TWI817546B - Method for activating semiconductor backup unit - Google Patents

Method for activating semiconductor backup unit Download PDF

Info

Publication number
TWI817546B
TWI817546B TW111121326A TW111121326A TWI817546B TW I817546 B TWI817546 B TW I817546B TW 111121326 A TW111121326 A TW 111121326A TW 111121326 A TW111121326 A TW 111121326A TW I817546 B TWI817546 B TW I817546B
Authority
TW
Taiwan
Prior art keywords
region
semiconductor
fuse element
backup unit
trench isolation
Prior art date
Application number
TW111121326A
Other languages
Chinese (zh)
Other versions
TW202336769A (en
Inventor
陳奕儒
饒瑞修
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/691,264 external-priority patent/US11843030B2/en
Priority claimed from US17/691,932 external-priority patent/US11876044B2/en
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Publication of TW202336769A publication Critical patent/TW202336769A/en
Application granted granted Critical
Publication of TWI817546B publication Critical patent/TWI817546B/en

Links

Abstract

A method for activating a semiconductor backup unit includes providing a fuse element connected to the backup unit. The fuse element includes an active area, which includes a source region and a drain region beside the source region, a gate region disposed on the active area, and a shallow trench isolation (STI) structure surrounding the active area. The method also includes applying a stress voltage on the drain region of the fuse element; accumulating electrons in a portion of the STI structure adjacent to the drain region; generating a conductive path through the drain region and the source region so that the fuse element is conductive; and activating the backup unit through the fuse element.

Description

半導體備用單元的啟動方法How to start a semiconductor backup unit

本申請案主張美國第17/691,264及17/691,932號專利申請案之優先權(即優先權日為「2022年3月10日」),其內容以全文引用之方式併入本文中。This application claims priority to U.S. Patent Application Nos. 17/691,264 and 17/691,932 (that is, the priority date is "March 10, 2022"), the contents of which are incorporated herein by reference in their entirety.

本揭露關於一種半導體備用單元的啟動方法。The present disclosure relates to a startup method of a semiconductor backup unit.

熔絲以及電子熔絲通常使用在記憶體元件中以啟動半導體備用單元(或是冗餘記憶體胞)。熔絲以及電子熔絲可將該半導體備用單元轉換為一正常電路以進行正常操作。對於目前可用的氧化物熔絲而言,其熔斷電壓/電流取決於製程變化,以使熔斷效率隨著不準確而降低。此外,目前可用的熔絲在極高電壓下被熔斷。因此,需要一種具有穩定且熔斷電壓相對較低的改良型熔絲。Fuses and electronic fuses are commonly used in memory devices to activate semiconductor backup cells (or redundant memory cells). Fuses and electronic fuses convert the semiconductor backup unit into a normal circuit for normal operation. For currently available oxide fuses, the melting voltage/current depends on process variations, so that the melting efficiency decreases with inaccuracy. Additionally, currently available fuses blow at extremely high voltages. Therefore, there is a need for an improved fuse with stable and relatively low melting voltage.

上文之「先前技術」說明僅提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。The above description of "prior art" only provides background technology, and does not admit that the above description of "prior art" reveals the subject matter of the present disclosure. It does not constitute prior art of the present disclosure, and any description of the above "prior art" does not constitute the prior art of the present disclosure. should not be used as any part of this case.

本揭露之一實施例提供一種熔絲元件。該熔絲元件包括一主動區,包括:一源極區;以及一汲極區,設置在該源極區旁邊;一閘極區,設置在該主動區上;以及一淺溝隔離結構,圍繞該主動區。此外,該汲極區包括一端子,經配置以接收一應力電壓,以便建立經由該汲極區到該源極區的一導電路徑。An embodiment of the present disclosure provides a fuse element. The fuse element includes an active region, including: a source region; a drain region disposed next to the source region; a gate region disposed on the active region; and a shallow trench isolation structure surrounding The active zone. Additionally, the drain region includes a terminal configured to receive a stress voltage to establish a conductive path through the drain region to the source region.

本揭露之另一實施例提供一種半導體元件,包括一PMOS。該PMOS包括一主動區,包括:一源極區;以及一汲極區,設置在該源極區旁邊;一閘極區,設置在該主動區上;以及一淺溝隔離結構,設置在該主動區周圍。此外,該汲極區包括一端子,經配置以接收一第一電壓,以便建立從該汲極區到該源極區的一導電路徑,其中當沒有外部電壓施加在該閘極區上時,該導電路徑保持不變。Another embodiment of the present disclosure provides a semiconductor device including a PMOS. The PMOS includes an active region, including: a source region; a drain region disposed next to the source region; a gate region disposed on the active region; and a shallow trench isolation structure disposed on the around the active zone. Additionally, the drain region includes a terminal configured to receive a first voltage to establish a conductive path from the drain region to the source region, wherein when no external voltage is applied to the gate region, The conductive path remains unchanged.

本揭露之另一實施例提供一種啟動一半導體備用單元的方法。該方法包括提供一熔絲元件以連接到該半導體備用單元。該熔絲元件包括一主動區,包括:一源極區;以及一汲極區,設置在該源極區旁邊;一閘極區,設置在該主動區上;以及一淺溝隔離結構,圍繞該主動區。該方法亦包括施加一應力電壓在該熔絲元件的該汲極區上;累績多個電子在該淺溝隔離結構鄰近該主動區的一部分中;產生一導電路徑,該導電路經經由該汲極區到該源極區,以使該熔絲元件是導電的;以及經由該熔絲元件而啟動該半導體備用單元。Another embodiment of the present disclosure provides a method of activating a semiconductor backup unit. The method includes providing a fuse element for connection to the semiconductor backup unit. The fuse element includes an active region, including: a source region; a drain region disposed next to the source region; a gate region disposed on the active region; and a shallow trench isolation structure surrounding The active zone. The method also includes applying a stress voltage to the drain region of the fuse element; accumulating a plurality of electrons in a portion of the shallow trench isolation structure adjacent to the active region; and generating a conductive path through the conductive path. a drain region to the source region so that the fuse element is conductive; and the semiconductor backup unit is activated via the fuse element.

本揭露提供一種具有類似於一PMOS之結構的熔絲元件,以便隨著製造技術的發展而可減少熔絲元件的所需面積。本揭露的熔絲元件利用施加在其該汲極上的一應力訊號來引起一效應以建立經過該汲極到該源極的一導電路徑。在該導電路徑建立時,該熔絲元件則視為已熔斷。意即,無論該閘極是否經配置以為接收一控制訊號,該PMOS都被導通(turned on)。結果,可以在沒有閘極電壓的情況下產生該PMOS的通道。引起此效應的該應力訊號是低於傳統熔絲的應力訊號。The present disclosure provides a fuse element with a structure similar to a PMOS, so that the required area of the fuse element can be reduced with the development of manufacturing technology. The fuse element of the present disclosure utilizes a stress signal applied to its drain electrode to cause an effect to establish a conductive path from the drain electrode to the source electrode. When the conductive path is established, the fuse element is deemed to have blown. That is, the PMOS is turned on regardless of whether the gate is configured to receive a control signal. As a result, the channel of this PMOS can be generated without gate voltage. The stress signal that causes this effect is lower than that of a conventional fuse.

上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。The technical features and advantages of the present disclosure have been summarized rather broadly above so that the detailed description of the present disclosure below may be better understood. Other technical features and advantages that constitute the subject matter of the patentable scope of the present disclosure will be described below. It should be understood by those of ordinary skill in the art that the concepts and specific embodiments disclosed below can be easily used to modify or design other structures or processes to achieve the same purposes of the present disclosure. Those with ordinary knowledge in the technical field to which the present disclosure belongs should also understand that such equivalent constructions cannot depart from the spirit and scope of the present disclosure as defined in the appended patent application scope.

以下描述了組件和配置的具體範例,以簡化本揭露之實施例。當然,這些實施例僅用以例示,並非意圖限制本揭露之範圍。舉例而言,在敘述中第一部件形成於第二部件之上,可能包含形成第一和第二部件直接接觸的實施例,也可能包含額外的部件形成於第一和第二部件之間,使得第一和第二部件不會直接接觸的實施例。另外,本揭露之實施例可能在許多範例中重複參照標號及/或字母。這些重複的目的是為了簡化和清楚,除非內文中特別說明,其本身並非代表各種實施例及/或所討論的配置之間有特定的關係。Specific examples of components and configurations are described below to simplify embodiments of the present disclosure. Of course, these embodiments are only for illustration and are not intended to limit the scope of the present disclosure. For example, in the description, the first component is formed on the second component, which may include an embodiment in which the first and second components are in direct contact, or may include an additional component formed between the first and second components. An embodiment such that the first and second components are not in direct contact. In addition, embodiments of the present disclosure may repeat reference numbers and/or letters in many examples. These repetitions are for simplicity and clarity and do not in themselves represent a specific relationship between the various embodiments and/or configurations discussed unless otherwise specified herein.

應當理解,當一個元件被稱為「連接到(connected to)」或「耦接到(coupled to)」另一個元件時,則該初始元件可直接連接到或耦接到另一個元件,或是其他中間元件。It will be understood that when an element is referred to as being "connected to" or "coupled to" another element, it is either directly connected or coupled to the other element, or other intermediate components.

應當理解,儘管這裡可以使用術語第一,第二,第三等來描述各種元件、部件、區域、層或區段(sections),但是這些元件、部件、區域、層或區段不受這些術語的限制。相反,這些術語僅用於將一個元件、組件、區域、層或區段與另一個區域、層或區段所區分開。因此,在不脫離本發明進步性構思的教導的情況下,下列所討論的第一元件、組件、區域、層或區段可以被稱為第二元件、組件、區域、層或區段。It will be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers or sections, these elements, components, regions, layers or sections are not governed by these terms. limits. Rather, these terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present progressive concept.

本文中使用之術語僅是為了實現描述特定實施例之目的,而非意欲限制本發明。如本文中所使用,單數形式「一(a)」、「一(an)」,及「該(the)」意欲亦包括複數形式,除非上下文中另作明確指示。將進一步理解,當術語「包括(comprises)」及/或「包括(comprising)」用於本說明書中時,該等術語規定所陳述之特徵、整數、步驟、操作、元件,及/或組件之存在,但不排除存在或增添一或更多個其他特徵、整數、步驟、操作、元件、組件,及/或上述各者之群組。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an", and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that when the terms "comprises" and/or "comprising" are used in this specification, these terms specify the stated features, integers, steps, operations, elements, and/or components. exists, but does not exclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups of the above.

應當理解,在本揭露的描述中,使用的術語「大約」(about)改變本揭露的成分、組成或反應物的數量,意指例如藉由用於製備濃縮物或溶液的典型測量以及液體處理程序而可能發生的數量變化。再者,在測量程序中的疏忽錯誤、用於製造組合物或實施方法之成分的製造、來源或純度的差異等可能會導致變化。在一方面,術語「大約」(about)是指在報告數值的10%以內。在另一個方面,術語「大約」(about)是指在報告數值的5%以內。進而,在另一方面,術語「大約」(about)是指在所報告數值的10、9、8、7、6、5、4、3、2或1%以內。It will be understood that in the description of the present disclosure, the term "about" is used to alter the amount of an ingredient, composition, or reactant of the present disclosure, meaning, for example, by typical measurements and liquid handling used to prepare concentrates or solutions. Quantity changes may occur due to the procedure. Furthermore, variations may result from inadvertent errors in measurement procedures, differences in the manufacture, source or purity of the ingredients used to make the compositions or practice the methods, and the like. In one aspect, the term "about" means within 10% of a reported value. In another aspect, the term "about" means within 5% of the reported value. Furthermore, in another aspect, the term "about" means within 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1% of the reported value.

圖1A及圖1B是結構示意圖,例示本揭露一些實施例用於啟動半導體備用單元之半導體元件100。1A and 1B are schematic structural diagrams illustrating a semiconductor device 100 used to activate a semiconductor backup unit according to some embodiments of the present disclosure.

請參考圖1A,半導體元件100包括一熔絲元件110以及一半導體備用單元120。在圖1A與圖1B之間的差異在於在圖1B中的半導體元件100包括一熔斷熔絲元件110a。在一些實施例中,半導體元件100可為一記憶體、一記憶體元件、一記憶體晶粒或是一記憶體晶片。舉例來說,記憶體可為一動態隨機存取記憶體(DRAM)。在一些實施例中,記憶體包括一或多個記憶體胞(或記憶體位元/記憶體區塊)。在一些實施例中,記憶體可包括一正常記憶體胞以及一半導體備用單元(一冗餘記憶體胞),該半導體備用單元是當該正常記憶體胞不可用時的一備援。Referring to FIG. 1A , the semiconductor component 100 includes a fuse component 110 and a semiconductor backup unit 120 . The difference between FIG. 1A and FIG. 1B is that the semiconductor element 100 in FIG. 1B includes a blown fuse element 110a. In some embodiments, the semiconductor device 100 may be a memory, a memory device, a memory die or a memory chip. For example, the memory may be a dynamic random access memory (DRAM). In some embodiments, memory includes one or more memory cells (or memory bits/memory blocks). In some embodiments, the memory may include a normal memory cell and a semiconductor spare unit (a redundant memory cell) that is a backup when the normal memory cell is unavailable.

在些實施例中,該正常記憶體可包括多個記憶體胞的一陣列(圖未示)。每一個記憶體胞能夠儲存資訊的一單個位元。在該等正常記憶體胞之該陣列內的一特定位元是藉由一特別位址所具體指定。類似地,每一個冗餘記憶體胞能夠儲存資訊的一單個位元。在該等冗餘記憶體胞之該陣列內的一特定位元是藉由一特別位址所具體指定。In some embodiments, the normal memory may include an array of memory cells (not shown). Each memory cell can store a single bit of information. A particular bit within the array of normal memory cells is specified by a special address. Similarly, each redundant memory cell can store a single bit of information. A specific bit within the array of redundant memory cells is specified by a special address.

半導體元件100可僅包括一個冗餘記憶體胞120,經由熔絲元件110而與其他元件連接。在一些實施例中,熔絲元件110可具有兩個端子。熔絲元件110的其中一個端子可經配置以接收相對高電壓V H,同時另一個端子可耦接到具有相對低電壓V L的一節點。 The semiconductor device 100 may include only one redundant memory cell 120 connected to other devices via a fuse element 110 . In some embodiments, fuse element 110 may have two terminals. One terminal of fuse element 110 may be configured to receive a relatively high voltage VH , while the other terminal may be coupled to a node with a relatively low voltage VL .

熔絲元件110藉由一熔絲電路(圖未示)而可熔斷。在一些實施例中,熔絲元件110可為一反熔絲。熔絲元件110可為一電子熔絲。在另一實施例中,熔絲元件110可為一氧化物熔絲。當熔絲元件110尚未被熔斷/熔化時,其將具有一高電阻。熔絲元件110的電阻是高到足以斷開冗餘記憶體胞120的連接。請參考圖1B,當熔絲元件110a被熔斷/熔化時,其將具有一低電阻。熔斷熔絲元件110a的電阻可低到足以建立經由熔斷熔絲元件110a的一導電路徑,以使冗餘記憶體胞120可經由熔斷熔絲元件110a而連接到在半導體元件100中的其他元件。The fuse element 110 can be blown by a fuse circuit (not shown). In some embodiments, fuse element 110 may be an antifuse. Fuse element 110 may be an electronic fuse. In another embodiment, the fuse element 110 may be an oxide fuse. When the fuse element 110 has not been blown/melted, it will have a high resistance. The resistance of the fuse element 110 is high enough to disconnect the redundant memory cell 120 . Referring to FIG. 1B , when the fuse element 110a is blown/melted, it will have a low resistance. The resistance of the blown fuse element 110a may be low enough to establish a conductive path through the blown fuse element 110a so that the redundant memory cell 120 may be connected to other components in the semiconductor device 100 via the blown fuse element 110a.

在一些實施例中,熔絲元件110a可在一熔斷操作之後被熔斷,然後將冗餘記憶體胞120連接到在半導體元件100中的其他元件。在連接到在半導體元件100中的其他元件之後,冗餘記憶體胞120可當作一正常記憶體胞進行工作。In some embodiments, the fuse element 110a can be blown after a blowing operation, and then the redundant memory cell 120 is connected to other elements in the semiconductor device 100. After being connected to other devices in the semiconductor device 100, the redundant memory cell 120 can operate as a normal memory cell.

更詳細地,在半導體元件100製造之後,對半導體元件100上執行多個測試以確定如果有的話,是哪個記憶體胞具有缺陷。當一些正常記憶體胞無法工作時,熔絲元件110可被熔斷以將冗餘記憶體元件120切換到一正常記憶體胞。因此,冗餘記憶體胞可交替地視為一修復電路。In more detail, after the semiconductor device 100 is manufactured, a plurality of tests are performed on the semiconductor device 100 to determine which memory cells, if any, have defects. When some normal memory cells fail to operate, the fuse element 110 can be blown to switch the redundant memory element 120 to a normal memory cell. Therefore, the redundant memory cell can alternatively be regarded as a repair circuit.

圖2A是頂視示意圖,例示本揭露一些實施例的半導體元件200。半導體元件200可包括一熔絲元件。半導體元件200可包括一電晶體。舉例來說,半導體元件200可包括一PMOS。圖2A顯示剖線A-A以及B-B,圖2B及圖2C提供沿這些剖線之剖面的細節。FIG. 2A is a top view schematic diagram illustrating a semiconductor device 200 according to some embodiments of the present disclosure. Semiconductor element 200 may include a fuse element. Semiconductor device 200 may include a transistor. For example, the semiconductor device 200 may include a PMOS. Figure 2A shows sections A-A and B-B, and Figures 2B and 2C provide details of sections along these sections.

請參考圖2A,半導體元件200可包括一閘極區210、一汲極區220、一源極區230、一淺溝隔離結構240以及一氧化物層265。半導體元件200可包括一基底(在圖2A中未示)。在一些實施例中,半導體元件200可包括一主動區250(如圖2B及圖2C所示)。Referring to FIG. 2A , the semiconductor device 200 may include a gate region 210 , a drain region 220 , a source region 230 , a shallow trench isolation structure 240 and an oxide layer 265 . Semiconductor device 200 may include a substrate (not shown in FIG. 2A). In some embodiments, the semiconductor device 200 may include an active region 250 (as shown in FIGS. 2B and 2C ).

在一些實施例中,主動區250可包括在半導體元件200中的一源極區230。在一些實施例中,主動區250可包括在半導體元件200中的一汲極區220。汲極區220可設置在源極區230旁邊。在一些實施例中,汲極區220可與源極區230分隔開。在一些實施例中,汲極區220與源極區230可摻雜有相同摻雜物。舉例來說,汲極區220與源極區230可摻雜有P型摻雜物。在一些實施例中,汲極區220可具有不同於源極區230的一面積。舉例來說,汲極區220的面積可超過源極區230的面積。汲極區220可具有超過源極區230的一寬度。在另一實施例中,汲極區220可具有超過源極區230的一長度。在一些實施例中,汲極區220可具有相同於源極區230的一面積。在一實施例中,汲極區220的寬度可相同於源極區230的寬度。在一些實施例中,汲極區220的一形狀可呈矩形。在一些實施例中,源極區230的形狀可呈矩形。在一些實施例中,汲極區220與源極區230可垂直延伸。In some embodiments, active region 250 may include a source region 230 in semiconductor device 200 . In some embodiments, active region 250 may include a drain region 220 in semiconductor device 200 . The drain region 220 may be disposed next to the source region 230. In some embodiments, drain region 220 may be separated from source region 230 . In some embodiments, the drain region 220 and the source region 230 may be doped with the same dopant. For example, the drain region 220 and the source region 230 may be doped with P-type dopants. In some embodiments, drain region 220 may have a different area than source region 230 . For example, the area of the drain region 220 may exceed the area of the source region 230 . The drain region 220 may have a width exceeding the source region 230 . In another embodiment, the drain region 220 may have a length exceeding the source region 230 . In some embodiments, drain region 220 may have the same area as source region 230 . In one embodiment, the width of the drain region 220 may be the same as the width of the source region 230 . In some embodiments, the drain region 220 may have a rectangular shape. In some embodiments, source region 230 may be rectangular in shape. In some embodiments, the drain region 220 and the source region 230 may extend vertically.

閘極區210可設置在主動區250上。在一些實施例中,閘極區210可設置在汲極區220與源極區230上。閘極區210可垂直延伸。在一些實施例中,閘極區210可呈矩形。在一些實施例中,閘極區210可設置在鄰近汲極區220處。閘極區210可設置在鄰近源極區230處。在一些實施例中,閘極區210可設置在汲極區220與源極區230之間。The gate region 210 may be disposed on the active region 250 . In some embodiments, the gate region 210 may be disposed on the drain region 220 and the source region 230 . Gate region 210 may extend vertically. In some embodiments, gate region 210 may be rectangular. In some embodiments, gate region 210 may be disposed adjacent drain region 220 . Gate region 210 may be disposed adjacent to source region 230 . In some embodiments, the gate region 210 may be disposed between the drain region 220 and the source region 230 .

淺溝隔離結構240可設置在主動區250周圍。意即,淺溝隔離結構240可設置在源極區230與汲極區220周圍。在一些實施例中,淺溝隔離結構240可圍繞主動區250。在一些實施例中,閘極區210可設置在淺溝隔離結構240上。在一些實施例中,閘極區210可跨經淺溝隔離結構240而設置。A shallow trench isolation structure 240 may be disposed around the active region 250 . That is, the shallow trench isolation structure 240 may be disposed around the source region 230 and the drain region 220 . In some embodiments, shallow trench isolation structure 240 may surround active region 250 . In some embodiments, gate region 210 may be disposed on shallow trench isolation structure 240 . In some embodiments, gate region 210 may be disposed across shallow trench isolation structure 240 .

在一些實施例中,氧化物層265可設置在主動區250與淺溝隔離結構240之間。氧化物層265可設置在主動區250周圍。意即,氧化物層265可設置在源極區230與汲極區220周圍。在一些實施例中,氧化物層265可圍繞主動區250。在一些實施例中,閘極區210可設置在氧化物層265上。在一些實施例中,閘極區210可跨經氧化物層265而設置。In some embodiments, oxide layer 265 may be disposed between active region 250 and shallow trench isolation structure 240 . Oxide layer 265 may be disposed around active region 250 . That is, the oxide layer 265 may be disposed around the source region 230 and the drain region 220 . In some embodiments, oxide layer 265 may surround active region 250 . In some embodiments, gate region 210 may be disposed on oxide layer 265 . In some embodiments, gate region 210 may be disposed across oxide layer 265 .

圖2B是剖視示意圖,例示本揭露一些實施例沿圖2A之剖線A-A的半導體元件200。圖2B顯示一半導體元件200A,其為圖2A之半導體元件200的一剖面。半導體元件200A可包括一閘極區210、一汲極區220、一源極區230、一淺溝隔離結構240、一主動區250、一閘極氧化物層260、一氧化物層265、接觸點211、221、231以及金屬層212、222、232。在一些實施例中,半導體元件200A可為一PMOS結構。FIG. 2B is a schematic cross-sectional view illustrating the semiconductor device 200 along the cross-section line A-A of FIG. 2A according to some embodiments of the present disclosure. FIG. 2B shows a semiconductor device 200A, which is a cross-section of the semiconductor device 200 of FIG. 2A . The semiconductor device 200A may include a gate region 210, a drain region 220, a source region 230, a shallow trench isolation structure 240, an active region 250, a gate oxide layer 260, an oxide layer 265, contacts Points 211, 221, 231 and metal layers 212, 222, 232. In some embodiments, the semiconductor device 200A may be a PMOS structure.

請參考圖2B,主動區250包括汲極區220與源極區230。在一些實施例中,主動區250可摻雜。舉例來說,主動區250可摻雜有N型摻雜物。在一些實施例中,汲極區220與源極區230可摻雜有不同於主動區250的摻雜物。舉例來說,汲極區220與源極區230可摻雜有P型摻雜物。Referring to FIG. 2B , the active region 250 includes a drain region 220 and a source region 230 . In some embodiments, active region 250 may be doped. For example, active region 250 may be doped with N-type dopants. In some embodiments, the drain region 220 and the source region 230 may be doped with different dopants than the active region 250 . For example, the drain region 220 and the source region 230 may be doped with P-type dopants.

閘極區210設置在主動區250上。在一些實施例中,閘極區210可設置在汲極區220與源極區230上。在一實施例中,閘極區210的一部分可與汲極區220的一部分重疊。在另一實施例中,閘極區210的一部分可與源極區230的一部分重疊。在一些實施例中,閘極區210的一邊緣部分可與汲極區220的一邊緣部分重疊。在一些實施例中,閘極區210的一邊緣部分可與源極區230的一邊緣部分重疊。The gate area 210 is provided on the active area 250. In some embodiments, the gate region 210 may be disposed on the drain region 220 and the source region 230 . In one embodiment, a portion of the gate region 210 may overlap a portion of the drain region 220 . In another embodiment, a portion of the gate region 210 may overlap a portion of the source region 230 . In some embodiments, an edge portion of the gate region 210 may overlap an edge portion of the drain region 220 . In some embodiments, an edge portion of the gate region 210 may overlap an edge portion of the source region 230 .

在一些實施例中,閘極氧化物層260可設置在閘極區210與主動區250之間。在一些實施例中,閘極氧化物層260可水平地設置在汲極區220與源極區230之間。閘極氧化物層260可具有大致相同於閘極區210的一寬度。在一些實施例中,閘極氧化物層260的寬度可超過閘極區210的寬度。In some embodiments, gate oxide layer 260 may be disposed between gate region 210 and active region 250 . In some embodiments, the gate oxide layer 260 may be horizontally disposed between the drain region 220 and the source region 230 . Gate oxide layer 260 may have a width that is approximately the same as gate region 210 . In some embodiments, the width of gate oxide layer 260 may exceed the width of gate region 210 .

在一些實施例中,閘極氧化物層260可設置在汲極區220與源極區230上。在一實施例中,閘極氧化物層260的一部分可與汲極區220的一部分重疊。在另一實施例中,閘極氧化物層260的一部分可與源極區230的一部分重疊。In some embodiments, the gate oxide layer 260 may be disposed on the drain region 220 and the source region 230 . In one embodiment, a portion of the gate oxide layer 260 may overlap a portion of the drain region 220 . In another embodiment, a portion of gate oxide layer 260 may overlap a portion of source region 230 .

在一些實施例中,閘極氧化物層260可具有一側表面,其與汲極區220的一側表面呈共面。閘極氧化物層260可具有一側表面,其與源極區230的一側表面呈共面。意即,閘極氧化物層的寬度可相同於汲極區220與源極區230之間的距離。In some embodiments, the gate oxide layer 260 may have a side surface that is coplanar with a side surface of the drain region 220 . The gate oxide layer 260 may have one side surface that is coplanar with one side surface of the source region 230 . That is, the width of the gate oxide layer may be the same as the distance between the drain region 220 and the source region 230 .

請參考圖2A及圖2B,淺溝隔離結構240可設置在主動區250周圍。在一些實施例中,淺溝隔離結構240可圍繞主動區250。淺溝隔離結構240可具有一上表面,其大致對準主動區250的一上表面。在一些實施例中,淺溝隔離結構240的上表面可與主動區250的上表面未對準。淺溝隔離結構240可與主動區250分隔開一距離。在一些實施例中,淺溝隔離結構240可與汲極區220分隔開一距離。在一些實施例中,淺溝隔離結構240可包括氮化矽(SiN)的一材料或是其他適合的材料。Referring to FIGS. 2A and 2B , the shallow trench isolation structure 240 may be disposed around the active region 250 . In some embodiments, shallow trench isolation structure 240 may surround active region 250 . The shallow trench isolation structure 240 may have an upper surface substantially aligned with an upper surface of the active region 250 . In some embodiments, the upper surface of shallow trench isolation structure 240 may be misaligned with the upper surface of active region 250 . Shallow trench isolation structure 240 may be separated from active region 250 by a distance. In some embodiments, shallow trench isolation structure 240 may be separated from drain region 220 by a distance. In some embodiments, the shallow trench isolation structure 240 may include a material of silicon nitride (SiN) or other suitable materials.

氧化物層265設置在主動區250與淺溝隔離結構240之間。在一些實施例中,氧化物層265可圍繞主動區250。在一些實施例中,氧化物層265的材料可類似於閘極氧化物層260的材料。在另一實施例中,氧化物層265的材料可不同於閘極氧化物層260的材料。氧化物層265可具有一上表面,其大致對準主動區250的上表面。在一些實施例中,氧化物層265的上表面可與主動區250的上表面未對準。在一些實施例中,氧化物層265可為一側壁氧化物。側壁氧化物設置在鄰近汲極區220、源極區230或主動區250處。The oxide layer 265 is disposed between the active region 250 and the shallow trench isolation structure 240 . In some embodiments, oxide layer 265 may surround active region 250 . In some embodiments, the material of oxide layer 265 may be similar to the material of gate oxide layer 260 . In another embodiment, the material of oxide layer 265 may be different from the material of gate oxide layer 260 . Oxide layer 265 may have an upper surface generally aligned with the upper surface of active region 250 . In some embodiments, the upper surface of oxide layer 265 may be misaligned with the upper surface of active region 250 . In some embodiments, oxide layer 265 may be a sidewall oxide. The sidewall oxide is disposed adjacent the drain region 220, the source region 230, or the active region 250.

在一些實施例中,接觸點211設置在閘極區210上。接觸點211可具有一上寬度以及一下寬度。在一實施例中,接觸點211的上寬度可相同於下寬度。在另一實施例中,接觸點211的上寬度可超過下寬度。換言之,接觸點211朝向閘極區210逐漸變細。In some embodiments, contact point 211 is provided on gate region 210 . Contact point 211 may have an upper width and a lower width. In one embodiment, the upper width of the contact point 211 may be the same as the lower width. In another embodiment, the upper width of the contact point 211 may exceed the lower width. In other words, the contact point 211 tapers toward the gate region 210 .

在一些實施例中,接觸點221設置在汲極區220上。接觸點221可具有一上寬度以及一下寬度。在一些實施例中,接觸點221的上寬度可超過下寬度。換言之,接觸點221可朝向汲極區220逐漸變細。In some embodiments, contact point 221 is provided on drain region 220 . Contact point 221 may have an upper width and a lower width. In some embodiments, the upper width of contact point 221 may exceed the lower width. In other words, the contact point 221 may taper toward the drain region 220 .

在一些實施例中,接觸點231設置在源極區230上。接觸點231可具有一上寬度以及一下寬度。在一些實施例中,接觸點231的上寬度可超過下寬度。換言之,接觸點231可朝向源極區230逐漸變細。In some embodiments, contact 231 is provided on source region 230 . Contact point 231 may have an upper width and a lower width. In some embodiments, the upper width of contact point 231 may exceed the lower width. In other words, the contact point 231 may be tapered toward the source region 230 .

金屬層212可設置在閘極區210上。金屬層212經由接觸點211而電性連接到閘極區210。在一些實施例中,閘極區210經配置以接收來自金屬層212的電訊號(電壓或電流)。在一些實施例中,可在金屬層212處獲得閘極區210的一電壓V GMetal layer 212 may be disposed on gate region 210 . The metal layer 212 is electrically connected to the gate region 210 via the contact point 211 . In some embodiments, gate region 210 is configured to receive electrical signals (voltage or current) from metal layer 212 . In some embodiments, a voltage V G of the gate region 210 may be obtained at the metal layer 212 .

金屬層222可設置在汲極區220上。金屬層222經由接觸點221而電性連接到汲極區220。在一些實施例中,汲極區220經配置以接收來自金屬層222的電訊號(電壓或電流)。在一些實施例中,可在金屬層222處獲得汲極區220的一電壓V DMetal layer 222 may be disposed on drain region 220 . The metal layer 222 is electrically connected to the drain region 220 via the contact point 221 . In some embodiments, drain region 220 is configured to receive an electrical signal (voltage or current) from metal layer 222 . In some embodiments, a voltage V D of the drain region 220 may be obtained at the metal layer 222 .

金屬層232可設置在源極區230上。金屬層232經由接觸點231而電性連接到源極區230。在一些實施例中,源極區230經配置以接收來自金屬層232的電訊號(電壓或電流)。在一些實施例中,可在金屬層232處獲得源極區230的一電壓V BMetal layer 232 may be disposed on source region 230. The metal layer 232 is electrically connected to the source region 230 via the contact point 231 . In some embodiments, source region 230 is configured to receive electrical signals (voltage or current) from metal layer 232 . In some embodiments, a voltage V B of source region 230 may be obtained at metal layer 232 .

在一些實施例中,金屬層222可與金屬層232齊平。在一些實施例中,金屬層212可齊平於金屬層222。在一些實施例中,金屬層212可齊平於金屬層232。意即,金屬層212、222、232可大致在相同位面上。In some embodiments, metal layer 222 may be flush with metal layer 232 . In some embodiments, metal layer 212 may be flush with metal layer 222 . In some embodiments, metal layer 212 may be flush with metal layer 232 . That is, the metal layers 212, 222, and 232 may be substantially on the same plane.

圖2C是剖視示意圖,例示本揭露一些實施例沿圖2A之剖線B-B的半導體元件200。圖2C顯示一半導體元件200B,其為圖2A之半導體元件200的一剖面。半導體元件200B可包括一閘極區210、一淺溝隔離結構240、一主動區250、一閘極氧化物層260以及一氧化物層265。FIG. 2C is a schematic cross-sectional view illustrating the semiconductor device 200 along the cross-section line B-B of FIG. 2A according to some embodiments of the present disclosure. FIG. 2C shows a semiconductor device 200B, which is a cross-section of the semiconductor device 200 of FIG. 2A . The semiconductor device 200B may include a gate region 210, a shallow trench isolation structure 240, an active region 250, a gate oxide layer 260 and an oxide layer 265.

如圖2C所示,閘極氧化物層260設置在氧化物層265上。在一些實施例中,閘極氧化物層260可設置在氧化物層265的一部分上。閘極氧化物層260可設置在淺溝隔離結構240上。在一些實施例中,閘極氧化物層260課設置在淺溝隔離結構240的一部分上。在一些實施例中,淺溝隔離結構240可與主動區側向分隔開一距離。在一些實施例中,氧化物層265可填滿在淺溝隔離結構240與主動區250之間。As shown in FIG. 2C , gate oxide layer 260 is disposed on oxide layer 265 . In some embodiments, gate oxide layer 260 may be disposed on a portion of oxide layer 265 . Gate oxide layer 260 may be disposed on shallow trench isolation structure 240 . In some embodiments, gate oxide layer 260 is disposed over a portion of shallow trench isolation structure 240 . In some embodiments, shallow trench isolation structure 240 may be laterally spaced apart from the active region by a distance. In some embodiments, oxide layer 265 may fill between shallow trench isolation structure 240 and active region 250 .

請往回參考圖2B,汲極區220的金屬層222可經配置以接收一應力電壓。在一些實施例中,應力電壓可具有一量值,其超過半導體元件(或PMOS)200A的一操作電壓。舉例來說,應力電壓的量值可以是操作電壓的兩倍以上。當PMOS 200A的操作電壓是-2.5V時,則應力電壓可小於-5V。Referring back to FIG. 2B , metal layer 222 of drain region 220 may be configured to receive a stress voltage. In some embodiments, the stress voltage may have a magnitude that exceeds an operating voltage of the semiconductor device (or PMOS) 200A. For example, the magnitude of the stress voltage may be more than twice the operating voltage. When the operating voltage of PMOS 200A is -2.5V, the stress voltage can be less than -5V.

當應力電壓施加在汲極區220時,多個電子累積在汲極區220,而汲極區220摻雜有N型摻雜物。在汲極區220中所累積的該等電子可導致多個電洞累積在主動區250的該部分中,而主動區250摻雜有P型摻雜物。在一些實施例中,該等電洞可累積在主動區250鄰近汲極區220的該部分中。在一些實施例中,該等電洞累積在主動區250在汲極區220與源極區230之間的該部分中。由於該等電洞累積在主動區250的該部分中(如圖2C所示),因此該等電子可累積在淺溝隔離結構240的該部分中。在一些實施例中,在淺溝隔離結構240之該部分中所累積的該等電子可對應於主動區250所累積之該等電洞的該部分。因此,該等電子累積在淺溝隔離結構240鄰近主動區250之部分處的該部分中,其鄰近汲極區220。在一些實施例中,該等電子可累積在淺溝隔離結構240鄰近汲極區220的哀部分中。When a stress voltage is applied to the drain region 220, a plurality of electrons accumulate in the drain region 220, and the drain region 220 is doped with N-type dopants. The electrons accumulated in the drain region 220 may cause holes to accumulate in that portion of the active region 250, which is doped with P-type dopants. In some embodiments, the holes may accumulate in the portion of active region 250 adjacent drain region 220 . In some embodiments, the holes accumulate in the portion of the active region 250 between the drain region 220 and the source region 230 . Since the holes are accumulated in the portion of the active region 250 (as shown in FIG. 2C ), the electrons can be accumulated in the portion of the shallow trench isolation structure 240 . In some embodiments, the electrons accumulated in the portion of shallow trench isolation structure 240 may correspond to the portion of holes accumulated in active region 250 . Therefore, the electrons accumulate in the portion of the shallow trench isolation structure 240 adjacent the active region 250 , which is adjacent the drain region 220 . In some embodiments, the electrons may accumulate in a portion of shallow trench isolation structure 240 adjacent to drain region 220.

在一些實施例中,一旦被主動區250之該部分中的該等電洞所吸引,則該等電子很容易被捕獲在淺溝隔離結構240中。即使應力電壓不再施加到汲極區220,該等電子仍可被捕獲在淺溝隔離結構240中(如圖2C所示)。因此,由於淺溝隔離結構240中被捕獲的該等電子,該等電洞仍然累積在主動區250的該部分中,以便可建立經由汲極區220到源極區230的一導電路徑(如圖2B所示)。In some embodiments, the electrons are easily trapped in the shallow trench isolation structure 240 once attracted to the holes in the portion of the active region 250 . Even if the stress voltage is no longer applied to the drain region 220, the electrons may still be trapped in the shallow trench isolation structure 240 (as shown in FIG. 2C). Therefore, due to the electrons trapped in the shallow trench isolation structure 240, the holes are still accumulated in that portion of the active region 250, so that a conductive path can be established through the drain region 220 to the source region 230 (eg, shown in Figure 2B).

在PMOS 200A的正常操作下,經由在閘極區210上所施加的一閘極電壓而可建立經由汲極區220到源極區230的導電路徑。反之,在淺溝隔離結構240中捕獲該等電子之後,可在沒有施加在閘極區上之一電壓的情況下建立導電路徑。PMOS 200A可為在施加應力電壓之前具有高電阻的一熔絲元件,其中熔絲元件尚未被熔斷。在汲極區220施加應力電壓以在淺溝隔離結構240中累積該等電子後,熔絲元件200A可被熔斷至較低電阻。Under normal operation of PMOS 200A, a conductive path through drain region 220 to source region 230 is established via a gate voltage applied across gate region 210 . Conversely, after trapping the electrons in the shallow trench isolation structure 240, a conductive path can be established without a voltage being applied to the gate region. PMOS 200A may be a fuse element with high resistance before the stress voltage is applied, where the fuse element has not yet been blown. After applying a stress voltage to the drain region 220 to accumulate the electrons in the shallow trench isolation structure 240, the fuse element 200A can be blown to a lower resistance.

為了啟動此效應或是為了熔斷熔絲元件200,淺溝隔離結構240與主動區250必須足夠接近。舉例來說,在淺溝隔離結構240與主動區250之間的距離可小於14nm,藉此該等電子可輕易地被捕獲在淺溝隔離結構240中。在一些實施例中,PMOS 200可為一短通道元件。PMOS 200的通道可位在汲極區220與源極區230之間。在一些實施例中,PMOS 200之通道的一長度可為在汲極區220與源極區230之間的距離。由於較短的通道,可輕易地熔斷PMOS 200。舉例來說,通道的長度可小於0.20μm。在一些實施例中,通道的長度可小於0.18μm。在一些實施例中,PMOS 200可為一平面電晶體。In order to activate this effect or to blow the fuse element 200, the shallow trench isolation structure 240 and the active region 250 must be close enough. For example, the distance between the shallow trench isolation structure 240 and the active region 250 can be less than 14 nm, whereby the electrons can be easily trapped in the shallow trench isolation structure 240 . In some embodiments, PMOS 200 may be a short channel device. The channel of the PMOS 200 may be located between the drain region 220 and the source region 230 . In some embodiments, a length of the channel of the PMOS 200 may be the distance between the drain region 220 and the source region 230 . Due to the short channel, PMOS 200 can be easily blown. For example, the length of the channel may be less than 0.20 μm. In some embodiments, the length of the channel may be less than 0.18 μm. In some embodiments, PMOS 200 may be a planar transistor.

目前可用的氧化物熔絲元件以一極高的電壓熔斷而擊穿閘極氧化物。氧化物熔絲元件的崩潰電壓可因製程變化而改變,以便降低氧化物熔絲元件的效率。本揭露提供一種可以在相對低電壓下熔斷的熔絲元件。相較於傳統的反熔絲,本揭露的熔絲元件需要縮減的面積。Currently available oxide fuse elements blow at an extremely high voltage to break down the gate oxide. The breakdown voltage of an oxide fuse element can change due to process variations, thereby reducing the efficiency of the oxide fuse element. The present disclosure provides a fuse element that can blow at relatively low voltage. Compared with traditional antifuses, the fuse element of the present disclosure requires a reduced area.

圖3是結構示意圖,例示本揭露一些實施例的半導體元件300。半導體元件300包括一熔絲元件310以及一半導體備用單元320。在一些實施例中,半導體備用單元320可對應於在圖1A及圖1B中的半導體備用單元120。FIG. 3 is a schematic structural diagram illustrating a semiconductor device 300 according to some embodiments of the present disclosure. The semiconductor component 300 includes a fuse component 310 and a semiconductor backup unit 320 . In some embodiments, semiconductor backup unit 320 may correspond to semiconductor backup unit 120 in FIGS. 1A and 1B .

在一些實施例中,熔絲元件310可為所述的熔絲元件200。熔絲元件310可具有一閘極端子、一汲極端子以及一源極端子。在一些實施例中,半導體備用單元320可電性連接到熔絲元件310的源極端子。熔絲元件310的閘極端子、汲極端子以及源極端子可經配置以接收電壓或電流。在一些實施例中,源極端子可經配置以接收一電源訊號(power signal)。當熔絲元件310尚未熔斷時,半導體備用單元320因經過其間的電流不足而無法啟動。在熔絲元件310熔斷之前,熔絲元件310具有一高電阻汲極端子與源極端子。因此,半導體備用單元320則視為斷開連接。In some embodiments, the fuse element 310 may be the fuse element 200 described above. The fuse element 310 may have a gate terminal, a drain terminal, and a source terminal. In some embodiments, semiconductor backup unit 320 may be electrically connected to the source terminal of fuse element 310 . The gate terminal, drain terminal, and source terminal of fuse element 310 may be configured to receive voltage or current. In some embodiments, the source terminal may be configured to receive a power signal. When the fuse element 310 has not been blown, the semiconductor backup unit 320 cannot be started due to insufficient current passing through it. Before the fuse element 310 blows, the fuse element 310 has a high resistance drain terminal and a source terminal. Therefore, the semiconductor backup unit 320 is considered disconnected.

為了啟動熔絲元件310,應力訊號V B(電壓或電流)可施加在熔絲元件310的汲極端子上。因此,多個電子累積在熔絲元件310之淺溝隔離結構的一部分中,以便可產生經過汲極端子與源極端子的導電路徑301。換言之,熔斷熔絲元件310可為導電的。在熔絲元件310熔斷之後,其具有經由汲極端子到源極端子的一導電路徑301,因此可啟動半導體備用單元320。 To activate fuse element 310, a stress signal V B (voltage or current) may be applied to the drain terminal of fuse element 310. Therefore, a plurality of electrons accumulate in a portion of the shallow trench isolation structure of the fuse element 310 so that a conductive path 301 can be created through the drain terminal and the source terminal. In other words, blow fuse element 310 may be electrically conductive. After the fuse element 310 is blown, it has a conductive path 301 from the drain terminal to the source terminal, and therefore the semiconductor backup unit 320 can be activated.

圖4是曲線圖,例示本揭露一些實施之半導體元件的閘極的電壓VG對流經汲極之電流Id的曲線圖。請參考圖4,x軸表示以任意單位(A.U.)在圖3中之熔絲元件310的閘極的電壓VG。y軸表示以任意單位(A.U.)經過圖3中之熔絲元件310的汲極的電流Id。線段401表示未熔斷的熔絲元件310當作一正常PMOS進行操作。依據線段401,未熔斷的熔絲元件310可具有隨著電壓VG降低而經過汲極(從源極到汲極)增加的電流Id,其中降低的電壓意味著更大的電壓量值。線段402顯示熔斷的熔絲元件310是導電的,即使它沒有施加在其閘極上的電壓。依據線段402,當電壓VG為零時,熔斷的熔絲元件310具有經過汲極區的電流Id。FIG. 4 is a graph illustrating a graph of gate voltage VG versus current Id flowing through the drain of some embodiments of the semiconductor device of the present disclosure. Please refer to FIG. 4. The x-axis represents the voltage VG of the gate of the fuse element 310 in FIG. 3 in arbitrary units (A.U.). The y-axis represents the current Id in arbitrary units (A.U.) through the drain of fuse element 310 in FIG. 3 . Line segment 401 indicates that the unblown fuse element 310 operates as a normal PMOS. According to line segment 401, the unblown fuse element 310 may have an increasing current Id through the drain (from source to drain) as the voltage VG decreases, where decreasing voltage means a greater voltage magnitude. Line segment 402 shows that blown fuse element 310 is conductive even though it has no voltage applied to its gate. According to the line segment 402, when the voltage VG is zero, the blown fuse element 310 has a current Id passing through the drain region.

圖5是流程示意圖,例示本揭露一些實施例啟動一半導體備用單元的方法500。在一些實施例中,此方法可在圖3中的半導體元件300上實現。方法500可使用在啟動如圖3所示的一半導體備用單元320。在一些實施例中,啟動一記憶體之一半導體備用單元的方法500可包括步驟510、520、530、540以及550。FIG. 5 is a flowchart illustrating a method 500 for activating a semiconductor backup unit according to some embodiments of the present disclosure. In some embodiments, this method may be implemented on semiconductor device 300 in FIG. 3 . Method 500 may be used to activate a semiconductor backup unit 320 as shown in FIG. 3 . In some embodiments, the method 500 for activating a semiconductor spare unit of a memory may include steps 510, 520, 530, 540, and 550.

為了更好地理解,方法500可以參考圖2A到圖2C以及圖3中所示的半導體元件(熔絲元件或PMOS)200/200A/200B/310來進行描述。For better understanding, the method 500 may be described with reference to FIGS. 2A to 2C and the semiconductor element (fuse element or PMOS) 200/200A/200B/310 shown in FIG. 3.

在步驟510中,可提供一熔絲元件在一記憶體中。該熔絲元件可連接到該半導體備用單元(冗餘記憶體胞或位元)。在一些實施例中,熔絲元件200/200A/200B可包括一主動區、一閘極區以及一淺溝隔離結構,該閘極區設置在該主動區上,該淺溝隔離結構圍繞該主動區。在一些實施例中,該主動區包括一源極區以及一汲極區,該汲極區設置在該源極區旁邊。In step 510, a fuse element may be provided in a memory. The fuse element can be connected to the semiconductor spare unit (redundant memory cell or bit). In some embodiments, the fuse element 200/200A/200B may include an active region, a gate region, and a shallow trench isolation structure. The gate region is disposed on the active region, and the shallow trench isolation structure surrounds the active region. district. In some embodiments, the active region includes a source region and a drain region, and the drain region is disposed next to the source region.

在步驟520中,一應力電壓可施加在該熔絲元件的該汲極區上。該應力電壓的細節在前面已經提供,因此為了清楚起見,則在此予以省略。In step 520, a stress voltage may be applied to the drain region of the fuse element. Details of this stress voltage have been provided previously and are therefore omitted here for the sake of clarity.

在步驟S530中,多個電子累積在該淺溝隔離結構鄰近該汲極區的一部分中。如圖2B及圖2C所示,由於該應力電壓施加在該汲極區上,因此該等電子可累積在該淺溝隔離結構鄰近該主動區與該汲極區的該部分中。In step S530, a plurality of electrons are accumulated in a portion of the shallow trench isolation structure adjacent to the drain region. As shown in FIGS. 2B and 2C , since the stress voltage is applied to the drain region, the electrons may accumulate in the portion of the shallow trench isolation structure adjacent to the active region and the drain region.

在步驟540中,可經由該熔絲元件的該汲極區與該源極區而產生一導電路徑,以使該熔絲元件可為導電的。依據與圖2B及圖2C相關的描述,在該淺溝隔離結構的該部分中累積該等電子的情況下,該熔絲元件可具有經由該汲極區到該源極區的一導電路徑。換言之,可產生該PMOS的通道以響應在該淺溝隔離結構中所捕獲的該等電子。In step 540, a conductive path may be created through the drain region and the source region of the fuse element so that the fuse element may be conductive. According to the description related to FIGS. 2B and 2C , with the electrons accumulated in the portion of the shallow trench isolation structure, the fuse element may have a conductive path through the drain region to the source region. In other words, the PMOS channel can be created in response to the electrons trapped in the shallow trench isolation structure.

在步驟550中,可經由熔斷熔絲元件310而啟動半導體備用單元320。在一些實施例中,半導體備用單元320可經由熔斷熔絲元件310而電性連接到其他元件。意即,半導體備用單元320可從冗餘切換到正常。In step 550 , the semiconductor backup unit 320 may be activated via blowing the fuse element 310 . In some embodiments, semiconductor backup unit 320 may be electrically connected to other components via blown fuse component 310 . That is, the semiconductor backup unit 320 can be switched from redundant to normal.

本揭露之一實施例提供一種熔絲元件。該熔絲元件包括一主動區,包括:一源極區;以及一汲極區,設置在該源極區旁邊;一閘極區,設置在該主動區上;以及一淺溝隔離結構,圍繞該主動區。此外,該汲極區包括一端子,經配置以接收一應力電壓,以便建立經由該汲極區到該源極區的一導電路徑。An embodiment of the present disclosure provides a fuse element. The fuse element includes an active region, including: a source region; a drain region disposed next to the source region; a gate region disposed on the active region; and a shallow trench isolation structure surrounding The active zone. Additionally, the drain region includes a terminal configured to receive a stress voltage to establish a conductive path through the drain region to the source region.

本揭露之另一實施例提供一種半導體元件,包括一PMOS。該PMOS包括一主動區,包括:一源極區;以及一汲極區,設置在該源極區旁邊;一閘極區,設置在該主動區上;以及一淺溝隔離結構,設置在該主動區周圍。此外,該汲極區包括一端子,經配置以接收一第一電壓,以便建立從該汲極區到該源極區的一導電路徑,其中當沒有外部電壓施加在該閘極區上時,該導電路徑保持不變。Another embodiment of the present disclosure provides a semiconductor device including a PMOS. The PMOS includes an active region, including: a source region; a drain region disposed next to the source region; a gate region disposed on the active region; and a shallow trench isolation structure disposed on the around the active zone. Additionally, the drain region includes a terminal configured to receive a first voltage to establish a conductive path from the drain region to the source region, wherein when no external voltage is applied to the gate region, The conductive path remains unchanged.

本揭露之另一實施例提供一種啟動一半導體備用單元的方法。該方法包括提供一熔絲元件以連接到該半導體備用單元。該熔絲元件包括一主動區,包括:一源極區;以及一汲極區,設置在該源極區旁邊;一閘極區,設置在該主動區上;以及一淺溝隔離結構,圍繞該主動區。該方法亦包括施加一應力電壓在該熔絲元件的該汲極區上;累績多個電子在該淺溝隔離結構鄰近該主動區的一部分中;產生一導電路徑,該導電路經經由該汲極區到該源極區,以使該熔絲元件是導電的;以及經由該熔絲元件而啟動該半導體備用單元。Another embodiment of the present disclosure provides a method of activating a semiconductor backup unit. The method includes providing a fuse element for connection to the semiconductor backup unit. The fuse element includes an active region, including: a source region; a drain region disposed next to the source region; a gate region disposed on the active region; and a shallow trench isolation structure surrounding The active zone. The method also includes applying a stress voltage to the drain region of the fuse element; accumulating a plurality of electrons in a portion of the shallow trench isolation structure adjacent to the active region; and generating a conductive path through the conductive path. a drain region to the source region so that the fuse element is conductive; and the semiconductor backup unit is activated via the fuse element.

本揭露提供一種具有類似於一PMOS之結構的熔絲元件,以便隨著製造技術的發展而可減少熔絲元件的所需面積。本揭露的熔絲元件利用施加在其該汲極上的一應力訊號來引起一效應以建立經過該汲極到該源極的一導電路徑。在該導電路徑建立時,該熔絲元件則視為已熔斷。意即,無論該閘極是否經配置以為接收一控制訊號,該PMOS都被導通(turned on)。換言之,可以在沒有閘極電壓的情況下產生該PMOS的通道。引起此效應的該應力訊號是低於傳統熔絲的應力訊號。The present disclosure provides a fuse element with a structure similar to a PMOS, so that the required area of the fuse element can be reduced with the development of manufacturing technology. The fuse element of the present disclosure utilizes a stress signal applied to its drain electrode to cause an effect to establish a conductive path from the drain electrode to the source electrode. When the conductive path is established, the fuse element is deemed to have blown. That is, the PMOS is turned on regardless of whether the gate is configured to receive a control signal. In other words, the PMOS channel can be generated without gate voltage. The stress signal that causes this effect is lower than that of a conventional fuse.

雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所定義之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。Although the disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and substitutions can be made without departing from the spirit and scope of the disclosure as defined by the claimed claims. For example, many of the processes described above may be implemented in different ways and replaced with other processes or combinations thereof.

再者,本申請案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟包含於本申請案之申請專利範圍內。Furthermore, the scope of the present application is not limited to the specific embodiments of the process, machinery, manufacture, material compositions, means, methods and steps described in the specification. Those skilled in the art can understand from the disclosure content of this disclosure that existing or future developed processes, machinery, manufacturing, etc. that have the same functions or achieve substantially the same results as the corresponding embodiments described herein can be used according to the present disclosure. A material composition, means, method, or step. Accordingly, such processes, machines, manufacturing, material compositions, means, methods, or steps are included in the patent scope of this application.

100:半導體元件 110:熔絲元件 110a:熔斷熔元件 120:半導體備用單元 200:半導體元件 200A:半導體元件 200B:半導體元件 210:閘極區 211:接觸點 212:金屬層 220:汲極區 221:接觸點 222:金屬層 230:源極區 231:接觸點 232:金屬層 240:淺溝隔離結構 250:主動區 260:閘極氧化物層 265:氧化物層 300:半導體元件 301:導電路徑 310:熔絲元件 320:半導體備用單元 401:線段 402:線段 500:方法 510:步驟 520:步驟 530:步驟 540:步驟 550:步驟 Id:電流 V B:電壓 V D:電壓 V G:電壓 VG:電壓 V H:相對高電壓 V L:相對低電壓 100: semiconductor element 110: fuse element 110a: fuse element 120: semiconductor backup unit 200: semiconductor element 200A: semiconductor element 200B: semiconductor element 210: gate region 211: contact point 212: metal layer 220: drain region 221 :Contact point 222: Metal layer 230: Source area 231: Contact point 232: Metal layer 240: Shallow trench isolation structure 250: Active area 260: Gate oxide layer 265: Oxide layer 300: Semiconductor element 301: Conductive path 310: Fuse element 320: Semiconductor backup unit 401: Line segment 402: Line segment 500: Method 510: Step 520: Step 530: Step 540: Step 550: Step Id: Current V B : Voltage V D : Voltage V G : Voltage VG : Voltage V H : Relatively high voltage V L : Relatively low voltage

當結合圖式考慮時,可以藉由參考詳細描述以及申請專利範圍來獲得對本揭露的更完整的理解,其中相同的元件編號在整個圖式中是代類似的元件。 圖1A及圖1B是結構示意圖,例示本揭露一些實施例用於啟動半導體備用單元之半導體元件。 圖2A是頂視示意圖,例示本揭露一些實施例的半導體元件。 圖2B是剖視示意圖,例示本揭露一些實施例沿圖2A之剖線A-A的半導體元件。 圖2C是剖視示意圖,例示本揭露一些實施例沿圖2A之剖線B-B的半導體元件。 圖3是結構示意圖,例示本揭露一些實施例的半導體元件。 圖4是曲線圖,例示本揭露一些實施之半導體元件的閘極的電壓對流經汲極之電流的曲線圖。 圖5是流程示意圖,例示本揭露一些實施例啟動一半導體備用單元的方法。 A more complete understanding of the present disclosure can be obtained by referring to the detailed description and claims when considered in conjunction with the drawings, wherein like element numbers refer to similar elements throughout the drawings. 1A and 1B are schematic structural diagrams illustrating semiconductor devices used to activate a semiconductor backup unit according to some embodiments of the present disclosure. FIG. 2A is a top view schematic diagram illustrating a semiconductor device according to some embodiments of the present disclosure. FIG. 2B is a schematic cross-sectional view illustrating a semiconductor device along the cross-section line A-A of FIG. 2A according to some embodiments of the present disclosure. FIG. 2C is a schematic cross-sectional view illustrating a semiconductor device along the cross-section line B-B of FIG. 2A according to some embodiments of the present disclosure. FIG. 3 is a schematic structural diagram illustrating a semiconductor device according to some embodiments of the present disclosure. FIG. 4 is a graph illustrating a gate voltage versus a current flowing through a drain of a semiconductor device according to some embodiments of the present disclosure. FIG. 5 is a schematic flowchart illustrating a method of activating a semiconductor backup unit according to some embodiments of the present disclosure.

200:半導體元件 210:閘極區 220:汲極區 230:源極區 240:淺溝隔離結構 265:氧化物層 200:Semiconductor components 210: Gate area 220: Drainage area 230: Source region 240:Shallow trench isolation structure 265:Oxide layer

Claims (11)

一種半導體備用單元的啟動方法,包括: 連接一熔絲元件到一半導體備用單元,其中該熔絲元件包括: 一主動區,包括: 一源極區;以及 一汲極區,設置在該源極區旁邊; 一閘極區,設置在該主動區上;以及 一淺溝隔離結構,圍繞該主動區; 施加一應力電壓在該熔絲元件的該汲極區上; 累績多個電子在該淺溝隔離結構鄰近該主動區的一部分中;以及 產生一導電路徑,該導電路經經由該汲極區到該源極區,以使該熔絲元件是導電的;以及 經由該熔絲元件而啟動該半導體備用單元。 A method for starting a semiconductor backup unit, including: Connect a fuse element to a semiconductor backup unit, wherein the fuse element includes: An active area, including: a source region; and a drain region, arranged next to the source region; a gate area disposed on the active area; and a shallow trench isolation structure surrounding the active area; applying a stress voltage to the drain region of the fuse element; A plurality of electrons are accumulated in a portion of the shallow trench isolation structure adjacent to the active region; and Creating a conductive path through the drain region to the source region such that the fuse element is conductive; and The semiconductor backup unit is activated via the fuse element. 如請求項1所述之半導體備用單元的啟動方法,其中該熔絲元件包括一PMOS。The startup method of a semiconductor backup unit as claimed in claim 1, wherein the fuse element includes a PMOS. 如請求項2所述之半導體備用單元的啟動方法,其中該PMOS是一短通道元件,該短通道元件具有小於0.2μm的一通道長度。The startup method of a semiconductor backup unit as described in claim 2, wherein the PMOS is a short channel element, and the short channel element has a channel length of less than 0.2 μm. 如請求項2所述之半導體備用單元的啟動方法,其中該應力電壓具有一量值,該量值大於該PMOS之一操作電壓的兩倍。The startup method of a semiconductor backup unit as described in claim 2, wherein the stress voltage has a magnitude greater than twice an operating voltage of the PMOS. 如請求項1所述之半導體備用單元的啟動方法,其中該應力電壓具有一量值,該量值大於5V。The method for starting a semiconductor backup unit as described in claim 1, wherein the stress voltage has a magnitude greater than 5V. 如請求項1所述之半導體備用單元的啟動方法,其中該淺溝隔離結構與該主動區側向分隔開一距離。The startup method of a semiconductor backup unit as claimed in claim 1, wherein the shallow trench isolation structure is laterally separated from the active region by a distance. 如請求項6所述之半導體備用單元的啟動方法,其中在該淺溝隔離結構與該主動區之間的該距離小於14nm。The startup method of a semiconductor backup unit as claimed in claim 6, wherein the distance between the shallow trench isolation structure and the active region is less than 14 nm. 如請求項6所述之半導體備用單元的啟動方法,還包括一氧化物層,填滿在該淺溝隔離結構與該主動區之間。The startup method of a semiconductor backup unit as described in claim 6 further includes an oxide layer filling between the shallow trench isolation structure and the active region. 如請求項1所述之半導體備用單元的啟動方法,其中當沒有外部電壓施加在該閘極區上時,該導電路徑保持不變。The startup method of a semiconductor backup unit as claimed in claim 1, wherein when no external voltage is applied to the gate region, the conductive path remains unchanged. 如請求項1所述之半導體備用單元的啟動方法,其中該淺溝隔離結構包括氮化矽的一材料。The startup method of a semiconductor backup unit as claimed in claim 1, wherein the shallow trench isolation structure includes a material of silicon nitride. 如請求項1所述之半導體備用單元的啟動方法,還包括一閘極氧化物層,設置在該閘極區與該主動區之間。The method for starting a semiconductor backup unit as claimed in claim 1 further includes a gate oxide layer disposed between the gate region and the active region.
TW111121326A 2022-03-10 2022-06-08 Method for activating semiconductor backup unit TWI817546B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/691,264 2022-03-10
US17/691,264 US11843030B2 (en) 2022-03-10 2022-03-10 Fuse elements and semiconductor devices
US17/691,932 US11876044B2 (en) 2022-03-10 2022-03-10 Method for activating backup unit through fuse element
US17/691,932 2022-03-10

Publications (2)

Publication Number Publication Date
TW202336769A TW202336769A (en) 2023-09-16
TWI817546B true TWI817546B (en) 2023-10-01

Family

ID=88927361

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111121326A TWI817546B (en) 2022-03-10 2022-06-08 Method for activating semiconductor backup unit
TW111121325A TWI817545B (en) 2022-03-10 2022-06-08 Fuse elements and semiconductor devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111121325A TWI817545B (en) 2022-03-10 2022-06-08 Fuse elements and semiconductor devices

Country Status (1)

Country Link
TW (2) TWI817546B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998835A (en) * 1998-02-17 1999-12-07 International Business Machines Corporation High performance MOSFET device with raised source and drain
US20070200160A1 (en) * 2006-01-06 2007-08-30 Hyung-Suk Jung Semiconductor device and method of fabricating the same
US20110291191A1 (en) * 2010-01-28 2011-12-01 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy MOS Structure with Suppressed SOI Floating Body Effect and Manufacturing Method thereof
US20210013147A1 (en) * 2018-04-20 2021-01-14 Stmicroelectronics S.R.L. Electronic device with short circuit protection element, fabrication method and design method
TWI722515B (en) * 2019-06-28 2021-03-21 南亞科技股份有限公司 Semiconductor device and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998835A (en) * 1998-02-17 1999-12-07 International Business Machines Corporation High performance MOSFET device with raised source and drain
US20070200160A1 (en) * 2006-01-06 2007-08-30 Hyung-Suk Jung Semiconductor device and method of fabricating the same
US20110291191A1 (en) * 2010-01-28 2011-12-01 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy MOS Structure with Suppressed SOI Floating Body Effect and Manufacturing Method thereof
US20210013147A1 (en) * 2018-04-20 2021-01-14 Stmicroelectronics S.R.L. Electronic device with short circuit protection element, fabrication method and design method
TWI722515B (en) * 2019-06-28 2021-03-21 南亞科技股份有限公司 Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
TW202336769A (en) 2023-09-16
TW202336767A (en) 2023-09-16
TWI817545B (en) 2023-10-01

Similar Documents

Publication Publication Date Title
JP4480649B2 (en) Fuse element and cutting method thereof
US7880266B2 (en) Four-terminal antifuse structure having integrated heating elements for a programmable circuit
CN101061584B (en) An electrically programmable fuse and its manufacture method
US8299570B2 (en) Efuse containing sige stack
US7572724B2 (en) Doped single crystal silicon silicided eFuse
US6130469A (en) Electrically alterable antifuse using FET
US7960809B2 (en) eFuse with partial SiGe layer and design structure therefor
KR100777858B1 (en) Mos transister type electric fuse and programming method therefor, and semiconductor device using the same
KR101385251B1 (en) Multi-level antifuse and method for operation the same
KR20170030137A (en) Semiconductor device and method of manufacturing the same
KR20120050338A (en) Electrical fuse using junction breakdown and semiconductor integrated circuit
KR20140058220A (en) Anti-fuse of semiconductor device and method for fabricating the same
KR100501215B1 (en) Fuse for semiconductor device
TWI817546B (en) Method for activating semiconductor backup unit
US11843030B2 (en) Fuse elements and semiconductor devices
US11876044B2 (en) Method for activating backup unit through fuse element
JP2003115537A (en) Antifuse element, semiconductor device and method of programming the same
TWI780011B (en) Semiconductor structure and controlling method thereof
TWI799041B (en) Benchmark device on a semiconductor wafer with fuse element and method for operating the same
KR20110054329A (en) Fuse structure for high integrated semiconductor device
WO2010032350A1 (en) Semiconductor device and method for manufacturing the same
KR20020000463A (en) Method of forming an antifuse in a semiconductor device and method of operating the same