TWI817519B - Flow estimating method of rotary flowmeter under low flow-speed state - Google Patents

Flow estimating method of rotary flowmeter under low flow-speed state Download PDF

Info

Publication number
TWI817519B
TWI817519B TW111119328A TW111119328A TWI817519B TW I817519 B TWI817519 B TW I817519B TW 111119328 A TW111119328 A TW 111119328A TW 111119328 A TW111119328 A TW 111119328A TW I817519 B TWI817519 B TW I817519B
Authority
TW
Taiwan
Prior art keywords
interval time
estimated
cycle
flow rate
section
Prior art date
Application number
TW111119328A
Other languages
Chinese (zh)
Other versions
TW202346801A (en
Inventor
王仁舜
林楚雄
邱茂誠
陳子揚
Original Assignee
桓達科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桓達科技股份有限公司 filed Critical 桓達科技股份有限公司
Priority to TW111119328A priority Critical patent/TWI817519B/en
Priority to JP2022108076A priority patent/JP7353429B1/en
Priority to CN202310574652.5A priority patent/CN117109667A/en
Application granted granted Critical
Publication of TWI817519B publication Critical patent/TWI817519B/en
Publication of TW202346801A publication Critical patent/TW202346801A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/06Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission

Abstract

A flow estimating method of a rotary flowmeter under a low flow-speed state is applied to a flowmeter having a blade wheel, a sensor, and an MCU, and includes following steps: generating pick-up signal and obtaining, when the sensor is triggered by the blade wheel, electrical signal for transforming into flow-speed information; recording flow-speed information for multiple cycles, wherein the flow-speed information includes multiple interval time in a full cycle; computing multiple estimated interval time for current cycle based on the multiple interval time of multiple cycles being recorded; and, computing and displaying multiple estimated pick-up signals of the current cycle based on the multiple estimated interval time, and estimating flows correspondingly based on the estimated pick-up signals incorporated with triggering time points.

Description

轉動式流量計於低流速狀態的流量推估方法 Flow estimation method for rotary flowmeter in low flow rate state

本發明涉及一種轉動式流量計,尤其涉及一種轉動式流量計的流量推估方法。 The present invention relates to a rotary flow meter, and in particular to a flow estimation method of the rotary flow meter.

請參閱圖1及圖2,其中圖1為相關技術的流量計的示意圖,圖2為相關技術的接入訊號感測示意圖。如圖1所示,一般的流量計1至少具有流體入口11、流體出口12、葉輪13、感測器14及顯示單元15。流量計1可被安裝於需要計算流體的流速/流量的位置。流體(例如水)從流體入口11流入流量計,並從流體出口12流出流量計。流體流入流量計1內時,葉輪13受到流體的流動動量影響而進行轉動。感測器14設置於葉輪13一側。當葉輪13轉動而使其上的一個葉片經過感測器14時,可觸發感測器14產生一筆接入訊號(pick-up signal)2。 Please refer to Figures 1 and 2. Figure 1 is a schematic diagram of a flow meter in related technology, and Figure 2 is a schematic diagram of access signal sensing in related technology. As shown in FIG. 1 , a general flow meter 1 has at least a fluid inlet 11 , a fluid outlet 12 , an impeller 13 , a sensor 14 and a display unit 15 . The flow meter 1 can be installed at a location where the flow rate/flow rate of a fluid needs to be calculated. Fluid (eg water) flows into the flow meter from the fluid inlet 11 and flows out of the flow meter from the fluid outlet 12 . When fluid flows into the flow meter 1, the impeller 13 is affected by the flow momentum of the fluid and rotates. The sensor 14 is arranged on one side of the impeller 13 . When the impeller 13 rotates and one of its blades passes the sensor 14, the sensor 14 is triggered to generate a pick-up signal 2.

圖2的實施例以具有四個葉片的葉輪13為例。感測器14於感測到一個葉片經過時產生一筆接入訊號2,並且流量計1將感測器14感測到完整的四筆接入訊號2所需的時間視為一個周期。 The embodiment of FIG. 2 takes an impeller 13 with four blades as an example. The sensor 14 generates an access signal 2 when it senses the passage of a blade, and the flow meter 1 regards the time required for the sensor 14 to sense four complete access signals 2 as one cycle.

於流體的流速正常的狀態下,葉輪的轉動會很穩定,因此上述接入訊號2的時間點也會很穩定,即,每一筆接入訊號2之間的間隔時間很穩定。如圖2所示,在一個固定量測時間(t)內就可以穩定地獲得四筆接入訊號2(即,形成一個完整周期)。並且,通過

Figure 111119328-A0305-02-0004-1
的計算公式,就可以得到流量當前的流速。接著,再經由特定公式的轉換,即可得到流量計1在這段時間內的累計流量。 When the flow rate of the fluid is normal, the rotation of the impeller will be very stable, so the time point of the above-mentioned access signal 2 will also be very stable, that is, the interval between each access signal 2 will be very stable. As shown in Figure 2, four access signals 2 can be stably obtained within a fixed measurement time (t) (that is, forming a complete cycle). And, through
Figure 111119328-A0305-02-0004-1
The calculation formula can be used to obtain the current flow rate of the flow. Then, through conversion with a specific formula, the accumulated flow rate of flow meter 1 during this period of time can be obtained.

再請參閱圖3,為低流速狀態時的接入訊號感測示意圖。在低流速的狀態下,葉輪13從流體接收到的動量較小,導致葉輪13轉動緩慢與不穩定。並且,再加上靜摩擦力的因素以及流量計1本身的結構限制,將會使得每一筆接入訊號2的間隔時間具有較大的差異,進而形成不穩定的周期。 Please refer to Figure 3 again, which is a schematic diagram of access signal sensing in a low flow rate state. In a low flow rate state, the impeller 13 receives less momentum from the fluid, causing the impeller 13 to rotate slowly and unstable. Moreover, coupled with the factors of static friction and the structural limitations of the flow meter 1 itself, the interval time between each input signal 2 will be greatly different, thus forming an unstable cycle.

如圖3所示,於上述的固定量測時間(t)內所能偵測到的接入訊號2的數量,有可能會小於一,也就是說可能會發生完全量測不到訊號的情況。因此,在低流速的狀態下,流量計1必須使用低流動態擷取時間(T)來偵測所述接入訊號2。然而,流量計1於任兩筆接入訊號2之間並不會產生與輸出任何的資料,因此,流量計1在低流速的狀態下會產生量測結果不準,或是量測解析度過低的問題。 As shown in Figure 3, the number of access signals 2 that can be detected within the above fixed measurement time (t) may be less than one, which means that no signal may be measured at all. . Therefore, in a low flow rate state, the flow meter 1 must use the low flow dynamic acquisition time (T) to detect the access signal 2 . However, flow meter 1 does not generate or output any data between any two input signals 2. Therefore, flow meter 1 will produce inaccurate measurement results or poor measurement resolution when the flow rate is low. Too low problem.

本發明的主要目的,在於提供一種轉動式流量計在低流速狀態的流量推估方法,可藉由先前記錄的資料來於兩筆接入訊號之間計算並提供流量的推估值。 The main purpose of the present invention is to provide a flow estimation method for a rotary flow meter in a low flow rate state, which can use previously recorded data to calculate and provide an estimated flow rate between two access signals.

為了達成上述的目的,本發明的流量推估方法主要可應用在具有葉輪、感測器以及微控制單元的流量計上,並且主要包括下列步驟:a)由該感測器受該葉輪的觸發而產生多筆接入訊號(pick-up signal),其中該葉輪旋轉一圈所觸發產生的多筆該接入訊號的多個間隔時間形成一個周期;b)由該微控制單元依據該多個間隔時間計算該流量計內的一流體的一流速;c)記錄複數周期的一流速資訊,其中該流速資訊至少包括一個周期內的多個該間隔時間;d)由該微控制單元依據所記錄的該複數周期中的多個該間隔時間分別計算本周期中的多個推估間隔時間;及e)依據該多個推估間隔時間計算本周期中的多筆推估接入訊號的一觸發時間點,並且計算與顯示各該觸發時間點上的一推估流量。 In order to achieve the above purpose, the flow estimation method of the present invention can be mainly applied to a flow meter having an impeller, a sensor and a micro-control unit, and mainly includes the following steps: a) The sensor is triggered by the impeller. Generate multiple pick-up signals, wherein multiple intervals of multiple pick-up signals triggered by one rotation of the impeller form a cycle; b) The micro control unit controls the multiple intervals based on the Calculate the flow rate of a fluid in the flow meter over time; c) record the flow rate information of a plurality of cycles, wherein the flow rate information at least includes multiple intervals within one cycle; d) use the micro control unit based on the recorded A plurality of the interval times in the complex period are used to respectively calculate a plurality of estimated interval times in this cycle; and e) calculate a triggering time of multiple estimated access signals in this cycle based on the multiple estimated interval times. point, and calculate and display an estimated flow rate at each trigger time point.

其中,所記錄的該複數周期中的多個該間隔時間,用於計算本周期中的多個推估間隔時間,其所建立的推估函數,是以所記錄的該複數周期中的資料表現,以加權移動平均、中位數、眾數,機率函數等作為推估方法。 Among them, the recorded multiple intervals in the complex period are used to calculate multiple estimated interval times in this cycle, and the estimation function established is expressed by the recorded data in the complex period. , using weighted moving average, median, mode, probability function, etc. as estimation methods.

相較於相關技術,本發明可在兩筆真實的接入訊號間計算並提供流量的推估值。藉此,可以解決一般流量計在兩筆接入訊號之間無法判斷流量的問題,進而可改善流量計在低流速狀態下的量測準確性,並可提昇量測解析度。 Compared with related technologies, the present invention can calculate and provide an estimated flow rate between two real access signals. This can solve the problem that ordinary flow meters cannot determine the flow rate between two access signals, thereby improving the measurement accuracy of the flow meter in low flow conditions and improving the measurement resolution.

1:流量計 1: flow meter

11:流體入口 11: Fluid inlet

12:流體出口 12: Fluid outlet

13:葉輪 13: Impeller

14:感測器 14: Sensor

15:顯示單元 15:Display unit

2:接入訊號 2: Access signal

21:真實累計流量 21:Real cumulative traffic

3:推估累計流量 3: Estimate cumulative traffic

4:流量計 4:Flowmeter

41:葉輪 41: Impeller

411:第一感應葉片 411: First induction blade

412:第二感應葉片 412: Second induction blade

413:第三感應葉片 413:Third induction blade

414:第四感應葉片 414: The fourth induction blade

42:感測器 42: Sensor

43:微控制單元 43:Micro control unit

44:顯示單元 44:Display unit

51:第一真實接入訊號 51:The first real access signal

52:第二真實接入訊號 52:Second real access signal

53:第三真實接入訊號 53: The third real access signal

54:第四真實接入訊號 54:The fourth real access signal

71:第一推估接入訊號 71: First estimated access signal

62、72:第二推估接入訊號 62, 72: Second estimated access signal

63、73:第三推估接入訊號 63, 73: The third estimated access signal

64、74:第四推估接入訊號 64, 74: The fourth estimated access signal

8:真實接入訊號 8: Real access signal

81、811:第一真實接入訊號 81, 811: The first real access signal

S10~S22、S24~S30:推估步驟 S10~S22, S24~S30: estimation steps

S40~S46、S50~S56:計算步驟 S40~S46, S50~S56: Calculation steps

圖1為相關技術的流量計的示意圖。 FIG. 1 is a schematic diagram of a related art flow meter.

圖2為相關技術的接入訊號感測示意圖。 Figure 2 is a schematic diagram of access signal sensing in related technology.

圖3為低流速狀態時的接入訊號感測示意圖。 Figure 3 is a schematic diagram of access signal sensing in a low flow rate state.

圖4為本發明的具體實施例的流量計的電路方塊圖。 Figure 4 is a circuit block diagram of a flow meter according to a specific embodiment of the present invention.

圖5為本發明的具體實施例的推估流量示意圖。 Figure 5 is a schematic diagram of estimated traffic according to a specific embodiment of the present invention.

圖6A為本發明的具體實施例的推估方法的第一流程圖。 FIG. 6A is a first flowchart of an estimation method according to a specific embodiment of the present invention.

圖6B為本發明的具體實施例的推估方法的第二流程圖。 Figure 6B is a second flow chart of the estimation method according to a specific embodiment of the present invention.

圖7為本發明的第一具體實施例的推估間隔時間的計算流程圖。 FIG. 7 is a flow chart for calculating the estimated interval time according to the first specific embodiment of the present invention.

圖8為本發明的第二具體實施例的推估間隔時間的計算流程圖。 FIG. 8 is a flow chart for calculating the estimated interval time according to the second specific embodiment of the present invention.

圖9為本發明的具體實施例的推估間隔時間的示意圖。 Figure 9 is a schematic diagram of the estimated interval time according to a specific embodiment of the present invention.

茲就本發明之一較佳實施例,配合圖式,詳細說明如後。 A preferred embodiment of the present invention is described in detail below with reference to the drawings.

首請參閱圖4,為本發明的具體實施例的流量計的電路方塊圖。本發明揭露了一種轉動式流量計於低流速時的流量推估方法(下面將於說明書中簡稱為推估方法),所述推估方法主要應用於如圖4所示的轉動式流量計(下面簡稱為流量計4)中。 First, please refer to FIG. 4 , which is a circuit block diagram of a flow meter according to a specific embodiment of the present invention. The present invention discloses a flow estimation method for a rotary flow meter at low flow rates (hereinafter referred to as the estimation method in the description). The estimation method is mainly applied to the rotary flow meter as shown in Figure 4 ( Hereinafter referred to as flowmeter 4).

本發明中,流量計4可為蹼輪式流量計或是家用電子水錶,不加以限定。如圖4所示,流量計4主要具有葉輪41、感測器42、微控制單元(Micro Control Unit,MCU)43及顯示單元44。當流體經由流體入口(圖未標示)流入 流量計4並從流體出口(圖未標示)流出流量計4時,可帶動葉輪41轉動。感測器42可設置於葉輪41的一側,用以感測葉輪41的轉動。 In the present invention, the flow meter 4 can be a webbed flow meter or a household electronic water meter, without limitation. As shown in FIG. 4 , the flow meter 4 mainly includes an impeller 41 , a sensor 42 , a micro control unit (Micro Control Unit, MCU) 43 and a display unit 44 . When fluid flows in through the fluid inlet (not shown in the figure) When the flow meter 4 flows out of the fluid outlet (not shown in the figure), the impeller 41 can be driven to rotate. The sensor 42 can be disposed on one side of the impeller 41 to sense the rotation of the impeller 41 .

於圖4的實施例中,葉輪41共具有四個感應葉片,包含第一感應葉片411、第二感應葉片412、第三感應葉片413及第四感應葉片414。當葉輪41旋轉並使得第一感應葉片411被感測器42所感應時,感測器14可產生第一筆接入訊號(pick-up signal)。當第二感應葉片412被感測器42感應時,感測器14可產生第二筆接入訊號。當第三感應葉片413被感測器42所感應時,感測器14可產生第三筆接入訊號。當第四感應葉片414被感測器42所感應時,感測器14可產生第四筆接入訊號。當感測器42被觸發(pick-up)四次並產生了四筆接入訊號後,即可視為一個周期經過。上列的實施例是以葉輪41具有四個感應葉片為陳述,然而實務上運用,葉輪41可具有n個感應葉片,其中n≧1的整數,而不以圖4的實施例為限。 In the embodiment of FIG. 4 , the impeller 41 has a total of four induction blades, including a first induction blade 411 , a second induction blade 412 , a third induction blade 413 and a fourth induction blade 414 . When the impeller 41 rotates and the first sensing blade 411 is sensed by the sensor 42, the sensor 14 can generate a first pick-up signal. When the second sensing blade 412 is sensed by the sensor 42, the sensor 14 can generate a second access signal. When the third sensing blade 413 is sensed by the sensor 42, the sensor 14 can generate a third access signal. When the fourth sensing blade 414 is sensed by the sensor 42, the sensor 14 may generate a fourth access signal. When the sensor 42 is triggered (pick-up) four times and generates four access signals, it can be regarded as a cycle. In the above embodiment, the impeller 41 has four induction blades. However, in practice, the impeller 41 may have n induction blades, where n≧1 is an integer, and is not limited to the embodiment of FIG. 4 .

具體地,所述葉輪41主要可配置在感測器42下方,使得感應葉片411-414在感測器42的下方旋轉。感測器42可例如為霍倫感測器,朝下方產生磁場。當葉輪41藉由任一感應葉片411-414對磁場產生擾動時,感測器42即可受觸發而產生對應的接入訊號。 Specifically, the impeller 41 can be mainly configured below the sensor 42 so that the induction blades 411 - 414 rotate below the sensor 42 . The sensor 42 may be, for example, a Hollen sensor that generates a magnetic field downward. When the impeller 41 disturbs the magnetic field through any of the induction blades 411-414, the sensor 42 can be triggered to generate a corresponding access signal.

圖4的實施例是以具有四個感應葉片411-414的葉輪41為例,但葉輪41的感應葉片的數量並不以四個為限。 The embodiment of FIG. 4 takes an impeller 41 with four induction blades 411-414 as an example, but the number of induction blades of the impeller 41 is not limited to four.

本發明中,流量計4的微控制單元43記錄有可執行程式碼,當微控制單元43執行了所述可執行程式碼後,即可實現本發明的推估方法。並且,本發明的推估方法主要於流量計4內的流體處於低流速狀態時被啟動(容後詳述)。 In the present invention, the microcontrol unit 43 of the flow meter 4 records executable program code. When the microcontrol unit 43 executes the executable program code, the estimation method of the present invention can be implemented. Moreover, the estimation method of the present invention is mainly started when the fluid in the flow meter 4 is in a low flow rate state (details will be described later).

流量計4的微控制單元43可進行時脈(clock)計算,因此可以記錄每一筆接入訊號的觸發時間點,並且可計算任兩筆接入訊號間的間隔時間(例如圖3所示的間隔時間(T))。在獲得了多個間隔時間後,微控制單元43可藉由計算這些間隔時間的倒數,換算出流體在這段時間中的流速。並且,流量計4可將微控制單元43計算所得的流速顯示在流量計4的顯示單元44上。 The microcontrol unit 43 of the flow meter 4 can perform clock calculation, so it can record the trigger time point of each access signal, and can calculate the interval time between any two access signals (for example, as shown in Figure 3 Interval time (T)). After obtaining multiple interval times, the micro control unit 43 can calculate the flow rate of the fluid during this period of time by calculating the reciprocal of these interval times. Furthermore, the flow meter 4 can display the flow rate calculated by the micro control unit 43 on the display unit 44 of the flow meter 4 .

值得一提的是,流量計4可於原廠生產時經過測試與校正,而針對低流速狀態產生一個標定補償的轉換因子(Convert coefficient,即K係數)。當微控制單元43於低流速狀態下計算出流體的當前流速後,可再將流速乘上所述轉換因子,以令計算結果更接近真實。 It is worth mentioning that the flow meter 4 can be tested and calibrated when it is produced by the original factory, and a calibrated compensation conversion factor (Convert coefficient, i.e. K coefficient) is generated for the low flow rate state. After the micro control unit 43 calculates the current flow rate of the fluid in the low flow rate state, the flow rate can be multiplied by the conversion factor to make the calculation result closer to reality.

另,流量計4在經過前述測試與校正後,還可記錄流速與流量的對應參數。微控制單元43將流體在各個間隔時間中的流速乘上所述對應參數,即可得到各個間時間內增加的對應流量。並且,流量計4可將微控制單元43計算所得的流量(增加的流量或累計流量)顯示於顯示單元44上。 In addition, the flow meter 4 can also record the corresponding parameters of flow rate and flow rate after undergoing the aforementioned testing and calibration. The microcontrol unit 43 multiplies the flow rate of the fluid in each interval time by the corresponding parameter to obtain the corresponding increase in flow rate in each interval time. Furthermore, the flow meter 4 can display the flow rate (increased flow rate or accumulated flow rate) calculated by the micro-control unit 43 on the display unit 44 .

請同時參閱圖5,為本發明的具體實施例的推估流量示意圖。於圖5的實施例中,感測器42在時間點Tn-2受到其中一個感應葉片的觸發而產生第一筆接入訊號,並且在時間點Tn-1時受到另一個感應葉片的觸發而產生第二筆接入訊號。基於這兩筆接入訊號的間隔時間(△t0),微控制單元43可以計算出這段時間內增加的流量△Q。並且,微控制單元43將第一筆接入訊號的觸發時間點Tn-2的累計流量Qn-2加上這段時間內增加的流量△Q,即可得到時間點Tn-1的累計流量Qn-1。值得一是的是,此處的累計流量Qn-1及Qn-2皆為真實累計流量21。 Please also refer to FIG. 5 , which is a schematic diagram of estimated traffic according to a specific embodiment of the present invention. In the embodiment of FIG. 5 , the sensor 42 is triggered by one of the sensing blades at time point T n-2 to generate the first access signal, and is triggered by another sensing blade at time point T n-1 . Triggered to generate a second access signal. Based on the interval time (Δt 0 ) between the two access signals, the micro control unit 43 can calculate the increased flow rate ΔQ during this period. Moreover, the micro control unit 43 adds the accumulated flow rate Q n -2 at the trigger time point T n-2 of the first access signal to the increased flow rate ΔQ during this period to obtain the flow rate at the time point T n-1 Cumulative flow Q n-1 . It is worth noting that the accumulated flow rates Q n-1 and Q n-2 here are both real accumulated flow rates 21.

如圖5所示,感測器42在時間點Tn時再受到下一個感應葉片的觸發而產生第三筆接入訊號。基於第二筆接入訊號與第三筆接入訊號的間隔 時間(△T),微控制單元43可以計算出這段時間內增加的流量△Q。並且,微控制單元43將時間點Tn-1時的累計流量Qn-1加上增加的流量△Q,即可得到時間點Tn的累計流量Qn。同樣的,此處的累計流量Qn為真實累計流量21。 As shown in FIG. 5 , the sensor 42 is triggered by the next sensing blade at time point T n to generate a third access signal. Based on the interval time (ΔT) between the second access signal and the third access signal, the micro control unit 43 can calculate the increased flow rate ΔQ during this period. Furthermore, the microcontrol unit 43 adds the increased flow rate ΔQ to the accumulated flow rate Qn -1 at time point Tn- 1 to obtain the accumulated flow rate Qn at time point Tn . Similarly, the cumulative flow rate Qn here is the real cumulative flow rate 21.

當流量計4處於低流速狀態時,各筆接入訊號的間隔時間會變長且變得不穩定(例如圖5中的間隔時間△T)。若兩筆接入訊號的間隔時間很長,則流量計4對於流速/流量的量測結果可能會不準確,並且解析度也會變低。 When the flow meter 4 is in a low flow rate state, the interval between each access signal will become longer and unstable (for example, the interval ΔT in Figure 5). If the interval between two access signals is very long, the measurement results of the flow rate/flow rate of the flow meter 4 may be inaccurate, and the resolution will also become low.

如圖5所示,本發明的主要目的在於,當流量計4處於低流速狀態下,於兩筆真實接入訊號間計算一或多個推估間隔時間,並且基於這些推估間隔時間來於兩個真實累計流量21間提供一或多個推估累計流量3。 As shown in Figure 5, the main purpose of the present invention is to calculate one or more estimated interval times between two real access signals when the flow meter 4 is in a low flow rate state, and based on these estimated interval times, One or more estimated cumulative flows 3 are provided between the two actual cumulative flows 21 .

於圖5的實施例中,流量計4於時間點Tn-1後處於低流速狀態。於此實施例中,微控制單元43會以上一筆真實的接入訊號的觸發時間點Tn-1做為起點,並以先前記錄的多個周期中的多個間隔時間來計算第一推估間隔時間△t1、第二推估間隔時間△t2、第m推估間隔時間△tm。並且,微控制單元43依據這些推估間隔時間來推估多個時間點上的第一推估累計流量q1、第二推估累計流量q2、第m推估累計流量qmIn the embodiment of FIG. 5 , the flow meter 4 is in a low flow rate state after time point T n-1 . In this embodiment, the micro control unit 43 will take the trigger time point T n-1 of the last real access signal as a starting point, and calculate the first estimate based on multiple intervals in the previously recorded multiple cycles. The interval time Δt 1 , the second estimation interval time Δt 2 , and the mth estimation interval time Δt m . Furthermore, the microcontrol unit 43 estimates the first estimated cumulative flow rate q 1 , the second estimated cumulative flow rate q 2 , and the mth estimated cumulative flow rate q m at multiple time points based on these estimation interval times.

藉由上述多個推估間隔時間以及多個推估累計流量3的計算,微控制單元43可以提高流量計4在低流速狀態時的量測準確率以及解析度。 Through the calculation of the above-mentioned multiple estimated interval times and multiple estimated accumulated flow rates 3, the micro-control unit 43 can improve the measurement accuracy and resolution of the flow meter 4 in a low flow rate state.

續請參閱圖6A及圖6B,其中圖6A為本發明的具體實施例的推估方法的第一流程圖,圖6B為本發明的具體實施例的推估方法的第二流程圖。圖6A及圖6B揭露了本發明的推估方法的具體執行步驟,並且所述推估方法主要可應用在如圖4所示的流量計4上,但並不以此為限。 Please continue to refer to FIG. 6A and FIG. 6B. FIG. 6A is a first flow chart of the estimation method according to a specific embodiment of the present invention, and FIG. 6B is a second flow chart of the estimation method according to a specific embodiment of the present invention. 6A and 6B disclose the specific execution steps of the estimation method of the present invention, and the estimation method can mainly be applied to the flow meter 4 shown in FIG. 4 , but is not limited thereto.

如圖6A所示,流量計4被安裝完成並啟動後,即可由感測器42來持續受葉輪41的觸發而產生多筆接入訊號,並由微控制單元43依據內部時脈(Clock)來依序計算並記錄多筆接入訊號間的間隔時間。並且,微控制單元43可依據多個間隔時間計算流體當前的流速(步驟S10)。以具有四個感應葉片411-414的葉輪41為例,葉輪41旋轉一圈共可觸發感測器42產生四筆接入訊號。這四筆接入訊號分別相對於前一筆接入訊號具有一個間隔時間,微控制單元43將四個間隔時間(即,感測器42產生四筆接入訊號的時間)視為一個完整的周期。 As shown in Figure 6A, after the flow meter 4 is installed and started, the sensor 42 can be continuously triggered by the impeller 41 to generate multiple access signals, and the micro control unit 43 can control the flow according to the internal clock (Clock). To sequentially calculate and record the intervals between multiple access signals. Furthermore, the micro control unit 43 can calculate the current flow rate of the fluid based on multiple intervals (step S10). Taking the impeller 41 with four sensing blades 411-414 as an example, one rotation of the impeller 41 can trigger the sensor 42 to generate four access signals. Each of these four access signals has an interval time relative to the previous access signal. The micro control unit 43 regards the four interval times (that is, the time when the sensor 42 generates four access signals) as a complete cycle. .

當流體的流速高於一個預設的門檻值時,流量計4會運行於正常模式。當流體的流速低於門檻值時,流量計4會運行於低流速推估模式。 When the fluid flow rate is higher than a preset threshold, the flow meter 4 will operate in the normal mode. When the flow rate of the fluid is lower than the threshold value, the flow meter 4 will operate in the low flow rate estimation mode.

具體地,當流體的流速高於門檻值時,流體可讓葉輪41穩定的轉動。在正常模式下,多筆接入訊號的間隔時間相當穩定,並可構成穩定周期。因此,流量計4在正常模式下並不需要進行流速/流量的推估。 Specifically, when the flow rate of the fluid is higher than the threshold value, the fluid can cause the impeller 41 to rotate stably. In normal mode, the intervals between multiple access signals are quite stable and can form a stable cycle. Therefore, the flow meter 4 does not need to estimate the flow rate/flow rate in the normal mode.

值得一提的是,本發明的推估方法是採用已經發生的多個完整周期的資料來推估未來周期的資料(例如流速與流量)。為了讓流量計4能夠隨時開始進行推估程序,微控制單元43需在感測器42運作時持續記錄並更新一定數量的周期的流速資訊。其中,所述流速資訊包含了一個完整周期中的多個間隔時間。 It is worth mentioning that the estimation method of the present invention uses the data of multiple complete cycles that have already occurred to estimate the data of future periods (such as flow rate and flow rate). In order to allow the flow meter 4 to start the estimation process at any time, the micro control unit 43 needs to continuously record and update the flow rate information for a certain number of cycles when the sensor 42 is operating. Wherein, the flow rate information includes multiple intervals in a complete cycle.

於一實施例中,微控制單元43可記錄的三個周期的流速資訊,並且於新的資料產生時,刪除最舊的資料,藉此保持參考資料的正確性。於另一實施例中,微控制單元43可記錄最新的五個周期的流速資訊。惟,上述僅為本發明的部分具體實施範例,但並不以此為限。 In one embodiment, the microcontrol unit 43 can record three cycles of flow rate information, and delete the oldest data when new data is generated, thereby maintaining the accuracy of the reference material. In another embodiment, the microcontrol unit 43 can record the latest five cycles of flow rate information. However, the above are only some specific implementation examples of the present invention, but are not limited thereto.

如上所述,若葉輪41具有四個感應葉片411-414,則感測器42可受四個感應葉片411-414的觸發而依序產生四筆接入訊號。並且,所述一個周期中涵蓋了這四筆接入訊號的間隔時間,並且所述流速資訊包含了一個周期內的四個間隔時間。 As mentioned above, if the impeller 41 has four sensing blades 411-414, the sensor 42 can be triggered by the four sensing blades 411-414 to sequentially generate four access signals. Furthermore, the one cycle covers the intervals between these four access signals, and the flow rate information includes the four intervals within one cycle.

於流量計4的運作過程中,微控制單元43持續判斷流體當前的流速是否低於一個預設的門檻值(步驟S12)。若流體當前的流速未低於門檻值(例如0.3m 3/s),代表葉輪41的轉動穩定。此時,微控制單元43持續執行步驟S10,以令感測器42持續感測並產生接入訊號,並且微控制單元43持續更新的流速資訊。 During the operation of the flow meter 4, the micro control unit 43 continues to determine whether the current flow rate of the fluid is lower than a preset threshold (step S12). If the current flow rate of the fluid is not lower than the threshold value (for example, 0.3 m 3 / s ), it means that the rotation of the impeller 41 is stable. At this time, the micro control unit 43 continues to execute step S10 so that the sensor 42 continues to sense and generate the access signal, and the micro control unit 43 continues to update the flow rate information.

於另一實施例中,微控制單元43可以持續進行時脈(Clock)的計算,並且於感測器42沒有產生接入訊號的時間超過門檻時間時,判斷流體當前的流速低於門檻值。惟,上述僅為本發明的部分具體實施範例,但並不以此為限。 In another embodiment, the micro control unit 43 may continue to calculate the clock, and when the time when the sensor 42 does not generate an access signal exceeds the threshold time, it may be determined that the current flow rate of the fluid is lower than the threshold value. However, the above are only some specific implementation examples of the present invention, but are not limited thereto.

若流體當前的流速低於門檻值,代表流量計4目前處於低流速狀態,因此葉輪41的轉動相對不穩定。此時,微控制單元43即可啟動低流速推估模式(步驟S14)。於低流速推估模式中,微控制單元43藉由可執行程式碼的執行來實現推估程序(例如圖6A及圖6B所示的步驟S16至步驟S30,但不以此為限)。 If the current flow rate of the fluid is lower than the threshold value, it means that the flow meter 4 is currently in a low flow rate state, so the rotation of the impeller 41 is relatively unstable. At this time, the microcontrol unit 43 can start the low flow rate estimation mode (step S14). In the low flow rate estimation mode, the microcontrol unit 43 implements the estimation process by executing the executable program code (for example, steps S16 to S30 shown in FIG. 6A and FIG. 6B , but is not limited thereto).

於進入低流速推估模式後,微控制單元43判斷已經記錄的資料是否達到目標數量(步驟S16)。於一實施例中,微控制單元43判斷是否記錄了目標數量的周期(例如三個周期或五個周期等)的流速資訊。於另一實施例 中,微控制單元43判斷是否記錄了目標數量的間隔時間(例如十五個或二十個等)。 After entering the low flow rate estimation mode, the micro control unit 43 determines whether the recorded data reaches the target amount (step S16). In one embodiment, the microcontrol unit 43 determines whether the flow rate information of a target number of cycles (eg, three cycles, five cycles, etc.) has been recorded. In another embodiment , the micro control unit 43 determines whether a target number of interval times (for example, fifteen or twenty, etc.) has been recorded.

若所記錄的流速資訊尚未達到目標數量,則微控制單元43暫不執行流量的推估程序。然而,雖然流量計4處於低流速狀態且微控制單元43不執行流量估程序,但流量計4仍然藉由感測器42對葉輪41進行感測並產生對應的接入訊號,並且藉由微控制單元43來計算接入訊號的間隔時間(步驟S18)。藉此,微控制單元43可以持續記錄並累計足以用來進行推估程序的流速資訊。 If the recorded flow rate information has not reached the target quantity, the micro control unit 43 does not execute the flow estimation process temporarily. However, although the flow meter 4 is in a low flow rate state and the micro control unit 43 does not execute the flow estimation process, the flow meter 4 still senses the impeller 41 through the sensor 42 and generates a corresponding access signal, and through the micro The control unit 43 calculates the interval time of the access signal (step S18). Thereby, the micro control unit 43 can continuously record and accumulate flow rate information sufficient for performing the estimation process.

若所記錄的流速資訊達到目標數量,則微控制單元43可執行流量的推估程序。具體地,微控制單元43首先依據所記錄的複數周期中的各個區段的間隔時間來分別計算本周期中的各個對應區段的推估間隔時間(步驟S20)。 If the recorded flow rate information reaches the target quantity, the microcontrol unit 43 can execute a flow estimation process. Specifically, the micro control unit 43 first calculates the estimated interval time of each corresponding section in this cycle based on the recorded interval time of each section in the plurality of cycles (step S20).

具體地,微控制單元43主要是以過去多個周期中相同區段的間隔時間,來計算本周期中的相同區段的推估間隔時間。 Specifically, the micro control unit 43 mainly calculates the estimated interval time of the same segment in the current cycle based on the interval time of the same segment in the past multiple cycles.

請同時參閱圖9,為本發明的具體實施例的推估間隔時間的示意圖。圖9的實施例是以葉輪41上具有四個感應葉片411-414,並且旋轉一圈可觸發感測器42產生四筆接入訊號為例。 Please also refer to FIG. 9 , which is a schematic diagram of the estimated interval time according to a specific embodiment of the present invention. In the embodiment of FIG. 9 , the impeller 41 has four sensing blades 411 - 414 , and one rotation can trigger the sensor 42 to generate four access signals.

圖9的實施例中,因為流體的流速低於門檻值,故微控制單元43在感測器42於時間點Tn產生了第一真實接入訊號81並進入新的周期Cn後,開始執行流量推估。於時間點Tn時,微控制單元43已經記錄了在先的三個周期Cn-3、Cn-2及Cn-1的流速資訊。於圖9的實施例中,微控制單元43記錄的流速資訊包括了在先的三個周期Cn-3、Cn-2、Cn-1內的第一區段的間隔時間 △t (n-3,1)、△t (n-2,1)及△t (n-1,1)、第二區段的間隔時間△t (n-3,2)、△t (n-2,2)t (n-1,2)、第三區段的間隔時間△t (n-3,3)、△t (n-2,3)及△t (n-1,3),以及第四區段的間隔時間t (n-3,4)、△t (n-2,4)及△t (n-1,4)In the embodiment of FIG. 9 , because the flow rate of the fluid is lower than the threshold value, the micro control unit 43 starts after the sensor 42 generates the first real access signal 81 at time point T n and enters a new period C n . Perform traffic estimation. At time point Tn , the microcontrol unit 43 has recorded the flow rate information of the previous three periods Cn -3 , Cn -2 and Cn-1 . In the embodiment of FIG . 9 , the flow rate information recorded by the micro-control unit 43 includes the interval time Δt ( n -3,1) , △ t ( n -2,1) and △ t ( n -1,1) , the interval time of the second section △ t ( n -3,2) , △ t ( n -2 ,2) and t ( n -1,2) , the interval time of the third section △ t ( n -3,3) , △ t ( n -2,3) and △ t ( n -1,3) , And the interval time t ( n -3,4) , △ t ( n -2,4) and △ t ( n -1,4) of the fourth section.

於周期Cn-3中,感測器42在第一區段的間隔時間△t (n-3,1)結束後產生第二真實接入訊號52、在第二區段的間隔時間△t (n-3,2)結束後產生第三真實接入訊號53、在第三區段的間隔時間△t (n-3,3)結束後產生第四真實接入訊號54,並且在第四區段的間隔時間t (n-3,4)結束後進入周期Cn-2並產生周期Cn-2的第一真實接入訊號51。周期Cn-2與周期Cn-1的流速資訊的規則與周期Cn-3相同,下面不再贅述。 In the period C n-3 , the sensor 42 generates the second real access signal 52 after the interval time Δt ( n -3,1) of the first section ends. During the interval time Δt of the second section, The third real access signal 53 is generated after the end of ( n -3,2) , the fourth real access signal 54 is generated after the interval time Δt ( n -3,3) of the third section ends, and in the fourth After the interval time t ( n -3,4) of the section ends, the cycle enters C n - 2 and the first real access signal 51 of cycle C n - 2 is generated. The rules for the flow rate information of period C n-2 and period C n-1 are the same as those of period C n-3 and will not be described again below.

微控制單元43要計算本周期(例如圖9的周期Cn)中多個時間點的流速,就需要先計算本周期內的多個推估間隔時間。於上述步驟S20中,微控制單元43可取得周期Cn-3、周期Cn-2以及周期Cn-1中的第一區段的間隔時間△t (n-3,1)、△t (n-2,1)以及間隔時間△t (n-1,1),並以這三筆數據計算本周期Cn中的對應區段(即,第一區段)的推估間隔時間Pre t(n,1)In order for the microcontrol unit 43 to calculate the flow rates at multiple time points in this cycle (eg, cycle C n in FIG. 9 ), it needs to first calculate multiple estimated interval times in this cycle. In the above step S20, the micro control unit 43 can obtain the interval time Δt ( n -3,1), Δt of the first section in the period Cn -3 , the period Cn -2 and the period Cn -1. ( n -2,1) and the interval time △ t ( n -1,1) , and use these three data to calculate the estimated interval Pre of the corresponding section (ie, the first section) in this cycle C n t ( n ,1) .

根據本周期的第一真實接入訊號81的觸發時間點以及第一區段的推估間隔時間Pre t(n,1),微控制單元43可以推估出第二推估接入訊號62的觸發時間點。 According to the triggering time point of the first real access signal 81 in this cycle and the estimated interval time Pret ( n ,1) of the first section, the micro control unit 43 can estimate the second estimated access signal 62 Trigger time point.

同樣的,於步驟S20中,微控制單元43還可取得周期Cn-3、周期Cn-2以及周期Cn-1中的第二區段的間隔時間△t (n-3,2)、△t (n-2,2)以及間隔時間△t (n-1,2),並以這三筆數據計算本周期Cn中的對應區段(即,第二區段)的推估間隔時間Pre t(n,2)。並且,根據第二推估接入訊號62的觸發時間點以及第二區 段的推估間隔時間Pre t(n,2),微控制單元43可以推估出第三推估接入訊號63的觸發時間點。 Similarly, in step S20, the micro control unit 43 can also obtain the interval time Δt ( n -3,2) of the second section in the period C n-3 , the period C n-2 and the period C n-1. , △ t ( n -2,2) and the interval time △ t ( n -1,2) , and use these three data to calculate the estimate of the corresponding section (i.e., the second section) in this cycle C n Interval time Pret ( n ,2) . Furthermore, based on the trigger time point of the second estimated access signal 62 and the estimated interval time Pret ( n ,2) of the second section, the micro control unit 43 can estimate the third estimated access signal 63 Trigger time point.

並且,基於與上述相同的方式,微控制單元43可推估第三區段的推估間隔時間Pre t(n,3)及第四推估接入訊號64的觸發時間點,以及第四區段的推估間隔時間Pre t(n,4)以及下一周期Cn+1的第一推估接入訊號71的觸發時間點。 Moreover, based on the same method as above, the micro control unit 43 can estimate the estimated interval time Pret ( n ,3) of the third section and the trigger time point of the fourth estimated access signal 64, and the estimated trigger time point of the fourth section. The estimation interval time Pre t ( n , 4) of the segment and the triggering time point of the first estimation access signal 71 in the next period Cn+1.

值得一提的是,本發明主要是將流量計4進入低流速狀態後的第一筆真實接入訊號的觸發時間點做為推估起始點,並且向後進行推估。因此,一個完整周期中的任一筆真實接入訊號皆可能被用來做為推估起始點。 It is worth mentioning that the present invention mainly uses the triggering time point of the first real access signal after the flow meter 4 enters the low flow rate state as the starting point of estimation, and estimates backward. Therefore, any real access signal in a complete cycle may be used as the starting point for estimation.

回到圖6A。步驟S20後,微控制單元43已計算出本周期中的多個推估間隔時間(例如圖9中所示的周期Cn中的多個推估間隔時間Pre t(n,1)Pre t(n,2)Pre t(n,3)Pre t(n,4))。藉此,微控制單元43可進一步依據多個推估間隔時間來計算本周期中的多筆推估接入訊號的觸發時間點,並且計算並顯示各個觸發時間點上的推估流量(步驟S22)。 Return to Figure 6A. After step S20, the micro control unit 43 has calculated multiple estimation interval times in this cycle (for example, multiple estimation interval times Pret ( n ,1) , Pret in the cycle Cn shown in Figure 9 ( n ,2) , Pre t ( n ,3) and Pre t ( n ,4) ). Thereby, the micro control unit 43 can further calculate the trigger time points of multiple estimated access signals in this cycle based on the multiple estimated interval times, and calculate and display the estimated traffic at each trigger time point (step S22 ).

如圖9所示,微控制單元43可依據本周期Cn的第一真實接入訊號81的觸發時間點及第一區段的推估間隔時間Pre t(n,1)來計算第二推估接入訊號62的觸發時間點,依據第二推估接入訊號62的觸發時間點及第二區段的推估間隔時間Pre t(n,2)來計算第三推估接入訊號63的觸發時間點,依據第三推估接入訊號63的觸發時間點及第三區段的推估間隔時間Pre t(n,3)來計算第四推估接入訊號64的觸發時間點,並且依據第四推估接入訊號64的觸發時間點及第四區段的推估間隔時間Pre t(n,4)來計算下一周期Cn-1的第一推估接入訊號71的觸發時間點,以此類推。 As shown in FIG. 9 , the micro control unit 43 can calculate the second estimation based on the triggering time point of the first real access signal 81 of this period C n and the estimation interval time Pre t ( n , 1) of the first section. The trigger time point of the second estimated access signal 62 is estimated, and the third estimated access signal 63 is calculated based on the trigger time point of the second estimated access signal 62 and the estimated interval time Pret ( n , 2) of the second section. The trigger time point of the fourth estimated access signal 64 is calculated based on the trigger time point of the third estimated access signal 63 and the estimated interval time Pret ( n ,3) of the third section, And based on the triggering time point of the fourth estimated access signal 64 and the estimated interval time Pret ( n , 4) of the fourth section, the first estimated access signal 71 of the next period C n-1 is calculated. Trigger time point, and so on.

並且,如上所述,微控制單元43藉由計算各個區段的推估間隔時間的倒數,即可獲得流體在各個時間點的流速。更具體地,微控制單元43可依據下列公式計算流速:

Figure 111119328-A0305-02-0015-2
。並且,微控制單元43將所推估的流速乘上流量計4預設的對應參數,即可推估出各個區段中增加的對應流量。藉此,微控制單元43可進一步推估流體在各個時間點上的累計流量。並且,上述由微控制單元43所推估的流速及累計流量都可被流量計4顯示於顯示單元44上,以供使用者查看。藉由上述流速及累計流量的推估及顯示,流量計4的量測結果與量測解析度可以被有效地提昇。 Furthermore, as mentioned above, the microcontrol unit 43 can obtain the flow rate of the fluid at each time point by calculating the reciprocal of the estimated interval time of each section. More specifically, the microcontrol unit 43 can calculate the flow rate according to the following formula:
Figure 111119328-A0305-02-0015-2
. Furthermore, the microcontrol unit 43 multiplies the estimated flow rate by the corresponding parameters preset by the flow meter 4 to estimate the corresponding increased flow rate in each section. Thereby, the micro control unit 43 can further estimate the accumulated flow rate of the fluid at each time point. Moreover, the above-mentioned flow rate and accumulated flow rate estimated by the micro-control unit 43 can be displayed on the display unit 44 by the flow meter 4 for the user to view. Through the estimation and display of the above flow velocity and accumulated flow rate, the measurement results and measurement resolution of the flow meter 4 can be effectively improved.

值得一提的是,雖然葉輪41的轉動在低流速狀態下較不穩定,但在微控制單元43執行推估程序的同時,感測器42仍然會持續感測葉輪41的轉動並產生對應的真實接入訊號(例如圖9中的真實接入訊號8)。如圖6B所示,當感測器42產生一筆新的真實接入訊號8時,微控制單元43同樣可以基於上一筆真實接入訊號與當前的真實接入訊號計算對應的間隔時間、流速以及流量,並通過顯示單元44進行顯示(步驟S24)。 It is worth mentioning that although the rotation of the impeller 41 is relatively unstable at low flow rates, while the micro control unit 43 executes the estimation program, the sensor 42 will continue to sense the rotation of the impeller 41 and generate corresponding signals. Real access signal (such as real access signal 8 in Figure 9). As shown in FIG. 6B , when the sensor 42 generates a new real access signal 8 , the micro control unit 43 can also calculate the corresponding interval time, flow rate, and flow rate based on the previous real access signal and the current real access signal. The flow rate is displayed through the display unit 44 (step S24).

於上述推估程序中,微控制單元43持續判斷本周期是否結束(步驟S26),並且於本周期結束前持續執行步驟S22及步驟S24。藉此,流量計4除了可以依據真實接入訊號來計算並提供流速及流量外,亦可在兩筆真實接入訊號之間提供推估的流速及流量,使得流量計4的量測結果更準確,並且提昇所提供資料的解析度。 In the above estimation procedure, the micro control unit 43 continues to determine whether the current cycle ends (step S26), and continues to execute steps S22 and S24 before the end of the current cycle. In this way, the flow meter 4 can not only calculate and provide the flow rate and flow rate based on the real access signal, but also provide the estimated flow rate and flow rate between two real access signals, making the measurement results of the flow meter 4 more accurate. Be accurate and improve the resolution of the information provided.

本發明中,微控制單元43在啟動了低流速推估模式後,可持續判斷流體當前的流速是否不低於門檻值。換句話說,微控制單元43可以在啟動低流速推估模式後,持續判斷是否要離開低流速推估模式(步驟S28)。 In the present invention, after activating the low flow rate estimation mode, the microcontrol unit 43 can continuously determine whether the current flow rate of the fluid is not lower than the threshold value. In other words, the microcontrol unit 43 may continue to determine whether to leave the low flow estimation mode after activating the low flow estimation mode (step S28).

於一實施例中,微控制單元43在步驟S14中是於判斷流速低於第一門檻值(例如0.3m 3/3)時啟動低流速推估模式。於步驟S28中,微控制單元43在判斷流速已經不低於第一門檻值時,離開低流速推估模式。 In one embodiment, in step S14, the microcontrol unit 43 activates the low flow velocity estimation mode when it determines that the flow velocity is lower than the first threshold (eg, 0.3 m 3 /3). In step S28, when the micro control unit 43 determines that the flow rate is not lower than the first threshold, it leaves the low flow rate estimation mode.

於另一實施例中,微控制單元43在步驟S14中是於判斷流速低於第一門檻值(例如0.3m 3/3)時啟動低流速推估模式。於步驟S28中,微控制單元43在判斷流速不低於略高於第一門檻值的第二門檻值(例如0.5m 3/3)時,離開低流速推估模式。藉由設定一個略高於第一門檻值的第二門檻值,可避免流體瞬間的流速變化而造成微控制單元43的誤判。 In another embodiment, in step S14, the microcontrol unit 43 activates the low flow velocity estimation mode when it determines that the flow velocity is lower than the first threshold (eg, 0.3 m 3 /3). In step S28, the micro control unit 43 leaves the low flow velocity estimation mode when it determines that the flow velocity is not lower than the second threshold value (for example, 0.5 m 3 /3) slightly higher than the first threshold value. By setting a second threshold value slightly higher than the first threshold value, it is possible to avoid misjudgments of the micro control unit 43 caused by instantaneous changes in the flow rate of the fluid.

於另一實施例中,微控制單元43可以在判斷流速不低於第一門檻值或第二門檻值,並且判斷次數高於一設定值(例如三次或五次)時,離開低流速推估模式。通過上述設定值的設定,可避免流體瞬間的變化而造成微控制單元43的誤判。 In another embodiment, the microcontrol unit 43 may leave the low flow rate estimation when it determines that the flow rate is not lower than the first threshold or the second threshold and the number of determinations is higher than a set value (such as three or five times). model. By setting the above set value, misjudgments of the micro control unit 43 caused by instantaneous changes in the fluid can be avoided.

於離開低流速推估模式後,微控制單元43返回步驟S10,以在不執行推估程序的情況下,令感測器42繼續感測葉輪41並產生對應的接入訊號。 After leaving the low flow rate estimation mode, the micro control unit 43 returns to step S10 to allow the sensor 42 to continue sensing the impeller 41 and generate a corresponding access signal without executing the estimation process.

若於步驟S28中判斷不離開低流速推估模式(即,當前的流速仍低於門檻值),則在本周期結束後,微控制單元43接著計算下一周期的多個推估間隔時間。如前文所述,在推估上一周期的多個推估間隔時間時,感測器42仍會產生真實接入訊號(只是觸發時間點不穩定且間隔時間較長)。為了讓推估資料更貼近真實,在執行了一次推估程序後,微處理單元43可依據上一周期的多個區段的推估間隔時間以及多個區段的真實的間隔時間來計算下一周期的多個區段的推估間隔時間(步驟S30)。 If it is determined in step S28 that the low flow rate estimation mode is not left (that is, the current flow rate is still lower than the threshold), then after the end of this cycle, the micro control unit 43 then calculates multiple estimation interval times for the next cycle. As mentioned above, when estimating multiple estimation interval times in the previous cycle, the sensor 42 will still generate a real access signal (only the triggering time point is unstable and the interval time is longer). In order to make the estimation data closer to reality, after executing an estimation procedure, the microprocessing unit 43 can calculate the next step based on the estimated interval time of multiple sections in the previous cycle and the real interval time of multiple sections. The estimated interval time of multiple sections in one cycle (step S30).

以圖9的實施例為例,在時間點Tn後,微控制單元43產生了四個區段的推估間隔時間Pret(n,1)、Pret(n,2)、Pret(n,3)及Pret(n,4)。當周期Cn結束後,微控制單元43在時間點Tn+1收到下一個周期的第一真實接入訊號811。此時,微控制單元43可以時間點Tn+1為起始點,開始推估下一周期Cn+1的多個推估間隔時間。 Taking the embodiment of FIG. 9 as an example, after time point T n , the micro control unit 43 generates four sections of estimated interval times Pre t(n,1) , Pre t(n,2) , Pre t( n,3) and Pre t(n,4) . When the period Cn ends, the micro control unit 43 receives the first real access signal 811 of the next period at time point Tn +1 . At this time, the micro control unit 43 can use time point T n+1 as the starting point to start estimating multiple estimation interval times of the next period C n+1 .

具體地,在步驟S30中,微控制單元43主要可以依據上一周期的第一區段的間隔時間△t(n,1)以及推估間隔時間Pret(n,1)來計算下一周期的對應區段(即,第一區段)的推估間隔時間Pret(n+1,1)、依據上一周期的第二區段的間隔時間△t(n,2)以及推估間隔時間Pret(n,2)來計算下一周期的對應區段(即,第二區段)的推估間隔時間Pret(n+1,2)、依據上一周期的第三區段的間隔時間△t(n,3)以及推估間隔時間Pret(n,3)來計算下一周期的對應區段(即,第三區段)的推估間隔時間Pret(n+1,3),並依據上一周期的第四區段的間隔時間△t(n,4)以及推估間隔時間Pret(n,4)來計算下一周期的對應區段(即,第四區段)的推估間隔時間Pret(n+1,4)Specifically, in step S30, the micro control unit 43 can mainly calculate the next period based on the interval time Δt ( n , 1) of the first section of the previous period and the estimated interval time Pre t (n, 1) The estimated interval Pre t(n+1,1) of the corresponding section (i.e., the first section), the interval time Δt ( n ,2) of the second section based on the previous period, and the estimated interval Time Pre t(n,2) is used to calculate the estimated interval time Pre t(n+1,2) of the corresponding section (ie, the second section) of the next cycle, based on the time of the third section of the previous cycle. The interval time Δt ( n ,3) and the estimated interval time Pret(n,3) are used to calculate the estimated interval time Pret (n+1, ) of the corresponding section of the next period (ie, the third section) 3) , and calculate the corresponding section of the next cycle (i.e., the fourth section) based on the interval time Δt ( n ,4) of the fourth section of the previous cycle and the estimated interval time Pret(n,4) segment) estimated interval time Pre t(n+1,4) .

換句話說,在流量計4啟動低流速推估模式後進行第一次推估程序時,微控制單元43僅使用過去多個周期的真實資料來計算下一周期的推估資料。而在第一次推估程序之後,微控制單元43會同時使用上一周期的真實資料以及上一周基的推估資料來計算下一周期的推估資料。 In other words, when the flow meter 4 starts the low flow velocity estimation mode and performs the first estimation process, the micro control unit 43 only uses the real data of the past multiple cycles to calculate the estimation data of the next period. After the first estimation process, the micro control unit 43 will simultaneously use the real data of the previous period and the estimation data of the previous week basis to calculate the estimation data of the next period.

步驟S30後,微控制單元43已計算出下一周期中的多個推估間隔時間(例如圖9中所示的周期Cn+1中的多個推估間隔時間Pre t(n+1,1)Pre t(n+1,2)Pre t(n+1,3)Pre t(n+1,4))。藉此,微控制單元43再次執行步驟S22,以依據多個推估間隔時間來計算下一周期中的多筆推估接入訊號72、 73、74的觸發時間點,並且計算並顯示各個觸發時間點的推估流量(步驟S22)。 After step S30, the micro control unit 43 has calculated a plurality of estimation interval times in the next cycle (for example, a plurality of estimation interval times Pre t ( n +1 , 1) , Pre t ( n +1,2) , Pre t ( n +1,3) and Pre t ( n +1,4) ). Thereby, the micro control unit 43 executes step S22 again to calculate the trigger time points of the multiple estimated access signals 72, 73, and 74 in the next cycle based on the multiple estimated interval times, and calculates and displays each trigger. The estimated flow rate at the time point (step S22).

本發明中,微控制單元43會持續地執行步驟S22至步驟S30,直到流量計4離開低流速推估模式為止。並且,本發明的微控制單元43會在流量計4啟用後持續執行步驟S10至步驟S30,直到流量計4不再需要偵測流體的流速/流量為止。 In the present invention, the microcontrol unit 43 continues to execute steps S22 to S30 until the flow meter 4 leaves the low flow rate estimation mode. Furthermore, the microcontrol unit 43 of the present invention will continue to execute steps S10 to S30 after the flow meter 4 is activated, until the flow meter 4 no longer needs to detect the flow rate/flow rate of the fluid.

續請同時參閱圖6A、圖6B及圖7,其中圖7為本發明的第一具體實施例的推估間隔時間的計算流程圖。圖7用以對圖6A的步驟S20做更進一步的說明。 Please continue to refer to FIG. 6A, FIG. 6B and FIG. 7 at the same time. FIG. 7 is a calculation flow chart of the estimated interval time according to the first specific embodiment of the present invention. Figure 7 is used to further explain step S20 of Figure 6A.

如圖所示,在感測器42產生一筆真實接入訊號並開始一個新的周期時,微控制單元43由所記錄的複數周期中取出第n區段的多個間隔時間(步驟S40)。接著,微控制單元43依據第n區段的多個間隔時間計算本周期中的第n區段的推估間隔時間(步驟S42)。本實施例中,所述n為從1起算的正整數。 As shown in the figure, when the sensor 42 generates a real access signal and starts a new cycle, the micro control unit 43 retrieves multiple intervals of the n-th section from the recorded plural cycles (step S40). Next, the micro control unit 43 calculates the estimated interval time of the n-th section in this cycle based on the multiple interval times of the n-th section (step S42). In this embodiment, n is a positive integer starting from 1.

於步驟S42後,微控制單元43判斷本周期中所有區段的推估間隔時間是否皆計算完成(步驟S44)。於一實施例中,一個周期中的區段數量相等於葉輪41上的感應葉片411-414的數量,但不加以限定。 After step S42, the micro control unit 43 determines whether the calculation of the estimated interval time of all sections in this cycle is completed (step S44). In one embodiment, the number of segments in one cycle is equal to the number of induction blades 411-414 on the impeller 41, but is not limited thereto.

若於步驟S40中判斷本周期中的推估間隔時間尚未計算完畢,則微控制單元43將n+1(步驟S46),並且再次執行步驟S40及步驟S42,以依據所記錄的多個周期中的第n+1區段的多個間隔時間計算本周期中的第n+1區段的推估間隔時間。 If it is determined in step S40 that the estimated interval time in this cycle has not been calculated, the micro control unit 43 will n+1 (step S46), and execute steps S40 and S42 again to calculate the estimated interval time in the current cycle based on the recorded The estimated interval time of the n+1th section in this cycle is calculated based on multiple intervals of the n+1th section.

若於步驟S44中判斷本周期中的推估間隔時間已全部計算完畢,則微控制單元43可以結束本次推估程序,並且接著執行圖6A所示的步驟S22。 If it is determined in step S44 that all estimation interval times in this cycle have been calculated, the microcontrol unit 43 can end this estimation process, and then execute step S22 shown in FIG. 6A .

於圖9的實施例中,微控制單元43可以在感測器42產生第一真實接入訊號81並開始新的周期Cn時,從所記錄的資料中取得周期Cn-3的第一區段的間隔時間△t(n-3,1)、周期Cn-2的第一區段的間隔時間△t(n-2,1)以及周期Cn-1的第一區段的間隔時間△t(n-1,1),並據此計算本周期Cn的第一區段的間隔時間Pre t(n,1)。並且,微控制單元43可以依據周期Cn-3的第二區段的間隔時間△t(n-3,2)、周期Cn-2的第二區段的間隔時間△t(n-2,2)以及周期Cn-1的第二區段的間隔時間△t(n-1,2)來計算本周期Cn的第二區段的間隔時間Pre t(n,2),以此類推。 In the embodiment of FIG. 9 , the micro control unit 43 can obtain the first value of the period C n-3 from the recorded data when the sensor 42 generates the first real access signal 81 and starts a new period C n . The interval time Δt (n-3,1) of the segments, the interval time Δt (n-2,1) of the first segment of the period C n-2 and the interval of the first segment of the period C n-1 Time △t (n-1,1) , and calculate the interval time Pret ( n ,1) of the first section of this cycle Cn accordingly. Moreover, the micro control unit 43 can determine the interval time Δt (n-3,2) of the second section of the period C n-3 and the interval time Δt (n-2) of the second section of the period C n -2. ,2) and the interval time Δt (n-1,2) of the second section of cycle C n-1 to calculate the interval time Pre t ( n ,2) of the second section of this cycle C n , based on Analogy.

於一實施例中,微控制單元43可以採用移動平均法(Moving Average Method)來計算所記錄的相同區段的多個間隔時間的移動平均值,並將此移動平均值做為本周期中對應區段的推估間隔時間。 In one embodiment, the micro control unit 43 can use a moving average method to calculate the moving average of multiple recorded intervals of the same section, and use this moving average as the corresponding value in this cycle. The estimated interval for the segment.

於一實施例中,微控制單元43可以計算所記錄的相同區段的多個間隔時間的中位數,以做為本周期中對應區段的推估間隔時間。例如,若相同區段的三個間隔時間分別為1秒、2秒與7秒,則微控制單元43以屬於中位數的2秒做為本周期中對應區段的推估間隔時間。 In one embodiment, the microcontrol unit 43 may calculate the median of multiple recorded interval times of the same segment as the estimated interval time of the corresponding segment in this cycle. For example, if the three interval times of the same section are 1 second, 2 seconds and 7 seconds respectively, the micro control unit 43 uses the median 2 seconds as the estimated interval time of the corresponding section in this cycle.

於一實施例中,微控制單元43可以計算所記錄的相同區段的多個間隔時間的眾數(mode),以做為本周期中對應區段的推估間隔時間。例如,若相同區段的三個間隔時間分別為1秒、5秒與1秒,則微控制單元43以1秒做為本周期中對應區段的推估間隔時間。 In one embodiment, the microcontrol unit 43 can calculate the mode of multiple recorded intervals of the same segment as the estimated interval of the corresponding segment in this cycle. For example, if the three interval times of the same section are 1 second, 5 seconds and 1 second respectively, the micro control unit 43 uses 1 second as the estimated interval time of the corresponding section in this cycle.

於一實施例中,微控制單元43可以依據所記錄的相同區段的多個間隔時間計算一個機率密度函數(Probability Density Function,PDF),並以此機率密度函數來猜測本周期中對應區段的推估間隔時間。 In one embodiment, the microcontrol unit 43 can calculate a probability density function (PDF) based on multiple recorded intervals of the same segment, and use this probability density function to guess the corresponding segment in this cycle. estimated interval.

惟,上述僅為本發明的部分具體實施範例,但並不以上述者為限。 However, the above are only some specific implementation examples of the present invention, but are not limited to the above.

值得一提的是,為了避免流量的劇烈變化影響微控制單元43的推估結果,本發明的微控制單元43可在執行推估程序時,對所參考的多個間隔時間進行加權運算。具體地,微控制單元43可令最後一個周期的間隔時間的計算權重小於其他周期的間隔時間的計算權重,藉此降低最後一個周期的資料對於整體計算的影響力。 It is worth mentioning that, in order to avoid drastic changes in flow rate from affecting the estimation results of the micro-control unit 43, the micro-control unit 43 of the present invention can perform weighting calculations on multiple reference intervals when executing the estimation program. Specifically, the microcontrol unit 43 can make the calculation weight of the interval time of the last cycle smaller than the calculation weight of the interval time of other cycles, thereby reducing the influence of the data of the last cycle on the overall calculation.

舉例來說,若所記錄的相同區段的三個間隔時間分別為4秒、2秒與12秒,則在計算平均值時,微控制單元43可將三個間隔時間相加後除以三,以得到6秒的平均值,並將6秒做為本周期中相同區段的推估間隔時間。 For example, if the three recorded intervals of the same section are 4 seconds, 2 seconds and 12 seconds respectively, then when calculating the average value, the micro control unit 43 can add the three interval times and divide them by three. , to obtain the average value of 6 seconds, and use 6 seconds as the estimated interval time of the same segment in this cycle.

為了達到上述目的,微控制單元43可令最後一個間隔時間的計算權重小於其他兩個間隔時間的計算權重(例如依序為0.4、0.4及0.2)。於此實施例中,微控制單元43可藉由計算公式:(4×0.4+2×0.4+12×0.2)得到4.8秒的平均值,並將4.8秒做為本周期中相同區段的推估間隔時間。藉此,微控制單元43可以避免在流速瞬間改變時造成推估失準。 In order to achieve the above purpose, the micro control unit 43 can make the calculation weight of the last interval time smaller than the calculation weights of the other two interval times (for example, 0.4, 0.4 and 0.2 in sequence). In this embodiment, the micro control unit 43 can obtain the average value of 4.8 seconds by calculating the formula: (4×0.4+2×0.4+12×0.2), and use 4.8 seconds as the prediction of the same section in this cycle. Estimate the interval. Thereby, the micro control unit 43 can avoid estimation errors caused when the flow rate changes instantaneously.

續請同時參閱圖6A、圖6B及圖8,其中圖8為本發明的第一具體實施例的推估間隔時間的計算流程圖。圖8用以對圖6B的步驟S30做更進一步的說明。 Please continue to refer to FIG. 6A, FIG. 6B and FIG. 8 at the same time. FIG. 8 is a calculation flow chart of the estimated interval time according to the first specific embodiment of the present invention. Figure 8 is used to further explain step S30 of Figure 6B.

如圖所示,在感測器42產生一個真實接入訊號並開始一個新的周期後,微控制單元43從所記錄的資料中取得上一周期中的第n區段的間隔時間以及上一周期中的第n區段的推估間隔時間(步驟S50)。接著,微控制單元43依據第n區段的間隔時間以及第n區段的推估間隔時間來計算下一周期中的第n區段的推估間隔時間(步驟S52)。本實施例中,所述n為一個從1起算的正整數。 As shown in the figure, after the sensor 42 generates a real access signal and starts a new cycle, the micro control unit 43 obtains the interval time of the n-th section in the previous cycle and the previous cycle from the recorded data. The estimated interval time of the nth section in the cycle (step S50). Next, the micro control unit 43 calculates the estimated interval time of the n-th section in the next cycle based on the interval time of the n-th section and the estimated interval time of the n-th section (step S52). In this embodiment, n is a positive integer starting from 1.

於步驟S52後,微控制單元43判斷本周期中的所有推估間隔時間是否皆計算完畢(步驟S54)。 After step S52, the micro control unit 43 determines whether all estimation interval times in this cycle have been calculated (step S54).

若於步驟S54中判斷本周期中的推估間隔時間尚未計算完畢,則微控制單元43將n+1(步驟S56),並且再次執行步驟S50及步驟S52,以依據上一周期中的第n+1區段的間隔時間以及第n+1區段的推估間隔時間計算下一周期中的第n+1區段的推估間隔時間。 If it is determined in step S54 that the estimated interval time in this cycle has not been calculated, the micro control unit 43 will n+1 (step S56), and execute steps S50 and S52 again to calculate the estimated interval time based on the nth value in the previous cycle. The interval time of the +1 section and the estimated interval time of the n+1th section are used to calculate the estimated interval time of the n+1th section in the next cycle.

若於步驟S54中判斷下一周期的推估間隔時間已全部計算完畢,則微控制單元43可以結束本次推估程序,並且接著執行圖6A所示的步驟S22。 If it is determined in step S54 that all the estimation interval times for the next period have been calculated, the microcontrol unit 43 may end the current estimation process, and then execute step S22 shown in FIG. 6A .

於圖9的實施例中,微控制單元43可以在感測器42產生第一真實接入訊號811並開始新的周期Cn+1時,從所記錄的資料中取得周期Cn的第一區段的間隔時間△t(n,1)以及推估間隔時間Pre t(n,1),以計算本周期Cn+1的對應區段(即,第一區段)的間隔時間Pre t(n+1,1)。並且,微控制單元43可以依據周期Cn的第二區段的間隔時間△t(n,2)以及推估間隔時間Pre t(n,2)來計算本周期Cn+1的第二區段的間隔時間Pre t(n+1,2),以此類推。 In the embodiment of FIG. 9 , the micro control unit 43 can obtain the first value of the period C n from the recorded data when the sensor 42 generates the first real access signal 811 and starts a new period C n+1. The interval time Δt (n,1) of the section and the estimated interval time Pre t ( n ,1) are used to calculate the interval time Pre t of the corresponding section (ie, the first section) of this cycle C n+1 ( n +1,1) . Moreover, the micro control unit 43 can calculate the second area of the current period C n +1 based on the interval time Δt (n, 2) of the second area of the period C n and the estimated interval time Pre t ( n , 2). The interval time between segments is Pre t ( n +1,2) , and so on.

值得一提的是,本實施例中的微控制單元43是基於上一周期的真實的間隔時間以及推估間隔時間來計算下一周期的推估資料,因此可以針對真實的間隔時間以及推估間隔時間分別設定不同的計算權重。 It is worth mentioning that the micro control unit 43 in this embodiment calculates the estimated data for the next period based on the real interval time and the estimated interval time of the previous period, so it can calculate the estimated data for the next period based on the real interval time and the estimated interval time. Different calculation weights are set for each interval.

於一實施例中,微控制單元43主要可以依據下列公式來計算下一周期中的第m區段的推估間隔時間:Pre t(n+1,m)=α×Pre t(n,m)+(1-α)×△t (n,m),其中α<1,Pre t(n+1,m)為下一周期中的第m區段的推估間隔時間,Pre t(n,m)為上一周期中的第m區段的推估間隔時間,△t (n,m)為上一周期中的第m區段的間隔時間。藉此,微控制單元43可以藉由對α值的設定,調整真實的間隔時間與推估間隔時間於推估程序中的計算權重。 In one embodiment, the micro control unit 43 can calculate the estimated interval time of the m-th section in the next cycle mainly based on the following formula: Pre t ( n +1, m ) = α × Pre t ( n , m ) +(1-α)×△ t ( n , m ) , where α <1, Pre t ( n +1, m ) is the estimated interval time of the m-th section in the next cycle, Pre t ( n , m ) is the estimated interval time of the m-th section in the previous cycle, △ t ( n , m ) is the interval time of the m-th section in the previous cycle. Thereby, the micro control unit 43 can adjust the calculation weights of the real interval time and the estimated interval time in the estimation process by setting the α value.

更具體地,於執行推估程序時,微控制單元43可以依據下列第一公式來計算下一周期中的第一區段的推估間隔時間:Pre t(n+1,1)=α×Pre t(n,1)+(1-α)×△t (n,1),其中Pre t(n+1,1)為下一周期中的第一區段的推估間隔時間,Pre t(n,1)為上一周期中的第一區段的推估間隔時間,△t (n,1)為上一周期中的第一區段的間隔時間。並且,微控制單元43可以依據下列第二公式來計算下一周期中的第二區段的推估間隔時間:Pre t(n+1,2)=α×Pre t(n,2)+(1-α)×△t (n,2),其中Pre t(n+1,2)為下一周期中的第二區段的推估間隔時間,Pre t(n,2)為上一周期中的第二區段的推估間隔時間,△t (n,2)為上一周期中的第二區段的間隔時間,以此類推。 More specifically, when executing the estimation program, the microcontrol unit 43 can calculate the estimation interval time of the first section in the next cycle according to the following first formula: Pre t ( n +1,1) = α × Pre t ( n ,1) + (1-α)×△ t ( n ,1) , where Pre t ( n +1,1) is the estimated interval time of the first section in the next cycle, Pre t ( n ,1) is the estimated interval time of the first section in the previous cycle, △ t ( n ,1) is the interval time of the first section in the previous cycle. Furthermore, the micro control unit 43 can calculate the estimated interval time of the second section in the next cycle according to the following second formula: Pre t ( n +1,2) = α × Pre t ( n ,2) +( 1-α)×△ t ( n ,2) , where Pre t ( n +1,2) is the estimated interval time of the second section in the next cycle, and Pre t ( n ,2) is the previous cycle The estimated interval time of the second section in , △ t ( n ,2) is the interval time of the second section in the previous cycle, and so on.

通過本發明的技術方案,流量計可以在兩個真實接入訊號之間提供流速或流量的推估值,藉此解決在低流速狀態下,流量計的量測準確性與量測解析度較低的問題。 Through the technical solution of the present invention, the flow meter can provide an estimated value of flow rate or flow rate between two real access signals, thereby solving the problem of poor measurement accuracy and measurement resolution of the flow meter in a low flow rate state. low question.

以上所述僅為本發明之較佳具體實例,非因此即侷限本發明之專利範圍,故舉凡運用本發明內容所為之等效變化,均同理皆包含於本發明之範圍內,合予陳明。 The above descriptions are only preferred specific examples of the present invention, which do not limit the patent scope of the present invention. Therefore, all equivalent changes made by applying the content of the present invention are equally included in the scope of the present invention, and are hereby stated. bright.

S10~S22:推估步驟 S10~S22: Estimation steps

Claims (9)

一種轉動式流量計在低流速狀態的流量推估方法,應用於具有一葉輪、一感測器及一微控制單元的一流量計,其中低流速狀態指流體的流速低於預設門檻值而造成該葉輪的轉動相對不穩定的狀態,並且該流量推估方法包括:a)由該感測器受該葉輪的觸發而產生多筆接入訊號(pick-up signal),其中該葉輪旋轉一圈所觸發產生的多筆該接入訊號的多個間隔時間形成一個周期;b)由該微控制單元依據該多個間隔時間計算該流量計內的一流體的一流速;c)記錄複數周期的一流速資訊,其中該流速資訊至少包括一個周期內的多個該間隔時間;d)由該微控制單元計算所記錄的該複數周期中的多個該間隔時間的一移動平均值、一中位數、一眾數或一機率密度函數,以分別計算本周期中的多個推估間隔時間;及e)獲得本周期中該感測器受該葉輪的觸發而產生的一第一真實接入訊號,依據該第一真實接入訊號及該多個推估間隔時間依序計算本周期中的多筆推估接入訊號的一觸發時間點,計算各該推估間隔時間的倒數以獲得各該觸發時間點的一推估流速,並將各該觸發時間點的該推估流速乘上該流量計的一對應參數,以獲得並顯示各該觸發時間點上的一推估流量。 A flow estimation method for a rotary flow meter in a low flow rate state, applied to a flow meter having an impeller, a sensor and a microcontrol unit, wherein the low flow rate state means that the flow rate of the fluid is lower than a preset threshold value. This results in a relatively unstable state of rotation of the impeller, and the flow estimation method includes: a) The sensor is triggered by the impeller to generate multiple pick-up signals, wherein the impeller rotates for a The multiple intervals of multiple access signals generated by the circle trigger form a cycle; b) the micro control unit calculates the flow rate of a fluid in the flow meter based on the multiple intervals; c) records multiple cycles A flow rate information, wherein the flow rate information at least includes a plurality of the interval times in a cycle; d) the micro control unit calculates a moving average, a center value of a plurality of the interval times in the plurality of cycles recorded number of digits, a mode or a probability density function to respectively calculate multiple estimated interval times in this cycle; and e) obtain a first real interface generated by the sensor being triggered by the impeller in this cycle. input signal, calculate a trigger time point of multiple estimated access signals in this cycle sequentially based on the first real access signal and the multiple estimated interval times, and calculate the reciprocal of each estimated interval time to obtain An estimated flow rate at each trigger time point is obtained, and the estimated flow rate at each trigger time point is multiplied by a corresponding parameter of the flow meter to obtain and display an estimated flow rate at each trigger time point. 如請求項1所述的流量推估方法,其中更包括:f1)由該微控制單元判斷該流速是否低於一第一門檻值; f2)於該流速不低於該第一門檻值時重覆執行該步驟a)、該步驟b)及該步驟c);f3)於該流速低於該第一門檻值時啟動一低流速推估模式;及f4)於該低流速推估模式中執行該步驟d)及該步驟e)。 The flow estimation method as described in claim 1, further comprising: f1) determining whether the flow rate is lower than a first threshold by the micro-control unit; f2) Repeat step a), step b) and step c) when the flow rate is not lower than the first threshold; f3) Start a low flow push when the flow rate is lower than the first threshold estimation mode; and f4) perform step d) and step e) in the low flow estimation mode. 如請求項2所述的流量推估方法,其中該葉輪包括n個感應葉片,該感測器受該n個感應葉片的觸發而依序產生n筆該接入訊號,並且該流速資訊包括一個周期內的n個區段的該間隔時間,其中n為≧1的整數。 The flow estimation method as described in claim 2, wherein the impeller includes n sensing blades, the sensor is triggered by the n sensing blades and sequentially generates n access signals, and the flow velocity information includes a The interval time of n segments within the cycle, where n is an integer ≧1. 如請求項2所述的流量推估方法,其中該步驟d)包括:d1)由該微控制單元取得所記錄的該複數周期中的一第一區段的該間隔時間;d2)依據該第一區段的多個該間隔時間計算本周期中的該第一區段的該推估間隔時間;d3)由該微控制單元取得所記錄的該複數周期中的下一個區段的該間隔時間;d4)依據下一個區段的多個該間隔時間計算本周期中的下一個區段的該推估間隔時間;及d5)於本周期的複數區段的該推估間隔時間皆計算完成前,重覆執行該步驟d3)及該步驟d4)。 The flow estimation method as described in claim 2, wherein the step d) includes: d1) obtaining the recorded interval time of a first section in the plurality of cycles from the micro control unit; d2) based on the first Calculate the estimated interval time of the first segment in this cycle for multiple intervals of one segment; d3) obtain the recorded interval time of the next segment in the plurality of cycles by the micro control unit ; d4) Calculate the estimated interval time of the next section in this cycle based on multiple intervals of the next section; and d5) Before the calculation of the estimated interval time of multiple sections in this cycle is completed , repeat step d3) and step d4). 如請求項4所述的流量推估方法,其中於該步驟d2)與該步驟d4)中,最後一個周期的該間隔時間的一計算權重小於其他周期的該間隔時間的該計算權重。 The traffic estimation method as described in claim 4, wherein in the step d2) and the step d4), a calculation weight of the interval time in the last cycle is smaller than the calculation weight of the interval time in other cycles. 如請求項2所述的流量推估方法,其中更包括: g)判斷本周期是否結束;h)於本周期結束前持續執行該步驟e);i)於本周期結束後,依據前一周期的多個該推估間隔時間以及前一周期的多個該間隔時間計算下一周期的多個該推估間隔時間,並依據下一周期的多個該推估間隔時間執行該步驟e)。 The traffic estimation method as described in request item 2, which further includes: g) Determine whether this cycle is over; h) Continue to perform this step e) before the end of this cycle; i) After the end of this cycle, based on the multiple estimated intervals of the previous cycle and the multiple estimated intervals of the previous cycle The interval time calculates multiple estimated interval times of the next period, and performs step e) based on the multiple estimated interval times of the next period. 如請求項6所述的流量推估方法,其中該步驟i)包括:i1)由該微控制單元取得上一周期的該第一區段的該推估間隔時間及該間隔時間;i2)依據上一周期的該第一區段的該推估間隔時間及該間隔時間計算下一周期中的該第一區段的該推估間隔時間;i3)由該微控制單元取得上一周期的下一個區段的該推估間隔時間及該間隔時間;i4)依據上一周期的下一個區段的該推估間隔時間及該間隔時間計算下一周期的下一個區段的該推估間隔時間;及i5)於下一周期的複數區段的該推估間隔時間皆計算完畢前,重覆執行該步驟i3)及該步驟i4)。 The flow estimation method as described in claim 6, wherein the step i) includes: i1) obtaining the estimated interval time and the interval time of the first section of the previous cycle from the micro control unit; i2) based on The estimated interval time and the interval time of the first section in the previous cycle are used to calculate the estimated interval time of the first section in the next cycle; i3) The micro control unit obtains the next cycle time of the previous cycle. The estimated interval time and the interval time of a section; i4) Calculate the estimated interval time of the next section in the next cycle based on the estimated interval time and the interval time of the next section in the previous cycle ; and i5) Repeat step i3) and step i4) before the estimated interval time of the plurality of segments in the next period is calculated. 如請求項7所述的流量推估方法,其中該步驟i2)依據一第一公式計算下一周期的該第一區段的該推估間隔時間:Pre t(n+1,1)=α×Pre t(n,1)+(1-α)×△t (n,1),其中α<1,Pre t(n+1,1)為下一周期的該第一區段的該推估間隔時間,Pre t(n,1)為上一周期的該第一區段的該推估間隔時間,△t (n,1)為上一周期的該第一區段的該間隔時間;其中該步驟i4)依據一第二公式計算下一周期的下一個區段的該推估間隔時間:Pre t(n+1,m)= α×Pre t(n,m)+(1-α)×△t (n,m),其中α<1,Pre t(n+1,m)為下一周期的下一個區段的該推估間隔時間,Pre t(n,m)為上一周期的下一個區段的該推估間隔時間,△t (n,m)為上一周期的下一個區段的該間隔時間。 The traffic estimation method as described in request item 7, wherein the step i2) calculates the estimation interval time of the first section of the next period according to a first formula: Pre t ( n +1,1) = α × Pre t ( n ,1) + (1-α)×△ t ( n ,1) , where α <1, Pre t ( n +1,1) is the prediction of the first section of the next cycle Estimated interval time, Pre t ( n ,1) is the estimated interval time of the first section in the previous cycle, △ t ( n ,1) is the estimated interval time of the first section in the previous cycle; The step i4) calculates the estimated interval time of the next section of the next cycle based on a second formula: Pre t ( n +1, m ) = α × Pre t ( n , m ) + (1-α )×△ t ( n , m ) , where α <1, Pre t ( n +1, m ) is the estimated interval time of the next section of the next cycle, Pre t ( n , m ) is the previous The estimated interval time of the next section of the cycle, △ t ( n , m ) is the interval time of the next section of the previous cycle. 如請求項6所述的流量推估方法,其中更包括:j)該微控制單元於該低流速推估模式中持續判斷該流速是否不低於一第二門檻值;及k)於該流速不低於該第二門檻值時離開該低流速推估模式,其中該第二門檻值大於該第一門檻值。 The flow estimation method as described in claim 6, further comprising: j) the microcontrol unit continuously determines whether the flow rate is not lower than a second threshold in the low flow rate estimation mode; and k) in the flow rate The low flow rate estimation mode is exited when the flow rate is not lower than the second threshold, wherein the second threshold is greater than the first threshold.
TW111119328A 2022-05-24 2022-05-24 Flow estimating method of rotary flowmeter under low flow-speed state TWI817519B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW111119328A TWI817519B (en) 2022-05-24 2022-05-24 Flow estimating method of rotary flowmeter under low flow-speed state
JP2022108076A JP7353429B1 (en) 2022-05-24 2022-07-05 How to estimate the flow rate of a rotary flowmeter at low flow rate
CN202310574652.5A CN117109667A (en) 2022-05-24 2023-05-19 Flow estimation method of rotary flowmeter in low flow speed state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111119328A TWI817519B (en) 2022-05-24 2022-05-24 Flow estimating method of rotary flowmeter under low flow-speed state

Publications (2)

Publication Number Publication Date
TWI817519B true TWI817519B (en) 2023-10-01
TW202346801A TW202346801A (en) 2023-12-01

Family

ID=88143967

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111119328A TWI817519B (en) 2022-05-24 2022-05-24 Flow estimating method of rotary flowmeter under low flow-speed state

Country Status (3)

Country Link
JP (1) JP7353429B1 (en)
CN (1) CN117109667A (en)
TW (1) TWI817519B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185003A (en) * 2011-03-04 2012-09-27 Miura Co Ltd Impeller type flowmeter
US20130253872A1 (en) * 2012-03-20 2013-09-26 Thermo Fisher Scientific Inc. Flow meter calibration system
US9722892B2 (en) * 2012-07-02 2017-08-01 Nec Corporation Flow rate prediction device, flow rate prediction method, and flow rate prediction program
US9874466B2 (en) * 2011-03-18 2018-01-23 Reliance Worldwide Corporation Methods and apparatus for ultrasonic fluid flow measurement and fluid flow data analysis
US10352324B2 (en) * 2014-07-18 2019-07-16 Ksb Aktiengesellschaft Determining the delivery rate of a pump
US10378940B2 (en) * 2014-08-14 2019-08-13 Soneter, Inc. Devices and system for channeling and automatic monitoring of fluid flow in fluid distribution systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058222A (en) 2004-08-23 2006-03-02 Ebara Ballard Corp Method and apparatus for sensing flow rate
JP2007010520A (en) 2005-06-30 2007-01-18 Calsonic Kansei Corp Speed indicator for vehicle
JP4989403B2 (en) 2007-10-04 2012-08-01 株式会社荏原製作所 Flow rate detection method and flow rate detection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185003A (en) * 2011-03-04 2012-09-27 Miura Co Ltd Impeller type flowmeter
US9874466B2 (en) * 2011-03-18 2018-01-23 Reliance Worldwide Corporation Methods and apparatus for ultrasonic fluid flow measurement and fluid flow data analysis
US20130253872A1 (en) * 2012-03-20 2013-09-26 Thermo Fisher Scientific Inc. Flow meter calibration system
US9722892B2 (en) * 2012-07-02 2017-08-01 Nec Corporation Flow rate prediction device, flow rate prediction method, and flow rate prediction program
US10352324B2 (en) * 2014-07-18 2019-07-16 Ksb Aktiengesellschaft Determining the delivery rate of a pump
US10378940B2 (en) * 2014-08-14 2019-08-13 Soneter, Inc. Devices and system for channeling and automatic monitoring of fluid flow in fluid distribution systems

Also Published As

Publication number Publication date
JP7353429B1 (en) 2023-09-29
TW202346801A (en) 2023-12-01
JP2023172819A (en) 2023-12-06
CN117109667A (en) 2023-11-24

Similar Documents

Publication Publication Date Title
CN101641582B (en) Vibrating wire sensor using spectral analysis
EP3516348B1 (en) Ultrasonic flowmeter and method using partial flow measurements
US7577888B2 (en) Self learning signatures
CN103119453A (en) Digital frequency estimation based on quadratic forms
TWI817519B (en) Flow estimating method of rotary flowmeter under low flow-speed state
CN106092371B (en) The method and device thereof of predicted temperature
JP3515300B2 (en) Plant status prediction device
JP3152247B2 (en) Reactor power monitoring method and apparatus
CN112284469B (en) Zero drift processing method of ultrasonic water meter
US6785632B1 (en) Real time statistical computation in embedded systems
CN106802367B (en) Vibrating string type sensor signal period measurement method and device based on overlapping grouping
KR20190086217A (en) Apparatus for estimating metering error data and computer readable recording medium
JP3511070B2 (en) Speed calculator
JP4353682B2 (en) Flow rate measuring method and apparatus
Storage Tracking User-Perceived I/O Slowdown via Probing
JPH10318848A (en) Method and device for raising response characteristics of sensor
TWI630776B (en) Motor speed detecting method and device thereof
JPH0915006A (en) Gas flow meter
CN116256042A (en) Method for improving metering accuracy of electronic gas meter
JP2003315115A (en) Flow measuring device
JPH0219748Y2 (en)
RU2568943C1 (en) Meter of fluid medium quantity and method to determine quantity of fluid medium
CN116340299A (en) Energy consumption data processing method and system
CN114705262A (en) Heat conduction time domain integral downhole flow measurement method
CN117407820A (en) Detection method for outliers in slope deformation monitoring data