TWI818279B - A solid polymer composition, a self-supporting film and a light emitting device - Google Patents

A solid polymer composition, a self-supporting film and a light emitting device Download PDF

Info

Publication number
TWI818279B
TWI818279B TW110124816A TW110124816A TWI818279B TW I818279 B TWI818279 B TW I818279B TW 110124816 A TW110124816 A TW 110124816A TW 110124816 A TW110124816 A TW 110124816A TW I818279 B TWI818279 B TW I818279B
Authority
TW
Taiwan
Prior art keywords
self
supporting film
solid polymer
polymer composition
crystal
Prior art date
Application number
TW110124816A
Other languages
Chinese (zh)
Other versions
TW202212533A (en
Inventor
諾曼 路琴爾
Original Assignee
瑞士商艾芬塔馬公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商艾芬塔馬公司 filed Critical 瑞士商艾芬塔馬公司
Publication of TW202212533A publication Critical patent/TW202212533A/en
Application granted granted Critical
Publication of TWI818279B publication Critical patent/TWI818279B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/24Lead compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F122/00Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F122/10Esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3838Polyesters; Polyester derivatives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Luminescent Compositions (AREA)
  • Optical Filters (AREA)
  • Led Device Packages (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The invention refers in a first aspect to self-supporting film comprising green luminescent crys-tals (1), red luminescent crystals (2), and a polymer (3). The green luminescent crystals (1) are perovskite crys-tals. The red luminescent crystals (2) are zincblende or wurzite, preferably zincblende, crystals. A second aspect of the invention refers to a solid polymer composition (100). A third aspect of the invention refers to a light emitting device comprising either the solid polymer composition (100) or the self-supporting film.

Description

固體聚合物組成物、自支撐膜及發光裝置Solid polymer composition, self-supporting film and light-emitting device

本發明係關於固體聚合物組成物、包含該固體聚合物組成物之自支撐膜、以及包含該固體聚合物組成物或該自支撐膜之發光裝置。The present invention relates to a solid polymer composition, a self-supporting film including the solid polymer composition, and a light-emitting device including the solid polymer composition or the self-supporting film.

最先進的液晶顯示器(LCD)或顯示組件包含發光晶體(量子點)系的組件。特別地,這種LCD之背光組件可包含由紅光、藍光及綠光所組成之RGB背光。現今,一般係使用發光晶體(量子點)來產生這種背光組件的背光顏色。 文獻US 2017/186922 A1揭示一種電子裝置,其包括在約440nm至約480nm之間的波長處具有峰值發射的光源;以及設置在光源上的光轉換層。光轉換層包括發射紅光之第一量子點及發射綠光之第二量子點。第一量子點及第二量子點中之至少一者具有鈣鈦礦晶體結構並且包括由化學式1表示之化合物:AB'X 3+ α,其中A係IA族金屬、NR 4 +、或其組合,B'係IVA族金屬,X係鹵素、BF 4 、或其組合,且α係0至3。 文獻WO 2017/195062 A1揭示裝置及系統,其包括材料,該材料包括鹵化物鈣鈦礦及/或磷光體以使用可見光、及類似者生產及/或通信。 文獻WO 2018/146561 A1揭示與光轉換發光複合材料相關的組成物及方法。 文獻WO 2017/108568 A1揭示發光組件包含第一膜及第二膜,該第一膜包含第一固體聚合物組成物,該第二膜包含第二固體聚合物組成物。第一固體聚合物組成物包含第一發光晶體。第二固體聚合物組成物包含第二發光晶體。第一發光晶體的尺寸在3nm與3000nm之間,並回應於較短波長之光的激發而發射紅光。第二發光晶體的尺寸在3nm與3000nm之間,並回應於較短波長之光的激發而發射綠光。 文獻WO 2020/130592 A1係關於一種金屬鹵化物鈣鈦礦發光裝置及其製造方法。根據本發明,金屬鹵化物鈣鈦礦發光裝置使用具有由質子轉移反應衍生之多維(multi-dimensional)晶體結構的鈣鈦礦膜作為發光層,使得離子轉移係藉由自組裝殼抑制且表面缺陷被移除,從而提高光致發光強度、發光效率、及壽命。此外,可藉由將氟基材料及基礎材料注入已用作電洞注入層之PEDOT:PSS導電聚合物來製造高效發光裝置,以便調整其酸度並改善界面的功函數,並藉由化學穩定的石墨烯阻障層來保護易受酸腐蝕的電極。 這類組件之製造面臨各種挑戰。一項挑戰係將發光晶體嵌入組件中。由於發光晶體之不同化學性質,在包含發光晶體的各種嵌入材料之間或甚至在嵌入至相同材料中的發光晶體之間可能存在不相容性。這種不相容性可能會導致顯示器組件中材料降解,因此可能會影響這種顯示器的使用壽命。 此外,基於發光晶體之組件經常面臨穩定性及亮度方面的挑戰,其中這些組件難以實現良好的穩定性及高顯示亮度。 The most advanced liquid crystal displays (LCDs) or display components contain components based on light-emitting crystals (quantum dots). In particular, the backlight component of such an LCD may include an RGB backlight composed of red light, blue light and green light. Nowadays, luminescent crystals (quantum dots) are generally used to produce the backlight color of such backlight components. Document US 2017/186922 A1 discloses an electronic device, which includes a light source having peak emission at a wavelength between about 440 nm and about 480 nm; and a light conversion layer disposed on the light source. The light conversion layer includes a first quantum dot that emits red light and a second quantum dot that emits green light. At least one of the first quantum dot and the second quantum dot has a perovskite crystal structure and includes a compound represented by Chemical Formula 1: AB'X 3+ α , wherein A is a Group IA metal, NR 4 + , or a combination thereof , B' is a group IVA metal, X is a halogen, BF 4 , or a combination thereof, and α is 0 to 3. Document WO 2017/195062 A1 discloses devices and systems including materials including halide perovskites and/or phosphors for production and/or communications using visible light, and the like. Document WO 2018/146561 A1 discloses compositions and methods related to light-converting luminescent composite materials. Document WO 2017/108568 A1 discloses that the light-emitting component includes a first film and a second film. The first film includes a first solid polymer composition, and the second film includes a second solid polymer composition. The first solid polymer composition includes a first luminescent crystal. The second solid polymer composition includes a second luminescent crystal. The size of the first luminescent crystal is between 3 nm and 3000 nm, and emits red light in response to excitation by shorter wavelength light. The size of the second luminescent crystal is between 3 nm and 3000 nm, and emits green light in response to excitation by shorter wavelength light. Document WO 2020/130592 A1 relates to a metal halide perovskite light-emitting device and its manufacturing method. According to the present invention, a metal halide perovskite light-emitting device uses a perovskite film having a multi-dimensional crystal structure derived from a proton transfer reaction as the light-emitting layer, so that ion transfer is suppressed by a self-assembled shell and surface defects are eliminated are removed, thereby improving photoluminescence intensity, luminous efficiency, and lifetime. In addition, high-efficiency light-emitting devices can be manufactured by injecting fluorine-based materials and base materials into the PEDOT:PSS conductive polymer that has been used as a hole injection layer to adjust its acidity and improve the work function of the interface, and through chemically stable Graphene barrier layer to protect electrodes susceptible to acid corrosion. Manufacturing of such components presents various challenges. One challenge involves embedding light-emitting crystals into components. Due to the different chemical properties of the luminescent crystals, there may be incompatibilities between various embedding materials containing the luminescent crystals or even between luminescent crystals embedded in the same material. This incompatibility may cause degradation of materials in the display components and therefore may affect the service life of such displays. In addition, devices based on light-emitting crystals often face stability and brightness challenges, where it is difficult for these devices to achieve good stability and high display brightness.

本發明所欲解決的問題係克服先前技術的缺點。特別地,本發明克服了先前技術在穩定性及亮度方面的缺點。 除非另有說明,否則下列定義應該應用於此說明書中: 本發明內容中所使用之用語「一(a)」、「一(an)」、「該(the)」及類似用語被解釋成涵蓋單數及複數二者,除非本文中另有指明或明顯與上下文有矛盾。用語「含有」應包括「包含」、「基本上由…所組成」及「由…所組成」等全部。除非本文另有說明或與上下文明顯矛盾,否則百分比係以重量%給出。「獨立地」意指一個取代基/離子可選自經指定的取代基/離子之一者,或者可係一種以上的上述取代基/離子之組合。 用語「 發光晶體」(LC)在所屬技術領域中係已知的,且在本發明之上下文中係關於由半導體材料製成的2至100 nm之晶體。該用語包含一般在2至10nm範圍內之量子點及一般在10至100nm範圍內之奈米晶體。 如該用語所示,LC顯示發光。在本發明之上下文中,用語發光晶體包括單晶及多晶粒子兩者。在後者的情況下,一個粒子可由數個晶域(晶粒)組成,藉由晶相或非晶相界面連接。發光晶體係一種半導體材料,其展現直接帶隙(一般在1.1至3.8 eV、更一般在1.4至3.5 eV、甚至更一般在1.7至3.2 eV的範圍內)。在以等於或高於帶隙之電磁輻射照射後,價帶電子被激發至傳導帶,而在價帶中留下電洞。所形成之激子(電子-電洞對)接著以光致發光的形式進行輻射重組,其最大強度集中在LC帶隙值附近,並且展現出至少1%的光致發光量子產率。與外部電子及電洞源接觸下,LC可展現電致發光。 用語「 量子點 (quantum dot)」(QD)係已知的,且特別係關於半導體奈米晶體,其直徑一般係在2至10nm之間。在此範圍中,QD之物理半徑小於主體激發波耳(Bohr)半徑,造成量子侷限效應(quantum confinement effect)佔主導地位。結果,QD之電子態以及因此該帶隙係QD組成物及物理尺寸的函數,亦即,吸收/發射的顏色與QD尺寸有關。QD樣本之光學品質係直接與彼等之同質性相關(更多的單分散QD將具有更小的發射半高寬(FWHM))。當QD達到比波耳半徑更大的尺寸時,量子侷限效應被阻礙,且因為用於激子再結合(exciton recombination)之非幅射路徑可能變成主導,樣本可能不再發光。因此,QD係一種奈米晶體之特定次群組,具體地藉由其尺寸及尺寸分布界定。典型的量子點組成物包含鎘或銦,例如以硒化鎘(CdSe)或磷化銦(InP)之形式存在。 用語「 - 晶體」係已知的,且特別係關於量子點,一般具有CdSe核或InP核,該核具有一般包含硫化鋅(ZnS)、硒化鋅(ZnSe)、硫化鎘(CdS)或其組合之額外的殼。 用語「 - 量子點 薄層(core-shell quantum dot platelet)」係已知的,且特別係關於具有薄層結構之核-殼量子點。所有3個正交維度之薄層的縱橫比(最長:最短方向)係2至50,較佳地係3至20,最佳地係4至15。 用語「 鈣鈦礦晶體」係已知的,且特別包括鈣鈦礦結構之結晶化合物。這種鈣鈦礦結構本身係已知的,並且描述為通式M1M2X3之立方、仿立方(pseudocubic)、正方(tetragonal)或斜方(orthorhombic)晶體,其中M1係配位數12(立方八面體(cuboctaeder))的陽離子,M2係配位數6(八面體(octaeder))的陽離子,及X係晶格在立方、仿立方、正方或斜方位置之陰離子。在這些結構中,所選的陽離子或陰離子可經其他離子(隨機或有規律地高達30原子%)置換,而導致摻雜的鈣鈦礦或非化學計量的鈣鈦礦,但仍維持其原始晶體結構。較佳地,發光鈣鈦礦晶體係大約等軸的(諸如球形或立方)。如果所有3個正交維度的縱橫比(最長:最短方向)係1至2,則粒子被認為係大約等軸的。因此,LC之組件較佳地含有50至100 %(n/n)、較佳地係66至100 %(n/n)、更佳係75至100 %(n/n)之等軸奈米晶體。 這種發光鈣鈦礦晶體之製造由例如WO2018 028869可知。 用語「 聚合物」係已知的,且包括包含重複單元(「單體」)之有機及無機合成材料。用語聚合物包括均聚物及共聚物。進一步地,包括交聯聚合物及非交聯聚合物。根據上下文,用語聚合物應包括其單體及寡聚物。聚合物包括例如丙烯酸酯聚合物、碳酸酯聚合物、碸聚合物、環氧聚合物、乙烯基聚合物、胺甲酸酯聚合物、醯亞胺聚合物、酯聚合物、呋喃聚合物、三聚氰胺聚合物、苯乙烯聚合物、降莰烯聚合物、矽氮烷聚合物、聚矽氧聚合物及環狀烯烴共聚物。聚合物可包括所屬技術領域中習知的其他材料,諸如聚合起始劑、穩定劑、填料、溶劑。 聚合物可進一步藉由物理參數表徵,諸如極性、玻璃轉移溫度Tg、楊氏模數及透光率(light transmittance)。 穿透率(transmittance):一般而言,在本發明之上下文中使用的聚合物對於可見光係光透射的,即非不透明的,以允許發光晶體發射的光及用於激發發光晶體的光源之可能的光通過。透光率可藉由白光干涉法或UV-Vis光譜法判定。 玻璃轉移溫度:(Tg)係聚合物領域中公認的參數;它描述非晶或半結晶聚合物從玻璃(硬)態變為更柔韌、更順應或橡膠態之溫度。具有高Tg的聚合物被認為是「硬的」,而具有低Tg的聚合物被認為是「軟的」。在分子層級,Tg不是離散的熱力學轉移,而是一個溫度範圍,在此溫度範圍內聚合物鏈的遷移率顯著增加。然而,習知地係記述定義為溫度範圍中點的單一溫度,以DSC測量之熱流曲線的兩個平坦區域的切線為界。可根據DIN EN ISO 11357-2或ASTM E1356使用DSC來判定Tg。若聚合物以塊狀材料形式存在,則該方法係特別合適的。或者,Tg可根據ISO 14577-1或ASTM E2546-15藉由用微米或奈米壓痕測量隨溫度變化的微米或奈米硬度來判定。該方法適合於本文中所揭示之發光組件及照明裝置。合適的分析設備可得自MHT(Anton Paar)、Hysitron TI Premier(Bruker)或Nano Indenter G200(Keysight Technologies)。藉由溫度控制的微觀及奈米壓痕所獲得的數據可轉換成Tg。一般而言,測量塑性變形功或楊氏模數或硬度隨溫度的變化,而Tg是這些參數發生顯著變化的溫度。 楊氏模數(Young's modulus或Young modulus)或彈性模數係測量固體材料剛度的機械性質。它定義材料在單軸變形之線性彈性範圍內之應力(每單位面積之力)與應變(比例變形)之間的關係。 本發明之 第一態樣係關於包含綠色發光晶體、紅色發光晶體及聚合物之固體聚合物組成物。該綠色發光晶體係鈣鈦礦晶體,其係選自式(I)之化合物: [M 1A 1] aM 2 bX c(I),其中: A 1表示一或多種有機陽離子,特別地係甲脒鎓(FA), M 1表示一或多種鹼金屬,特別地係Cs, M 2表示M 1以外之一或多種金屬,特別地係Pb, X   表示一或多種選自由鹵化物、偽鹵化物及硫化物所組成之群組的陰離子,特別地係Br, a    表示1至4, b    表示1至2, c     表示3至9,及 其中存在M 1、或A 1、或者M 1及A 1。 在本發明之另外的有利實施例中,綠色發光晶體係具有式(I')之綠色發光鈣鈦礦晶體: FAPbBr 3(I')。 特別地,式(I)描述鈣鈦礦發光晶體,其在吸收藍光後發射綠光光譜中波長在500nm與550nm之間的光,特別地係集中在527nm附近的光。 紅色發光晶體是已知的,這種晶體回應於較短波長之光的激發而發射紅光(630nm +/- 30nm)。合適的晶體係選自 II VI 族半導體化合物之群組及 III V 族半導體化合物之群組。 在實施例中,晶體以閃鋅礦晶格結構(「閃鋅礦晶體」)或以纖鋅礦晶體結構(「纖鋅礦晶體」)結晶,較佳係 閃鋅礦型 (zincblende-type)。兩種結構都有共同的陽離子:陰離子比=1:1,其中陰離子形成緊密堆積的相等球體(分別為hcp或fcp),且陽離子係位於四面體(tetraeder)位置。 在實施例中,晶體係選自式(II)之化合物: [M 3M 3'][YY'] (II),其中: M 3、M 3'      表示Al、Ga、In,特別地係In,且Y、Y' 表示N、P、As、Sb,特別地係P,及M3'、Y' 可存在或可不存在(即III至V族半導體化合物), 或 M 3、M 3'      表示Zn、Cd、Be,特別地係Cd,且Y、Y'      表示S、Se、Te,特別地係Se,及M3'、Y' 可存在或可不存在(即II至VI族半導體化合物)。 由上述明顯可知,合適的晶體包括式(II-1)之二元化合物、式(II-2)及(II-3)之三元化合物及式(II-4)之四元化合物 [M 3][Y]  (II-1),其中: M 3及Y係如上所定義,諸如CdSe、InN、InP、InAs、及InSb; [M 3M 3'][Y]    (II-2),其中: M 3、M 3'、Y係如上所定義,且M 3、 M 3'係存在的,諸如InGaP; [M 3][YY']     (II-3),其中: M 3、Y、Y'係如上所定義,且M 3、Y、Y'係存在的,諸如InPN、InPAs、及InPSb; [M 3M 3'][YY'] (II-4),其中: M 3、M 3'、Y、Y'係如上所定義,且M 3、M 3'、Y、Y'係存在的,諸如InGaPN、InGaPAs、及InGaPSb。 合適的晶體可被殼包圍或可不被殼包圍。被殼包圍的晶體稱為 - 殼晶體。在這種核-殼晶體中,形成核之化合物及形成殼之化合物不同。 合適的晶體可摻雜或可不摻雜 摻雜金屬。合適的摻雜劑在所屬技術領域中係已知的,且一般具有在1 mol%或更低範圍內之濃度。 紅色發光晶體之 晶體尺寸可在廣泛的範圍內變化,但一般係在1至10nm內。這種晶體稱為量子點,從而與微晶(microcrystal)有所區別。對於II至VI族半導體化合物,合適的範圍係1至10nm,較佳地係3至8nm。對於III至V族半導體化合物,合適的範圍係1至8nm,較佳地係2至4nm。 較佳地,發光晶體顯示單分散尺寸分佈。在本發明之上下文中,用語「單分散(monodisperse)」係指量子點群體中該群體之至少約60%、較佳係該群體之75%至90%、或其間之任何整數或非整數落入指定的粒徑範圍。單分散的粒子群體之直徑偏差小於20%均方根(root-mean-square, rms),更佳地係小於10% rms,且最佳地係小於5% rms。粒徑及粒徑分佈可藉由顯微鏡術判定。 晶體之 形態可變化為薄層型、立方、球形、多面體。 在本發明之另外的有利實施例中,紅色發光晶體係核-殼型,具有如請求項1所定義之核及式(III)之殼: M 4Z (III),其中: M 4表示Zn或Cd,較佳地係Zn,及 Z表示S、Se、Te,且其中 式(III)及式(II)之化合物不同。 殼包括單殼及多殼結構。 在本發明之另外的有利實施例中,紅色發光晶體包含核,該核係選自由InP及CdSe所組成之群組。 此外,紅色發光晶體包含選自由ZnS、ZnSe、ZnSeS及ZnTe所組成之群組的單殼。具體實例包括InP@ZnS、InP@ZnSe、InP@ZnSeS、InP@ZnSeS、InP@ZnSe@ZnS、CdSe@ZnS及CdSe@ZnSe,特別地係InP@ZnSeS。 此外,紅色發光晶體包含選自化合物之組合的多殼,該等化合物係選自由ZnS、ZnSe、ZnSeS及ZnTe所組成之群組。具體實例包括InP/ZnSe/ZnS(多殼)及InP/ZnSeS/ZnS(多殼)。 在本發明之另外的有利實施例中,紅色發光晶體包含CdSe核心,該核心與Zn合金化/摻雜。此實施例允許降低每量子點之Cd的量。 在本發明之另外的有利實施例中,M 2之濃度係100至1000ppm、較佳地係300至1000ppm、非常佳地係500至1000ppm,及/或M 3+M 3'之濃度為300至2,500ppm、較佳地係600至2,000ppm、非常佳地係1,200至1,700ppm,及/或紅色核-殼量子點具有薄層結構。 在本發明之另外的有利實施例中,M 3+M 3'之濃度係>300ppm、較佳地係>600ppm、最佳地係>1,200ppm,及/或紅色核-殼量子點具有薄層結構。 根據本發明之另外的有利實施例之固體聚合物組成物,其中紅色核-殼量子點之粒子尺寸s p為1nm ≤ s p≤ 10 nm、特別地係3nm ≤ s p≤ 8nm、特別地係2nm ≤ s p≤ 6nm、特別地係2nm ≤ s p≤ 4nm。 在本發明之另外的有利實施例中,聚合物具有(氧+氮)總和與碳的莫耳比z,其中z ≤ 0.9、z ≤ 0.75,特別地係z ≤ 0.4,特別地係z ≤ 0.3,特別地係z ≤ 0.25。 在另外的有利實施例中,聚合物包含丙烯酸酯,非常特別地其中聚合物包含環狀脂族丙烯酸酯。 在有利的實施例中,固體聚合物包含丙烯酸酯,該丙烯酸酯係選自下列之列表:丙烯酸異莰酯(CAS 5888-33-5)、甲基丙烯酸異莰酯(CAS 7534-94-3)、丙烯酸二環戊酯(CAS 79637-74-4, FA-513AS(Hitachi Chemical, Japan))、甲基丙烯酸二環戊酯(CAS 34759-34-7, FA-513M(Hitachi Chemical, Japan))、丙烯酸3,3,5-三甲基環己酯(CAS 86178-38-3)、甲基丙烯酸3,3,5-三甲基環己酯(CAS 7779-31-9)、丙烯酸4-三級丁基環己酯(CAS 84100-23-2)、甲基丙烯酸4-三級丁基環己酯(CAS 46729-07-1)。 在另一有利的實施例中,固體聚合物係交聯的。 在另一有利的實施例中,固體聚合物包含多官能性丙烯酸酯。 在另外的有利實施例中,固體聚合物組成物具有玻璃轉移溫度T g為T g≤ 120℃,特別地係T g≤ 100℃,特別地係T g≤ 80℃,特別地係T g≤ 70℃。 在第二加熱循環期間根據DIN EN ISO 11357-2:2014-07測量各T g,並從-90℃開始高至250℃、以20 K/min之加熱速率施加。 在本發明之另外的有利實施例中,固體聚合物組成物包含選自由金屬氧化物粒子及聚合物粒子所組成之群組的散射粒子,較佳地係選自由TiO 2、ZrO 2、Al 2O 3及有機聚矽氧烷所組成之群組。 在本發明之另外的有利實施例中,固體聚合物係半晶體。 在本發明之另外的有利實施例中,固體聚合物之熔融溫度為<140℃、較佳地係<120℃、最佳地係<100℃。 本發明之 第二態樣係關於包含根據本發明之第一態樣之固體聚合物組成物的自支撐膜。 自支撐膜回應於波長比發射的綠光更短之光的激發而發射綠光及紅光。 在自支撐膜之有利實施例中,固體聚合物組成物係夾在兩個阻障層之間。特別地,這種夾層配置(sandwich arrangement)係指在水平方向上具有阻障層、聚合物及另一阻障層的配置。夾層結構之兩個阻障層可由相同的阻障層材料或由不同的阻障層材料製成。 阻障層之技術效果係提高發光鈣鈦礦晶體的穩定性,特別是對氧氣或濕氣的穩定性。 特別地,這種 阻障層係所屬技術領域中已知的;一般包含具有低水蒸氣穿透率(water vapour transmission rate, WVTR)及/或低氧穿透率(oxygen transmission rate, OTR)之材料/材料組合。藉由選擇這種材料,可減少甚至避免組件中回應於暴露於水蒸氣及/或氧之發光晶體的降解。阻障層或阻障膜較佳地在40℃之溫度/90% r.h.及大氣壓力下之WVTR係<10(g)/(m 2*天),更佳地係小於1(g)/(m 2*天),且最佳地係小於0.1(g)/(m 2*天)。 在一個實施例中,阻障膜在23℃之溫度/90% r.h.及大氣壓力下,對於氧係不可滲透的,且OTR(氧穿透率)係>0.1(mL)/(m 2*天),更佳地係>1(mL)/(m 2*天),最佳地係>10(mL)/(m 2*天)。 在一個實施例中,阻障膜之厚度為>0.3mm,更佳地係>1mm,最佳地係>3mm。 在一個實施例中,阻障膜對於光係透射的,亦即可見光穿透率係>80%,較佳地係>85%,最佳地係>90%。 合適的阻障膜可以單層的形式存在。這種阻障膜係所屬技術領域中已知的,且含有玻璃、陶瓷、金屬氧化物及聚合物。合適的聚合物可係選自由聚偏二氯乙烯(PVdC)、環烯烴共聚物(COC)、乙烯乙烯醇(EVOH)、高密度聚乙烯(HDPE)及聚丙烯(PP)所組成之群組;合適的無機材料可係選自由金屬氧化物、SiOx、SixNy、AlOx所組成之群組。最佳地,聚合物防潮材料(humidity barrier material)含有選自PVdC及COC之群組的材料。 最有利地,聚合物氧阻障材料含有選自EVOH聚合物之材料。 合適的阻障膜可以多層的形式存在。這種阻障膜在所屬技術領域中係已知的,且通常包含基材,諸如厚度在10至200 µm範圍內之PET,以及包含來自SiOx及AlOx之群組的材料之薄無機層、或基於嵌入聚合物基質中之液晶之有機層、或具有所欲阻障性質之聚合物之有機層。用於這種有機層之可能的聚合物包含例如PVdC、COC、EVOH。 本發明之另外的有利實施例係指自支撐膜之霧度h 1為10 ≤ h 1≤ 80%、較佳地係20 ≤ h 1≤ 70%、最佳地係30 ≤ h 1≤ 60%;及/或 M 2之濃度為5至200mg/m 2、較佳地係10至100mg/m 2、20至80mg/m 2、最佳地係30至80mg/m 2;及/或 M 3+M 3'之濃度為30至250mg/m 2、較佳地係60至200mg/m 2、最佳地係120至170mg/m 2。 在本發明之另外的有利實施例中,M 3+M 3'之濃度係>30mg/m 2、較佳地係>60mg/m 2、最佳地係>120mg/m 2。 在本發明之另外的有利實施例中,自支撐膜之霧度h 2為h 2≤ 80%、較佳地係h 2≤ 70%、非佳地係h 2≤ 60%。 在本發明之另外的有利實施例中,自支撐膜之霧度h 2為10% ≤ h 2≤ 80%、較佳地係20% ≤ h 2≤ 70%、非常佳地係30% ≤ h 2≤ 60%。 霧度 (haze)在本發明之上下文中意指透射霧度(transmission haze)。透射霧度係通過透明材料(在本發明中為自支撐膜)時經受廣角散射(Wide Angle Scattering)的光之量,通常與法線入射方向成大於2.5°之角度(藉由ASTM D1003測量;例如用BYK Gardner霧度計)。 自支撐膜之低霧度具有使自支撐膜中的發光鈣鈦礦晶體更加穩定的技術效果,特別是當彼等暴露於藍光光源時。穩定性係由於較低的霧度導致自支撐膜中藍光的多重散射(multiplex scattering)減少的結果。 此外,低霧度之另外的技術效果係愈低的霧度導致愈高的顯示亮度,測量為自支撐膜之「光換算因數(light conversion factor)」(LCF)。自支撐膜之光換算因數係指從自支撐膜垂直方向發射的綠光強度與從自支撐膜垂直方向消光(例如吸收、反射或散射)的藍光強度之比。 在另外的有利實施例中,這種自支撐膜之厚度一般可係0.005至10mm、更佳地係0.05至3mm、最佳地係0.01至0.5mm。 在自支撐膜之另外的有利實施例中,綠色發光晶體係配置在固體聚合物組成物之第一區域中,且紅色發光晶體係配置在固體聚合物組成物之第二區域中。 特別地,第一區域及第二區域適於形成彼此相鄰的層。在另外的有利實施例中,第一區域及第二區域可彼此隔開地配置。 本發明之 第三態樣係關於發光裝置,特別係關於液晶顯示器(LCD)。 有利地,發光裝置包含根據本發明第一態樣之固體聚合物組成物。 在另外的有利實施例中,發光裝置包含根據本發明第二態樣之自支撐膜。 發光裝置之另外的有利實施例包含多於一個之藍色LED之陣列。此外,LED之陣列基本上覆蓋整個液晶顯示器區域。在該多於一個之藍色LED之陣列與該自支撐膜之間配置擴散板。 在本發明之另外的有利實施例中,陣列之一或多個藍色LED各自適於以f ≥ 150Hz、較佳地係f ≥ 300Hz、非常佳地係f ≥ 600Hz之頻率f在開與關之間切換。 在附屬請求項以及以下描述中列出了其他有利的實施例。 The problem to be solved by the present invention is to overcome the shortcomings of the prior art. In particular, the present invention overcomes the shortcomings of the prior art in terms of stability and brightness. Unless otherwise stated, the following definitions shall apply in this specification: The terms "a", "an", "the" and similar terms used in this description are to be construed as encompassing Both the singular and the plural are used unless otherwise indicated herein or otherwise clearly contradicted by the context. The term "comprising" shall include the entirety of "comprises", "consisting essentially of" and "consisting of". Unless otherwise indicated herein or otherwise clearly contradicted by context, percentages are given in weight %. "Independently" means that a substituent/ion may be selected from one of the specified substituents/ions, or may be a combination of more than one of the above-mentioned substituents/ions. The term " luminescent crystal " (LC) is known in the art and in the context of the present invention relates to crystals of 2 to 100 nm made of semiconductor materials. The term includes quantum dots, typically in the range of 2 to 10 nm, and nanocrystals, typically in the range of 10 to 100 nm. As the term suggests, LC displays luminescence. In the context of the present invention, the term luminescent crystal includes both single crystal and polycrystalline particles. In the latter case, a particle can be composed of several crystal domains (grains) connected by crystalline or amorphous phase interfaces. Luminescent crystals are semiconductor materials that exhibit a direct band gap (typically in the range of 1.1 to 3.8 eV, more typically 1.4 to 3.5 eV, even more typically 1.7 to 3.2 eV). After irradiation with electromagnetic radiation equal to or higher than the band gap, electrons in the valence band are excited to the conduction band, leaving holes in the valence band. The formed excitons (electron-hole pairs) then undergo radiative recombination in the form of photoluminescence, with maximum intensity concentrated around the LC band gap value and exhibiting a photoluminescence quantum yield of at least 1%. When in contact with external sources of electrons and holes, LC can exhibit electroluminescence. The term " quantum dot " (QD) is known and relates particularly to semiconductor nanocrystals, the diameter of which is generally between 2 and 10 nm. In this range, the physical radius of QD is smaller than the main excitation Bohr radius, causing the quantum confinement effect to dominate. As a result, the electronic state of the QD and therefore the band gap is a function of the composition and physical size of the QD, ie, the color absorbed/emitted is related to the QD size. The optical quality of QD samples is directly related to their homogeneity (more monodisperse QDs will have smaller emission half-maximum (FWHM)). When QDs reach sizes larger than the Bohr radius, quantum confinement effects are hindered and the sample may no longer emit light because the non-radiative path for exciton recombination may become dominant. QDs are therefore a specific subgroup of nanocrystals, specifically defined by their size and size distribution. Typical quantum dot compositions include cadmium or indium, for example in the form of cadmium selenide (CdSe) or indium phosphide (InP). The term " core - shell crystal " is known, and relates particularly to quantum dots, generally having a CdSe core or an InP core, which typically contains zinc sulfide (ZnS), zinc selenide (ZnSe), cadmium sulfide (CdS) or combination thereof with additional shells. The term " core - shell quantum dot platelet " is known and relates in particular to core-shell quantum dots having a thin-layer structure. The aspect ratio (longest:shortest direction) of the lamellae in all 3 orthogonal dimensions ranges from 2 to 50, preferably from 3 to 20, most preferably from 4 to 15. The term " perovskite crystal " is known and includes in particular crystalline compounds of perovskite structure. The perovskite structure itself is known and is described as a cubic, pseudocubic, tetragonal or orthorhombic crystal with the general formula M1M2X3, where M1 is a coordination number of 12 (cubic octahedral) (cuboctaeder), M2 is a cation with a coordination number of 6 (octaeder), and X is an anion with a cubic, pseudo-cubic, square or orthorhombic lattice. In these structures, selected cations or anions can be replaced by other ions (randomly or regularly up to 30 atomic %), resulting in doped perovskites or non-stoichiometric perovskites while still maintaining their original crystal structure. Preferably, the luminescent perovskite crystals are approximately equiaxed (such as spherical or cubic). A particle is said to be approximately equiaxed if the aspect ratio (longest:shortest direction) of all 3 orthogonal dimensions ranges from 1 to 2. Therefore, the components of the LC preferably contain 50 to 100% (n/n), preferably 66 to 100% (n/n), and more preferably 75 to 100% (n/n) equiaxed nanometers. crystal. The production of such luminescent perovskite crystals is known, for example, from WO2018 028869. The term " polymer " is well-known and includes organic and inorganic synthetic materials containing repeating units ("monomers"). The term polymer includes homopolymers and copolymers. Furthermore, it includes cross-linked polymers and non-cross-linked polymers. Depending on the context, the term polymer shall include its monomers and oligomers. Polymers include, for example, acrylate polymers, carbonate polymers, polyester polymers, epoxy polymers, vinyl polymers, urethane polymers, imide polymers, ester polymers, furan polymers, melamine Polymers, styrene polymers, norbornene polymers, silazane polymers, polysiloxane polymers and cyclic olefin copolymers. The polymer may include other materials known in the art, such as polymerization initiators, stabilizers, fillers, and solvents. Polymers can be further characterized by physical parameters such as polarity, glass transition temperature Tg, Young's modulus, and light transmittance. Transmittance: In general, the polymers used in the context of the present invention are light-transmissive for visible light, ie non-opaque, to allow the possibility of light emitted by the luminescent crystal and the light source used to excite the luminescent crystal. of light passing through. The light transmittance can be determined by white light interferometry or UV-Vis spectroscopy. Glass transition temperature: (Tg) is a parameter recognized in the polymer field; it describes the temperature at which an amorphous or semi-crystalline polymer changes from a glassy (hard) state to a more flexible, compliant or rubbery state. Polymers with a high Tg are considered "hard", while polymers with a low Tg are considered "soft". At the molecular level, Tg is not a discrete thermodynamic shift, but a temperature range in which the mobility of polymer chains increases significantly. However, it is conventional to describe a single temperature defined as the midpoint of a temperature range bounded by the tangent between two flat areas of the heat flow curve measured by DSC. Tg can be determined using DSC according to DIN EN ISO 11357-2 or ASTM E1356. This method is particularly suitable if the polymer is present in the form of bulk material. Alternatively, Tg can be determined by measuring micron or nanohardness as a function of temperature using micron or nanoindentation according to ISO 14577-1 or ASTM E2546-15. This method is suitable for the light-emitting components and lighting devices disclosed herein. Suitable analytical equipment is available from MHT (Anton Paar), Hysitron TI Premier (Bruker) or Nano Indenter G200 (Keysight Technologies). Data obtained through temperature-controlled micro- and nanoindentation can be converted into Tg. Generally speaking, the change in work of plastic deformation or Young's modulus or hardness with temperature is measured, and Tg is the temperature at which these parameters change significantly. Young's modulus or elastic modulus is a mechanical property that measures the stiffness of a solid material. It defines the relationship between stress (force per unit area) and strain (proportional deformation) of a material within the linear elastic range of uniaxial deformation. A first aspect of the present invention relates to a solid polymer composition including green luminescent crystals, red luminescent crystals and polymers. The green luminescent crystal is a perovskite crystal, which is selected from compounds of formula (I): [M 1 A 1 ] a M 2 b X c (I), where: A 1 represents one or more organic cations, in particular It is formamidinium (FA), M 1 represents one or more alkali metals, especially Cs, M 2 represents one or more metals other than M 1 , especially Pb, X represents one or more metals selected from halide, pseudo Anions of the group consisting of halides and sulfides, in particular Br, a represents 1 to 4, b represents 1 to 2, c represents 3 to 9, and M 1 , or A 1 , or M 1 and A1 . In a further advantageous embodiment of the invention, the green luminescent crystal is a green luminescent perovskite crystal of formula (I'): FAPbBr 3 (I'). In particular, formula (I) describes a perovskite luminescent crystal that, after absorbing blue light, emits light with a wavelength between 500 nm and 550 nm in the green light spectrum, specifically light concentrated around 527 nm. Red-emitting crystals are known which emit red light (630nm +/- 30nm) in response to excitation by shorter wavelength light. Suitable crystal systems are selected from the group of semiconductor compounds of groups II to VI and the group of semiconductor compounds of groups III to V. In embodiments, the crystals are crystallized in a zinc blende lattice structure ("zincblende crystal") or in a wurtzite crystal structure ("wurtzite crystal"), preferably zincblende -type. . Both structures share a common cation:anion ratio = 1:1, where the anions form closely packed equal spheres (hcp or fcp, respectively) and the cations are located in tetraeder positions. In embodiments, the crystal system is selected from compounds of formula (II): [M 3 M 3 '][YY'] (II), wherein: M 3 and M 3 ' represent Al, Ga, In, especially In , and Y and Y' represent N, P, As, Sb, especially P, and M3' and Y' may or may not exist (i.e. III to V group semiconductor compounds), or M 3 and M 3 ' represent Zn , Cd, Be, especially Cd, and Y, Y' represent S, Se, Te, especially Se, and M3', Y' may or may not exist (ie, II to VI semiconductor compounds). It is obvious from the above that suitable crystals include binary compounds of formula (II-1), ternary compounds of formulas (II-2) and (II-3) and quaternary compounds of formula (II-4) [M 3 ][Y] (II-1), where: M 3 and Y are as defined above, such as CdSe, InN, InP, InAs, and InSb; [M 3 M 3 '][Y] (II-2), where : M 3 , M 3 ', and Y are as defined above, and M 3 and M 3 ' exist, such as InGaP; [M 3 ][YY'] (II-3), where: M 3 , Y, Y ' is as defined above, and M 3 , Y, Y' exist, such as InPN, InPAs, and InPSb; [M 3 M 3 '][YY'] (II-4), where: M 3 , M 3 ', Y, Y' are as defined above, and M 3 , M 3 ', Y, Y' are present, such as InGaPN, InGaPAs, and InGaPSb. Suitable crystals may or may not be surrounded by a shell. A crystal surrounded by a shell is called a core - shell crystal . In such core-shell crystals, the compounds that form the core and the compounds that form the shell are different. Suitable crystals may or may not be doped with doping metals . Suitable dopants are known in the art and typically have concentrations in the range of 1 mol% or less. The crystal size of red-emitting crystals can vary within a wide range, but is generally within the range of 1 to 10 nm. Such crystals are called quantum dots, which are distinguished from microcrystals. For Group II to VI semiconductor compounds, a suitable range is 1 to 10 nm, preferably 3 to 8 nm. For III to V semiconductor compounds, a suitable range is 1 to 8 nm, preferably 2 to 4 nm. Preferably, the luminescent crystal displays a monodisperse size distribution. In the context of the present invention, the term "monodisperse" refers to a population of quantum dots that is at least about 60% of the population, preferably 75% to 90% of the population, or any integer or non-integer range therebetween. into the specified particle size range. The diameter deviation of the monodisperse particle population is less than 20% root-mean-square (rms), preferably less than 10% rms, and most preferably less than 5% rms. Particle size and particle size distribution can be determined by microscopy. The shape of the crystal can change into thin layer type, cubic, spherical, and polyhedral. In a further advantageous embodiment of the invention, the red luminescent crystal is of the core-shell type, having a core as defined in claim 1 and a shell of the formula (III): M 4 Z (III), where: M 4 represents Zn Or Cd, preferably Zn, and Z represents S, Se, Te, and the compounds of formula (III) and formula (II) are different. Shells include single-shell and multi-shell structures. In a further advantageous embodiment of the invention, the red-emitting crystal contains a core selected from the group consisting of InP and CdSe. In addition, the red luminescent crystal includes a single shell selected from the group consisting of ZnS, ZnSe, ZnSeS and ZnTe. Specific examples include InP@ZnS, InP@ZnSe, InP@ZnSeS, InP@ZnSeS, InP@ZnSe@ZnS, CdSe@ZnS and CdSe@ZnSe, in particular InP@ZnSeS. Furthermore, the red luminescent crystal includes a multi-shell selected from a combination of compounds selected from the group consisting of ZnS, ZnSe, ZnSeS and ZnTe. Specific examples include InP/ZnSe/ZnS (multi-shell) and InP/ZnSeS/ZnS (multi-shell). In a further advantageous embodiment of the invention, the red-emitting crystal contains a CdSe core alloyed/doped with Zn. This embodiment allows reducing the amount of Cd per quantum dot. In a further advantageous embodiment of the invention, the concentration of M 2 is from 100 to 1000 ppm, preferably from 300 to 1000 ppm, very preferably from 500 to 1000 ppm, and/or the concentration of M 3 + M 3 ' is from 300 to 1000 ppm. 2,500ppm, preferably 600 to 2,000ppm, very preferably 1,200 to 1,700ppm, and/or the red core-shell quantum dots have a thin layer structure. In a further advantageous embodiment of the invention, the concentration of M 3 +M 3 ' is >300 ppm, preferably >600 ppm, most preferably >1,200 ppm, and/or the red core-shell quantum dots have a thin layer structure. A solid polymer composition according to another advantageous embodiment of the present invention, wherein the particle size sp of the red core-shell quantum dots is 1 nm ≤ sp ≤ 10 nm, in particular 3 nm ≤ sp ≤ 8 nm, in particular 2nm ≤ sp ≤ 6nm, particularly 2nm ≤ sp ≤ 4nm. In a further advantageous embodiment of the invention, the polymer has a molar ratio z of the sum of (oxygen + nitrogen) to carbon, where z ≤ 0.9, z ≤ 0.75, in particular z ≤ 0.4, in particular z ≤ 0.3 , especially z ≤ 0.25. In a further advantageous embodiment, the polymer contains an acrylate, very particularly wherein the polymer contains a cyclic aliphatic acrylate. In an advantageous embodiment, the solid polymer comprises an acrylate selected from the following list: isocamphenyl acrylate (CAS 5888-33-5), isocamphenyl methacrylate (CAS 7534-94-3 ), dicyclopentyl acrylate (CAS 79637-74-4, FA-513AS (Hitachi Chemical, Japan)), dicyclopentyl methacrylate (CAS 34759-34-7, FA-513M (Hitachi Chemical, Japan) ), 3,3,5-trimethylcyclohexyl acrylate (CAS 86178-38-3), 3,3,5-trimethylcyclohexyl methacrylate (CAS 7779-31-9), acrylic acid 4 -Tertiary butylcyclohexyl ester (CAS 84100-23-2), 4-tertiary butylcyclohexyl methacrylate (CAS 46729-07-1). In another advantageous embodiment, the solid polymer is cross-linked. In another advantageous embodiment, the solid polymer contains multifunctional acrylates. In a further advantageous embodiment, the solid polymer composition has a glass transition temperature Tg such that Tg ≤ 120°C, in particular Tg ≤ 100°C, in particular Tg ≤ 80°C, in particular Tg ≤ 70℃. The respective T g was measured according to DIN EN ISO 11357-2:2014-07 during the second heating cycle, starting from -90°C up to 250°C and applying a heating rate of 20 K/min. In a further advantageous embodiment of the invention, the solid polymer composition comprises scattering particles selected from the group consisting of metal oxide particles and polymer particles, preferably selected from the group consisting of TiO 2 , ZrO 2 , Al 2 A group consisting of O 3 and organopolysiloxane. In a further advantageous embodiment of the invention, the solid polymer is semi-crystalline. In a further advantageous embodiment of the invention, the melting temperature of the solid polymer is <140°C, preferably <120°C, most preferably <100°C. A second aspect of the invention relates to a self-supporting film comprising the solid polymer composition according to the first aspect of the invention. The self-supporting film emits green and red light in response to excitation by light with a wavelength shorter than the emitted green light. In an advantageous embodiment of the self-supporting film, the solid polymer composition is sandwiched between two barrier layers. In particular, this sandwich arrangement refers to an arrangement with a barrier layer, a polymer and another barrier layer in the horizontal direction. The two barrier layers of the sandwich structure can be made of the same barrier layer material or different barrier layer materials. The technical effect of the barrier layer is to improve the stability of the luminescent perovskite crystal, especially to oxygen or moisture. In particular, such barrier layers are known in the art and generally include those with low water vapor transmission rate (WVTR) and/or low oxygen transmission rate (OTR). Material/material combination. By selecting this material, degradation of the luminescent crystals in the device in response to exposure to water vapor and/or oxygen can be reduced or even avoided. The barrier layer or barrier film preferably has a WVTR of less than 10 (g)/(m 2 *day) at a temperature of 40°C/90% rh and atmospheric pressure, and more preferably less than 1 (g)/( m 2 *day), and the optimal system is less than 0.1(g)/(m 2 *day). In one embodiment, the barrier film is impermeable to oxygen at a temperature of 23°C/90% rh and atmospheric pressure, and the OTR (oxygen transmission rate) is >0.1 (mL)/(m 2 *day ), more preferably >1 (mL)/(m 2 *day), optimally >10 (mL)/(m 2 *day). In one embodiment, the thickness of the barrier film is >0.3 mm, more preferably >1 mm, most preferably >3 mm. In one embodiment, the barrier film is transparent to light, that is, the visible light transmittance is >80%, preferably >85%, and most preferably >90%. A suitable barrier film may be present as a single layer. Such barrier films are known in the art and contain glasses, ceramics, metal oxides and polymers. Suitable polymers may be selected from the group consisting of polyvinylidene chloride (PVdC), cycloolefin copolymer (COC), ethylene vinyl alcohol (EVOH), high density polyethylene (HDPE) and polypropylene (PP) ; Suitable inorganic materials may be selected from the group consisting of metal oxides, SiOx, SixNy, and AlOx. Optimally, the polymeric humidity barrier material contains a material selected from the group of PVdC and COC. Most advantageously, the polymeric oxygen barrier material contains a material selected from EVOH polymers. Suitable barrier films can be present in multiple layers. Such barrier films are known in the art and typically comprise a substrate such as PET with a thickness in the range of 10 to 200 µm, and a thin inorganic layer comprising a material from the group of SiOx and AlOx, or Organic layers based on liquid crystals embedded in a polymer matrix, or polymers with desired barrier properties. Possible polymers for such organic layers include, for example, PVdC, COC, EVOH. Another advantageous embodiment of the invention is that the self-supporting film has a haze h 1 of 10 ≤ h 1 ≤ 80%, preferably 20 ≤ h 1 ≤ 70%, most preferably 30 ≤ h 1 ≤ 60% ; and/or the concentration of M 2 is 5 to 200 mg/m 2 , preferably 10 to 100 mg/m 2 , 20 to 80 mg/m 2 , most preferably 30 to 80 mg/m 2 ; and/or M 3 The concentration of +M 3 ' is 30 to 250 mg/m 2 , preferably 60 to 200 mg/m 2 , and most preferably 120 to 170 mg/m 2 . In a further advantageous embodiment of the invention, the concentration of M 3 + M 3 ' is >30 mg/m 2 , preferably >60 mg/m 2 , most preferably >120 mg/m 2 . In a further advantageous embodiment of the invention, the haze h 2 of the self-supporting film is h 2 ≤ 80%, preferably h 2 ≤ 70%, less preferably h 2 ≤ 60%. In a further advantageous embodiment of the invention, the self-supporting film has a haze h 2 of 10% ≤ h 2 ≤ 80%, preferably 20% ≤ h 2 ≤ 70%, very preferably 30% ≤ h 2 ≤ 60%. Haze in the context of the present invention means transmission haze. Transmitted haze is the amount of light that undergoes wide angle scattering (Wide Angle Scattering) when passing through a transparent material (in this case, a self-supporting film), usually at an angle greater than 2.5° to the normal direction of incidence (measured by ASTM D1003; For example, BYK Gardner haze meter). The low haze of the self-supporting film has the technical effect of making the luminescent perovskite crystals in the self-supporting film more stable, especially when they are exposed to blue light sources. The stability is a result of reduced multiplex scattering of blue light in the self-supporting film due to lower haze. In addition, another technical effect of low haze is that lower haze results in higher display brightness, measured as the "light conversion factor" (LCF) of the self-supporting film. The light conversion factor of a self-supporting film refers to the ratio of the intensity of green light emitted in the vertical direction from the self-supporting film to the intensity of blue light that is extinguished (e.g., absorbed, reflected, or scattered) in the vertical direction of the self-supporting film. In further advantageous embodiments, the thickness of such a self-supporting film may generally range from 0.005 to 10 mm, more preferably from 0.05 to 3 mm, most preferably from 0.01 to 0.5 mm. In a further advantageous embodiment of the self-supporting film, the green luminescent crystals are arranged in a first region of the solid polymer composition and the red luminescent crystals are arranged in a second region of the solid polymer composition. In particular, the first region and the second region are suitable for forming layers adjacent to each other. In a further advantageous embodiment, the first area and the second area may be arranged spaced apart from each other. A third aspect of the invention relates to a light-emitting device, in particular to a liquid crystal display (LCD). Advantageously, the light-emitting device comprises a solid polymer composition according to the first aspect of the invention. In a further advantageous embodiment, the light-emitting device comprises a self-supporting film according to the second aspect of the invention. A further advantageous embodiment of the light emitting device includes an array of more than one blue LED. In addition, the LED array basically covers the entire LCD display area. A diffusion plate is disposed between the array of more than one blue LED and the self-supporting film. In a further advantageous embodiment of the invention, one or more blue LEDs of the array are each adapted to switch on and off with a frequency f of f ≥ 150 Hz, preferably f ≥ 300 Hz, very preferably f ≥ 600 Hz. switch between. Other advantageous embodiments are listed in the dependent claims and in the description below.

本發明之實施例、實例、表示或導致實施例之實驗、態樣及優點將從下列其詳細說明而更佳理解。這種說明參考所附圖式,其中: 1顯示根據第一態樣之實施例的固體聚合物組成物100的示意圖,其中固體聚合物組成物包含式(I)之綠色發光晶體1、式(II)之紅色發光晶體2、及聚合物3。 圖1中之固體聚合物組成物之另外的實施例可包含根據本發明第一態樣之另外的特徵。 2顯示根據本發明第二態樣之自支撐膜之實施例的示意圖。在如圖所示之有利實施例中,自支撐膜可包含將固體聚合物組成物100夾在中間之阻障層4。 3顯示根據本發明第三態樣之發光裝置,特別地係液晶顯示器(LCD)之實施例的示意圖。有利地,發光裝置包含如圖1所示之固體聚合物組成物100或如圖2所示之自支撐膜。有利地,發光裝置包含多於一個之藍色LED 6,其中LED基本上覆蓋整個液晶顯示器區域5。特別地,在一個以上的藍色LED之陣列與自支撐膜之間配置擴散板(擴散板未在圖中示出)。 特別地,發光裝置可發射RGB顏色(aa, bb, cc)的光。 4顯示根據本發明第二態樣之自支撐膜之另外有利的實施例。在此實施例中之綠色發光晶體1係配置在自支撐膜之第一區域11中。紅色發光晶體2係配置在自支撐膜之第二區域21中。第一區域11及第二區域21形成彼此相鄰的層。 實驗部分 實例 1 用具有玻璃轉移溫度及低霧度之聚合物製備自支撐膜。 具有三溴化鉛甲脒鎓(formamidinium lead tribromide) (FAPbBr 3)組成物之綠色鈣鈦礦發光晶體在甲苯中合成如下:三溴化鉛甲脒鎓(FAPbBr 3)係藉由研磨PbBr 2及FABr而合成的。亦即,將16mmol PbBr 2(5.87g, 98% ABCR, Karlsruhe(DE))及16mmol FABr(2.00g, Greatcell Solar Materials, Queanbeyan,(AU))用經釔穩定的氧化鋯珠(zirconia bead)(直徑5mm)軋磨6小時,以獲得純立方FAPbBr 3,藉由XRD確認。將橘色FAPbBr 3粉末添加到油胺(80至90,Acros Organics,Geel(BE))(重量比FAPbBr 3:油胺= 100:15)及甲苯(>99.5%,特純(puriss),Sigma Aldrich)。FAPbBr 3之最終濃度係1wt%。接著將混合物使用直徑尺寸為200 µm之經釔穩定的氧化鋯珠在環境條件(若未另外定義,則所有實驗的環境條件係:35℃,1 atm,於空氣中)下藉由球磨(ball mill)達1小時的時間而分散,得到綠色發光之油墨。 膜形成:將0.1g綠色油墨與UV可固化單體/交聯劑混合物(0.7g FA-513AS, Hitachi Chemical, Japan /0.3g Miramer M240, Miwon, Korea)在高速混合器中混合,該混合物含有1 wt%光起始劑二苯基(2,4,6-三甲基苯甲醯基)氧化膦(TCI Europe, Netherlands)、及2 wt%聚合物散射粒子(有機聚矽氧烷,ShinEtsu,KMP-590)、以及懸浮於甲苯中具有InP核及ZnS殼之等軸核-殼QD之紅色發光晶體,並在室溫下藉由真空(<0.01毫巴)蒸發甲苯。然後將所得混合物在100微米阻障膜上塗佈厚度50微米的層(供應商:I-components(Korea);產品:TBF-1007),然後與相同類型的第二阻障膜一起層壓。之後,將層壓結構經UV固化60秒(UVAcube100,配備汞燈和石英過濾器,Hoenle,德國)。在固化層(無阻障層)中的Pb濃度係500ppm Pb,且每面積的Pb負載係30mg Pb/m 2。在固化層(無阻障層)中的In濃度係1300ppm In,且每面積的In負載係80mg In/m 2。所獲得之膜的初始性能顯示出526nm之綠色發射波長,其半高寬(FWHM)為22nm,及630nm之紅色發射波長,其FWHM為20nm。當放置在藍色LED光源(450nm發射波長)上時,膜之色坐標(CIE1931)係x=0.25及y=0.20,QD膜的頂部上面有兩個交叉棱鏡片(X-BEF)及一個增亮膜(DBEF) (用Konica Minolta CS-2000測量之光學性質)。所得薄膜的霧度係50%,且穿透率係85%(用BYK Gardner霧度計測量)。膜的光換算因數係49%(LCF;LCF=發射的綠色強度(積分發射峰)除以藍色強度的減少(積分發射峰);用QD膜的綠色及藍色之垂直發射使用Konica Minolta CS-2000來測量)。經UV固化之固體聚合物組成物之玻璃轉移溫度Tg係根據DIN EN ISO 11357-2:2014-07藉由DSC判定,起始溫度為-90℃,結束溫度為250℃,加熱速率為20 K/min,在氮氣氣氛(20 ml/min)中進行。吹掃氣體係20 ml/min之氮氣(5.0)。使用DSC系統DSC 204 F1 Phoenix(Netzsch)。在第二加熱循環時判定T g(-90℃至250℃之第一加熱除了玻璃轉移之外還顯示出重疊效應)。對於DSC測量,藉由將阻障膜分層(delaminating),將固體聚合物組成物自膜移除。經UV固化之樹脂組成物的測量Tg係75℃。 藉由將膜放入具有高藍光強度之燈箱(供應商:Hoenle;模型:LED CUBE 100 IC)中,膜上之藍色通量為410 mW/cm 2,膜溫度為50℃,在藍色LED光照射下測試膜的穩定性達150小時。此外,亦在60℃及90%相對濕度的氣候室中對膜進行測試達150小時。用與測量初始性能(如上所述)相同的程序測量膜穩定性測試後之光學參數的變化。光學參數的變化如下: 這些結果顯示,在高藍色通量及高溫/高濕條件下測試時,綠色鈣鈦礦晶體及紅色核-殼量子點皆顯示良好的化學相容性及高穩定性,可獲得自支撐發光膜。 實例 1 之比較例 1 用具有低玻璃轉移溫度及高霧度之聚合物製備自支撐膜。 程序與實例1中之先前程序相同,不同之處在於改變下列參數: • 僅使用50%的綠色鈣鈦礦QD及紅色核殼InP量子點 • 將12 wt%的散射粒子KMP-590混合至UV可固化之丙烯酸酯混合物中,以增加最終QD膜的霧度。 所獲得之自支撐膜顯示出與實例1類似的光學性質及Tg,但霧度為95%,穿透率為80%且LCF為41%。 可看出,LCF低於實驗1。較高的霧度導致較低的LCF,而較低的霧度導致較高的LCF。因此,QD膜之較低霧度有利於具有較高的LCF,進而有較高的顯示效率(在特定之相當的白點色坐標下)。 在固化層(無阻障層)中的Pb濃度係250ppm Pb,且每面積的Pb負載係15mg Pb/m 2。在固化層(無阻障層)中的In濃度係650ppm In,且每面積的In負載係40mg In/m 2。 再次進行與實例1相同的穩定性測試,且光學參數變化如下: 這些結果顯示,相較於實例1,QD膜之較高霧度導致綠色鈣鈦礦晶體在高藍色通量下的穩定性降低(由y值的降低可看出綠色強度降低),尤其是綠色鈣鈦礦晶體在高藍色通量下較不穩定。因此,具有低霧度之QD膜係有利的,其導致在高藍色通量下QD膜穩定性的改善,以便在顯示裝置的操作壽命期間具有穩定的色坐標及穩定的白點。 實例 1 之比較例 2 用具有高玻璃轉移溫度及低霧度之聚合物製備自支撐膜。 程序與實例1中之程序相同,不同之處在於丙烯酸酯單體混合物(0.7g FA-513AS, Hitachi Chemical, Japan /0.3g Miramer M240, Miwon, Korea)係由以下丙烯酸酯單體混合物置換: •   0.7g FA-DCPA, Hitachi Chemical, Japan /0.3g FA-320M, Hitachi Chemical, Japan。 所獲得之自支撐膜顯示出與實例1類似的光學性質及霧度,但Tg為140℃。 在固化層(無阻障層)中的Pb及In濃度與實例1相同。 再次進行與實例1相同的穩定性測試,且光學參數變化如下: 這些結果顯示,相較於實例1,自支撐膜之固體聚合物之較高T g導致綠色鈣鈦礦晶體在高藍色通量下的穩定性降低(由y值的降低可看出綠色強度降低)。因此,具有低T g之QD膜係有利的,其導致在高藍色通量下QD膜穩定性的改善,以便在顯示裝置的操作壽命期間具有穩定的色坐標及穩定的白點。 實例 2 製備具有低霧度並因此紅色核-殼量子點和綠色鈣鈦礦晶體在空間上係分離的: 使用來自實例1之綠色鈣鈦礦QD。 膜形成:將0.1g來自實例1之綠色油墨與UV可固化單體/交聯劑混合物(0.7g FA-513AS, Hitachi Chemical, Japan /0.3g Miramer M240, Miwon, Korea)在高速混合器中混合,該混合物含有1 wt%光起始劑二苯基(2,4,6-三甲基苯甲醯基)氧化膦(TCI Europe, Netherlands)及2 wt%聚合物散射粒子(有機聚矽氧烷,ShinEtsu,KMP-590),並在室溫下藉由真空(<0.01毫巴)蒸發甲苯。然後將所得混合物在100微米阻障膜上塗佈有50微米層厚度(供應商:I-components (Korea);產品:TBF-1007),然後在氮氣氣氛中經UV固化。然後藉由下列來製備紅色塗層調配物:將來自實驗1之具有InP核及ZnS殼之紅色核-殼量子點(懸浮於甲苯中)與UV可固化單體/交聯劑混合物(0.7g FA-DCPA, Hitachi Chemical, Japan /0.3g Miramer M240, Miwon, Korea)在高速混合器中混合,該混合物含有1 wt%光起始劑二苯基(2,4,6-三甲基苯甲醯基)氧化膦(TCI Europe, Netherlands)及2 wt%聚合物散射粒子(有機聚矽氧烷,ShinEtsu,KMP-590),並在室溫下藉由真空(<0.01毫巴)蒸發甲苯。然後將所得混合物在先前沉積的綠色層上塗佈有50微米層厚,然後在頂部層壓第二阻障膜,並將整個夾層結構經UV固化60秒(UVAcube100,配備汞燈和石英過濾器,Hoenle,德國)。 最終的自支撐薄膜顯示出與實驗1相當的光學性質。 在固化之綠色層(無阻障層)中的Pb濃度係500ppm Pb,且每面積的Pb負載係30mg Pb/m 2。在固化之紅色層(無阻障層)中的In濃度係1300ppm In,且每面積的In負載係80mg In/m 2。 光學參數的變化如下: 這些結果顯示,在高藍色通量及高溫/高濕條件下測試時,綠色鈣鈦礦晶體及紅色核-殼量子點皆顯示高穩定性,可獲得具有分離的綠色層及紅色層之自支撐發光膜。 實例 3 製備如實例1中之自支撐膜,但用具有CdSe核及ZnS殼之紅色核-殼量子點薄層(platelet)。 使用與實例1中所述相同的實驗程序,但用具有CdSe核及ZnS殼之紅色核-殼量子點薄層。 在固化層(無阻障層)中的Pb濃度係500ppm Pb,且每面積的Pb負載係30mg Pb/m 2。在固化層(無阻障層)中的Cd濃度係500ppm Cd,且每面積的Cd負載係30mg Cd/m 2。 結果係與實例1相當的光學性能及穩定性。 實例 4 製備如實例2中之自支撐膜,但用具有CdSe核及ZnS殼之紅色核-殼量子點薄層(platelet)。 使用與實例2中所述相同的實驗程序,但用具有CdSe核及ZnS殼之紅色核-殼量子點薄層。 結果係與實例2相當的光學性能及穩定性。 Embodiments, examples, experiments, aspects and advantages of representing or leading to embodiments of the present invention will be better understood from the following detailed description thereof. This description refers to the accompanying drawings, in which: Figure 1 shows a schematic diagram of a solid polymer composition 100 according to an embodiment of the first aspect, wherein the solid polymer composition includes a green luminescent crystal 1 of formula (I), (II) Red luminescent crystal 2 and polymer 3. Additional embodiments of the solid polymer composition of Figure 1 may include additional features in accordance with the first aspect of the invention. FIG. 2 shows a schematic diagram of an embodiment of a self-supporting film according to a second aspect of the invention. In an advantageous embodiment as shown, the self-supporting film may comprise a barrier layer 4 sandwiching a solid polymer composition 100. FIG. 3 shows a schematic diagram of an embodiment of a light-emitting device according to a third aspect of the present invention, particularly a liquid crystal display (LCD). Advantageously, the light emitting device comprises a solid polymer composition 100 as shown in Figure 1 or a self-supporting film as shown in Figure 2. Advantageously, the lighting device contains more than one blue LED 6, wherein the LEDs cover substantially the entire liquid crystal display area 5. In particular, a diffusion plate (the diffusion plate is not shown in the figure) is arranged between the array of one or more blue LEDs and the self-supporting film. In particular, the light emitting device may emit light of RGB colors (aa, bb, cc). Figure 4 shows a further advantageous embodiment of a self-supporting film according to a second aspect of the invention. In this embodiment, the green light-emitting crystal 1 is arranged in the first region 11 of the self-supporting film. The red luminescent crystal 2 is arranged in the second region 21 of the self-supporting film. The first region 11 and the second region 21 form adjacent layers. Experimental Part Example 1 : Preparation of self-supporting films using polymers with glass transition temperature and low haze. Green perovskite luminescent crystals with a composition of formamidinium lead tribromide (FAPbBr 3 ) were synthesized in toluene as follows: lead tribromide formamidinium (FAPbBr 3 ) was prepared by grinding PbBr 2 and Synthesized from FABr. That is, 16 mmol PbBr 2 (5.87 g, 98% ABCR, Karlsruhe (DE)) and 16 mmol FABr (2.00 g, Greatcell Solar Materials, Queanbeyan, (AU)) were mixed with yttrium-stabilized zirconia beads (zirconia beads) ( diameter 5mm) for 6 hours to obtain pure cubic FAPbBr 3 , which was confirmed by XRD. Orange FAPbBr 3 powder was added to oleylamine (80 to 90, Acros Organics, Geel (BE)) (weight ratio FAPbBr 3 : oleylamine = 100:15) and toluene (>99.5%, puriss, Sigma Aldrich). The final concentration of FAPbBr 3 was 1 wt%. The mixture was then ball-milled using yttrium-stabilized zirconia beads with a diameter of 200 µm under ambient conditions (if not otherwise defined, the ambient conditions for all experiments were: 35°C, 1 atm, in air) mill) for 1 hour to disperse, and a green luminous ink was obtained. Film formation : 0.1 g of green ink was mixed with a UV curable monomer/cross-linker mixture (0.7 g FA-513AS, Hitachi Chemical, Japan/0.3 g Miramer M240, Miwon, Korea) in a high-speed mixer containing 1 wt% photoinitiator diphenyl (2,4,6-trimethylbenzyl)phosphine oxide (TCI Europe, Netherlands), and 2 wt% polymer scattering particles (organopolysiloxane, ShinEtsu , KMP-590), and red luminescent crystals of equiaxed core-shell QDs with InP core and ZnS shell suspended in toluene, and toluene was evaporated by vacuum (<0.01 mbar) at room temperature. The resulting mixture was then coated with a 50 μm thick layer on a 100 μm barrier film (Supplier: I-components (Korea); Product: TBF-1007) and then laminated with a second barrier film of the same type. Afterwards, the laminated structure was UV cured for 60 seconds (UVAcube100, equipped with mercury lamp and quartz filter, Hoenle, Germany). The Pb concentration in the solidified layer (without barrier layer) was 500 ppm Pb, and the Pb loading per area was 30 mg Pb/m 2 . The In concentration in the solidified layer (without barrier layer) was 1300 ppm In, and the In loading per area was 80 mg In/m 2 . The initial properties of the film obtained showed a green emission wavelength of 526 nm with a FWHM of 22 nm, and a red emission wavelength of 630 nm with a FWHM of 20 nm. When placed on a blue LED light source (450nm emission wavelength), the color coordinates (CIE1931) of the film are x=0.25 and y=0.20. There are two cross prism sheets (X-BEF) and an intensifier on the top of the QD film. Bright Film (DBEF) (Optical properties measured with Konica Minolta CS-2000). The resulting film had a haze of 50% and a transmittance of 85% (measured with a BYK Gardner haze meter). The light conversion factor of the film is 49% (LCF; LCF = green intensity of emission (integrated emission peak) divided by the reduction of blue intensity (integrated emission peak); vertical emission of green and blue of QD film using Konica Minolta CS -2000 to measure). The glass transition temperature Tg of the UV-cured solid polymer composition is determined by DSC according to DIN EN ISO 11357-2:2014-07. The starting temperature is -90°C, the ending temperature is 250°C, and the heating rate is 20 K /min, in a nitrogen atmosphere (20 ml/min). Purge gas system 20 ml/min nitrogen (5.0). The DSC system DSC 204 F1 Phoenix (Netzsch) is used. Tg was determined at the second heating cycle (the first heating from -90°C to 250°C showed an overlapping effect in addition to glass transfer). For DSC measurements, the solid polymer composition was removed from the film by delaminating the barrier film. The measured Tg of the UV-cured resin composition is 75°C. By placing the film into a light box with high blue light intensity (supplier: Hoenle; model: LED CUBE 100 IC), the blue flux on the film is 410 mW/cm 2 and the film temperature is 50°C. The stability of the film was tested under LED light irradiation for 150 hours. Additionally, the membranes were tested in a climate chamber at 60°C and 90% relative humidity for 150 hours. Changes in optical parameters after film stability testing were measured using the same procedure as for measuring initial properties (described above). The changes in optical parameters are as follows: These results show that when tested under high blue flux and high temperature/high humidity conditions, both green perovskite crystals and red core-shell quantum dots show good chemical compatibility and high stability, and can achieve self-supporting luminescence. membrane. Comparative Example 1 of Example 1 : A self-supporting film was prepared using a polymer with low glass transition temperature and high haze. The procedure is the same as the previous one in Example 1, except that the following parameters are changed: • Only 50% of green perovskite QDs and red core-shell InP quantum dots are used • 12 wt% of scattering particles KMP-590 are mixed to UV curable acrylate mixture to increase the haze of the final QD film. The obtained self-supporting film showed similar optical properties and Tg as Example 1, but with a haze of 95%, a transmission of 80% and an LCF of 41%. It can be seen that the LCF is lower than Experiment 1. Higher haze leads to lower LCF, while lower haze leads to higher LCF. Therefore, the lower haze of the QD film is conducive to having a higher LCF, and thus a higher display efficiency (under a specific equivalent white point color coordinate). The Pb concentration in the solidified layer (without barrier layer) was 250 ppm Pb, and the Pb loading per area was 15 mg Pb/m 2 . The In concentration in the solidified layer (without barrier layer) was 650 ppm In, and the In loading per area was 40 mg In/m 2 . The same stability test as Example 1 was performed again, and the optical parameters changed as follows: These results show that compared to Example 1, the higher haze of the QD film leads to a decrease in the stability of the green perovskite crystal under high blue flux (a decrease in green intensity as seen from the decrease in y value), especially Green perovskite crystals are less stable at high blue fluxes. Therefore, QD films with low haze are advantageous, which lead to improved stability of the QD film under high blue flux so as to have stable color coordinates and stable white point during the operating life of the display device. Comparative Example 2 of Example 1 : Preparation of a self-supporting film using a polymer with high glass transition temperature and low haze. The procedure was the same as in Example 1, except that the acrylate monomer mixture (0.7 g FA-513AS, Hitachi Chemical, Japan/0.3 g Miramer M240, Miwon, Korea) was replaced by the following acrylate monomer mixture: • 0.7g FA-DCPA, Hitachi Chemical, Japan/0.3g FA-320M, Hitachi Chemical, Japan. The obtained self-supporting film showed similar optical properties and haze to Example 1, but with a Tg of 140°C. The Pb and In concentrations in the solidified layer (without barrier layer) were the same as in Example 1. The same stability test as Example 1 was performed again, and the optical parameters changed as follows: These results show that compared to Example 1, the higher T g of the solid polymer of the free-standing film results in a decrease in the stability of the green perovskite crystals at high blue flux (as can be seen from the decrease in the y value of the green intensity reduce). Therefore, QD film systems with low T g are advantageous, which lead to improved QD film stability under high blue flux, so as to have stable color coordinates and stable white points during the operating life of the display device. Example 2 : Preparation of red core-shell quantum dots with low haze and thus spatial separation of green perovskite crystals: Green perovskite QDs from Example 1 were used. Film formation : 0.1 g of the green ink from Example 1 was mixed with a UV curable monomer/crosslinker mixture (0.7 g FA-513AS, Hitachi Chemical, Japan/0.3 g Miramer M240, Miwon, Korea) in a high speed mixer , the mixture contains 1 wt% photoinitiator diphenyl (2,4,6-trimethylbenzoyl)phosphine oxide (TCI Europe, Netherlands) and 2 wt% polymer scattering particles (organic polysiloxane alkane, ShinEtsu, KMP-590) and the toluene was evaporated by vacuum (<0.01 mbar) at room temperature. The resulting mixture was then coated with a layer thickness of 50 microns on a 100 micron barrier film (Supplier: I-components (Korea); Product: TBF-1007) and then UV cured in a nitrogen atmosphere. A red coating formulation was then prepared by combining the red core-shell quantum dots with InP core and ZnS shell from Experiment 1 (suspended in toluene) with the UV curable monomer/crosslinker mixture (0.7 g FA-DCPA, Hitachi Chemical, Japan/0.3g Miramer M240, Miwon, Korea) was mixed in a high-speed mixer, and the mixture contained 1 wt% photoinitiator diphenyl (2,4,6-trimethylbenzyl hydroxyl)phosphine oxide (TCI Europe, Netherlands) and 2 wt% polymer scattering particles (organopolysiloxane, ShinEtsu, KMP-590), and toluene was evaporated by vacuum (<0.01 mbar) at room temperature. The resulting mixture was then coated with a layer thickness of 50 microns on the previously deposited green layer, a second barrier film was then laminated on top and the entire sandwich was UV cured for 60 seconds (UVAcube100, equipped with mercury lamp and quartz filter , Hoenle, Germany). The final self-supporting film showed optical properties comparable to Experiment 1. The Pb concentration in the cured green layer (no barrier layer) was 500 ppm Pb, and the Pb loading per area was 30 mg Pb/m 2 . The In concentration in the cured red layer (no barrier layer) was 1300 ppm In, and the In loading per area was 80 mg In/ m2 . The changes in optical parameters are as follows: These results show that when tested under high blue flux and high temperature/high humidity conditions, both green perovskite crystals and red core-shell quantum dots show high stability, and it is possible to obtain natural films with separated green and red layers. Support luminous film. Example 3 : A self-supporting film was prepared as in Example 1, but using a red core-shell quantum dot platelet with a CdSe core and ZnS shell. The same experimental procedure as described in Example 1 was used, but with a thin layer of red core-shell quantum dots with a CdSe core and ZnS shell. The Pb concentration in the solidified layer (without barrier layer) was 500 ppm Pb, and the Pb loading per area was 30 mg Pb/m 2 . The Cd concentration in the solidified layer (without barrier layer) was 500 ppm Cd, and the Cd loading per area was 30 mg Cd/m 2 . The result is optical performance and stability comparable to Example 1. Example 4 : A self-supporting film was prepared as in Example 2, but using a red core-shell quantum dot platelet with a CdSe core and ZnS shell. The same experimental procedure as described in Example 2 was used, but with a thin layer of red core-shell quantum dots with a CdSe core and ZnS shell. The result is optical performance and stability comparable to Example 2.

1:綠色發光晶體 2:紅色發光晶體 3:聚合物 4:阻障層 5:液晶顯示器區域 6:LED 11:第一區域 21:第二區域 100:固體聚合物組成物 1: Green luminous crystal 2:Red luminous crystal 3:Polymer 4: Barrier layer 5:LCD display area 6:LED 11:First area 21:Second area 100: Solid polymer composition

本發明將被更好地理解,並且除上述目的以外之目的將從其以下詳細描述中變得顯而易見。這種說明參考所附圖式,其中: [圖1]顯示根據本發明實施例之固體聚合物組成物的示意圖; [圖2]顯示根據本發明實施例之自支撐膜的示意圖; [圖3]顯示根據本發明實施例之發光裝置;及 [圖4]顯示根據本發明之另外有利的實施例之自支撐膜的示意圖。 The invention will be better understood, and objects in addition to the above-described objects will become apparent from the following detailed description thereof. This description refers to the accompanying drawing, in which: [Fig. 1] A schematic diagram showing a solid polymer composition according to an embodiment of the present invention; [Fig. 2] A schematic diagram showing a self-supporting film according to an embodiment of the present invention; [Fig. 3] shows a light-emitting device according to an embodiment of the present invention; and [Fig. 4] A schematic diagram showing a self-supporting film according to another advantageous embodiment of the present invention.

1:綠色發光晶體 1: Green luminous crystal

2:紅色發光晶體 2:Red luminous crystal

3:聚合物 3:Polymer

4:阻障層 4: Barrier layer

100:固體聚合物組成物 100: Solid polymer composition

Claims (21)

一種自支撐膜,其厚度係0.005至10mm,其包含:- 綠色發光晶體(1),及- 紅色發光晶體(2),及- 聚合物(3),其包含丙烯酸酯,其中該綠色發光晶體(1)係鈣鈦礦晶體,其係選自式(I)之化合物:[M1A1]aM2 bXc(I),其中:A1 表示一或多種有機陽離子,M1 表示一或多種鹼金屬,M2 表示M1以外之一或多種金屬,X 表示一或多種選自由鹵化物、偽鹵化物及硫化物所組成之群組的陰離子,a 表示1至4,b 表示1至2,c 表示3至9,及其中存在M1、或A1、或者M1及A1;其中該紅色發光晶體(2)具有閃鋅礦或纖鋅礦晶體結構且係選自式(II)之化合物:[M3M3'][YY'](II),其中:M3、M3' 表示Al、Ga、In,及Y、Y' 表示N、P、As、Sb,及M3'、Y' 可存在或可不存在, 或M3、M3' 表示Zn、Cd、Be,及Y、Y' 表示S、Se、Te,及M3'、Y' 可存在或可不存在,及其中M2之濃度係5至200mg/m2,及其中M3+M3'之濃度係30至250mg/m2A self-supporting film having a thickness of 0.005 to 10 mm, comprising: - a green luminescent crystal (1), and - a red luminescent crystal (2), and - a polymer (3) comprising an acrylate, wherein the green luminescent crystal (1) It is a perovskite crystal, which is selected from the compounds of formula (I): [M 1 A 1 ] a M 2 b X c (I), where: A 1 represents one or more organic cations, and M 1 represents One or more alkali metals, M 2 represents one or more metals other than M 1 , X represents one or more anions selected from the group consisting of halides, pseudohalides and sulfides, a represents 1 to 4, b represents 1 to 2, c represents 3 to 9, and there is M 1 , or A 1 , or M 1 and A 1 ; wherein the red luminescent crystal (2) has a sphalerite or wurtzite crystal structure and is selected from the formula Compound (II): [M 3 M 3 '][YY'] (II), where: M 3 and M 3 ' represent Al, Ga, In, and Y, Y' represent N, P, As, Sb, and M 3 ' and Y' may or may not exist, or M 3 and M 3 ' represent Zn, Cd, Be, and Y and Y' represent S, Se, Te, and M 3 ' and Y' may or may not exist exists, and wherein the concentration of M 2 is 5 to 200 mg/m 2 , and wherein the concentration of M 3 + M 3 ' is 30 to 250 mg/m 2 . 如請求項1之自支撐膜,其中該聚合物(3)具有(氧+氮)總和與碳的莫耳比z,其中z係0.9或更小。 The self-supporting film of claim 1, wherein the polymer (3) has a molar ratio z of the sum of (oxygen + nitrogen) to carbon, wherein z is 0.9 or less. 如請求項1或2之自支撐膜,該自支撐膜之霧度h1為10
Figure 110124816-A0305-02-0031-1
h1
Figure 110124816-A0305-02-0031-2
80%。
For example, the self-supporting film of claim 1 or 2, the haze h 1 of the self-supporting film is 10
Figure 110124816-A0305-02-0031-1
h 1
Figure 110124816-A0305-02-0031-2
80%.
如請求項1或2之自支撐膜,其包含選自由金屬氧化物粒子及聚合物粒子所組成之群組的散射粒子。 The self-supporting film of claim 1 or 2, which includes scattering particles selected from the group consisting of metal oxide particles and polymer particles. 如請求項1或2之自支撐膜,其中固體聚合物組成物(100)係夾在兩個阻障層(4)之間。 The self-supporting film of claim 1 or 2, wherein the solid polymer composition (100) is sandwiched between two barrier layers (4). 如請求項1或2之自支撐膜,其中該綠色發光晶體(1)係具有式(I')之鈣鈦礦晶體:FAPbBr3(I')。 The self-supporting film of claim 1 or 2, wherein the green luminescent crystal (1) is a perovskite crystal having formula (I'): FAPbBr 3 (I'). 如請求項1或2之自支撐膜,其中該紅色發光晶體(2)係核-殼型,其中該核係如請求項1中所定義,具有式(II),及其中該殼包含式(III)之化合物M4Z(III),其中: M4表示Zn或Cd,及Z表示S、Se、Te,且其中式(III)及式(II)之化合物不同。 The self-supporting film of claim 1 or 2, wherein the red luminescent crystal (2) is of core-shell type, wherein the core is as defined in claim 1 and has formula (II), and wherein the shell includes the formula ( III) Compound M 4 Z(III), wherein: M 4 represents Zn or Cd, and Z represents S, Se, Te, and the compounds of formula (III) and formula (II) are different. 如請求項1或2之自支撐膜,其中該紅色發光晶體(2)包含核,該核係選自由InP及CdSe所組成之群組,及包含殼或多殼,該殼或多殼係選自由ZnS、ZnSe、ZnSeS、及ZnTe、及其組合所組成之群組。 The self-supporting film of claim 1 or 2, wherein the red luminescent crystal (2) includes a core selected from the group consisting of InP and CdSe, and includes a shell or multiple shells selected from the group consisting of InP and CdSe. Free group consisting of ZnS, ZnSe, ZnSeS, and ZnTe, and their combinations. 如請求項1或2之自支撐膜,其中該聚合物(3)包含環狀脂族丙烯酸酯。 The self-supporting film of claim 1 or 2, wherein the polymer (3) contains cyclic aliphatic acrylate. 如請求項1或2之自支撐膜,其中該綠色發光晶體(1)係配置在該自支撐膜之第一區域(11)中,且該紅色發光晶體(2)係配置在該自支撐膜之第二區域(21)中,其中該第一區域(11)及該第二區域(21)形成彼此相鄰的層。 The self-supporting film of claim 1 or 2, wherein the green luminescent crystal (1) is disposed in the first region (11) of the self-supporting film, and the red luminescent crystal (2) is disposed in the self-supporting film In the second region (21), the first region (11) and the second region (21) form adjacent layers. 一種固體聚合物組成物(100),其包含:- 綠色發光晶體(1),及- 紅色發光晶體(2),及- 聚合物(3),其中該綠色發光晶體(1)係鈣鈦礦晶體,其係選自式(I)之化合物:[M1A1]aM2 bXc(I),其中:A1 表示一或多種有機陽離子, M1 表示一或多種鹼金屬,M2 表示M1以外之一或多種金屬,X 表示一或多種選自由鹵化物、偽鹵化物及硫化物所組成之群組的陰離子,a 表示1至4,b 表示1至2,c 表示3至9,及其中存在M1、或A1、或者M1及A1;其中該紅色發光晶體(2)具有閃鋅礦或纖鋅礦晶體結構且係選自式(II)之化合物:[M3M3'][YY'](II),其中:M3、M3' 表示Al、Ga、In,及Y、Y' 表示N、P、As、Sb,及M3'、Y' 可存在或可不存在,或M3、M3' 表示Zn、Cd、Be,及Y、Y' 表示S、Se、Te,及M3'、Y' 可存在或可不存在,及其中該M2之濃度係100至1000ppm。 A solid polymer composition (100), which includes: - green luminescent crystal (1), and - red luminescent crystal (2), and - polymer (3), wherein the green luminescent crystal (1) is perovskite Crystals selected from compounds of formula (I): [M 1 A 1 ] a M 2 b X c (I), wherein: A 1 represents one or more organic cations, M 1 represents one or more alkali metals, M 2 represents one or more metals other than M 1 , X represents one or more anions selected from the group consisting of halides, pseudohalides and sulfides, a represents 1 to 4, b represents 1 to 2, c represents 3 to 9, and wherein M 1 , or A 1 , or M 1 and A 1 are present; wherein the red luminescent crystal (2) has a sphalerite or wurtzite crystal structure and is selected from compounds of formula (II): [ M 3 M 3 '][YY'](II), where: M 3 and M 3 ' represent Al, Ga, In, and Y and Y' represent N, P, As, Sb, and M 3 ', Y' May exist or may not exist, or M 3 and M 3 ' represent Zn, Cd, Be, and Y, Y' represent S, Se, Te, and M 3 ', Y' may exist or may not exist, and wherein M 2 The concentration is 100 to 1000ppm. 如請求項11之固體聚合物組成物(100),其中該綠色發光晶體(1)係具有式(I')之鈣鈦礦晶體:FAPbBr3(I')。 Such as the solid polymer composition (100) of claim 11, wherein the green luminescent crystal (1) is a perovskite crystal having formula (I'): FAPbBr 3 (I'). 如請求項11或12之固體聚合物組成物 (100),其中該紅色發光晶體(2)係核-殼型,其中該核係如請求項11中所定義,具有式(II),及其中該殼包含式(III)之化合物M4Z(III),其中:M4表示Zn或Cd,及Z表示S、Se、Te,且其中式(III)及式(II)之化合物不同。 The solid polymer composition (100) of claim 11 or 12, wherein the red luminescent crystal (2) is of core-shell type, wherein the core is as defined in claim 11 and has formula (II), and wherein The shell contains compound M 4 Z(III) of formula (III), wherein: M 4 represents Zn or Cd, and Z represents S, Se, Te, and the compounds of formula (III) and formula (II) are different. 如請求項11或12之固體聚合物組成物(100),其中該紅色發光晶體(2)包含核,該核係選自由InP及CdSe所組成之群組,及包含殼或多殼,該殼或多殼係選自由ZnS、ZnSe、ZnSeS、及ZnTe、及其組合所組成之群組。 The solid polymer composition (100) of claim 11 or 12, wherein the red luminescent crystal (2) includes a core selected from the group consisting of InP and CdSe, and includes a shell or multiple shells, the shell Or the multi-shell system is selected from the group consisting of ZnS, ZnSe, ZnSeS, and ZnTe, and combinations thereof. 如請求項13之固體聚合物組成物(100),其中該M3+M3'之濃度係300至2,500ppm,及/或該核-殼型紅色發光晶體(2)具有薄層結構。 Such as the solid polymer composition (100) of claim 13, wherein the concentration of M 3 + M 3 ' is 300 to 2,500 ppm, and/or the core-shell red luminescent crystal (2) has a thin layer structure. 如請求項11或12之固體聚合物組成物(100),其中該聚合物(3)具有(氧+氮)總和與碳的莫耳比z,其中z
Figure 110124816-A0305-02-0034-3
0.4。
The solid polymer composition (100) of claim 11 or 12, wherein the polymer (3) has a molar ratio z of the sum of (oxygen + nitrogen) and carbon, where z
Figure 110124816-A0305-02-0034-3
0.4.
如請求項11或12之固體聚合物組成物(100),其中該聚合物(3)包含丙烯酸酯。 The solid polymer composition (100) of claim 11 or 12, wherein the polymer (3) contains acrylate. 如請求項11或12之固體聚合物組成物(100),其中該固體聚合物組成物(100)具有玻璃轉移溫度Tg為Tg
Figure 110124816-A0305-02-0034-4
120℃。
The solid polymer composition (100) of claim 11 or 12, wherein the solid polymer composition (100) has a glass transition temperature T g of T g
Figure 110124816-A0305-02-0034-4
120℃.
如請求項11或12之固體聚合物組成物(100),其中該固體聚合物組成物(100)包含選自由金屬氧化物粒子及聚合物粒子所組成之群組的散射粒子。 The solid polymer composition (100) of claim 11 or 12, wherein the solid polymer composition (100) includes scattering particles selected from the group consisting of metal oxide particles and polymer particles. 一種發光裝置,其包含如前述請求項1至10中任一項之自支撐膜,或其包含如前述請求項11至19中任一項之固體聚合物組成物。 A light-emitting device comprising the self-supporting film according to any one of the preceding claims 1 to 10, or the solid polymer composition according to any one of the preceding claims 11 to 19. 如請求項20之發光裝置,其包含一個以上的藍色LED(6)之陣列,其中該LED(6)之陣列基本上覆蓋整個液晶顯示器區域(5),及其中在該一個以上的藍色LED(6)之陣列與該自支撐膜之間配置擴散板。 The light-emitting device of claim 20, which includes one or more arrays of blue LEDs (6), wherein the array of LEDs (6) substantially covers the entire liquid crystal display area (5), and wherein the one or more blue LEDs (6) A diffusion plate is arranged between the array of LEDs (6) and the self-supporting film.
TW110124816A 2020-07-07 2021-07-06 A solid polymer composition, a self-supporting film and a light emitting device TWI818279B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20184584.9 2020-07-07
EP20184584.9A EP3936585A1 (en) 2020-07-07 2020-07-07 A solid polymer composition, a self-supporting film and a light emitting device

Publications (2)

Publication Number Publication Date
TW202212533A TW202212533A (en) 2022-04-01
TWI818279B true TWI818279B (en) 2023-10-11

Family

ID=71527590

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110124816A TWI818279B (en) 2020-07-07 2021-07-06 A solid polymer composition, a self-supporting film and a light emitting device

Country Status (7)

Country Link
US (1) US20240141229A1 (en)
EP (2) EP3936585A1 (en)
JP (1) JP7437492B2 (en)
KR (1) KR20220047334A (en)
CN (1) CN114341311B (en)
TW (1) TWI818279B (en)
WO (1) WO2022008451A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4180498B1 (en) * 2022-06-15 2024-06-05 Avantama AG A color conversion film comprising inorganic separation layer
EP4321926B1 (en) 2022-08-09 2024-09-18 Avantama AG Color conversion film with ald sealed edges
EP4180499B1 (en) * 2022-10-27 2024-09-25 Avantama AG Color conversion film with separation layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201903028A (en) * 2017-05-17 2019-01-16 日商住友化學股份有限公司 Film, method for producing composition, method for producing cured product, and method for producing film

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5489276B2 (en) * 2010-03-11 2014-05-14 日立マクセル株式会社 Method for manufacturing authenticity determination medium
JP2017087677A (en) * 2015-11-16 2017-05-25 株式会社ブリヂストン Method for producing tire
JP6447745B2 (en) 2015-11-20 2019-01-09 Jsr株式会社 Photosensitive pattern forming material
CN112558345A (en) 2015-12-23 2021-03-26 凡泰姆股份公司 Display device
EP3184602B1 (en) * 2015-12-23 2018-07-04 Avantama AG Luminescent component
WO2017108568A1 (en) * 2015-12-23 2017-06-29 Avantama Ag Luminescent component
KR102653473B1 (en) * 2015-12-29 2024-04-01 삼성전자주식회사 Electronic devices including quantum dots
WO2017195062A1 (en) * 2016-05-13 2017-11-16 King Abdullah University Of Science And Technology Multifunctional light, data device, or combination and systems
KR102155979B1 (en) * 2016-08-11 2020-09-15 아반타마 아게 Luminescent crystals and manufacturing thereof
EP3282000A1 (en) * 2016-08-11 2018-02-14 Avantama AG Solid polymer composition
EP3456798B1 (en) * 2016-08-11 2020-05-20 Avantama AG Luminescent crystals and manufacturing thereof
WO2018146561A1 (en) * 2017-02-09 2018-08-16 King Abdullah University Of Science And Technology Light converting luminescent composite materials
JP6997564B2 (en) * 2017-09-11 2022-01-17 アイカ工業株式会社 Injection type composition
KR20210086634A (en) * 2018-10-31 2021-07-08 스미또모 가가꾸 가부시키가이샤 Curable compositions, films, laminates and display devices
JP7387092B2 (en) * 2018-12-17 2023-11-28 ソウル大学校産学協力団 Metal halide perovskite light emitting device and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201903028A (en) * 2017-05-17 2019-01-16 日商住友化學股份有限公司 Film, method for producing composition, method for producing cured product, and method for producing film

Also Published As

Publication number Publication date
JP7437492B2 (en) 2024-02-22
TW202212533A (en) 2022-04-01
KR20220047334A (en) 2022-04-15
WO2022008451A1 (en) 2022-01-13
CN114341311B (en) 2024-09-03
EP3936585A1 (en) 2022-01-12
EP4069800A1 (en) 2022-10-12
JP2022549949A (en) 2022-11-29
EP4069800C0 (en) 2024-07-24
EP4069800B1 (en) 2024-07-24
CN114341311A (en) 2022-04-12
US20240141229A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
TWI818279B (en) A solid polymer composition, a self-supporting film and a light emitting device
TW202102645A (en) Luminescent component
JP2024096697A (en) Light-emitting component, light-emitting device, and sheet-like material
US20220396730A1 (en) Solid polymer composition, a self-supporting film and a light emitting device
EP3913033A1 (en) Light emitting component, a light emitting device and a sheet-like material
US11803084B2 (en) Light emitting component and light emitting device
TW202208595A (en) Light emitting component, a light emitting device and a sheet-like material
JP7430829B2 (en) Color conversion film with inorganic separation layer
TW202346534A (en) Color conversion film with separation layer