TWI817395B - Semiconductor device with stacking structure - Google Patents
Semiconductor device with stacking structure Download PDFInfo
- Publication number
- TWI817395B TWI817395B TW111109648A TW111109648A TWI817395B TW I817395 B TWI817395 B TW I817395B TW 111109648 A TW111109648 A TW 111109648A TW 111109648 A TW111109648 A TW 111109648A TW I817395 B TWI817395 B TW I817395B
- Authority
- TW
- Taiwan
- Prior art keywords
- die
- storage
- semiconductor device
- controller
- units
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 112
- 238000003860 storage Methods 0.000 claims abstract description 201
- 238000007667 floating Methods 0.000 claims abstract description 14
- 239000012212 insulator Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 121
- 239000000758 substrate Substances 0.000 claims description 104
- 238000004519 manufacturing process Methods 0.000 claims description 42
- 229910000679 solder Inorganic materials 0.000 claims description 26
- 238000000465 moulding Methods 0.000 claims description 14
- 210000004027 cell Anatomy 0.000 claims description 8
- 210000000352 storage cell Anatomy 0.000 claims description 8
- 239000010410 layer Substances 0.000 description 177
- 230000008569 process Effects 0.000 description 106
- 150000001875 compounds Chemical class 0.000 description 19
- 239000000463 material Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 238000002955 isolation Methods 0.000 description 13
- 238000005498 polishing Methods 0.000 description 13
- 238000011049 filling Methods 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 230000004907 flux Effects 0.000 description 8
- 229910052715 tantalum Inorganic materials 0.000 description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005137 deposition process Methods 0.000 description 6
- 239000003989 dielectric material Substances 0.000 description 6
- 230000005669 field effect Effects 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 239000005368 silicate glass Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- -1 titanium nitride) Chemical class 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000007731 hot pressing Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 229910000951 Aluminide Inorganic materials 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 229910005540 GaP Inorganic materials 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 229910000673 Indium arsenide Inorganic materials 0.000 description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 239000005380 borophosphosilicate glass Substances 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 3
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 150000004760 silicates Chemical class 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 229910003468 tantalcarbide Inorganic materials 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- MIMUSZHMZBJBPO-UHFFFAOYSA-N 6-methoxy-8-nitroquinoline Chemical compound N1=CC=CC2=CC(OC)=CC([N+]([O-])=O)=C21 MIMUSZHMZBJBPO-UHFFFAOYSA-N 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- SXSVTGQIXJXKJR-UHFFFAOYSA-N [Mg].[Ti] Chemical compound [Mg].[Ti] SXSVTGQIXJXKJR-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 239000013008 thixotropic agent Substances 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- RRZKHZBOZDIQJG-UHFFFAOYSA-N azane;manganese Chemical compound N.[Mn] RRZKHZBOZDIQJG-UHFFFAOYSA-N 0.000 description 1
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- QDWJUBJKEHXSMT-UHFFFAOYSA-N boranylidynenickel Chemical compound [Ni]#B QDWJUBJKEHXSMT-UHFFFAOYSA-N 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920002577 polybenzoxazole Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/18—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Pile Receivers (AREA)
- Stackable Containers (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
本申請案主張美國第17/563,291及17/563,346號專利申請案之優先權(即優先權日均為「2021年12月28日」),其內容以全文引用之方式併入本文中。 This application claims priority to U.S. Patent Application Nos. 17/563,291 and 17/563,346 (that is, the priority date is "December 28, 2021"), the contents of which are incorporated herein by reference in their entirety.
本揭露關於一種半導體元件。特別是有關於一種具有多個堆疊結構的半導體元件。 The present disclosure relates to a semiconductor device. In particular, it relates to a semiconductor device having a plurality of stacked structures.
半導體元件使用在不同的電子應用,例如個人電腦、手機、數位相機,或其他電子設備。半導體元件的尺寸逐漸地變小,以符合計算能力所逐漸增加的需求。然而,在尺寸變小的製程期間,增加不同的問題,且如此的問題在數量與複雜度上持續增加。因此,仍然持續著在達到改善品質、良率、效能與可靠度以及降低複雜度方面的挑戰。 Semiconductor components are used in various electronic applications, such as personal computers, mobile phones, digital cameras, or other electronic devices. The size of semiconductor devices is gradually becoming smaller to meet the increasing demand for computing power. However, during the downsizing process, different problems are added, and such problems continue to increase in number and complexity. Therefore, challenges remain in achieving improvements in quality, yield, performance and reliability, and in reducing complexity.
上文之「先前技術」說明僅提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。 The above description of "prior art" only provides background technology, and does not admit that the above description of "prior art" reveals the subject matter of the present disclosure. It does not constitute prior art of the present disclosure, and any description of the above "prior art" does not constitute the prior art of the present disclosure. It should not be used as any part of this case.
本揭露之一實施例提供一種半導體元件,包括一下晶粒;一第一堆疊結構,包括一第一控制器晶粒,設置在該下晶粒上;以及複數 個第一儲存晶粒,堆疊在該第一控制器晶粒上;一第二堆疊結構,包括一第二控制器晶粒,設置在該下晶粒上;以及複數個第二儲存晶粒,堆疊在該第二控制器晶粒上。該複數個第一儲存晶粒分別包括複數個第一儲存單元,其經配置成一浮動陣列。該複數個第二儲存晶粒包括複數個第二儲存單元,其分別包括一絕緣體-導體-絕緣體結構。 An embodiment of the present disclosure provides a semiconductor device including a lower die; a first stack structure including a first controller die disposed on the lower die; and a plurality of a first storage die stacked on the first controller die; a second stack structure including a second controller die disposed on the lower die; and a plurality of second storage dies, stacked on this second controller die. The plurality of first storage dies respectively include a plurality of first storage cells, which are configured into a floating array. The plurality of second storage dies includes a plurality of second storage units, each of which includes an insulator-conductor-insulator structure.
本揭露之另一實施例提供一種半導體元件,包括一下晶粒;一第一堆疊結構,經由複數個第一內連接單元而設置在該下晶粒上;以及一第二堆疊結構,經由複數個第二內連接單元而設置在該下晶粒上。該第一堆疊結構包括:一第一控制器晶粒,設置在該複數個第一內連接單元上;複數個第一儲存晶粒,堆疊在該第一控制器晶粒上並經配置成一浮動陣列。該第二堆疊結構包括:一第二控制器晶粒,設置在該複數個第二內連接單元上;以及複數個第二儲存晶粒,堆疊在該第二控制器晶粒上,且分別包括一絕緣體-導體-絕緣體結構。 Another embodiment of the present disclosure provides a semiconductor device including a lower die; a first stacked structure disposed on the lower die via a plurality of first interconnect units; and a second stacked structure via a plurality of first interconnect units. The second interconnect unit is disposed on the lower die. The first stacked structure includes: a first controller die disposed on the plurality of first interconnect units; a plurality of first storage dies stacked on the first controller die and configured to form a floating array. The second stacked structure includes: a second controller die disposed on the plurality of second interconnect units; and a plurality of second storage dies stacked on the second controller die and each including An insulator-conductor-insulator structure.
本揭露之另一實施例提供一種半導體元件的製備方法,包括提供一第一堆疊結構,該第一堆疊結構包括:一第一控制器晶粒;以及複數個第一儲存晶粒,依序堆疊在該第一控制器晶粒上;提供一第二堆疊結構,該第二堆疊結構包括:一第二控制器晶粒;以及複數個第二儲存晶粒,依序堆疊在該第二控制器晶粒上;該第一控制器晶粒經由複數個第一內連接單元而接合到一下晶粒上;以及該第二控制器晶粒經由複數個第二內連接單元而接合到該下晶粒上。該複數個第一儲存晶粒分別包括複數個第一儲存單元,其經配置成一浮動陣列。該複數個第二儲存晶粒包括複數個第二儲存單元,其分別包括一絕緣體-導體-絕緣體結構。 Another embodiment of the present disclosure provides a method for manufacturing a semiconductor device, including providing a first stacked structure. The first stacked structure includes: a first controller die; and a plurality of first storage dies, stacked in sequence. On the first controller die; provide a second stack structure, the second stack structure includes: a second controller die; and a plurality of second storage dies, sequentially stacked on the second controller on the die; the first controller die is bonded to the lower die via a plurality of first interconnect units; and the second controller die is bonded to the lower die via a plurality of second interconnect units superior. The plurality of first storage dies respectively include a plurality of first storage cells, which are configured into a floating array. The plurality of second storage dies includes a plurality of second storage units, each of which includes an insulator-conductor-insulator structure.
由於本揭露該半導體元件的設計,該第一堆疊結構具有呈 浮動陣列形式的該等第一儲存單元,該第二堆疊結構具有該等第二儲存單元,該等第二儲存單元具有該等絕緣體-導體-絕緣體結構,且該第一堆疊結構以及該第二堆疊結構可與該下晶粒整合在一起。因此,可縮減該半導體元件的尺寸(dimension)。此外,該等貫穿基底通孔亦可縮減在該第一堆疊結構及/或該第二堆疊結構內的多個電性路徑,以便可降低功耗。因此,可改善該半導體元件的效能。 Due to the design of the semiconductor device disclosed in the present disclosure, the first stacked structure has The first memory cells in the form of a floating array, the second stack structure has the second memory cells, the second memory cells have the insulator-conductor-insulator structure, and the first stack structure and the second A stacked structure can be integrated with the lower die. Therefore, the dimension of the semiconductor device can be reduced. In addition, the through-substrate vias can also reduce a plurality of electrical paths within the first stacked structure and/or the second stacked structure, so that power consumption can be reduced. Therefore, the performance of the semiconductor device can be improved.
上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。 The technical features and advantages of the present disclosure have been summarized rather broadly above so that the detailed description of the present disclosure below may be better understood. Other technical features and advantages that constitute the subject matter of the patentable scope of the present disclosure will be described below. It should be understood by those of ordinary skill in the art that the concepts and specific embodiments disclosed below can be easily used to modify or design other structures or processes to achieve the same purposes of the present disclosure. Those with ordinary knowledge in the technical field to which the present disclosure belongs should also understand that such equivalent constructions cannot depart from the spirit and scope of the present disclosure as defined in the appended patent application scope.
1A:半導體元件 1A: Semiconductor components
1B:半導體元件 1B:Semiconductor components
1C:半導體元件 1C: Semiconductor components
10:製備方法 10:Preparation method
100:第一堆疊結構 100: First stack structure
110:第一控制器晶粒 110: First controller die
110BS:後表面 110BS: Back surface
110FS:前表面 110FS: Front surface
111:基底 111: Base
113:介電層 113:Dielectric layer
115:貫穿基底通孔 115: Through-base through hole
117:導電墊 117:Conductive pad
120:第一儲存晶粒 120: The first storage chip
120BS:後表面 120BS: Back surface
120FS:前表面 120FS: Front surface
121:基底 121: Base
123:介電層 123:Dielectric layer
125:貫穿基底通孔 125: Through-base through hole
127:導電墊 127:Conductive pad
129:第一儲存單元 129: First storage unit
130:第一儲存晶粒 130: The first storage chip
130FS:前表面 130FS: Front surface
131:基底 131: Base
133:介電層 133:Dielectric layer
137:導電墊 137:Conductive pad
140:第一儲存晶粒 140: The first storage grain
150:第一儲存晶粒 150: The first storage chip
160:第一儲存晶粒 160: The first storage grain
170:第一儲存晶粒 170: The first storage chip
200:第二堆疊結構 200: Second stack structure
210:第二控制器晶粒 210: Second controller die
210BS:後表面 210BS: Back surface
210FS:前表面 210FS: Front surface
211:基底 211:Base
213:介電層 213:Dielectric layer
215:貫穿基底通孔 215: Through-base through hole
217:導電墊 217:Conductive pad
220:第二儲存晶粒 220: Second storage grain
220BS:下表面 220BS: Lower surface
220FS:上表面 220FS: Upper surface
221:基底 221: Base
223:介電層 223:Dielectric layer
225:貫穿基底通孔 225: Through-base through hole
227:導電墊 227:Conductive pad
229:第二儲存單元 229: Second storage unit
230:第二儲存晶粒 230: Second storage grain
230FS:前表面 230FS: Front surface
231:基底 231:Base
233:介電層 233:Dielectric layer
237:導電墊 237:Conductive pad
240:第二儲存晶粒 240: Second storage grain
250:第二儲存晶粒 250: Second storage grain
310:下晶粒 310: Lower grain
311:基底 311: Base
313:介電層 313: Dielectric layer
315:貫穿基底通孔 315:Through-substrate through hole
317:第一連接墊 317: First connection pad
319:第二連接墊 319: Second connection pad
411:第一貫穿晶粒通孔 411: First through-die via
413:第一貫穿晶粒通孔 413: First through-die via
421:第二貫穿晶粒通孔 421: Second through-die via
423:第二貫穿晶粒通孔 423: Second through-die via
431:第三貫穿晶粒通孔 431: Third through-die via
433:第三貫穿晶粒通孔 433: Third through-die via
441:第四貫穿晶粒通孔 441: The fourth through-die via
443:第四貫穿晶粒通孔 443: The fourth through-die via
510:第一內連接單元 510: First internal connection unit
511:第一外部層 511: First outer layer
513:第一腔室 513:First chamber
515:第一下環狀層 515: The first lower annular layer
517:第一上環狀層 517: First upper annular layer
520:第二內連接單元 520: Second internal connection unit
521:第二外部層 521: Second outer layer
523:第二腔室 523:Second chamber
525:第二下環狀層 525: Second lower annular layer
527:第二上環狀層 527:Second upper annular layer
530:第三內連接單元 530: The third internal connection unit
601:底部填充層 601: Bottom filling layer
603:模塑層 603: Molding layer
605:基座基底 605: Base base
A1:區域 A1:Area
A2:區域 A2:Area
AL:黏著層 AL: adhesive layer
BL:阻障層 BL: barrier layer
FL:填充層 FL: filling layer
IL:絕緣層 IL: insulation layer
S11:步驟 S11: Steps
S13:步驟 S13: Steps
S15:步驟 S15: Steps
S17:步驟 S17: Steps
SL:晶種層 SL: seed layer
T1:厚度 T1:Thickness
T2:厚度 T2:Thickness
T3:厚度 T3:Thickness
T4:厚度 T4:Thickness
T5:厚度 T5:Thickness
T6:厚度 T6:Thickness
W1:寬度 W1: Width
W2:寬度 W2: Width
W3:寬度 W3: Width
W4:寬度 W4: Width
Z:方向 Z: direction
參閱實施方式與申請專利範圍合併考量圖式時,可得以更全面了解本申請案之揭示內容,圖式中相同的元件符號指相同的元件。 By referring to the embodiments and the patent scope together with the drawings, the disclosure content of the present application can be more fully understood. The same element symbols in the drawings refer to the same elements.
圖1是流程示意圖,例示本揭露一實施例之半導體元件的製備方法。 FIG. 1 is a schematic flowchart illustrating a method for manufacturing a semiconductor device according to an embodiment of the present disclosure.
圖2到圖22是剖視示意圖,例示本揭露一實施例製備半導體元件的部分流程。 2 to 22 are schematic cross-sectional views illustrating part of the process of preparing a semiconductor device according to an embodiment of the present disclosure.
圖23及圖24是放大剖視示意圖,例示圖22之區域A1與A2的剖面。 23 and 24 are enlarged cross-sectional schematic views, illustrating the cross-sections of areas A1 and A2 in FIG. 22 .
圖25及圖26是剖視示意圖,例示本揭露一實施例製備半導體元件的部分流程。 25 and 26 are schematic cross-sectional views illustrating part of the process of preparing a semiconductor device according to an embodiment of the present disclosure.
圖27是放大剖視示意圖,例示本揭露另一實施例的半導體元件。 FIG. 27 is an enlarged cross-sectional schematic diagram illustrating a semiconductor device according to another embodiment of the present disclosure.
圖28是剖視示意圖,例示本揭露另一實施例製備半導體元件的部分流程。 28 is a schematic cross-sectional view illustrating part of the process of preparing a semiconductor device according to another embodiment of the present disclosure.
圖29是放大剖視示意圖,例示圖28之區域A1的剖面。 FIG. 29 is an enlarged schematic cross-sectional view illustrating the cross-section of area A1 in FIG. 28 .
圖30是剖視示意圖,例示沿著圖29之剖線A-A’、B-B’以及C-C’的剖面。 Fig. 30 is a schematic cross-sectional view illustrating the cross-sections along the cross-section lines A-A', B-B' and C-C' of Fig. 29.
圖31是放大剖視示意圖,例示圖28之區域A2的剖面。 FIG. 31 is an enlarged schematic cross-sectional view illustrating the cross-section of area A2 in FIG. 28 .
圖32是剖視示意圖,例示沿著圖30之剖線A-A’、B-B’以及C-C’的剖面。 Fig. 32 is a schematic cross-sectional view illustrating the cross-sections along the cross-section lines A-A', B-B' and C-C' of Fig. 30.
圖33是剖視示意圖,例示本揭露另一實施例製備半導體元件的部分流程。 33 is a schematic cross-sectional view illustrating part of the process of preparing a semiconductor device according to another embodiment of the present disclosure.
圖34及圖35是放大剖視示意圖,例示圖33之區域A1與A2的剖面。 34 and 35 are enlarged cross-sectional schematic views, illustrating the cross-sections of areas A1 and A2 in FIG. 33 .
以下描述了組件和配置的具體範例,以簡化本揭露之實施例。當然,這些實施例僅用以例示,並非意圖限制本揭露之範圍。舉例而言,在敘述中第一部件形成於第二部件之上,可能包含形成第一和第二部件直接接觸的實施例,也可能包含額外的部件形成於第一和第二部件之間,使得第一和第二部件不會直接接觸的實施例。另外,本揭露之實施例可能在許多範例中重複參照標號及/或字母。這些重複的目的是為了簡化和清楚,除非內文中特別說明,其本身並非代表各種實施例及/或所討論的配置之間有特定的關係。 Specific examples of components and configurations are described below to simplify embodiments of the present disclosure. Of course, these embodiments are only for illustration and are not intended to limit the scope of the present disclosure. For example, in the description, the first component is formed on the second component, which may include an embodiment in which the first and second components are in direct contact, or may include an additional component formed between the first and second components. An embodiment such that the first and second components are not in direct contact. In addition, embodiments of the present disclosure may repeat reference numbers and/or letters in many examples. These repetitions are for simplicity and clarity and do not in themselves represent a specific relationship between the various embodiments and/or configurations discussed unless otherwise specified herein.
此外,為易於說明,本文中可能使用例如「之下(beneath)」、「下面(below)」、「下部的(lower)」、「上方(above)」、「上部的(upper)」等空間相對關係用語來闡述圖中所示的一個元件或特徵與另一 (其他)元件或特徵的關係。所述空間相對關係用語旨在除圖中所繪示的取向外亦囊括元件在使用或操作中的不同取向。所述裝置可具有其他取向(旋轉90度或處於其他取向)且本文中所用的空間相對關係描述語可同樣相應地進行解釋。 In addition, for ease of explanation, spaces such as "beneath", "below", "lower", "above", "upper", etc. may be used in this article. Relative terms used to describe the relationship between one element or feature shown in a figure and another (Other) relationship between components or features. These spatially relative terms are intended to encompass different orientations of the elements in use or operation in addition to the orientation depicted in the figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
應當理解,當形成一個部件在另一個部件之上(on)、與另一個部件相連(connected to)、及/或與另一個部件耦合(coupled to),其可能包含形成這些部件直接接觸的實施例,並且也可能包含形成額外的部件介於這些部件之間,使得這些部件不會直接接觸的實施例。 It will be understood that when one component is formed on, connected to, and/or coupled to another component, it may include forming direct contact between those components. examples, and may also include embodiments in which additional components are formed between the components so that the components are not in direct contact.
應當理解,儘管這裡可以使用術語第一,第二,第三等來描述各種元件、部件、區域、層或區段(sections),但是這些元件、部件、區域、層或區段不受這些術語的限制。相反,這些術語僅用於將一個元件、組件、區域、層或區段與另一個區域、層或區段所區分開。因此,在不脫離本發明進步性構思的教導的情況下,下列所討論的第一元件、組件、區域、層或區段可以被稱為第二元件、組件、區域、層或區段。 It will be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers or sections, these elements, components, regions, layers or sections are not governed by these terms. limits. Rather, these terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present progressive concept.
除非內容中另有所指,否則當代表定向(orientation)、布局(layout)、位置(location)、形狀(shapes)、尺寸(sizes)、數量(amounts),或其他量測(measures)時,則如在本文中所使用的例如「同樣的(same)」、「相等的(equal)」、「平坦的(planar)」,或是「共面的(coplanar)」等術語(terms)並非必要意指一精確地完全相同的定向、布局、位置、形狀、尺寸、數量,或其他量測,但其意指在可接受的差異內,包含差不多完全相同的定向、布局、位置、形狀、尺寸、數量,或其他量測,而舉例來說,所述可接受的差異可因為製造流程(manufacturing processes)而發生。術語「大致地(substantially)」可被使用在本文中,以 表現出此意思。舉例來說,如大致地相同的(substantially the same)、大致地相等的(substantially equal),或是大致地平坦的(substantially planar),為精確地相同的、相等的,或是平坦的,或者是其可為在可接受的差異內的相同的、相等的,或是平坦的,而舉例來說,所述可接受的差異可因為製造流程而發生。 Unless otherwise specified in the content, when referring to orientation, layout, location, shapes, sizes, amounts, or other measures, Then terms such as "same", "equal", "planar", or "coplanar" as used in this article are not necessary means an exactly identical orientation, arrangement, position, shape, size, quantity, or other measurement, but it means a nearly identical orientation, arrangement, position, shape, size, within acceptable differences , quantity, or other measurement, and the acceptable differences may occur due to manufacturing processes, for example. The term "substantially" may be used herein to mean Show this meaning. For example, as substantially the same, substantially equal, or substantially planar, as exactly the same, equal, or planar, or It may be the same, equal, or flat within acceptable differences that may occur due to the manufacturing process, for example.
在本揭露中,一半導體元件通常意指可藉由利用半導體特性(semiconductor characteristics)運行的一元件,而一光電元件(electro-optic device)、一發光顯示元件(light-emitting display device)、一半導體線路(semiconductor circuit)以及一電子元件(electronic device),均包括在半導體元件的範疇中。 In this disclosure, a semiconductor device generally refers to a device that can operate by utilizing semiconductor characteristics, and an electro-optic device, a light-emitting display device, a A semiconductor circuit (semiconductor circuit) and an electronic device (electronic device) are both included in the category of semiconductor components.
應當理解,在本揭露的描述中,上方(above)(或之上(up))對應Z方向箭頭的該方向,而下方(below)(或之下(down))對應Z方向箭頭的相對方向。 It should be understood that in the description of the present disclosure, above (or up) corresponds to the direction of the Z-direction arrow, and below (or down) corresponds to the opposite direction of the Z-direction arrow. .
應當理解,「正在形成(forming)」、「已經形成(formed)」以及「形成(form)」的術語,可表示並包括任何產生(creating)、構建(building)、圖案化(patterning)、植入(implanting)或沉積(depositing)一元件(element)、一摻雜物(dopant)或一材料的方法。形成方法的例子可包括原子層沉積(atomic layer deposition)、化學氣相沉積(chemical vapor deposition)、物理氣相沉積(physical vapor deposition)、噴濺(sputtering)、旋轉塗佈(spin coating)、擴散(diffusing)、沉積(depositing)、生長(growing)、植入(implantation)、微影(photolithography)、乾蝕刻以及濕蝕刻,但並不以此為限。 It should be understood that the terms "forming", "formed" and "form" can mean and include any creating, building, patterning, planting. A method of implanting or depositing an element, a dopant or a material. Examples of formation methods may include atomic layer deposition, chemical vapor deposition, physical vapor deposition, sputtering, spin coating, diffusion (diffusing), depositing (depositing), growing (growing), implantation (implantation), photolithography (photolithography), dry etching and wet etching, but are not limited thereto.
應當理解,在本揭露的描述中,文中所提到的功能或步驟 可發生不同於各圖式中之順序。舉例來說,連續顯示的兩個圖式實際上可以大致同時執行,或者是有時可以相反順序執行,其取決於所包含的功能或步驟。 It should be understood that in the description of the present disclosure, the functions or steps mentioned in the text May occur in a different order than in each diagram. For example, two diagrams shown in succession may actually be executed at approximately the same time, or sometimes in the reverse order, depending on the functions or steps involved.
圖1是流程示意圖,例示本揭露一實施例之半導體元件1A的製備方法10。圖2到圖20是剖視示意圖,例示本揭露一實施例製備半導體元件1A的部分流程。圖23及圖24是放大剖視示意圖,例示圖22之區域A1與A2的剖面。圖25及圖26是剖視示意圖,例示本揭露一實施例製備半導體元件1A的部分流程。 FIG. 1 is a schematic flowchart illustrating a method 10 for manufacturing a semiconductor device 1A according to an embodiment of the present disclosure. 2 to 20 are schematic cross-sectional views illustrating part of the process of preparing the semiconductor device 1A according to an embodiment of the present disclosure. 23 and 24 are enlarged cross-sectional schematic views, illustrating the cross-sections of areas A1 and A2 in FIG. 22 . 25 and 26 are schematic cross-sectional views illustrating part of the process of preparing the semiconductor device 1A according to an embodiment of the present disclosure.
請參考圖1到圖10,在步驟S11,可提供一第一堆疊結構100,且複數個第一內連接單元510可形成在第一堆疊結構100下方。 Referring to FIGS. 1 to 10 , in step S11 , a first stacked structure 100 may be provided, and a plurality of first interconnect units 510 may be formed below the first stacked structure 100 .
請參考圖2,可提供一第一控制器晶粒110。第一控制器晶粒110可包括一基底111、複數個貫穿基底通孔115、複數個裝置元件(為了清楚所以圖未示)、具有多個導電墊117的複數個導電特徵以及一介電層113。 Referring to FIG. 2, a first controller die 110 may be provided. The first controller die 110 may include a substrate 111 , a plurality of through-substrate vias 115 , a plurality of device components (not shown for clarity), a plurality of conductive features having a plurality of conductive pads 117 , and a dielectric layer. 113.
在一些實施例中,第一控制器晶粒110的基底111可為一塊狀半導體基底。舉例來說,塊狀半導體基底可包含一元素半導體、一化合物半導體或其組合;而元素半導體例如矽或鍺;化合物半導體例如矽鍺、碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦、銻化銦或其他III-V族化合物半導體或是II-VI化合物半導體。 In some embodiments, the substrate 111 of the first controller die 110 may be a block-shaped semiconductor substrate. For example, the bulk semiconductor substrate may include an elemental semiconductor, a compound semiconductor, or a combination thereof; the elemental semiconductor is such as silicon or germanium; the compound semiconductor is such as silicon germanium, silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, Indium arsenide, indium antimonide or other III-V compound semiconductors or II-VI compound semiconductors.
在一些實施例中,第一控制器晶粒110的該等貫穿基底通孔115可形成在基底111中。該等貫穿基底通孔115的各上表面可大致與基底111的上表面呈共面。在一些實施例中,該等貫穿基底通孔115的製作技術可包含一先鑽孔製程(via-first process)。在一些實施例中,該等貫穿基 底通孔115的製作技術可包含一中鑽孔製程(via-middle process)或是一後鑽孔製程(via-last process)。 In some embodiments, the through-substrate vias 115 of the first controller die 110 may be formed in the substrate 111 . Each upper surface of the through-substrate through holes 115 may be substantially coplanar with the upper surface of the substrate 111 . In some embodiments, the fabrication technique of the through-substrate vias 115 may include a via-first process. In some embodiments, the through-base The manufacturing technology of the bottom via 115 may include a via-middle process or a via-last process.
在一些實施例中,第一控制器晶粒110的複數個裝置元件可形成在基底111上。複數個裝置元件可為電晶體,例如互補式金屬氧化物半導體電晶體、金屬氧化物半導以場效電晶體、鰭式場效半導體、類似物或是其組合。 In some embodiments, a plurality of device elements of first controller die 110 may be formed on substrate 111 . The plurality of device elements may be transistors, such as complementary metal oxide semiconductor transistors, metal oxide semiconductor field effect transistors, fin field effect semiconductors, the like, or combinations thereof.
在一些實施例中,介電層113可形成在基底111上。介電層113可為一堆疊層結構。介電層113可包括複數個隔離子層。每一個隔離子層可具有一厚度,介於大約0.5μm到大約3.0μm之間。舉例來說,該等隔離子層可包含氧化矽、硼磷矽酸鹽玻璃、未摻雜矽酸鹽玻璃、氟化矽酸鹽玻璃、低介電常數的介電材料、類似物或其組合。該等隔離子層可包含不同材料,但並不以此為限。 In some embodiments, dielectric layer 113 may be formed on substrate 111 . The dielectric layer 113 may be a stacked layer structure. The dielectric layer 113 may include a plurality of isolation sub-layers. Each spacer sub-layer may have a thickness ranging from about 0.5 μm to about 3.0 μm. For example, the isolation sublayers may include silicon oxide, borophosphosilicate glass, undoped silicate glass, fluorinated silicate glass, low-k dielectric materials, the like, or combinations thereof . The isolation sub-layers may include different materials, but are not limited thereto.
低介電常數的介電材料可具有一介電材料,其小於3.0或甚至小於2.5。在一些實施例中,低介電常數的介電材料可具有一介電常數,其小於2.0。該等隔離子層的製作技術可包含多個沉積製程,例如化學氣相沉積、電漿加強化學氣相沉積或是類似製程。在該等沉積製程之後,可執行多個平坦化製程,以移除多餘材料並提供一大致平坦表面給接下來的處理步驟。 A low dielectric constant dielectric material may have a dielectric material that is less than 3.0 or even less than 2.5. In some embodiments, the low-k dielectric material may have a dielectric constant less than 2.0. The manufacturing technology of the isolation sub-layers may include multiple deposition processes, such as chemical vapor deposition, plasma enhanced chemical vapor deposition or similar processes. Following these deposition processes, multiple planarization processes may be performed to remove excess material and provide a generally flat surface for subsequent processing steps.
在一些實施例中,第一控制器晶粒110的該等導電特徵可形成在介電層113中。該等導電特徵可包括多個導電線(圖未示)、多個導電通孔(圖未示)以及多個導電墊117。該等導電線可相互分隔開並可沿著方向Z而水平設置在介電層113中。在本實施例中,最上面的該等導電線可指定為該等導電墊117。該等導電墊117的各上表面與介電層113的上表 面可大致呈共面。該等導電通孔可連接相鄰的導電特徵。 In some embodiments, the conductive features of first controller die 110 may be formed in dielectric layer 113 . The conductive features may include conductive lines (not shown), conductive vias (not shown), and conductive pads 117 . The conductive lines may be spaced apart from each other and may be horizontally disposed in the dielectric layer 113 along the direction Z. In this embodiment, the uppermost conductive lines may be designated as conductive pads 117 . Each upper surface of the conductive pads 117 and the upper surface of the dielectric layer 113 The surfaces may be approximately coplanar. The conductive vias can connect adjacent conductive features.
在一些實施例中,舉例來說,第一控制器晶粒110的該等導電特徵可包含鎢、鈷、鋯、鉭、鈦、鋁、釕、銅、金屬碳化物(例如碳化鉭、碳化鈦、碳化鈦鎂)、金屬氮化物(例如氮化鈦)、過渡金屬鋁化物或是其組合。在介電層113形成期間,可形成該等導電特徵。 In some embodiments, for example, the conductive features of first controller die 110 may include tungsten, cobalt, zirconium, tantalum, titanium, aluminum, ruthenium, copper, metal carbides (eg, tantalum carbide, titanium carbide , titanium magnesium carbide), metal nitrides (such as titanium nitride), transition metal aluminides, or combinations thereof. These conductive features may be formed during formation of dielectric layer 113 .
在一些實施例中,第一控制器晶粒110的該等裝置元件與該等導電特徵可一起配置成第一控制器晶粒110的多個功能單元。在本揭露的描述中,一功能單元通常表示功能相關的電路,其已經針對多個功能目的而分割成一單獨單元(distinct unit)。在一些實施例中,舉例來說,第一控制器晶粒110的該等功能電路可包括多個高度複雜電路,例如記憶體控制器或是加速器單元。在一些實施例中,第一控制器晶粒110的該等功能單元可包括與一記憶體晶粒相關聯的控制電路以及高速電路。在一些實施例中,第一控制器晶粒110可經配置成一記憶體晶粒的一控制器。 In some embodiments, the device elements of the first controller die 110 and the conductive features may be configured together into functional units of the first controller die 110 . In the description of this disclosure, a functional unit generally refers to a functionally related circuit that has been divided into a distinct unit for multiple functional purposes. In some embodiments, for example, the functional circuits of the first controller die 110 may include multiple highly complex circuits, such as memory controllers or accelerator units. In some embodiments, the functional units of the first controller die 110 may include control circuitry and high-speed circuitry associated with a memory die. In some embodiments, the first controller die 110 may be configured as a controller of a memory die.
應當理解,在本揭露的描述中,術語「前(front)」表面是一個技術術語,其暗示結構的主表面,而在主表面上形成多個裝置元件以及多個導電特徵。同樣,一結構的「後(back)」表面是與主表面相對設置的一面。舉例來說,介電層113的上表面可表示成第一控制器晶粒110的前表面110FS。基底111的下表面可表示成第一控制器晶粒110的後表面110BS。 It should be understood that in the description of the present disclosure, the term "front" surface is a technical term that implies the main surface of a structure on which device elements and conductive features are formed. Likewise, the "back" surface of a structure is the side opposite the main surface. For example, the upper surface of the dielectric layer 113 may be represented as the front surface 110FS of the first controller die 110 . The lower surface of the substrate 111 may be represented as the back surface 110BS of the first controller die 110 .
應當理解,在本揭露的描述中,一元件(或是一特徵)沿方向Z位在最高垂直位面的一表面,表示該元件(或是該特徵)的一上表面。一元件(或是一特徵)沿方向Z位在最低垂直位面的一表面,表示該元件(或是該特徵)的一下表面。 It should be understood that in the description of the present disclosure, a surface of an element (or a feature) located at the highest vertical plane along the direction Z represents an upper surface of the element (or the feature). A surface of an element (or a feature) located at the lowest vertical plane along direction Z represents the lower surface of the element (or the feature).
請參考圖3,可提供一第一儲存晶粒120。第一儲存晶粒120可包括一基底121、複數個貫穿基底通孔125、複數個裝置元件(為了簡潔所以圖未示)、包括多個導電墊127的複數個導電特徵、複數個第一儲存單元129以及一介電層123。基底121、介電層123、第一儲存晶粒120的該等裝置元件以及第一儲存晶粒120的該等導電特徵,可分別且對應包含類似於基底111、介電層113、第一控制器晶粒110的該等裝置元件以及第一控制器晶粒110的該等導電特徵之結構/材料,且在文中不再重複其描述。 Referring to FIG. 3 , a first storage die 120 may be provided. The first storage die 120 may include a substrate 121, a plurality of through-substrate through holes 125, a plurality of device components (not shown in the figure for simplicity), a plurality of conductive features including a plurality of conductive pads 127, a plurality of first storage unit 129 and a dielectric layer 123. The device elements of the substrate 121, the dielectric layer 123, the first storage die 120, and the conductive features of the first storage die 120 may respectively and correspondingly include components similar to the substrate 111, the dielectric layer 113, the first control The structure/materials of the device elements of the device die 110 and the conductive features of the first controller die 110 are described, and their descriptions will not be repeated herein.
在一些實施例中,該等第一儲存單元129可形成在介電層123中。複數個第一儲存單元129可經配置成一浮動陣列。複數個第一儲存單元129可電性耦接到第一儲存晶粒120的該等導電特徵。在一些實施例中,第一儲存晶粒120的該等裝置元件、該等導電特徵可一起經配置成第一儲存晶粒120的該等功能單元。 In some embodiments, the first memory cells 129 may be formed in the dielectric layer 123 . The plurality of first storage cells 129 may be configured into a floating array. The plurality of first memory cells 129 may be electrically coupled to the conductive features of the first memory die 120 . In some embodiments, the device elements and the conductive features of the first storage die 120 may be configured together into the functional units of the first storage die 120 .
在一些實施例中,第一儲存晶粒120的該等功能單元可僅包括核心儲存電路,例如輸入/輸出(I/O)以及時脈電路(clocking circuit)。第一儲存晶粒120的該等功能單元可能不包括任何控制電路或是高速電路。在此情況下,第一儲存晶粒120可與包括控制電路及/或高速電路的第一控制器晶粒配合協作。藉由將控制電路及/或高速電路與第一儲存晶粒分隔開,可降低製造第一儲存晶粒120的製程複雜度。因此,可改善製造第一儲存晶粒120的良率以及可靠度,並可降低製造第一儲存晶粒120的成本。 In some embodiments, the functional units of the first storage die 120 may only include core storage circuits, such as input/output (I/O) and clocking circuits. The functional units of the first storage chip 120 may not include any control circuits or high-speed circuits. In this case, the first storage die 120 may cooperate with the first controller die including control circuits and/or high-speed circuits. By isolating the control circuit and/or the high-speed circuit from the first storage die, the process complexity of manufacturing the first storage die 120 can be reduced. Therefore, the yield and reliability of manufacturing the first storage die 120 can be improved, and the cost of manufacturing the first storage die 120 can be reduced.
在一些實施例中,第一儲存晶粒120的該等功能單元可包括儲存電路、控制電路以及高速電路。在一些實施例中,第一儲存晶粒 120可經配置成一記憶體晶粒。 In some embodiments, the functional units of the first storage die 120 may include storage circuits, control circuits, and high-speed circuits. In some embodiments, the first storage die 120 can be configured as a memory die.
在一些實施例中,介電層123的上表面可當成第一儲存晶粒120的上表面120FS。基底121的下表面可當成第一儲存晶粒120的後表面120BS。 In some embodiments, the upper surface of the dielectric layer 123 may be regarded as the upper surface 120FS of the first storage die 120 . The lower surface of the base 121 can be regarded as the back surface 120BS of the first storage die 120 .
請參考圖4,第一儲存晶粒120可翻轉(flipped)。第一儲存晶粒120的前表面120FS可接合到第一控制器晶粒110的前表面110FS上。意即,第一儲存晶粒120與第一控制器晶粒110以一面對面(face-to-face)配置進行接合。 Referring to FIG. 4, the first storage die 120 can be flipped. The front surface 120FS of the first storage die 120 may be bonded to the front surface 110FS of the first controller die 110 . That is, the first storage die 120 and the first controller die 110 are bonded in a face-to-face configuration.
在一些實施例中,第一儲存晶粒120與第一控制器晶粒110可經由一混合接合製程而進行接合。在一些實施例中,混合接合製程例如熱壓接合、鈍化-罩蓋-層輔助接合(passivation-capping-layer assisted bonding)或是表面活化接合。在一些實施例中,混合製程接合的製程壓力可介於大約100MPa到大約150MPa之間。在一些實施例中,混合製程接合的製程溫度可介於大約室溫(例如25℃)到大約400℃之間。在一些實施例中,例如濕式化學清洗以及氣體/氣相熱處理的表面處理可用於降低混合接合製程的製程溫度,或是縮短混合接合製程的時間消耗。在一些實施例中,舉例來說,混合接合製程可包括介電質對介電質接合、金屬對金屬接合以及金屬對介電質接合。 In some embodiments, the first storage die 120 and the first controller die 110 may be bonded through a hybrid bonding process. In some embodiments, a hybrid bonding process such as thermocompression bonding, passivation-capping-layer assisted bonding, or surface activation bonding is used. In some embodiments, the process pressure for hybrid process bonding may range from about 100 MPa to about 150 MPa. In some embodiments, the process temperature for hybrid process bonding may range from approximately room temperature (eg, 25°C) to approximately 400°C. In some embodiments, surface treatments such as wet chemical cleaning and gas/vapor phase heat treatment can be used to reduce the process temperature of the hybrid bonding process or shorten the time consumption of the hybrid bonding process. In some embodiments, a hybrid bonding process may include dielectric-to-dielectric bonding, metal-to-metal bonding, and metal-to-dielectric bonding, for example.
在一些實施例中,介電質對介電質接合可源自介電層113與介電層123之間的接合。金屬對金屬接合可源自該等導電墊117與該等導電墊127之間的接合。金屬對介電質接合可源自該等導電墊127與介電層113之間的接合,以及源自該等導電墊117與介電層123之間的接合。 In some embodiments, a dielectric-to-dielectric bond may originate from a bond between dielectric layer 113 and dielectric layer 123 . Metal-to-metal bonding may result from the bonding between the conductive pads 117 and the conductive pads 127 . Metal-to-dielectric bonds may result from bonds between the conductive pads 127 and the dielectric layer 113 , as well as from bonds between the conductive pads 117 and the dielectric layer 123 .
在一些實施例中,在接合製程之後,可執行一熱退火製 程,以加強介電質對介電質接合,並產生金屬對金屬接合的熱膨脹,以便進一步改善接合品質。 In some embodiments, after the bonding process, a thermal annealing process may be performed. process to enhance dielectric-to-dielectric bonding and generate thermal expansion of metal-to-metal bonding to further improve bonding quality.
在一些實施例中,第一儲存晶粒120與第一控制器晶粒110的接合製程可以一載體(carrier)輔助,但並不以此為限。 In some embodiments, the bonding process of the first storage die 120 and the first controller die 110 can be assisted by a carrier, but is not limited to this.
請參考圖5,可經由一薄化製程而薄化第一儲存晶粒120的基底121,該薄化製程是使用晶圓研磨(wafer grinding)、機械磨損(mechanical abrasion)、拋光(polishing)或類似製程,或是使用化學移除,例如一濕蝕刻。在一些實施例中,第一儲存晶粒120的該薄化製程可以一載體做輔助,但並不以此為限。在薄化製程之後,基底121的厚度可介於大約5μm到大約100μm之間。 Referring to FIG. 5 , the substrate 121 of the first storage die 120 can be thinned through a thinning process using wafer grinding, mechanical abrasion, polishing or polishing. A similar process may use chemical removal, such as a wet etch. In some embodiments, the thinning process of the first storage die 120 can be assisted by a carrier, but it is not limited to this. After the thinning process, the thickness of the substrate 121 may range from about 5 μm to about 100 μm.
請參考圖5,一第一貫穿晶粒通孔411可沿著第一儲存晶粒120而形成,以電性連接到第一控制器晶粒110。詳而言之,第一貫穿晶粒通孔411可沿著基底121與介電層123而形成、形成在相對應的導電墊117上且電性連接到相對應的導電墊117。 Referring to FIG. 5 , a first through-die via 411 may be formed along the first storage die 120 to electrically connect to the first controller die 110 . In detail, the first through-die via 411 may be formed along the substrate 121 and the dielectric layer 123 , formed on the corresponding conductive pad 117 and electrically connected to the corresponding conductive pad 117 .
請參考圖6,提供一第一儲存晶粒130,其具有類似於第一儲存晶粒120的結構,且在文中不再重複其描述。第一儲存晶粒130的前表面130FS可接合到第一儲存晶粒120的後表面120BS。意即,第一儲存晶粒130與第一儲存晶粒120可以一面對面配置而進行接合。第一儲存晶粒130的多個導電墊137可電性連接到相對應的貫穿基底通孔125。 Referring to FIG. 6 , a first storage die 130 is provided, which has a structure similar to the first storage die 120 , and its description will not be repeated herein. The front surface 130FS of the first storage die 130 may be bonded to the back surface 120BS of the first storage die 120 . That is, the first storage die 130 and the first storage die 120 may be arranged face to face for bonding. The plurality of conductive pads 137 of the first storage die 130 may be electrically connected to the corresponding through-substrate vias 125 .
請參考圖7,可經由一薄化製程而薄化第一儲存晶粒130的基底131,該薄化製程是使用晶圓研磨(wafer grinding)、機械磨損(mechanical abrasion)、拋光(polishing)或類似製程,或是使用化學移除,例如一濕蝕刻。在一些實施例中,第一儲存晶粒130的該薄化製程可 以一載體做輔助,但並不以此為限。在薄化製程之後,基底131的厚度可介於大約5μm到大約100μm之間。 Referring to FIG. 7 , the substrate 131 of the first storage die 130 can be thinned through a thinning process using wafer grinding, mechanical abrasion, polishing or polishing. A similar process may use chemical removal, such as a wet etch. In some embodiments, the thinning process of the first storage die 130 may A carrier is used as an auxiliary, but is not limited to this. After the thinning process, the thickness of the substrate 131 may range from about 5 μm to about 100 μm.
請參考圖7,一第二貫穿晶粒通孔421可沿著第一儲存晶粒120、130而形成,以電性連接到第一控制器晶粒110。詳而言之,第二貫穿晶粒通孔421可沿著基底131、介電層133、基底121、介電層123而形成、形成在相對應的導電墊117上且電性連接到相對應的導電墊117。 Referring to FIG. 7 , a second through-die via 421 may be formed along the first storage dies 120 and 130 to electrically connect to the first controller die 110 . In detail, the second through-die via 421 may be formed along the substrate 131, the dielectric layer 133, the substrate 121, and the dielectric layer 123, be formed on the corresponding conductive pad 117, and be electrically connected to the corresponding conductive pad 117. conductive pad 117.
在一些實施例中,第一貫穿晶粒通孔411的一寬度W1可小於第二貫穿晶粒通孔421的一寬度W2。 In some embodiments, a width W1 of the first through-die via 411 may be smaller than a width W2 of the second through-die via 421 .
請參考圖8及圖9,可分別提供第一儲存晶粒140、150、160、170,而第一儲存晶粒140、150、160、170具有類似於第一儲存晶粒120的結構,且在文中不再重複其描述。第一儲存晶粒140、150、160、170可以接合製程而依序接合到第一儲存晶粒130上,該接合製程類似於在第一儲存晶粒120與第一儲存晶粒130之間的接合製程,且在文中不再重複其描述。 Please refer to FIGS. 8 and 9 , first storage dies 140 , 150 , 160 , and 170 may be provided respectively, and the first storage dies 140 , 150 , 160 , and 170 have a structure similar to the first storage die 120 , and Its description will not be repeated in the text. The first storage dies 140 , 150 , 160 , and 170 may be sequentially bonded to the first storage die 130 through a bonding process similar to that between the first storage die 120 and the first storage die 130 . The bonding process and its description will not be repeated in the text.
在一些實施例中,一第三貫穿晶粒通孔431可沿著第一儲存晶粒120、130、140而形成,以電性連接到第一控制器晶粒110。第三貫穿晶粒通孔431可具有一寬度,其大於第一貫穿晶粒通孔411與第二貫穿晶粒通孔421的寬度。在一些實施例中,該等第一儲存晶粒可經由多個第四貫穿晶粒通孔441而電性連接。舉例來說,第四貫穿晶粒通孔441可沿著第一儲存晶粒160、170而形成,以電性連接第一儲存晶粒160、170。舉另一個例子,第四貫穿晶粒通孔441可沿著第一儲存晶粒140、150而形成,以電性連接第一儲存晶粒140、150。 In some embodiments, a third through-die via 431 may be formed along the first storage dies 120 , 130 , 140 to electrically connect to the first controller die 110 . The third through-die through hole 431 may have a width that is greater than the widths of the first through-die through hole 411 and the second through-die through hole 421 . In some embodiments, the first storage dies may be electrically connected through a plurality of fourth through-die vias 441 . For example, the fourth through-die via 441 may be formed along the first storage dies 160 and 170 to electrically connect the first storage dies 160 and 170 . As another example, the fourth through-die via 441 may be formed along the first storage dies 140 and 150 to electrically connect the first storage dies 140 and 150 .
第一儲存晶粒120、130、140、150、160、170、第一控 制晶粒110、第一貫穿晶粒通孔411、第二貫穿晶粒通孔421、第三貫穿晶粒通孔431以及第四貫穿晶粒通孔441可一起配置成第一堆疊結構100。第一堆疊結構100可經配置成一非揮發性記憶體,例如一NAND記憶體。應當理解,第一儲存晶粒的數量僅用於例示說明,第一儲存晶粒的數量可大於或小於如圖式中所示的數量。 The first storage die 120, 130, 140, 150, 160, 170, the first control The die 110 , the first through-die via 411 , the second through-die via 421 , the third through-die via 431 and the fourth through-die via 441 may be configured together into the first stack structure 100 . The first stack structure 100 may be configured as a non-volatile memory, such as a NAND memory. It should be understood that the number of first storage dies is for illustrative purposes only, and the number of first storage dies may be greater or less than that shown in the figures.
請參考圖10,可經由一薄化製程而薄化第一控制晶粒110的基底111,該薄化製程是使用晶圓研磨(wafer grinding)、機械磨損(mechanical abrasion)、拋光(polishing)或類似製程,或是使用化學移除,例如一濕蝕刻。在薄化製程之後,可暴露該等貫穿基底通孔115。 Referring to FIG. 10 , the substrate 111 of the first control die 110 can be thinned through a thinning process using wafer grinding, mechanical abrasion, polishing or polishing. A similar process may use chemical removal, such as a wet etch. After the thinning process, the through-substrate vias 115 may be exposed.
在一些實施例中,由於第一儲存晶粒120、130、140、150、160、170,所以因為第一儲存晶粒120、130、140、150、160、170可當作暫時載體而無須一載體以執行第一控制器晶粒110的該薄化製程。因此,可降低成本與製程複雜度。在該薄化製程之後,基底111的厚度可藉於大約5μm到100μm之間。 In some embodiments, because the first storage dies 120, 130, 140, 150, 160, 170 can be used as a temporary carrier without a The carrier is used to perform the thinning process of the first controller die 110 . Therefore, the cost and process complexity can be reduced. After the thinning process, the thickness of the substrate 111 may be between approximately 5 μm and 100 μm.
在一些實施例中,第一控制器晶粒110的厚度T1可小於第一儲存晶粒120的厚度T2。在一些實施例中,第一控制器晶粒110的厚度110可大致相同於第一儲存晶粒120的厚度T2。 In some embodiments, the thickness T1 of the first controller die 110 may be smaller than the thickness T2 of the first storage die 120 . In some embodiments, the thickness 110 of the first controller die 110 may be substantially the same as the thickness T2 of the first storage die 120 .
請參考圖10,該等第一內連接單元510可形成在基底111下方,並分別且對應電性連接到該等貫穿基底通孔115。在一些實施例中,該等第一內連接單元510可為微凸塊,並可包括鉛、錫、銦、鉍、銻、銀、金、銅、鎳或其合金。在一些實施例中,該等第一內連接單元510可為錫球,並可藉由一熱壓製程及/或一回焊製程(reflow process)而形成在基底111下方。 Referring to FIG. 10 , the first internal connection units 510 may be formed under the substrate 111 and electrically connected to the through-substrate through holes 115 respectively and correspondingly. In some embodiments, the first interconnect units 510 may be microbumps and may include lead, tin, indium, bismuth, antimony, silver, gold, copper, nickel, or alloys thereof. In some embodiments, the first internal connection units 510 may be solder balls and may be formed under the substrate 111 through a hot pressing process and/or a reflow process.
請參考圖1及圖11到圖19,在步驟S13,可提供一第二堆疊結構200,且複數個第二內連接單元520可形成在第二堆疊結構200下方。 Referring to FIG. 1 and FIG. 11 to FIG. 19 , in step S13 , a second stacked structure 200 may be provided, and a plurality of second internal connection units 520 may be formed below the second stacked structure 200 .
請參考圖11,可提供一第二控制器晶粒210。第二控制器晶粒210可包括一基底211、複數個貫穿基底通孔215、複數個裝置元件(為了簡潔所以圖未示)、包括多個導電墊217的複數個導電特徵以及一介電層213。 Referring to FIG. 11, a second controller die 210 may be provided. The second controller die 210 may include a substrate 211, a plurality of through-substrate vias 215, a plurality of device components (not shown for simplicity), a plurality of conductive features including a plurality of conductive pads 217, and a dielectric layer. 213.
在一些實施例中,第二控制器晶粒210的基底211可為一塊狀半導體基底。舉例來說,塊狀半導體基底可包含一元素半導體、一化合物半導體或其組合;而元素半導體例如矽或鍺;化合物半導體例如矽鍺、碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦、銻化銦或其他III-V族化合物半導體或是II-VI化合物半導體。 In some embodiments, the substrate 211 of the second controller die 210 may be a block-shaped semiconductor substrate. For example, the bulk semiconductor substrate may include an elemental semiconductor, a compound semiconductor, or a combination thereof; the elemental semiconductor is such as silicon or germanium; the compound semiconductor is such as silicon germanium, silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, Indium arsenide, indium antimonide or other III-V compound semiconductors or II-VI compound semiconductors.
在一些實施例中,第二控制器晶粒210的該等貫穿基底通孔215可形成在基底211中。該等貫穿基底通孔215的各上表面可大致與基底211的上表面呈共面。在一些實施例中,該等貫穿基底通孔215的製作技術可包含一先鑽孔製程(via-first process)。在一些實施例中,該等貫穿基底通孔215的製作技術可包含一中鑽孔製程(via-middle process)或是一後鑽孔製程(via-last process)。 In some embodiments, the through-substrate vias 215 of the second controller die 210 may be formed in the substrate 211 . Each upper surface of the through-substrate through holes 215 may be substantially coplanar with the upper surface of the substrate 211 . In some embodiments, the fabrication technique of the through-substrate vias 215 may include a via-first process. In some embodiments, the manufacturing technology of the through-substrate vias 215 may include a via-middle process or a via-last process.
在一些實施例中,第二控制器晶粒210的複數個裝置元件可形成在基底211上。複數個裝置元件可為電晶體,例如互補式金屬氧化物半導體電晶體、金屬氧化物半導以場效電晶體、鰭式場效半導體、類似物或是其組合。 In some embodiments, a plurality of device elements of the second controller die 210 may be formed on the substrate 211 . The plurality of device elements may be transistors, such as complementary metal oxide semiconductor transistors, metal oxide semiconductor field effect transistors, fin field effect semiconductors, the like, or combinations thereof.
在一些實施例中,介電層213可形成在基底211上。介電層213可為一堆疊層結構。介電層213可包括複數個隔離子層。每一個隔離 子層可具有一厚度,介於大約0.5μm到大約3.0μm之間。舉例來說,該等隔離子層可包含氧化矽、硼磷矽酸鹽玻璃、未摻雜矽酸鹽玻璃、氟化矽酸鹽玻璃、低介電常數的介電材料、類似物或其組合。該等隔離子層可包含不同材料,但並不以此為限。 In some embodiments, dielectric layer 213 may be formed on substrate 211 . The dielectric layer 213 may be a stacked layer structure. The dielectric layer 213 may include a plurality of isolation sub-layers. every isolation The sub-layer may have a thickness between about 0.5 μm and about 3.0 μm. For example, the isolation sublayers may include silicon oxide, borophosphosilicate glass, undoped silicate glass, fluorinated silicate glass, low-k dielectric materials, the like, or combinations thereof . The isolation sub-layers may include different materials, but are not limited thereto.
該等隔離子層的製作技術可包含多個沉積製程,例如化學氣相沉積、電漿加強化學氣相沉積或是類似製程。在該等沉積製程之後,可執行多個平坦化製程,以移除多餘材料並提供一大致平坦表面給接下來的處理步驟。 The manufacturing technology of the isolation sub-layers may include multiple deposition processes, such as chemical vapor deposition, plasma enhanced chemical vapor deposition or similar processes. Following these deposition processes, multiple planarization processes may be performed to remove excess material and provide a generally flat surface for subsequent processing steps.
在一些實施例中,第二控制器晶粒210的該等導電特徵可形成在介電層213中。該等導電特徵可包括多個導電線(圖未示)、多個導電通孔(圖未示)以及多個導電墊217。該等導電線可相互分隔開並可沿著方向Z而水平設置在介電層213中。在本實施例中,最上面的該等導電線可指定為該等導電墊217。該等導電墊217的各上表面與介電層213的上表面可大致呈共面。該等導電通孔可沿著Z方向連接相鄰的導電特徵、連接相鄰的裝置元件與導電線,以及連接相鄰的導電墊117與導電線。 In some embodiments, the conductive features of second controller die 210 may be formed in dielectric layer 213 . The conductive features may include conductive lines (not shown), conductive vias (not shown), and conductive pads 217 . The conductive lines may be spaced apart from each other and may be horizontally disposed in the dielectric layer 213 along the direction Z. In this embodiment, the uppermost conductive lines may be designated as conductive pads 217 . The upper surfaces of the conductive pads 217 and the upper surface of the dielectric layer 213 may be substantially coplanar. The conductive vias may connect adjacent conductive features, connect adjacent device components to conductive lines, and connect adjacent conductive pads 117 to conductive lines along the Z direction.
在一些實施例中,舉例來說,第二控制器晶粒210的該等導電特徵可包含鎢、鈷、鋯、鉭、鈦、鋁、釕、銅、金屬碳化物(例如碳化鉭、碳化鈦、碳化鈦鎂)、金屬氮化物(例如氮化鈦)、過渡金屬鋁化物或是其組合。在介電層213形成期間,可形成該等導電特徵。 In some embodiments, for example, the conductive features of the second controller die 210 may include tungsten, cobalt, zirconium, tantalum, titanium, aluminum, ruthenium, copper, metal carbides (eg, tantalum carbide, titanium carbide , titanium magnesium carbide), metal nitrides (such as titanium nitride), transition metal aluminides, or combinations thereof. These conductive features may be formed during formation of dielectric layer 213 .
在一些實施例中,第二控制器晶粒210的該等裝置元件與該等導電特徵可一起配置成第二控制器晶粒210的多個功能單元。在一些實施例中,舉例來說,第二控制器晶粒210的該等功能電路可包括多個高度複雜電路,例如記憶體控制器或是加速器單元。在一些實施例中,第二 控制器晶粒210的該等功能單元可包括與一記憶體相關聯的控制電路以及高速電路。在一些實施例中,第二控制器晶粒210可經配置成一記憶體晶粒的一控制器晶粒。 In some embodiments, the device elements of the second controller die 210 and the conductive features may be configured together into functional units of the second controller die 210 . In some embodiments, for example, the functional circuits of the second controller die 210 may include multiple highly complex circuits, such as memory controllers or accelerator units. In some embodiments, the second The functional units of the controller die 210 may include control circuitry and high-speed circuitry associated with a memory. In some embodiments, the second controller die 210 may be configured as a controller die of a memory die.
在一些實施例中,介電層213的上表面可表示成第二控制器晶粒210的前表面210FS。基底211的下表面可表示成第二控制器晶粒210的後表面210BS。 In some embodiments, the upper surface of dielectric layer 213 may be represented as front surface 210FS of second controller die 210 . The lower surface of the substrate 211 may be represented as the back surface 210BS of the second controller die 210 .
請參考圖12,可提供一第二儲存晶粒220。第二儲存晶粒220可包括一基底221、複數個貫穿基底通孔225、複數個裝置元件(為了簡潔所以圖未示)、包括多個導電墊227的複數個導電特徵、複數個第二儲存單元229以及一介電層223。基底221、介電層223、第二儲存晶粒220的該等裝置元件以及第二儲存晶粒220的該等導電特徵,可分別且對應包含類似於基底211、介電層213、第二控制器晶粒210的該等裝置元件以及第二控制器晶粒210的該等導電特徵之結構/材料,且在文中不再重複其描述。 Referring to Figure 12, a second storage die 220 may be provided. The second storage die 220 may include a substrate 221, a plurality of through-substrate through holes 225, a plurality of device components (not shown for simplicity), a plurality of conductive features including a plurality of conductive pads 227, and a plurality of second storage devices. Cell 229 and a dielectric layer 223. The device elements of the substrate 221, the dielectric layer 223, the second storage die 220, and the conductive features of the second storage die 220 may respectively and correspondingly include components similar to the substrate 211, the dielectric layer 213, the second control The structure/materials of the device elements of the device die 210 and the conductive features of the second controller die 210 are described, and their descriptions will not be repeated herein.
在一些實施例中,該等第二儲存單元229可形成在介電層223中。每一個第二儲存單元229可包括一絕緣體-導體-絕緣體結構。該等第二儲存單元229可分別且對應電性耦接到第二儲存晶粒220的該等導電特徵。在一些實施例中,第二儲存晶粒220的該等裝置元件、該等導電特徵可一起配置成第二儲存晶粒220的該等功能單元。 In some embodiments, the second storage cells 229 may be formed in the dielectric layer 223 . Each second storage unit 229 may include an insulator-conductor-insulator structure. The second storage units 229 may be electrically coupled to the conductive features of the second storage die 220 respectively and correspondingly. In some embodiments, the device elements and the conductive features of the second storage die 220 may be configured together into the functional units of the second storage die 220 .
在一些實施例中,第二儲存晶粒220的該等功能單元可僅包括核心儲存電路,例如輸入/輸出(I/O)以及時脈電路(clocking circuit)。第二儲存晶粒220的該等功能單元可能不包括任何控制電路或是高速電路。在此情況下,第一儲存晶粒120可與包括控制電路及/或高速電路的第 二控制器晶粒210配合協作。藉由將控制電路及/或高速電路與第二儲存晶粒220分隔開,可降低製造第二儲存晶粒220的製程複雜度。因此,可改善製造第二儲存晶粒220的良率以及可靠度,並可降低製造第二儲存晶粒220的成本。 In some embodiments, the functional units of the second storage die 220 may only include core storage circuits, such as input/output (I/O) and clocking circuits. The functional units of the second storage chip 220 may not include any control circuits or high-speed circuits. In this case, the first storage die 120 may be connected to a third memory chip including a control circuit and/or a high-speed circuit. The two controller dies 210 cooperate. By isolating the control circuit and/or the high-speed circuit from the second storage die 220, the process complexity of manufacturing the second storage die 220 can be reduced. Therefore, the yield and reliability of manufacturing the second storage die 220 can be improved, and the cost of manufacturing the second storage die 220 can be reduced.
在一些實施例中,第二儲存晶粒220的該等功能單元可包括儲存電路、控制電路以及高速電路。在一些實施例中,第二儲存晶粒220可經配置成一記憶體晶粒。 In some embodiments, the functional units of the second storage die 220 may include storage circuits, control circuits, and high-speed circuits. In some embodiments, the second storage die 220 may be configured as a memory die.
在一些實施例中,介電層223的上表面可當成第二儲存晶粒220的上表面220FS。基底221的下表面可當成第二儲存晶粒220的後表面220BS。 In some embodiments, the upper surface of the dielectric layer 223 may be regarded as the upper surface 220FS of the second storage die 220 . The lower surface of the base 221 can be regarded as the back surface 220BS of the second storage die 220 .
請參考圖13,第二儲存晶粒220可翻轉(flipped)。第二儲存晶粒220的前表面220FS可接合到第二控制器晶粒210的前表面210FS上。意即,第二儲存晶粒220與第二控制器晶粒210以一面對面(face-to-face)配置進行接合。 Referring to FIG. 13, the second storage die 220 can be flipped. The front surface 220FS of the second storage die 220 may be bonded to the front surface 210FS of the second controller die 210 . That is, the second storage die 220 and the second controller die 210 are bonded in a face-to-face configuration.
在一些實施例中,第二儲存晶粒220與第二控制器晶粒210可經由一混合接合製程而進行接合。在一些實施例中,混合接合製程例如熱壓接合、鈍化-罩蓋-層輔助接合(passivation-capping-layer assisted bonding)或是表面活化接合。在一些實施例中,混合製程接合的製程壓力可介於大約100MPa到大約150MPa之間。在一些實施例中,混合製程接合的製程溫度可介於大約室溫(例如25℃)到大約400℃之間。在一些實施例中,例如濕式化學清洗以及氣體/氣相熱處理的表面處理可用於降低混合接合製程的製程溫度,或是縮短混合接合製程的時間消耗。在一些實施例中,舉例來說,混合接合製程可包括介電質對介電質接合、金屬對金屬接 合以及金屬對介電質接合。 In some embodiments, the second storage die 220 and the second controller die 210 may be bonded through a hybrid bonding process. In some embodiments, a hybrid bonding process such as thermocompression bonding, passivation-capping-layer assisted bonding, or surface activation bonding is used. In some embodiments, the process pressure for hybrid process bonding may range from about 100 MPa to about 150 MPa. In some embodiments, the process temperature for hybrid process bonding may range from approximately room temperature (eg, 25°C) to approximately 400°C. In some embodiments, surface treatments such as wet chemical cleaning and gas/vapor phase heat treatment can be used to reduce the process temperature of the hybrid bonding process or shorten the time consumption of the hybrid bonding process. In some embodiments, hybrid bonding processes may include dielectric-to-dielectric bonding, metal-to-metal bonding, for example. Bonding and metal-to-dielectric joining.
在一些實施例中,介電質對介電質接合可源自介電層213與介電層223之間的接合。金屬對金屬接合可源自該等導電墊217與該等導電墊227之間的接合。金屬對介電質接合可源自該等導電墊227與介電層213之間的接合,以及源自該等導電墊217與介電層223之間的接合。 In some embodiments, a dielectric-to-dielectric bond may originate from a bond between dielectric layer 213 and dielectric layer 223 . Metal-to-metal bonding may result from the bonding between the conductive pads 217 and 227 . Metal-to-dielectric bonds may result from bonds between the conductive pads 227 and the dielectric layer 213 , as well as from bonds between the conductive pads 217 and the dielectric layer 223 .
在一些實施例中,在接合製程之後,可執行一熱退火製程,以加強介電質對介電質接合,並產生金屬對金屬接合的熱膨脹,以便進一步改善接合品質。 In some embodiments, after the bonding process, a thermal annealing process may be performed to strengthen the dielectric-to-dielectric bond and generate thermal expansion of the metal-to-metal bond to further improve bonding quality.
在一些實施例中,第二儲存晶粒220與第二控制器晶粒210的接合製程可以一載體(carrier)輔助,但並不以此為限。 In some embodiments, the bonding process of the second storage die 220 and the second controller die 210 can be assisted by a carrier, but is not limited thereto.
請參考圖14,可經由一薄化製程而薄化第二儲存晶粒220的基底221,該薄化製程是使用晶圓研磨(wafer grinding)、機械磨損(mechanical abrasion)、拋光(polishing)或類似製程,或是使用化學移除,例如一濕蝕刻。在一些實施例中,第二儲存晶粒220的該薄化製程可以一載體做輔助,但並不以此為限。在薄化製程之後,基底221的厚度可介於大約5μm到大約100μm之間。 Referring to FIG. 14 , the substrate 221 of the second storage die 220 can be thinned through a thinning process using wafer grinding, mechanical abrasion, polishing or polishing. A similar process may use chemical removal, such as a wet etch. In some embodiments, the thinning process of the second storage die 220 can be assisted by a carrier, but it is not limited to this. After the thinning process, the thickness of the substrate 221 may range from about 5 μm to about 100 μm.
請參考圖14,一第一貫穿晶粒通孔413可沿著第二儲存晶粒220而形成,以電性連接到第二控制器晶粒210。詳而言之,第一貫穿晶粒通孔413可沿著基底221與介電層223而形成、形成在相對應的導電墊217上且電性連接到相對應的導電墊217。 Referring to FIG. 14 , a first through-die via 413 may be formed along the second storage die 220 to electrically connect to the second controller die 210 . In detail, the first through-die via 413 may be formed along the substrate 221 and the dielectric layer 223 , formed on the corresponding conductive pad 217 and electrically connected to the corresponding conductive pad 217 .
請參考圖15,提供一第二儲存晶粒230,其具有類似於第二儲存晶粒220的結構,且在文中不再重複其描述。第二儲存晶粒230的前表面230FS可接合到第二儲存晶粒220的後表面220BS。意即,第二儲 存晶粒230與第二儲存晶粒220可以一面對面配置進行接合。第二儲存晶粒230的多個導電墊237可電性連接到相對應的該等貫穿基底通孔225。 Referring to FIG. 15 , a second storage die 230 is provided, which has a structure similar to the second storage die 220 , and its description will not be repeated herein. The front surface 230FS of the second storage die 230 may be bonded to the back surface 220BS of the second storage die 220 . That is to say, the second storage The storage die 230 and the second storage die 220 may be bonded in a face-to-face configuration. The plurality of conductive pads 237 of the second storage die 230 may be electrically connected to the corresponding through-substrate vias 225 .
請參考圖16,可經由一薄化製程而薄化第二儲存晶粒230的基底231,該薄化製程是使用晶圓研磨(wafer grinding)、機械磨損(mechanical abrasion)、拋光(polishing)或類似製程,或是使用化學移除,例如一濕蝕刻。在一些實施例中第二儲存晶粒230的該薄化製程可以一載體做輔助,但並不以此為限。在薄化製程之後,基底231的厚度可介於大約5μm到大約100μm之間。 Referring to FIG. 16 , the substrate 231 of the second storage die 230 can be thinned through a thinning process using wafer grinding, mechanical abrasion, polishing or polishing. A similar process may use chemical removal, such as a wet etch. In some embodiments, the thinning process of the second storage die 230 can be assisted by a carrier, but it is not limited to this. After the thinning process, the thickness of the substrate 231 may range from about 5 μm to about 100 μm.
請參考圖16,一第二貫穿晶粒通孔423可沿著第二儲存晶粒220、230而形成,以電性連接到第二控制器晶粒210。詳而言之,第二貫穿晶粒通孔423可沿著基底231、介電層233、基底221、介電層223而形成、形成在相對應的導電墊217上且電性連接到相對應的導電墊217。 Referring to FIG. 16 , a second through-die via 423 may be formed along the second storage dies 220 and 230 to electrically connect to the second controller die 210 . In detail, the second through-die via 423 may be formed along the substrate 231, the dielectric layer 233, the substrate 221, and the dielectric layer 223, be formed on the corresponding conductive pad 217, and be electrically connected to the corresponding conductive pad 217. conductive pad 217.
在一些實施例中,第一貫穿基底通孔413的寬度W3可小於第二貫穿基底通孔423的寬度W4。 In some embodiments, the width W3 of the first through-substrate via hole 413 may be smaller than the width W4 of the second through-substrate via hole 423 .
請參考圖17及圖18,可分別提供第二儲存晶粒240、250,其具有類似於第二儲存晶粒220的結構,且在文中不再重複其描述。第二儲存晶粒240、250可依序接合到第二儲存晶粒230上,其以類似於第二儲存晶粒220與第二儲存晶粒230之間的接合製程之程序進行接合,且在文中不再重複其描述。 Referring to FIG. 17 and FIG. 18 , second storage dies 240 and 250 may be provided respectively, which have a structure similar to the second storage die 220 , and their description will not be repeated herein. The second storage dies 240 and 250 may be sequentially bonded to the second storage die 230 in a process similar to the bonding process between the second storage die 220 and the second storage die 230, and in Its description will not be repeated in the text.
在一些實施例中,一第三貫穿晶粒通孔433沿著第二儲存晶粒220、230、240而形成,以電性連接到第二控制器晶粒210。第三貫穿晶粒通孔433可具有一寬度,其大於第一貫穿晶粒通孔413與第二貫穿晶粒通孔423的寬度。在一些實施例中,該等第二儲存晶粒可經由多個第 四貫穿晶粒通孔443而電性連接。舉例來說,第四貫穿晶粒通孔443可沿著第二儲存晶粒240、250而形成,以電性連接第二儲存晶粒240、250。舉另一個例子,第四貫穿晶粒通孔443可沿著第二儲存晶粒230、240而形成,以電性連接第二儲存晶粒230、240。 In some embodiments, a third through-die via 433 is formed along the second memory die 220 , 230 , 240 to electrically connect to the second controller die 210 . The third through-die through hole 433 may have a width that is greater than the widths of the first through-die through hole 413 and the second through-die through hole 423 . In some embodiments, the second storage dies may be configured via a plurality of third The four through-die through holes 443 are electrically connected. For example, the fourth through-die via 443 may be formed along the second storage dies 240 and 250 to electrically connect the second storage dies 240 and 250 . As another example, the fourth through-die via 443 may be formed along the second storage dies 230 and 240 to electrically connect the second storage dies 230 and 240 .
第二儲存晶粒220、230、240、250、第二控制晶粒210、第一貫穿晶粒通孔413、第二貫穿晶粒通孔423、第三貫穿晶粒通孔433以及第四貫穿晶粒通孔443可一起配置成第二堆疊結構200。第二堆疊結構200可經配置成一揮發性記憶體,例如一動態隨機存取記憶體。應當理解,第二儲存晶粒的數量僅用於例示說明,第二儲存晶粒的數量可大於或是小於圖中所示的數量。 The second storage die 220, 230, 240, 250, the second control die 210, the first through-die through hole 413, the second through-die through hole 423, the third through-die through hole 433, and the fourth through-die through hole 413. Die vias 443 may be configured together into the second stacked structure 200 . The second stack structure 200 may be configured as a volatile memory, such as a dynamic random access memory. It should be understood that the number of second storage dies is only for illustration, and the number of second storage dies may be greater or smaller than the number shown in the figure.
請參考圖18,可經由一薄化製程而薄化第二控制晶粒210的基底211,該薄化製程是使用晶圓研磨(wafer grinding)、機械磨損(mechanical abrasion)、拋光(polishing)或類似製程,或是使用化學移除,例如一濕蝕刻。在薄化製程之後,可暴露該等貫穿基底通孔225。 Referring to FIG. 18 , the substrate 211 of the second control die 210 can be thinned through a thinning process using wafer grinding, mechanical abrasion, polishing or polishing. A similar process may use chemical removal, such as a wet etch. After the thinning process, the through-substrate vias 225 may be exposed.
在一些實施例中,由於第二儲存晶粒220、230、240、250,所以因為第二儲存晶粒220、230、240、250可當作暫時載體而無須一載體以執行第二控制器晶粒210的該薄化製程。因此,可降低成本與製程複雜度。在該薄化製程之後,基底211的厚度可藉於大約5μm到100μm之間。 In some embodiments, because the second storage dies 220, 230, 240, 250 can be used as a temporary carrier without a carrier to execute the second controller chip. This thinning process of grain 210 is carried out. Therefore, the cost and process complexity can be reduced. After the thinning process, the thickness of the substrate 211 may be between approximately 5 μm and 100 μm.
在一些實施例中,第二控制器晶粒210的厚度T3可小於第二儲存晶粒220的厚度T4。在一些實施例中,第二控制器晶粒210的厚度T3可大致相同於第二儲存晶粒220的厚度T4。 In some embodiments, the thickness T3 of the second controller die 210 may be smaller than the thickness T4 of the second storage die 220 . In some embodiments, the thickness T3 of the second controller die 210 may be substantially the same as the thickness T4 of the second storage die 220 .
請參考圖19,該等第二內連接單元520可形成在基底211下 方,並分別且對應電性連接到該等貫穿基底通孔215。在一些實施例中,該等第二內連接單元520可為微凸塊,並可包括鉛、錫、銦、鉍、銻、銀、金、銅、鎳或其合金。在一些實施例中,該等第二內連接單元520可為錫球,並可藉由一熱壓製程及/或一回焊製程(reflow process)而形成在基底211下方。 Referring to FIG. 19 , the second internal connection units 520 may be formed under the substrate 211 square, and are electrically connected to the through-substrate vias 215 respectively and correspondingly. In some embodiments, the second interconnect units 520 may be microbumps and may include lead, tin, indium, bismuth, antimony, silver, gold, copper, nickel, or alloys thereof. In some embodiments, the second internal connection units 520 may be solder balls and may be formed under the substrate 211 through a hot pressing process and/or a reflow process.
請參考圖1及圖20到圖25,在步驟S15,可提供一下晶粒310,第一堆疊結構100可接合到下晶粒310上,且第二堆疊結構200可接合到下晶粒310上。 Please refer to FIG. 1 and FIG. 20 to FIG. 25. In step S15, a lower die 310 may be provided, the first stacked structure 100 may be bonded to the lower die 310, and the second stacked structure 200 may be bonded to the lower die 310. .
請參考圖20,下晶粒310可包括一基底311、複數個貫穿基底通孔315、複數個裝置元件(為了簡潔所以圖未示)、包括多個第一連接墊317與多個第二連接墊319的複數個導電特徵以及一介電層313。 Referring to Figure 20, the lower die 310 may include a substrate 311, a plurality of through-substrate through holes 315, a plurality of device components (not shown for simplicity), a plurality of first connection pads 317 and a plurality of second connections. A plurality of conductive features on pad 319 and a dielectric layer 313 .
在一些實施例中,下晶粒310的基底311可為一塊狀半導體基底。舉例來說,塊狀半導體基底可包含一元素半導體、一化合物半導體或其組合;而元素半導體例如矽或鍺;化合物半導體例如矽鍺、碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦、銻化銦或其他III-V族化合物半導體或是II-VI化合物半導體。 In some embodiments, the substrate 311 of the lower die 310 may be a block-shaped semiconductor substrate. For example, the bulk semiconductor substrate may include an elemental semiconductor, a compound semiconductor, or a combination thereof; the elemental semiconductor is such as silicon or germanium; the compound semiconductor is such as silicon germanium, silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, Indium arsenide, indium antimonide or other III-V compound semiconductors or II-VI compound semiconductors.
在一些實施例中,下晶粒310的該等貫穿基底通孔315可形成在基底311中。該等貫穿基底通孔315的各上表面可大致與基底311的上表面呈共面。在一些實施例中,該等貫穿基底通孔315的製作技術可包含一先鑽孔製程(via-first process)。在一些實施例中,該等貫穿基底通孔315的製作技術可包含一中鑽孔製程(via-middle process)或是一後鑽孔製程(via-last process)。 In some embodiments, the through-substrate vias 315 of the lower die 310 may be formed in the substrate 311 . Each upper surface of the through-substrate through holes 315 may be substantially coplanar with the upper surface of the substrate 311 . In some embodiments, the fabrication technique of the through-substrate vias 315 may include a via-first process. In some embodiments, the manufacturing technology of the through-substrate vias 315 may include a via-middle process or a via-last process.
在一些實施例中,下晶粒310的複數個裝置元件可形成在 基底311上。複數個裝置元件可為電晶體,例如互補式金屬氧化物半導體電晶體、金屬氧化物半導以場效電晶體、鰭式場效半導體、類似物或是其組合。 In some embodiments, device elements of lower die 310 may be formed on on base 311. The plurality of device elements may be transistors, such as complementary metal oxide semiconductor transistors, metal oxide semiconductor field effect transistors, fin field effect semiconductors, the like, or combinations thereof.
在一些實施例中,介電層313可形成在基底311上。介電層313可為一堆疊層結構。介電層313可包括複數個隔離子層。每一個隔離子層可具有一厚度,介於大約0.5μm到大約3.0μm之間。舉例來說,該等隔離子層可包含氧化矽、硼磷矽酸鹽玻璃、未摻雜矽酸鹽玻璃、氟化矽酸鹽玻璃、低介電常數的介電材料、類似物或其組合。該等隔離子層可包含不同材料,但並不以此為限。 In some embodiments, dielectric layer 313 may be formed on substrate 311 . The dielectric layer 313 may be a stacked layer structure. Dielectric layer 313 may include a plurality of isolation sub-layers. Each spacer sub-layer may have a thickness ranging from about 0.5 μm to about 3.0 μm. For example, the isolation sublayers may include silicon oxide, borophosphosilicate glass, undoped silicate glass, fluorinated silicate glass, low-k dielectric materials, the like, or combinations thereof . The isolation sub-layers may include different materials, but are not limited thereto.
該等隔離子層的製作技術可包含多個沉積製程,例如化學氣相沉積、電漿加強化學氣相沉積或是類似製程。在該等沉積製程之後,可執行多個平坦化製程,以移除多餘材料並提供一大致平坦表面給接下來的處理步驟。 The manufacturing technology of the isolation sub-layers may include multiple deposition processes, such as chemical vapor deposition, plasma enhanced chemical vapor deposition or similar processes. Following these deposition processes, multiple planarization processes may be performed to remove excess material and provide a generally flat surface for subsequent processing steps.
在一些實施例中,下晶粒310的該等導電特徵可形成在介電層313中。該等導電特徵可包括多個導電線(圖未示)、多個導電通孔(圖未示)以及多個第一連接墊317與多個第二連接墊319。該等導電線可相互分隔開並可沿著方向Z而水平設置在介電層313中。在本實施例中,最上面的該等導電線可指定為該等第一連接墊317與該等第二連接墊319。該等第一連接墊317的各上表面、該等第二連接墊319的各上表面與介電層313的上表面可大致呈共面。該等導電通孔可沿著方向Z連接相鄰的導電線、連接相鄰的裝置元件與導電線、連接相鄰的第一連接墊317與導電線,以及連接相鄰的第二連接墊319與導電線。 In some embodiments, the conductive features of lower die 310 may be formed in dielectric layer 313 . The conductive features may include a plurality of conductive lines (not shown), a plurality of conductive vias (not shown), and a plurality of first connection pads 317 and a plurality of second connection pads 319 . The conductive lines may be spaced apart from each other and may be horizontally disposed in the dielectric layer 313 along the direction Z. In this embodiment, the uppermost conductive lines may be designated as the first connection pads 317 and the second connection pads 319 . The upper surfaces of the first connection pads 317 , the upper surfaces of the second connection pads 319 and the upper surface of the dielectric layer 313 may be substantially coplanar. The conductive vias can connect adjacent conductive lines along direction Z, connect adjacent device components and conductive lines, connect adjacent first connection pads 317 and conductive lines, and connect adjacent second connection pads 319 with conductive thread.
在一些實施例中,在一給定的區域內,該等第一連接墊 317的數量可小於該等第二連接墊319的數量。換言之,該等第一連接墊317的焊墊密度可小於該等第二連接墊319的焊墊密度。 In some embodiments, within a given area, the first connection pads The number 317 may be smaller than the number of the second connection pads 319 . In other words, the pad density of the first connection pads 317 may be smaller than the pad density of the second connection pads 319 .
在一些實施例中,舉例來說,下晶粒310的該等導電特徵可包含鎢、鈷、鋯、鉭、鈦、鋁、釕、銅、金屬碳化物(例如碳化鉭、碳化鈦、碳化鈦鎂)、金屬氮化物(例如氮化鈦)、過渡金屬鋁化物或是其組合。在介電層313形成期間,可形成該等導電特徵。 In some embodiments, for example, the conductive features of lower die 310 may include tungsten, cobalt, zirconium, tantalum, titanium, aluminum, ruthenium, copper, metal carbides (eg, tantalum carbide, titanium carbide, titanium carbide Magnesium), metal nitrides (such as titanium nitride), transition metal aluminides, or combinations thereof. These conductive features may be formed during formation of dielectric layer 313 .
在一些實施例中,下晶粒310的該等裝置元件與該等導電特徵可一起配置成第一控制器晶粒110的多個功能單元。在一些實施例中,舉例來說,下晶粒310的該等功能電路可包括多個高度複雜電路,例如處理器核心、記憶體控制器或是加速器單元。在一些實施例中,下晶粒310的該等功能單元可包括控制電路以及高速電路。在一些實施例中,下晶粒310可經配置成一邏輯晶粒。 In some embodiments, the device elements of lower die 310 and the conductive features may be configured together into functional units of first controller die 110 . In some embodiments, for example, the functional circuits of lower die 310 may include multiple highly complex circuits, such as processor cores, memory controllers, or accelerator units. In some embodiments, the functional units of lower die 310 may include control circuits and high-speed circuits. In some embodiments, lower die 310 may be configured as a logic die.
請參考圖21,第一堆疊結構100可經由該等第一內連接單元512而形成在下晶粒310上。該等第一內連接單元510可形成在該等第一連接墊317上且電性連接到該等第一連接墊317。在一些實施例中,第一堆疊結構100與下晶粒310之間的接合可使用一熱壓製程及/或一回焊製程。 Referring to FIG. 21 , the first stacked structure 100 may be formed on the lower die 310 via the first interconnect units 512 . The first internal connection units 510 may be formed on the first connection pads 317 and be electrically connected to the first connection pads 317 . In some embodiments, the bonding between the first stacked structure 100 and the lower die 310 may use a hot pressing process and/or a reflow process.
請參考圖21,第二堆疊結構200可由經該等第二內連接單元520而形成在下晶粒310上。該等第二內連接單元520可形成在該等第二連接墊319上且電性連接到該等第二連接墊319。在一些實施例中,第二堆疊結構200與下晶粒310之間的接合可使用一熱壓製程及/或一回焊製程。 Referring to FIG. 21 , the second stacked structure 200 may be formed on the lower die 310 through the second interconnect units 520 . The second internal connection units 520 may be formed on the second connection pads 319 and be electrically connected to the second connection pads 319 . In some embodiments, the bonding between the second stacked structure 200 and the lower die 310 may use a hot pressing process and/or a reflow process.
在一些實施例中,該等第二內連接單元520的數量可大於 該等第一內連接單元510的數量。在一些實施例中,第一控制器晶粒110的厚度T1與第二控制器晶粒210的厚度T3可大致上相同。在一些實施例中,第一堆疊結構100的厚度T5與第二堆疊結構200的厚度T6可大致上相同。在一些實施例中,第一儲存晶粒120的厚度T3可小於第二儲存晶粒220的厚度T4。在一些實施例中,第一儲存晶粒120、130、140、150、160、170的數量可大於第二儲存晶粒220、230、240、250的數量。 In some embodiments, the number of the second internal connection units 520 may be greater than The number of the first internal connection units 510 . In some embodiments, the thickness T1 of the first controller die 110 and the thickness T3 of the second controller die 210 may be substantially the same. In some embodiments, the thickness T5 of the first stacked structure 100 and the thickness T6 of the second stacked structure 200 may be substantially the same. In some embodiments, the thickness T3 of the first storage die 120 may be smaller than the thickness T4 of the second storage die 220 . In some embodiments, the number of first storage dies 120, 130, 140, 150, 160, 170 may be greater than the number of second storage dies 220, 230, 240, 250.
請參考圖22到圖24,多個底部填充層601可填滿在第一堆疊結構100與下晶粒310之間,以及在第二堆疊結構200與下晶粒310之間。該等底部填充層601可圍繞該等第一內連接單元510與該等第二內連接單元520。在一些實施例中,該等底部填充層601亦可密封第一堆疊結構100與第二堆疊結構200之各側面(例如側邊表面)的一部分。 Referring to FIGS. 22 to 24 , a plurality of underfill layers 601 may be filled between the first stacked structure 100 and the lower die 310 , and between the second stacked structure 200 and the lower die 310 . The underfill layers 601 may surround the first interconnect units 510 and the second interconnect units 520 . In some embodiments, the underfill layers 601 may also seal a portion of each side (eg, side surface) of the first stacked structure 100 and the second stacked structure 200 .
在一些實施例中,該等底部填充層601的製作技術可包含固化一底部填充材料,而該底部填充材料是由一交聯有機樹脂以及低的熱膨脹係數(CTE)非有機粒子(例如75重量百分比)所製。在一些實施例中,固化之前的該底部填充材料可與例如環氧樹脂的一液態樹脂、例如酸酐(anhydride)或胺(amines)的一硬化劑、用於便堅韌的一彈性體、用於促進交聯(cross-linking)的一催化劑以及用於流動改良與黏著的其他添加劑一起配製。 In some embodiments, the fabrication technique of the underfill layers 601 may include curing an underfill material composed of a cross-linked organic resin and low coefficient of thermal expansion (CTE) non-organic particles (eg, 75 wt. percentage). In some embodiments, the underfill material prior to curing may be combined with a liquid resin such as epoxy, a hardener such as anhydrides or amines, an elastomer for toughness, or an elastomer for toughness. Formulated with a catalyst to promote cross-linking and other additives for flow improvement and adhesion.
該等底部填充層601可緊密地黏著到第一堆疊結構100、第二堆疊結構200以及下晶粒310,以便該等底部填充層601可在第一堆疊結構100與第二堆疊結構200上重新分配來自CTE之不匹配與機械衝擊的應力(stresses)及應變(strains)。因此,可以防止或顯著減少該等第一內連接單元510與該等第二內連連單元520中的裂紋萌生與生長。此外,該等底 部填充層601可對該等第一內連接單元510與該等第二內連接單元520提供保護,以改善下晶粒310與第一堆疊結構100及第二堆疊結構200之配置的的機械完整性(mechanical integrity)。再者,該等底部填充層601可提供部分保護以防止水分進入以及其他形式的污染。 The underfill layers 601 can be tightly adhered to the first stacked structure 100 , the second stacked structure 200 and the lower die 310 , so that the underfill layers 601 can be re-formed on the first stacked structure 100 and the second stacked structure 200 Distribute stresses and strains from CTE mismatches and mechanical impacts. Therefore, the initiation and growth of cracks in the first interconnected units 510 and the second interconnected units 520 can be prevented or significantly reduced. In addition, the bottom The internal filling layer 601 can provide protection for the first interconnection units 510 and the second interconnection units 520 to improve the mechanical integrity of the arrangement of the lower die 310 and the first stacked structure 100 and the second stacked structure 200 Mechanical integrity. Furthermore, the underfill layers 601 may provide partial protection from moisture ingress and other forms of contamination.
請參考圖22到圖24,可形成模塑層603以覆蓋第一堆疊結構100與第二堆疊結構200。模塑層603可包含一模塑化合物,例如聚對二唑苯(polybenzoxazole)、聚醯亞胺(polyimide)、苯並環丁烯(benzocyclobutene)、環氧層壓板(epoxy laminate)或是氟化氫銨(ammonium bifluoride)。模塑層603的製作技術可包含壓縮成型(compressive molding)、移轉成型(transfer molding)、液態包封成型)liquid encapsulent molding)或類似成型方法。舉例來說,一模塑化合物以液體形式進行分配。接下來,可執行一固化製程以將模塑化合物固體化。該模塑化合物的形成可能溢出第一堆疊結構100與第二堆疊結構200,以使該模塑化合物覆蓋第一堆疊結構100與第二堆疊結構200。 Referring to FIGS. 22 to 24 , a molding layer 603 may be formed to cover the first stacked structure 100 and the second stacked structure 200 . The molding layer 603 may include a molding compound such as polybenzoxazole, polyimide, benzocyclobutene, epoxy laminate, or ammonium bifluoride. (ammonium bifluoride). The manufacturing technology of the molding layer 603 may include compression molding, transfer molding, liquid encapsulant molding or similar molding methods. For example, a molding compound is dispensed in liquid form. Next, a curing process may be performed to solidify the molding compound. The formation of the molding compound may overflow the first stacking structure 100 and the second stacking structure 200 so that the molding compound covers the first stacking structure 100 and the second stacking structure 200 .
請參考圖25,可執行例如化學機械研磨的一平坦化製程,直到第一堆疊結構100與第二堆疊結構200暴露為止。一散熱層(圖未示)可形成在第一堆疊結構100與第二堆疊結構200上,以改善散熱能力。在一些實施例中,平坦化製程是選擇性的。 Referring to FIG. 25 , a planarization process such as chemical mechanical polishing may be performed until the first stacked structure 100 and the second stacked structure 200 are exposed. A heat dissipation layer (not shown) may be formed on the first stacked structure 100 and the second stacked structure 200 to improve heat dissipation capability. In some embodiments, the planarization process is optional.
請參考圖1及圖26,在步驟S17,下晶粒310可接合在一基座基底(base substrate)605上。 Referring to FIGS. 1 and 26 , in step S17 , the lower die 310 may be bonded to a base substrate 605 .
請參考圖26,可提供基座基底605。基座基底605可為一層壓片,但並不以此為限。在一些實施例中,基座基底605可包括一環氧樹脂基材料或是醯亞胺三嗪(bismaleimide triazine)。在一些實施例中,基 座基底605可為一印刷電路板。下晶粒310與基座基底605可經由複數個第三內連接單元530而進行接合。該等第三內連接單元530可形成在下晶粒310與基座基底605之間。該等第三內連接單元530可分別且對應電性連接到該等貫穿基底通孔315。在一些實施例中,該等第三內連接單元530可為錫球,並可藉由使用一熱壓製程及/或一回焊製程而形成在下晶粒310與基座基底605之間。 Referring to Figure 26, a base substrate 605 may be provided. The base substrate 605 may be a laminate, but is not limited thereto. In some embodiments, base substrate 605 may include an epoxy-based material or bismaleimide triazine. In some embodiments, the base The base 605 may be a printed circuit board. The lower die 310 and the base substrate 605 may be bonded via a plurality of third interconnect units 530 . The third interconnect units 530 may be formed between the lower die 310 and the base substrate 605 . The third internal connection units 530 may be electrically connected to the through-substrate vias 315 respectively and correspondingly. In some embodiments, the third interconnect units 530 may be solder balls and may be formed between the lower die 310 and the base substrate 605 using a hot pressing process and/or a reflow process.
圖27是放大剖視示意圖,例示本揭露另一實施例的半導體元件1B。 FIG. 27 is an enlarged cross-sectional schematic diagram illustrating a semiconductor device 1B according to another embodiment of the present disclosure.
在半導體元件1B中,貫穿基底通孔115可包括一填充層FL、一晶種層SL、一黏著層AL、一阻障層BL以及一絕緣層IL。 In the semiconductor device 1B, the through-substrate via 115 may include a filling layer FL, a seed layer SL, an adhesive layer AL, a barrier layer BL and an insulating layer IL.
在一些實施例中,填充層FL可沿著第一控制器晶粒110的基底111而形成且電性連接到相對應的第一內連接單元510。舉例來說,填充層FL可包含摻雜多晶矽、鎢、銅、奈米碳管或是焊料合金(solder alloy)。 In some embodiments, the filling layer FL may be formed along the substrate 111 of the first controller die 110 and be electrically connected to the corresponding first interconnect unit 510 . For example, the filling layer FL may include doped polycrystalline silicon, tungsten, copper, carbon nanotubes or solder alloy.
在一些實施例中,絕緣層IL可形成在填充層FL與基底111之間。在一些實施例中,舉例來說,絕緣層IL可包含氧化矽、氮化矽、氮氧化矽或是四乙基矽酸鹽(tetra-ethyl ortho-silicate)。絕緣層IL可具有一厚度,其介於大約50nm到大約200nm之間。在一些實施例中,舉例來說,絕緣層IL可包含聚對二甲苯(parylene,商品名為帕里綸)、環氧樹脂(epoxy)或是聚對二甲苯(poly(p-xylene))。絕緣層IL可具有一厚度,其介於大約1μm到大約5μm之間。絕緣層IL可保證填充層FL在基底111中是電性絕緣的。 In some embodiments, the insulating layer IL may be formed between the filling layer FL and the substrate 111 . In some embodiments, for example, the insulating layer IL may include silicon oxide, silicon nitride, silicon oxynitride, or tetra-ethyl ortho-silicate. The insulating layer IL may have a thickness ranging from about 50 nm to about 200 nm. In some embodiments, for example, the insulating layer IL may include parylene (trade name: Parylene), epoxy resin (epoxy) or poly(p-xylene). . The insulating layer IL may have a thickness ranging from about 1 μm to about 5 μm. The insulating layer IL can ensure that the filling layer FL is electrically insulated in the substrate 111 .
在一些實施例中,晶種層SL可形成在填充層FL與絕緣層 IL之間。在一些實施例中,晶種層SL可具有一厚度,其介於大約10nm到大約40nm之間。在一些實施例中,舉例來說,晶種層SL可包含下列群組其中至少一個:鋁、金、鈹、鉍、鈷、銅、鉿、銦、錳、鉬、鎳、鉛、鈀、鉑、銠、錸、鎦、鉭、碲、鈦、鎢、鋅以及鋯。晶種層SL可降低在填充層FL形成期間之一開口的一電阻率(resistivity)。 In some embodiments, the seed layer SL may be formed between the filling layer FL and the insulating layer between IL. In some embodiments, the seed layer SL may have a thickness ranging from about 10 nm to about 40 nm. In some embodiments, for example, the seed layer SL may include at least one of the following groups: aluminum, gold, beryllium, bismuth, cobalt, copper, hafnium, indium, manganese, molybdenum, nickel, lead, palladium, platinum , rhodium, rhenium, gallium, tantalum, tellurium, titanium, tungsten, zinc and zirconium. The seed layer SL can reduce a resistivity of an opening during formation of the filling layer FL.
在一些實施例中,黏著層AL可形成在晶種層SL與絕緣層IL之間。舉例來說,晶種層SL可包含鈦、鉭、鈦鎢或氮化錳(manganese nitride)。晶種層SL可改善在晶種層SL與阻障層BL之間的黏性。 In some embodiments, the adhesion layer AL may be formed between the seed layer SL and the insulating layer IL. For example, the seed layer SL may include titanium, tantalum, titanium tungsten, or manganese nitride. The seed layer SL can improve the adhesion between the seed layer SL and the barrier layer BL.
在一些實施例中,阻障層BL可在黏著層AL與絕緣層IL之間。舉例來說,阻障層BL可包含鉭、氮化鉭、鈦、氮化鈦、錸(rhenium)、硼化鎳(nickel boride)或是氮化鉭/鉭層。阻障層BL可禁止填充層FL之導電材料擴散進入基底111中。 In some embodiments, the barrier layer BL may be between the adhesive layer AL and the insulating layer IL. For example, the barrier layer BL may include tantalum, tantalum nitride, titanium, titanium nitride, rhenium, nickel boride, or a tantalum nitride/tantalum layer. The barrier layer BL can prevent the conductive material of the filling layer FL from diffusing into the substrate 111 .
在一些實施例中,其他貫穿基底通孔或是貫穿晶粒通孔可具有類似於貫穿基底通孔115的結構,且在文中不再重複其描述。 In some embodiments, other through-substrate vias or through-die vias may have structures similar to the through-substrate vias 115 , and their description will not be repeated herein.
圖28是剖視示意圖,例示本揭露另一實施例製備半導體元件1C的部分流程。圖29是放大剖視示意圖,例示圖28之區域A1的剖面。圖30是剖視示意圖,例示沿著圖29之剖線A-A’、B-B’以及C-C’的剖面。圖31是放大剖視示意圖,例示圖28之區域A2的剖面。圖32是剖視示意圖,例示沿著圖30之剖線A-A’、B-B’以及C-C’的剖面。 FIG. 28 is a schematic cross-sectional view illustrating part of the process of preparing a semiconductor device 1C according to another embodiment of the present disclosure. FIG. 29 is an enlarged schematic cross-sectional view illustrating the cross-section of area A1 in FIG. 28 . Fig. 30 is a schematic cross-sectional view illustrating the cross-sections along the cross-section lines A-A', B-B' and C-C' of Fig. 29. FIG. 31 is an enlarged schematic cross-sectional view illustrating the cross-section of area A2 in FIG. 28 . Fig. 32 is a schematic cross-sectional view illustrating the cross-sections along the cross-section lines A-A', B-B' and C-C' of Fig. 30.
請參考圖28,一中間半導體元件可以類似於如圖2到圖21所描述的一程序進行製造,且在文中不再重複其描述。為了簡潔、清楚以及便於描述,僅描述一個第一內連接單元510以及一個第二內連接單元520。 Referring to FIG. 28 , an intermediate semiconductor device can be manufactured by a process similar to that described in FIGS. 2 to 21 , and its description will not be repeated herein. For simplicity, clarity, and ease of description, only one first internal connection unit 510 and one second internal connection unit 520 are described.
請參考圖28到圖31,在一些實施例中,一第一下環狀層515可形成在第一連接墊317上。一第一上環狀層517可形成在貫穿基底通孔115下方。在一些實施例中,舉例來說,第一下環狀層515與第一上環狀層517可包含銅或其他適合的金屬或是金屬合金。 Referring to FIGS. 28 to 31 , in some embodiments, a first lower annular layer 515 may be formed on the first connection pad 317 . A first upper annular layer 517 may be formed under the through-substrate via 115 . In some embodiments, for example, the first lower annular layer 515 and the first upper annular layer 517 may include copper or other suitable metals or metal alloys.
第一內連接單元510可包括一第一外部層511以及一第一腔室513。第一外部層511可形成在第一下環狀層515與第一上環狀層517之間。第一外部層511、第一下環狀層515以及第一上環狀層517可分別且對應具有一環型剖面輪廓。被貫穿基底通孔115、第一上環狀層517、第一外部層511、第一下環狀層515以及第一連接墊317所包圍的空間可表示成第一腔室513。 The first internal connection unit 510 may include a first outer layer 511 and a first cavity 513 . The first outer layer 511 may be formed between the first lower annular layer 515 and the first upper annular layer 517 . The first outer layer 511 , the first lower annular layer 515 and the first upper annular layer 517 may respectively and correspondingly have an annular cross-sectional profile. The space surrounded by the through-substrate via 115 , the first upper annular layer 517 , the first outer layer 511 , the first lower annular layer 515 and the first connection pad 317 may be represented as a first chamber 513 .
在一些實施例中,經由在第一連接墊317上之第一下環狀層515的使用,創建一第一「晶種」點以用於在環狀物之非導電/非潤濕中心處積累汽化通量(vaporized flux)。隨著蒸汽在焊料加熱與液化期間膨脹,形成第一內部腔室(圖未示),而該內部腔室被熔融焊料的表面張力以及黏度所包含。藉由在貫穿基底通孔115下方之第一上環狀層517中包括第二晶種點,開始一第二內部腔室(圖未示),該第二內部腔室與該第一內部腔室鄰接以產生所得到的第一腔室513。表面張力特性迫使該液化結構上形成一外凸形狀,當冷卻時,其固化成第一外部層511的一桶型形式,因為外殼在內部的汽化助焊劑收縮之前固化。 In some embodiments, through the use of the first lower ring layer 515 on the first connection pad 317, a first "seed" point is created for the non-conductive/non-wetting center of the ring Accumulate vaporized flux. As the vapor expands during heating and liquefaction of the solder, a first internal cavity (not shown) is formed, and the internal cavity is contained by the surface tension and viscosity of the molten solder. By including a second seed point in the first upper annular layer 517 below the through-substrate via 115, a second internal chamber (not shown) is initiated that is identical to the first internal chamber. The chambers abut to create the resulting first chamber 513. The surface tension properties force a convex shape on the liquefied structure which, when cooled, solidifies into the barrel form of the first outer layer 511 as the shell solidifies before the vaporized flux inside shrinks.
在一些實施例中,第一內連接單元510可為一錫球。第一腔室513的一相對體積可介於第一內連接單元510之總體積的1%到90%之間。第一腔室513的體積可藉由控制在焊料加熱期間之溫度與時間而進行控制。焊料的成分應平衡焊料與焊料合金的特性以及一助焊蒸氣的特性。 一例示的焊料化合物可以由任何一般焊料材料以及一助焊劑的一些部分所組成,而一般焊料材料例如焊料、銀與錫,助焊劑例如選自松香、樹脂、活化劑、觸變劑(thixotropic agent)以及一高溫沸騰溶劑之群組中的一種或多種。 In some embodiments, the first internal connection unit 510 may be a solder ball. A relative volume of the first chamber 513 may range from 1% to 90% of the total volume of the first internal connection unit 510 . The volume of the first chamber 513 can be controlled by controlling the temperature and time during solder heating. The composition of the solder should balance the properties of the solder and solder alloy as well as the properties of the flux vapor. An exemplary solder compound may be composed of any common solder material, such as solder, silver, and tin, and some portion of a flux selected from, for example, rosin, resin, activator, and thixotropic agent. and one or more of a group of high-temperature boiling solvents.
請參考圖29、圖31及圖32,在一些實施例中,一第二下環狀層525可形成在第二連接墊319上。一第二上環狀層527可形成在貫穿基底通孔215下方。在一些實施例中,舉例來說,第二下環狀層525以及第二上環狀層527可包含銅或其他適合的金屬或金屬合金。 Referring to FIGS. 29 , 31 and 32 , in some embodiments, a second lower annular layer 525 may be formed on the second connection pad 319 . A second upper annular layer 527 may be formed below the through-substrate via 215 . In some embodiments, for example, the second lower annular layer 525 and the second upper annular layer 527 may include copper or other suitable metals or metal alloys.
第二內連接單元520可包括一第二外部層521以及一第二腔室523。第二外部層521可形成在第二下環狀層525與第二上環狀層527之間。第二外部層521、第二下環狀層525以及第二上環狀層527可分別且對應具有一環型剖面輪廓。被貫穿基底通孔215、第二上環狀層527、第二外部層521、第二下環狀層525以及第二連接墊319所包圍的空間可表示成第二腔室523。 The second internal connection unit 520 may include a second outer layer 521 and a second cavity 523 . The second outer layer 521 may be formed between the second lower annular layer 525 and the second upper annular layer 527 . The second outer layer 521 , the second lower annular layer 525 and the second upper annular layer 527 may respectively and correspondingly have an annular cross-sectional profile. The space surrounded by the through-substrate via 215 , the second upper annular layer 527 , the second outer layer 521 , the second lower annular layer 525 and the second connection pad 319 may be represented as a second chamber 523 .
在一些實施例中,經由在第二連接墊319上之第二下環狀層525的使用,創建一第一「晶種」點以用於在環狀物之非導電/非潤濕中心處積累汽化通量(vaporized flux)。隨著蒸汽在焊料加熱與液化期間膨脹,形成第一內部腔室(圖未示),而該內部腔室被熔融焊料的表面張力以及黏度所包含。藉由在貫穿基底通孔215下方之第一上環狀層527中包括第二晶種點,開始一第二內部腔室(圖未示),該第二內部腔室與該第一內部腔室鄰接以產生所得到的第一腔室523。表面張力特性迫使該液化結構上形成一外凸形狀,當冷卻時,其固化成第一外部層521的一桶型形式,因為外殼在內部的汽化助焊劑收縮之前固化。 In some embodiments, through the use of the second lower ring layer 525 on the second connection pad 319, a first "seed" point is created for the non-conductive/non-wetting center of the ring Accumulate vaporized flux. As the vapor expands during heating and liquefaction of the solder, a first internal cavity (not shown) is formed, and the internal cavity is contained by the surface tension and viscosity of the molten solder. By including a second seed point in the first upper annular layer 527 below the through-substrate via 215, a second internal chamber (not shown) is initiated that is identical to the first internal chamber. The chambers abut to create the resulting first chamber 523. The surface tension properties force a convex shape on the liquefied structure which, when cooled, solidifies into the barrel-shaped form of the first outer layer 521 as the shell solidifies before the vaporized flux inside shrinks.
在一些實施例中,第二內連接單元520可為一錫球。第二腔室523的一相對體積可介於第一內連接單元510之總體積的1%到90%之間。第二腔室523的體積可藉由控制在焊料加熱期間之溫度與時間而進行控制。焊料的成分應平衡焊料與焊料合金的特性以及一助焊蒸氣的特性。一例示的焊料化合物可以由任何一般焊料材料以及一助焊劑的一些部分所組成,而一般焊料材料例如焊料、銀與錫,助焊劑例如選自松香、樹脂、活化劑、觸變劑(thixotropic agent)以及一高溫沸騰溶劑之群組中的一種或多種。 In some embodiments, the second internal connection unit 520 may be a solder ball. A relative volume of the second chamber 523 may be between 1% and 90% of the total volume of the first internal connection unit 510 . The volume of the second chamber 523 can be controlled by controlling the temperature and time during solder heating. The composition of the solder should balance the properties of the solder and solder alloy as well as the properties of the flux vapor. An exemplary solder compound may be composed of any common solder material, such as solder, silver, and tin, and some portion of a flux selected from, for example, rosin, resin, activator, and thixotropic agent. and one or more of a group of high-temperature boiling solvents.
圖33是剖視示意圖,例示本揭露另一實施例製備半導體元件1C的部分流程。圖34及圖35是放大剖視示意圖,例示圖33之區域A1與A2的剖面。 FIG. 33 is a schematic cross-sectional view illustrating part of the process of preparing a semiconductor device 1C according to another embodiment of the present disclosure. 34 and 35 are enlarged cross-sectional schematic views, illustrating the cross-sections of areas A1 and A2 in FIG. 33 .
請參考圖33到圖35,該等底部填充層601、模塑層603、該等第三內連接單元530以及基座基底605可以類似於如圖22到圖26所描述的一程序所形成,且在文中不再重複其描述。 Referring to FIGS. 33 to 35 , the underfill layers 601 , the molding layer 603 , the third interconnect units 530 and the base substrate 605 may be formed by a process similar to that described in FIGS. 22 to 26 . And its description will not be repeated in the text.
在製造或操作半導體元件1C期間,潛在的破壞性應力可藉由包括第一腔室513的第一內連接單元510以及包括第二腔室523的第二內連接單元520而中和並減小或移除。因此,可改善半導體元件1C的良率以及可靠度。 During the fabrication or operation of the semiconductor device 1C, potentially damaging stresses may be neutralized and reduced by the first interconnect unit 510 including the first cavity 513 and the second interconnect unit 520 including the second cavity 523 or remove. Therefore, the yield and reliability of the semiconductor element 1C can be improved.
本揭露之一實施例提供一種半導體元件,包括一下晶粒;一第一堆疊結構,包括一第一控制器晶粒,設置在該下晶粒上;以及複數個第一儲存晶粒,堆疊在該第一控制器晶粒上;一第二堆疊結構,包括一第二控制器晶粒,設置在該下晶粒上;以及複數個第二儲存晶粒,堆疊在該第二控制器晶粒上。該複數個第一儲存晶粒分別包括複數個第一儲存單 元,其經配置成一浮動陣列。該複數個第二儲存晶粒包括複數個第二儲存單元,其分別包括一絕緣體-導體-絕緣體結構。 An embodiment of the present disclosure provides a semiconductor device including a lower die; a first stack structure including a first controller die disposed on the lower die; and a plurality of first storage dies stacked on the lower die. on the first controller die; a second stack structure including a second controller die disposed on the lower die; and a plurality of second storage dies stacked on the second controller die superior. The plurality of first storage dies respectively include a plurality of first storage cells. element, which is configured as a floating array. The plurality of second storage dies includes a plurality of second storage units, each of which includes an insulator-conductor-insulator structure.
本揭露之另一實施例提供一種半導體元件,包括一下晶粒;一第一堆疊結構,經由複數個第一內連接單元而設置在該下晶粒上;以及一第二堆疊結構,經由複數個第二內連接單元而設置在該下晶粒上。該第一堆疊結構包括:一第一控制器晶粒,設置在該複數個第一內連接單元上;複數個第一儲存晶粒,堆疊在該第一控制器晶粒上並經配置成一浮動陣列。該第二堆疊結構包括:一第二控制器晶粒,設置在該複數個第二內連接單元上;以及複數個第二儲存晶粒,堆疊在該第二控制器晶粒上,且分別包括一絕緣體-導體-絕緣體結構。 Another embodiment of the present disclosure provides a semiconductor device including a lower die; a first stacked structure disposed on the lower die via a plurality of first interconnect units; and a second stacked structure via a plurality of first interconnect units. The second interconnect unit is disposed on the lower die. The first stacked structure includes: a first controller die disposed on the plurality of first interconnect units; a plurality of first storage dies stacked on the first controller die and configured to form a floating array. The second stacked structure includes: a second controller die disposed on the plurality of second interconnect units; and a plurality of second storage dies stacked on the second controller die and each including An insulator-conductor-insulator structure.
本揭露之另一實施例提供一種半導體元件的製備方法,包括提供一第一堆疊結構,該第一堆疊結構包括:一第一控制器晶粒;以及複數個第一儲存晶粒,依序堆疊在該第一控制器晶粒上;提供一第二堆疊結構,該第二堆疊結構包括:一第二控制器晶粒;以及複數個第二儲存晶粒,依序堆疊在該第二控制器晶粒上;該第一控制器晶粒經由複數個第一內連接單元而接合到一下晶粒上;以及該第二控制器晶粒經由複數個第二內連接單元而接合到該下晶粒上。該複數個第一儲存晶粒分別包括複數個第一儲存單元,其經配置成一浮動陣列。該複數個第二儲存晶粒包括複數個第二儲存單元,其分別包括一絕緣體-導體-絕緣體結構。 Another embodiment of the present disclosure provides a method for manufacturing a semiconductor device, including providing a first stacked structure. The first stacked structure includes: a first controller die; and a plurality of first storage dies, stacked in sequence. On the first controller die; provide a second stack structure, the second stack structure includes: a second controller die; and a plurality of second storage dies, sequentially stacked on the second controller on the die; the first controller die is bonded to the lower die via a plurality of first interconnect units; and the second controller die is bonded to the lower die via a plurality of second interconnect units superior. The plurality of first storage dies respectively include a plurality of first storage cells, which are configured into a floating array. The plurality of second storage dies includes a plurality of second storage units, each of which includes an insulator-conductor-insulator structure.
由於本揭露該半導體元件的設計,第一堆疊結構100具有呈浮動陣列形式的該等第一儲存單元129,第二堆疊結構200具有該等第二儲存單元229,該等第二儲存單元229具有該等絕緣體-導體-絕緣體結構,且第一堆疊結構100以及第二堆疊結構200可與下晶粒310整合在一 起。因此,可縮減半導體元件1A的尺寸(dimension)。此外,該等貫穿基底通孔亦可縮減在第一堆疊結構100及/或第二堆疊結構200內的多個電性路徑,以便可降低功耗。因此,可改善半導體元件1A的效能。 Due to the design of the semiconductor device of the present disclosure, the first stacked structure 100 has the first storage units 129 in the form of a floating array, the second stacked structure 200 has the second storage units 229, and the second storage units 229 have These insulator-conductor-insulator structures, and the first stack structure 100 and the second stack structure 200 can be integrated with the lower die 310 rise. Therefore, the dimension of the semiconductor element 1A can be reduced. In addition, the through-substrate vias can also reduce a plurality of electrical paths within the first stacked structure 100 and/or the second stacked structure 200 so as to reduce power consumption. Therefore, the performance of the semiconductor device 1A can be improved.
雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所定義之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。 Although the disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and substitutions can be made without departing from the spirit and scope of the disclosure as defined by the claimed claims. For example, many of the processes described above may be implemented in different ways and replaced with other processes or combinations thereof.
再者,本申請案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟包含於本申請案之申請專利範圍內。 Furthermore, the scope of the present application is not limited to the specific embodiments of the process, machinery, manufacture, material compositions, means, methods and steps described in the specification. Those skilled in the art can understand from the disclosure content of this disclosure that existing or future developed processes, machinery, manufacturing, etc. that have the same functions or achieve substantially the same results as the corresponding embodiments described herein can be used according to the present disclosure. A material composition, means, method, or step. Accordingly, such processes, machines, manufacturing, material compositions, means, methods, or steps are included in the patent scope of this application.
1A:半導體元件 100:第一堆疊結構 110:第一控制器晶粒 120:第一儲存晶粒 130:第一儲存晶粒 140:第一儲存晶粒 150:第一儲存晶粒 160:第一儲存晶粒 170:第一儲存晶粒 200:第二堆疊結構 210:第二控制器晶粒 220:第二儲存晶粒 230:第二儲存晶粒 240:第二儲存晶粒 250:第二儲存晶粒 310:下晶粒 311:基底 313:介電層 315:貫穿基底通孔 317:第一連接墊 319:第二連接墊 510:第一內連接單元 520:第二內連接單元 530:第三內連接單元 601:底部填充層 603:模塑層 605:基座基底 Z:方向 1A: Semiconductor components 100: First stack structure 110: First controller die 120: The first storage chip 130: The first storage chip 140: The first storage grain 150: The first storage chip 160: The first storage grain 170: The first storage chip 200: Second stack structure 210: Second controller die 220: Second storage grain 230: Second storage grain 240: Second storage grain 250: Second storage grain 310: Lower grain 311: Base 313: Dielectric layer 315:Through-substrate through hole 317: First connection pad 319: Second connection pad 510: First internal connection unit 520: Second internal connection unit 530: The third internal connection unit 601: Bottom filling layer 603: Molding layer 605: Base base Z: direction
Claims (35)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/563,291 US11996390B2 (en) | 2021-12-28 | 2021-12-28 | Semiconductor device with stacking structure |
US17/563,346 | 2021-12-28 | ||
US17/563,346 US11901350B2 (en) | 2021-12-28 | 2021-12-28 | Method for fabricating semiconductor device with stacking structure |
US17/563,291 | 2021-12-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202326998A TW202326998A (en) | 2023-07-01 |
TWI817395B true TWI817395B (en) | 2023-10-01 |
Family
ID=87052058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111109648A TWI817395B (en) | 2021-12-28 | 2022-03-16 | Semiconductor device with stacking structure |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116419580A (en) |
TW (1) | TWI817395B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201423967A (en) * | 2012-10-16 | 2014-06-16 | Omnivision Tech Inc | Stacked chip image sensor with light-sensitive circuit elements on the bottom chip |
US20190043836A1 (en) * | 2018-06-18 | 2019-02-07 | Intel Corporation | Three-dimensional (3d) memory with shared control circuitry using wafer-to-wafer bonding |
WO2021068229A1 (en) * | 2019-10-12 | 2021-04-15 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices having hydrogen blocking layer and fabrication methods thereof |
US20210305259A1 (en) * | 2019-04-30 | 2021-09-30 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having programmable logic device and nand flash memory and methods for forming the same |
-
2022
- 2022-03-16 TW TW111109648A patent/TWI817395B/en active
- 2022-10-19 CN CN202211280844.7A patent/CN116419580A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201423967A (en) * | 2012-10-16 | 2014-06-16 | Omnivision Tech Inc | Stacked chip image sensor with light-sensitive circuit elements on the bottom chip |
US20190043836A1 (en) * | 2018-06-18 | 2019-02-07 | Intel Corporation | Three-dimensional (3d) memory with shared control circuitry using wafer-to-wafer bonding |
US20210305259A1 (en) * | 2019-04-30 | 2021-09-30 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having programmable logic device and nand flash memory and methods for forming the same |
WO2021068229A1 (en) * | 2019-10-12 | 2021-04-15 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices having hydrogen blocking layer and fabrication methods thereof |
Also Published As
Publication number | Publication date |
---|---|
CN116419580A (en) | 2023-07-11 |
TW202326998A (en) | 2023-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI538145B (en) | Package structure and methods of forming the same | |
US10651157B1 (en) | Semiconductor device and manufacturing method thereof | |
US20240186248A1 (en) | Backside power delivery network | |
TWI779925B (en) | Semiconductor device with through semiconductor via and method for fabricating the same | |
TWI764681B (en) | Semiconductor package, package component, and method of manufacturing | |
TWI841351B (en) | Semiconductor device with redistribution structure and method for fabricating the same | |
TWI799214B (en) | Semiconductor device with hollow interconnectors | |
TWI809789B (en) | Semiconductor device with interconnectors of different density | |
TWI799215B (en) | Semiconductor device with composite middle interconnectors | |
TWI833176B (en) | Optical semiconductor device with integrated vias implementing inter-die connection | |
TWI817390B (en) | Optical semiconductor device with composite intervening structure | |
TWI817395B (en) | Semiconductor device with stacking structure | |
US11901350B2 (en) | Method for fabricating semiconductor device with stacking structure | |
US11996390B2 (en) | Semiconductor device with stacking structure | |
TWI825642B (en) | Semiconductor device with composite bottom interconnectors | |
TWI809607B (en) | Semiconductor device with stacked chips and method for fabricating the same | |
TWI817434B (en) | Optical semiconductor device with cascade vias | |
US12125819B2 (en) | Die on die bonding structure | |
US20240079392A1 (en) | Semiconductor structure and manufacturing method thereof | |
TW202407904A (en) | Integrated circuit packages and methods of forming the same | |
TW202315029A (en) | Package structure and method for forming the same | |
CN118280968A (en) | Semiconductor device and method of forming the same |