3亦可根據該等電力群體的所有電力轉換系統對應的放電優先級分數,將該等電力群體進行排序,不以此為限。 It is worth noting that in other implementations, in step 42, for each power conversion system, the energy management system 3 can also correspond to multiple discharge priorities according to the average battery capacity, the average battery health, and multiple The fuzzy semantics of the discharge fraction attribution function, the capacity attribution function, the health attribution function, and another fuzzy rule base are used to deduce a discharge priority score related to the power conversion system using the fuzzy inference algorithm. . In step 43, the energy management system 3 can also group the power conversion systems into P' power groups according to the corresponding discharge priority scores of the power conversion systems, MP' > 1. In step 44, the energy management system 3 can also sort the power groups according to the discharge priority scores corresponding to all power conversion systems of the power groups, but is not limited to this.

其中,該等放電優先級分數模糊語意為一低速放電、一中速放電,及一高速放電,對應該低、中、高速放電的放電分數歸屬函數與對應該低、中、高速充電的充電分數歸屬函數相同。該另一模糊規則庫如下表2所示: 高容量 中容量 低容量 高健康度 高速放電 高速放電 中速放電 中健康度 高速放電 中速放電 低速放電 低健康度 中速放電 低速放電 低速放電 表2 Among them, the fuzzy semantics of the discharge priority scores are a low-speed discharge, a medium-speed discharge, and a high-speed discharge. The discharge score attribution functions corresponding to the low, medium, and high-speed discharges and the charge scores corresponding to the low, medium, and high-speed charges The attribution functions are the same. This other fuzzy rule base is shown in Table 2 below: high capacity medium capacity low capacity high health high speed discharge high speed discharge medium speed discharge medium health high speed discharge medium speed discharge low speed discharge low health medium speed discharge low speed discharge low speed discharge Table 2

在步驟45中,該能源管理系統3根據該案場規範輸出功率及該等電池資料的電力轉換系統額定功率,依序獲得多個分別對應該等電力群體在該頻率點 f下的電力群體規範輸出功率。 In step 45, the energy management system 3 sequentially obtains a plurality of power group specifications corresponding to the power groups at the frequency point f based on the site specification output power and the power conversion system rated power of the battery data. Output power.

搭配參閱圖14,步驟45包括子步驟451~457。Referring to Figure 14, step 45 includes sub-steps 451~457.

在子步驟451中,該能源管理系統3根據該等電池資料的電力轉換系統額定功率,獲得 P個分別對應該等電力群體的電力群體額定功率,其中第 p個電力群體額定功率 如下式所示: , 其中, 為第 m個電力轉換系統額定功率。 In sub-step 451, the energy management system 3 obtains P power group rated powers respectively corresponding to the power groups according to the power conversion system rated power of the battery data, wherein the p- th power group rated power As shown in the following formula: , in, is the rated power of the m- th power conversion system.

在子步驟452中,初始時, p=1。 In sub-step 452, initially, p =1.

在子步驟453中,對於排序第 p的電力群體,該能源管理系統3判定該電力群體對應的電力群體額定功率是否小於一電力群體剩餘功率分配量。其中初始時,即 p=1時,該電力群體剩餘功率分配量即為該案場規範輸出功率。當判定出該電力群體對應的電力群體額定功率小於該電力群體剩餘功率分配量時,流程進行子步驟454;而當判定出該電力群體對應的電力群體額定功率不小於該電力群體剩餘功率分配量時,則流程進行子步驟455。 In sub-step 453, for the p -th ranked power group, the energy management system 3 determines whether the rated power of the power group corresponding to the power group is less than the remaining power allocation amount of a power group. At the initial time, that is, when p = 1, the remaining power allocation amount of the power group is the standard output power of the site. When it is determined that the rated power of the electric power group corresponding to the electric power group is less than the remaining power allocation amount of the electric power group, the process proceeds to sub-step 454; and when it is determined that the rated power of the electric power group corresponding to the electric power group is not less than the residual power allocation amount of the electric power group When, the process proceeds to sub-step 455.

在子步驟454中,對於排序第 p的電力群體,該能源管理系統3將該電力群體對應的電力群體額定功率作為對應該電力群體的電力群體規範輸出功率,並將該電力群體剩餘功率分配量扣除該電力群體對應的電力群體額定功率,以更新該電力群體剩餘功率分配量。 In sub-step 454, for the p -th ranked power group, the energy management system 3 uses the power group rated power corresponding to the power group as the power group specification output power corresponding to the power group, and allocates the remaining power of the power group The rated power of the electric power group corresponding to the electric power group is deducted to update the remaining power allocation of the electric power group.

在子步驟455中,對於排序第 p的電力群體,該能源管理系統3將該電力群體剩餘功率分配量作為對應該電力群體的電力群體規範輸出功率,再將該電力群體剩餘功率分配量更新為0。 In sub-step 455, for the p -th ranked power group, the energy management system 3 uses the remaining power allocation amount of the power group as the power group specification output power corresponding to the power group, and then updates the remaining power allocation amount of the power group as 0.

在子步驟456中,該能源管理系統3判定排序第 p的電力群體是否為排序第 P的電力群體,即判定是否 p= P。當判定出時排序第 p的電力群體不為排序第 P的電力群體,即 pP時,流程進行子步驟457;而當判定出時排序第 p的電力群體為排序第 P的電力群體,即 p= P時,則進行步驟46。 In sub-step 456, the energy management system 3 determines whether the p -th ranked power group is the P -th ranked power group, that is, determines whether p = P. When it is determined that the p -th power group is not the P -th power group, that is, pP , the process proceeds to sub-step 457; and when it is determined that the p -th power group is the P -th power group, That is, when p = P , proceed to step 46.

在子步驟457中,該能源管理系統3對於排序第 p+1的電力群體,即 p= p+1,並重複子步驟453~455直到 p= PIn sub-step 457, the energy management system 3 sorts the power group p +1, that is, p = p +1, and repeats sub-steps 453~455 until p = P.

值得注意的是,子步驟451~456可以下式表示: , 其中, 為排序第 p的電力群體, 為排序第1的電力群體在該頻率點 f下對應的電力群體規範輸出功率, 為排序第1的電力群體對應的電力群體額定功率, 為排序第1的電力群體對應的電力群體剩餘功率分配量, 為該案場規範輸出功率, 為排序第 p+1的電力群體在該頻率點 f下對應的電力群體規範輸出功率, 為排序第 p+1的電力群體在該頻率點 f下對應的電力群體額定功率, 為排序第 p+1的電力群體對應的電力群體剩餘功率分配量, 為排序第 p的電力群體對應的電力群體額定功率, 為排序第 p的電力群體對應的電力群體額定功率。 It is worth noting that sub-steps 451~456 can be expressed as follows: , , , , , in, is the p -th power group, It is the standardized output power of the power group corresponding to the power group ranked first at the frequency point f , is the rated power of the power group corresponding to the power group ranked first, is the remaining power allocation amount of the power group corresponding to the power group ranked first, is the standard output power for this case, is the standardized output power of the corresponding power group at the frequency point f for the p +1th power group, is the rated power of the power group corresponding to the p +1th power group at the frequency point f , is the remaining power allocation amount of the power group corresponding to the power group ranked p +1, is the rated power of the power group corresponding to the p -th power group, is the rated power of the electric power group corresponding to the p-th ranked electric power group.

在步驟46中,對於每一電力群體,該能源管理系統3根據該案場群體規範輸出功率、該電力群體對應的電力群體規範輸出功率,及該等電池資料的電力轉換系統額定功率,獲得多個分別對應該電力群體的所有電力轉換系統的電力轉換系統規範輸出功率。其中第 m個電力轉換系統在該頻率點 f下對應的電力轉換系統規範輸出功率 如下式所示: , 其中, 為第 m個電力轉換系統所屬電力群體在該頻率點 f下對應的電力群體規範輸出功率。 In step 46, for each power group, the energy management system 3 obtains multiple values based on the site group standard output power, the power group standard output power corresponding to the power group, and the power conversion system rated power of the battery data. A power conversion system standard output power corresponding to all power conversion systems of the power group respectively. Among them, the m -th power conversion system has the corresponding power conversion system specification output power at the frequency point f . As shown in the following formula: , , , in, It is the standardized output power of the power group corresponding to the power group to which the m- th power conversion system belongs at the frequency point f .

綜上所述,本發明案場及電力轉換系統的電能分配方法,藉由該自動頻率控制調頻服務系統根據考量評比計算權重、綜合執行率,及電池資料所獲得的評比分數將該等案場分群,再根據該等案場群體的所有案場對應的評比分數,將該等案場群體進行排序,以依序獲得該等案場群體功率分配執行量,最後根據每一案場群體功率分配執行量獲得案場功率分配執行量,以提高該自動頻率控制調頻服務系統調度電能時的執行效率。此外,藉由該能源管理系統根據考量平均電池容量及平均電池健康度所獲得的充電或放電優先級分數將該等電力轉換系統分群,再根據該等電力群體的所有電力轉換系統對應的充電或放電優先級分數,將該等電力群體進行排序,以依序獲得該等電力群體規範輸出功率,最後根據每一電力群體規範輸出功率獲得電力轉換系統規範輸出功率,以提高該能源管理系統調度電能時的執行效率,故確實能達成本發明的目的。In summary, the electric energy distribution method of the project site and the power conversion system of the present invention uses the automatic frequency control frequency modulation service system to calculate the weight, comprehensive execution rate, and battery data of the project sites based on the evaluation scores obtained. Group the case groups, and then sort the case groups according to the evaluation scores corresponding to all cases in the case groups, so as to obtain the power allocation execution volume of the case groups in order, and finally based on the power allocation of each case group The execution amount is obtained by obtaining the execution amount of power distribution in the field to improve the execution efficiency of the automatic frequency control frequency modulation service system when dispatching electric energy. In addition, the energy management system divides the power conversion systems into groups according to the charging or discharging priority scores obtained by considering the average battery capacity and average battery health, and then according to the charging or discharging priority scores corresponding to all the power conversion systems of the power groups. The discharge priority score is used to sort the power groups to obtain the standardized output power of the power groups in order. Finally, the standardized output power of the power conversion system is obtained according to the standardized output power of each power group, so as to improve the dispatching of electric energy by the energy management system. time execution efficiency, so the purpose of the present invention can indeed be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention. They cannot be used to limit the scope of the present invention. All simple equivalent changes and modifications made based on the patent scope of the present invention and the contents of the patent specification are still within the scope of the present invention. within the scope covered by the patent of this invention.

1:自動頻率控制調頻服務系統 2:案場 21:電力轉換系統 211:電池管理系統 22:能源管理系統 31~36:步驟 311~312:子步驟 331~334:子步驟 341~342:子步驟 351~357:子步驟 41~46:步驟 421~423:子步驟 431~434:子步驟 441~442:子步驟 451~457:子步驟 1: Automatic frequency control FM service system 2:Case scene 21:Power conversion system 211:Battery Management System 22:Energy Management System 31~36: Steps 311~312: Sub-steps 331~334: Sub-steps 341~342: Sub-steps 351~357: Sub-steps 41~46: Steps 421~423: Sub-steps 431~434: Sub-steps 441~442: Sub-steps 451~457: Sub-steps

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,說明用來實施本發明案場及電力轉換系統的電能分配方法的一實施例之一案場電能分配程序的一自動頻率控制調頻服務系統; 圖2是一流程圖,說明本發明案場及電力轉換系統的電能分配方法的該實施例之該案場電能分配程序; 圖3是一流程圖,輔助說明圖2步驟31的子步驟; 圖4是一示意圖,說明一各頻率點的規範輸出百分比圖; 圖5是一流程圖,輔助說明圖2步驟33的子步驟; 圖6是一流程圖,輔助說明圖2步驟34的子步驟; 圖7是一流程圖,輔助說明圖2步驟35的子步驟; 圖8是一方塊圖,說明用來實施本發明案場及電力轉換系統的電能分配方法的該實施例之一電力轉換系統電能分配程序的一能源管理系統; 圖9是一流程圖,說明本發明案場及電力轉換系統的電能分配方法的該實施例之該電力轉換系統電能分配程序; 圖10是一流程圖,輔助說明圖9步驟42的子步驟; 圖11是一示意圖,說明一分數模糊集合、一容量模糊集合,及一健康度模糊集合; 圖12是一流程圖,輔助說明圖9步驟43的子步驟; 圖13是一流程圖,輔助說明圖9步驟44的子步驟;及 圖14是一流程圖,輔助說明圖9步驟45的子步驟。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: FIG. 1 is a block diagram illustrating an automatic frequency control frequency modulation service system for implementing a field power distribution procedure according to an embodiment of the power distribution method of the field and power conversion system of the present invention; Figure 2 is a flow chart illustrating the electric energy distribution procedure of the case site and the electric energy distribution method of the power conversion system according to the embodiment of the present invention; Figure 3 is a flow chart to assist in explaining the sub-steps of step 31 in Figure 2; Figure 4 is a schematic diagram illustrating a standard output percentage chart for each frequency point; Figure 5 is a flow chart to assist in explaining the sub-steps of step 33 in Figure 2; Figure 6 is a flow chart to assist in explaining the sub-steps of step 34 in Figure 2; Figure 7 is a flow chart to assist in explaining the sub-steps of step 35 in Figure 2; FIG. 8 is a block diagram illustrating an energy management system used to implement the power distribution process of the power conversion system of the embodiment of the present invention; Figure 9 is a flow chart illustrating the power distribution process of the power conversion system in the embodiment of the power distribution method of the case site and the power conversion system of the present invention; Figure 10 is a flow chart to assist in explaining the sub-steps of step 42 in Figure 9; Figure 11 is a schematic diagram illustrating a score fuzzy set, a capacity fuzzy set, and a health fuzzy set; Figure 12 is a flow chart to assist in explaining the sub-steps of step 43 in Figure 9; Figure 13 is a flow chart to assist in explaining the sub-steps of step 44 of Figure 9; and FIG. 14 is a flow chart to assist in explaining the sub-steps of step 45 of FIG. 9 .

31~36:步驟 31~36: Steps

Claims (15)

一種電能分配方法,適用於分配 L個案場的電能,由一自動頻率控制調頻服務系統來實施,該自動頻率控制調頻服務系統通訊連接該等案場,每一案場包括 M l 個電力轉換系統,每一電力轉換系統具有 N m 個電池管理系統, L, M l , N m >1,該自動頻率控制調頻服務系統儲存有多個分別對應該等案場的歷史案場執行資料、 L筆分別對應該等案場的電池資料,及一用於分配該等案場的總功率分配量,每一歷史案場執行資料包括多個分別對應多個不同時間點的歷史案場執行率,每一電池資料包括一相關於所對應之案場的所有電池管理系統額定容量之總和的案場額定容量、一相關於所對應之案場的所有電力轉換系統之額定功率總和的案場額定功率、 M l × N m 個分別對應所對應之案場的所有電池管理系統的電池容量、 M l × N m 個分別對應所對應之案場的該等電池管理系統的額定容量,及 M l × N m 個分別對應所對應之案場的該等電池管理系統的電池健康度,該電能分配方法包含以下步驟: (A)對於每一案場,根據該案場對應的歷史執行資料及多個執行率計算權重,獲得一綜合執行率; (B)對於每一案場,根據多個評比計算權重、該案場對應的綜合執行率,及對應該案場的電池資料,獲得一對應該案場的評比分數; (C)根據該等案場對應的評比分數,將該等案場分群成 K個案場群體, LK>1; (D)根據該等案場群體的所有案場對應的評比分數,將該等案場群體進行排序; (E)根據該總功率分配量及該等案場之電池資料的案場額定功率,依序獲得多個分別對應該等案場群體的案場群體功率分配執行量;及 (F)對於每一案場群體,根據該案場群體對應的案場群體功率分配執行量,及該案場群體之所有案場的電池資料的案場額定功率,獲得多個分別對應該案場群體的該等案場的案場功率分配執行量。 An electric energy distribution method, suitable for distributing electric energy to L case sites, implemented by an automatic frequency control frequency modulation service system. The automatic frequency control frequency modulation service system is communicatively connected to the case sites. Each case site includes M l power conversion systems , each power conversion system has N m battery management systems, L , M l , N m > 1. The automatic frequency control frequency modulation service system stores multiple historical case execution data, L pens corresponding to the corresponding cases respectively. Corresponding to the battery data of the case sites respectively, and a total power allocation amount used to allocate the case sites, each historical case site execution data includes a plurality of historical case site execution rates corresponding to multiple different time points, each A battery data includes a site rated capacity that is related to the sum of the rated capacities of all battery management systems in the corresponding site, a site rated power that is related to the sum of the rated power of all power conversion systems in the corresponding site, M l × N m respectively correspond to the battery capacities of all battery management systems in the corresponding case site, M l × N m respectively correspond to the rated capacities of the battery management systems in the corresponding case site, and M l × N m respectively correspond to the battery health of the battery management systems of the corresponding case sites. The power distribution method includes the following steps: (A) For each case site, based on the historical execution data and multiple executions corresponding to the case site Calculate the weight according to the rate to obtain a comprehensive execution rate; (B) For each case site, calculate the weight based on multiple evaluations, the comprehensive execution rate corresponding to the case site, and the battery data corresponding to the case site, and obtain a pair of the case site The evaluation scores of The evaluation scores are used to rank the case groups; (E) According to the total power allocation and the case rated power of the battery data of the cases, multiple case groups corresponding to the case groups are obtained in sequence Group power allocation execution amount; and (F) for each case group, based on the case group power allocation execution amount corresponding to the case group and the case rated power of the battery data of all cases in the case group, Obtain the case power allocation execution amounts of multiple case sites corresponding to the case site group. 如請求項1所述的電能分配方法,其中,步驟(A)包括以下子步驟: (A-1)對於每一案場,根據該案場對應的歷史執行資料計算出一過去1天平均執行率 、一過去7天平均執行率 ,及一過去14天平均執行率 ,如下式所示: , 其中, 為第 dh小時 s秒的歷史案場執行率, D為當前日期, H為當前小時;及 (A-2)對於每一案場,根據該等執行率計算權重、該過去1天平均執行率、該過去7天平均執行率,及該過去14天平均執行率計算出該綜合執行率 ,如下式所示: , 其中, 為該等執行率計算權重。 The electric energy distribution method as described in claim 1, wherein step (A) includes the following sub-steps: (A-1) For each case, calculate the average execution in the past day based on the historical execution data corresponding to the case. Rate , the average execution rate over the past 7 days , and an average execution rate of the past 14 days , as shown in the following formula: , , , in, is the historical case execution rate of h hours and s seconds on day d , D is the current date, H is the current hour; and (A-2) for each case, calculate the weight based on the execution rate, the average of the past day The comprehensive execution rate is calculated from the execution rate, the average execution rate over the past 7 days, and the average execution rate over the past 14 days. , as shown in the following formula: , , , in, Calculate the weight for these execution rates. 如請求項1所述的電能分配方法,其中,在步驟(B)中,對應第 l個案場的評比分數 S l 如下式所示: , 其中, 為該等評比計算權重, 為第 l個案場的第 m個電力轉換系統的第 n個電池管理系統的電池容量, 為第 l個案場的第 m個電力轉換系統的第 n個電池管理系統的額定容量, 為第 l個案場的第 m個電力轉換系統的第 n個電池管理系統的電池健康度, 為對應第 l個案場的綜合執行率, 為第 l個案場的案場額定容量。 The electric energy distribution method as described in claim 1, wherein in step (B), the rating score S l corresponding to the l-th case site is expressed by the following formula: , , , , , in, To calculate the weight for such evaluation, is the battery capacity of the n -th battery management system of the m- th power conversion system in the l- th case site, is the rated capacity of the n -th battery management system of the m- th power conversion system in the l- th case site, is the battery health of the n- th battery management system of the m- th power conversion system in the l- th case site, is the comprehensive execution rate corresponding to the l-th case site, It is the rated capacity of the case site of the lth case site. 如請求項1所述的電能分配方法,其中,步驟(C)包括以下子步驟: (C-1)根據該等案場對應的評比分數及一預定值,獲得一案場評比矩陣,該案場評比矩陣 A如下式所示: , 其中, S i 為對應第 i個案場的評比分數, S j 為對應第 j個案場的評比分數, 為該預定值; (C-2)判定該案場評比矩陣 A扣除一單位矩陣 I的非零列向量及非零行向量是否線性相依; (C-3)當判定出扣除後的該案場評比矩陣 A- I的非零列向量及非零行向量線性相依時,調整該預定值,並重複子步驟(C-1)~(C-2),直到扣除後的該案場評比矩陣 A- I的非零列向量及非零行向量線性不相依; (C-4)當判定出扣除後的該案場評比矩陣 A- I的非零列向量及非零行向量線性不相依時,根據該等案場對應的評比分數將該等案場分群成該等案場群體,如下式所示: , 其中, 表示第 l個案場是否屬於第 k個案場群體,當第 l個案場屬於第 k個案場群體時 ,當第 l個案場不屬於第 k個案場群體時 The electric energy distribution method as described in claim 1, wherein step (C) includes the following sub-steps: (C-1) Obtain a case site evaluation matrix based on the evaluation scores corresponding to the case sites and a predetermined value. The field evaluation matrix A is shown as follows: , , , where, S i is the evaluation score corresponding to the i-th case field, S j is the evaluation score corresponding to the j -th case field, is the predetermined value; (C-2) Determine whether the non-zero column vector and non-zero row vector of the case site evaluation matrix A after deducting an unit matrix I are linearly dependent; (C-3) Determine whether the case site after deduction is When the non-zero column vectors and non-zero row vectors of the evaluation matrix A - I are linearly dependent, adjust the predetermined value and repeat sub-steps (C-1) ~ (C-2) until the case evaluation matrix A is obtained after deduction. - The non-zero column vector and the non-zero row vector of I are linearly independent; (C-4) When it is determined that the non-zero column vector and the non-zero row vector of the case evaluation matrix A after deduction are linearly independent, The case sites are grouped into the case site groups according to the corresponding evaluation scores of the case sites, as shown in the following formula: , , , , , , , , in, Indicates whether the l-th case field belongs to the k- th case field group, when the l-th case field belongs to the k -th case field group , when the l-th case field does not belong to the k -th case field group . 如請求項1所述的電能分配方法,其中,步驟(D)包括以下子步驟: (D-1)對於每一案場群體,根據對應該案場群體的所有案場對應的評比分數計算出一平均評比分數,其中第 k個案場群體對應的平均評比分數 如下式所示: , 其中, S l 為對應第 l個案場的評比分數, 表示第 l個案場是否屬於第 k個案場群體,當第 l個案場屬於第 k個案場群體時 ,當第 l個案場不屬於第 k個案場群體時 ;及 (D-2)根據該等案場群體對應的平均評比分數之高低排序該等案場群體,其中對應的平均評比分數較高的案場群體有較前的順序。 The electric energy distribution method as described in claim 1, wherein step (D) includes the following sub-steps: (D-1) For each case group, calculate the corresponding evaluation scores of all cases corresponding to the case group An average evaluation score, in which the average evaluation score corresponding to the k -th case field group As shown in the following formula: , in, , S l is the evaluation score corresponding to the l -th case field, Indicates whether the l-th case field belongs to the k- th case field group, when the l-th case field belongs to the k -th case field group , when the l-th case field does not belong to the k -th case field group ; and (D-2) Sort the case group groups according to the average rating scores corresponding to the case group groups, where the case group groups with the corresponding average rating scores are ranked higher. 如請求項1所述的電能分配方法,其中,步驟(E)包括以下子步驟: (E-1)根據該等案場之電池資料的案場額定功率,獲得 K個分別對應該等案場群體的案場群體額定功率,其中第 k個案場群體額定功率 如下式所示: , 其中, 為第 l個案場之電池資料的案場額定功率, 表示第 l個案場是否屬於第 k個案場群體,當第 l個案場屬於第 k個案場群體時 ,當第 l個案場不屬於第 k個案場群體時 ; (E-2)對於排序第1的案場群體,判定該案場群體對應的案場群體額定功率是否小於該總功率分配量; (E-3)對於排序第1的案場群體,當判定出該案場群體對應的案場群體額定功率小於該總功率分配量時,將該案場群體對應的案場群體額定功率作為對應該案場群體的案場群體功率分配執行量,並獲得一以該總功率分配量扣除該案場群體對應的案場群體額定功率的案場群體剩餘功率分配量; (E-4)對於排序第1的案場群體,當判定出該案場群體對應的案場群體額定功率不小於該總功率分配量時,將該總功率分配量作為對應該案場群體的案場群體功率分配執行量,再將該案場群體剩餘功率分配量更新為0; (E-5)對於排序第 的案場群體, ,判定該案場群體對應的案場群體額定功率是否小於該案場群體剩餘功率分配量; (E-6)對於排序第 的案場群體,當判定出該案場群體對應的案場群體額定功率小於該案場群體剩餘功率分配量時,將該案場群體對應的案場群體額定功率作為對應該案場群體的案場群體功率分配執行量,並將該案場群體剩餘功率分配量扣除該案場群體對應的案場群體額定功率,以更新該案場群體剩餘功率分配量;及 (E-7)對於排序第 的案場群體,當判定出該案場群體對應的案場群體額定功率不小於該案場群體剩餘功率分配量時,將該剩餘功率分配量作為對應該案場群體的案場群體功率分配執行量,再將該案場群體剩餘功率分配量更新為0。 The electric energy distribution method as described in claim 1, wherein step (E) includes the following sub-steps: (E-1) According to the case site rated power of the battery data of the case sites, obtain K corresponding to the case sites respectively The rated power of the case group of the group, where the rated power of the kth case group is As shown in the following formula: , in, is the case site rated power of the battery data of the l case site, Indicates whether the l-th case field belongs to the k- th case field group, when the l-th case field belongs to the k -th case field group , when the l-th case field does not belong to the k -th case field group ; (E-2) For the case group ranked first, determine whether the rated power of the case group corresponding to the case group is less than the total power allocation; (E-3) For the case group ranked first, when When it is determined that the rated power of the case group corresponding to the case group is less than the total power allocation amount, the rated power of the case group corresponding to the case group is used as the case group power allocation execution amount corresponding to the case group, and the execution amount of the case group power is obtained. 1. The remaining power allocation amount of the case group after deducting the rated power of the case group corresponding to the case group from the total power allocation amount; (E-4) For the case group ranked first, when it is determined that the case group corresponds to When the rated power of the case group is not less than the total power allocation amount, the total power allocation amount is used as the case group power allocation execution amount corresponding to the case group, and then the remaining power allocation amount of the case group is updated to 0; (E-5) For the sorted case group, , determine whether the rated power of the case group corresponding to the case group is less than the remaining power allocation of the case group; (E-6) For the ranking When it is determined that the rated power of the case group corresponding to the case group is less than the remaining power allocation amount of the case group, the rated power of the case group corresponding to the case group will be used as the case group corresponding to the case group. The power allocation execution amount of the case group is deducted from the remaining power allocation of the case group by the rated power of the case group corresponding to the case group to update the remaining power allocation of the case group; and (E-7) for the ranking number When it is determined that the rated power of the case group corresponding to the case group is not less than the remaining power allocation amount of the case group, the remaining power allocation amount will be implemented as the case group power allocation corresponding to the case group. amount, and then update the remaining power allocation amount of the case group to 0. 如請求項1所述的電能分配方法,其中,在步驟(F)中,第 k個案場群體的第 l個案場對應的案場功率分配執行量 如下式所示: , 其中, 為第 k個案場群體的第 l個案場所屬案場群體對應的案場群體額定功率, 為第 l個案場之電池資料的案場額定功率, 為第 k個案場群體額定功率, 表示第 l個案場是否屬於第 k個案場群體,當第 l個案場屬於第 k個案場群體時 ,當第 l個案場不屬於第 k個案場群體時 The electric energy distribution method as described in claim 1, wherein in step (F), the case field power distribution execution amount corresponding to the l-th case field of the k -th case field group As shown in the following formula: , , , , in, is the rated power of the case group corresponding to the l-th case site of the k -th case site group, is the case site rated power of the battery data of the l case site, is the rated power of the k -th case field group, Indicates whether the l-th case field belongs to the k- th case field group, when the l-th case field belongs to the k -th case field group , when the l-th case field does not belong to the k -th case field group . 一種電能分配方法,適用於分配一案場包括的 M個電力轉換系統的電能,由該案場包括的一電連接該等電力轉換系統的能源管理系統來實施,每一電力轉換系統具有 N m 個電池管理系統, M, N m >1, ,該能源管理系統儲存有一相關於該案場在一頻率點 f的案場規範輸出功率,及 M筆分別對應該等電力轉換系統的電池資料,每一電池資料所對應之電力轉換系統的電力轉換系統額定功率、 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的電池容量、 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的額定容量,及 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的電池健康度,該電能分配方法包含以下步驟: (G)根據該等電池資料之電池容量及電池健康度,獲得 M個分別對應該等電池資料的平均電池容量,及 M個分別對應該等電池資料的平均電池健康度; (H)對於每一電力轉換系統,根據該電力轉換系統對應的一平均電池容量與一平均電池健康度、多個分別對應多個充電優先級分數模糊語意的充電分數歸屬函數、多個分別對應多個電池容量模糊語意的容量歸屬函數、多個分別對應多個電池健康度模糊語意的健康度歸屬函數,及一包括多條規則的模糊規則庫,利用一模糊推論演算法推論出一相關於該電力轉換系統的充電優先級分數; (I)根據該等電力轉換系統對應的充電優先級分數將該等電力轉換系統分群成 P個電力群體, MP>1; (J)根據該等電力群體的所有電力轉換系統對應的充電優先級分數,將該等電力群體進行排序; (K)根據該案場規範輸出功率及該等電池資料的電力轉換系統額定功率,依序獲得多個分別對應該等電力群體在該頻率點 f的電力群體規範輸出功率;及 (L)對於每一電力群體,根據該案場規範輸出功率、該電力群體對應的電力群體規範輸出功率,及該等電池資料的電力轉換系統額定功率,獲得多個分別對應該電力群體的所有電力轉換系統在該頻率點 f的電力轉換系統規範輸出功率。 An electric energy distribution method, suitable for distributing electric energy of M power conversion systems included in a project site, implemented by an energy management system included in the project site that is electrically connected to the power conversion systems. Each power conversion system has N m A battery management system, M , N m > 1, , the energy management system stores a site specification output power related to the site at a frequency point f , and M pieces of battery data corresponding to the power conversion system. Each battery data corresponds to the power of the power conversion system. The rated power of the conversion system, N m respectively correspond to the battery capacities of all battery management systems of the corresponding power conversion system, N m respectively correspond to the rated capacities of all battery management systems of the corresponding power conversion system, and N m respectively Corresponding to the battery health of all battery management systems of the corresponding power conversion system, the power distribution method includes the following steps: (G) According to the battery capacity and battery health of the battery data, obtain M corresponding battery data respectively the average battery capacity, and M average battery health degrees respectively corresponding to the corresponding battery data; (H) For each power conversion system, according to an average battery capacity and an average battery health degree corresponding to the power conversion system, a plurality of There are charging score attribution functions corresponding to multiple charging priority score fuzzy semantics, multiple capacity attribution functions corresponding to multiple battery capacity fuzzy semantics, multiple health attribution functions corresponding to multiple battery health fuzzy semantics, and a A fuzzy rule base including multiple rules uses a fuzzy inference algorithm to deduce a charging priority score related to the power conversion system; (I) Convert the power according to the corresponding charging priority score of the power conversion system The system is grouped into P power groups, MP >1; (J) Sort the power groups according to the charging priority scores corresponding to all power conversion systems of the power groups; (K) According to the case specifications The output power and the rated power of the power conversion system of the battery data are obtained in order to obtain a plurality of power group standard output powers respectively corresponding to the power group at the frequency point f ; and (L) for each power group, according to the case The field standard output power, the power group standard output power corresponding to the power group, and the power conversion system rated power of the battery data are obtained to obtain multiple power conversion systems corresponding to all power conversion systems of the power group at the frequency point f Standardized output power. 如請求項8所述的電能分配方法,其中,在步驟(H)中,該等充電優先級分數模糊語意為一低速充電、一中速充電,及一高速充電,該等充電分數歸屬函數 如下式所示: 對應該低速充電的充電分數歸屬函數 , 對應該中速充電的充電分數歸屬函數 , 對應該高速充電的充電分數歸屬函數 , 該等電池容量模糊語意為一低容量、一中容量,及一高容量,該等容量歸屬函數 如下式所示: 對應該低容量的容量歸屬函數 , 對應該中容量的容量歸屬函數 , 對應該高容量的容量歸屬函數 , 該等電池健康度模糊語意為一低健康度、一中健康度,及一高健康度,該等健康度歸屬函數 如下式所示: 對應該低健康度的健康度歸屬函數 , 對應該中健康度的健康度歸屬函數 , 對應該高健康度的健康度歸屬函數 The electric energy distribution method as described in claim 8, wherein in step (H), the charging priority scores have fuzzy semantics of a low-speed charging, a medium-speed charging, and a high-speed charging, and the charging scores belong to functions As shown in the following formula: The charging fraction attribution function corresponding to the low-speed charging : , corresponding to the charging fraction attribution function of the medium-speed charging : , corresponding to the charging fraction attribution function of the high-speed charging : , the fuzzy semantics of these battery capacities are a low capacity, a medium capacity, and a high capacity, and these capacities belong to functions As shown in the following formula: Capacity attribution function corresponding to the low capacity : , the capacity attribution function corresponding to the medium capacity : , the capacity attribution function corresponding to the high capacity : , the fuzzy semantics of the battery health are a low health, a medium health, and a high health, and the health attribution functions As shown in the following formula: The health attribution function corresponding to the low health : , corresponding to the health attribute function of the medium health : , the health attribution function corresponding to the high health : . 如請求項8所述的電能分配方法,其中,步驟(H)包括以下子步驟: (H-1)對於每一電力轉換系統,根據該電力轉換系統對應的該等充電分數歸屬函數、該等容量歸屬函數,及該等健康度歸屬函數,進行模糊化,以產生一包括多個分數狀態歸屬度的分數模糊集合、一包括多個容量狀態歸屬度的容量模糊集合,及一包括多個健康度狀態歸屬度的健康度模糊集合; (H-2)對於每一電力轉換系統,根據該電力轉換系統對應的該平均電池容量、該平均電池健康度、該容量模糊集合、該健康度模糊集合、該分數模糊集合、及該模糊規則庫,獲得多個分別對應該模糊規則庫中的該等規則的推論結果;及 (H-3)對於每一電力轉換系統,根據該電力轉換系統對應的推論結果,進行解模糊化,以獲得該充電優先級分數。 The electric energy distribution method as described in claim 8, wherein step (H) includes the following sub-steps: (H-1) For each power conversion system, fuzzification is performed based on the charging fraction attribution functions, the capacity attribution functions, and the health attribution functions corresponding to the power conversion system to generate a system including multiple a fractional fuzzy set of fractional state attributions, a capacity fuzzy set including multiple capacity state attributions, and a health fuzzy set including multiple health state attributions; (H-2) For each power conversion system, according to the average battery capacity, the average battery health, the capacity fuzzy set, the health fuzzy set, the fractional fuzzy set, and the fuzzy rule corresponding to the power conversion system library to obtain multiple inference results corresponding to the rules in the fuzzy rule library; and (H-3) For each power conversion system, perform defuzzification according to the inference result corresponding to the power conversion system to obtain the charging priority score. 如請求項8所述的電能分配方法,其中,步驟(I)包括以下子步驟: (I-1)根據該等電力轉換系統對應的充電優先級分數及一預定值,獲得一電力轉換系統優先級矩陣,該電力轉換系統優先級矩陣 B如下式所示: , 其中, 為第 i個電力轉換系統的充電優先級分數, 為第 j個電力轉換系統的充電優先級分數, 為該預定值; (I-2)判定該電力轉換系統優先級矩陣 B扣除一單位矩陣 I後的非零列向量及非零行向量是否線性相依; (I-3)當判定出扣除後的該電力轉換系統優先級矩陣 B- I的非零列向量及非零行向量線性相依時,調整該預定值,並重複子步驟(I-1)~(I-2),直到扣除後的該電力轉換系統優先級矩陣 B- I的非零列向量及非零行向量線性不相依; (I-4)當判定出扣除後的該電力轉換系統優先級矩陣 B- I的非零列向量及非零行向量線性不相依時,根據該等電力轉換系統對應的充電優先級分數將該等電力轉換系統分群成該等電力群體,如下式所示: , 其中, 表示第 m個電力轉換系統是否屬於第 p個電力群體,當第 m個電力轉換系統屬於第 p個電力群體時 ,當第 m個電力轉換系統不屬於第 p個電力群體時 The electric energy distribution method as described in claim 8, wherein step (I) includes the following sub-steps: (I-1) Obtain a power conversion system priority according to the charging priority scores corresponding to the power conversion systems and a predetermined value level matrix, the power conversion system priority matrix B is as follows: , , , in, is the charging priority score of the i- th power conversion system, is the charging priority score of the j- th power conversion system, is the predetermined value; (I-2) Determine whether the non-zero column vector and non-zero row vector of the power conversion system priority matrix B after deducting an identity matrix I are linearly dependent; (I-3) When it is determined that the deducted When the non-zero column vector and non-zero row vector of the power conversion system priority matrix B - I are linearly dependent, adjust the predetermined value and repeat sub-steps (I-1) ~ (I-2) until the deducted The non-zero column vectors and non-zero row vectors of the power conversion system priority matrix B - I are linearly independent; (I-4) When it is determined that the non-zero column vector and the non-zero column vector of the power conversion system priority matrix B - I after deduction are determined When the non-zero row vectors are linearly independent, the power conversion systems are grouped into the power groups according to the corresponding charging priority scores of the power conversion systems, as shown in the following formula: , , , , , , , , in, Indicates whether the m -th power conversion system belongs to the p -th power group, when the m -th power conversion system belongs to the p -th power group , when the m -th power conversion system does not belong to the p- th power group . 如請求項8所述的電能分配方法,其中,步驟(J)包括以下子步驟: (J-1)對於每一電力群體,根據對應該電力群體的所有電力轉換系統對應的充電優先級分數計算出一平均優先級分數,其中第 p個電力群體對應的平均優先級分數 如下式所示: , 其中, S m 為對應第 m個電力轉換系統的充電優先級分數, 表示第 m個電力轉換系統是否屬於第 p個電力群體,當第 m個電力轉換系統屬於第 p個電力群體時 ,當第 m個電力轉換系統不屬於第 p個電力群體時 ;及 (J-2)根據該等電力群體對應的平均優先級分數之高低排序該等電力群體,其中對應的平均優先級分數較高的電力群體有較前的順序。 The electric energy distribution method as described in claim 8, wherein step (J) includes the following sub-steps: (J-1) for each electric power group, calculate according to the charging priority scores corresponding to all power conversion systems corresponding to the electric power group Get an average priority score, where the average priority score corresponding to the p -th power group As shown in the following formula: , in, , S m is the charging priority score corresponding to the m -th power conversion system, Indicates whether the m -th power conversion system belongs to the p -th power group, when the m -th power conversion system belongs to the p -th power group , when the m -th power conversion system does not belong to the p- th power group ; and (J-2) Sort the power groups according to the average priority score corresponding to the power group, wherein the power group with a corresponding higher average priority score has a higher order. 如請求項8所述的電能分配方法,其中,步驟(K)包括以下子步驟: (K-1)根據該等電池資料的電力轉換系統額定功率,獲得 P個分別對應該等電力群體的電力群體額定功率,其中第 p個電力群體額定功率 如下式所示: , 其中, 為第 m個電力轉換系統額定功率, 表示第 m個電力轉換系統是否屬於第 p個電力群體,當第 m個電力轉換系統屬於第 p個電力群體時 ,當第 m個電力轉換系統不屬於第 p個電力群體時 ; (K-2)對於排序第1的電力群體,判定該電力群體對應的電力群體額定功率是否小於該案場規範輸出功率; (K-3)對於排序第1的電力群體,當判定出該電力群體對應的電力群體額定功率小於該案場規範輸出功率時,將該電力群體對應的電力群體額定功率作為對應該電力群體的電力群體規範輸出功率,並獲得一以該案場規範輸出功率扣除該電力群體對應的電力群體額定功率的電力群體剩餘功率分配量; (K-4)對於排序第1的電力群體,當判定出該電力群體對應的電力群體額定功率不小於該案場規範輸出功率時,將該案場規範輸出功率作為對應該電力群體的電力群體規範輸出功率,再將該電力群體剩餘功率分配量更新為0; (K-5)對於第 的電力群體, ,判定該電力群體對應的電力群體額定功率是否小於該電力群體剩餘功率分配量; (K-6)對於排序第 的電力群體,當判定出該電力群體對應的電力群體額定功率小於該電力群體剩餘功率分配量時,將該電力群體對應的電力群體額定功率作為對應該電力群體的電力群體規範輸出功率,並將該電力群體剩餘功率分配量扣除該電力群體對應的電力群體額定功率,以更新該電力群體剩餘功率分配量;及 (K-7)對於排序第 的電力群體,當判定出該電力群體對應的電力群體額定功率不小於該電力群體剩餘功率分配量時,將該電力群體剩餘功率分配量作為對應該電力群體的電力群體規範輸出功率,再將該電力群體剩餘功率分配量更新為0。 The electric energy distribution method as described in claim 8, wherein step (K) includes the following sub-steps: (K-1) According to the rated power of the power conversion system of the battery data, obtain P electric powers corresponding to the electric power groups. Group rated power, where the p- th power group rated power As shown in the following formula: , in, is the rated power of the m- th power conversion system, Indicates whether the m -th power conversion system belongs to the p -th power group, when the m -th power conversion system belongs to the p -th power group , when the m -th power conversion system does not belong to the p- th power group ; (K-2) For the power group ranked first, determine whether the rated power of the power group corresponding to the power group is less than the standard output power of the site; (K-3) For the power group ranked first, when it is determined that the power group When the rated power of the electric power group corresponding to the electric power group is less than the standard output power of the project site, the rated power of the electric power group corresponding to the electric power group will be regarded as the standard output power of the electric power group corresponding to the electric power group, and a deduction of the standard output power of the project site will be obtained. The remaining power allocation amount of the power group corresponding to the rated power of the power group; (K-4) For the power group ranked first, when it is determined that the rated power of the power group corresponding to the power group is not less than the standard output power of the case site When , the standard output power of the project site is used as the power group standard output power corresponding to the power group, and then the remaining power allocation amount of the power group is updated to 0; (K-5) For the first power group, , determine whether the rated power of the electric power group corresponding to the electric power group is less than the remaining power allocation of the electric power group; (K-6) For the ranking When it is determined that the rated power of the electric power group corresponding to the electric power group is less than the remaining power allocation amount of the electric power group, the rated power of the electric power group corresponding to the electric power group will be used as the electric power group standard output power corresponding to the electric power group, and The remaining power allocation amount of the electric power group is deducted from the rated power of the electric power group corresponding to the electric power group to update the remaining power allocation amount of the electric power group; and (K-7) for the sorted power group When it is determined that the rated power of the electric power group corresponding to the electric power group is not less than the residual power allocation amount of the electric power group, the residual power allocation amount of the electric power group will be used as the electric power group standard output power corresponding to the electric power group, and then the electric power group will The remaining power allocation amount of the power group is updated to 0. 如請求項8所述的電能分配方法,其中,在步驟(L)中,第 m個電力轉換系統在該頻率點 f下對應的電力轉換系統規範輸出功率 如下式所示: , 其中, 為第 m個電力轉換系統所屬電力群體在該頻率點 f下對應的電力群體規範輸出功率, 為第 m個電力轉換系統所屬電力群體對應的電力群體額定功率, 為第 p個電力群體額定功率, 表示第 m個電力轉換系統是否屬於第 p個電力群體,當第 m個電力轉換系統屬於第 p個電力群體時 ,當第 m個電力轉換系統不屬於第 p個電力群體時 The power distribution method as described in claim 8, wherein in step (L), the corresponding power conversion system of the m -th power conversion system at the frequency point f specifies the output power. As shown in the following formula: , , , in, is the standardized output power of the power group corresponding to the power group to which the m- th power conversion system belongs at the frequency point f , is the rated power of the power group corresponding to the power group to which the m- th power conversion system belongs, is the rated power of the p -th power group, Indicates whether the m -th power conversion system belongs to the p -th power group, when the m -th power conversion system belongs to the p -th power group , when the m -th power conversion system does not belong to the p- th power group . 一種電能分配方法,適用於分配一案場包括的 M個電力轉換系統的電能,由該案場包括的一電連接該等電力轉換系統的能源管理系統來實施,每一電力轉換系統具有 N m 個電池管理系統, M, N m >1, ,該能源管理系統儲存有一相關於該案場在一頻率點 f的案場規範輸出功率,及 M筆分別對應該等電力轉換系統的電池資料,每一電池資料所對應之電力轉換系統的電力轉換系統額定功率、 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的電池容量、 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的額定容量,及 N m 個分別對應所對應之電力轉換系統的所有電池管理系統的電池健康度,該電能分配方法包含以下步驟: (G)根據該等電池資料之電池容量及電池健康度,獲得 M個分別對應該等電池資料的平均電池容量,及 M個分別對應該等電池資料的平均電池健康度; (H)對於每一電力轉換系統,根據該電力轉換系統對應的一平均電池容量與一平均電池健康度、多個分別對應多個放電優先級分數模糊語意的放電分數歸屬函數、多個分別對應多個電池容量模糊語意的容量歸屬函數、多個分別對應多個電池健康度模糊語意的健康度歸屬函數,及一包括多條規則的模糊規則庫,利用一模糊推論演算法推論出一相關於該電力轉換系統的放電優先級分數; (I)根據該等電力轉換系統對應的放電優先級分數將該等電力轉換系統分群成 P個電力群體, MP>1; (J)根據該等電力群體的所有電力轉換系統對應的放電優先級分數,將該等電力群體進行排序; (K)根據該案場規範輸出功率及該等電池資料的電力轉換系統額定功率,依序獲得多個分別對應該等電力群體在該頻率點 f的電力群體規範輸出功率;及 (L)對於每一電力群體,根據該案場規範輸出功率、該電力群體對應的電力群體規範輸出功率,及該等電池資料的電力轉換系統額定功率,獲得多個分別對應該電力群體的所有電力轉換系統在該頻率點 f的電力轉換系統規範輸出功率。 An electric energy distribution method, suitable for distributing electric energy of M power conversion systems included in a project site, implemented by an energy management system included in the project site that is electrically connected to the power conversion systems. Each power conversion system has N m A battery management system, M , N m > 1, , the energy management system stores a site specification output power related to the site at a frequency point f , and M pieces of battery data corresponding to the power conversion system. Each battery data corresponds to the power of the power conversion system. The rated power of the conversion system, N m respectively correspond to the battery capacities of all battery management systems of the corresponding power conversion system, N m respectively correspond to the rated capacities of all battery management systems of the corresponding power conversion system, and N m respectively Corresponding to the battery health of all battery management systems of the corresponding power conversion system, the power distribution method includes the following steps: (G) According to the battery capacity and battery health of the battery data, obtain M corresponding battery data respectively the average battery capacity, and M average battery health degrees respectively corresponding to the corresponding battery data; (H) For each power conversion system, according to an average battery capacity and an average battery health degree corresponding to the power conversion system, a plurality of Discharge score attribution functions corresponding to multiple fuzzy semantics of discharge priority scores, multiple capacity attribution functions corresponding to multiple fuzzy semantics of battery capacity, multiple health attribution functions corresponding to multiple fuzzy semantics of battery health, and a A fuzzy rule base including a plurality of rules uses a fuzzy inference algorithm to deduce a discharge priority score related to the power conversion system; (I) Convert the power according to the corresponding discharge priority score of the power conversion system The system is grouped into P power groups, MP >1; (J) Sort the power groups according to the discharge priority scores corresponding to all power conversion systems of the power groups; (K) According to the case specifications The output power and the rated power of the power conversion system of the battery data are obtained in order to obtain a plurality of power group standard output powers respectively corresponding to the power group at the frequency point f ; and (L) for each power group, according to the case The field standard output power, the power group standard output power corresponding to the power group, and the power conversion system rated power of the battery data are obtained to obtain multiple power conversion systems corresponding to all power conversion systems of the power group at the frequency point f Standardized output power.
TW112111792A 2023-03-28 2023-03-28 Electric energy distribution method for site and power conversion system TWI819980B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112111792A TWI819980B (en) 2023-03-28 2023-03-28 Electric energy distribution method for site and power conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112111792A TWI819980B (en) 2023-03-28 2023-03-28 Electric energy distribution method for site and power conversion system

Publications (1)

Publication Number Publication Date
TWI819980B true TWI819980B (en) 2023-10-21

Family

ID=89858086

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112111792A TWI819980B (en) 2023-03-28 2023-03-28 Electric energy distribution method for site and power conversion system

Country Status (1)

Country Link
TW (1) TWI819980B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110796286A (en) * 2019-09-25 2020-02-14 国网山西省电力公司经济技术研究院 Flexible planning method of power distribution system suitable for electric automobile large-scale application
US20200321776A1 (en) * 2007-03-27 2020-10-08 Solaredge Technologies Ltd. Distributed Maximum Power Point Tracking System, Structure and Process
TWM634378U (en) * 2022-05-11 2022-11-21 廣騰再生能源股份有限公司 Valuation equipment for solar power plants
TWM635967U (en) * 2022-07-13 2023-01-01 台達電子工業股份有限公司 Energy storage device detection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200321776A1 (en) * 2007-03-27 2020-10-08 Solaredge Technologies Ltd. Distributed Maximum Power Point Tracking System, Structure and Process
CN110796286A (en) * 2019-09-25 2020-02-14 国网山西省电力公司经济技术研究院 Flexible planning method of power distribution system suitable for electric automobile large-scale application
TWM634378U (en) * 2022-05-11 2022-11-21 廣騰再生能源股份有限公司 Valuation equipment for solar power plants
TWM635967U (en) * 2022-07-13 2023-01-01 台達電子工業股份有限公司 Energy storage device detection system

Similar Documents

Publication Publication Date Title
CN109802387B (en) Multi-stage power supply recovery method for elastic power distribution network comprising microgrid
CN110429649B (en) High-permeability renewable energy cluster division method considering flexibility
Coppez et al. The importance of energy storage in renewable power generation: a review
CN109755967B (en) Optimal configuration method for optical storage system in power distribution network
CN109510234B (en) Hybrid energy storage capacity optimal configuration method and device for micro-grid energy storage power station
CN110633854A (en) Full life cycle optimization planning method considering energy storage battery multiple segmented services
CN105337278B (en) A kind of network reconfiguration dual blank-holder based on pitch point importance Evaluations matrix
CN107069835B (en) Real-time active distribution method and device for new energy power station
CN112381269A (en) Independent micro-grid capacity optimal configuration method considering load importance and electricity price excitation
CN111784100B (en) Monthly plan mode generation method
CN111009914A (en) Active power distribution network-oriented energy storage device location and volume determination method
CN113162090A (en) Energy storage system capacity configuration optimization method considering battery module capacity
CN111064192A (en) Independent micro-grid capacity optimal configuration method considering source load uncertainty
CN109193725B (en) Method for recovering load based on micro-grid
CN105896580B (en) A kind of micro-capacitance sensor multiobjective optimization control method and device
CN113131502B (en) Double-layer power coordination distribution method and device for centralized energy storage power station
TWI819980B (en) Electric energy distribution method for site and power conversion system
Wang et al. Pareto optimization of power system reconstruction using NSGA-II algorithm
CN108629445A (en) The alternating current-direct current mixing microgrid Robust Scheduling method of meter and energy storage dynamic loss
CN116993205A (en) Urban comprehensive energy system day-to-day operation adjustment capability assessment method
CN107147139B (en) Micro-grid load scheduling method considering line transmission loss
CN108683211A (en) A kind of virtual power plant combined optimization method and model considering distributed generation resource fluctuation
CN114417566A (en) MOEA/D-based active power distribution network multi-region division optimization method
CN111079966B (en) Generalized load space prediction method and system
CN114465226A (en) Method for establishing multi-level standby acquisition joint optimization model of power system