TWI817483B - Optical lens assembly and optical module - Google Patents

Optical lens assembly and optical module Download PDF

Info

Publication number
TWI817483B
TWI817483B TW111116879A TW111116879A TWI817483B TW I817483 B TWI817483 B TW I817483B TW 111116879 A TW111116879 A TW 111116879A TW 111116879 A TW111116879 A TW 111116879A TW I817483 B TWI817483 B TW I817483B
Authority
TW
Taiwan
Prior art keywords
optical
lens
glass lens
layer
glass
Prior art date
Application number
TW111116879A
Other languages
Chinese (zh)
Other versions
TW202307472A (en
Inventor
范丞緯
周明達
張建邦
林正峰
朱國強
Original Assignee
大立光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大立光電股份有限公司 filed Critical 大立光電股份有限公司
Priority to US17/814,046 priority Critical patent/US20230058946A1/en
Priority to CN202210874636.3A priority patent/CN115704951A/en
Priority to CN202221919129.9U priority patent/CN217902158U/en
Priority to EP22188213.7A priority patent/EP4130835A1/en
Publication of TW202307472A publication Critical patent/TW202307472A/en
Application granted granted Critical
Publication of TWI817483B publication Critical patent/TWI817483B/en

Links

Images

Abstract

An optical lens assembly where an optical axis passes includes a glass lens element. The glass lens element has refractive power. An optical surface of the glass lens element is aspheric and an anti-reflecting membrane is formed on the optical surface. The anti-reflecting membrane includes a nanostructure layer and a structure connection film. The nanostructure layer has a plurality of ridge-like protrusions which extend non-directionally from the optical surface. The structure connection film is disposed between the nanostructure layer and the optical surface and includes at least one silicon dioxide membrane. The silicon dioxide membrane contacts a bottom of the nanostructure layer, and a thickness of the silicon dioxide membrane is more or equal to 20 nm and less or equal to 150 nm. Via the configuration of the glass lens element, the optical lens assembly can maintain the imaging quality during the impact of extreme heat or coldness.

Description

光學透鏡組與光學模組Optical lens sets and optical modules

本揭示內容是關於一種光學透鏡組與光學模組,且特別是一種具有抗反射膜層的光學透鏡組與光學模組。The present disclosure relates to an optical lens set and an optical module, and in particular, to an optical lens set and an optical module having an anti-reflective coating layer.

近年來,光學模組發展快速,已充斥在現代人的生活中,並且廣泛地應用在各種領域,例如裝載在可攜式電子裝置、頭戴裝置、車輛工具等,而光學模組也隨之蓬勃發展。但隨著科技愈來愈進步,使用者對於光學模組的品質要求也愈來愈高,其中抗反射膜層為影響成像品質的主要因素之一。然而習知的抗反射膜層與基板之間的熱膨脹係數差異過大,導致兩者之間的介面會因溫度變化產生相對位移,容易造成膜層脫落或破壞,進而影響成像品質。有鑑於此,一種能抵抗溫度變化並維持成像品質的光學模組仍是目前相關業者共同努力的目標。In recent years, optical modules have developed rapidly and have become a part of modern people's lives. They are widely used in various fields, such as portable electronic devices, head-mounted devices, vehicle tools, etc., and optical modules have also followed suit. Thrive. However, as technology advances more and more, users have higher and higher quality requirements for optical modules, among which anti-reflective coating is one of the main factors affecting imaging quality. However, the thermal expansion coefficient difference between the conventional anti-reflective coating layer and the substrate is too large, causing the interface between the two to undergo relative displacement due to temperature changes, which can easily cause the coating layer to fall off or be damaged, thereby affecting the imaging quality. In view of this, an optical module that can resist temperature changes and maintain imaging quality is still the goal of relevant industry players.

本揭示內容提供之光學透鏡組及光學模組,藉由配置低膨脹係數的玻璃透鏡,並且搭配設置抗反射膜層於玻璃透鏡上,可減少抗反射膜層與玻璃透鏡介面之間在溫度變化後的相對位移,避免膜厚變化、膜層脫落或膜裂等問題,使光學透鏡組在冷熱衝擊之下維持成像品質。The optical lens set and optical module provided in this disclosure can reduce the temperature change between the anti-reflective film layer and the glass lens interface by configuring a glass lens with a low expansion coefficient and setting an anti-reflective film layer on the glass lens. The final relative displacement avoids problems such as film thickness changes, film peeling or film cracks, so that the optical lens assembly maintains imaging quality under hot and cold shocks.

依據本揭示內容一實施方式提供一光學透鏡組,一光軸通過光學透鏡組,且光學透鏡組包含一玻璃透鏡。玻璃透鏡具有屈折力,玻璃透鏡的一光學表面為非平面,光學表面上形成一抗反射膜層,且抗反射膜層包含一奈米結構層及一結構連接層。奈米結構層具有自光學表面朝非定向延伸的多個脊狀凸起,奈米結構層的材質包含氧化鋁。結構連接層設置於光學表面與奈米結構層之間,結構連接層包含至少一二氧化矽膜層,二氧化矽膜層與奈米結構層的一底部實體接觸,且二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米。玻璃透鏡在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1,其滿足下列條件:12×10 -7/K < α 1< 210×10 -7/K。 According to an embodiment of the present disclosure, an optical lens assembly is provided. An optical axis passes through the optical lens assembly, and the optical lens assembly includes a glass lens. The glass lens has refractive power. An optical surface of the glass lens is non-planar. An anti-reflective film layer is formed on the optical surface. The anti-reflective film layer includes a nanostructure layer and a structural connection layer. The nanostructure layer has a plurality of ridge-shaped protrusions extending non-directionally from the optical surface, and the material of the nanostructure layer includes aluminum oxide. The structural connection layer is disposed between the optical surface and the nanostructure layer. The structural connection layer includes at least one silicon dioxide film layer. The silicon dioxide film layer is in physical contact with a bottom of the nanostructure layer, and the silicon dioxide film layer is in physical contact with a bottom of the nanostructure layer. The thickness is greater than or equal to 20 nanometers and less than or equal to 150 nanometers. The glass lens has a first average linear expansion coefficient α 1 in the temperature range of -30 o C to 70 o C, which satisfies the following conditions: 12×10 -7 /K < α 1 < 210×10 -7 /K.

依據前段所述實施方式的光學透鏡組,其中脊狀凸起呈現下寬上窄的形狀,且奈米結構層的結構平均高度大於等於80奈米且小於等於350奈米。According to the optical lens assembly of the embodiment described in the previous paragraph, the ridge-shaped protrusions are wide at the bottom and narrow at the top, and the average structural height of the nanostructure layer is greater than or equal to 80 nanometers and less than or equal to 350 nanometers.

依據前段所述實施方式的光學透鏡組,其中光學透鏡組中一第一側表面至一第二側表面沿光軸的距離為D S1SL,光學表面至第二側表面沿光軸的距離為D SoSL,其滿足下列條件:0.12 ≤ D SoSL/D S1SL< 0.985。 The optical lens group according to the embodiment described in the previous paragraph, wherein the distance along the optical axis from a first side surface to a second side surface in the optical lens group is D S1SL , and the distance along the optical axis from the optical surface to the second side surface is D SoSL , which satisfies the following conditions: 0.12 ≤ D SoSL /D S1SL < 0.985.

依據前段所述實施方式的光學透鏡組,其中玻璃透鏡的光學表面對應光線波長400 nm至780 nm的反射率最大值為R abs,其可滿足下列條件:0 % ≤ R abs≤ 1.0 %。 According to the optical lens set according to the embodiment described in the previous paragraph, the maximum reflectivity of the optical surface of the glass lens corresponding to the light wavelength of 400 nm to 780 nm is R abs , which can satisfy the following conditions: 0 % ≤ R abs ≤ 1.0 %.

依據前段所述實施方式的光學透鏡組,其中玻璃透鏡的光學表面對應光線波長400 nm至780 nm的平均反射率為R avg,其可滿足下列條件:0 % ≤ R avg≤ 0.5 %。 According to the optical lens assembly of the embodiment described in the previous paragraph, the optical surface of the glass lens has an average reflectance R avg corresponding to the light wavelength of 400 nm to 780 nm, which can meet the following conditions: 0 % ≤ R avg ≤ 0.5 %.

依據前段所述實施方式的光學透鏡組,其中玻璃透鏡在溫度區間-30 oC至70 oC,具有第一平均線性膨脹係數α 1,結構連接層在溫度區間-30 oC至70 oC,具有一第二平均線性膨脹係數α 2,其可滿足下列條件: 0.2 < α 12< 41。 According to the optical lens set according to the embodiment described in the previous paragraph, the glass lens has a first average linear expansion coefficient α 1 in the temperature range of -30 o C to 70 o C, and the structural connection layer has a temperature range of -30 o C to 70 o C. , has a second average linear expansion coefficient α 2 , which can satisfy the following conditions: 0.2 < α 12 < 41.

依據前段所述實施方式的光學透鏡組,其中玻璃透鏡在溫度區間-30 oC至70 oC,具有一相對折射率的溫度係數為dn/dt,其可滿足下列條件:0.1×10 -6/ oC ≤|dn/dt|≤ 17×10 -6/ oC。 According to the optical lens assembly of the embodiment described in the previous paragraph, the glass lens has a temperature coefficient of relative refractive index dn/dt in the temperature range -30 o C to 70 o C, which can meet the following conditions: 0.1×10 -6 / o C ≤|dn/dt|≤ 17×10 -6 / o C.

依據前段所述實施方式的光學透鏡組,其中光學表面可具有一反曲點。According to the optical lens assembly of the embodiment described in the previous paragraph, the optical surface may have an inflection point.

依據前段所述實施方式的光學透鏡組,其中光學透鏡組的一第一側透鏡的一物側表面至一成像面沿光軸的距離為TL,其可滿足下列條件: 8 mm ≤ TL。According to the optical lens set according to the embodiment described in the previous paragraph, the distance from an object-side surface of a first side lens of the optical lens set to an imaging surface along the optical axis is TL, which satisfies the following conditions: 8 mm ≤ TL.

依據前段所述實施方式的光學透鏡組,其中玻璃透鏡可設置於光學透鏡組的第一側,且光學透鏡組可更包含一塑膠透鏡沿光軸設置於玻璃透鏡的一像側端。According to the optical lens set of the embodiment described in the previous paragraph, the glass lens can be disposed on the first side of the optical lens set, and the optical lens set can further include a plastic lens disposed on an image side end of the glass lens along the optical axis.

依據前段所述實施方式的光學透鏡組,可更包含一黏合透鏡。The optical lens assembly according to the embodiment described in the previous paragraph may further include a bonded lens.

依據前段所述實施方式的光學透鏡組,可更包含至少一光路轉折元件,設置於光學透鏡組的一物側端與一像側端中至少一端。The optical lens assembly according to the embodiments described in the previous paragraph may further include at least one optical path turning element disposed at at least one of an object-side end and an image-side end of the optical lens assembly.

依據本揭示內容一實施方式提供一光學模組,其包含一發光源及一光學透鏡組。一光軸透過光學透鏡組,且光學透鏡組包含至少三透鏡。至少三透鏡中至少一者為一玻璃透鏡,其中玻璃透鏡具有屈折力,且玻璃透鏡較另至少二透鏡靠近發光源,玻璃透鏡的一光學表面為非平面,光學表面上形成一抗反射膜層,且抗反射膜層包含一奈米結構層及一結構連接層。奈米結構層具有自光學表面朝非定向延伸的多個脊狀凸起,奈米結構層的材質包含氧化鋁。結構連接層設置於光學表面與奈米結構層之間,結構連接層包含至少一二氧化矽膜層,二氧化矽膜層與奈米結構層的一底部實體接觸,且二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米。玻璃透鏡在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1,其滿足下列條件: 12×10 -7/K < α 1< 210×10 -7/K。 According to an embodiment of the present disclosure, an optical module is provided, which includes a light source and an optical lens set. An optical axis passes through the optical lens group, and the optical lens group includes at least three lenses. At least one of the three lenses is a glass lens, wherein the glass lens has refractive power, and the glass lens is closer to the light source than the other at least two lenses. An optical surface of the glass lens is non-planar, and an anti-reflection film layer is formed on the optical surface. , and the anti-reflective film layer includes a nanostructure layer and a structural connection layer. The nanostructure layer has a plurality of ridge-shaped protrusions extending non-directionally from the optical surface, and the material of the nanostructure layer includes aluminum oxide. The structural connection layer is disposed between the optical surface and the nanostructure layer. The structural connection layer includes at least one silicon dioxide film layer. The silicon dioxide film layer is in physical contact with a bottom of the nanostructure layer, and the silicon dioxide film layer is in physical contact with a bottom of the nanostructure layer. The thickness is greater than or equal to 20 nanometers and less than or equal to 150 nanometers. The glass lens has a first average linear expansion coefficient α 1 in the temperature range of -30 o C to 70 o C, which satisfies the following conditions: 12×10 -7 /K < α 1 < 210×10 -7 /K.

依據前段所述實施方式的光學模組,其中脊狀凸起呈現下寬上窄的形狀,且奈米結構層的結構平均高度大於等於80奈米且小於等於350奈米。According to the optical module of the embodiment described in the previous paragraph, the ridge-shaped protrusions are wide at the bottom and narrow at the top, and the average structural height of the nanostructure layer is greater than or equal to 80 nanometers and less than or equal to 350 nanometers.

依據前段所述實施方式的光學模組,其中光學透鏡組中一第一側表面至一第二側表面沿光軸的距離為D S1SL,光學表面至第二側表面沿光軸的距離為D SoSL,其滿足下列條件:0.12 ≤ D SoSL/D S1SL< 0.985。 According to the optical module of the embodiment described in the previous paragraph, the distance along the optical axis from a first side surface to a second side surface in the optical lens group is D S1SL , and the distance along the optical axis from the optical surface to the second side surface is D SoSL , which satisfies the following conditions: 0.12 ≤ D SoSL /D S1SL < 0.985.

依據前段所述實施方式的光學模組,其中玻璃透鏡可為一陣列透鏡。According to the optical module of the embodiment described in the previous paragraph, the glass lens can be an array lens.

依據前段所述實施方式的光學模組,其中玻璃透鏡的光學表面對應光線波長400 nm至780 nm的反射率最大值為R abs,其可滿足下列條件:0 % ≤ R abs≤ 1.0 %。 According to the optical module of the embodiment described in the previous paragraph, the maximum reflectivity of the optical surface of the glass lens corresponding to the light wavelength of 400 nm to 780 nm is R abs , which can meet the following conditions: 0 % ≤ R abs ≤ 1.0 %.

依據前段所述實施方式的光學模組,其中玻璃透鏡的光學表面對應光線波長400 nm至780 nm的平均反射率為R avg,其可滿足下列條件:0 % ≤ R avg≤ 0.5 %。 According to the optical module of the embodiment described in the previous paragraph, the optical surface of the glass lens has an average reflectance R avg corresponding to the light wavelength of 400 nm to 780 nm, which can meet the following conditions: 0 % ≤ R avg ≤ 0.5 %.

依據前段所述實施方式的光學模組,其中玻璃透鏡在溫度區間-30 oC至70 oC,具有第一平均線性膨脹係數α 1,結構連接層在溫度區間-30 oC至70 oC,具有一第二平均線性膨脹係數α 2,其可滿足下列條件:0.2 < α 12< 41。 According to the optical module of the embodiment described in the previous paragraph, the glass lens has a first average linear expansion coefficient α 1 in the temperature range of -30 o C to 70 o C, and the structural connection layer has a temperature range of -30 o C to 70 o C. , has a second average linear expansion coefficient α 2 , which can satisfy the following conditions: 0.2 < α 12 < 41.

依據前段所述實施方式的光學模組,其中光學透鏡組可更包含至少一光路轉折元件,設置於光學透鏡組的一物側端與一像側端中至少一端。According to the optical module of the embodiment described in the previous paragraph, the optical lens group may further include at least one optical path turning element, which is disposed at at least one of an object-side end and an image-side end of the optical lens group.

依據前段所述實施方式的光學模組,其中發光源可為陣列設置的複數顯示元件。According to the optical module of the embodiment described in the previous paragraph, the light source may be a plurality of display elements arranged in an array.

依據本揭示內容一實施方式提供一光學模組,其包含一發光源及一光學透鏡組。一光軸透過光學透鏡組,且光學透鏡組包含至少三透鏡。至少三透鏡中至少一者為一玻璃透鏡,其中玻璃透鏡具有屈折力,且玻璃透鏡較另至少二透鏡靠近發光源,玻璃透鏡的一光學表面為非平面,光學表面上形成一抗反射膜層,且抗反射膜層包含一奈米結構層及一結構連接層。奈米結構層具有自光學表面朝非定向延伸的多個脊狀凸起,奈米結構層的材質包含氧化鋁。結構連接層設置於光學表面與奈米結構層之間,結構連接層包含至少一二氧化矽膜層,二氧化矽膜層與奈米結構層的一底部實體接觸,且二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米。光學表面的最大有效半徑為Y,光學表面與光軸的交點至光學表面最大有效半徑位置具有平行於光軸的最大位移SAG glass,玻璃透鏡在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1,其滿足下列條件:0.01 ≤ SAG glass/ Y ≤ 0.99;以及12×10 -7/K < α 1< 210×10 -7/K。 According to an embodiment of the present disclosure, an optical module is provided, which includes a light source and an optical lens set. An optical axis passes through the optical lens group, and the optical lens group includes at least three lenses. At least one of the three lenses is a glass lens, wherein the glass lens has refractive power, and the glass lens is closer to the light source than the other at least two lenses. An optical surface of the glass lens is non-planar, and an anti-reflection film layer is formed on the optical surface. , and the anti-reflective film layer includes a nanostructure layer and a structural connection layer. The nanostructure layer has a plurality of ridge-shaped protrusions extending non-directionally from the optical surface, and the material of the nanostructure layer includes aluminum oxide. The structural connection layer is disposed between the optical surface and the nanostructure layer. The structural connection layer includes at least one silicon dioxide film layer. The silicon dioxide film layer is in physical contact with a bottom of the nanostructure layer, and the silicon dioxide film layer is in physical contact with a bottom of the nanostructure layer. The thickness is greater than or equal to 20 nanometers and less than or equal to 150 nanometers. The maximum effective radius of the optical surface is Y. There is a maximum displacement parallel to the optical axis from the intersection of the optical surface and the optical axis to the position of the maximum effective radius of the optical surface. SAG glass . The glass lens has a temperature range of -30 o C to 70 o C. The first average linear expansion coefficient α 1 satisfies the following conditions: 0.01 ≤ SAG glass / Y ≤ 0.99; and 12×10 -7 /K < α 1 < 210×10 -7 /K.

依據前段所述實施方式的光學模組,其中脊狀凸起可呈現下寬上窄的形狀,且奈米結構層的結構平均高度大於等於80奈米且小於等於350奈米。According to the optical module of the embodiment described in the previous paragraph, the ridge-shaped protrusions may be wide at the bottom and narrow at the top, and the average structural height of the nanostructure layer is greater than or equal to 80 nanometers and less than or equal to 350 nanometers.

依據前段所述實施方式的光學模組,其中玻璃透鏡可為一陣列透鏡。According to the optical module of the embodiment described in the previous paragraph, the glass lens can be an array lens.

依據前段所述實施方式的光學模組,其中玻璃透鏡的光學表面對應光線波長400 nm至780 nm的反射率最大值為R abs,其可滿足下列條件:0 % ≤ R abs≤ 1.0 %。 According to the optical module of the embodiment described in the previous paragraph, the maximum reflectivity of the optical surface of the glass lens corresponding to the light wavelength of 400 nm to 780 nm is R abs , which can meet the following conditions: 0 % ≤ R abs ≤ 1.0 %.

依據前段所述實施方式的光學模組,其中玻璃透鏡的光學表面對應光線波長400 nm至780 nm的平均反射率為R avg,其可滿足下列條件:0 % ≤ R avg≤ 0.5 %。 According to the optical module of the embodiment described in the previous paragraph, the optical surface of the glass lens has an average reflectance R avg corresponding to the light wavelength of 400 nm to 780 nm, which can meet the following conditions: 0 % ≤ R avg ≤ 0.5 %.

依據前段所述實施方式的光學模組,其中玻璃透鏡在溫度區間-30 oC至70 oC,具有第一平均線性膨脹係數α 1,結構連接層在溫度區間-30 oC至70 oC,可具有一第二平均線性膨脹係數α 2,其滿足下列條件: 0.2 < α 12< 41。 According to the optical module of the embodiment described in the previous paragraph, the glass lens has a first average linear expansion coefficient α 1 in the temperature range of -30 o C to 70 o C, and the structural connection layer has a temperature range of -30 o C to 70 o C. , may have a second average linear expansion coefficient α 2 , which satisfies the following conditions: 0.2 < α 12 < 41.

依據前段所述實施方式的光學模組,其中光學表面與光軸的交點至光學表面最大有效半徑位置具有平行於光軸的最大位移SAG glass,其可滿足下列條件:90 μm ≤ SAG glassAccording to the optical module of the embodiment described in the previous paragraph, the intersection point of the optical surface and the optical axis to the maximum effective radius position of the optical surface has a maximum displacement SAG glass parallel to the optical axis, which can meet the following conditions: 90 μm ≤ SAG glass .

依據前段所述實施方式的光學模組,其中光學表面可具有一反曲點。According to the optical module of the embodiment described in the previous paragraph, the optical surface may have an inflection point.

依據前段所述實施方式的光學模組,其中光學透鏡組可更包含至少一光路轉折元件,設置於光學透鏡組的一物側端與一像側端中至少一端。According to the optical module of the embodiment described in the previous paragraph, the optical lens group may further include at least one optical path turning element, which is disposed at at least one of an object-side end and an image-side end of the optical lens group.

依據前段所述實施方式的光學模組,其中發光源可為陣列設置的複數顯示元件。According to the optical module of the embodiment described in the previous paragraph, the light source may be a plurality of display elements arranged in an array.

本揭示內容提供一種光學模組,其包含一發光源及一光學透鏡組。一光軸透過光學透鏡組,且光學透鏡組包含一玻璃透鏡。玻璃透鏡具有屈折力,玻璃透鏡的一光學表面為非平面,光學表面上形成一抗反射膜層,且抗反射膜層包含一奈米結構層及一結構連接層。奈米結構層具有自光學表面朝非定向延伸的多個脊狀凸起,奈米結構層的材質包含氧化鋁,且奈米結構層的結構平均高度大於等於80奈米且小於等於350奈米。結構連接層設置於光學表面與奈米結構層之間,結構連接層包含至少一二氧化矽膜層,二氧化矽膜層與奈米結構層的一底部實體接觸,且二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米。玻璃透鏡在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1,其滿足下列條件:12×10 -7/K < α 1< 210×10 -7/K。透過配置低線性膨脹係數α 1的玻璃透鏡,可減少抗反射膜層與玻璃透鏡介面之間在溫度變化後的相對位移,避免膜厚變化、膜層脫落或膜裂等問題,進而提升抗反射膜層於光學表面在劇烈溫度變化環境下的穩定性,使光學透鏡組在冷熱衝擊之下維持成像品質。 The present disclosure provides an optical module, which includes a light source and an optical lens assembly. An optical axis passes through the optical lens assembly, and the optical lens assembly includes a glass lens. The glass lens has refractive power. An optical surface of the glass lens is non-planar. An anti-reflective film layer is formed on the optical surface. The anti-reflective film layer includes a nanostructure layer and a structural connection layer. The nanostructure layer has a plurality of ridge-like protrusions extending non-directionally from the optical surface. The material of the nanostructure layer includes aluminum oxide, and the average structural height of the nanostructure layer is greater than or equal to 80 nanometers and less than or equal to 350 nanometers. . The structural connection layer is disposed between the optical surface and the nanostructure layer. The structural connection layer includes at least one silicon dioxide film layer. The silicon dioxide film layer is in physical contact with a bottom of the nanostructure layer, and the silicon dioxide film layer is in physical contact with a bottom of the nanostructure layer. The thickness is greater than or equal to 20 nanometers and less than or equal to 150 nanometers. The glass lens has a first average linear expansion coefficient α 1 in the temperature range of -30 o C to 70 o C, which satisfies the following conditions: 12×10 -7 /K < α 1 < 210×10 -7 /K. By configuring a glass lens with a low linear expansion coefficient α 1 , the relative displacement between the anti-reflective film layer and the glass lens interface after temperature changes can be reduced to avoid problems such as film thickness changes, film peeling or film cracks, thereby improving anti-reflective properties. The stability of the coating on the optical surface under severe temperature changes enables the optical lens assembly to maintain imaging quality under hot and cold shocks.

光學透鏡組可更包含至少三透鏡。至少三透鏡中至少一者為前述之玻璃透鏡,且玻璃透鏡較另至少二透鏡靠近發光源。當光學透鏡組中一第一側表面至一第二側表面沿光軸的距離為D S1SL,光學表面至第二側表面沿光軸的距離為D SoSL,其可滿足下列條件:0.12 ≤ D SoSL/D S1SL< 0.985。透過將抗反射膜層設置於光學透鏡組的特定位置,可減輕非成像光線的面反射。 The optical lens assembly may further include at least three lenses. At least one of the three lenses is the aforementioned glass lens, and the glass lens is closer to the light source than the other at least two lenses. When the distance along the optical axis from a first side surface to a second side surface in the optical lens group is D S1SL , and the distance along the optical axis from the optical surface to the second side surface is D SoSL , it can satisfy the following conditions: 0.12 ≤ D SoSL /D S1SL < 0.985. By arranging the anti-reflection coating layer at a specific position of the optical lens group, the surface reflection of non-imaging light can be reduced.

自光學透鏡的剖面觀察時,脊狀凸起可如山脊般呈現下寬上窄的形狀,這樣山脊般的結構可使奈米結構層的等效折射率自底部(山腳部分)向頂部(山頂部分)漸減,並可形成粗糙表面,以減少雜散光的反射。When viewed from the cross-section of an optical lens, the ridge-like protrusions can take on the shape of a ridge, wide at the bottom and narrow at the top. Such a ridge-like structure can make the equivalent refractive index of the nanostructure layer increase from the bottom (foot of the mountain) to the top (mountain of the mountain). part) gradually decreases and can form a rough surface to reduce the reflection of stray light.

具體而言,奈米結構層可具有孔隙,且相鄰的不規則狀凸起之間的距離由光學表面向空氣方向漸增,使奈米結構層的等效折射率往1.00漸變,降低抗反射膜層與玻璃透鏡介面之間的折射率變化,減少光線發生反射的機會。Specifically, the nanostructure layer can have pores, and the distance between adjacent irregular protrusions gradually increases from the optical surface to the air direction, so that the equivalent refractive index of the nanostructure layer gradually changes towards 1.00, reducing the resistance to The refractive index change between the reflective film layer and the glass lens interface reduces the chance of light reflection.

再者,當光學表面的最大有效半徑(effective radius)為Y,光學表面與光軸的交點至光學表面最大有效半徑位置具有平行於光軸的最大位移SAG glass,其可滿足下列條件:0.01 ≤ SAG glass/Y ≤ 0.99。透過光學表面的配置,抗反射膜層可形成於有曲率的光學表面上,藉此提升設計自由度。 Furthermore, when the maximum effective radius of the optical surface is Y, there is a maximum displacement SAG glass parallel to the optical axis from the intersection point of the optical surface and the optical axis to the position of the maximum effective radius of the optical surface, which can meet the following conditions: 0.01 ≤ SAG glass /Y ≤ 0.99. Through the configuration of the optical surface, the anti-reflective coating layer can be formed on the optical surface with curvature, thereby increasing the degree of design freedom.

具體而言,玻璃透鏡可為研磨玻璃或模造玻璃,但本揭示內容不以此為限。當奈米結構層的厚度為t,且t = 0 nm時,結構連接層可暴露於空氣中。Specifically, the glass lens may be ground glass or molded glass, but the present disclosure is not limited thereto. When the thickness of the nanostructure layer is t and t = 0 nm, the structural connection layer can be exposed to the air.

玻璃透鏡的光學表面對應光線波長400 nm至780 nm的反射率最大值為R abs,其可滿足下列條件:0 % ≤ R abs≤ 1.0 %。玻璃透鏡的光學表面對應光線波長400 nm至780 nm的平均反射率為R avg,其可滿足下列條件: 0 % ≤ R avg≤ 0.5 %。藉此,可維持低反射率,進而避免雜散光反射。 The maximum reflectivity of the optical surface of the glass lens corresponding to the light wavelength of 400 nm to 780 nm is R abs , which can meet the following conditions: 0 % ≤ R abs ≤ 1.0 %. The optical surface of the glass lens has an average reflectance R avg corresponding to the light wavelength of 400 nm to 780 nm, which can meet the following conditions: 0 % ≤ R avg ≤ 0.5 %. This maintains low reflectivity and avoids stray light reflections.

玻璃透鏡在溫度區間-30 oC至70 oC,可具有一第一平均線性膨脹係數α 1,結構連接層在溫度區間-30 oC至70 oC,具有一第二平均線性膨脹係數α 2,其可滿足下列條件:0.2 < α 12< 41。具體而言,奈米結構層的氧化鋁結晶的線性膨脹係數可為40×10 -7/K - 100×10 -7/K,結構連接層的二氧化矽膜層的線性膨脹係數可為5.5×10 -7/K - 7.5×10 -7/K,玻璃透鏡的第一平均線性膨脹係數α 1可為40×10 -7/K - 180×10 -7/K,但本揭示內容不以此為限。相較於習知技術中光學塑膠透鏡的線性膨脹係數600×10 -7/K - 700×10 -7/K,本揭示內容中玻璃透鏡與抗反射膜層的線性膨脹係數接近,使得兩者之間的相對位移較小,藉此可進一步提升抗反射膜層於光學表面的穩定性。 The glass lens may have a first average linear expansion coefficient α 1 in the temperature range of -30 o C to 70 o C, and the structural connection layer may have a second average linear expansion coefficient α in the temperature range of -30 o C to 70 o C. 2 , which can satisfy the following conditions: 0.2 < α 12 < 41. Specifically, the linear expansion coefficient of the aluminum oxide crystal of the nanostructure layer can be 40×10 -7 /K - 100×10 -7 /K, and the linear expansion coefficient of the silicon dioxide film layer of the structural connection layer can be 5.5 ×10 -7 /K - 7.5×10 -7 /K, the first average linear expansion coefficient α 1 of the glass lens can be 40×10 -7 /K - 180×10 -7 /K, but this disclosure does not This is the limit. Compared with the linear expansion coefficient of the optical plastic lens in the conventional technology of 600×10 -7 /K - 700×10 -7 /K, the linear expansion coefficient of the glass lens and the anti-reflection coating in this disclosure is close, making the two The relative displacement between them is small, thereby further improving the stability of the anti-reflective coating layer on the optical surface.

再者,結構連接層可為一高折射率層與低折射率層交替堆疊而成的膜層,且結構連接層的頂部為二氧化矽層,並與奈米結構層實體接觸。Furthermore, the structural connection layer can be a film layer composed of a high refractive index layer and a low refractive index layer alternately stacked, and the top of the structural connection layer is a silicon dioxide layer and is in physical contact with the nanostructure layer.

玻璃透鏡在溫度區間-30 oC至70 oC,可具有一相對折射率的溫度係數為dn/dt,其可滿足下列條件:0.1×10 -6/ oC ≤|dn/dt|≤ 17×10 -6/ oC。詳細來說,光學玻璃折射率會隨溫度變化而變化,而在空氣等介質中的折射率溫度係數稱為相對折射率溫度係數,且相對折射率的溫度係數dn/dt為譜線波長587.56 nm(d-line)測定的相對折射率的溫度係數。透過配置具有低相對折射率的溫度係數dn/dt的玻璃透鏡,可減少光學鏡頭的熱離焦問題,使鏡頭在受到冷熱衝擊後仍能維持成像品質。 The glass lens can have a relative refractive index temperature coefficient of dn/dt in the temperature range -30 o C to 70 o C, which can meet the following conditions: 0.1×10 -6 / o C ≤|dn/dt|≤ 17 ×10 -6 / o C. In detail, the refractive index of optical glass changes with temperature, and the temperature coefficient of the refractive index in media such as air is called the relative refractive index temperature coefficient, and the temperature coefficient of the relative refractive index dn/dt is the spectral line wavelength 587.56 nm (d-line) Measured temperature coefficient of relative refractive index. By configuring a glass lens with a low relative refractive index and temperature coefficient dn/dt, the thermal defocus problem of the optical lens can be reduced, allowing the lens to maintain imaging quality after being subjected to thermal shock.

光學表面可具有一反曲點。具體而言,光學表面除抗反射膜層外,亦可設置抗霧層、防刮層、遮光塗層等,並不以此為限。The optical surface may have an inflection point. Specifically, in addition to the anti-reflective film layer, the optical surface can also be provided with an anti-fog layer, an anti-scratch layer, a light-shielding coating, etc., but is not limited to this.

當光學透鏡組的一第一側透鏡的一物側表面至一成像面沿光軸的距離為TL,其可滿足下列條件: 8 mm ≤ TL。透過加長光學透鏡組總長度的距離,可有效分配具有正、負屈折力的透鏡,藉以減少熱離焦的發生。When the distance along the optical axis from an object-side surface of a first-side lens of the optical lens group to an imaging surface is TL, it can satisfy the following conditions: 8 mm ≤ TL. By lengthening the total length of the optical lens group, lenses with positive and negative refractive power can be effectively distributed, thereby reducing the occurrence of thermal defocus.

玻璃透鏡可設置於光學透鏡組的第一側,且光學透鏡組可更包含一塑膠透鏡,其沿光軸設置於玻璃透鏡的一像側端。進一步來說,光學透鏡組中第一側的第一片透鏡對溫度效應最為敏感,因此當第一片透鏡為具有低膨脹係數α 1與低相對折射率的溫度係數dn/dt的玻璃透鏡時,可以使光學透鏡組在溫度變化後維持穩定,並維持抗反射膜層的功用(膜厚、附著力、膜層完整性、截止波長),同時,光學鏡頭可藉由搭配塑膠透鏡提升設計自由度、增加生產效率與降低生產成本。 The glass lens can be disposed on the first side of the optical lens group, and the optical lens group can further include a plastic lens disposed on an image side end of the glass lens along the optical axis. Furthermore, the first lens on the first side of the optical lens group is the most sensitive to temperature effects, so when the first lens is a glass lens with a low expansion coefficient α 1 and a low relative refractive index temperature coefficient dn/dt , which can make the optical lens group remain stable after temperature changes and maintain the functions of the anti-reflective coating (film thickness, adhesion, film integrity, cut-off wavelength). At the same time, the optical lens can increase design freedom by matching it with a plastic lens degree, increase production efficiency and reduce production costs.

光學透鏡組可更包含一黏合透鏡。藉此,可消除色差。The optical lens assembly may further include a cemented lens. With this, chromatic aberration can be eliminated.

光學模組可更包含至少一光路轉折元件,其設置於光學透鏡組的一物側端與一像側端中至少一端。藉此,可依需求調整光學模組所需的搭載空間,適應小型化的電子裝置。The optical module may further include at least one optical path turning element, which is disposed at at least one of an object-side end and an image-side end of the optical lens assembly. In this way, the mounting space required for the optical module can be adjusted as needed to adapt to the miniaturized electronic device.

再者,玻璃透鏡可為一陣列透鏡(Array lens)。發光源可為陣列設置的複數顯示元件。具體而言,顯示元件的陣列形式可與陣列透鏡的陣列形式相同,但本揭示內容不以此為限。Furthermore, the glass lens can be an array lens. The light source may be a plurality of display elements arranged in an array. Specifically, the array form of the display elements can be the same as the array form of the array lens, but the present disclosure is not limited thereto.

根據上述實施方式,以下提出具體實施方式及實施例並配合圖式予以詳細說明。Based on the above implementations, specific implementations and examples are provided below and described in detail with reference to the drawings.

<第一實施例><First Embodiment>

請參照第1A圖,其繪示依照本揭示內容第一實施例中光學模組之光學透鏡組100的示意圖。如第1A圖所示,光學模組(圖未標示)包含一發光源(圖未繪示)及一光學透鏡組100。一光軸X通過光學透鏡組100,且光學透鏡組100包含鏡筒(圖未標示)及至少三透鏡。至少三透鏡設置於鏡筒中,且由物側至像側依序為玻璃透鏡120、130、透鏡140、玻璃透鏡150及透鏡160、170,其中玻璃透鏡120、130較透鏡140、160、170靠近發光源,玻璃透鏡150則較透鏡160、170靠近發光源。玻璃透鏡120、130、150及透鏡140、160、170皆具有屈折力,且玻璃透鏡120、130、150及透鏡140、160、170的光學表面皆為非平面。再者,在玻璃透鏡120的光學表面(即玻璃透鏡120的二表面)上形成抗反射膜層121、122,在玻璃透鏡130的光學表面(即玻璃透鏡130的二表面)上形成抗反射膜層131、132,在玻璃透鏡150的光學表面(即玻璃透鏡150的二表面)上形成抗反射膜層151、152。Please refer to FIG. 1A , which illustrates a schematic diagram of an optical lens assembly 100 of an optical module according to the first embodiment of the present disclosure. As shown in Figure 1A, the optical module (not shown in the figure) includes a light source (not shown in the figure) and an optical lens assembly 100. An optical axis X passes through the optical lens assembly 100, and the optical lens assembly 100 includes a lens barrel (not shown) and at least three lenses. At least three lenses are arranged in the lens barrel, and they are glass lenses 120, 130, lens 140, glass lens 150 and lenses 160 and 170 in order from the object side to the image side. The glass lenses 120 and 130 are closer to the lenses 140, 160 and 170. The light source, the glass lens 150 is closer to the light source than the lenses 160 and 170 . The glass lenses 120, 130, 150 and the lenses 140, 160, 170 all have refractive power, and the optical surfaces of the glass lenses 120, 130, 150 and the lenses 140, 160, 170 are all non-planar. Furthermore, the anti-reflection film layers 121 and 122 are formed on the optical surface of the glass lens 120 (ie, the two surfaces of the glass lens 120), and the anti-reflection film is formed on the optical surface of the glass lens 130 (ie, the two surfaces of the glass lens 130). Layers 131 and 132 form anti-reflection film layers 151 and 152 on the optical surface of the glass lens 150 (ie, the two surfaces of the glass lens 150).

請參照第1B圖及第1C圖,其中第1B圖繪示依照第1A圖第一實施例中玻璃透鏡150的示意圖,第1C圖繪示依照第1B圖第一實施例中玻璃透鏡150的光學表面上的抗反射膜層152在電子顯微鏡下的剖面示意圖。如第1B圖及第1C圖所示,玻璃透鏡150的抗反射膜層152形成在玻璃透鏡150的光學表面153上,且包含一奈米結構層1521及一結構連接層1522。奈米結構層1521具有自光學表面153朝非定向延伸的多個脊狀凸起,奈米結構層1521的材質包含氧化鋁,且奈米結構層1521的結構平均高度大於等於80奈米且小於等於350奈米。具體而言,脊狀凸起可呈現下寬上窄的形狀,奈米結構層1521的結構高度可為自剖面觀察時(破壞性量測),脊狀凸起的底部(山腳部分)至脊狀凸起的頂部(山頂部分)的垂直距離H1,且奈米結構層1521的至少三個或更多的脊狀凸起的結構平均高度(也就是H1的平均高度)可大於等於80奈米且小於等於350奈米。第一實施例中,奈米結構層1521的結構高度H1為247.4奈米,但本揭示內容不以此為限。Please refer to Figures 1B and 1C. Figure 1B illustrates a schematic diagram of the glass lens 150 according to the first embodiment of Figure 1A. Figure 1C illustrates the optical properties of the glass lens 150 according to the first embodiment of Figure 1B. Schematic cross-sectional view of the anti-reflective film layer 152 on the surface under an electron microscope. As shown in Figures 1B and 1C, the anti-reflective film layer 152 of the glass lens 150 is formed on the optical surface 153 of the glass lens 150 and includes a nanostructure layer 1521 and a structural connection layer 1522. The nanostructure layer 1521 has a plurality of ridge-shaped protrusions extending non-directionally from the optical surface 153. The material of the nanostructure layer 1521 includes aluminum oxide, and the average structural height of the nanostructure layer 1521 is greater than or equal to 80 nanometers and less than Equal to 350 nanometers. Specifically, the ridge-like protrusions can have a shape that is wide at the bottom and narrow at the top. The structural height of the nanostructure layer 1521 can be from the bottom of the ridge-shaped protrusions (foot portion) to the ridge when observed in cross section (destructive measurement). The vertical distance H1 of the top of the ridge-like protrusion (mountain part), and the average structural height of at least three or more ridge-like protrusions of the nanostructure layer 1521 (that is, the average height of H1) can be greater than or equal to 80 nanometers. And less than or equal to 350 nanometers. In the first embodiment, the structural height H1 of the nanostructure layer 1521 is 247.4 nanometers, but the present disclosure is not limited thereto.

結構連接層1522設置於光學表面153與奈米結構層1521之間,結構連接層1522包含至少一二氧化矽膜層(圖未繪示),二氧化矽膜層與奈米結構層1521的一底部實體接觸,且二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米。第一實施例中,二氧化矽膜層的厚度為75.15奈米,但本揭示內容不以此為限。The structural connection layer 1522 is disposed between the optical surface 153 and the nanostructure layer 1521. The structural connection layer 1522 includes at least one silicon dioxide film layer (not shown), one of the silicon dioxide film layer and the nanostructure layer 1521. The bottom is in physical contact, and the thickness of the silicon dioxide film layer is greater than or equal to 20 nanometers and less than or equal to 150 nanometers. In the first embodiment, the thickness of the silicon dioxide film layer is 75.15 nanometers, but the disclosure is not limited thereto.

如第1A圖所示,光學透鏡組100可更包含黏合透鏡。具體而言,第一實施例中,透鏡160、170為黏合透鏡,且透鏡160的像側表面黏合於透鏡170的物側表面。As shown in FIG. 1A , the optical lens assembly 100 may further include a cemented lens. Specifically, in the first embodiment, the lenses 160 and 170 are cemented lenses, and the image-side surface of the lens 160 is bonded to the object-side surface of the lens 170 .

由第1A圖可知,鏡筒包含一前蓋111及一筒體112。前蓋111蓋設於筒體112。玻璃透鏡120與前蓋111接觸,玻璃透鏡120、130、150及透鏡140、160、170容設於筒體112中並皆與筒體112接觸。另外,鏡筒中可另依需求設置其他光學元件,如遮光片、間隔環、固定環等,在此不另贅述。As shown in Figure 1A, the lens barrel includes a front cover 111 and a barrel 112. The front cover 111 covers the barrel 112 . The glass lens 120 is in contact with the front cover 111 . The glass lenses 120 , 130 , 150 and the lenses 140 , 160 and 170 are accommodated in the barrel 112 and are all in contact with the barrel 112 . In addition, other optical components can be installed in the lens barrel according to requirements, such as light shielding sheets, spacer rings, fixed rings, etc., which will not be described again here.

請配合參照第1D圖及第1E圖,其中第1D圖繪示依照第1B圖第一實施例中玻璃透鏡150的物側表面及像側表面未設有抗反射膜層的反射率的參數示意圖,第1E圖繪示依照第1B圖第一實施例中玻璃透鏡150物側表面及像側表面設有抗反射膜層151、152的反射率的參數示意圖。如第1D圖所示,未設有抗反射膜層的玻璃透鏡150物側表面及像側表面的反射率分別為N4R1及N4R2。如第1E圖所示,設有抗反射膜層的玻璃透鏡150物側表面(即設有抗反射膜層151的表面)及像側表面(即設有抗反射膜層152的表面)的反射率分別為G4R1及G4R2。玻璃透鏡150的反射率N4R1、N4R2、G4R1及G4R2對應光線波長的數據如下表一所示。 表一、第一實施例之玻璃透鏡150的反射率 波長 (nm) N4R1(%) N4R2(%) G4R1(%) G4R2(%) 400 1.2 1.1 0.7 0.9 401 1.0 1.0 0.7 0.9 402 0.9 0.9 0.7 0.8 403 0.8 0.8 0.6 0.8 404 0.7 0.7 0.6 0.8 405 0.6 0.6 0.6 0.8 406 0.5 0.6 0.6 0.7 407 0.5 0.5 0.6 0.7 408 0.4 0.5 0.6 0.7 409 0.3 0.4 0.6 0.7 410 0.3 0.4 0.5 0.7 411 0.2 0.3 0.5 0.6 412 0.2 0.3 0.5 0.6 413 0.2 0.2 0.5 0.6 414 0.1 0.2 0.5 0.6 415 0.1 0.2 0.5 0.6 416 0.1 0.2 0.5 0.6 417 0.1 0.1 0.5 0.5 418 0.1 0.1 0.5 0.5 419 0.1 0.1 0.5 0.5 420 0.1 0.1 0.4 0.5 421 0.1 0.1 0.4 0.5 422 0.1 0.1 0.4 0.5 423 0.1 0.1 0.4 0.5 424 0.1 0.0 0.4 0.5 425 0.1 0.0 0.4 0.4 426 0.1 0.0 0.4 0.4 427 0.1 0.0 0.4 0.4 428 0.1 0.0 0.4 0.4 429 0.1 0.0 0.4 0.4 430 0.1 0.0 0.4 0.4 431 0.1 0.0 0.4 0.4 432 0.1 0.0 0.4 0.4 433 0.1 0.0 0.4 0.4 434 0.1 0.0 0.3 0.4 435 0.1 0.0 0.3 0.3 436 0.1 0.0 0.3 0.3 437 0.1 0.0 0.3 0.3 438 0.1 0.0 0.3 0.3 439 0.1 0.0 0.3 0.3 440 0.1 0.0 0.3 0.3 441 0.1 0.0 0.3 0.3 442 0.1 0.0 0.3 0.3 443 0.2 0.0 0.3 0.3 444 0.2 0.0 0.3 0.3 445 0.2 0.0 0.3 0.2 446 0.2 0.0 0.3 0.2 447 0.2 0.0 0.3 0.2 448 0.2 0.0 0.3 0.2 449 0.2 0.0 0.3 0.2 450 0.2 0.0 0.3 0.2 451 0.2 0.0 0.2 0.2 452 0.2 0.0 0.2 0.2 453 0.2 0.0 0.3 0.2 454 0.2 0.0 0.2 0.2 455 0.2 0.0 0.2 0.2 456 0.2 0.0 0.2 0.2 457 0.2 0.0 0.2 0.2 458 0.2 0.0 0.2 0.2 459 0.2 0.0 0.2 0.2 460 0.2 0.0 0.2 0.2 461 0.2 0.1 0.2 0.2 462 0.2 0.0 0.2 0.2 463 0.2 0.1 0.2 0.2 464 0.1 0.1 0.2 0.2 465 0.1 0.1 0.2 0.2 466 0.1 0.1 0.2 0.2 467 0.1 0.1 0.2 0.1 468 0.1 0.1 0.2 0.1 469 0.1 0.1 0.2 0.1 470 0.1 0.1 0.2 0.1 471 0.1 0.1 0.2 0.1 472 0.1 0.1 0.2 0.1 473 0.1 0.1 0.2 0.1 474 0.1 0.1 0.2 0.1 475 0.1 0.1 0.2 0.1 476 0.1 0.1 0.2 0.1 477 0.1 0.1 0.2 0.1 478 0.1 0.1 0.2 0.1 479 0.1 0.1 0.2 0.1 480 0.1 0.1 0.2 0.1 481 0.1 0.1 0.2 0.1 482 0.1 0.1 0.2 0.1 483 0.1 0.1 0.2 0.1 484 0.1 0.2 0.2 0.1 485 0.1 0.2 0.2 0.1 486 0.1 0.2 0.2 0.1 487 0.1 0.2 0.2 0.1 488 0.1 0.2 0.2 0.1 489 0.1 0.2 0.2 0.1 490 0.1 0.2 0.2 0.1 491 0.1 0.2 0.1 0.1 492 0.1 0.2 0.2 0.1 493 0.1 0.2 0.1 0.1 494 0.1 0.2 0.1 0.1 495 0.1 0.2 0.1 0.1 496 0.1 0.2 0.1 0.1 497 0.1 0.2 0.1 0.1 498 0.1 0.2 0.1 0.1 499 0.1 0.2 0.1 0.1 500 0.1 0.2 0.1 0.1 501 0.1 0.3 0.1 0.1 502 0.1 0.3 0.1 0.1 503 0.1 0.3 0.1 0.1 504 0.1 0.3 0.1 0.1 505 0.1 0.3 0.1 0.1 506 0.1 0.3 0.1 0.1 507 0.1 0.3 0.1 0.1 508 0.1 0.3 0.1 0.1 509 0.1 0.3 0.1 0.1 510 0.1 0.3 0.1 0.1 511 0.1 0.3 0.1 0.1 512 0.1 0.3 0.1 0.1 513 0.1 0.3 0.1 0.1 514 0.1 0.3 0.1 0.0 515 0.1 0.3 0.1 0.0 516 0.1 0.3 0.1 0.0 517 0.1 0.3 0.1 0.0 518 0.1 0.3 0.1 0.0 519 0.1 0.3 0.1 0.0 520 0.1 0.3 0.1 0.0 521 0.1 0.3 0.1 0.0 522 0.1 0.3 0.1 0.0 523 0.1 0.3 0.1 0.0 524 0.1 0.4 0.1 0.0 525 0.2 0.4 0.1 0.0 526 0.2 0.4 0.1 0.0 527 0.2 0.4 0.1 0.0 528 0.2 0.4 0.1 0.0 529 0.2 0.4 0.1 0.0 530 0.2 0.4 0.1 0.0 531 0.2 0.4 0.1 0.0 532 0.2 0.4 0.1 0.0 533 0.2 0.4 0.1 0.0 534 0.2 0.4 0.1 0.0 535 0.2 0.4 0.1 0.0 536 0.2 0.4 0.1 0.0 537 0.2 0.4 0.1 0.0 538 0.2 0.4 0.1 0.0 539 0.2 0.4 0.1 0.0 540 0.2 0.4 0.1 0.0 541 0.2 0.4 0.1 0.0 542 0.2 0.4 0.1 0.0 543 0.2 0.4 0.1 0.0 544 0.2 0.4 0.1 0.0 545 0.2 0.4 0.1 0.0 546 0.2 0.4 0.1 0.0 547 0.2 0.4 0.1 0.0 548 0.2 0.3 0.1 0.0 549 0.2 0.3 0.1 0.0 550 0.2 0.3 0.1 0.0 551 0.2 0.3 0.1 0.0 552 0.2 0.3 0.1 0.0 553 0.2 0.3 0.1 0.0 554 0.2 0.3 0.1 0.0 555 0.2 0.3 0.1 0.0 556 0.2 0.3 0.1 0.0 557 0.2 0.3 0.1 0.0 558 0.2 0.3 0.1 0.0 559 0.2 0.3 0.1 0.0 560 0.2 0.3 0.1 0.0 561 0.2 0.3 0.1 0.0 562 0.2 0.3 0.1 0.0 563 0.2 0.3 0.1 0.0 564 0.2 0.3 0.1 0.0 565 0.2 0.3 0.1 0.0 566 0.2 0.3 0.1 0.0 567 0.2 0.3 0.1 0.0 568 0.2 0.3 0.1 0.0 569 0.2 0.3 0.1 0.0 570 0.2 0.3 0.1 0.0 571 0.2 0.3 0.1 0.0 572 0.2 0.2 0.1 0.0 573 0.2 0.2 0.1 0.0 574 0.2 0.2 0.1 0.0 575 0.2 0.2 0.1 0.0 576 0.2 0.2 0.1 0.0 577 0.2 0.2 0.1 0.0 578 0.2 0.2 0.0 0.0 579 0.2 0.2 0.1 0.0 580 0.2 0.2 0.0 0.0 581 0.2 0.2 0.0 0.0 582 0.2 0.2 0.0 0.0 583 0.2 0.2 0.0 0.0 584 0.2 0.2 0.0 0.0 585 0.2 0.2 0.0 0.0 586 0.2 0.2 0.0 0.0 587 0.2 0.2 0.0 0.0 588 0.2 0.1 0.0 0.0 589 0.2 0.1 0.0 0.0 590 0.2 0.1 0.0 0.0 591 0.2 0.1 0.0 0.0 592 0.2 0.1 0.0 0.0 593 0.2 0.1 0.0 0.0 594 0.1 0.1 0.0 0.0 595 0.1 0.1 0.0 0.0 596 0.1 0.1 0.0 0.0 597 0.1 0.1 0.0 0.0 598 0.1 0.1 0.0 0.0 599 0.1 0.1 0.0 0.0 600 0.1 0.1 0.0 0.0 601 0.1 0.1 0.0 0.0 602 0.1 0.1 0.0 0.0 603 0.1 0.1 0.0 0.0 604 0.1 0.1 0.0 0.0 605 0.1 0.1 0.0 0.0 606 0.1 0.1 0.0 0.0 607 0.1 0.0 0.0 0.0 608 0.1 0.0 0.0 0.0 609 0.1 0.0 0.0 0.0 610 0.1 0.0 0.0 0.0 611 0.1 0.0 0.0 0.0 612 0.1 0.0 0.0 0.0 613 0.1 0.0 0.0 0.0 614 0.1 0.0 0.0 0.0 615 0.1 0.0 0.0 0.0 616 0.1 0.0 0.0 0.0 617 0.0 0.0 0.0 0.0 618 0.0 0.0 0.0 0.0 619 0.0 0.0 0.0 0.0 620 0.0 0.0 0.0 0.0 621 0.0 0.0 0.0 0.0 622 0.0 0.0 0.0 0.0 623 0.0 0.0 0.0 0.0 624 0.0 0.0 0.0 0.0 625 0.0 0.0 0.0 0.0 626 0.0 0.0 0.0 0.0 627 0.0 0.0 0.0 0.0 628 0.0 0.0 0.0 0.0 629 0.0 0.0 0.0 0.0 630 0.0 0.0 0.0 0.0 631 0.0 0.0 0.0 0.0 632 0.0 0.0 0.0 0.0 633 0.0 0.0 0.0 0.0 634 0.0 0.0 0.0 0.0 635 0.0 0.0 0.0 0.0 636 0.0 0.0 0.0 0.0 637 0.0 0.0 0.0 0.0 638 0.0 0.0 0.0 0.0 639 0.0 0.0 0.0 0.0 640 0.0 0.0 0.0 0.0 641 0.0 0.0 0.0 0.0 642 0.0 0.1 0.0 0.0 643 0.0 0.1 0.0 0.0 644 0.0 0.1 0.0 0.0 645 0.0 0.1 0.0 0.0 646 0.0 0.1 0.0 0.0 647 0.0 0.1 0.0 0.0 648 0.0 0.1 0.0 0.0 649 0.0 0.1 0.0 0.0 650 0.0 0.1 0.0 0.0 651 0.1 0.1 0.0 0.0 652 0.1 0.1 0.0 0.0 653 0.1 0.1 0.0 0.0 654 0.1 0.1 0.0 0.0 655 0.1 0.2 0.0 0.0 656 0.1 0.2 0.0 0.0 657 0.1 0.2 0.0 0.0 658 0.1 0.2 0.0 0.0 659 0.1 0.2 0.0 0.0 660 0.1 0.2 0.0 0.0 661 0.1 0.2 0.0 0.0 662 0.1 0.2 0.0 0.0 663 0.1 0.2 0.0 0.0 664 0.1 0.3 0.0 0.0 665 0.2 0.3 0.0 0.0 666 0.2 0.3 0.0 0.0 667 0.2 0.3 0.0 0.0 668 0.2 0.3 0.0 0.0 669 0.2 0.3 0.0 0.0 670 0.2 0.3 0.0 0.0 671 0.2 0.4 0.0 0.0 672 0.2 0.4 0.0 0.0 673 0.2 0.4 0.0 0.0 674 0.3 0.4 0.0 0.0 675 0.3 0.4 0.0 0.0 676 0.3 0.4 0.0 0.0 677 0.3 0.5 0.0 0.0 678 0.3 0.5 0.0 0.0 679 0.3 0.5 0.0 0.0 680 0.4 0.5 0.0 0.0 681 0.4 0.5 0.0 0.0 682 0.4 0.6 0.0 0.0 683 0.4 0.6 0.0 0.0 684 0.4 0.6 0.0 0.0 685 0.4 0.6 0.0 0.0 686 0.5 0.6 0.0 0.0 687 0.5 0.7 0.0 0.0 688 0.5 0.7 0.0 0.0 689 0.5 0.7 0.0 0.0 690 0.5 0.7 0.0 0.0 691 0.6 0.8 0.0 0.0 692 0.6 0.8 0.0 0.0 693 0.6 0.8 0.0 0.0 694 0.6 0.8 0.0 0.0 695 0.6 0.9 0.0 0.0 696 0.7 0.9 0.0 0.0 697 0.7 0.9 0.0 0.0 698 0.7 0.9 0.0 0.0 699 0.7 1.0 0.0 0.0 700 0.8 1.0 0.0 0.0 701 0.8 1.0 0.0 0.0 702 0.8 1.0 0.0 0.0 703 0.8 1.1 0.0 0.0 704 0.9 1.1 0.0 0.0 705 0.9 1.1 0.0 0.0 706 0.9 1.2 0.0 0.0 707 0.9 1.2 0.0 0.0 708 1.0 1.2 0.0 0.0 709 1.0 1.2 0.0 0.0 710 1.0 1.3 0.0 0.0 711 1.0 1.3 0.0 0.0 712 1.1 1.3 0.0 0.0 713 1.1 1.4 0.0 0.0 714 1.1 1.4 0.1 0.0 715 1.2 1.4 0.1 0.0 716 1.2 1.5 0.1 0.0 717 1.2 1.5 0.1 0.0 718 1.2 1.5 0.1 0.0 719 1.3 1.5 0.1 0.0 720 1.3 1.6 0.1 0.0 721 1.3 1.6 0.1 0.0 722 1.4 1.6 0.1 0.0 723 1.4 1.7 0.1 0.0 724 1.4 1.7 0.1 0.0 725 1.5 1.7 0.1 0.0 726 1.5 1.8 0.1 0.0 727 1.5 1.8 0.1 0.0 728 1.6 1.9 0.1 0.0 729 1.6 1.9 0.1 0.0 730 1.6 1.9 0.1 0.0 731 1.7 2.0 0.1 0.0 732 1.7 2.0 0.1 0.0 733 1.7 2.0 0.1 0.0 734 1.8 2.1 0.1 0.0 735 1.8 2.1 0.1 0.0 736 1.8 2.1 0.1 0.0 737 1.9 2.2 0.1 0.0 738 1.9 2.2 0.1 0.0 739 2.0 2.2 0.1 0.0 740 2.0 2.3 0.1 0.0 741 2.0 2.3 0.1 0.0 742 2.1 2.4 0.1 0.0 743 2.1 2.4 0.1 0.0 744 2.1 2.4 0.1 0.0 745 2.2 2.5 0.1 0.0 746 2.2 2.5 0.1 0.0 747 2.3 2.6 0.1 0.0 748 2.3 2.6 0.1 0.0 749 2.3 2.6 0.1 0.0 750 2.4 2.7 0.1 0.0 751 2.4 2.7 0.1 0.0 752 2.5 2.8 0.1 0.0 753 2.5 2.8 0.1 0.0 754 2.5 2.8 0.1 0.0 755 2.6 2.9 0.1 0.0 756 2.6 2.9 0.1 0.0 757 2.7 3.0 0.1 0.0 758 2.7 3.0 0.1 0.0 759 2.8 3.0 0.1 0.0 760 2.8 3.1 0.1 0.1 761 2.8 3.1 0.1 0.1 762 2.9 3.2 0.1 0.1 763 2.9 3.2 0.1 0.1 764 3.0 3.2 0.1 0.1 765 3.0 3.3 0.1 0.1 766 3.1 3.3 0.1 0.1 767 3.1 3.4 0.1 0.1 768 3.1 3.4 0.1 0.1 769 3.2 3.5 0.1 0.1 770 3.2 3.5 0.1 0.1 771 3.3 3.5 0.1 0.1 772 3.3 3.6 0.1 0.1 773 3.4 3.6 0.1 0.1 774 3.4 3.7 0.1 0.1 775 3.5 3.7 0.1 0.1 776 3.5 3.8 0.1 0.1 777 3.5 3.8 0.1 0.1 778 3.6 3.8 0.1 0.1 779 3.6 3.9 0.1 0.1 780 3.7 3.9 0.1 0.1 781 3.7 4.0 0.1 0.1 782 3.8 4.0 0.1 0.1 783 3.8 4.1 0.1 0.1 784 3.9 4.1 0.1 0.1 785 3.9 4.1 0.1 0.1 786 4.0 4.2 0.1 0.1 787 4.0 4.2 0.1 0.1 788 4.1 4.3 0.1 0.1 789 4.1 4.3 0.1 0.1 790 4.1 4.4 0.1 0.1 791 4.2 4.4 0.1 0.1 792 4.2 4.4 0.1 0.1 793 4.3 4.5 0.1 0.1 794 4.3 4.5 0.1 0.1 795 4.4 4.6 0.2 0.1 796 4.4 4.6 0.2 0.1 797 4.5 4.7 0.2 0.1 798 4.5 4.7 0.2 0.1 799 4.6 4.7 0.2 0.1 800 4.6 4.8 0.2 0.1 801 4.7 4.8 0.2 0.1 802 4.7 4.9 0.2 0.1 803 4.8 4.9 0.2 0.1 804 4.8 5.0 0.2 0.1 805 4.9 5.0 0.2 0.1 806 4.9 5.1 0.2 0.1 807 4.9 5.1 0.2 0.1 808 5.0 5.1 0.2 0.1 809 5.0 5.2 0.2 0.1 810 5.1 5.2 0.2 0.1 811 5.1 5.3 0.2 0.1 812 5.2 5.3 0.2 0.1 813 5.2 5.4 0.2 0.1 814 5.3 5.4 0.2 0.1 815 5.3 5.4 0.2 0.1 816 5.4 5.5 0.2 0.1 817 5.4 5.5 0.2 0.1 818 5.5 5.6 0.2 0.1 819 5.5 5.6 0.2 0.1 820 5.6 5.7 0.2 0.1 821 5.6 5.7 0.2 0.1 822 5.7 5.8 0.2 0.1 823 5.7 5.8 0.2 0.1 824 5.8 5.8 0.2 0.1 825 5.8 5.9 0.2 0.2 826 5.9 5.9 0.2 0.2 827 5.9 6.0 0.2 0.2 828 6.0 6.0 0.2 0.2 829 6.0 6.1 0.2 0.2 830 6.1 6.1 0.2 0.2 831 6.1 6.1 0.2 0.2 832 6.1 6.2 0.2 0.2 833 6.2 6.2 0.2 0.2 834 6.2 6.3 0.2 0.2 835 6.3 6.3 0.2 0.2 836 6.3 6.4 0.2 0.2 837 6.4 6.4 0.2 0.2 838 6.4 6.4 0.2 0.2 839 6.5 6.5 0.2 0.2 840 6.5 6.5 0.2 0.2 841 6.6 6.6 0.2 0.2 842 6.6 6.6 0.3 0.2 843 6.7 6.6 0.3 0.2 844 6.7 6.7 0.3 0.2 845 6.8 6.7 0.3 0.2 846 6.8 6.8 0.3 0.2 847 6.9 6.8 0.3 0.2 848 6.9 6.8 0.3 0.2 849 6.9 6.9 0.3 0.2 850 7.0 6.9 0.3 0.2 851 7.0 7.0 0.3 0.2 852 7.1 7.0 0.3 0.2 853 7.1 7.1 0.3 0.2 854 7.2 7.1 0.3 0.2 855 7.2 7.1 0.3 0.2 856 7.3 7.2 0.3 0.2 857 7.3 7.2 0.3 0.2 858 7.4 7.3 0.3 0.2 859 7.4 7.3 0.3 0.2 860 7.5 7.3 0.3 0.2 861 7.5 7.4 0.3 0.2 862 7.5 7.4 0.3 0.2 863 7.6 7.4 0.3 0.2 864 7.6 7.5 0.3 0.2 865 7.7 7.5 0.3 0.2 866 7.7 7.6 0.3 0.2 867 7.8 7.6 0.3 0.2 868 7.8 7.6 0.3 0.2 869 7.8 7.7 0.3 0.2 870 7.9 7.7 0.3 0.3 871 7.9 7.7 0.3 0.3 872 8.0 7.8 0.3 0.3 873 8.0 7.8 0.3 0.3 874 8.1 7.9 0.3 0.3 875 8.1 7.9 0.3 0.3 876 8.2 7.9 0.3 0.3 877 8.2 8.0 0.3 0.3 878 8.2 8.0 0.3 0.3 879 8.3 8.1 0.4 0.3 880 8.3 8.1 0.4 0.3 881 8.4 8.1 0.4 0.3 882 8.4 8.2 0.4 0.3 883 8.5 8.2 0.4 0.3 884 8.5 8.2 0.4 0.3 885 8.5 8.3 0.4 0.3 886 8.6 8.3 0.4 0.3 887 8.6 8.3 0.4 0.3 888 8.7 8.4 0.4 0.3 889 8.7 8.4 0.4 0.3 890 8.8 8.5 0.4 0.3 891 8.8 8.5 0.4 0.3 892 8.8 8.5 0.4 0.3 893 8.9 8.6 0.4 0.3 894 8.9 8.6 0.4 0.3 895 8.9 8.6 0.4 0.3 896 9.0 8.7 0.4 0.3 897 9.0 8.7 0.4 0.3 898 9.1 8.7 0.4 0.3 899 9.1 8.8 0.4 0.3 900 9.2 8.8 0.4 0.3 901 9.2 8.8 0.4 0.3 902 9.2 8.9 0.4 0.3 903 9.3 8.9 0.4 0.3 904 9.3 8.9 0.4 0.3 905 9.4 9.0 0.4 0.3 906 9.4 9.0 0.4 0.4 907 9.4 9.0 0.4 0.4 908 9.5 9.1 0.4 0.4 909 9.5 9.1 0.4 0.4 910 9.5 9.1 0.4 0.4 911 9.6 9.2 0.4 0.4 912 9.6 9.2 0.5 0.4 913 9.7 9.2 0.5 0.4 914 9.7 9.3 0.5 0.4 915 9.8 9.3 0.5 0.4 916 9.8 9.3 0.5 0.4 917 9.8 9.4 0.5 0.4 918 9.9 9.4 0.5 0.4 919 9.9 9.4 0.5 0.4 920 9.9 9.5 0.5 0.4 921 10.0 9.5 0.5 0.4 922 10.0 9.5 0.5 0.4 923 10.1 9.6 0.5 0.4 924 10.1 9.6 0.5 0.4 925 10.1 9.6 0.5 0.4 926 10.1 9.6 0.5 0.4 927 10.2 9.7 0.5 0.4 928 10.2 9.7 0.5 0.4 929 10.3 9.7 0.5 0.4 930 10.3 9.8 0.5 0.4 931 10.3 9.8 0.5 0.4 932 10.4 9.8 0.5 0.4 933 10.4 9.8 0.5 0.4 934 10.5 9.9 0.5 0.4 935 10.5 9.9 0.5 0.4 936 10.6 10.0 0.5 0.5 937 10.6 10.0 0.5 0.5 938 10.6 10.0 0.5 0.5 939 10.7 10.0 0.5 0.5 940 10.8 10.1 0.5 0.5 941 10.8 10.1 0.6 0.5 942 10.8 10.1 0.6 0.5 943 10.8 10.2 0.6 0.5 944 10.8 10.2 0.6 0.5 945 10.9 10.2 0.6 0.5 946 10.9 10.2 0.6 0.5 947 10.9 10.3 0.6 0.5 948 10.9 10.3 0.6 0.5 949 11.0 10.3 0.6 0.5 950 11.0 10.4 0.6 0.5 951 11.1 10.4 0.6 0.5 952 11.1 10.4 0.6 0.5 953 11.1 10.4 0.6 0.5 954 11.2 10.5 0.6 0.5 955 11.2 10.5 0.6 0.5 956 11.2 10.5 0.6 0.5 957 11.2 10.5 0.6 0.5 958 11.3 10.6 0.6 0.5 959 11.3 10.6 0.6 0.5 960 11.4 10.6 0.6 0.5 961 11.4 10.7 0.6 0.5 962 11.4 10.7 0.6 0.5 963 11.4 10.7 0.6 0.5 964 11.5 10.7 0.6 0.6 965 11.5 10.7 0.6 0.6 966 11.5 10.8 0.6 0.5 967 11.6 10.8 0.6 0.6 968 11.6 10.8 0.7 0.6 969 11.6 10.9 0.7 0.6 970 11.7 10.9 0.7 0.6 971 11.7 10.9 0.7 0.6 972 11.7 10.9 0.7 0.6 973 11.7 10.9 0.7 0.6 974 11.8 11.0 0.7 0.6 975 11.8 11.0 0.7 0.6 976 11.8 11.0 0.7 0.6 977 11.9 11.0 0.7 0.6 978 11.9 11.1 0.7 0.6 979 11.9 11.1 0.7 0.6 980 11.9 11.1 0.7 0.6 981 12.0 11.1 0.7 0.6 982 12.0 11.2 0.7 0.6 983 12.0 11.2 0.7 0.6 984 12.1 11.2 0.7 0.6 985 12.1 11.2 0.7 0.6 986 12.1 11.2 0.7 0.6 987 12.1 11.2 0.7 0.6 988 12.2 11.3 0.7 0.6 989 12.2 11.3 0.7 0.6 990 12.2 11.3 0.7 0.6 991 12.3 11.4 0.7 0.6 992 12.3 11.4 0.7 0.7 993 12.3 11.4 0.7 0.6 994 12.3 11.4 0.7 0.7 995 12.3 11.4 0.7 0.7 996 12.4 11.4 0.8 0.7 997 12.4 11.5 0.8 0.7 998 12.4 11.5 0.8 0.7 999 12.5 11.5 0.8 0.7 1000 12.5 11.5 0.8 0.7 1001 12.5 11.5 0.8 0.7 1002 12.5 11.5 0.8 0.7 1003 12.5 11.5 0.8 0.7 1004 12.6 11.6 0.8 0.7 1005 12.6 11.6 0.8 0.7 1006 12.6 11.6 0.8 0.7 1007 12.6 11.7 0.8 0.7 1008 12.7 11.7 0.8 0.7 1009 12.7 11.7 0.8 0.7 1010 12.7 11.7 0.8 0.7 1011 12.7 11.7 0.8 0.7 1012 12.7 11.7 0.8 0.7 1013 12.8 11.8 0.8 0.7 1014 12.8 11.8 0.8 0.7 1015 12.8 11.8 0.8 0.7 1016 12.8 11.8 0.8 0.7 1017 12.8 11.8 0.8 0.7 1018 12.8 11.8 0.8 0.7 1019 12.9 11.8 0.8 0.7 1020 12.9 11.9 0.8 0.7 1021 12.9 11.9 0.8 0.7 1022 12.9 11.9 0.8 0.8 1023 12.9 11.9 0.8 0.8 1024 13.0 11.9 0.8 0.7 1025 13.0 11.9 0.8 0.8 1026 13.0 11.9 0.8 0.8 1027 13.0 12.0 0.9 0.8 1028 13.1 12.0 0.9 0.8 1029 13.1 12.0 0.9 0.8 1030 13.1 12.0 0.9 0.8 1031 13.1 12.0 0.8 0.8 1032 13.1 12.0 0.9 0.8 1033 13.1 12.0 0.9 0.8 1034 13.1 12.0 0.9 0.8 1035 13.2 12.1 0.9 0.8 1036 13.2 12.1 0.9 0.8 1037 13.2 12.1 0.9 0.8 1038 13.3 12.1 0.9 0.8 1039 13.3 12.1 0.9 0.8 1040 13.2 12.1 0.9 0.8 1041 13.2 12.1 0.9 0.8 1042 13.3 12.1 0.9 0.8 1043 13.3 12.1 0.9 0.8 1044 13.4 12.2 0.9 0.8 1045 13.3 12.2 0.9 0.8 1046 13.4 12.2 0.9 0.8 1047 13.3 12.2 0.9 0.8 1048 13.3 12.2 0.9 0.8 1049 13.2 12.1 0.9 0.8 1050 13.4 12.2 0.9 0.8 Please refer to Figure 1D and Figure 1E together. Figure 1D is a schematic diagram showing the reflectivity parameters of the object-side surface and the image-side surface of the glass lens 150 in the first embodiment without anti-reflection coating layers according to Figure 1B , Figure 1E is a schematic diagram showing the reflectivity parameters of the object-side and image-side surfaces of the glass lens 150 provided with anti-reflection coating layers 151 and 152 according to the first embodiment of Figure 1B. As shown in Figure 1D, the reflectivity of the object-side surface and the image-side surface of the glass lens 150 without the anti-reflection coating layer are N4R1 and N4R2 respectively. As shown in Figure 1E, the reflection of the object-side surface (ie, the surface with the anti-reflection film 151) and the image-side surface (ie, the surface with the anti-reflection film 152) of the glass lens 150 provided with the anti-reflection coating layer The rates are G4R1 and G4R2 respectively. The data of the reflectivity N4R1, N4R2, G4R1 and G4R2 of the glass lens 150 corresponding to the light wavelengths are as shown in Table 1 below. Table 1. Reflectivity of the glass lens 150 of the first embodiment Wavelength(nm) N4R1(%) N4R2(%) G4R1(%) G4R2(%) 400 1.2 1.1 0.7 0.9 401 1.0 1.0 0.7 0.9 402 0.9 0.9 0.7 0.8 403 0.8 0.8 0.6 0.8 404 0.7 0.7 0.6 0.8 405 0.6 0.6 0.6 0.8 406 0.5 0.6 0.6 0.7 407 0.5 0.5 0.6 0.7 408 0.4 0.5 0.6 0.7 409 0.3 0.4 0.6 0.7 410 0.3 0.4 0.5 0.7 411 0.2 0.3 0.5 0.6 412 0.2 0.3 0.5 0.6 413 0.2 0.2 0.5 0.6 414 0.1 0.2 0.5 0.6 415 0.1 0.2 0.5 0.6 416 0.1 0.2 0.5 0.6 417 0.1 0.1 0.5 0.5 418 0.1 0.1 0.5 0.5 419 0.1 0.1 0.5 0.5 420 0.1 0.1 0.4 0.5 421 0.1 0.1 0.4 0.5 422 0.1 0.1 0.4 0.5 423 0.1 0.1 0.4 0.5 424 0.1 0.0 0.4 0.5 425 0.1 0.0 0.4 0.4 426 0.1 0.0 0.4 0.4 427 0.1 0.0 0.4 0.4 428 0.1 0.0 0.4 0.4 429 0.1 0.0 0.4 0.4 430 0.1 0.0 0.4 0.4 431 0.1 0.0 0.4 0.4 432 0.1 0.0 0.4 0.4 433 0.1 0.0 0.4 0.4 434 0.1 0.0 0.3 0.4 435 0.1 0.0 0.3 0.3 436 0.1 0.0 0.3 0.3 437 0.1 0.0 0.3 0.3 438 0.1 0.0 0.3 0.3 439 0.1 0.0 0.3 0.3 440 0.1 0.0 0.3 0.3 441 0.1 0.0 0.3 0.3 442 0.1 0.0 0.3 0.3 443 0.2 0.0 0.3 0.3 444 0.2 0.0 0.3 0.3 445 0.2 0.0 0.3 0.2 446 0.2 0.0 0.3 0.2 447 0.2 0.0 0.3 0.2 448 0.2 0.0 0.3 0.2 449 0.2 0.0 0.3 0.2 450 0.2 0.0 0.3 0.2 451 0.2 0.0 0.2 0.2 452 0.2 0.0 0.2 0.2 453 0.2 0.0 0.3 0.2 454 0.2 0.0 0.2 0.2 455 0.2 0.0 0.2 0.2 456 0.2 0.0 0.2 0.2 457 0.2 0.0 0.2 0.2 458 0.2 0.0 0.2 0.2 459 0.2 0.0 0.2 0.2 460 0.2 0.0 0.2 0.2 461 0.2 0.1 0.2 0.2 462 0.2 0.0 0.2 0.2 463 0.2 0.1 0.2 0.2 464 0.1 0.1 0.2 0.2 465 0.1 0.1 0.2 0.2 466 0.1 0.1 0.2 0.2 467 0.1 0.1 0.2 0.1 468 0.1 0.1 0.2 0.1 469 0.1 0.1 0.2 0.1 470 0.1 0.1 0.2 0.1 471 0.1 0.1 0.2 0.1 472 0.1 0.1 0.2 0.1 473 0.1 0.1 0.2 0.1 474 0.1 0.1 0.2 0.1 475 0.1 0.1 0.2 0.1 476 0.1 0.1 0.2 0.1 477 0.1 0.1 0.2 0.1 478 0.1 0.1 0.2 0.1 479 0.1 0.1 0.2 0.1 480 0.1 0.1 0.2 0.1 481 0.1 0.1 0.2 0.1 482 0.1 0.1 0.2 0.1 483 0.1 0.1 0.2 0.1 484 0.1 0.2 0.2 0.1 485 0.1 0.2 0.2 0.1 486 0.1 0.2 0.2 0.1 487 0.1 0.2 0.2 0.1 488 0.1 0.2 0.2 0.1 489 0.1 0.2 0.2 0.1 490 0.1 0.2 0.2 0.1 491 0.1 0.2 0.1 0.1 492 0.1 0.2 0.2 0.1 493 0.1 0.2 0.1 0.1 494 0.1 0.2 0.1 0.1 495 0.1 0.2 0.1 0.1 496 0.1 0.2 0.1 0.1 497 0.1 0.2 0.1 0.1 498 0.1 0.2 0.1 0.1 499 0.1 0.2 0.1 0.1 500 0.1 0.2 0.1 0.1 501 0.1 0.3 0.1 0.1 502 0.1 0.3 0.1 0.1 503 0.1 0.3 0.1 0.1 504 0.1 0.3 0.1 0.1 505 0.1 0.3 0.1 0.1 506 0.1 0.3 0.1 0.1 507 0.1 0.3 0.1 0.1 508 0.1 0.3 0.1 0.1 509 0.1 0.3 0.1 0.1 510 0.1 0.3 0.1 0.1 511 0.1 0.3 0.1 0.1 512 0.1 0.3 0.1 0.1 513 0.1 0.3 0.1 0.1 514 0.1 0.3 0.1 0.0 515 0.1 0.3 0.1 0.0 516 0.1 0.3 0.1 0.0 517 0.1 0.3 0.1 0.0 518 0.1 0.3 0.1 0.0 519 0.1 0.3 0.1 0.0 520 0.1 0.3 0.1 0.0 521 0.1 0.3 0.1 0.0 522 0.1 0.3 0.1 0.0 523 0.1 0.3 0.1 0.0 524 0.1 0.4 0.1 0.0 525 0.2 0.4 0.1 0.0 526 0.2 0.4 0.1 0.0 527 0.2 0.4 0.1 0.0 528 0.2 0.4 0.1 0.0 529 0.2 0.4 0.1 0.0 530 0.2 0.4 0.1 0.0 531 0.2 0.4 0.1 0.0 532 0.2 0.4 0.1 0.0 533 0.2 0.4 0.1 0.0 534 0.2 0.4 0.1 0.0 535 0.2 0.4 0.1 0.0 536 0.2 0.4 0.1 0.0 537 0.2 0.4 0.1 0.0 538 0.2 0.4 0.1 0.0 539 0.2 0.4 0.1 0.0 540 0.2 0.4 0.1 0.0 541 0.2 0.4 0.1 0.0 542 0.2 0.4 0.1 0.0 543 0.2 0.4 0.1 0.0 544 0.2 0.4 0.1 0.0 545 0.2 0.4 0.1 0.0 546 0.2 0.4 0.1 0.0 547 0.2 0.4 0.1 0.0 548 0.2 0.3 0.1 0.0 549 0.2 0.3 0.1 0.0 550 0.2 0.3 0.1 0.0 551 0.2 0.3 0.1 0.0 552 0.2 0.3 0.1 0.0 553 0.2 0.3 0.1 0.0 554 0.2 0.3 0.1 0.0 555 0.2 0.3 0.1 0.0 556 0.2 0.3 0.1 0.0 557 0.2 0.3 0.1 0.0 558 0.2 0.3 0.1 0.0 559 0.2 0.3 0.1 0.0 560 0.2 0.3 0.1 0.0 561 0.2 0.3 0.1 0.0 562 0.2 0.3 0.1 0.0 563 0.2 0.3 0.1 0.0 564 0.2 0.3 0.1 0.0 565 0.2 0.3 0.1 0.0 566 0.2 0.3 0.1 0.0 567 0.2 0.3 0.1 0.0 568 0.2 0.3 0.1 0.0 569 0.2 0.3 0.1 0.0 570 0.2 0.3 0.1 0.0 571 0.2 0.3 0.1 0.0 572 0.2 0.2 0.1 0.0 573 0.2 0.2 0.1 0.0 574 0.2 0.2 0.1 0.0 575 0.2 0.2 0.1 0.0 576 0.2 0.2 0.1 0.0 577 0.2 0.2 0.1 0.0 578 0.2 0.2 0.0 0.0 579 0.2 0.2 0.1 0.0 580 0.2 0.2 0.0 0.0 581 0.2 0.2 0.0 0.0 582 0.2 0.2 0.0 0.0 583 0.2 0.2 0.0 0.0 584 0.2 0.2 0.0 0.0 585 0.2 0.2 0.0 0.0 586 0.2 0.2 0.0 0.0 587 0.2 0.2 0.0 0.0 588 0.2 0.1 0.0 0.0 589 0.2 0.1 0.0 0.0 590 0.2 0.1 0.0 0.0 591 0.2 0.1 0.0 0.0 592 0.2 0.1 0.0 0.0 593 0.2 0.1 0.0 0.0 594 0.1 0.1 0.0 0.0 595 0.1 0.1 0.0 0.0 596 0.1 0.1 0.0 0.0 597 0.1 0.1 0.0 0.0 598 0.1 0.1 0.0 0.0 599 0.1 0.1 0.0 0.0 600 0.1 0.1 0.0 0.0 601 0.1 0.1 0.0 0.0 602 0.1 0.1 0.0 0.0 603 0.1 0.1 0.0 0.0 604 0.1 0.1 0.0 0.0 605 0.1 0.1 0.0 0.0 606 0.1 0.1 0.0 0.0 607 0.1 0.0 0.0 0.0 608 0.1 0.0 0.0 0.0 609 0.1 0.0 0.0 0.0 610 0.1 0.0 0.0 0.0 611 0.1 0.0 0.0 0.0 612 0.1 0.0 0.0 0.0 613 0.1 0.0 0.0 0.0 614 0.1 0.0 0.0 0.0 615 0.1 0.0 0.0 0.0 616 0.1 0.0 0.0 0.0 617 0.0 0.0 0.0 0.0 618 0.0 0.0 0.0 0.0 619 0.0 0.0 0.0 0.0 620 0.0 0.0 0.0 0.0 621 0.0 0.0 0.0 0.0 622 0.0 0.0 0.0 0.0 623 0.0 0.0 0.0 0.0 624 0.0 0.0 0.0 0.0 625 0.0 0.0 0.0 0.0 626 0.0 0.0 0.0 0.0 627 0.0 0.0 0.0 0.0 628 0.0 0.0 0.0 0.0 629 0.0 0.0 0.0 0.0 630 0.0 0.0 0.0 0.0 631 0.0 0.0 0.0 0.0 632 0.0 0.0 0.0 0.0 633 0.0 0.0 0.0 0.0 634 0.0 0.0 0.0 0.0 635 0.0 0.0 0.0 0.0 636 0.0 0.0 0.0 0.0 637 0.0 0.0 0.0 0.0 638 0.0 0.0 0.0 0.0 639 0.0 0.0 0.0 0.0 640 0.0 0.0 0.0 0.0 641 0.0 0.0 0.0 0.0 642 0.0 0.1 0.0 0.0 643 0.0 0.1 0.0 0.0 644 0.0 0.1 0.0 0.0 645 0.0 0.1 0.0 0.0 646 0.0 0.1 0.0 0.0 647 0.0 0.1 0.0 0.0 648 0.0 0.1 0.0 0.0 649 0.0 0.1 0.0 0.0 650 0.0 0.1 0.0 0.0 651 0.1 0.1 0.0 0.0 652 0.1 0.1 0.0 0.0 653 0.1 0.1 0.0 0.0 654 0.1 0.1 0.0 0.0 655 0.1 0.2 0.0 0.0 656 0.1 0.2 0.0 0.0 657 0.1 0.2 0.0 0.0 658 0.1 0.2 0.0 0.0 659 0.1 0.2 0.0 0.0 660 0.1 0.2 0.0 0.0 661 0.1 0.2 0.0 0.0 662 0.1 0.2 0.0 0.0 663 0.1 0.2 0.0 0.0 664 0.1 0.3 0.0 0.0 665 0.2 0.3 0.0 0.0 666 0.2 0.3 0.0 0.0 667 0.2 0.3 0.0 0.0 668 0.2 0.3 0.0 0.0 669 0.2 0.3 0.0 0.0 670 0.2 0.3 0.0 0.0 671 0.2 0.4 0.0 0.0 672 0.2 0.4 0.0 0.0 673 0.2 0.4 0.0 0.0 674 0.3 0.4 0.0 0.0 675 0.3 0.4 0.0 0.0 676 0.3 0.4 0.0 0.0 677 0.3 0.5 0.0 0.0 678 0.3 0.5 0.0 0.0 679 0.3 0.5 0.0 0.0 680 0.4 0.5 0.0 0.0 681 0.4 0.5 0.0 0.0 682 0.4 0.6 0.0 0.0 683 0.4 0.6 0.0 0.0 684 0.4 0.6 0.0 0.0 685 0.4 0.6 0.0 0.0 686 0.5 0.6 0.0 0.0 687 0.5 0.7 0.0 0.0 688 0.5 0.7 0.0 0.0 689 0.5 0.7 0.0 0.0 690 0.5 0.7 0.0 0.0 691 0.6 0.8 0.0 0.0 692 0.6 0.8 0.0 0.0 693 0.6 0.8 0.0 0.0 694 0.6 0.8 0.0 0.0 695 0.6 0.9 0.0 0.0 696 0.7 0.9 0.0 0.0 697 0.7 0.9 0.0 0.0 698 0.7 0.9 0.0 0.0 699 0.7 1.0 0.0 0.0 700 0.8 1.0 0.0 0.0 701 0.8 1.0 0.0 0.0 702 0.8 1.0 0.0 0.0 703 0.8 1.1 0.0 0.0 704 0.9 1.1 0.0 0.0 705 0.9 1.1 0.0 0.0 706 0.9 1.2 0.0 0.0 707 0.9 1.2 0.0 0.0 708 1.0 1.2 0.0 0.0 709 1.0 1.2 0.0 0.0 710 1.0 1.3 0.0 0.0 711 1.0 1.3 0.0 0.0 712 1.1 1.3 0.0 0.0 713 1.1 1.4 0.0 0.0 714 1.1 1.4 0.1 0.0 715 1.2 1.4 0.1 0.0 716 1.2 1.5 0.1 0.0 717 1.2 1.5 0.1 0.0 718 1.2 1.5 0.1 0.0 719 1.3 1.5 0.1 0.0 720 1.3 1.6 0.1 0.0 721 1.3 1.6 0.1 0.0 722 1.4 1.6 0.1 0.0 723 1.4 1.7 0.1 0.0 724 1.4 1.7 0.1 0.0 725 1.5 1.7 0.1 0.0 726 1.5 1.8 0.1 0.0 727 1.5 1.8 0.1 0.0 728 1.6 1.9 0.1 0.0 729 1.6 1.9 0.1 0.0 730 1.6 1.9 0.1 0.0 731 1.7 2.0 0.1 0.0 732 1.7 2.0 0.1 0.0 733 1.7 2.0 0.1 0.0 734 1.8 2.1 0.1 0.0 735 1.8 2.1 0.1 0.0 736 1.8 2.1 0.1 0.0 737 1.9 2.2 0.1 0.0 738 1.9 2.2 0.1 0.0 739 2.0 2.2 0.1 0.0 740 2.0 2.3 0.1 0.0 741 2.0 2.3 0.1 0.0 742 2.1 2.4 0.1 0.0 743 2.1 2.4 0.1 0.0 744 2.1 2.4 0.1 0.0 745 2.2 2.5 0.1 0.0 746 2.2 2.5 0.1 0.0 747 2.3 2.6 0.1 0.0 748 2.3 2.6 0.1 0.0 749 2.3 2.6 0.1 0.0 750 2.4 2.7 0.1 0.0 751 2.4 2.7 0.1 0.0 752 2.5 2.8 0.1 0.0 753 2.5 2.8 0.1 0.0 754 2.5 2.8 0.1 0.0 755 2.6 2.9 0.1 0.0 756 2.6 2.9 0.1 0.0 757 2.7 3.0 0.1 0.0 758 2.7 3.0 0.1 0.0 759 2.8 3.0 0.1 0.0 760 2.8 3.1 0.1 0.1 761 2.8 3.1 0.1 0.1 762 2.9 3.2 0.1 0.1 763 2.9 3.2 0.1 0.1 764 3.0 3.2 0.1 0.1 765 3.0 3.3 0.1 0.1 766 3.1 3.3 0.1 0.1 767 3.1 3.4 0.1 0.1 768 3.1 3.4 0.1 0.1 769 3.2 3.5 0.1 0.1 770 3.2 3.5 0.1 0.1 771 3.3 3.5 0.1 0.1 772 3.3 3.6 0.1 0.1 773 3.4 3.6 0.1 0.1 774 3.4 3.7 0.1 0.1 775 3.5 3.7 0.1 0.1 776 3.5 3.8 0.1 0.1 777 3.5 3.8 0.1 0.1 778 3.6 3.8 0.1 0.1 779 3.6 3.9 0.1 0.1 780 3.7 3.9 0.1 0.1 781 3.7 4.0 0.1 0.1 782 3.8 4.0 0.1 0.1 783 3.8 4.1 0.1 0.1 784 3.9 4.1 0.1 0.1 785 3.9 4.1 0.1 0.1 786 4.0 4.2 0.1 0.1 787 4.0 4.2 0.1 0.1 788 4.1 4.3 0.1 0.1 789 4.1 4.3 0.1 0.1 790 4.1 4.4 0.1 0.1 791 4.2 4.4 0.1 0.1 792 4.2 4.4 0.1 0.1 793 4.3 4.5 0.1 0.1 794 4.3 4.5 0.1 0.1 795 4.4 4.6 0.2 0.1 796 4.4 4.6 0.2 0.1 797 4.5 4.7 0.2 0.1 798 4.5 4.7 0.2 0.1 799 4.6 4.7 0.2 0.1 800 4.6 4.8 0.2 0.1 801 4.7 4.8 0.2 0.1 802 4.7 4.9 0.2 0.1 803 4.8 4.9 0.2 0.1 804 4.8 5.0 0.2 0.1 805 4.9 5.0 0.2 0.1 806 4.9 5.1 0.2 0.1 807 4.9 5.1 0.2 0.1 808 5.0 5.1 0.2 0.1 809 5.0 5.2 0.2 0.1 810 5.1 5.2 0.2 0.1 811 5.1 5.3 0.2 0.1 812 5.2 5.3 0.2 0.1 813 5.2 5.4 0.2 0.1 814 5.3 5.4 0.2 0.1 815 5.3 5.4 0.2 0.1 816 5.4 5.5 0.2 0.1 817 5.4 5.5 0.2 0.1 818 5.5 5.6 0.2 0.1 819 5.5 5.6 0.2 0.1 820 5.6 5.7 0.2 0.1 821 5.6 5.7 0.2 0.1 822 5.7 5.8 0.2 0.1 823 5.7 5.8 0.2 0.1 824 5.8 5.8 0.2 0.1 825 5.8 5.9 0.2 0.2 826 5.9 5.9 0.2 0.2 827 5.9 6.0 0.2 0.2 828 6.0 6.0 0.2 0.2 829 6.0 6.1 0.2 0.2 830 6.1 6.1 0.2 0.2 831 6.1 6.1 0.2 0.2 832 6.1 6.2 0.2 0.2 833 6.2 6.2 0.2 0.2 834 6.2 6.3 0.2 0.2 835 6.3 6.3 0.2 0.2 836 6.3 6.4 0.2 0.2 837 6.4 6.4 0.2 0.2 838 6.4 6.4 0.2 0.2 839 6.5 6.5 0.2 0.2 840 6.5 6.5 0.2 0.2 841 6.6 6.6 0.2 0.2 842 6.6 6.6 0.3 0.2 843 6.7 6.6 0.3 0.2 844 6.7 6.7 0.3 0.2 845 6.8 6.7 0.3 0.2 846 6.8 6.8 0.3 0.2 847 6.9 6.8 0.3 0.2 848 6.9 6.8 0.3 0.2 849 6.9 6.9 0.3 0.2 850 7.0 6.9 0.3 0.2 851 7.0 7.0 0.3 0.2 852 7.1 7.0 0.3 0.2 853 7.1 7.1 0.3 0.2 854 7.2 7.1 0.3 0.2 855 7.2 7.1 0.3 0.2 856 7.3 7.2 0.3 0.2 857 7.3 7.2 0.3 0.2 858 7.4 7.3 0.3 0.2 859 7.4 7.3 0.3 0.2 860 7.5 7.3 0.3 0.2 861 7.5 7.4 0.3 0.2 862 7.5 7.4 0.3 0.2 863 7.6 7.4 0.3 0.2 864 7.6 7.5 0.3 0.2 865 7.7 7.5 0.3 0.2 866 7.7 7.6 0.3 0.2 867 7.8 7.6 0.3 0.2 868 7.8 7.6 0.3 0.2 869 7.8 7.7 0.3 0.2 870 7.9 7.7 0.3 0.3 871 7.9 7.7 0.3 0.3 872 8.0 7.8 0.3 0.3 873 8.0 7.8 0.3 0.3 874 8.1 7.9 0.3 0.3 875 8.1 7.9 0.3 0.3 876 8.2 7.9 0.3 0.3 877 8.2 8.0 0.3 0.3 878 8.2 8.0 0.3 0.3 879 8.3 8.1 0.4 0.3 880 8.3 8.1 0.4 0.3 881 8.4 8.1 0.4 0.3 882 8.4 8.2 0.4 0.3 883 8.5 8.2 0.4 0.3 884 8.5 8.2 0.4 0.3 885 8.5 8.3 0.4 0.3 886 8.6 8.3 0.4 0.3 887 8.6 8.3 0.4 0.3 888 8.7 8.4 0.4 0.3 889 8.7 8.4 0.4 0.3 890 8.8 8.5 0.4 0.3 891 8.8 8.5 0.4 0.3 892 8.8 8.5 0.4 0.3 893 8.9 8.6 0.4 0.3 894 8.9 8.6 0.4 0.3 895 8.9 8.6 0.4 0.3 896 9.0 8.7 0.4 0.3 897 9.0 8.7 0.4 0.3 898 9.1 8.7 0.4 0.3 899 9.1 8.8 0.4 0.3 900 9.2 8.8 0.4 0.3 901 9.2 8.8 0.4 0.3 902 9.2 8.9 0.4 0.3 903 9.3 8.9 0.4 0.3 904 9.3 8.9 0.4 0.3 905 9.4 9.0 0.4 0.3 906 9.4 9.0 0.4 0.4 907 9.4 9.0 0.4 0.4 908 9.5 9.1 0.4 0.4 909 9.5 9.1 0.4 0.4 910 9.5 9.1 0.4 0.4 911 9.6 9.2 0.4 0.4 912 9.6 9.2 0.5 0.4 913 9.7 9.2 0.5 0.4 914 9.7 9.3 0.5 0.4 915 9.8 9.3 0.5 0.4 916 9.8 9.3 0.5 0.4 917 9.8 9.4 0.5 0.4 918 9.9 9.4 0.5 0.4 919 9.9 9.4 0.5 0.4 920 9.9 9.5 0.5 0.4 921 10.0 9.5 0.5 0.4 922 10.0 9.5 0.5 0.4 923 10.1 9.6 0.5 0.4 924 10.1 9.6 0.5 0.4 925 10.1 9.6 0.5 0.4 926 10.1 9.6 0.5 0.4 927 10.2 9.7 0.5 0.4 928 10.2 9.7 0.5 0.4 929 10.3 9.7 0.5 0.4 930 10.3 9.8 0.5 0.4 931 10.3 9.8 0.5 0.4 932 10.4 9.8 0.5 0.4 933 10.4 9.8 0.5 0.4 934 10.5 9.9 0.5 0.4 935 10.5 9.9 0.5 0.4 936 10.6 10.0 0.5 0.5 937 10.6 10.0 0.5 0.5 938 10.6 10.0 0.5 0.5 939 10.7 10.0 0.5 0.5 940 10.8 10.1 0.5 0.5 941 10.8 10.1 0.6 0.5 942 10.8 10.1 0.6 0.5 943 10.8 10.2 0.6 0.5 944 10.8 10.2 0.6 0.5 945 10.9 10.2 0.6 0.5 946 10.9 10.2 0.6 0.5 947 10.9 10.3 0.6 0.5 948 10.9 10.3 0.6 0.5 949 11.0 10.3 0.6 0.5 950 11.0 10.4 0.6 0.5 951 11.1 10.4 0.6 0.5 952 11.1 10.4 0.6 0.5 953 11.1 10.4 0.6 0.5 954 11.2 10.5 0.6 0.5 955 11.2 10.5 0.6 0.5 956 11.2 10.5 0.6 0.5 957 11.2 10.5 0.6 0.5 958 11.3 10.6 0.6 0.5 959 11.3 10.6 0.6 0.5 960 11.4 10.6 0.6 0.5 961 11.4 10.7 0.6 0.5 962 11.4 10.7 0.6 0.5 963 11.4 10.7 0.6 0.5 964 11.5 10.7 0.6 0.6 965 11.5 10.7 0.6 0.6 966 11.5 10.8 0.6 0.5 967 11.6 10.8 0.6 0.6 968 11.6 10.8 0.7 0.6 969 11.6 10.9 0.7 0.6 970 11.7 10.9 0.7 0.6 971 11.7 10.9 0.7 0.6 972 11.7 10.9 0.7 0.6 973 11.7 10.9 0.7 0.6 974 11.8 11.0 0.7 0.6 975 11.8 11.0 0.7 0.6 976 11.8 11.0 0.7 0.6 977 11.9 11.0 0.7 0.6 978 11.9 11.1 0.7 0.6 979 11.9 11.1 0.7 0.6 980 11.9 11.1 0.7 0.6 981 12.0 11.1 0.7 0.6 982 12.0 11.2 0.7 0.6 983 12.0 11.2 0.7 0.6 984 12.1 11.2 0.7 0.6 985 12.1 11.2 0.7 0.6 986 12.1 11.2 0.7 0.6 987 12.1 11.2 0.7 0.6 988 12.2 11.3 0.7 0.6 989 12.2 11.3 0.7 0.6 990 12.2 11.3 0.7 0.6 991 12.3 11.4 0.7 0.6 992 12.3 11.4 0.7 0.7 993 12.3 11.4 0.7 0.6 994 12.3 11.4 0.7 0.7 995 12.3 11.4 0.7 0.7 996 12.4 11.4 0.8 0.7 997 12.4 11.5 0.8 0.7 998 12.4 11.5 0.8 0.7 999 12.5 11.5 0.8 0.7 1000 12.5 11.5 0.8 0.7 1001 12.5 11.5 0.8 0.7 1002 12.5 11.5 0.8 0.7 1003 12.5 11.5 0.8 0.7 1004 12.6 11.6 0.8 0.7 1005 12.6 11.6 0.8 0.7 1006 12.6 11.6 0.8 0.7 1007 12.6 11.7 0.8 0.7 1008 12.7 11.7 0.8 0.7 1009 12.7 11.7 0.8 0.7 1010 12.7 11.7 0.8 0.7 1011 12.7 11.7 0.8 0.7 1012 12.7 11.7 0.8 0.7 1013 12.8 11.8 0.8 0.7 1014 12.8 11.8 0.8 0.7 1015 12.8 11.8 0.8 0.7 1016 12.8 11.8 0.8 0.7 1017 12.8 11.8 0.8 0.7 1018 12.8 11.8 0.8 0.7 1019 12.9 11.8 0.8 0.7 1020 12.9 11.9 0.8 0.7 1021 12.9 11.9 0.8 0.7 1022 12.9 11.9 0.8 0.8 1023 12.9 11.9 0.8 0.8 1024 13.0 11.9 0.8 0.7 1025 13.0 11.9 0.8 0.8 1026 13.0 11.9 0.8 0.8 1027 13.0 12.0 0.9 0.8 1028 13.1 12.0 0.9 0.8 1029 13.1 12.0 0.9 0.8 1030 13.1 12.0 0.9 0.8 1031 13.1 12.0 0.8 0.8 1032 13.1 12.0 0.9 0.8 1033 13.1 12.0 0.9 0.8 1034 13.1 12.0 0.9 0.8 1035 13.2 12.1 0.9 0.8 1036 13.2 12.1 0.9 0.8 1037 13.2 12.1 0.9 0.8 1038 13.3 12.1 0.9 0.8 1039 13.3 12.1 0.9 0.8 1040 13.2 12.1 0.9 0.8 1041 13.2 12.1 0.9 0.8 1042 13.3 12.1 0.9 0.8 1043 13.3 12.1 0.9 0.8 1044 13.4 12.2 0.9 0.8 1045 13.3 12.2 0.9 0.8 1046 13.4 12.2 0.9 0.8 1047 13.3 12.2 0.9 0.8 1048 13.3 12.2 0.9 0.8 1049 13.2 12.1 0.9 0.8 1050 13.4 12.2 0.9 0.8

由表一可知,玻璃透鏡150的物側表面及像側表面未設有抗反射膜層在對應光線波長400 nm至780 nm的平均反射率分別為0.58 %及0.68 %,而玻璃透鏡150物側表面及像側表面設有抗反射膜層151、152在對應光線波長400 nm至780 nm的平均反射率R avg分別為0.13 %及0.09 %。玻璃透鏡150物側表面及像側表面設有抗反射膜層151、152在對應光線波長400 nm至780 nm的反射率最大值R abs分別為0.7 %及0.9 %。透過設置抗反射膜層,可有效降低玻璃透鏡的反射率。 It can be seen from Table 1 that the average reflectivity of the object-side surface and the image-side surface of the glass lens 150 without an anti-reflection coating layer at the corresponding light wavelengths from 400 nm to 780 nm is 0.58% and 0.68% respectively, while the object-side surface of the glass lens 150 Anti-reflection coating layers 151 and 152 are provided on the surface and the image side surface, and the average reflectance R avg at corresponding light wavelengths from 400 nm to 780 nm is 0.13% and 0.09% respectively. The object-side surface and the image-side surface of the glass lens 150 are provided with anti-reflection coating layers 151 and 152. The maximum reflectivity values R abs at corresponding light wavelengths of 400 nm to 780 nm are 0.7% and 0.9% respectively. By setting an anti-reflective coating layer, the reflectivity of the glass lens can be effectively reduced.

第一實施例中,光學透鏡組100中一第一側表面(玻璃透鏡120的物側表面)至一第二側表面(透鏡170的像側表面)沿光軸X的距離為D S1SL,玻璃透鏡150的光學表面153至第二側表面沿光軸X的距離為D SoSL,光學透鏡組100的第一側透鏡(即玻璃透鏡120)的物側表面至一成像面沿光軸X的距離為TL,而所述參數滿足下列表二的條件。 表二、第一實施例 D S1SL(mm) 16.74 D SoSL(mm) 5.73 D SoSL/D S1SL 0.342 TL (mm) 19.55 In the first embodiment, the distance along the optical axis The distance from the optical surface 153 of the lens 150 to the second side surface along the optical axis is TL, and the parameters satisfy the conditions in Table 2 below. Table 2, first embodiment D S1SL (mm) 16.74 DSoSL (mm) 5.73 D SoSL /D S1SL 0.342 TL(mm) 19.55

再者,就第一實施例中玻璃透鏡120而言,其抗反射膜層121、122的奈米結構層的結構平均高度皆大於等於80奈米且小於等於350奈米,而各抗反射膜層121、122中結構連接層的二氧化矽膜層的厚度皆大於等於20奈米且小於等於150奈米。玻璃透鏡120在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1及一相對折射率的溫度係數為dn/dt,玻璃透鏡120的抗反射膜層121的結構連接層以及抗反射膜層122的結構連接層在溫度區間-30 oC至70 oC,皆具有一第二平均線性膨脹係數α 2,而所述參數滿足下列表三的條件。 表三、第一實施例之玻璃透鏡120 α 1(10 -7/K) 89 dn/dt(10 -6/K) 0.9~1.9 抗反射膜層121 抗反射膜層122 α 2(10 -7/K) 6.5 α 2(10 -7/K) 6.5 α 12 13.7 α 12 13.7 Furthermore, as for the glass lens 120 in the first embodiment, the average structural height of the nanostructure layers of the anti-reflective film layers 121 and 122 is greater than or equal to 80 nanometers and less than or equal to 350 nanometers, and each anti-reflective film layer The thickness of the silicon dioxide film layer of the structural connection layer in layers 121 and 122 is both greater than or equal to 20 nanometers and less than or equal to 150 nanometers. The glass lens 120 has a first average linear expansion coefficient α 1 and a temperature coefficient of relative refractive index dn/dt in the temperature range of -30 o C to 70 o C. The structural connection of the anti-reflection film layer 121 of the glass lens 120 The layer and the structural connection layer of the anti-reflective film layer 122 both have a second average linear expansion coefficient α 2 in the temperature range of -30 ° C to 70 ° C, and the parameter satisfies the conditions of Table 3 below. Table 3. Glass lens 120 of the first embodiment α 1 (10 -7 /K) 89 dn/dt(10 -6 /K) 0.9~1.9 Anti-reflective coating layer 121 Anti-reflective coating layer 122 α 2 (10 -7 /K) 6.5 α 2 (10 -7 /K) 6.5 α 1 / α 2 13.7 α 1 / α 2 13.7

就第一實施例中玻璃透鏡130而言,其抗反射膜層131、132的奈米結構層的結構平均高度皆大於等於80奈米且小於等於350奈米,而各抗反射膜層131、132中結構連接層的二氧化矽膜層的厚度皆大於等於20奈米且小於等於150奈米。玻璃透鏡130在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1及一相對折射率的溫度係數為dn/dt,玻璃透鏡130的抗反射膜層131的一結構連接層以及抗反射膜層132的一結構連接層在溫度區間-30 oC至70 oC,皆具有一第二平均線性膨脹係數α 2,而所述參數滿足下列表四的條件。 表四、第一實施例之玻璃透鏡130 α 1(10 -7/K) 67 dn/dt(10 -6/K) 1.2~2.7 抗反射膜層131 抗反射膜層132 α 2(10 -7/K) 6.5 α 2(10 -7/K) 6.5 α 12 10.3 α 12 10.3 As for the glass lens 130 in the first embodiment, the average structural height of the nanostructure layers of the anti-reflective film layers 131 and 132 is greater than or equal to 80 nanometers and less than or equal to 350 nanometers, and the anti-reflective film layers 131, 132 are both greater than or equal to 80 nanometers and less than or equal to 350 nanometers. The thickness of the silicon dioxide film layer of the structural connection layer in 132 is greater than or equal to 20 nanometers and less than or equal to 150 nanometers. The glass lens 130 has a first average linear expansion coefficient α 1 and a temperature coefficient of relative refractive index dn/dt in the temperature range of -30 o C to 70 o C. A structure of the anti-reflection film layer 131 of the glass lens 130 The connection layer and a structural connection layer of the anti-reflection film layer 132 both have a second average linear expansion coefficient α 2 in the temperature range of -30 ° C to 70 ° C, and the parameter satisfies the conditions in Table 4 below. Table 4. Glass lens 130 of the first embodiment α 1 (10 -7 /K) 67 dn/dt(10 -6 /K) 1.2~2.7 Anti-reflective coating 131 Anti-reflective coating 132 α 2 (10 -7 /K) 6.5 α 2 (10 -7 /K) 6.5 α 1 / α 2 10.3 α 1 / α 2 10.3

就第一實施例中玻璃透鏡150而言,玻璃透鏡150在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1,玻璃透鏡150的抗反射膜層151的一結構連接層以及抗反射膜層152的結構連接層1522在溫度區間-30 oC至70 oC,皆具有一第二平均線性膨脹係數α 2,一相對折射率的溫度係數為dn/dt,而所述參數滿足下列表五的條件。 表五、第一實施例之玻璃透鏡150 α 1(10 -7/K) 60 dn/dt(10 -6/K) 4.4~5.0 抗反射膜層151 抗反射膜層152 α 2(10 -7/K) 6.5 α 2(10 -7/K) 6.5 α 12 9.2 α 12 9.2 As for the glass lens 150 in the first embodiment, the glass lens 150 has a first average linear expansion coefficient α 1 in the temperature range of -30 ° C to 70 ° C. The structure of the anti-reflection film layer 151 of the glass lens 150 The structure of the connection layer and the anti-reflection film layer 152. The connection layer 1522 has a second average linear expansion coefficient α 2 in the temperature range of -30 o C to 70 o C, and a temperature coefficient of relative refractive index is dn/dt, and The parameters satisfy the conditions in Table 5 below. Table 5. Glass lens 150 of the first embodiment α 1 (10 -7 /K) 60 dn/dt(10 -6 /K) 4.4~5.0 Anti-reflective coating 151 Anti-reflective coating layer 152 α 2 (10 -7 /K) 6.5 α 2 (10 -7 /K) 6.5 α 1 / α 2 9.2 α 1 / α 2 9.2

值得說明的是,玻璃透鏡120、130的光學表面對應光線波長400 nm至780 nm的平均反射率R avg及反射率最大值R abs分別滿足以下條件:0% ≤ R avg≤ 0.5%;以及0 % ≤ R abs≤ 1.0 %。並且在以下第二實施例至第六實施例中玻璃透鏡的光學表面亦滿足上述條件,將不再贅述。 It is worth mentioning that the average reflectance R avg and the maximum reflectance value R abs of the optical surfaces of the glass lenses 120 and 130 corresponding to the light wavelength of 400 nm to 780 nm respectively meet the following conditions: 0% ≤ R avg ≤ 0.5%; and 0 % ≤ R abs ≤ 1.0 %. In addition, in the following second to sixth embodiments, the optical surface of the glass lens also satisfies the above conditions, which will not be described again.

<第二實施例><Second Embodiment>

請參照第2圖,其繪示依照本揭示內容第二實施例中光學模組之光學透鏡組200的示意圖。如第2圖所示,光學模組(圖未標示)包含一發光源(圖未繪示)及一光學透鏡組200。一光軸X通過光學透鏡組200,且光學透鏡組200包含鏡筒(圖未標示)及至少三透鏡。至少三透鏡設置於鏡筒中,且由物側至像側依序為玻璃透鏡220、透鏡230、玻璃透鏡240及透鏡250、260、270,其中玻璃透鏡220較透鏡230、250、260、270靠近發光源、玻璃透鏡240較透鏡250、260、270靠近發光源。玻璃透鏡220、240及透鏡230、250、260、270皆具有屈折力,且玻璃透鏡220、240及透鏡230、250、260、270的光學表面皆為非平面。Please refer to FIG. 2 , which illustrates a schematic diagram of an optical lens assembly 200 of an optical module according to a second embodiment of the present disclosure. As shown in Figure 2, the optical module (not shown in the figure) includes a light source (not shown in the figure) and an optical lens assembly 200. An optical axis X passes through the optical lens assembly 200, and the optical lens assembly 200 includes a lens barrel (not shown) and at least three lenses. At least three lenses are arranged in the lens barrel, and from the object side to the image side, they are the glass lens 220, the lens 230, the glass lens 240 and the lenses 250, 260 and 270. The glass lens 220 is closer than the lenses 230, 250, 260 and 270. The light source and glass lens 240 are closer to the light source than the lenses 250, 260, and 270. The glass lenses 220 and 240 and the lenses 230, 250, 260 and 270 all have refractive power, and the optical surfaces of the glass lenses 220 and 240 and the lenses 230, 250, 260 and 270 are all non-planar.

再者,在玻璃透鏡220的光學表面(即玻璃透鏡220的像側表面)上形成抗反射膜層221,在玻璃透鏡240的光學表面(即玻璃透鏡240的二表面)上形成抗反射膜層241、242。以玻璃透鏡240的抗反射膜層241為例,玻璃透鏡240的抗反射膜層241形成在玻璃透鏡240的光學表面243上,且包含一奈米結構層2411及一結構連接層2412。奈米結構層2411具有自光學表面243朝非定向延伸的多個脊狀凸起,奈米結構層2411的材質包含氧化鋁,且奈米結構層2411的結構平均高度大於等於80奈米且小於等於350奈米。結構連接層2412設置於光學表面243與奈米結構層2411之間,結構連接層2412包含至少一二氧化矽膜層(圖未繪示),二氧化矽膜層與奈米結構層2411的一底部實體接觸,且二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米。Furthermore, an anti-reflective film layer 221 is formed on the optical surface of the glass lens 220 (ie, the image side surface of the glass lens 220), and an anti-reflective film layer is formed on the optical surface of the glass lens 240 (ie, both surfaces of the glass lens 240). 241, 242. Taking the anti-reflective film layer 241 of the glass lens 240 as an example, the anti-reflective film layer 241 of the glass lens 240 is formed on the optical surface 243 of the glass lens 240 and includes a nanostructure layer 2411 and a structural connection layer 2412. The nanostructure layer 2411 has a plurality of ridge-like protrusions extending in a non-directional direction from the optical surface 243. The material of the nanostructure layer 2411 includes aluminum oxide, and the average structural height of the nanostructure layer 2411 is greater than or equal to 80 nanometers and less than Equal to 350 nanometers. The structural connection layer 2412 is disposed between the optical surface 243 and the nanostructure layer 2411. The structural connection layer 2412 includes at least one silicon dioxide film layer (not shown), one of the silicon dioxide film layer and the nanostructure layer 2411. The bottom is in physical contact, and the thickness of the silicon dioxide film layer is greater than or equal to 20 nanometers and less than or equal to 150 nanometers.

如第2圖所示,光學透鏡組200可更包含黏合透鏡。具體而言,第二實施例中,透鏡260、270為黏合透鏡,且透鏡260的一像側表面黏合於透鏡270的一物側表面。As shown in FIG. 2 , the optical lens assembly 200 may further include a bonded lens. Specifically, in the second embodiment, the lenses 260 and 270 are cemented lenses, and an image-side surface of the lens 260 is bonded to an object-side surface of the lens 270 .

由第2圖可知,鏡筒包含一前蓋211及一筒體212。前蓋211蓋設於筒體212,且前蓋211與玻璃透鏡220接觸,玻璃透鏡220、240及透鏡230、250、260、270容設於筒體212中並皆與筒體212接觸。另外,鏡筒中可另依需求設置其他光學元件,如遮光片、間隔環、固定環等,在此不另贅述。As can be seen from Figure 2, the lens barrel includes a front cover 211 and a barrel 212. The front cover 211 covers the barrel 212, and the front cover 211 is in contact with the glass lens 220. The glass lenses 220, 240 and lenses 230, 250, 260, 270 are accommodated in the barrel 212 and are in contact with the barrel 212. In addition, other optical components can be installed in the lens barrel according to requirements, such as light shielding sheets, spacer rings, fixed rings, etc., which will not be described again here.

第二實施例中,光學透鏡組200中一第一側表面(玻璃透鏡220的物側表面)至一第二側表面(透鏡270的像側表面)沿光軸X的距離為D S1SL,玻璃透鏡240的光學表面(玻璃透鏡240的像側表面)至第二側表面沿光軸X的距離為D SoSL,光學透鏡組200的第一側透鏡(即玻璃透鏡220)的物側表面至一成像面沿光軸X的距離為TL,而所述參數滿足下列表六的條件。 表六、第二實施例 D S1SL(mm) 15.09 D SoSL(mm) 8.62 D SoSL/D S1SL 0.571 TL (mm) 19.89 In the second embodiment, the distance along the optical axis The distance from the optical surface of the lens 240 (the image side surface of the glass lens 240) to the second side surface along the optical axis The distance of the imaging surface along the optical axis X is TL, and the parameters satisfy the conditions in Table 6 below. Table 6. Second Embodiment D S1SL (mm) 15.09 DSoSL (mm) 8.62 D SoSL /D S1SL 0.571 TL(mm) 19.89

再者,就第二實施例中玻璃透鏡220而言,其抗反射膜層221的奈米結構層的結構平均高度大於等於80奈米且小於等於350奈米,而抗反射膜層221中結構連接層的二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米。玻璃透鏡220在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1及一相對折射率的溫度係數為dn/dt,玻璃透鏡220的抗反射膜層221的一結構連接層在溫度區間-30 oC至70 oC,具有一第二平均線性膨脹係數α 2,抗反射膜層221的一奈米結構層的厚度為d1,抗反射膜層221的結構連接層的二氧化矽層的厚度為d2,而所述參數滿足下列表七的條件。 表七、第二實施例之玻璃透鏡220 α 1(10 -7/K) 90 α 2(10 -7/K) 6.5 dn/dt(10 -6/K) 0.1~0.7 α 12 13.8 Furthermore, as for the glass lens 220 in the second embodiment, the average structural height of the nanostructure layer of the anti-reflective film layer 221 is greater than or equal to 80 nanometers and less than or equal to 350 nanometers, and the structure in the anti-reflective film layer 221 The thickness of the silicon dioxide film layer of the connection layer is greater than or equal to 20 nanometers and less than or equal to 150 nanometers. The glass lens 220 has a first average linear expansion coefficient α 1 and a temperature coefficient of relative refractive index dn/dt in the temperature range of -30 o C to 70 o C. A structure of the anti-reflection film layer 221 of the glass lens 220 The connection layer has a second average linear expansion coefficient α 2 in the temperature range of -30 o C to 70 o C. The thickness of a nanostructure layer of the anti-reflection film layer 221 is d1, and the structural connection layer of the anti-reflection film layer 221 The thickness of the silicon dioxide layer is d2, and the parameters satisfy the conditions in Table 7 below. Table 7. Glass lens 220 of the second embodiment α 1 (10 -7 /K) 90 α 2 (10 -7 /K) 6.5 dn/dt(10 -6 /K) 0.1~0.7 α 1 / α 2 13.8

就第二實施例中玻璃透鏡240而言,玻璃透鏡240在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1及一相對折射率的溫度係數為dn/dt,玻璃透鏡240的抗反射膜層241的結構連接層2412以及抗反射膜層242的一結構連接層在溫度區間-30 oC至70 oC,皆具有一第二平均線性膨脹係數α 2,而所述參數滿足下列表八的條件。 表八、第二實施例之玻璃透鏡240 α 1(10 -7/K) 58 dn/dt(10 -6/K) 6.6~8.4 抗反射膜層241 抗反射膜層242 α 2(10 -7/K) 6.5 α 2(10 -7/K) 6.5 α 12 8.9 α 12 8.9 As for the glass lens 240 in the second embodiment, the glass lens 240 has a first average linear expansion coefficient α 1 and a relative refractive index temperature coefficient of dn/dt in the temperature range of -30 ° C to 70 ° C. The structural connection layer 2412 of the anti-reflection film layer 241 of the glass lens 240 and a structural connection layer of the anti-reflection film layer 242 both have a second average linear expansion coefficient α 2 in the temperature range of -30 o C to 70 o C, and The parameters satisfy the conditions in Table 8 below. Table 8. Glass lens 240 of the second embodiment α 1 (10 -7 /K) 58 dn/dt(10 -6 /K) 6.6~8.4 Anti-reflective coating 241 Anti-reflective coating 242 α 2 (10 -7 /K) 6.5 α 2 (10 -7 /K) 6.5 α 1 / α 2 8.9 α 1 / α 2 8.9

<第三實施例><Third Embodiment>

請參照第3圖,其繪示依照本揭示內容第三實施例中光學模組之光學透鏡組300的示意圖。如第3圖所示,光學模組(圖未標示)包含一發光源(圖未繪示)及一光學透鏡組300。一光軸X通過光學透鏡組300,且光學透鏡組300包含鏡筒(圖未標示)及至少三透鏡。至少三透鏡設置於鏡筒中,且由物側至像側依序為玻璃透鏡320、透鏡330、340、350、360、370、380及玻璃透鏡390,其中玻璃透鏡320較透鏡330、340、350、360、370、380靠近發光源。玻璃透鏡320、390及透鏡330、340、350、360、370、380皆具有屈折力,且玻璃透鏡320、390及透鏡330、340、350、360、370、380的光學表面皆為非平面。Please refer to FIG. 3 , which illustrates a schematic diagram of an optical lens assembly 300 of an optical module according to a third embodiment of the present disclosure. As shown in Figure 3, the optical module (not shown in the figure) includes a light source (not shown in the figure) and an optical lens assembly 300. An optical axis X passes through the optical lens assembly 300, and the optical lens assembly 300 includes a lens barrel (not shown) and at least three lenses. At least three lenses are arranged in the lens barrel, and in order from the object side to the image side are the glass lens 320, the lenses 330, 340, 350, 360, 370, 380 and the glass lens 390, where the glass lens 320 is larger than the lenses 330, 340, 350 , 360, 370, 380 are close to the light source. The glass lenses 320 and 390 and the lenses 330, 340, 350, 360, 370 and 380 all have refractive power, and the optical surfaces of the glass lenses 320 and 390 and the lenses 330, 340, 350, 360, 370 and 380 are all non-planar.

具體而言,玻璃透鏡320及透鏡360為模造玻璃透鏡,透鏡330、340、350、370、380及玻璃透鏡390為研磨玻璃透鏡。第三實施例中,玻璃透鏡320的光學表面具有一反曲點324,但本揭示內容不以此為限。Specifically, the glass lens 320 and the lens 360 are molded glass lenses, and the lenses 330, 340, 350, 370, 380 and the glass lens 390 are ground glass lenses. In the third embodiment, the optical surface of the glass lens 320 has an inflection point 324, but the disclosure is not limited thereto.

再者,在玻璃透鏡320的光學表面(即玻璃透鏡320的二表面)上形成抗反射膜層321、322,在玻璃透鏡390的光學表面(即玻璃透鏡390的物側表面)上形成抗反射膜層391。以玻璃透鏡320的抗反射膜層321為例,玻璃透鏡320的抗反射膜層321形成在玻璃透鏡320的光學表面323上,且包含一奈米結構層3211及一結構連接層3212。奈米結構層3211具有自光學表面323朝非定向延伸的多個脊狀凸起,奈米結構層3211的材質包含氧化鋁,且奈米結構層3211的結構平均高度大於等於80奈米且小於等於350奈米。結構連接層3212設置於光學表面323與奈米結構層3211之間,結構連接層3212包含至少一二氧化矽膜層(圖未繪示),二氧化矽膜層與奈米結構層3212的一底部實體接觸,且二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米。Furthermore, the anti-reflection film layers 321 and 322 are formed on the optical surface of the glass lens 320 (i.e., the two surfaces of the glass lens 320), and the anti-reflection film layers 321 and 322 are formed on the optical surface of the glass lens 390 (i.e., the object-side surface of the glass lens 390). Film layer 391. Taking the anti-reflective film layer 321 of the glass lens 320 as an example, the anti-reflective film layer 321 of the glass lens 320 is formed on the optical surface 323 of the glass lens 320 and includes a nanostructure layer 3211 and a structural connection layer 3212. The nanostructure layer 3211 has a plurality of ridge-like protrusions extending in a non-directional direction from the optical surface 323. The material of the nanostructure layer 3211 includes aluminum oxide, and the average structural height of the nanostructure layer 3211 is greater than or equal to 80 nanometers and less than Equal to 350 nanometers. The structural connection layer 3212 is disposed between the optical surface 323 and the nanostructure layer 3211. The structural connection layer 3212 includes at least one silicon dioxide film layer (not shown), one of the silicon dioxide film layer and the nanostructure layer 3212. The bottom is in physical contact, and the thickness of the silicon dioxide film layer is greater than or equal to 20 nanometers and less than or equal to 150 nanometers.

如第3圖所示,光學透鏡組300可更包含黏合透鏡。具體而言,第三實施例中,玻璃透鏡320、390及透鏡330、340、350、360、370、380皆為黏合透鏡,其中玻璃透鏡320的像側表面黏合於透鏡330的物側表面,透鏡340的像側表面黏合於透鏡350的物側表面,透鏡360的像側表面黏合於透鏡370的物側表面,透鏡370的像側表面黏合於透鏡380的物側表面,透鏡380的像側表面黏合於玻璃透鏡390的物側表面。As shown in FIG. 3 , the optical lens assembly 300 may further include a bonded lens. Specifically, in the third embodiment, the glass lenses 320 and 390 and the lenses 330, 340, 350, 360, 370, and 380 are all bonded lenses, where the image-side surface of the glass lens 320 is bonded to the object-side surface of the lens 330. The image-side surface of lens 340 is bonded to the object-side surface of lens 350 , the image-side surface of lens 360 is bonded to the object-side surface of lens 370 , the image-side surface of lens 370 is bonded to the object-side surface of lens 380 , and the image-side surface of lens 380 is bonded to the object-side surface of lens 370 . The surface is bonded to the object-side surface of glass lens 390 .

由第3圖可知,鏡筒包含一前蓋311及一筒體312。前蓋311蓋設於筒體312,且前蓋311與玻璃透鏡320接觸,玻璃透鏡320、390及透鏡330、340、350、360、370、380容設於筒體312中並皆與筒體312接觸。另外,鏡筒中可另依需求設置其他光學元件,如遮光片、間隔環、固定環等,在此不另贅述。As shown in Figure 3, the lens barrel includes a front cover 311 and a barrel 312. The front cover 311 covers the barrel 312, and the front cover 311 is in contact with the glass lens 320. The glass lenses 320, 390 and lenses 330, 340, 350, 360, 370, 380 are accommodated in the barrel 312 and are all connected with the barrel. 312 contacts. In addition, other optical components can be installed in the lens barrel according to requirements, such as light shielding sheets, spacer rings, fixed rings, etc., which will not be described again here.

第三實施例中,光學透鏡組300中一第一側表面(玻璃透鏡320的物側表面)至一第二側表面(玻璃透鏡390的像側表面)沿光軸X的距離為D S1SL,玻璃透鏡390的光學表面(玻璃透鏡390的物側表面)至第二側表面沿光軸X的距離為D SoSL,光學透鏡組300的第一側透鏡(即玻璃透鏡320)的物側表面至一成像面沿光軸X的距離為TL,而所述參數滿足下列表九的條件。 表九、第三實施例 D S1SL(mm) 27.19 D SoSL(mm) 5.2 D SoSL/D S1SL 0.191 TL (mm) 30.01 In the third embodiment, the distance along the optical axis The distance from the optical surface of the glass lens 390 (the object-side surface of the glass lens 390) to the second side surface along the optical axis The distance of an imaging plane along the optical axis X is TL, and the parameters satisfy the conditions in Table 9 below. Table 9, third embodiment D S1SL (mm) 27.19 DSoSL (mm) 5.2 D SoSL /D S1SL 0.191 TL(mm) 30.01

再者,就第三實施例中玻璃透鏡320而言,玻璃透鏡320在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1及一相對折射率的溫度係數為dn/dt,玻璃透鏡320的抗反射膜層321的結構連接層3212以及抗反射膜層322的一結構連接層在溫度區間-30 oC至70 oC,皆具有一第二平均線性膨脹係數α 2,而所述參數滿足下列表十的條件。 表十、第三實施例之玻璃透鏡320 α 1(10 -7/K) 58 dn/dt(10 -6/K) 8.1~8.8 抗反射膜層321 抗反射膜層322 α 2(10 -7/K) 6.5 α 2(10 -7/K) 6.5 α 12 8.9 α 12 8.9 Furthermore, as for the glass lens 320 in the third embodiment, the glass lens 320 has a first average linear expansion coefficient α 1 and a relative refractive index temperature coefficient dn in the temperature range -30 ° C to 70 ° C. /dt, the structural connection layer 3212 of the anti-reflection film layer 321 of the glass lens 320 and a structural connection layer of the anti-reflection film layer 322 both have a second average linear expansion coefficient α in the temperature range of -30 o C to 70 o C. 2 , and the parameters meet the conditions in Table 10 below. Table 10. Glass lens 320 of the third embodiment α 1 (10 -7 /K) 58 dn/dt(10 -6 /K) 8.1~8.8 Anti-reflective coating 321 Anti-reflective coating 322 α 2 (10 -7 /K) 6.5 α 2 (10 -7 /K) 6.5 α 1 / α 2 8.9 α 1 / α 2 8.9

就第三實施例中玻璃透鏡390而言,其抗反射膜層391的奈米結構層的結構平均高度大於等於80奈米且小於等於350奈米,而抗反射膜層391中結構連接層的二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米。玻璃透鏡390在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1及一相對折射率的溫度係數為dn/dt,玻璃透鏡390的抗反射膜層391的一結構連接層在溫度區間-30 oC至70 oC,具有一第二平均線性膨脹係數α 2,而所述參數滿足下列表十一的條件。 表十一、第三實施例之玻璃透鏡390 α 1(10 -7/K) 62 α 2(10 -7/K) 6.5 dn/dt(10 -6/K) 2.2~2.6 α 12 9.5 As for the glass lens 390 in the third embodiment, the average structural height of the nanostructure layer of the anti-reflective film layer 391 is greater than or equal to 80 nanometers and less than or equal to 350 nanometers, and the structural connection layer of the anti-reflective film layer 391 is The thickness of the silicon dioxide film layer is greater than or equal to 20 nanometers and less than or equal to 150 nanometers. The glass lens 390 has a first average linear expansion coefficient α 1 and a temperature coefficient of relative refractive index dn/dt in the temperature range of -30 o C to 70 o C. The structure of the anti-reflection film layer 391 of the glass lens 390 The connection layer has a second average linear expansion coefficient α 2 in the temperature range of -30 o C to 70 o C, and the parameters satisfy the conditions of Table 11 below. Table 11. Glass lens 390 of the third embodiment α 1 (10 -7 /K) 62 α 2 (10 -7 /K) 6.5 dn/dt(10 -6 /K) 2.2~2.6 α 1 / α 2 9.5

<第四實施例><Fourth Embodiment>

請參照第4圖,其繪示依照本揭示內容第四實施例中光學模組之光學透鏡組400的示意圖。如第4圖所示,光學模組(圖未標示)包含一發光源(圖未繪示)及一光學透鏡組400。一光軸X通過光學透鏡組400,且光學透鏡組400包含鏡筒(圖未標示)及至少三透鏡。至少三透鏡設置於鏡筒中,且由物側至像側依序為透鏡420、430、玻璃透鏡440及透鏡450、460、470、480、490,其中玻璃透鏡440較透鏡450、460、470、480、490靠近發光源。透鏡420、430、450、460、470、480、490及玻璃透鏡440皆具有屈折力,且透鏡420、430、450、460、470、480、490及玻璃透鏡440的光學表面為非平面。Please refer to FIG. 4 , which illustrates a schematic diagram of an optical lens assembly 400 of an optical module according to a fourth embodiment of the present disclosure. As shown in Figure 4, the optical module (not shown in the figure) includes a light source (not shown in the figure) and an optical lens assembly 400. An optical axis X passes through the optical lens assembly 400, and the optical lens assembly 400 includes a lens barrel (not shown) and at least three lenses. At least three lenses are arranged in the lens barrel, and in sequence from the object side to the image side are lenses 420, 430, glass lens 440, and lenses 450, 460, 470, 480, and 490. The glass lens 440 is larger than the lenses 450, 460, 470, 480 and 490 are close to the light source. The lenses 420, 430, 450, 460, 470, 480, 490 and the glass lens 440 all have refractive power, and the optical surfaces of the lenses 420, 430, 450, 460, 470, 480, 490 and the glass lens 440 are non-planar.

再者,在玻璃透鏡440的光學表面(即玻璃透鏡440的二表面)上形成抗反射膜層441、442。以玻璃透鏡440的抗反射膜層441為例,玻璃透鏡440的抗反射膜層441形成在玻璃透鏡440的光學表面443上,且包含一奈米結構層4411及一結構連接層4412。奈米結構層4411具有自光學表面443朝非定向延伸的多個脊狀凸起,奈米結構層4411的材質包含氧化鋁,且奈米結構層4411的結構平均高度大於等於80奈米且小於等於350奈米。結構連接層4412設置於光學表面443與奈米結構層4411之間,結構連接層4412包含至少一二氧化矽膜層(圖未繪示),二氧化矽膜層與奈米結構層4412的一底部實體接觸,且二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米。Furthermore, anti-reflection film layers 441 and 442 are formed on the optical surface of the glass lens 440 (ie, both surfaces of the glass lens 440). Taking the anti-reflective film layer 441 of the glass lens 440 as an example, the anti-reflective film layer 441 of the glass lens 440 is formed on the optical surface 443 of the glass lens 440 and includes a nanostructure layer 4411 and a structural connection layer 4412. The nanostructure layer 4411 has a plurality of ridge-shaped protrusions extending in a non-directional direction from the optical surface 443. The material of the nanostructure layer 4411 includes aluminum oxide, and the average structural height of the nanostructure layer 4411 is greater than or equal to 80 nanometers and less than Equal to 350 nanometers. The structural connection layer 4412 is disposed between the optical surface 443 and the nanostructure layer 4411. The structural connection layer 4412 includes at least one silicon dioxide film layer (not shown), one of the silicon dioxide film layer and the nanostructure layer 4412. The bottom is in physical contact, and the thickness of the silicon dioxide film layer is greater than or equal to 20 nanometers and less than or equal to 150 nanometers.

如第4圖所示,光學透鏡組400可更包含黏合透鏡。具體而言,第四實施例中,透鏡450、460為黏合透鏡,透鏡450的像側表面黏合於透鏡460的物側表面。As shown in FIG. 4 , the optical lens assembly 400 may further include a bonded lens. Specifically, in the fourth embodiment, the lenses 450 and 460 are bonded lenses, and the image-side surface of the lens 450 is bonded to the object-side surface of the lens 460 .

由第4圖可知,鏡筒包含一前蓋411及一筒體412。前蓋411蓋設於筒體412,前蓋411與透鏡420接觸,玻璃透鏡420、440及透鏡430、450、460、470、480、490容設於筒體412中並皆與筒體412接觸。另外,鏡筒中可另依需求設置其他光學元件,如遮光片、間隔環、固定環等,在此不另贅述。As shown in Figure 4, the lens barrel includes a front cover 411 and a barrel 412. The front cover 411 covers the barrel 412, and the front cover 411 is in contact with the lens 420. The glass lenses 420, 440 and lenses 430, 450, 460, 470, 480, 490 are accommodated in the barrel 412 and are all in contact with the barrel 412. . In addition, other optical components can be installed in the lens barrel according to requirements, such as light shielding sheets, spacer rings, fixed rings, etc., which will not be described again here.

第四實施例中,光學透鏡組400中一第一側表面(透鏡420的物側表面)至一第二側表面(透鏡490的像側表面)沿光軸X的距離為D S1SL,玻璃透鏡440的光學表面(玻璃透鏡440的像側表面)至第二側表面沿光軸X的距離為D SoSL,光學透鏡組400的第一側透鏡(即透鏡420)的物側表面至一成像面沿光軸X的距離為TL,而所述參數滿足下列表十二的條件。 表十二、第四實施例 D S1SL(mm) 22.8 D SoSL(mm) 12.15 D SoSL/D S1SL 0.533 TL (mm) 26.05 In the fourth embodiment, the distance along the optical axis The distance from the optical surface of 440 (the image side surface of the glass lens 440) to the second side surface along the optical axis The distance along the optical axis X is TL, and the parameters satisfy the conditions of Table 12 below. Table 12, fourth embodiment D S1SL (mm) 22.8 DSoSL (mm) 12.15 D SoSL /D S1SL 0.533 TL(mm) 26.05

再者,玻璃透鏡440在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1及一相對折射率的溫度係數為dn/dt,玻璃透鏡的抗反射膜層441的結構連接層4412以及抗反射膜層442的一結構連接層在溫度區間-30 oC至70 oC,皆具有一第二平均線性膨脹係數α 2,而所述參數滿足下列表十三的條件。 表十三、第四實施例之玻璃透鏡440 α 1(10 -7/K) 88 dn/dt(10 -6/K) -0.1~1.0 抗反射膜層441 抗反射膜層442 α 2(10 -7/K) 6.5 α 2(10 -7/K) 6.5 α 12 13.5 α 12 13.5 Furthermore, the glass lens 440 has a first average linear expansion coefficient α 1 and a temperature coefficient of relative refractive index dn/dt in the temperature range of -30 o C to 70 o C. The anti-reflection film layer 441 of the glass lens The structural connection layer 4412 and a structural connection layer of the anti-reflective film layer 442 both have a second average linear expansion coefficient α 2 in the temperature range of -30 o C to 70 o C, and the parameters satisfy the conditions of Table 13 below. . Table 13. Glass lens 440 of the fourth embodiment α 1 (10 -7 /K) 88 dn/dt(10 -6 /K) -0.1~1.0 Anti-reflective coating 441 Anti-reflective coating 442 α 2 (10 -7 /K) 6.5 α 2 (10 -7 /K) 6.5 α 1 / α 2 13.5 α 1 / α 2 13.5

<第五實施例><Fifth Embodiment>

請參照第5圖,其繪示依照本揭示內容第五實施例中光學模組之光學透鏡組500的示意圖。如第5圖所示,光學模組(圖未標示)包含一發光源(圖未繪示)及一光學透鏡組500。一光軸X通過光學透鏡組500,且光學透鏡組500包含鏡筒510及至少三透鏡。至少三透鏡設置於鏡筒510中,且由物側至像側依序為玻璃透鏡520及透鏡530、540、550、560、570,其中玻璃透鏡520設置於光學透鏡組500的第一側,透鏡530、540、550、560、570皆為塑膠透鏡,且沿光軸X設置於玻璃透鏡520的一像側端。玻璃透鏡520較透鏡530、540、550、560、570靠近發光源。玻璃透鏡520及透鏡530、540、550、560、570皆具有屈折力,且玻璃透鏡520及透鏡530、540、550、560、570的光學表面為非平面。Please refer to FIG. 5 , which illustrates a schematic diagram of an optical lens assembly 500 of an optical module according to a fifth embodiment of the present disclosure. As shown in FIG. 5 , the optical module (not shown in the figure) includes a light source (not shown in the figure) and an optical lens assembly 500 . An optical axis X passes through the optical lens assembly 500, and the optical lens assembly 500 includes a lens barrel 510 and at least three lenses. At least three lenses are arranged in the lens barrel 510, and in order from the object side to the image side are the glass lens 520 and the lenses 530, 540, 550, 560, 570, where the glass lens 520 is arranged on the first side of the optical lens group 500, The lenses 530, 540, 550, 560, and 570 are all plastic lenses, and are arranged at an image side end of the glass lens 520 along the optical axis X. The glass lens 520 is closer to the light source than the lenses 530, 540, 550, 560, and 570. The glass lens 520 and the lenses 530, 540, 550, 560, and 570 all have refractive power, and the optical surfaces of the glass lens 520 and the lenses 530, 540, 550, 560, and 570 are non-planar.

再者,在玻璃透鏡520的光學表面上形成抗反射膜層521、522。以玻璃透鏡520的抗反射膜層521為例,玻璃透鏡520的抗反射膜層521形成在玻璃透鏡520的光學表面523上,且包含一奈米結構層5211及一結構連接層5212。奈米結構層5211具有自光學表面523朝非定向延伸的多個脊狀凸起,奈米結構層5211的材質包含氧化鋁,且奈米結構層5211的結構平均高度大於等於80奈米且小於等於350奈米。結構連接層5212設置於光學表面523與奈米結構層5211之間,結構連接層5212包含至少一二氧化矽膜層(圖未繪示),二氧化矽膜層與奈米結構層5212的一底部實體接觸,且二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米。Furthermore, anti-reflection film layers 521 and 522 are formed on the optical surface of the glass lens 520 . Taking the anti-reflective film layer 521 of the glass lens 520 as an example, the anti-reflective film layer 521 of the glass lens 520 is formed on the optical surface 523 of the glass lens 520 and includes a nanostructure layer 5211 and a structural connection layer 5212. The nanostructure layer 5211 has a plurality of ridge-shaped protrusions extending non-directionally from the optical surface 523. The material of the nanostructure layer 5211 includes aluminum oxide, and the average structural height of the nanostructure layer 5211 is greater than or equal to 80 nanometers and less than Equal to 350 nanometers. The structural connection layer 5212 is disposed between the optical surface 523 and the nanostructure layer 5211. The structural connection layer 5212 includes at least one silicon dioxide film layer (not shown), one of the silicon dioxide film layer and the nanostructure layer 5212. The bottom is in physical contact, and the thickness of the silicon dioxide film layer is greater than or equal to 20 nanometers and less than or equal to 150 nanometers.

如第5圖所示,光學透鏡組500可更包含黏合透鏡。具體而言,第五實施例中,透鏡560、570為黏合透鏡,透鏡560的像側表面黏合於透鏡570的物側表面。As shown in FIG. 5 , the optical lens assembly 500 may further include a bonded lens. Specifically, in the fifth embodiment, the lenses 560 and 570 are bonded lenses, and the image-side surface of the lens 560 is bonded to the object-side surface of the lens 570 .

另外,鏡筒510中可另依需求設置其他光學元件,如遮光片、間隔環、固定環等,在此不另贅述。In addition, the lens barrel 510 can be provided with other optical elements according to requirements, such as light shielding sheets, spacer rings, fixed rings, etc., which will not be described again here.

第五實施例中,光學透鏡組500中一第一側表面(玻璃透鏡520的物側表面)至一第二側表面(透鏡570的像側表面)沿光軸X的距離為D S1SL,玻璃透鏡520的光學表面(玻璃透鏡520的像側表面)至第二側表面沿光軸X的距離為D SoSL,光學透鏡組500的第一側透鏡(即玻璃透鏡520)的物側表面至一成像面沿光軸X的距離為TL,而所述參數滿足下列表十四的條件。 表十四、第五實施例 D S1SL(mm) 8.06 D SoSL(mm) 7.16 D SoSL/D S1SL 0.888 TL (mm) 10 In the fifth embodiment, the distance along the optical axis The distance from the optical surface of the lens 520 (the image side surface of the glass lens 520) to the second side surface along the optical axis The distance of the imaging plane along the optical axis X is TL, and the parameters satisfy the conditions in Table 14 below. Table 14, fifth embodiment D S1SL (mm) 8.06 DSoSL (mm) 7.16 D SoSL /D S1SL 0.888 TL(mm) 10

再者,玻璃透鏡520在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1及一相對折射率的溫度係數為dn/dt,玻璃透鏡520的抗反射膜層521的結構連接層5212以及抗反射膜層522的一結構連接層在溫度區間-30 oC至70 oC,皆具有一第二平均線性膨脹係數α 2,而所述參數滿足下列表十五的條件。 表十五、第五實施例之玻璃透鏡520 α 1(10 -7/K) 72 dn/dt(10 -6/K) 2.4~2.9 抗反射膜層521 抗反射膜層522 α 2(10 -7/K) 6.5 α 2(10 -7/K) 6.5 α 12 11.1 α 12 11.1 Furthermore, the glass lens 520 has a first average linear expansion coefficient α 1 and a temperature coefficient of relative refractive index dn/dt in the temperature range of -30 o C to 70 o C. The anti-reflective film layer 521 of the glass lens 520 The structural connection layer 5212 and a structural connection layer of the anti-reflection film layer 522 both have a second average linear expansion coefficient α 2 in the temperature range -30 o C to 70 o C, and the parameters satisfy the following Table 15 condition. Table 15. Glass lens 520 of the fifth embodiment α 1 (10 -7 /K) 72 dn/dt(10 -6 /K) 2.4~2.9 Anti-reflective coating 521 Anti-reflective coating 522 α 2 (10 -7 /K) 6.5 α 2 (10 -7 /K) 6.5 α 1 / α 2 11.1 α 1 / α 2 11.1

進一步來說,光學透鏡組500中第一側的第一片透鏡對溫度效應最為敏感,因此當玻璃透鏡520為具有低膨脹係數α 1的玻璃透鏡時,可以使光學透鏡組500在溫度變化後維持穩定,並維持抗反射膜層521、522的功用(膜厚、附著力、膜層完整性、截止波長),同時,光學鏡頭可藉由搭配塑膠透鏡提升設計自由度、增加生產效率與降低生產成本。 Furthermore, the first lens on the first side of the optical lens group 500 is the most sensitive to temperature effects. Therefore, when the glass lens 520 is a glass lens with a low expansion coefficient α 1 , the optical lens group 500 can be made to change after a temperature change. Maintain stability and maintain the functions of the anti-reflective coating layers 521 and 522 (film thickness, adhesion, film integrity, cut-off wavelength). At the same time, the optical lens can be used with a plastic lens to increase design freedom, increase production efficiency and reduce production costs.

<第六實施例><Sixth Embodiment>

請參照第6圖,其繪示依照本揭示內容第六實施例中光學模組之光學透鏡組600的示意圖。如第6圖所示,光學模組(圖未標示)包含一發光源(圖未繪示)及一光學透鏡組600。一光軸X通過光學透鏡組600,且光學透鏡組600包含鏡筒610及至少三透鏡。至少三透鏡設置於鏡筒610中,且由物側至像側依序為透鏡620、630、玻璃透鏡640及透鏡650、660、670,其中玻璃透鏡640較透鏡650、660、670靠近發光源。透鏡620、630、650、660、670及玻璃透鏡640皆具有屈折力,且透鏡620、630、650、660、670及玻璃透鏡640的光學表面為非平面。Please refer to FIG. 6 , which illustrates a schematic diagram of an optical lens assembly 600 of an optical module according to a sixth embodiment of the present disclosure. As shown in FIG. 6 , the optical module (not shown in the figure) includes a light source (not shown in the figure) and an optical lens assembly 600 . An optical axis X passes through the optical lens assembly 600, and the optical lens assembly 600 includes a lens barrel 610 and at least three lenses. At least three lenses are arranged in the lens barrel 610, and in order from the object side to the image side are lenses 620, 630, glass lens 640 and lenses 650, 660, 670, wherein the glass lens 640 is closer to the light source than the lenses 650, 660, 670. . The lenses 620, 630, 650, 660, 670 and the glass lens 640 all have refractive power, and the optical surfaces of the lenses 620, 630, 650, 660, 670 and the glass lens 640 are non-planar.

再者,在玻璃透鏡640的光學表面上形成抗反射膜層641、642。以玻璃透鏡640的抗反射膜層641為例,玻璃透鏡640的抗反射膜層641形成在玻璃透鏡640的光學表面643上,且包含一奈米結構層6411及一結構連接層6412。奈米結構層6411具有自光學表面643朝非定向延伸的多個脊狀凸起,奈米結構層6411的材質包含氧化鋁,且奈米結構層6411的結構平均高度大於等於80奈米且小於等於350奈米。結構連接層6412設置於光學表面643與奈米結構層6411之間,結構連接層6412包含至少一二氧化矽膜層(圖未繪示),二氧化矽膜層與奈米結構層6412的一底部實體接觸,且二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米。Furthermore, anti-reflection film layers 641 and 642 are formed on the optical surface of the glass lens 640 . Taking the anti-reflective film layer 641 of the glass lens 640 as an example, the anti-reflective film layer 641 of the glass lens 640 is formed on the optical surface 643 of the glass lens 640 and includes a nanostructure layer 6411 and a structural connection layer 6412. The nanostructure layer 6411 has a plurality of ridge-shaped protrusions extending in a non-directional direction from the optical surface 643. The material of the nanostructure layer 6411 includes aluminum oxide, and the average structural height of the nanostructure layer 6411 is greater than or equal to 80 nanometers and less than Equal to 350 nanometers. The structural connection layer 6412 is disposed between the optical surface 643 and the nanostructure layer 6411. The structural connection layer 6412 includes at least one silicon dioxide film layer (not shown), one of the silicon dioxide film layer and the nanostructure layer 6412. The bottom is in physical contact, and the thickness of the silicon dioxide film layer is greater than or equal to 20 nanometers and less than or equal to 150 nanometers.

具體而言,鏡筒610中可另依需求設置其他光學元件,如遮光片、間隔環、固定環等,在此不另贅述。Specifically, the lens barrel 610 can be provided with other optical elements according to requirements, such as light shielding sheets, spacer rings, fixed rings, etc., which will not be described again here.

第六實施例中,光學透鏡組600中一第一側表面(透鏡620的物側表面)至一第二側表面(透鏡670的像側表面)沿光軸X的距離為D S1SL,玻璃透鏡640的光學表面(玻璃透鏡640的像側表面)至第二側表面沿光軸X的距離為D SoSL,光學透鏡組600的第一側透鏡(即透鏡620)的物側表面至一成像面沿光軸X的距離為TL,而所述參數滿足下列表十六的條件。 表十六、第六實施例 D S1SL(mm) 13 D SoSL(mm) 5.83 D SoSL/D S1SL 0.449 TL (mm) 19.15 In the sixth embodiment, the distance along the optical axis The distance from the optical surface of 640 (the image side surface of the glass lens 640) to the second side surface along the optical axis The distance along the optical axis X is TL, and the parameters satisfy the conditions of Table 16 below. Table 16, Sixth Embodiment D S1SL (mm) 13 DSoSL (mm) 5.83 D SoSL /D S1SL 0.449 TL(mm) 19.15

再者,玻璃透鏡640在溫度區間-30 oC至70 oC,具有一第一平均線性膨脹係數α 1及一相對折射率的溫度係數為dn/dt,玻璃透鏡640的抗反射膜層641的結構連接層6412以及抗反射膜層642的一結構連接層在溫度區間-30 oC至70 oC,皆具有一第二平均線性膨脹係數α 2,而所述參數滿足下列表十七的條件。 表十七、第六實施例之玻璃透鏡640 α 1(10 -7/K) 92 dn/dt(10 -6/K) -2.1~-1.7 抗反射膜層641 抗反射膜層642 α 2(10 -7/K) 6.5 α 2(10 -7/K) 6.5 α 12 14.2 α 12 14.2 Furthermore, the glass lens 640 has a first average linear expansion coefficient α 1 and a temperature coefficient of relative refractive index dn/dt in the temperature range of -30 o C to 70 o C. The anti-reflective film layer 641 of the glass lens 640 The structural connection layer 6412 and a structural connection layer of the anti-reflective film layer 642 both have a second average linear expansion coefficient α 2 in the temperature range -30 o C to 70 o C, and the parameters satisfy the following Table 17 condition. Table 17. Glass lens 640 of the sixth embodiment α 1 (10 -7 /K) 92 dn/dt(10 -6 /K) -2.1~-1.7 Anti-reflective coating 641 Anti-reflective coating 642 α 2 (10 -7 /K) 6.5 α 2 (10 -7 /K) 6.5 α 1 / α 2 14.2 α 1 / α 2 14.2

<第七實施例><Seventh Embodiment>

請參照第7A圖至第7D圖,其中第7A圖繪示依照本揭示內容第七實施例的車輛工具70的示意圖,第7B圖繪示依照第7A圖第七實施例的車輛工具70的上視圖,第7C圖繪示依照第7A圖第七實施例的車輛工具70的另一示意圖。如第7A圖至第7C圖所示,車輛工具70包含複數光學模組71,由第7B圖及第7C圖可知,第七實施例中光學模組71的數量為六,但本揭示內容不以上述數量為限。六光學模組71分別設置於車輛工具70的左後照鏡下方、右後照鏡下方、車輛工具70的車頭、車輛工具70的車內後視鏡處、車輛工具70的車內後車窗上以及車輛工具70的車尾。光學模組71可為前述第一實施例至第六實施例中的任一者,但本揭示內容不以此為限。Please refer to Figures 7A to 7D. Figure 7A illustrates a schematic diagram of a vehicle tool 70 according to a seventh embodiment of the present disclosure. Figure 7B illustrates an upper surface of a vehicle tool 70 according to the seventh embodiment of the present disclosure. View, Figure 7C shows another schematic diagram of the vehicle tool 70 according to the seventh embodiment of Figure 7A. As shown in Figures 7A to 7C, the vehicle tool 70 includes a plurality of optical modules 71. As can be seen from Figures 7B and 7C, the number of optical modules 71 in the seventh embodiment is six, but this disclosure does not Subject to the above quantity. The six optical modules 71 are respectively disposed below the left rear view mirror of the vehicle tool 70 , below the right rear view mirror, at the front of the vehicle tool 70 , at the interior rearview mirror of the vehicle tool 70 , and at the interior rear window of the vehicle tool 70 and the rear of the vehicle tool 70 . The optical module 71 may be any one of the aforementioned first to sixth embodiments, but the present disclosure is not limited thereto.

第七實施例中,各光學模組71分別用以擷取一視角θ的影像資訊。具體而言,視角θ可滿足下列條件: 40度< θ <190度。藉此,可擷取特定範圍的影像資訊。值得說明的是,各光學模組71的視角θ可不相同,藉以滿足不同的攝像需求。In the seventh embodiment, each optical module 71 is used to capture image information at a viewing angle θ. Specifically, the viewing angle θ can satisfy the following conditions: 40 degrees < θ < 190 degrees. In this way, a specific range of image information can be captured. It is worth mentioning that the angle of view θ of each optical module 71 can be different to meet different imaging requirements.

由第7C圖可知,透過光學模組71的配置,有助於駕駛人藉此獲得駕駛艙以外的外部空間資訊S1、S2、S3、S4。具體而言,設置於車輛工具70的車頭的光學模組71用以獲得外部空間資訊S1,設置於左後照鏡下方及右後照鏡下方的光學模組71分別用以獲得外部空間資訊S2、S4,設置於車尾的光學模組71用以獲得外部空間資訊S3,但本揭示內容不以此為限。藉此,可提供更多視角以減少死角,進而有助於提升行車安全。As can be seen from Figure 7C, the configuration of the optical module 71 helps the driver to obtain the external space information S1, S2, S3, and S4 outside the cockpit. Specifically, the optical module 71 provided at the front of the vehicle tool 70 is used to obtain the external space information S1, and the optical modules 71 provided below the left rear view mirror and the right rear view mirror are respectively used to obtain the external space information S2. , S4, the optical module 71 provided at the rear of the vehicle is used to obtain the external space information S3, but the disclosure is not limited to this. This provides more viewing angles to reduce blind spots, thereby helping to improve driving safety.

第7D圖繪示依照第7A圖第七實施例的車輛工具70的內部空間示意圖。如第7D圖所示,設置於車內後視鏡的光學模組71可用以獲取內部空間資訊S5。一般來說,習知的車輛工具在停放於烈日下曝曬時,車內高溫會使光學模組產生溫飄效應(temperature drift),甚至損壞光學模組,進而影響行車安全。透過配置低膨脹係數的玻璃透鏡及抗反射膜層,本揭示內容的光學模組71在劇烈溫度變化環境下仍能保持穩定性,並維持成像品質。Figure 7D is a schematic diagram of the internal space of the vehicle tool 70 according to the seventh embodiment of Figure 7A. As shown in Figure 7D, the optical module 71 provided in the interior rearview mirror of the vehicle can be used to obtain the interior space information S5. Generally speaking, when conventional vehicle tools are parked and exposed to the scorching sun, the high temperature inside the vehicle will cause temperature drift in the optical module and even damage the optical module, thus affecting driving safety. By configuring a glass lens with a low expansion coefficient and an anti-reflective coating layer, the optical module 71 of the present disclosure can still maintain stability and maintain imaging quality in an environment with severe temperature changes.

<第八實施例><Eighth Embodiment>

請參照第8A圖、第8B圖及第8C圖,其中第8A圖繪示依照本揭示內容第八實施例的頭戴裝置80的示意圖,第8B圖繪示依照本揭示內容第八實施例另一態樣的頭戴裝置800的示意圖,第8C圖繪示依照第8B圖第八實施例的頭戴裝置800的另一示意圖。如第8A圖所示,頭戴裝置80可為一VR裝置且包含複數光學模組(圖未繪示)。光學模組可為前述第一實施例至第六實施例中的任一者,但本揭示內容不以此為限。Please refer to Figure 8A, Figure 8B and Figure 8C. Figure 8A illustrates a schematic diagram of a head-mounted device 80 according to the eighth embodiment of the present disclosure, and Figure 8B illustrates another head-mounted device 80 according to the eighth embodiment of the present disclosure. A schematic diagram of a head mounted device 800 in one aspect. Figure 8C shows another schematic diagram of the head mounted device 800 according to the eighth embodiment of Figure 8B. As shown in FIG. 8A , the head-mounted device 80 may be a VR device and include a plurality of optical modules (not shown). The optical module may be any one of the aforementioned first to sixth embodiments, but the present disclosure is not limited thereto.

請配合參照第8D圖,其繪示依照第8B圖第八實施例中光學模組的示意圖。如第8B圖、第8C圖及第8D圖所示,頭戴裝置800可為一AR裝置且包含複數光學模組(圖未標示),且各光學模組包含一發光源810及一光學透鏡組820。一光軸X透過光學透鏡組820。光學透鏡組820包含一玻璃透鏡821,且玻璃透鏡821具有屈折力。玻璃透鏡821的一光學表面為非平面,且光學表面上形成一抗反射膜層8211。具體而言,抗反射膜層8211可包含一奈米結構層及一結構連接層,奈米結構層及結構連接層可如第一實施例至第六實施例所述,在此不另贅述。再者,光學透鏡組820可更包含第一實施例至第六實施例的透鏡及其他光學元件,但本揭示內容不以此為限。Please refer to Figure 8D, which illustrates a schematic diagram of the optical module according to the eighth embodiment of Figure 8B. As shown in Figures 8B, 8C and 8D, the head-mounted device 800 may be an AR device and include a plurality of optical modules (not shown), and each optical module includes a light source 810 and an optical lens. Group 820. An optical axis X passes through the optical lens group 820. The optical lens assembly 820 includes a glass lens 821, and the glass lens 821 has refractive power. An optical surface of the glass lens 821 is non-planar, and an anti-reflective film layer 8211 is formed on the optical surface. Specifically, the anti-reflective film layer 8211 may include a nanostructure layer and a structural connection layer. The nanostructure layer and the structural connection layer may be as described in the first to sixth embodiments, which will not be described again here. Furthermore, the optical lens assembly 820 may further include the lenses and other optical elements of the first to sixth embodiments, but the present disclosure is not limited thereto.

第八實施例中,玻璃透鏡821可為一陣列透鏡。發光源810可為陣列設置的複數顯示元件。具體而言,發光源810的陣列形式可與玻璃透鏡821的陣列形式相同,但本揭示內容不以此為限。In the eighth embodiment, the glass lens 821 may be an array lens. The light source 810 may be a plurality of display elements arranged in an array. Specifically, the array form of the light source 810 can be the same as the array form of the glass lens 821, but the present disclosure is not limited thereto.

請配合參照第8E圖及第8F圖,其中第8E圖繪示依照第8B圖第八實施例的頭戴裝置800的使用示意圖,第8F圖繪示依照第8B圖第八實施例的頭戴裝置800另一態樣的使用示意圖。如第8E圖所示,光學模組可更包含一影像傳遞模組830,其設置於光學透鏡組820的一物側端與一像側端中至少一端。第八實施例中,影像傳遞模組830可為一波導(waveguide)模組,且設置於光學透鏡組820的像側端。如第8F圖所示,影像傳遞模組830可為一光路轉折元件840,且設置於光學透鏡組820的像側端。透過影像傳遞模組的配置,可將發光源810的成像光線L的光路轉折並傳遞至使用者的眼前。Please refer to Figure 8E and Figure 8F together. Figure 8E illustrates a usage diagram of the head-mounted device 800 according to the eighth embodiment of Figure 8B. Figure 8F illustrates a usage diagram of the head-mounted device 800 according to the eighth embodiment of Figure 8B. A schematic diagram of the use of device 800 in another aspect. As shown in FIG. 8E, the optical module may further include an image transmission module 830, which is disposed at at least one of an object-side end and an image-side end of the optical lens group 820. In the eighth embodiment, the image transmission module 830 may be a waveguide module and is disposed at the image side end of the optical lens group 820 . As shown in Figure 8F, the image transmission module 830 can be an optical path turning element 840, and is disposed at the image side end of the optical lens group 820. Through the configuration of the image transmission module, the optical path of the imaging light L from the light source 810 can be turned and transmitted to the user's eyes.

雖然本揭示內容已以實施例揭露如上,然其並非用以限定本揭示內容,任何所屬技術領域中具有通常知識者,在不脫離本揭示內容的精神和範圍內,當可作些許的更動與潤飾,故本揭示內容的保護範圍當視後附的申請專利範圍所界定者為準。Although the present disclosure has been disclosed in the form of embodiments, it is not intended to limit the disclosure. Anyone with ordinary knowledge in the technical field may make slight changes and modifications without departing from the spirit and scope of the disclosure. Therefore, the scope of protection of this disclosure shall be subject to the scope of the attached patent application.

100,200,300,400,500,600,820:光學透鏡組 111,211,311,411:前蓋 112,212,312,412:筒體 120,130,150,220,240,320,390,440,520,640,821:玻璃透鏡 121,122,131,132,151,152,221,241,242,321,322,391,441,442,521,522,641,642,8211:抗反射膜層 140,160,170,230,250,260,270,330,340,350,360,370,380,420,430,450,460,470,480,490,530,540,550,560,570,620,630,650,660,670:透鏡 153,243,323,443,523,643:光學表面 1521,2411,3211,4411,5211,6411:奈米結構層 1522,2412,3212,4412,5212,6412:結構連接層 510,610:鏡筒 70:車輛工具 71:光學模組 80,800:頭戴裝置 810:發光源 830:影像傳遞模組 840:光路轉折元件 D S1SL:第一側表面至第二側表面沿光軸的距離 D SoSL:光學表面至第二側表面沿光軸的距離 H1:奈米結構層的結構高度 H2:二氧化矽膜層的厚度 L:成像光線 N4R1,N4R2,G4R1,G4R2:反射率 S1,S2,S3,S4:外部空間資訊 S5:內部空間資訊 TL:第一側透鏡的物側表面至成像面的距離 X:光軸 θ:視角 100,200,300,400,500,600,820: Optical lens group 111,211,311,411: Front cover 112,212,312,412: Barrel 120,130,150,220,240,320,390,440,520,640,821: Glass lens 121,12 2,131,132,151,152,221,241,242,321,322,391,441,442,521,522,641,642,8211: Anti-reflective coating layer 140,160,170,230,250,260,270,330,340,350,360,370, 380,420,430,450,460,470,480,490,530,540,550,560,570,620,630,650,660,670: Lens 153,243,323,443,523,643: Optical surface 1521,2411,3211,4411,521 1,6411: Nanostructure layer 1522, 2412, 3212, 4412, 5212, 6412: Structural connection layer 510, 610: Lens tube 70: Vehicle tools 71: Optical module 80, 800: Head mounted device 810: Light source 830: Image transmission module 840: Optical path turning element D S1SL : No. The distance along the optical axis from one side surface to the second side surface D SoSL : The distance along the optical axis from the optical surface to the second side surface H1: The structural height of the nanostructure layer H2: The thickness of the silicon dioxide film layer L: Imaging light N4R1, N4R2, G4R1, G4R2: reflectance S1, S2, S3, S4: external space information S5: internal space information TL: distance from the object side surface of the first side lens to the imaging surface X: optical axis θ: viewing angle

第1A圖繪示依照本揭示內容第一實施例中光學模組之光學透鏡組的示意圖; 第1B圖繪示依照第1A圖第一實施例中玻璃透鏡的示意圖; 第1C圖繪示依照第1B圖第一實施例中玻璃透鏡的光學表面上的抗反射膜層在電子顯微鏡下的剖面示意圖; 第1D圖繪示依照第1B圖第一實施例中玻璃透鏡未設有抗反射膜層的反射率的參數示意圖; 第1E圖繪示依照第1B圖第一實施例中玻璃透鏡在設有抗反射膜層的反射率的參數示意圖; 第2圖繪示依照本揭示內容第二實施例中光學模組之光學透鏡組的示意圖; 第3圖繪示依照本揭示內容第三實施例中光學模組之光學透鏡組的示意圖; 第4圖繪示依照本揭示內容第四實施例中光學模組之光學透鏡組的示意圖; 第5圖繪示依照本揭示內容第五實施例中光學模組之光學透鏡組的示意圖; 第6圖繪示依照本揭示內容第六實施例中光學模組之光學透鏡組的示意圖; 第7A圖繪示依照本揭示內容第七實施例的車輛工具的示意圖; 第7B圖繪示依照第7A圖第七實施例的車輛工具的上視圖; 第7C圖繪示依照第7A圖第七實施例的車輛工具的另一示意圖; 第7D圖繪示依照第7A圖第七實施例的車輛工具的內部空間示意圖; 第8A圖繪示依照本揭示內容第八實施例的頭戴裝置的示意圖; 第8B圖繪示依照本揭示內容第八實施例另一態樣的頭戴裝置的示意圖; 第8C圖繪示依照第8B圖第八實施例的頭戴裝置的另一示意圖; 第8D圖繪示依照第8B圖第八實施例中光學模組的示意圖; 第8E圖繪示依照第8B圖第八實施例的頭戴裝置的使用示意圖;以及 第8F圖繪示依照第8B圖第八實施例的頭戴裝置另一態樣的使用示意圖。 Figure 1A is a schematic diagram of an optical lens assembly of an optical module according to the first embodiment of the present disclosure; Figure 1B shows a schematic diagram of the glass lens according to the first embodiment of Figure 1A; Figure 1C shows a schematic cross-sectional view under an electron microscope of the anti-reflective coating layer on the optical surface of the glass lens according to the first embodiment of Figure 1B; Figure 1D is a schematic diagram showing the reflectivity parameters of the glass lens without an anti-reflective coating layer according to the first embodiment of Figure 1B; Figure 1E is a schematic diagram showing the reflectivity parameters of a glass lens with an anti-reflective coating layer according to the first embodiment of Figure 1B; Figure 2 is a schematic diagram of an optical lens assembly of an optical module according to the second embodiment of the present disclosure; Figure 3 is a schematic diagram of an optical lens assembly of an optical module according to the third embodiment of the present disclosure; Figure 4 is a schematic diagram of an optical lens assembly of an optical module according to the fourth embodiment of the present disclosure; Figure 5 is a schematic diagram of an optical lens assembly of an optical module according to the fifth embodiment of the present disclosure; Figure 6 is a schematic diagram of an optical lens assembly of an optical module according to the sixth embodiment of the present disclosure; Figure 7A is a schematic diagram of a vehicle tool according to a seventh embodiment of the present disclosure; Figure 7B shows a top view of the vehicle tool according to the seventh embodiment of Figure 7A; Figure 7C shows another schematic diagram of the vehicle tool according to the seventh embodiment of Figure 7A; Figure 7D is a schematic diagram of the internal space of the vehicle tool according to the seventh embodiment of Figure 7A; Figure 8A shows a schematic diagram of a head-mounted device according to an eighth embodiment of the present disclosure; Figure 8B is a schematic diagram of another aspect of the head-mounted device according to the eighth embodiment of the present disclosure; Figure 8C shows another schematic diagram of the head-mounted device according to the eighth embodiment of Figure 8B; Figure 8D shows a schematic diagram of the optical module according to the eighth embodiment of Figure 8B; Figure 8E illustrates a usage diagram of the head-mounted device according to the eighth embodiment of Figure 8B; and Figure 8F illustrates another usage diagram of the head-mounted device according to the eighth embodiment of Figure 8B.

100:光學透鏡組 100: Optical lens group

111:前蓋 111:Front cover

112:筒體 112:Cylinder

120,130,150:玻璃透鏡 120,130,150: glass lens

121,122,131,132,151,152:抗反射膜層 121,122,131,132,151,152: anti-reflective coating

140,160,170:透鏡 140,160,170: Lens

DS1SL:第一側表面至第二側表面沿光軸的距離 D S1SL : Distance from the first side surface to the second side surface along the optical axis

DSoSL:光學表面至第二側表面沿光軸的距離 D SoSL : distance from the optical surface to the second side surface along the optical axis

TL:第一側透鏡的物側表面至成像面的距離 TL: The distance from the object side surface of the first side lens to the imaging surface

X:光軸 X: optical axis

Claims (31)

一種光學透鏡組,一光軸通過該光學透鏡組,包含:一玻璃透鏡,具有屈折力,該玻璃透鏡的一光學表面為非平面,該光學表面上形成一抗反射膜層,且該抗反射膜層包含:一奈米結構層,該奈米結構層具有自該光學表面朝非定向延伸的多個脊狀凸起,該奈米結構層的材質包含氧化鋁;以及一結構連接層,該結構連接層設置於該光學表面與該奈米結構層之間,該結構連接層包含至少一二氧化矽膜層,該至少一二氧化矽膜層與該奈米結構層的一底部實體接觸,且該至少一二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米;其中,該結構連接層部分暴露於空氣中;其中,該玻璃透鏡在溫度區間-30℃至70℃,具有一第一平均線性膨脹係數α1,其滿足下列條件:12×10-7/K<α1<210×10-7/K。 An optical lens group through which an optical axis passes, including: a glass lens with refractive power, an optical surface of the glass lens that is non-planar, an anti-reflective film layer formed on the optical surface, and the anti-reflective film layer The film layer includes: a nanostructure layer having a plurality of ridge-like protrusions extending in a non-directional direction from the optical surface; the material of the nanostructure layer includes aluminum oxide; and a structural connection layer, the A structural connection layer is provided between the optical surface and the nanostructure layer, the structural connection layer includes at least one silicon dioxide film layer, and the at least one silicon dioxide film layer is in physical contact with a bottom of the nanostructure layer, And the thickness of the at least one silicon dioxide film layer is greater than or equal to 20 nanometers and less than or equal to 150 nanometers; wherein the structural connection layer is partially exposed to the air; wherein the glass lens is in the temperature range -30°C to 70°C, It has a first average linear expansion coefficient α 1 which satisfies the following conditions: 12×10 -7 /K<α 1 <210×10 -7 /K. 如請求項1所述之光學透鏡組,其中該些脊狀凸起呈現下寬上窄的形狀,且該奈米結構層的結構平均高度大於等於80奈米且小於等於350奈米。 The optical lens set of claim 1, wherein the ridge-shaped protrusions are wide at the bottom and narrow at the top, and the average structural height of the nanostructure layer is greater than or equal to 80 nanometers and less than or equal to 350 nanometers. 如請求項1所述之光學透鏡組,其中該光學 透鏡組中一第一側表面至一第二側表面沿該光軸的距離為DS1SL,該光學表面至該第二側表面沿該光軸的距離為DSoSL,其滿足下列條件:0.12
Figure 111116879-A0305-02-0055-1
DSoSL/DS1SL<0.985。
The optical lens set according to claim 1, wherein the distance from a first side surface to a second side surface in the optical lens set along the optical axis is D S1SL , and the distance from the optical surface to the second side surface along the optical axis is D S1SL . The distance between the axes is D SoSL , which satisfies the following conditions: 0.12
Figure 111116879-A0305-02-0055-1
D SoSL /D S1SL <0.985.
如請求項1所述之光學透鏡組,其中該玻璃透鏡的該光學表面對應光線波長400nm至780nm的反射率最大值為Rabs,其滿足下列條件:0%
Figure 111116879-A0305-02-0055-2
Rabs
Figure 111116879-A0305-02-0055-3
1.0%。
The optical lens set as described in claim 1, wherein the maximum reflectivity of the optical surface of the glass lens corresponding to the light wavelength of 400nm to 780nm is R abs , which meets the following conditions: 0%
Figure 111116879-A0305-02-0055-2
R abs
Figure 111116879-A0305-02-0055-3
1.0%.
如請求項4所述之光學透鏡組,其中該玻璃透鏡的該光學表面對應光線波長400nm至780nm的平均反射率為Ravg,其滿足下列條件:0%
Figure 111116879-A0305-02-0055-4
Ravg
Figure 111116879-A0305-02-0055-5
0.5%。
The optical lens assembly as described in claim 4, wherein the optical surface of the glass lens has an average reflectance R avg corresponding to the light wavelength of 400 nm to 780 nm, which meets the following conditions: 0%
Figure 111116879-A0305-02-0055-4
R avg
Figure 111116879-A0305-02-0055-5
0.5%.
如請求項1所述之光學透鏡組,其中該玻璃透鏡在溫度區間-30℃至70℃,具有該第一平均線性膨脹係數α1,該結構連接層在溫度區間-30℃至70℃,具有一第二平均線性膨脹係數α2,其滿足下列條件:0.2<α12<41。 The optical lens assembly as described in claim 1, wherein the glass lens has the first average linear expansion coefficient α 1 in the temperature range of -30°C to 70°C, and the structural connection layer has the first average linear expansion coefficient α 1 in the temperature range of -30°C to 70°C. It has a second average linear expansion coefficient α 2 which satisfies the following conditions: 0.2<α 12 <41. 如請求項1所述之光學透鏡組,其中該玻璃透鏡在溫度區間-30℃至70℃,具有一相對折射率的溫度係數為dn/dt,其滿足下列條件: 0.1×10-6/℃
Figure 111116879-A0305-02-0056-6
|dn/dt|
Figure 111116879-A0305-02-0056-8
17×10-6/℃。
The optical lens assembly as described in claim 1, wherein the glass lens has a temperature coefficient of relative refractive index dn/dt in the temperature range -30°C to 70°C, which meets the following conditions: 0.1×10 -6 /°C
Figure 111116879-A0305-02-0056-6
|dn/dt|
Figure 111116879-A0305-02-0056-8
17× 10-6 /℃.
如請求項1所述之光學透鏡組,其中該光學表面具有一反曲點。 The optical lens assembly of claim 1, wherein the optical surface has an inflection point. 如請求項1所述之光學透鏡組,其中該光學透鏡組的一第一側透鏡的一物側表面至一成像面沿該光軸的距離為TL,其滿足下列條件:8mm
Figure 111116879-A0305-02-0056-9
TL。
The optical lens set according to claim 1, wherein the distance from an object-side surface of a first-side lens of the optical lens set to an imaging plane along the optical axis is TL, which satisfies the following conditions: 8mm
Figure 111116879-A0305-02-0056-9
T.L.
如請求項1所述之光學透鏡組,其中該玻璃透鏡設置於該光學透鏡組的第一側,且該光學透鏡組更包含一塑膠透鏡沿該光軸設置於該玻璃透鏡的一像側端。 The optical lens set of claim 1, wherein the glass lens is disposed on the first side of the optical lens set, and the optical lens set further includes a plastic lens disposed on an image side end of the glass lens along the optical axis. . 如請求項1所述之光學透鏡組,更包含一黏合透鏡。 The optical lens assembly as claimed in claim 1 further includes a bonded lens. 如請求項1所述之光學透鏡組,更包含:至少一光路轉折元件,設置於該光學透鏡組的一物側端與一像側端中至少一端。 The optical lens group as claimed in claim 1, further comprising: at least one optical path turning element disposed at at least one of an object-side end and an image-side end of the optical lens group. 一種光學模組,包含:一發光源;以及一光學透鏡組,一光軸透過該光學透鏡組,包含: 至少三透鏡,該至少三透鏡中至少一者為一玻璃透鏡,其中該至少一玻璃透鏡具有屈折力,且該至少一玻璃透鏡較另至少二該透鏡靠近該發光源,該至少一玻璃透鏡的一光學表面為非平面,該光學表面上形成一抗反射膜層,該抗反射膜層包含:一奈米結構層,該奈米結構層具有自該光學表面朝非定向延伸的多個脊狀凸起,該奈米結構層的材質包含氧化鋁;以及一結構連接層,該結構連接層設置於該光學表面與該奈米結構層之間,該結構連接層包含至少一二氧化矽膜層,該至少一二氧化矽膜層與該奈米結構層的一底部實體接觸,且該至少一二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米;其中,該結構連接層部分暴露於空氣中;其中,該玻璃透鏡在溫度區間-30℃至70℃,具有一第一平均線性膨脹係數α1,其滿足下列條件:12×10-7/K<α1<210×10-7/K。 An optical module, including: a light source; and an optical lens group, an optical axis passing through the optical lens group, including: at least three lenses, at least one of the at least three lenses is a glass lens, wherein the at least one glass lens The lens has refractive power, and the at least one glass lens is closer to the light source than the other at least two lenses. An optical surface of the at least one glass lens is non-planar. An anti-reflective film layer is formed on the optical surface. The anti-reflective film The layer includes: a nanostructure layer having a plurality of ridge-like protrusions extending non-directionally from the optical surface, the material of the nanostructure layer including aluminum oxide; and a structural connection layer, the structure The connection layer is disposed between the optical surface and the nanostructure layer, the structural connection layer includes at least one silicon dioxide film layer, the at least one silicon dioxide film layer is in physical contact with a bottom of the nanostructure layer, and The thickness of the at least one silicon dioxide film layer is greater than or equal to 20 nanometers and less than or equal to 150 nanometers; wherein the structural connection layer is partially exposed to the air; wherein the glass lens has a temperature range of -30°C to 70°C. -The first average linear expansion coefficient α 1 , which satisfies the following conditions: 12×10 -7 /K<α 1 <210×10 -7 /K. 如請求項13所述之光學模組,其中該些脊狀凸起呈現下寬上窄的形狀,且該奈米結構層的結構平均高度大於等於80奈米且小於等於350奈米。 The optical module of claim 13, wherein the ridge-shaped protrusions are wide at the bottom and narrow at the top, and the average structural height of the nanostructure layer is greater than or equal to 80 nanometers and less than or equal to 350 nanometers. 如請求項13所述之光學模組,其中,該光學透鏡組中一第一側表面至一第二側表面沿該光軸的距離 為DS1SL,該光學表面至該第二側表面沿該光軸的距離為DSoSL,其滿足下列條件:0.12
Figure 111116879-A0305-02-0058-10
DSoSL/DS1SL<0.985。
The optical module according to claim 13, wherein the distance from a first side surface to a second side surface in the optical lens group along the optical axis is D S1SL , and the distance from the optical surface to the second side surface along the optical axis is D S1SL . The distance of the optical axis is D SoSL , which satisfies the following conditions: 0.12
Figure 111116879-A0305-02-0058-10
D SoSL /D S1SL <0.985.
如請求項13所述之光學模組,其中該至少一玻璃透鏡為一陣列透鏡。 The optical module of claim 13, wherein the at least one glass lens is an array lens. 如請求項13所述之光學模組,其中該玻璃透鏡的該光學表面對應光線波長400nm至780nm的反射率最大值為Rabs,其滿足下列條件:0%
Figure 111116879-A0305-02-0058-11
Rabs
Figure 111116879-A0305-02-0058-12
1.0%。
The optical module as described in claim 13, wherein the maximum reflectivity of the optical surface of the glass lens corresponding to the light wavelength of 400nm to 780nm is R abs , which satisfies the following conditions: 0%
Figure 111116879-A0305-02-0058-11
R abs
Figure 111116879-A0305-02-0058-12
1.0%.
如請求項17所述之光學模組,其中該玻璃透鏡的該光學表面對應光線波長400nm至780nm的平均反射率為Ravg,其滿足下列條件:0%
Figure 111116879-A0305-02-0058-13
Ravg
Figure 111116879-A0305-02-0058-14
0.5%。
The optical module as described in claim 17, wherein the optical surface of the glass lens has an average reflectance R avg corresponding to the light wavelength of 400 nm to 780 nm, which meets the following conditions: 0%
Figure 111116879-A0305-02-0058-13
R avg
Figure 111116879-A0305-02-0058-14
0.5%.
如請求項13所述之光學模組,其中該玻璃透鏡在溫度區間-30℃至70℃,具有該第一平均線性膨脹係數α1,該結構連接層在溫度區間-30℃至70℃,具有一第二平均線性膨脹係數α2,其滿足下列條件:0.2<α12<41。 The optical module as described in claim 13, wherein the glass lens has the first average linear expansion coefficient α 1 in the temperature range of -30°C to 70°C, and the structural connection layer has the first average linear expansion coefficient α 1 in the temperature range of -30°C to 70°C. It has a second average linear expansion coefficient α 2 which satisfies the following conditions: 0.2<α 12 <41. 如請求項13所述之光學模組,其中該光學 透鏡組更包含:至少一光路轉折元件,設置於該光學透鏡組的一物側端與一像側端中至少一端。 The optical module as claimed in claim 13, wherein the optical The lens group further includes: at least one optical path turning element, which is disposed at at least one end of an object-side end and an image-side end of the optical lens group. 如請求項13所述之光學模組,其中該發光源為陣列設置的複數顯示元件。 The optical module as claimed in claim 13, wherein the light source is a plurality of display elements arranged in an array. 一種光學模組,包含:一發光源;以及一光學透鏡組,一光軸透過該光學透鏡組,包含:至少三透鏡,該至少三透鏡中至少一者為一玻璃透鏡,其中該至少一玻璃透鏡具有屈折力,且該至少一玻璃透鏡較另至少二該透鏡靠近該發光源,該至少一玻璃透鏡的一光學表面為非平面,該光學表面上形成一抗反射膜層,該抗反射膜層包含:一奈米結構層,該奈米結構層具有自該光學表面朝非定向延伸的多個脊狀凸起,該奈米結構層的材質包含氧化鋁;以及一結構連接層,該結構連接層設置於該光學表面與該奈米結構層之間,該結構連接層包含至少一二氧化矽膜層,該至少一二氧化矽膜層與該奈米結構層的一底部實體接觸,且該至少一二氧化矽膜層的厚度大於等於20奈米且小於等於150奈米;其中,該結構連接層部分暴露於空氣中; 其中,該光學表面的最大有效半徑為Y,該光學表面與該光軸的交點至該光學表面最大有效半徑位置具有平行於該光軸的最大位移SAGglass,該玻璃透鏡在溫度區間-30℃至70℃,具有一第一平均線性膨脹係數α1,其滿足下列條件:0.01
Figure 111116879-A0305-02-0060-15
SAGglass/Y
Figure 111116879-A0305-02-0060-16
0.99;以及12×10-7/K<α1<210×10-7/K。
An optical module, including: a light source; and an optical lens group, an optical axis passing through the optical lens group, including: at least three lenses, at least one of the at least three lenses is a glass lens, wherein the at least one glass lens The lens has refractive power, and the at least one glass lens is closer to the light source than the other at least two lenses. An optical surface of the at least one glass lens is non-planar. An anti-reflective film layer is formed on the optical surface. The anti-reflective film The layer includes: a nanostructure layer having a plurality of ridge-like protrusions extending non-directionally from the optical surface, the material of the nanostructure layer including aluminum oxide; and a structural connection layer, the structure The connection layer is disposed between the optical surface and the nanostructure layer, the structural connection layer includes at least one silicon dioxide film layer, the at least one silicon dioxide film layer is in physical contact with a bottom of the nanostructure layer, and The thickness of the at least one silicon dioxide film layer is greater than or equal to 20 nanometers and less than or equal to 150 nanometers; wherein the structural connection layer is partially exposed to the air; wherein the maximum effective radius of the optical surface is Y, and the optical surface is There is a maximum displacement SAG glass parallel to the optical axis from the intersection point of the optical axis to the maximum effective radius position of the optical surface. The glass lens has a first average linear expansion coefficient α 1 in the temperature range of -30°C to 70°C, which Meet the following conditions: 0.01
Figure 111116879-A0305-02-0060-15
SAG glass /Y
Figure 111116879-A0305-02-0060-16
0.99; and 12×10 -7 /K<α 1 <210×10 -7 /K.
如請求項22所述之光學模組,其中該些脊狀凸起呈現下寬上窄的形狀,且該奈米結構層的結構平均高度大於等於80奈米且小於等於350奈米。 The optical module as claimed in claim 22, wherein the ridge-shaped protrusions are wide at the bottom and narrow at the top, and the average structural height of the nanostructure layer is greater than or equal to 80 nanometers and less than or equal to 350 nanometers. 如請求項22所述之光學模組,其中該至少一玻璃透鏡為一陣列透鏡。 The optical module of claim 22, wherein the at least one glass lens is an array lens. 如請求項22所述之光學模組,其中該玻璃透鏡的該光學表面對應光線波長400nm至780nm的反射率最大值為Rabs,其滿足下列條件:0%
Figure 111116879-A0305-02-0060-17
Rabs
Figure 111116879-A0305-02-0060-18
1.0%。
The optical module as described in claim 22, wherein the maximum reflectivity of the optical surface of the glass lens corresponding to the light wavelength of 400nm to 780nm is R abs , which satisfies the following conditions: 0%
Figure 111116879-A0305-02-0060-17
R abs
Figure 111116879-A0305-02-0060-18
1.0%.
如請求項25所述之光學模組,其中該玻璃透鏡的該光學表面對應光線波長400nm至780nm的平均反射率為Ravg,其滿足下列條件:0%
Figure 111116879-A0305-02-0060-19
Ravg
Figure 111116879-A0305-02-0060-20
0.5%。
The optical module as described in claim 25, wherein the optical surface of the glass lens has an average reflectance R avg corresponding to the light wavelength of 400 nm to 780 nm, which meets the following conditions: 0%
Figure 111116879-A0305-02-0060-19
R avg
Figure 111116879-A0305-02-0060-20
0.5%.
如請求項22所述之光學模組,其中該玻璃透鏡在溫度區間-30℃至70℃,具有該第一平均線性膨脹係數α1,該結構連接層在溫度區間-30℃至70℃,具有一第二平均線性膨脹係數α2,其滿足下列條件:0.2<α12<41。 The optical module as described in claim 22, wherein the glass lens has the first average linear expansion coefficient α 1 in the temperature range of -30°C to 70°C, and the structural connection layer has the first average linear expansion coefficient α 1 in the temperature range of -30°C to 70°C. It has a second average linear expansion coefficient α 2 which satisfies the following conditions: 0.2<α 12 <41. 如請求項22所述之光學模組,其中該光學表面與該光軸的交點至該光學表面最大有效半徑位置具有平行於該光軸的最大位移SAGglass,其滿足下列條件:90μm
Figure 111116879-A0305-02-0061-21
SAGglass
The optical module as described in claim 22, wherein the intersection point of the optical surface and the optical axis to the maximum effective radius position of the optical surface has a maximum displacement SAG glass parallel to the optical axis, which meets the following conditions: 90 μm
Figure 111116879-A0305-02-0061-21
SAG glass .
如請求項28所述之光學模組,其中該光學表面具有一反曲點。 The optical module of claim 28, wherein the optical surface has an inflection point. 如請求項22所述之光學模組,其中該光學透鏡組更包含:至少一光路轉折元件,設置於該光學透鏡組的一物側端與一像側端中至少一端。 The optical module of claim 22, wherein the optical lens group further includes: at least one optical path turning element disposed on at least one of an object-side end and an image-side end of the optical lens group. 如請求項22所述之光學模組,其中該發光源為陣列設置的複數顯示元件。 The optical module of claim 22, wherein the light source is a plurality of display elements arranged in an array.
TW111116879A 2021-08-03 2022-05-04 Optical lens assembly and optical module TWI817483B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/814,046 US20230058946A1 (en) 2021-08-03 2022-07-21 Optical lens assembly and optical module
CN202210874636.3A CN115704951A (en) 2021-08-03 2022-07-25 Optical lens group and optical module
CN202221919129.9U CN217902158U (en) 2021-08-03 2022-07-25 Optical lens assembly and optical module
EP22188213.7A EP4130835A1 (en) 2021-08-03 2022-08-02 Optical lens assembly and optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163228675P 2021-08-03 2021-08-03
US63/228,675 2021-08-03

Publications (2)

Publication Number Publication Date
TW202307472A TW202307472A (en) 2023-02-16
TWI817483B true TWI817483B (en) 2023-10-01

Family

ID=86661170

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111116879A TWI817483B (en) 2021-08-03 2022-05-04 Optical lens assembly and optical module

Country Status (1)

Country Link
TW (1) TWI817483B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060199040A1 (en) * 2005-02-18 2006-09-07 Canon Kabushiki Kaisha Optical transparent member and optical system using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060199040A1 (en) * 2005-02-18 2006-09-07 Canon Kabushiki Kaisha Optical transparent member and optical system using the same

Also Published As

Publication number Publication date
TW202307472A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
TWI771472B (en) Optical image capturing module、system and manufacturing method thereof
KR20170075447A (en) Photographic lens optical system
WO2019205874A1 (en) Optical lens
TWI823882B (en) Lens and fabrication method thereof
TW202009586A (en) Optical image capturing module、system and manufacturing method thereof
TW202009587A (en) Optical image capturing module、system and manufacturing method thereof
TW202010147A (en) Optical image capturing module、system and manufacturing method thereof
TW202013001A (en) Optical image capturing module
TW202009541A (en) Optical image capturing module、system and manufacturing method thereof
TW202009540A (en) Optical image capturing module、system and manufacturing method thereof
TWM575127U (en) Optical imaging module and imaging system thereof
TWI821864B (en) Imaging lens, light blocking sheet and electronic device
TWI768127B (en) Optical image capturing module, optical image system and optical image capturing manufacture method
TWI768102B (en) Optical image capturing module, system and manufacturing method thereof
TWI742307B (en) Image lens and fabrication method thereof
TWI768106B (en) Optical image capturing module、system and manufacturing method thereof
TWI817483B (en) Optical lens assembly and optical module
KR100332018B1 (en) Image sensing module
CN217902158U (en) Optical lens assembly and optical module
WO2022170955A1 (en) Lens, camera module, and electronic apparatus
TW202013037A (en) Optical image capturing module
TW202012991A (en) Optical image capturing module
TWM575129U (en) Optical imaging module
TWM573437U (en) Optical imaging module
CN210514762U (en) Novel rearview optical system