TWI819345B - Method for detecting viruses - Google Patents

Method for detecting viruses Download PDF

Info

Publication number
TWI819345B
TWI819345B TW110127868A TW110127868A TWI819345B TW I819345 B TWI819345 B TW I819345B TW 110127868 A TW110127868 A TW 110127868A TW 110127868 A TW110127868 A TW 110127868A TW I819345 B TWI819345 B TW I819345B
Authority
TW
Taiwan
Prior art keywords
virus
cavities
sers
active substrate
metal clusters
Prior art date
Application number
TW110127868A
Other languages
Chinese (zh)
Other versions
TW202305364A (en
Inventor
廖峻德
李含
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW110127868A priority Critical patent/TWI819345B/en
Publication of TW202305364A publication Critical patent/TW202305364A/en
Application granted granted Critical
Publication of TWI819345B publication Critical patent/TWI819345B/en

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The method of the present disclosure comprises the following steps: providing a SERS (Surface-Enhanced Raman Scattering)-active substrate and a Raman spectra virus database; applying a virus sample onto the SERS-active substrate; applying an incident light by a Raman spectrometer onto the SERS-active substrate to generate a Raman spectrum of the virus sample; and comparing the Raman spectrum of the virus sample with a Raman spectra virus database to identify the species of the virus sample. Herein, the SERS-active substrate comprises: a support; a dielectric layer disposed on the support, wherein a plurality of cavities are formed on a surface of the dielectric layer; and a plurality of noble metal clusters formed in the plurality of cavities.

Description

病毒檢測方法Virus detection methods

本揭露涉及一種病毒檢測方法。更具體地,本揭露涉及一種使用表面增強拉曼散射(Surface-Enhanced Raman Scattering,縮寫為SERS)技術的病毒檢測方法。 The present disclosure relates to a virus detection method. More specifically, the present disclosure relates to a virus detection method using Surface-Enhanced Raman Scattering (SERS) technology.

快速且準確的檢測和識別危險病原體(pathogen)對於病原體引起的早期疾病的診斷或治療是極度有幫助的。目前,基於抗體的生物陣列(bioarray)可用於監測病毒,且此技術為例如酵素免疫吸附法(enzyme-linked immunosorbent assays,ELISA)、螢光抗體分析法(fluorescent antibody arrays)及血清檢測(serological testing)。然而,這些技術可能會遇到一些臨床問題,例如耗時、偽陽性(false positive)等。 Rapid and accurate detection and identification of dangerous pathogens (pathogens) are extremely helpful for the diagnosis or treatment of early-stage diseases caused by pathogens. Currently, antibody-based bioarrays can be used to monitor viruses, and this technology is such as enzyme-linked immunosorbent assays (ELISA), fluorescent antibody arrays, and serological testing. ). However, these techniques may encounter some clinical problems, such as time consumption, false positives, etc.

近年來,隨著聚合酶連鎖反應(polymerase chain reaction,PCR)的持續發展,相關的方法例如單核苷酸多型性(single-nucleotide polymorphism,SNP),其中目標DNA序列也增殖(proliferated),成為病毒識別的替代方法。然而,在ELISA或PCR前需要對目標DNA進行複雜的純化和分離步驟,因此,如果可以排除這些複雜的純化和分離步驟,將可以簡化和加速目標病毒的識別。 In recent years, with the continued development of polymerase chain reaction (PCR), related methods such as single-nucleotide polymorphism (SNP), in which the target DNA sequence is also proliferated, Become an alternative method of virus identification. However, complex purification and isolation steps are required for the target DNA before ELISA or PCR. Therefore, if these complex purification and isolation steps can be eliminated, the identification of the target virus will be simplified and accelerated.

目前,在病毒識別或檢測中,主要困難處與複雜的純化和分離、病毒的可偵測量(detectable amount)、視尺寸(apparent size)和大小,以及對特定病毒的化學識別資料庫的要求有關。一般,在病毒感染的早期階段很難實現快速篩檢,因為在使用純化程序的生物分子檢測中,病毒量通常不能夠到達可檢測量,即超過106斑點形成單位(plaque-forming unit,PFU)/ml。常見的生物分子檢測中使用的試劑遠小於病毒的視尺寸和大小。因此,只能檢測到一部份完整的病毒,導致不完整的病毒信息。此外,在資料庫中建立完整的病毒的化學識別信息是困難的。 Currently, the main difficulties in virus identification or detection are complex purification and separation, the detectable amount, apparent size and size of the virus, and the requirement for a chemical identification database of specific viruses. related. Generally, it is difficult to achieve rapid screening in the early stages of viral infection because in biomolecule detection using purification procedures, the amount of virus usually cannot reach a detectable amount, that is, exceed 10 6 plaque-forming units (PFU). )/ml. The reagents used in common biomolecule tests are much smaller than the apparent size and size of viruses. Therefore, only a portion of the complete virus can be detected, resulting in incomplete virus information. Furthermore, it is difficult to establish complete chemical identification information for viruses in databases.

生物分子或其碎片(fragment)可以通過共振應力懸臂(resonating mechanical cantilevers)、漸逝波感測器(evanescent wave biosensors)、或原子力顯微鏡(atomic force microscopy)進行研究,但這些方法只能用於測量生物分子的數量。或者,可以採用標誌方法(labeling method)通過特定官能基團來檢測微生物。然而,製備無汙染的樣本是困難的,或者標誌的官能基團的信號與目標微生物的信號容易重疊。因此,這些技術在檢測上消耗大量時間,且不能滿足對快速檢測的臨床要求。 Biomolecules or their fragments can be studied using resonating mechanical cantilevers, evanescent wave biosensors, or atomic force microscopy, but these methods can only be used for measurement. number of biomolecules. Alternatively, labeling methods can be used to detect microorganisms by specific functional groups. However, it is difficult to prepare contamination-free samples, or the signal of the labeled functional group easily overlaps with the signal of the target microorganism. Therefore, these technologies consume a lot of time in detection and cannot meet the clinical requirements for rapid detection.

本揭露之目的在於提供一種使用SERS技術的病毒檢測方法。 The purpose of this disclosure is to provide a virus detection method using SERS technology.

本揭露之方法藉由使用一SERS活性基板(SERS-active substrate)來完成,其中,SERS活性基板包含:一支撐件;一介電層(dielectric layer),設置於該支撐件上,其中,多個空腔(cavities)形成於該介電層的一表面上;以及多個貴金屬簇(noble metal clusters),形成於該些空腔內。本揭露之方法包含以下步 驟:提供上述的SERS活性基板和一拉曼光譜病毒資料庫;將一病毒樣本施加於該SERS活性基板的該些空腔上;通過一拉曼光譜儀將一入射光(incident light)施加至該SERS活性基板的該些貴金屬簇上,以產生該病毒樣本的一拉曼光譜;以及將該病毒樣本的該拉曼光譜與一拉曼光譜病毒資料庫比較,以確定該病毒樣本的種類。 The method of the present disclosure is accomplished by using a SERS-active substrate, wherein the SERS-active substrate includes: a support; and a dielectric layer disposed on the support, wherein: Cavities are formed on a surface of the dielectric layer; and a plurality of noble metal clusters are formed in the cavities. The disclosed method includes the following steps: Steps: provide the above-mentioned SERS active substrate and a Raman spectrum virus database; apply a virus sample to the cavities of the SERS active substrate; apply an incident light to the cavity through a Raman spectrometer on the noble metal clusters on the SERS active substrate to generate a Raman spectrum of the virus sample; and compare the Raman spectrum of the virus sample with a Raman spectrum virus database to determine the type of the virus sample.

於本揭露的方法中,SERS-活性基板包含貴金屬簇,形成於該些空腔內,具體地,貴金屬簇形成於每一個空腔中。當本揭露的SERS-活性基板與拉曼光譜儀一起用於檢測病毒樣本時,每個空腔中的整體熱點(hot spots)是由該些貴金屬簇產生的小熱點(來自貴金屬簇)的集合結果。因此,病毒樣本的拉曼信號的強度可以通過熱點增強,且可以檢測到具有熱點的空腔所容納的病毒。 In the method of the present disclosure, the SERS-active substrate includes noble metal clusters formed in the cavities. Specifically, noble metal clusters are formed in each cavity. When the SERS-active substrate of the present disclosure is used with a Raman spectrometer to detect virus samples, the overall hot spots in each cavity are the result of the collection of small hot spots (from the noble metal clusters) generated by the noble metal clusters. . Therefore, the intensity of the Raman signal of a virus sample can be enhanced by hot spots, and viruses housed in cavities with hot spots can be detected.

於本揭露中,支撐件的材料沒有特別限制,可以包括例如石英、玻璃、矽晶圓、藍寶石、聚碳酸酯(PC)、聚醯亞胺(PI)、聚丙烯(PP)、聚對苯二甲酸乙二酯(PET)或其他塑料或聚合物材料或其組合,但本揭露並不局限於此。 In the present disclosure, the material of the support member is not particularly limited and may include, for example, quartz, glass, silicon wafer, sapphire, polycarbonate (PC), polyimide (PI), polypropylene (PP), polyparaphenylene Ethylene diformate (PET) or other plastic or polymer materials or combinations thereof, but the present disclosure is not limited thereto.

於本揭露中,介電層的材料可為陶瓷材料。例如介電層的材料可為具有介電常數(dielectric constant)(k)從3.9至30範圍的高k陶瓷材料。高k陶瓷材料的具體例子包括氧化鋯(ZrO2)、二氧化鈦(TiO2)、二氧化鉿(HfO2)、氧化鋁(Al2O3)或其組合,但本揭露並不局限於此。 In the present disclosure, the material of the dielectric layer may be ceramic material. For example, the material of the dielectric layer may be a high-k ceramic material with a dielectric constant (k) ranging from 3.9 to 30. Specific examples of high-k ceramic materials include zirconium oxide (ZrO 2 ), titanium dioxide (TiO 2 ), hafnium dioxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), or combinations thereof, but the present disclosure is not limited thereto.

於本揭露中,形成於介電層的一表面上的空腔可以排列成陣列(array)。例如空腔可以排列成n x m的陣列,其中n和m分別為1或更大的整數。 In the present disclosure, cavities formed on a surface of the dielectric layer may be arranged in an array. For example, the cavities can be arranged in an n x m array, where n and m are each an integer of 1 or greater.

於本揭露中,多個空腔中的每一個可以具有類碗狀(bowl-like)形狀。 In the present disclosure, each of the plurality of cavities may have a bowl-like shape.

於本揭露中,多個空腔中的每一個可以具有20nm至300nm範圍的深度,例如20nm至280nm、20nm至250nm、20nm至230nm、20nm至200nm、20nm至180nm、20nm至150nm、25nm至150nm、25nm至130nm、30nm至130nm、30nm至100nm、或40nm至100nm。在此,空腔的深度可以根據待檢測的目標病毒的大小和尺寸來選擇。此外,空腔的深度可以是空腔的最大深度。 In the present disclosure, each of the plurality of cavities may have a depth ranging from 20nm to 300nm, such as 20nm to 280nm, 20nm to 250nm, 20nm to 230nm, 20nm to 200nm, 20nm to 180nm, 20nm to 150nm, 25nm to 150nm. , 25nm to 130nm, 30nm to 130nm, 30nm to 100nm, or 40nm to 100nm. Here, the depth of the cavity can be selected depending on the size and dimensions of the target virus to be detected. Furthermore, the depth of the cavity may be the maximum depth of the cavity.

於本揭露中,多個空腔中的每一個可以具有100nm至1400nm範圍的寬度,例如100nm至1300nm、100nm至1200nm、100nm至1100nm、100nm至1000nm、100nm至900nm、100nm至800nm、100nm至700nm、100nm至600nm、100nm至500nm、150nm至500nm、150nm至400nm、200nm至400nm、或200nm至300nm。在此,每一空腔的寬度可以根據待檢測的目標病毒的大小和尺寸來選擇。此外,空腔的寬度可以是空腔的最大寬度。 In the present disclosure, each of the plurality of cavities may have a width in the range of 100nm to 1400nm, such as 100nm to 1300nm, 100nm to 1200nm, 100nm to 1100nm, 100nm to 1000nm, 100nm to 900nm, 100nm to 800nm, 100nm to 700nm , 100nm to 600nm, 100nm to 500nm, 150nm to 500nm, 150nm to 400nm, 200nm to 400nm, or 200nm to 300nm. Here, the width of each cavity can be selected according to the size and dimensions of the target virus to be detected. Furthermore, the width of the cavity may be the maximum width of the cavity.

於本揭露中,多個貴金屬簇中的金屬可為金、銀或其合金。於本揭露之一實施例中,金屬可為金。 In the present disclosure, the metals in the plurality of precious metal clusters may be gold, silver or alloys thereof. In one embodiment of the present disclosure, the metal may be gold.

於本揭露中,多個貴金屬簇中的每一個具有厚度為數個奈米的類碟狀(disk-like)形狀。類碟狀形狀可以是扁平狀。類碟狀形狀的輪廓沒有特別限定,且可為例如圓形或不規則形。此外,多個貴金屬簇中的每一個可以具有0.5nm至50nm範圍的寬度,例如0.5nm至45nm、0.5nm至40nm、0.5nm至35nm、0.5nm至30nm、1nm至30nm、1nm至25nm、2nm至25nm、2nm至20nm、3nm至20nm、3nm至15nm、4nm至15nm、4nm至10nm、或5nm至10nm。在此,貴金屬簇的寬度是指貴金屬簇的類碟狀形狀的平均寬度,可以根據待檢測的目標病毒的大小和尺寸來選擇。此外,貴金屬簇的類碟狀形狀的平均厚度可以為0.5nm至5nm的 範圍。此外,兩個相鄰金屬簇之間的一間距可為5nm至10nm的範圍內,且該間距可以指兩個相鄰金屬簇之間的平均最小距離。 In the present disclosure, each of the plurality of noble metal clusters has a disk-like shape with a thickness of several nanometers. The dish-like shape may be flat. The outline of the dish-like shape is not particularly limited, and may be circular or irregular, for example. In addition, each of the plurality of noble metal clusters may have a width in the range of 0.5 nm to 50 nm, such as 0.5 nm to 45 nm, 0.5 nm to 40 nm, 0.5 nm to 35 nm, 0.5 nm to 30 nm, 1 nm to 30 nm, 1 nm to 25 nm, 2 nm to 25nm, 2nm to 20nm, 3nm to 20nm, 3nm to 15nm, 4nm to 15nm, 4nm to 10nm, or 5nm to 10nm. Here, the width of the noble metal cluster refers to the average width of the disc-like shape of the noble metal cluster, which can be selected according to the size and dimensions of the target virus to be detected. In addition, the average thickness of the disc-like shape of the noble metal clusters can be 0.5 nm to 5 nm. Scope. In addition, a spacing between two adjacent metal clusters may be in the range of 5 nm to 10 nm, and the spacing may refer to an average minimum distance between two adjacent metal clusters.

於本揭露中,根據待檢測的目標病毒(例如病毒顆粒的大小),每個空腔可以容納0-3個病毒。例如當將病毒樣本施加至SERS-活性基板上時,一個空腔可以容納1、2或3個病毒,但另一個空腔是空的(即0個病毒)。有多少病毒被容納於空腔中,例如可取決於病毒樣本中的病毒數量。 In the present disclosure, each cavity can accommodate 0-3 viruses depending on the target virus to be detected (eg, the size of the virus particles). For example when a virus sample is applied to a SERS-active substrate, one cavity can hold 1, 2 or 3 viruses, but the other cavity is empty (i.e. 0 viruses). How much virus is contained in the cavity may depend, for example, on the amount of virus in the virus sample.

於本揭露中,多個空腔中的相鄰兩個空腔之間的一距離可為10nm至200nm的範圍內,例如10nm至190nm、10nm至180nm、10nm至170nm、10nm至160nm、10nm至150nm、10nm至140nm、10nm至130nm、10nm至120nm、10nm至110nm、10nm至100nm、15nm至100nm、15nm至90nm、20nm至90nm、20nm至80nm、25nm至80nm、25nm至70nm、或30nm至70nm;但本揭露並不局限於此。在此,兩個相鄰空腔之間的距離可為兩個相鄰空腔之間的最小距離。 In the present disclosure, a distance between two adjacent cavities in the plurality of cavities may be in the range of 10 nm to 200 nm, such as 10 nm to 190 nm, 10 nm to 180 nm, 10 nm to 170 nm, 10 nm to 160 nm, 10 nm to 150nm, 10nm to 140nm, 10nm to 130nm, 10nm to 120nm, 10nm to 110nm, 10nm to 100nm, 15nm to 100nm, 15nm to 90nm, 20nm to 90nm, 20nm to 80nm, 25nm to 80nm, 25nm to 70nm , or 30nm to 70nm ; But this disclosure is not limited to this. Here, the distance between two adjacent cavities may be the minimum distance between two adjacent cavities.

於本揭露中,通過拉曼光譜儀提供的入射光的波長可以根據空腔的大小(例如深度)、或待檢測的病毒(例如病毒顆粒的大小和種類)進行調整。因此,可以獲得SERS效應的最佳化信號。此外,通過拉曼光譜儀提供的入射光功率可以在0.3mW至40mW的範圍內,例如0.3mW至30mW、0.3mW至20mW、0.5mW至20mW、0.5mW至15mW、1mW至15mW、1mW至10mW、1.5mW至10mW、1.5mW至5mW、1.5mW至4.5mW、2mW至4.5mW、2.5mW至4.5mW、2.5mW至4mW、或3mW至4mW。如果功率太大,病毒樣本可能會被降解。 In the present disclosure, the wavelength of the incident light provided by the Raman spectrometer can be adjusted according to the size of the cavity (eg, depth), or the virus to be detected (eg, the size and type of virus particles). Therefore, an optimized signal of the SERS effect can be obtained. In addition, the incident optical power provided by the Raman spectrometer can be in the range of 0.3mW to 40mW, such as 0.3mW to 30mW, 0.3mW to 20mW, 0.5mW to 20mW, 0.5mW to 15mW, 1mW to 15mW, 1mW to 10mW, 1.5mW to 10mW, 1.5mW to 5mW, 1.5mW to 4.5mW, 2mW to 4.5mW, 2.5mW to 4.5mW, 2.5mW to 4mW, or 3mW to 4mW. If the power is too high, the virus sample may be degraded.

於本揭露中,待檢測病毒的種類沒有特別限制。例如病毒可以是具有棘(刺突)蛋白(spike protein)的病毒,例如嚴重急性呼吸道症候群冠狀病毒2型(SARS-CoV-2)病毒或其變異(variation)。 In this disclosure, the types of viruses to be detected are not particularly limited. For example, the virus may be a virus with a spike protein, such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) virus or a variation thereof.

已知常規檢測方法,例如核酸檢測(例如聚合酶連鎖反應(PCR)或逆轉錄(reverse transcription)PCR(RT-PCR))或血清學檢測(例如酵素免疫吸附法(ELISA)或側流免疫分析(lateral flow immunoassay,LFIA))耗時或存在不足。然而,一旦病毒變成大流行病(pandemic)時,就需要快速且有說服力的檢測系統或方法,以即時識別患者體內的病毒類型,從而可以有效地控制疾病的傳播。在此,本揭露的方法藉由採用SERS技術,因此可以快速且準確地識別病毒的種類。此外,由於可以藉由本揭露的SERS-活性基板中的空腔中的貴金屬簇來提高SERS效應,即使病毒樣本中的病毒數量很少,仍可以識別病毒的種類。 Conventional detection methods are known, such as nucleic acid detection (such as polymerase chain reaction (PCR) or reverse transcription PCR (RT-PCR)) or serological detection (such as enzyme immunosorbent assay (ELISA) or lateral flow immunoassay) (lateral flow immunoassay, LFIA)) is time-consuming or insufficient. However, once a virus becomes a pandemic, rapid and convincing detection systems or methods are needed to instantly identify the type of virus in patients so that the spread of the disease can be effectively controlled. Here, the method of the present disclosure adopts SERS technology, so it can quickly and accurately identify the type of virus. In addition, since the SERS effect can be enhanced by the noble metal clusters in the cavities of the SERS-active substrate of the present disclosure, the type of virus can still be identified even if the number of viruses in the virus sample is very small.

當結合附圖時,揭露的其他新穎特徵將從以下詳細的描述中變得更加明顯。 Other novel features disclosed will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.

11:支撐件 11:Support

12:奈米顆粒 12: Nanoparticles

13:介電層 13: Dielectric layer

131:空腔 131:Cavity

132:表面 132:Surface

14:貴金屬簇 14:Precious metal clusters

RA:區域 RA:region

RB:區域 RB:Region

D:深度 D: Depth

W1:寬度 W1: Width

W2:距離 W2: distance

W3:寬度 W3: Width

W4:間距 W4: spacing

圖1A至圖1D顯示根據本揭露之實施例1之製備SERS-活性基板的剖面圖。 1A to 1D show cross-sectional views of preparing a SERS-active substrate according to Embodiment 1 of the present disclosure.

圖2顯示根據本揭露之實施例1之SERS-活性基板的支撐件和介電層的透視圖。 2 shows a perspective view of the support and dielectric layer of the SERS-active substrate according to Embodiment 1 of the present disclosure.

圖3為根據本揭露之實施例1之SERS-活性基板的空腔的放大圖。 FIG. 3 is an enlarged view of the cavity of the SERS-active substrate according to Embodiment 1 of the present disclosure.

圖4A至圖4D為根據本揭露之實施例1之SERS-活性基板的SEM上視圖。 4A to 4D are SEM top views of the SERS-active substrate according to Embodiment 1 of the present disclosure.

圖5A為SARS-CoV-2 S偽病毒(pseudovirus)在陣列的相同位置取得5次的SERS光譜。 Figure 5A shows the SERS spectra of the SARS-CoV-2 S pseudovirus (pseudovirus) obtained five times at the same position on the array.

圖5B顯示SARS-CoV-2 S偽病毒在陣列的相同位置取得5次的SERS光譜的強度圖。 Figure 5B shows the intensity map of the SERS spectra obtained five times by the SARS-CoV-2 S pseudovirus at the same position on the array.

圖6A為在陣列的6個不同位置取得的SARS-CoV-2 S偽病毒SERS光譜。 Figure 6A shows the SERS spectra of SARS-CoV-2 S pseudovirus obtained at 6 different locations on the array.

圖6B顯示在陣列的6個不同位置取得的SARS-CoV-2 S偽病毒SERS光譜的強度圖。 Figure 6B shows the intensity plot of the SARS-CoV-2 S pseudovirus SERS spectra taken at 6 different locations on the array.

圖7為SARS-CoV-2 S偽病毒對VSV-G偽病毒的SERS光譜。 Figure 7 shows the SERS spectrum of SARS-CoV-2 S pseudovirus versus VSV-G pseudovirus.

圖8為SARS-CoV-2 S偽病毒對H1N1的SERS光譜。 Figure 8 shows the SERS spectrum of SARS-CoV-2 S pseudovirus against H1N1.

圖9為SARS-CoV-2 S偽病毒對H3N2的SERS光譜。 Figure 9 shows the SERS spectrum of SARS-CoV-2 S pseudovirus against H3N2.

圖10為根據本揭露之實施例2之SERS-活性基板的上視圖。 Figure 10 is a top view of a SERS-active substrate according to Embodiment 2 of the present disclosure.

在以下描述中提供了本發明的不同實施例,這些實施例旨在於說明本發明的技術內容,而非用於限定本發明的範圍。一實施例中描述的一特徵可以通過適當的修飾、替換、組合或分離應用於其他實施例。 Different embodiments of the present invention are provided in the following description. These embodiments are intended to illustrate the technical content of the present invention but are not intended to limit the scope of the present invention. A feature described in one embodiment may be applied to other embodiments through appropriate modification, replacement, combination or separation.

應注意的是,於本說明書中,除非另有說明,當一組件被描述為具有一元件時,表示該組件可以具有一或多個該元件,而不表示該組件僅具有一個該元件。 It should be noted that in this specification, unless otherwise stated, when a component is described as having an element, it means that the component may have one or more of the element, but does not mean that the component only has one of the element.

此外,在本說明書中,除非另有說明,序數號碼例如「第一」或「第二」,是用於區分多個具有相同名稱的元件,且其並不表示本質上存在等級、順序、執行次序(executing order),或元件之間的製造次序。「第一」元件和「第二」元件可以一起存在於同一組件中,或者,他們可以分別存在於不同組件中。以較大序數描述的元件的存在不表示本質上存在以較小序數描述的另一元件。 In addition, in this specification, unless otherwise stated, ordinal numbers such as "first" or "second" are used to distinguish multiple components with the same name, and they do not necessarily represent the existence of a hierarchy, order, or execution. Execution order, or the order in which components are manufactured. The "first" component and the "second" component can exist together in the same component, or they can exist in different components. The presence of an element described with a higher ordinal number does not imply the inherent presence of another element described with a lower ordinal number.

此外,在本說明書中,術語例如「頂部」、「底部」、「左側」、「右側」、「前方」、「後方」、或「中間」,以及「上」、「之上」、「下方」、「之下」、或「之間」的術語是用於描述多個元件之間的相對位置,且所描述的相對位置可以解釋為包括它們的平移、旋轉或反射。 In addition, in this specification, terms such as "top", "bottom", "left", "right", "front", "rear", or "middle", as well as "upper", "above", "lower" The terms "under", or "between" are used to describe the relative position between multiple elements, and the described relative position may be interpreted to include their translation, rotation or reflection.

此外,在本說明書中,除非另有說明,當一元件被描述為布置於另一元件上時,並不表示該元件與另一元件接觸。這種解釋適用於與「上」的情況類似的其他情況。 Furthermore, in this specification, when an element is described as being disposed on another element, it does not mean that the element is in contact with the other element, unless stated otherwise. This explanation applies to other situations similar to the "on" situation.

此外,在本說明書中,術語例如「較佳地」或「有利地」是用於描述選擇性的或附加的元件或特徵,換句話說,該元件或該特徵不為必要要素,且在一些實施例中可以被忽略。 In addition, in this specification, terms such as "preferably" or "advantageously" are used to describe optional or additional elements or features. In other words, this element or feature is not an essential element and in some cases Examples can be ignored.

此外,在本說明書中,當一元件被描述為「適合」或「適應」另一元件時,另一元件為有助於想像該元件的特性或應用的例子或參考,且該另一元件不應被認為是構成保護標的的一部分;相似地,除非另有說明,在本說明書中,當一元件被描述為「適合」或「適應」一組態(configuration)或作用(action)時,該描述是針對該元件的特性或應用,並非表示本質上該組態已設置或該作用已執行。 Additionally, in this specification, when an element is described as being "fitted" or "adapted to" another element, the other element is an example or reference that is helpful in imagining the characteristics or applications of the element, and the other element is not shall be considered to form part of the protected subject matter; similarly, unless otherwise stated, in this specification, when an element is described as "fitting" or "adapting" to a configuration or action, the element shall be deemed to form part of the protected subject matter. The description is for the characteristics or application of the component and does not mean that the configuration has been set or the effect has been performed.

此外,在本說明書中,除非另有說明,值(value)可以解釋為涵蓋該值的±10%內的範圍,且特別是該值的±5%內的範圍;除非另有說明,範圍(range)可以解釋為由較小的端點、較小的四分位數(quartile)、中位數、較大的四分位數、以及較大的端點所定義的多個子範圍組成。 In addition, in this specification, unless otherwise stated, a value (value) may be interpreted as encompassing a range within ±10% of the value, and in particular a range within ±5% of the value; unless otherwise stated, the range ( range) can be interpreted as consisting of multiple subranges defined by smaller endpoints, smaller quartiles, medians, larger quartiles, and larger endpoints.

實施例1-SERS活性基板的製備 Example 1 - Preparation of SERS active substrate

圖1A至圖1D顯示根據本實施例之製備SERS-活性基板的剖面圖。圖2顯示根據本實施例之SERS-活性基板的支撐件和介電層的透視圖。圖3為根據本實施例之SERS-活性基板的空腔的放大圖。 1A to 1D show cross-sectional views of the SERS-active substrate prepared according to this embodiment. Figure 2 shows a perspective view of the support and dielectric layer of the SERS-active substrate according to this embodiment. Figure 3 is an enlarged view of the cavity of the SERS-active substrate according to this embodiment.

如圖1A所示,提供一支撐件11,其中,支撐件11為一矽片支撐件。清洗支撐件11後,多個奈米顆粒12形成於支撐件11上。在本實施例中,奈米顆粒12為聚苯乙烯(PS)奈米顆粒,但本揭露並不局限於此。在本揭露的另一實施例中,奈米顆粒12可以是聚乙烯醇(PVA)奈米顆粒、聚乙二醇(PEG)奈米顆粒或其他聚合物奈米顆粒。此外,在本實施例中,使用三種不同直徑(150nm、250nm和350nm)的奈米顆粒12來製備三種不同的SERS-活性基板。 As shown in FIG. 1A , a support member 11 is provided, wherein the support member 11 is a silicon chip support member. After cleaning the support 11 , a plurality of nanoparticles 12 are formed on the support 11 . In this embodiment, the nanoparticles 12 are polystyrene (PS) nanoparticles, but the disclosure is not limited thereto. In another embodiment of the present disclosure, the nanoparticles 12 may be polyvinyl alcohol (PVA) nanoparticles, polyethylene glycol (PEG) nanoparticles, or other polymer nanoparticles. Furthermore, in this embodiment, three different SERS-active substrates are prepared using nanoparticles 12 of three different diameters (150 nm, 250 nm and 350 nm).

在50℃下稍微退火(annealing)10分鐘後,通過旋轉塗佈步驟將ZrO2的前驅溶液施加於支撐件11上。ZrO2的前驅溶液由四氯化鋯(ZrCl4,98%,Acros Organics,Pittsburgh,PA,USA)和異丙醇(99.8%,Panreac Applichem,Darmstadt,Germany)的混合物製備,且在旋轉塗佈前,將ZrO2的前驅溶液靜置約24小時直到達到類膠狀(gel-like)稠度(consistency)。接著,加熱支撐件11(加熱速率:5℃/min),且在600℃下保持3小時,以執行退火步驟。如圖1B所示,冷卻至室溫後,獲得由ZrO2形成的介電層13。 After slight annealing at 50° C. for 10 minutes, the precursor solution of ZrO 2 was applied to the support 11 by a spin coating step. A precursor solution of ZrO2 was prepared from a mixture of zirconium tetrachloride ( ZrCl4 , 98%, Acros Organics, Pittsburgh, PA, USA) and isopropyl alcohol (99.8%, Panreac Applichem, Darmstadt, Germany) and spin-coated Before, the precursor solution of ZrO2 is allowed to stand for about 24 hours until it reaches gel-like consistency. Next, the support 11 was heated (heating rate: 5°C/min) and maintained at 600°C for 3 hours to perform an annealing step. As shown in Figure 1B, after cooling to room temperature, a dielectric layer 13 formed of ZrO2 is obtained.

如圖1C和圖2所示,在移除奈米顆粒12後,形成具有對應於奈米顆粒12形狀的空腔131。接著,如圖1D所示,使用電子束蒸鍍機(electron beam evaporator)(VT1-10CE,ULVAC)將Au原子沉積於介電層13上並形成簇,其中,腔室(chamber)的壓力約為7×10-6托(torr)。沉積速度為0.1

Figure 110127868-A0305-02-0011-1
/sec直到值達到50
Figure 110127868-A0305-02-0011-2
,接著將沉積速度改成1
Figure 110127868-A0305-02-0011-3
/sec,直到儀器參數達到3nm。獲得的類碟狀簇的寬度為 30-60nm,扁平厚度(flatten thickness)為數個奈米(nm),且相鄰簇之間的間距為5-10nm的範圍內。 As shown in FIG. 1C and FIG. 2 , after the nanoparticles 12 are removed, a cavity 131 having a shape corresponding to the nanoparticles 12 is formed. Next, as shown in FIG. 1D , an electron beam evaporator (VT1-10CE, ULVAC) is used to deposit Au atoms on the dielectric layer 13 and form clusters, where the pressure of the chamber is about It is 7×10 -6 Torr. The deposition rate is 0.1
Figure 110127868-A0305-02-0011-1
/sec until value reaches 50
Figure 110127868-A0305-02-0011-2
, then change the deposition rate to 1
Figure 110127868-A0305-02-0011-3
/sec until instrument parameters reach 3nm. The width of the obtained disc-like clusters is 30-60 nm, the flatten thickness is several nanometers (nm), and the spacing between adjacent clusters is in the range of 5-10 nm.

經過上述步驟,即完成本實施例的SERS-活性基板。如圖1D所示,SERS-活性基板包含:一支撐件11;一介電層13,設置於支撐件11上,其中,多個空腔131形成於介電層13的一表面132上;以及多個貴金屬簇14,形成於空腔131內。在此,介電層13為ZrO2層,且貴金屬簇為Au簇。 After the above steps, the SERS-active substrate of this embodiment is completed. As shown in Figure 1D, the SERS-active substrate includes: a support 11; a dielectric layer 13 disposed on the support 11, wherein a plurality of cavities 131 are formed on a surface 132 of the dielectric layer 13; and A plurality of noble metal clusters 14 are formed in the cavity 131 . Here, the dielectric layer 13 is a ZrO2 layer, and the noble metal clusters are Au clusters.

如圖1C和圖2所示,空腔131排列成六邊形陣列(hexagonal array),且每個空腔131具有類碗狀形狀。在使用直徑為250nm的奈米顆粒12製備的SERS-活性基板中,獲得的空腔131具有60nm至80nm的深度D(最大深度),以及240nm至250nm的寬度W1(最大寬度)。此外,兩個相鄰的空腔131之間的距離W2(最小距離)為50nm。上述特徵可以通過SEM(掃描式電子顯微鏡(scanning electron microscope))和AFM(原子力顯微鏡(atomic force microscope))圖像,以及SERS-活性基板的橫截面輪廓確認,但本揭露並不局限於此。 As shown in FIG. 1C and FIG. 2 , the cavities 131 are arranged in a hexagonal array, and each cavity 131 has a bowl-like shape. In the SERS-active substrate prepared using nanoparticles 12 with a diameter of 250 nm, the cavity 131 obtained has a depth D (maximum depth) of 60 nm to 80 nm, and a width W1 (maximum width) of 240 nm to 250 nm. In addition, the distance W2 (minimum distance) between two adjacent cavities 131 is 50 nm. The above characteristics can be confirmed through SEM (scanning electron microscope) and AFM (atomic force microscope) images, as well as the cross-sectional profile of the SERS-active substrate, but the present disclosure is not limited thereto.

此外,如圖3所示,貴金屬簇14具有類碟狀形狀,貴金屬簇14的寬度W3估計為30-60nm,且貴金屬簇14具有5-10nm的平均間隔距離W4。上述特徵可以通過SERS-活性基板的AFM圖像確認,但本揭露並不局限於此。 In addition, as shown in FIG. 3 , the noble metal clusters 14 have a disc-like shape, the width W3 of the noble metal clusters 14 is estimated to be 30-60 nm, and the noble metal clusters 14 have an average spacing distance W4 of 5-10 nm. The above characteristics can be confirmed by AFM images of SERS-active substrates, but the present disclosure is not limited thereto.

空腔的深度D、寬度W1和距離W2,貴金屬簇14的寬度W3,以及相鄰貴金屬簇14之間的間距W4可以根據需要進行調整,且本揭露並不局限於上述值。 The depth D, width W1 and distance W2 of the cavity, the width W3 of the noble metal clusters 14, and the spacing W4 between adjacent noble metal clusters 14 can be adjusted as needed, and the present disclosure is not limited to the above values.

在本實施例中,高解析度熱場發射掃描電子顯微鏡(high-resolution thermal field emission scanning electron microscope)與能量分散X光光譜儀(energy dispersive X-Ray spectroscopy)(FE-SEM/EDS,JSM-7000,JEOL, Tokyo)和原子力顯微鏡(AFM,Dimension Icon,Bruker,Karlsruhe,Germany)聯用,可用於分析獲得的SERS-活性基板的形態和組成。SERS-活性基板的圖像是在次級電子成像模式下以10kV的加速電壓和8×10-8

Figure 110127868-A0305-02-0013-4
的電流拍攝的。此外,貴金屬簇的寬度和貴金屬簇之間的間距可以通過AFM(Dimension Icon,Bruker,Karlsruhe,Germany)測量。使用AFM的PF-QNM以獲得SERS-活性基板的圖像,其中,掃描速率為0.3Hz,且掃描線為256。然而,本揭露並不局限於此,且可以使用任何已知的方法來分析獲得的SERS-活性基板的形態和組成。 In this example, a high-resolution thermal field emission scanning electron microscope and an energy dispersive X-Ray spectroscopy (FE-SEM/EDS, JSM-7000 , JEOL, Tokyo) and atomic force microscopy (AFM, Dimension Icon, Bruker, Karlsruhe, Germany) can be used to analyze the morphology and composition of the obtained SERS-active substrate. Images of SERS-active substrates were taken in secondary electron imaging mode at an accelerating voltage of 10 kV and 8 × 10 -8
Figure 110127868-A0305-02-0013-4
Photographed by the current. In addition, the width of the noble metal clusters and the spacing between the noble metal clusters can be measured by AFM (Dimension Icon, Bruker, Karlsruhe, Germany). Images of SERS-active substrates were obtained using PF-QNM with AFM, where the scan rate was 0.3 Hz and the scan lines were 256. However, the present disclosure is not limited thereto, and any known method may be used to analyze the morphology and composition of the obtained SERS-active substrate.

圖4A至圖4D為本實施例之SERS-活性基板的SEM上視圖,其中,圖4A至圖4C分別為以直徑150nm、250nm和350nm的奈米顆粒製備的SERS-活性基板的SEM上視圖,以及圖4D為獲得的SERS-活性基板的空腔的放大SEM上視圖。從圖4所示的結果來看,可以發現貴金屬簇14的寬度估計為30-60nm,且貴金屬簇14具有5-10nm的平均間隔距離。 Figures 4A to 4D are SEM top views of the SERS-active substrate of this embodiment. Figures 4A to 4C are respectively SEM top views of the SERS-active substrate prepared with nanoparticles with diameters of 150nm, 250nm and 350nm. And Figure 4D is an enlarged SEM top view of the cavity of the obtained SERS-active substrate. From the results shown in FIG. 4 , it can be found that the width of the noble metal clusters 14 is estimated to be 30-60 nm, and the noble metal clusters 14 have an average separation distance of 5-10 nm.

應注意的是,一個拉曼點(Raman spot)可以覆蓋幾個空腔。舉例而言,當一個拉曼點的直徑為1μm時,一個拉曼點可以覆蓋由直徑250nm的奈米顆粒製備的SERS-活性基板的約11個空腔,且每個被拉曼點覆蓋的空腔可以含有或不含有病毒顆粒。 It should be noted that one Raman spot can cover several cavities. For example, when the diameter of one Raman spot is 1 μm, one Raman spot can cover about 11 cavities of a SERS-active substrate prepared from nanoparticles with a diameter of 250 nm, and each of the cavities covered by the Raman spot The cavities may or may not contain viral particles.

實施例2-檢測系統 Example 2 - Detection System

實施例1的SERS-活性基板可以與拉曼光譜儀一起使用以形成一檢測系統。在此,拉曼光譜儀可以提供一入射雷射(incident laser)至SERS-活性基板的貴金屬簇上,以獲得一拉曼散射信號(scattering signal),接著輸出一拉曼光譜。 The SERS-active substrate of Example 1 can be used with a Raman spectrometer to form a detection system. Here, the Raman spectrometer can provide an incident laser to the noble metal clusters of the SERS-active substrate to obtain a Raman scattering signal, and then output a Raman spectrum.

測試例 test case

本測試例使用實施例1的SERS-活性基板和實施例2的檢測系統。用於病毒檢測的程序包含以下步驟:提供一SERS-活性基板和一拉曼光譜病毒資料庫;將一病毒樣本施加於SERS-活性基板的多個空腔上:通過一拉曼光譜儀將一入射光施加至SERS-活性基板的貴金屬簇上,以產生病毒樣本的一拉曼光譜;以及將病毒樣本的拉曼光譜與一拉曼光譜病毒資料庫比較,以確定病毒樣本的種類。 This test example uses the SERS-active substrate of Example 1 and the detection system of Example 2. The procedure for virus detection includes the following steps: providing a SERS-active substrate and a Raman spectroscopic virus library; applying a virus sample to a plurality of cavities of the SERS-active substrate: passing an incident light through a Raman spectrometer Light is applied to the noble metal clusters of the SERS-active substrate to generate a Raman spectrum of the virus sample; and the Raman spectrum of the virus sample is compared with a Raman spectrum virus database to determine the type of the virus sample.

SARS-CoV-2 S偽病毒(pseudovirus)的製備Preparation of SARS-CoV-2 S pseudovirus

SARS-CoV-2 S偽病毒是依據Huang等人的報導並稍作修改而產生(Huang,S.W.,Tai,C.H.,Hsu,Y.M.,Cheng,D.,Hung,S.J.,Chai,K.M.,Wang,Y.F.,Wang,J.R.,2020.Assessing the application of a pseudovirus system for emerging SARS-CoV-2 and re-emerging avian influenza virus H5 subtypes in vaccine development.Biomed.J.43,375-387)。慢病毒載體系統(lentiviral vector system)由台灣中央研究院(Academia Sinica Taiwan)的國家RNAi核心設施(National RNAi Core)提供。進行從頭合成以獲得棘(刺突)蛋白(spike protein)的序列,接著將其複製(cloned)到pMD.G質體(plasmid)中,以表達SARS-CoV-2 S偽病毒。總共用40μg的pCMVdeltaR8.91、pLAS3w和pMD.G(VSV-G假型慢病毒(pseudo-type lentivirus)、或VSV-G偽病毒)或pcDNA3.1-棘武漢質體(pcDNA3.1-spike Wuhan plasmids)(SARS-CoV-2 S偽病毒)轉染(transfect)細胞。 SARS-CoV-2 S pseudovirus was generated based on the report of Huang et al. with slight modifications (Huang, S.W., Tai, C.H., Hsu, Y.M., Cheng, D., Hung, S.J., Chai, K.M., Wang, Y.F. ,Wang,J.R.,2020.Assessing the application of a pseudovirus system for emerging SARS-CoV-2 and re-emerging avian influenza virus H5 subtypes in vaccine development.Biomed.J.43,375-387). The lentiviral vector system was provided by the National RNAi Core of Academia Sinica Taiwan. De novo synthesis was performed to obtain the sequence of the spike protein, which was then cloned into the pMD.G plasmid to express the SARS-CoV-2 S pseudovirus. A total of 40 μg of pCMVdeltaR8.91, pLAS3w and pMD.G (VSV-G pseudo-type lentivirus, or VSV-G pseudovirus) or pcDNA3.1-spike Wuhan plasmid (pcDNA3.1-spike) was used. Wuhan plasmids) (SARS-CoV-2 S pseudovirus) transfect cells.

H1N1病毒和H3N2病毒的製備Preparation of H1N1 virus and H3N2 virus

本實施例中使用的含有H1N1或H3N2病毒的樣品由國立成功大學醫學院醫學檢驗科學與生物技術學系Dr.Wang,Jen-Ren提供,且病毒染色由國立成功大學醫院病理學科獲得。將MOCK細胞(馬丁-達比犬類腎臟細胞 (Madin-Darby Canine Kidney cells))培養於75T的培養瓶中,獲得完整的單層細胞後,移除原始培養基,並將細胞以PBS緩衝液洗滌2次。移除PBS緩衝液後,將病毒液體放入37℃水域中快速解凍。感染細胞時,將解凍的細胞加入至具有單細胞層的病毒培養管中,接著均勻搖晃,以便細胞表面可以與病毒液體完全地接觸。之後,將培養物放入35℃的培養箱中1小時。加入適量的含有流感(influenza)病毒的培養物後,將獲得的培養物再次放入35℃的培養箱中。當75%的細胞具有細胞病變作用(cytopathic effect,CPE)時,將病毒分成幾個部分並儲存。 The samples containing H1N1 or H3N2 viruses used in this example were provided by Dr. Wang, Jen-Ren, Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University School of Medicine, and the virus staining was obtained from the Department of Pathology, National Cheng Kung University Hospital. MOCK cells (Martin-Darby canine kidney cells) (Madin-Darby Canine Kidney cells) were cultured in a 75T culture flask. After obtaining a complete monolayer of cells, remove the original culture medium and wash the cells twice with PBS buffer. After removing the PBS buffer, place the virus liquid into 37°C water to thaw quickly. When infecting cells, add thawed cells to a virus culture tube with a single cell layer, and then shake evenly so that the cell surface can be in complete contact with the virus liquid. Afterwards, place the culture in a 35°C incubator for 1 hour. After adding an appropriate amount of culture containing influenza (influenza) virus, the obtained culture was placed in an incubator at 35°C again. When 75% of the cells have a cytopathic effect (CPE), the virus is divided into several parts and stored.

檢測Detection

使用具有633nm雷射光源和35mW最大雷射功率的拉曼光譜儀(Confocal Micro and Nano Raman Spectrometer,UniDRON,CL Technology Co.Ltd.)進行SERS實驗。將偽病毒樣本滴在SERS-活性基板上,接著在以拉曼雷射測量前蓋上玻璃蓋玻片。在此實驗中,在檢測的同一點上取5次光譜,以探討暴露於相同區域對峰強度變化的影響,並在同一SERS-活性基板上測試6個不同位置,以看看結果的再現性和SERS光譜的一致性。此外,使用3.5mW的雷射功率測量。 SERS experiments were performed using a Raman spectrometer (Confocal Micro and Nano Raman Spectrometer, UniDRON, CL Technology Co. Ltd.) with a 633nm laser light source and a maximum laser power of 35mW. Pseudovirus samples were dropped onto a SERS-active substrate and then covered with a glass coverslip before measurement with a Raman laser. In this experiment, 5 spectra were taken at the same point of detection to explore the effect of exposure to the same area on changes in peak intensity, and 6 different locations were tested on the same SERS-active substrate to see the reproducibility of the results and SERS spectra. Additionally, a laser power measurement of 3.5 mW was used.

結果result

圖5A為SARS-CoV-2 S偽病毒在陣列的相同位置取得5次的SERS光譜,圖5B顯示SARS-CoV-2 S偽病毒在陣列的相同位置取得5次的SERS光譜的強度圖。這些結果指出,在5次測量中,在相同的拉曼位移處發現相同的特徵峰830、1002、1355和1507cm-1,但隨著同一點(從第1次至第5次累積)的使用增加強度會下降。這種強度下降是由於雷射對陣列和分析物對同一點的連續使用所造成的損壞。 Figure 5A shows the SERS spectra obtained five times by the SARS-CoV-2 S pseudovirus at the same position on the array. Figure 5B shows the intensity diagram of the SERS spectra obtained five times by the SARS-CoV-2 S pseudovirus at the same position on the array. These results point out that in 5 measurements, the same characteristic peaks 830, 1002, 1355 and 1507 cm -1 were found at the same Raman shift, but with the use of the same point (cumulative from the 1st to the 5th time) Increase the intensity and it will decrease. This decrease in intensity is due to damage caused by successive applications of the laser to the array and the analyte to the same spot.

圖6A為在陣列的6個不同位置取得的SARS-CoV-2 S偽病毒SERS光譜,圖6B顯示在陣列的6個不同位置取得的SARS-CoV-2 S偽病毒SERS光譜的強度圖。這些結果指出,圖6A所標記的特徵峰不論位置在哪都很強,但需要注意的是,某些峰在某些位置不明顯。這可能是由於在陣列中微結構的不均勻性(non-uniformity)導致。 Figure 6A shows the SERS spectra of the SARS-CoV-2 S pseudovirus obtained at 6 different positions on the array, and Figure 6B shows the intensity diagram of the SERS spectra of the SARS-CoV-2 S pseudovirus obtained at 6 different positions on the array. These results indicate that the characteristic peaks marked in Figure 6A are strong regardless of their position, but it should be noted that some peaks are not obvious at certain positions. This may be due to non-uniformity of the microstructure in the array.

從圖5A至圖6B所示的結果來看,在SARS-CoV-2 S偽病毒的SERS光譜中的相同拉曼位移處發現大約4個特徵峰830、1000-1003、1355和1507cm-1From the results shown in Figure 5A to Figure 6B, approximately 4 characteristic peaks 830, 1000-1003, 1355, and 1507 cm -1 were found at the same Raman shift in the SERS spectrum of SARS-CoV-2 S pseudovirus.

如圖1C所示,在此使用的SERS-活性基板中,每一個空腔131具有類碗狀形狀,所獲得的空腔131具有60nm至80nm的深度D(最大深度)和240nm至250nm的寬度W1(最大寬度)。因此,一個空腔131可以容納最多3個病毒顆粒尺寸為大約100nm的SARS-CoV-2 S偽病毒。此外,當病毒顆粒位於空腔131中時,空腔131整體的熱點取決於每一個Au簇產生的小熱點的集合結果。此外,ZrO2的介電層13也貢獻了化學增強效應。 As shown in FIG. 1C , in the SERS-active substrate used here, each cavity 131 has a bowl-like shape, and the obtained cavity 131 has a depth D (maximum depth) of 60 nm to 80 nm and a width of 240 nm to 250 nm. W1 (maximum width). Therefore, one cavity 131 can accommodate up to 3 SARS-CoV-2 S pseudoviruses with a viral particle size of approximately 100 nm. In addition, when the virus particle is located in the cavity 131, the overall hotspot of the cavity 131 depends on the collection of small hotspots generated by each Au cluster. In addition, the dielectric layer 13 of ZrO2 also contributes to the chemical enhancement effect.

上述結果表示,本揭露的SERS-活性基板的確可以使用SERS技術來區別活的SARS-CoV-2 S偽病毒。 The above results indicate that the SERS-active substrate of the present disclosure can indeed use SERS technology to distinguish live SARS-CoV-2 S pseudoviruses.

圖7為SARS-CoV-2 S偽病毒對VSV-G偽病毒的SERS光譜,其中,使用兩種SERS-活性基板檢測SARS-CoV-2與VSV-G偽病毒的比較。由於VSV-G偽病毒的成分被廣泛研究,其可作為SARS-CoV-2偽病毒的參考,以確定屬於SARS-CoV-2偽病毒的峰。圖中顯示了兩種偽病毒的SERS光譜,以及相對應的減光譜(subtracted spectra)。減光譜代表從SARS-CoV-2 S偽病毒光譜中減去VSV-G偽病毒光譜;減光譜上的正峰(positive peaks)對應於SARS-CoV-2 S偽病毒 的峰,而負峰(negative peaks)為VSV-G偽病毒的峰。結果顯示,本實施例的SERS-活性基板能夠檢測兩種偽病毒。 Figure 7 shows the SERS spectra of SARS-CoV-2 S pseudovirus versus VSV-G pseudovirus, in which two SERS-active substrates are used to compare the detection of SARS-CoV-2 and VSV-G pseudovirus. Since the composition of VSV-G pseudovirus has been extensively studied, it can be used as a reference for SARS-CoV-2 pseudovirus to identify peaks belonging to SARS-CoV-2 pseudovirus. The figure shows the SERS spectra of two pseudoviruses and the corresponding subtracted spectra. The subtracted spectrum represents the subtraction of the VSV-G pseudovirus spectrum from the SARS-CoV-2 S pseudovirus spectrum; the positive peaks on the subtracted spectrum correspond to the SARS-CoV-2 S pseudovirus peaks, and the negative peaks are the peaks of VSV-G pseudovirus. The results show that the SERS-active substrate of this embodiment can detect two pseudoviruses.

圖8為SARS-CoV-2 S偽病毒、H1N1和其混合物的SERS光譜,圖9為SARS-CoV-2 S偽病毒、H3N2和其混合物的SERS光譜。如圖8和圖9所示,當樣本含有多種病毒(圖8中的SARS-CoV-2偽病毒和H1N1,圖9中的SARS-CoV-2偽病毒和H3N2)時,使用本揭露的SERS-活性基板可以同時檢測多種病毒。 Figure 8 shows the SERS spectra of SARS-CoV-2 S pseudovirus, H1N1 and their mixtures, and Figure 9 shows the SERS spectra of SARS-CoV-2 S pseudovirus, H3N2 and their mixtures. As shown in Figures 8 and 9, when the sample contains multiple viruses (SARS-CoV-2 pseudovirus and H1N1 in Figure 8, SARS-CoV-2 pseudovirus and H3N2 in Figure 9), the SERS of the present disclosure is used -Active substrate can detect multiple viruses simultaneously.

實施例2-SERS-活性基板的製備 Example 2 - Preparation of SERS-Active Substrate

圖10根據本揭露之實施例2之SERS-活性基板的上視圖,特別是SERS-活性基板的介電層的圖案。 10 is a top view of a SERS-active substrate according to Embodiment 2 of the present disclosure, particularly the pattern of the dielectric layer of the SERS-active substrate.

製備SERS-活性基板的步驟與實施例1所示的相似,除了在介電層13上形成了兩個不同的陣列。因此,本實施例的介電層13包含兩個區域RA和RB。在此,在區域RA中的空腔131的寬度和在區域RB中的空腔131的寬度不同,可以通過形成具有不同直徑的奈米顆粒12的介電層13來實現。例如在形成介電層13的步驟中,在區域RA中的空腔131可以使用具有250nm直徑的奈米顆粒12來形成,在區域RB中的空腔131可以使用具有350nm直徑的奈米顆粒12來形成;但本揭露並不局限於此。 The steps for preparing the SERS-active substrate are similar to those shown in Example 1, except that two different arrays are formed on the dielectric layer 13. Therefore, the dielectric layer 13 of this embodiment includes two areas RA and RB. Here, the width of the cavity 131 in the area RA and the width of the cavity 131 in the area RB are different, which can be achieved by forming the dielectric layer 13 with nanoparticles 12 having different diameters. For example, in the step of forming the dielectric layer 13 , the cavity 131 in the region RA may be formed using nanoparticles 12 having a diameter of 250 nm, and the cavity 131 in the region RB may be formed using nanoparticles 12 having a diameter of 350 nm. to form; but this disclosure is not limited to this.

當檢測病毒樣本時,可以在陣列的多個位置取得SERS光譜的強度。當發現待檢測病毒的特徵峰(例如SARS-CoV-2 S偽病毒為830、1000-1003、1355和1507cm-1)時,表示病毒樣本含有目標病毒顆粒。此外,通過分析發現病毒的特徵峰位置的百分比,可以知道病毒樣本中含有病毒顆粒的相對數量。 When detecting a virus sample, the intensity of the SERS spectrum can be obtained at multiple locations on the array. When the characteristic peaks of the virus to be detected are found (for example, the SARS-CoV-2 S pseudovirus is 830, 1000-1003, 1355, and 1507 cm -1 ), it means that the virus sample contains the target virus particles. In addition, by analyzing the percentage of characteristic peak positions where the virus is found, the relative number of virus particles contained in the virus sample can be known.

此外,當病毒樣本被裝載至SERS-活性基板內時,病毒顆粒可以被截留(entrapped)在空腔內。當使用拉曼光譜儀以特定波長(例如633nm或785nm) 的光檢測病毒樣本時,貴金屬簇會產生熱點。因此,可以增強病毒顆粒的拉曼信號。 Furthermore, when viral samples are loaded into SERS-active substrates, viral particles can be entrapped within the cavities. When using a Raman spectrometer at a specific wavelength (such as 633nm or 785nm) When the light detects virus samples, the precious metal clusters create hot spots. Therefore, the Raman signal of the virus particles can be enhanced.

雖然本揭露已經透過與其相關的實施例說明,可以理解的是,在不脫離如以下申請專利範圍保護的本揭露的精神和範圍下,可以做出許多其他可能的修飾和變化。 Although the present disclosure has been described through the embodiments related thereto, it is to be understood that many other possible modifications and changes can be made without departing from the spirit and scope of the present disclosure as protected by the following claims.

11:支撐件 11:Support

13:介電層 13: Dielectric layer

131:空腔 131:Cavity

132:表面 132:Surface

14:貴金屬簇 14:Precious metal clusters

Claims (16)

一種病毒檢測方法,包含以下步驟:提供一SERS活性基板和一拉曼光譜病毒資料庫,其中,該SERS活性基板包含:一支撐件;一介電層,設置於該支撐件上,其中,多個空腔形成於該介電層的一表面上,且該些空腔中的每一個具有類碗狀形狀;以及多個貴金屬簇,形成於該些空腔內;將一病毒樣本施加於該SERS活性基板的該些空腔上;通過一拉曼光譜儀將一入射光施加至該SERS活性基板的該些貴金屬簇上,以產生該病毒樣本的一拉曼光譜;以及將該病毒樣本的該拉曼光譜與一拉曼光譜病毒資料庫比較,以確定該病毒樣本的種類;該病毒為具有棘蛋白(spike protein)的病毒,且該些空腔中的每一個具有200nm至300nm範圍的寬度。 A virus detection method includes the following steps: providing a SERS active substrate and a Raman spectrum virus database, wherein the SERS active substrate includes: a support member; a dielectric layer disposed on the support member, wherein: A cavity is formed on a surface of the dielectric layer, and each of the cavities has a bowl-like shape; and a plurality of noble metal clusters are formed in the cavities; a virus sample is applied to the on the cavities of the SERS active substrate; applying an incident light to the noble metal clusters of the SERS active substrate through a Raman spectrometer to generate a Raman spectrum of the virus sample; and applying the Raman spectrum of the virus sample The Raman spectrum is compared with a Raman spectrum virus database to determine the type of the virus sample; the virus is a virus with a spike protein, and each of the cavities has a width ranging from 200nm to 300nm. . 如請求項1所述之方法,其中,該些空腔排列成一陣列。 The method of claim 1, wherein the cavities are arranged in an array. 如請求項1所述之方法,其中,該些空腔中的每一個具有20nm至300nm範圍的深度。 The method of claim 1, wherein each of the cavities has a depth ranging from 20 nm to 300 nm. 如請求項3所述之方法,其中,該些空腔中的每一個具有40nm至100nm範圍的深度。 The method of claim 3, wherein each of the cavities has a depth ranging from 40 nm to 100 nm. 如請求項4所述之方法,其中,該些空腔中的每一個具有60nm至80nm範圍的深度。 The method of claim 4, wherein each of the cavities has a depth ranging from 60 nm to 80 nm. 如請求項1所述之方法,其中,該些貴金屬簇中的一金屬為金、銀或其合金。 The method of claim 1, wherein one metal in the precious metal clusters is gold, silver or alloys thereof. 如請求項6所述之方法,其中,該些貴金屬簇中的該金屬為金。 The method of claim 6, wherein the metal in the precious metal clusters is gold. 如請求項1所述之方法,其中,該些貴金屬簇中的每一個具有類碟狀形狀。 The method of claim 1, wherein each of the precious metal clusters has a disc-like shape. 如請求項1所述之方法,其中,該些貴金屬簇中的每一個具有0.5nm至50nm範圍的寬度。 The method of claim 1, wherein each of the noble metal clusters has a width ranging from 0.5 nm to 50 nm. 如請求項9所述之方法,其中,該些貴金屬簇中的每一個具有5nm至10nm範圍的寬度。 The method of claim 9, wherein each of the noble metal clusters has a width ranging from 5 nm to 10 nm. 如請求項1所述之方法,其中,該些貴金屬簇中的相鄰兩個金屬簇之間的一間距為5nm至10nm的範圍內。 The method of claim 1, wherein a distance between two adjacent metal clusters in the precious metal clusters is in the range of 5 nm to 10 nm. 如請求項1所述之方法,其中,該些空腔中的相鄰兩個空腔之間的一距離為10nm至200nm的範圍內。 The method of claim 1, wherein a distance between two adjacent cavities in the cavities is in the range of 10 nm to 200 nm. 如請求項12所述之方法,其中,該些空腔中的相鄰兩個空腔之間的該距離為30nm至70nm的範圍內。 The method of claim 12, wherein the distance between two adjacent cavities in the cavities is in the range of 30 nm to 70 nm. 如請求項1所述之方法,其中,該介電層包含一陶瓷材料具有3.9至30範圍的介電常數。 The method of claim 1, wherein the dielectric layer includes a ceramic material with a dielectric constant ranging from 3.9 to 30. 如請求項14所述之方法,其中,該陶瓷材料為氧化鋯、二氧化鉿、氧化鋁或其組合。 The method of claim 14, wherein the ceramic material is zirconium oxide, hafnium dioxide, alumina or a combination thereof. 如請求項1所述之方法,其中,該病毒為嚴重急性呼吸道症候群冠狀病毒2型(SARS-CoV-2)病毒或其變異。 The method of claim 1, wherein the virus is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus or a mutation thereof.
TW110127868A 2021-07-29 2021-07-29 Method for detecting viruses TWI819345B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110127868A TWI819345B (en) 2021-07-29 2021-07-29 Method for detecting viruses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110127868A TWI819345B (en) 2021-07-29 2021-07-29 Method for detecting viruses

Publications (2)

Publication Number Publication Date
TW202305364A TW202305364A (en) 2023-02-01
TWI819345B true TWI819345B (en) 2023-10-21

Family

ID=86661397

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127868A TWI819345B (en) 2021-07-29 2021-07-29 Method for detecting viruses

Country Status (1)

Country Link
TW (1) TWI819345B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201211537A (en) * 2010-09-07 2012-03-16 Univ Nat Cheng Kung Non-labeled virus detection substrate, system, and method based on inverted multi-angular arrays

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201211537A (en) * 2010-09-07 2012-03-16 Univ Nat Cheng Kung Non-labeled virus detection substrate, system, and method based on inverted multi-angular arrays

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
期刊 Chawki Awada, Mohammed Mahfoudh BA Abdullah, Hassan Traboulsi, Chahinez Dab, and Adil Alshoaibi SARS-CoV-2 Receptor Binding Domain as a Stable-Potential Target for SARS-CoV-2 Detection by Surface—Enhanced Raman Spectroscopy Sensors vol. 21, no. 13 MPDI 2021/07/05 4617 *
期刊 Jaya Sitjar, Jiunn-Der Liao, Han Lee, Bernard Haochih Liu, and Wei-en Fu SERS-Active Substrate with Collective Amplification Design for Trace Analysis of Pesticides Nanomaterials Vol. 9 MPDI 2019/4/27 664; *

Also Published As

Publication number Publication date
TW202305364A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
Suthanthiraraj et al. Localized surface plasmon resonance (LSPR) biosensor based on thermally annealed silver nanostructures with on-chip blood-plasma separation for the detection of dengue non-structural protein NS1 antigen
Sevenler et al. Quantitative interferometric reflectance imaging for the detection and measurement of biological nanoparticles
Zhao et al. Flow-through porous silicon membranes for real-time label-free biosensing
US9400353B2 (en) Silicon-based photonic crystal fluorescence enhancement and laser line scanning instrument
George et al. Sensitive detection of protein and miRNA cancer biomarkers using silicon-based photonic crystals and a resonance coupling laser scanning platform
Negri et al. Ag nanorod based surface‐enhanced Raman spectroscopy applied to bioanalytical sensing
US8228505B2 (en) Apparatus and method for detecting target substance, or device used for these apparatus and method
Driskell et al. Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition
TWI487910B (en) Non-labeled virus detection substrate, system, and method based on inverted multi-angular arrays
Karabchevsky et al. Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films
Shim et al. Single-nanoparticle-based digital SERS sensing platform for the accurate quantitative detection of SARS-CoV-2
Kazemzadeh et al. Space curvature-inspired nanoplasmonic sensor for breast cancer extracellular vesicle fingerprinting and machine learning classification
Choi et al. Biochemical investigations of human papillomavirus‐infected cervical fluids
KR20110073158A (en) Localized surface plasmon resonance based super resolved total internal reflection fluorescence microscopy, and detection module for total internal refelction fluorescence microscopy
Rong et al. A high-throughput fully automatic biosensing platform for efficient COVID-19 detection
CN1664560A (en) Multiple channel surface plasma resonant image sensor based on-chip PCR
TWI819345B (en) Method for detecting viruses
Huang et al. Rapid Detection of SARS-CoV-2 in Clinical and Environmental Samples via a Resonant Cavity SERS Platform within 20 min
Predabon et al. Detection of tumor necrosis factor-alpha cytokine from the blood serum of a rat infected with Pb18 by a gold nanohole array-based plasmonic biosensor
US20230035300A1 (en) Method for detecting viruses
WO2022234830A1 (en) Method for accumulating minute object, and method for detecting minute object using same
Martinez-Perdiguero et al. Enhanced transmission through gold nanohole arrays fabricated by thermal nanoimprint lithography for surface plasmon based biosensors
Lin et al. Multi-scale silica structures for improved HIV-1 Capsid (p24) antigen detection
US20220412891A1 (en) Detection device, method for preparing the same, detection system comprising the same, and detection method using the same
Li et al. Label-free SARS-CoV-2 detection platform based on surface-enhanced Raman spectroscopy with support vector machine spectral pattern recognition