TWI817200B - Method for detecting genotypic variation of a target dna sequence - Google Patents

Method for detecting genotypic variation of a target dna sequence Download PDF

Info

Publication number
TWI817200B
TWI817200B TW110135314A TW110135314A TWI817200B TW I817200 B TWI817200 B TW I817200B TW 110135314 A TW110135314 A TW 110135314A TW 110135314 A TW110135314 A TW 110135314A TW I817200 B TWI817200 B TW I817200B
Authority
TW
Taiwan
Prior art keywords
nucleotide sequence
sequence fragment
probe
cdata
target dna
Prior art date
Application number
TW110135314A
Other languages
Chinese (zh)
Other versions
TW202313983A (en
Inventor
張啟聖
王佩華
Original Assignee
中國文化大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國文化大學 filed Critical 中國文化大學
Priority to TW110135314A priority Critical patent/TWI817200B/en
Publication of TW202313983A publication Critical patent/TW202313983A/en
Application granted granted Critical
Publication of TWI817200B publication Critical patent/TWI817200B/en

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention provides a method for detecting whether the genotype of a target DNA sequence having variation, comprising: (a) providing a target DNA sequence to be detected for variant genotype; (b) providing a first probe; (c) providing a second probe; (d) removing the first probe and the second probe failed to hybridize and ligase simultaneously; and (e) detecting the variant site information of the digital magnetic beads and the label of the probes succeeded in hybridization and ligation, so as to obtain the information of the target DNA sequence having variant genotype or not.

Description

一種檢測標的DNA序列基因型是否變異之方法A method for detecting whether the genotype of a target DNA sequence is mutated

本發明係提供一種用以檢測標的DNA序列基因型是否變異之方法,以獲得該標的DNA序列基因型變異與否的資訊。The present invention provides a method for detecting whether the genotype of a target DNA sequence varies, so as to obtain information on whether the genotype of the target DNA sequence varies.

單核甘酸多型性(single nucleotide polymorphism, SNP)為DNA序列中單一鹼基對的變異,即DNA序列中A、T、C或G的改變造成序列中一定位點出現兩個或多個核甘酸結合可能性的情形。目前已知的SNP中,以T(thymin)、C(gytosine)發生單一鹼基對突變的比例最為高,約占已知SNP變異情形的三分之二。而SNP亦為人體中最常見的一種遺傳變異型態,每個人DNA上所發生的SNP情形皆不相同,使得SNP成為一種新興的基因標記技術。Single nucleotide polymorphism (SNP) is a variation of a single base pair in the DNA sequence, that is, changes in A, T, C or G in the DNA sequence cause two or more nuclei to appear at a certain position in the sequence. Situation of possibility of glyceric acid binding. Among currently known SNPs, T (thymin) and C (gytosine) have the highest proportion of single base pair mutations, accounting for approximately two-thirds of known SNP variations. SNP is also the most common form of genetic variation in the human body. The SNP situation that occurs in everyone's DNA is different, making SNP an emerging genetic marker technology.

因此透過SNP與基因資料庫結合的分析方式,可達到SNP與人類癌症關係的研究;此外,整合SNP基因檢測的結果與受檢者之生活狀態、營養狀況及生活型態等因素,再藉由大數據資料分析,亦可將SNP用於各項人類疾病風險與性狀特徵的結果預測中,故如何有效地進行SNP之檢測成為未來趨勢。Therefore, through the analysis method that combines SNP with gene database, it is possible to study the relationship between SNP and human cancer; in addition, the results of SNP genetic testing are integrated with the living status, nutritional status, lifestyle and other factors of the subjects, and then through Big data data analysis can also use SNPs to predict the results of various human disease risks and traits. Therefore, how to effectively detect SNPs has become a future trend.

目前已知用於SNP檢測技術的原理主要是雜交反應(hybridization)與聚合酶連鎖反應(polymerase chain reaction, PCR),然現行基於雜交反應亦或是聚合酶連鎖反應的SNP檢測效率皆極低,皆僅可進行單一SNP的檢測;多點SNP的檢測技術上有諸多限制;且多仰賴肽核酸(Peptide nucleic acid, PNA)、鎖核酸(Locked nucleic acid, LNA)的使用,大幅增加檢測成本。因此如何提高SNP的檢測效率以及降低其檢測成本成為一大挑戰。Currently, the known principles for SNP detection technology are mainly hybridization and polymerase chain reaction (PCR). However, the current SNP detection efficiency based on hybridization reaction or polymerase chain reaction is extremely low. They can only detect a single SNP; there are many technical limitations in the detection of multiple SNPs; and they mostly rely on the use of peptide nucleic acid (PNA) and locked nucleic acid (LNA), which significantly increases the cost of detection. Therefore, how to improve the detection efficiency of SNP and reduce its detection cost has become a major challenge.

有鑑於此,為解決上述問題,本發明之主要目的係提供一種檢測標的DNA序列基因型是否變異之方法,包含:(a)提供標的DNA序列,具有一待偵測是否變異之基因型;(b)提供複數個第一探針,其中第一探針具有一與標的DNA互補之第一核苷酸序列片段,且第一核苷酸序列片段具有第1端跟第2端,而第一核苷酸序列片段之第1端為欲偵測之變異位點,且第一核苷酸序列片段之第2端接有一數位磁珠,每一數位磁珠對應每一第一核苷酸序列片段之第1端之欲偵測之變異位點資訊;(c)提供複數個第二探針,其中第二探針具有一與標的DNA互補之第二核苷酸序列片段,第二核苷酸序列片段具有第1端跟第2端,第二核苷酸序列片段之第1端帶有一標記,且第二核苷酸序列片段之第2端帶有磷酸根或第一核苷酸序列片段之第1端帶有磷酸根,第一核苷酸序列片段與第二核苷酸序列片段互補於標的DNA之位置相連,而可同時進行雜交及連接反應;(d)去除未能同時進行雜交及連接反應之第一探針及第二探針;及(e)偵測成功雜交及連接反應之第一探針之數位磁珠之變異位點資訊與第二探針之標記,獲得標的DNA序列之基因型變異與否之資訊。In view of this, in order to solve the above problems, the main purpose of the present invention is to provide a method for detecting whether the genotype of a target DNA sequence is mutated, including: (a) providing a target DNA sequence with a genotype to be detected as to whether the genotype is mutated; (a) b) Provide a plurality of first probes, wherein the first probe has a first nucleotide sequence fragment complementary to the target DNA, and the first nucleotide sequence fragment has a 1st end and a 2nd end, and the first The first end of the nucleotide sequence fragment is the mutation site to be detected, and the second end of the first nucleotide sequence fragment is connected to a digital magnetic bead, and each digital magnetic bead corresponds to each first nucleotide sequence. Information on the mutation site to be detected at the first end of the fragment; (c) Provide a plurality of second probes, wherein the second probe has a second nucleotide sequence fragment complementary to the target DNA, the second nucleoside The acid sequence fragment has a 1st end and a 2nd end, the 1st end of the second nucleotide sequence fragment has a label, and the 2nd end of the second nucleotide sequence fragment has a phosphate or the first nucleotide sequence The first end of the fragment has a phosphate group, and the first nucleotide sequence fragment and the second nucleotide sequence fragment are complementary to each other at the position of the target DNA, so hybridization and ligation reactions can be carried out at the same time; (d) Removal cannot be carried out at the same time. The first probe and the second probe of the hybridization and ligation reaction; and (e) detecting the variation site information of the digital magnetic beads of the first probe and the label of the second probe in the successful hybridization and ligation reaction to obtain the target Information on whether the genotype of the DNA sequence varies or not.

根據本發明之一個或多個實施例,第一核苷酸序列片段之第1端為3’端,第2端為5’端,且第二核苷酸序列片段之第1端為3’端,第2端為5’端並帶有磷酸根。According to one or more embodiments of the present invention, the first end of the first nucleotide sequence fragment is the 3' end, the second end is the 5' end, and the first end of the second nucleotide sequence fragment is the 3' end. end, the 2nd end is the 5' end and has a phosphate group.

根據本發明之一個或多個實施例,第一核苷酸序列片段之第1端為5’端,第2端為3’端,且第二核苷酸序列片段之第1端為5’端並帶有磷酸根,第2端為3’端。According to one or more embodiments of the present invention, the first end of the first nucleotide sequence fragment is the 5' end, the second end is the 3' end, and the first end of the second nucleotide sequence fragment is the 5' end. The end has a phosphate group, and the second end is the 3' end.

根據本發明之一個或多個實施例,第一核甘酸序列片段及/或第二核甘酸序列片段之長度介於20~100bp。According to one or more embodiments of the present invention, the length of the first nucleotide sequence fragment and/or the second nucleotide sequence fragment ranges from 20 to 100 bp.

根據本發明之一個或多個實施例,第一核甘酸序列片段及/或第二核甘酸序列片段之長度介於50~100bp。According to one or more embodiments of the present invention, the length of the first nucleotide sequence fragment and/or the second nucleotide sequence fragment ranges from 50 to 100 bp.

根據本發明之一個或多個實施例,標記可經生物素化(biotinylated) 作用達到螢光發光之生物標記。According to one or more embodiments of the present invention, the label may be biotinylated to achieve a fluorescent biomarker.

根據本發明之一個或多個實施例,步驟(a)~(c)可同時進行。According to one or more embodiments of the present invention, steps (a) to (c) can be performed simultaneously.

根據本發明之一個或多個實施例,第一探針與第二探針之添加比例為1:1。According to one or more embodiments of the present invention, the addition ratio of the first probe to the second probe is 1:1.

根據本發明之一個或多個實施例,DNA序列基因型變異包含點(point)突變、插入(insertion)突變、缺失(deletion)突變、重複(duplication)突變或移碼(frameshift)突變。According to one or more embodiments of the present invention, DNA sequence genotypic variation includes point mutation, insertion mutation, deletion mutation, duplication mutation or frameshift mutation.

根據本發明之一個或多個實施例,該檢測標的DNA序列基因型是否變異之方法可用於進行單一核苷酸多型性(single nucleotide polymorphism, SNP)之基因分型分析。According to one or more embodiments of the present invention, the method for detecting whether the genotype of a target DNA sequence varies can be used to perform genotyping analysis of single nucleotide polymorphism (SNP).

本發明之另一主要目的係提供一種檢測標的DNA序列基因型是否變異之套組,包含:(1)複數個第一探針,其中第一探針具有一與標的DNA互補之第一核苷酸序列片段,第一核苷酸序列片段具有第1端跟第2端,第一核苷酸序列片段之第1端為欲偵測之變異位點,且第一核苷酸序列片段之第2端接有一數位磁珠,每一數位磁珠對應每一第一核苷酸序列片段之第1端之欲偵測之變異位點資訊;(2)複數個第二探針,其中第二探針具有一與標的DNA互補之第二核苷酸序列片段,第二核苷酸序列片段具有第1端跟第2端,第二核苷酸序列片段之第1端帶有一標記,且第二核苷酸序列片段之第2端帶有磷酸根或第一核苷酸序列片段之第1端帶有磷酸根,第一核苷酸序列片段與第二核苷酸序列片段互補於標的DNA之位置相連,而可同時進行雜交及連接反應;及(3) 反應試劑。Another main object of the present invention is to provide a kit for detecting whether the genotype of a target DNA sequence is mutated, including: (1) a plurality of first probes, wherein the first probe has a first nucleoside complementary to the target DNA Acid sequence fragment, the first nucleotide sequence fragment has a 1st end and a 2nd end, the 1st end of the first nucleotide sequence fragment is the mutation site to be detected, and the 1st end of the first nucleotide sequence fragment is 2 ends are connected with a digital magnetic bead, and each digital magnetic bead corresponds to the mutation site information to be detected at the first end of each first nucleotide sequence fragment; (2) a plurality of second probes, of which the second The probe has a second nucleotide sequence fragment that is complementary to the target DNA. The second nucleotide sequence fragment has a first end and a second end. The first end of the second nucleotide sequence fragment has a label, and the second nucleotide sequence fragment has a first end and a second end. The second end of the dinucleotide sequence fragment has a phosphate group or the first end of the first nucleotide sequence fragment has a phosphate group, and the first nucleotide sequence fragment and the second nucleotide sequence fragment are complementary to the target DNA The position is connected, so that hybridization and ligation reactions can be performed simultaneously; and (3) reaction reagents.

由上述可知,本發明相較於習知的SNP檢測方式具有以下優點:From the above, it can be seen that the present invention has the following advantages compared with the conventional SNP detection method:

1. 可同時進行多點SNP檢測,大幅提高SNP的檢測效率。1. Multi-point SNP detection can be performed simultaneously, greatly improving the SNP detection efficiency.

2. 不須使用肽核酸(Peptide nucleic acid, PNA)以及鎖核酸(Locked nucleic acid, LNA),大幅降低檢測成本。2. There is no need to use peptide nucleic acid (PNA) and locked nucleic acid (LNA), significantly reducing detection costs.

3. 可使用多種類型之數位磁珠或是自行設計磁珠,達到降低檢測成本或是客製化之效。3. You can use various types of digital magnetic beads or design your own magnetic beads to reduce detection costs or achieve customization.

4. 本發明之方法不限於SNP檢測,亦可應用於其他DNA序列之基因型變異之測定,如點突變、插入突變、缺失突變、重排突變或移碼突變,應用範圍廣泛。4. The method of the present invention is not limited to SNP detection, but can also be applied to the determination of genotypic variations in other DNA sequences, such as point mutations, insertion mutations, deletion mutations, rearrangement mutations or frameshift mutations, with a wide range of applications.

為使本發明技術內涵更加詳盡與完備,以下針對本發明的實施態樣與具體實施例進行說明,但以下說明並非實施或運用本發明具體實施例的唯一形式,倘本領域中具通常知識者透過以下敘述可輕易明瞭此發明之必要技術內容,且在不違反其中的精神及範圍下多樣地改變及修飾此發明來適應不同用途及狀況,如此,其他的實施態樣亦屬於本發明的申請專利範圍。In order to make the technical connotation of the present invention more detailed and complete, the implementation modes and specific examples of the present invention are described below. However, the following description is not the only form of implementing or using the specific embodiments of the present invention. The necessary technical content of this invention can be easily understood through the following description, and this invention can be variously changed and modified to adapt to different uses and conditions without violating the spirit and scope thereof. In this way, other embodiments also belong to the application of this invention. patent scope.

本文中所使用之詞彙中,除非上下文另有載明,則「一」及「該」亦可解釋為複數。In the terms used in this article, "a" and "the" may also be interpreted as plural unless the context otherwise requires.

本文中所使用之詞彙中,除非上下文另有載明,則「包含」、「包括」、「具有」或「含有」係包含性或開放性,並不排除其他未闡述之元素或方法步驟。In the terms used in this article, unless the context indicates otherwise, "includes", "includes", "has" or "contains" are inclusive or open-ended and do not exclude other unstated elements or method steps.

本文中所使用之詞彙中,除非上下文另有載明,則「大約」或「約」係指具有接近或可允許的誤差範圍,用於避免本發明所揭示之準確或絕對的數值受未知的第三方非法或非正當使用。因此,除非另有相反的說明,本文中所揭示的數值參數皆為約略的數值,且可視需求而更動。In the words used in this article, unless the context clearly indicates otherwise, "approximately" or "approximately" refers to a close or allowable error range, which is used to avoid the accuracy or absolute numerical values disclosed in the present invention being affected by unknown factors. Illegal or improper use by third parties. Therefore, unless otherwise stated to the contrary, the numerical parameters disclosed in this article are approximate values and may be changed according to needs.

本發明之主要目的係提供一種檢測標的DNA序列基因型是否變異之方法,包含:(a)提供標的DNA序列,具有一待偵測是否變異之基因型;(b)提供複數個第一探針,其中第一探針具有一與標的DNA互補之第一核苷酸序列片段,且第一核苷酸序列片段具有第1端跟第2端,而第一核苷酸序列片段之第1端為欲偵測之變異位點,且第一核苷酸序列片段之第2端接有一數位磁珠,每一數位磁珠對應每一第一核苷酸序列片段之第1端之欲偵測之變異位點資訊;(c)提供複數個第二探針,其中第二探針具有一與標的DNA互補之第二核苷酸序列片段,第二核苷酸序列片段具有第1端跟第2端,第二核苷酸序列片段之第1端帶有一標記,且第二核苷酸序列片段之第2端帶有磷酸根或第一核苷酸序列片段之第1端帶有磷酸根,第一核苷酸序列片段與第二核苷酸序列片段互補於標的DNA之位置相連,而可同時進行雜交及連接反應;(d)去除未能同時進行雜交及連接反應之第一探針及第二探針;及(e)偵測成功雜交及連接反應之第一探針之數位磁珠之變異位點資訊與第二探針之標記,獲得標的DNA序列之基因型變異與否之資訊。The main purpose of the present invention is to provide a method for detecting whether the genotype of a target DNA sequence is mutated, including: (a) providing a target DNA sequence with a genotype to be detected as to whether the genotype is mutated; (b) providing a plurality of first probes , wherein the first probe has a first nucleotide sequence fragment complementary to the target DNA, and the first nucleotide sequence fragment has a 1st end and a 2nd end, and the 1st end of the first nucleotide sequence fragment is the mutation site to be detected, and the second end of the first nucleotide sequence fragment is connected to a digital magnetic bead, and each digital magnetic bead corresponds to the first end of each first nucleotide sequence fragment to be detected. Variation site information; (c) Provide a plurality of second probes, wherein the second probe has a second nucleotide sequence fragment complementary to the target DNA, and the second nucleotide sequence fragment has a first end and a second 2 ends, the first end of the second nucleotide sequence fragment has a label, and the second end of the second nucleotide sequence fragment has a phosphate group or the first end of the first nucleotide sequence fragment has a phosphate group , the first nucleotide sequence fragment and the second nucleotide sequence fragment are connected at positions complementary to the target DNA, so that hybridization and ligation reactions can be performed simultaneously; (d) remove the first probe that cannot perform hybridization and ligation reactions at the same time. and a second probe; and (e) detecting the variation site information of the digital magnetic beads of the first probe and the label of the second probe in the successful hybridization and ligation reaction, and obtaining whether the genotype variation of the target DNA sequence is information.

本發明之另一主要目的係提供一種檢測標的DNA序列基因型是否變異之套組,包含:(1)複數個第一探針,其中第一探針具有一與標的DNA互補之第一核苷酸序列片段,第一核苷酸序列片段具有第1端跟第2端,第一核苷酸序列片段之第1端為欲偵測之變異位點,且第一核苷酸序列片段之第2端接有一數位磁珠,每一數位磁珠對應每一第一核苷酸序列片段之第1端之欲偵測之變異位點資訊;(2)複數個第二探針,其中第二探針具有一與標的DNA互補之第二核苷酸序列片段,第二核苷酸序列片段具有第1端跟第2端,第二核苷酸序列片段之第1端帶有一標記,且第二核苷酸序列片段之第2端帶有磷酸根或第一核苷酸序列片段之第1端帶有磷酸根,第一核苷酸序列片段與第二核苷酸序列片段互補於標的DNA之位置相連,而可同時進行雜交及連接反應;及(3) 反應試劑。Another main object of the present invention is to provide a kit for detecting whether the genotype of a target DNA sequence is mutated, including: (1) a plurality of first probes, wherein the first probe has a first nucleoside complementary to the target DNA Acid sequence fragment, the first nucleotide sequence fragment has a 1st end and a 2nd end, the 1st end of the first nucleotide sequence fragment is the mutation site to be detected, and the 1st end of the first nucleotide sequence fragment is 2 ends are connected with a digital magnetic bead, and each digital magnetic bead corresponds to the mutation site information to be detected at the first end of each first nucleotide sequence fragment; (2) a plurality of second probes, of which the second The probe has a second nucleotide sequence fragment that is complementary to the target DNA. The second nucleotide sequence fragment has a first end and a second end. The first end of the second nucleotide sequence fragment has a label, and the second nucleotide sequence fragment has a first end and a second end. The second end of the dinucleotide sequence fragment has a phosphate group or the first end of the first nucleotide sequence fragment has a phosphate group, and the first nucleotide sequence fragment and the second nucleotide sequence fragment are complementary to the target DNA The position is connected, so that hybridization and ligation reactions can be performed simultaneously; and (3) reaction reagents.

本文中所使用之術語「DNA序列基因型」,係指包含構成生物體內DNA序列的所有基因型態。其中該生物體包含但不限於哺乳類以及非哺乳類,前述哺乳動物包括但不限於:人類、非人靈長類動物、綿羊、狗、鼠類囓齒動物(如:小鼠、大鼠等)、天竺鼠、貓、兔、牛、馬;前述非哺乳動物包括但不限於:雞、兩棲類動物及爬行類動物。The term "DNA sequence genotype" as used herein refers to all genotypes that make up the DNA sequence in an organism. The organisms include but are not limited to mammals and non-mammals. The aforementioned mammals include but are not limited to: humans, non-human primates, sheep, dogs, murine rodents (such as mice, rats, etc.), guinea pigs , cats, rabbits, cattle, horses; the aforementioned non-mammals include but are not limited to: chickens, amphibians and reptiles.

本文中所使用之術語「變異」,係指生物體細胞內的基因於細胞分裂時發生基因複製錯誤,或基因於複製時受化學物質、基因毒性、輻射、病毒等影響所產生的基因變異情形。其中,該變異情形可為單個鹼基改變的點(point)突變,包含同義突變(synonymous mutation)、沉默突變(silent mutation)、錯義突變(missense mutation)、移碼突變(frameshift mutation)、無義突變(nonsense mutation);或多個鹼基改變的大突變,包含缺失(deletion)、重排和插入(insertion),其中重排突變包含重複(duplication)、倒位(inversion)以及易位(translocation)。The term "mutation" used in this article refers to genetic mutations that occur when genes in an organism's cells undergo gene replication errors during cell division, or when genes are replicated by chemical substances, genotoxicity, radiation, viruses, etc. . The mutation may be a point mutation that changes a single base, including synonymous mutation, silent mutation, missense mutation, frameshift mutation, and no mutation. Nonsense mutation; or large mutation of multiple base changes, including deletion, rearrangement and insertion, where rearrangement mutations include duplication, inversion and translocation ( translocation).

本文中所使用之術語「單一核苷酸多型性」,係指因DNA序列中單一鹼基對的變異造成序列中一定位點出現兩個或多個核甘酸結合可能性的情形,且該兩個或多個核甘酸結合可能性的情形係指分布於一特定種群中1%以上的個體中。The term "single nucleotide polymorphism" as used herein refers to the possibility of the binding of two or more nucleotides at a certain position in the sequence due to a single base pair variation in the DNA sequence, and this The probability of binding two or more nucleotides is defined as being distributed among more than 1% of individuals in a given population.

本文中所使用之術語「基因分型分析」,係指透過個體中單一核苷酸多型性之差異達到依個體基因型態分類之分析方式。The term "genotyping analysis" used in this article refers to an analysis method that uses differences in single nucleotide polymorphisms in individuals to classify individuals according to their genotypes.

本文中所使用之術語「探針」,係指可與標的DNA序列專一性互補之核苷酸序列片段,且該核苷酸序列片段具有第1端跟第2端,其中,該第1端可為欲偵測之變異位點(亦即,其最末位置設計為互補於該變異位點),該第2端可接有一數位磁珠,且該數位磁珠可對應核苷酸序列片段之第1端欲偵測之變異位點資訊;或者該第1端可帶有一可經生物素化作用產生螢光之標記,該第2端可帶有磷酸根,可經酵素作用與其他探針進行連接反應。其中該第1端可為3’端或5’端;該第2端可為3’端或5’端。The term "probe" used herein refers to a nucleotide sequence fragment that is specifically complementary to a target DNA sequence, and the nucleotide sequence fragment has a 1st end and a 2nd end, where the 1st end It can be the mutation site to be detected (that is, its last position is designed to be complementary to the mutation site). The second end can be connected to a digital magnetic bead, and the digital magnetic bead can correspond to the nucleotide sequence fragment. The mutation site information to be detected at the first end; or the first end can be equipped with a label that can produce fluorescence through biotinylation, and the second end can be equipped with a phosphate group, which can be detected by enzymes and other methods. needle for ligation reaction. The first end can be a 3' end or a 5' end; the second end can be a 3' end or a 5' end.

本文中所使用之術語「磁珠」,係指帶有磁性之磁性載體,可透過磁性分離技術進行分離,且具備感應磁力並隨之移動的特性,其中,該磁性載體泛指顆粒、磁粒或薄膜型式等感磁性固相載體。依據本發明之一實施例,以顆粒或磁粒狀之磁性載體為較佳的實施態樣,故以下將泛稱磁性載體為「磁珠」,但並非用以限制本發明之磁性分離系統係採用磁珠作為磁性載體。The term "magnetic beads" used in this article refers to magnetic carriers with magnetism that can be separated through magnetic separation technology and have the characteristics of sensing magnetic force and moving accordingly. The magnetic carrier generally refers to particles and magnetic particles. Or thin film type and other magnetically sensitive solid phase carriers. According to one embodiment of the present invention, a magnetic carrier in the form of granules or magnetic particles is a preferred embodiment. Therefore, the magnetic carrier will be generally referred to as "magnetic beads" below, but this is not intended to limit the use of the magnetic separation system of the present invention. Magnetic beads serve as magnetic carriers.

本文中所使用之術語「數位磁珠」,係指於晶圓上蝕刻出特定記號以作為條碼辨識使用之晶圓磁珠,較佳係使用半導體微米等級者,且該晶圓磁珠上帶有對應每一核苷酸序列片段之第1端欲偵測之變異位點資訊,且可經由可見光掃描該資訊,確認其所代表的變異位點。依據本發明之一實施例,該數位磁珠可為穩銀科技股份有限公司所生產之DMB(Digital Molecular Barcode)、瑞慈生物科技股份有限公司所生產之BMB(Barcoded Magnetic Bead)或博錸生技股份有限公司所生產之пCode。The term "digital magnetic beads" used in this article refers to wafer magnetic beads that are etched with specific marks on the wafer for use as barcode identification. Preferably, those using semiconductor micron levels are used, and the wafer magnetic beads have There is information about the mutation site to be detected corresponding to the first end of each nucleotide sequence fragment, and the information can be scanned with visible light to confirm the mutation site it represents. According to an embodiment of the present invention, the digital magnetic beads can be DMB (Digital Molecular Barcode) produced by Wenyin Technology Co., Ltd., BMB (Barcoded Magnetic Bead) produced by Ruici Biotechnology Co., Ltd., or BoRe Biotechnology Co., Ltd. пCode produced by Technology Co., Ltd.

本文中所使用之術語「標記」,係指可經生物素化作用之高敏感性及高特異性之生物標記(biomarker) 。依據本發明之一實施例,該標記可為生物素(biotin)。The term "marker" used herein refers to a highly sensitive and specific biomarker that can be biotinylated. According to an embodiment of the present invention, the label may be biotin.

本文中所使用之術語「雜交」,係指將第一探針所帶有之第一核苷酸序列片段與第二探針所帶有之第二核苷酸序列片段互補於標的DNA位置之過程。The term "hybridization" as used herein refers to the complementary formation of the first nucleotide sequence fragment carried by the first probe and the second nucleotide sequence fragment carried by the second probe to the position of the target DNA. Process.

本文中所使用之術語「連接」,係指將第一探針所帶有之第一核苷酸序列片段之第1端(即3’端)與第二探針所帶有之第二核苷酸序列片段之第2端(即帶有磷酸根之5’端)接合(ligation)的過程;或是將第一探針所帶有之第一核苷酸序列片段之第1端(即帶有磷酸根之5’端)與第二探針所帶有之第二核苷酸序列片段之第2端(即3’端)的過程接合(ligation)的過程。The term "connection" used herein refers to connecting the 1 end (i.e. 3' end) of the first nucleotide sequence fragment carried by the first probe to the second core carried by the second probe. The process of ligating the 2nd end of the nucleotide sequence fragment (i.e., the 5' end with the phosphate group); or the 1st end (i.e., the 1st end of the first nucleotide sequence fragment) carried by the first probe The process of ligation (ligation) between the 5' end (containing phosphate group) and the 2 end (i.e. 3' end) of the second nucleotide sequence fragment carried by the second probe.

本文中所使用之術語「生物素化(biotinylated)」,係指將生物素共價連接到蛋白質、核酸或其它分子上的過程。依據本發明之一實施例,該生物素化可為生物素與鏈親和素(streptavidin, SA) 的結合過程,其中,該鏈親和素之一端帶有螢光。The term "biotinylated" as used herein refers to the process of covalently attaching biotin to proteins, nucleic acids or other molecules. According to an embodiment of the present invention, the biotinylation may be a conjugation process of biotin and streptavidin (streptavidin, SA), wherein one end of the streptavidin is fluorescent.

本文中所使用之術語「反應試劑」,係指包含有可使第一探針所帶有之第一核苷酸序列片段與第二探針所帶有之第二核苷酸序列片段互補於標的DNA位置的雜交試劑;以及使第一探針所帶有之第一核苷酸序列片段之一端與第二探針所帶有之第二核苷酸序列片段之一端進行連接反應的試劑。The term "reaction reagent" used herein refers to a reaction reagent that can make the first nucleotide sequence fragment carried by the first probe and the second nucleotide sequence fragment carried by the second probe complementary to each other. A hybridization reagent for the target DNA position; and a reagent for ligation reaction between one end of the first nucleotide sequence fragment carried by the first probe and one end of the second nucleotide sequence fragment carried by the second probe.

本文中所使用之術語「酵素」,係指可將第一探針所帶有之第一核苷酸序列片段之一端與第二探針所帶有之第二核苷酸序列片段之一端進行接合反應的酵素。依據本發明之一實施例,該酵素可為DNA接合酶(ligase) ,其可藉由形成磷酸雙脂鍵將DNA在3'端的尾端與5'端的前端連在一起,其中該DNA接合酶包含但不限於哺乳類細胞之第I、II、III、IV型之DNA接合酶或T4噬菌體所攜帶的DNA連接酶(T4 DNA ligase)。The term "enzyme" used herein refers to the enzyme that can combine one end of the first nucleotide sequence fragment carried by the first probe with one end of the second nucleotide sequence fragment carried by the second probe. Enzymes for conjugation reactions. According to one embodiment of the present invention, the enzyme can be a DNA ligase (ligase), which can connect the tail end of the 3' end and the front end of the 5' end of the DNA by forming a phospholipid bond, wherein the DNA ligase Including but not limited to DNA ligases of types I, II, III, and IV of mammalian cells or DNA ligase (T4 DNA ligase) carried by T4 phage.

在本發明實施例中,第一探針之第一核甘酸序列片段及/或第二探針之第二核甘酸序列片段長度可為10~100bp,例如20~100bp、30~100bp、40~100bp、50~100bp、60~100bp、70~100bp、80~100bp、90~100bp。於一較佳實施例中,該第一探針之第一核甘酸序列片段及/或第二探針之第二核甘酸序列片段長度為20~100bp,更佳為50~100bp。In embodiments of the present invention, the length of the first nucleotide sequence fragment of the first probe and/or the second nucleotide sequence fragment of the second probe can be 10~100bp, such as 20~100bp, 30~100bp, 40~ 100bp, 50~100bp, 60~100bp, 70~100bp, 80~100bp, 90~100bp. In a preferred embodiment, the length of the first nucleotide sequence fragment of the first probe and/or the second nucleotide sequence fragment of the second probe is 20 to 100 bp, more preferably 50 to 100 bp.

在本發明實施例中,反應試劑之作用時間可為10到60分鐘,例如10到30分鐘、40到60分鐘。於一較佳實施例中,該作用時間為20分鐘。In embodiments of the present invention, the action time of the reaction reagents can be 10 to 60 minutes, such as 10 to 30 minutes, 40 to 60 minutes. In a preferred embodiment, the action time is 20 minutes.

在本發明實施例中,第一探針與第二探針的比例可約為1~3:3~1,例如1:1、2:1、3:1、1:2、1:3。於一較佳實施例中,第一探針與第二探針的比例約為1:1。In embodiments of the present invention, the ratio of the first probe to the second probe may be about 1~3:3~1, such as 1:1, 2:1, 3:1, 1:2, 1:3. In a preferred embodiment, the ratio of the first probe to the second probe is approximately 1:1.

在本發明實施例中,模板與探針的體積比可約為1~3:3~1,例如1:1、2:1、3:1、1:2、1:3。於一較佳實施例中,該模板與探針的體積比約為2:1。In embodiments of the present invention, the volume ratio of the template to the probe can be about 1~3:3~1, such as 1:1, 2:1, 3:1, 1:2, 1:3. In a preferred embodiment, the volume ratio of the template to the probe is approximately 2:1.

因此,本發明透過將第一探針與第二探針同時與標的DNA雜交,兩探針與該標的DNA雜交後由於其中之一探針帶有磷酸根,且反應試劑中含有能使核苷酸序列片段進行接合反應的酵素,因此成功雜交的第一探針與第二探針可進行連結反應,而不會被後續的清洗步驟去除;該成功雜交且連結的第一探針帶有數位磁珠,且第二探針帶有標記且該標記可進一步放大並產生螢光,故以可見光掃描第一探針的數位磁珠,以及以螢光判斷第二探針確認發光,並可視實驗結果訂出螢光閾值,超過該閾值代表該數位磁珠帶有的變異位點有檢出。Therefore, the present invention hybridizes the first probe and the second probe to the target DNA at the same time. After the two probes hybridize to the target DNA, one of the probes has a phosphate group, and the reaction reagent contains a nucleoside capable of The acid sequence fragment is an enzyme that performs the conjugation reaction, so the successfully hybridized first probe and the second probe can undergo the conjugation reaction without being removed by subsequent cleaning steps; the successfully hybridized and connected first probe carries a digital Magnetic beads, and the second probe is labeled and the label can be further amplified and generate fluorescence, so the digital magnetic beads of the first probe are scanned with visible light, and the second probe is judged by fluorescence to confirm the luminescence, and the visual experiment The fluorescence threshold is determined as a result, and exceeding the threshold means that the variant site carried by the digital magnetic beads has been detected.

本發明以下敘述為此技術領域中具通常知識者可輕易明瞭此發明之必要技術內容,倘在不違反其中的精神及範圍下多樣的改變及修飾此發明來適應不同的用途及狀況,如此,其他的實施態樣亦屬於本發明的申請專利範圍。The following description of the present invention means that those with ordinary knowledge in the technical field can easily understand the necessary technical content of the invention. If the invention can be variously changed and modified to adapt to different uses and conditions without violating the spirit and scope thereof, so, Other implementation aspects also fall within the patentable scope of the present invention.

實施例Example 11 :檢測單一: Detect single SNPSNP 位點site (single SNP detection)(single SNP detection)

本實施例以下針對家豬第6號染色體(NCBI Reference Sequence: NC_010448.4)上之第94601670號核苷酸位置的SNP位點其基因型(genotype)進行檢測,該位點之野生型(wild-type)位點為A,突變型(mutation)位點為G,其SNP在該交替基因座(allele)上組合有AA、AG與GG三種型態。In this example, the genotype of the SNP site at nucleotide position 94601670 on domestic pig chromosome 6 (NCBI Reference Sequence: NC_010448.4) is detected. The wild type of this site is -type) site is A, mutation site is G, and its SNP combines three types: AA, AG and GG on this alternating locus (allele).

事前準備Preparation in advance

根據下表1進行探針之設計。Design the probe according to Table 1 below.

表1  探針編號與檢測之SNP位點型態 探針編號 序列 數位磁珠編號 空白探針 核苷酸序列(未耦合(coupling)核苷酸(oligo)之數位磁珠) 0 第一探針 (P1A) GCTCAGGGTCAAGGTGGAAAGGCCA (SEQ ID NO. 1) 3551 第一探針 (P1B) GCTCAGGGTCAAGGTGGAAAGGCCG (SEQ ID NO. 2) 4092 第二探針 (P1S) GGTAGACACATGGAA (SEQ ID NO. 3) N/A Table 1 Probe numbers and detected SNP site types Probe number sequence Digital magnetic bead number blank probe Nucleotide sequence (digital magnetic beads without coupling oligo) 0 First probe (P1A) GCTCAGGGTCAAGGTGGAAAGGCCA (SEQ ID NO. 1) 3551 First probe (P1B) GCTCAGGGTCAAGGTGGAAAGGCCG (SEQ ID NO. 2) 4092 Second probe (P1S) GGTAGACACATGGAA (SEQ ID NO. 3) N/A

其中,第一探針為依據SNP位點多態性類型進行設計,因此若為兩種多態性可將第一探針設計為A與B;三種多態性可設計為A、B與C;四種多態性可設計為A、B、C與D。此處實施例1以兩種多態性為例來進行第一探針之設計,故將第一探針設計為P1A、P1B。然第一探針之設計並不限於此。Among them, the first probe is designed based on the polymorphism type of the SNP site, so if there are two polymorphisms, the first probe can be designed as A and B; the three polymorphisms can be designed as A, B, and C. ; The four polymorphisms can be designed as A, B, C and D. Here, Embodiment 1 uses two polymorphisms as examples to design the first probe, so the first probes are designed as P1A and P1B. However, the design of the first probe is not limited to this.

其中,第二探針為可與第一探針(P1)連接之序列,故將第二探針設計為P1S。The second probe is a sequence that can be connected to the first probe (P1), so the second probe is designed as P1S.

其中,空白探針係作為校正螢光基礎值使用。Among them, the blank probe is used as the basic value for calibrating fluorescence.

根據下表2進行反應試劑的製備。Prepare the reagents according to Table 2 below.

表2  反應試劑配方 組分 含量(μl) 無菌去離子水 12 10X擴增酶反應緩衝液 2 第一探針 P1 (P1A+ P1B) 1 第二探針 P1S 1 空白探針 1 酵素 1 模板 (PCR產物) 2 總計 20 Table 2 Reaction reagent formula Components Content(μl) Sterile deionized water 12 10X amplification enzyme reaction buffer 2 First probe P1 (P1A+ P1B) 1 Second probe P1S 1 blank probe 1 enzyme 1 Template (PCR product) 2 total 20

實驗步驟Experimental steps

1. 將家豬第6號染色體以PCR進行放大,並控制放大的PCR產物片段大小在100-600 bp之間,以作為檢測之模板使用。1. Amplify pig chromosome 6 by PCR, and control the size of the amplified PCR product fragment to be between 100-600 bp to be used as a template for detection.

2. 於PCR產物中加入反應試劑,使模板與反應試劑同時進行雜交與連結反應20分鐘,使該試劑中的第一探針(P1A及P1B)、第二探針(P1S)與模板進行雜交;以及使第一探針(P1 A及P1B)與第二探針(P2S)透過酵素進行連接,產生數位磁珠-核酸-螢光標記產物,以作為螢光分析使用。2. Add reaction reagents to the PCR product, allow the template and reaction reagents to hybridize and connect at the same time for 20 minutes, and allow the first probe (P1A and P1B) and the second probe (P1S) in the reagent to hybridize with the template. ; and connecting the first probe (P1 A and P1B) and the second probe (P2S) through an enzyme to produce a digital magnetic bead-nucleic acid-fluorescent labeling product for use in fluorescence analysis.

3. 以緩衝溶液去除未能與模板進行雜交之第一探針(P1 A及P1B)以及未能與第一探針P1進行連結之第二探針(P1S)。3. Use buffer solution to remove the first probe (P1 A and P1B) that fails to hybridize to the template and the second probe (P1S) that fails to connect to the first probe P1.

4. 以具備螢光分析系統之螢光顯微鏡進行螢光標記之偵測。4. Use a fluorescence microscope equipped with a fluorescence analysis system to detect fluorescent markers.

5. 資料分析,讀取第一探針(P1)其數位磁珠所帶之變異位點資訊。5. Data analysis, read the mutation site information carried by the digital magnetic beads of the first probe (P1).

6. 結果判定,判定檢測標的DNA序列其基因型是否變異。6. Result judgment, determine whether the genotype of the target DNA sequence is mutated.

實驗結果Experimental results

根據螢光顯微鏡之螢光分析偵測結果,讀取第一探針(P1 A及P1B)其數位磁珠變異位點資訊,進行檢測標的DNA序列基因型的判讀,實驗結果如下表3與圖1所示。Based on the fluorescence analysis detection results of the fluorescence microscope, read the digital magnetic bead mutation site information of the first probe (P1 A and P1B) to interpret the genotype of the target DNA sequence. The experimental results are as follows in Table 3 and Figure 1 shown.

表3  家豬第6號染色體之第94601670號核苷酸單一SNP位點基因型檢測結果 樣本編號 數位磁珠編號 磁珠數目 螢光強度(校正)* 探針基因型 樣本基因型 1 3551 423 1247 A A/G 4092 383 1440 G 2 3551 349 0 - GG 4092 438 1617 G 3 3551 430 1570 A AA 4092 462 0 - 4 3551 342 1732 A AA 4092 342 0 - 5 3551 352 1821 A AA 4092 453 0 - 6 3551 360 2277 A A/G 4092 466 1938 G 7 3551 405 0 - GG 4092 448 1706 G 8 3551 396 2225 A AA 4092 410 0 - *:以空白探針校正後螢光強度為0表無偵測到該特定編號之數位磁珠資訊。 Table 3 Genotype detection results of the single SNP site at nucleotide 94601670 on chromosome 6 of domestic pigs Sample number Digital magnetic bead number Number of magnetic beads Fluorescence intensity (corrected)* Probe genotype Sample genotype 1 3551 423 1247 A A/G 4092 383 1440 G 2 3551 349 0 - GG 4092 438 1617 G 3 3551 430 1570 A AA 4092 462 0 - 4 3551 342 1732 A AA 4092 342 0 - 5 3551 352 1821 A AA 4092 453 0 - 6 3551 360 2277 A A/G 4092 466 1938 G 7 3551 405 0 - GG 4092 448 1706 G 8 3551 396 2225 A AA 4092 410 0 - *: The fluorescence intensity after correction with a blank probe is 0, indicating that no digital magnetic bead information of that specific number was detected.

圖1之單一SNP螢光分析偵測照片結果中,以數位磁珠編號0之螢光訊號強度3679,與其它數位磁珠編號0之訊號強度平均後,作為螢光背景校正值後,可發現數位磁珠編號3551其平均螢光訊號強度為4923,較磁珠編號4092之平均螢光訊號強度3662強,可知磁珠編號3551其第一探針與第二探針的雜交與連接反應成功;所有樣本經分析後,可確認樣本1至樣本6其DNA序列基因型。In the single SNP fluorescence analysis detection photo result in Figure 1, the fluorescence signal intensity of digital magnetic bead No. 0, 3679, is averaged with the signal intensity of other digital magnetic beads No. 0, and used as the fluorescence background correction value, it can be found that The average fluorescence signal intensity of digital magnetic bead No. 3551 is 4923, which is stronger than the average fluorescence signal intensity of 3662 of magnetic bead No. 4092. It can be seen that the hybridization and ligation reaction of the first probe and the second probe of magnetic bead No. 3551 is successful; After all samples are analyzed, the DNA sequence genotypes of samples 1 to 6 can be confirmed.

實施例Example 22 :檢測多個: Detect multiple SNPsSNPs 位點site (Multiplex SNPs detection)(Multiplex SNPs detection)

本實施例以下針對家豬其三個SNP位點之基因型(genotype)進行偵測,其中,SNP位點一位於家豬6號染色體(NCBI Reference Sequence: NC_010448.4)上第94601670個核苷酸位置,該位點野生型(wild-type)位點為A,突變型(mutation)位點為G,其SNP在該交替基因座(allele)上組合有AA、AG與GG三種型態;SNP位點二位於家豬15號染色體(NCBI Reference Sequence: NC_010457.5)上第50030058個核苷酸位置,該位點野生型(wild-type)位點為A,突變型(mutation)位點為C,其SNP在該交替基因座(allele)上組合有AA、AC與CC三種型態;SNP位點三位於家豬X染色體(NCBI Reference Sequence: NC_010461.5)上第117766407個核苷酸位置,該位點野生型(wild-type)位點為A,突變型(mutation)位點為G,其SNP在該交替基因座(allele)上組合有AA、AG與GG三種型態。In this example, the genotypes of three SNP sites in domestic pigs are detected. Among them, SNP site 1 is located at the 94601670th nucleotide on chromosome 6 of domestic pigs (NCBI Reference Sequence: NC_010448.4). At the acid position, the wild-type site of this site is A, and the mutation site is G. Its SNP has three types of combinations: AA, AG and GG on the alternating locus (allele); SNP site two is located at the 50030058th nucleotide position on domestic pig chromosome 15 (NCBI Reference Sequence: NC_010457.5). The wild-type site at this site is A and the mutation site. It is C, and its SNP has three combinations of AA, AC and CC on the alternating locus (allele); SNP site three is located at nucleotide 117766407 on the domestic pig X chromosome (NCBI Reference Sequence: NC_010461.5) Position, the wild-type site of this site is A, and the mutation site is G. Its SNP has three types of combinations: AA, AG and GG on the alternating locus (allele).

本實施例同實施例1同樣係以兩種多態性為例來進行第一探針之設計,然與實施例1不同之處在於,本實施例同時偵測3個SNP位點。This embodiment also uses two polymorphisms as examples to design the first probe as in Embodiment 1. However, the difference from Embodiment 1 is that this embodiment detects three SNP sites at the same time.

事前準備Preparation in advance

根據下表4進行探針之設計。Design the probe according to Table 4 below.

表4  探針編號與檢測之SNP位點型態 偵測位點 探針編號 序列 數位磁珠編號 空白探針 核苷酸序列(未耦合(coupling)核苷酸(oligo)之數位磁珠) 0 位點一 第一探針 (P1A) GCTCAGGGTCAAGGTGGAAAGGCCA (SEQ ID NO. 4) 4090 第一探針 (P1B) GCTCAGGGTCAAGGTGGAAAGGCCG (SEQ ID NO. 5) 4085 第二探針 (P1S) GGTAGACACATGGAA (SEQ ID NO. 6) N/A 位點二 第一探針 (P2A) GGACTTGGAAATAGAGAGAATTGGA (SEQ ID NO. 7) 4075 第一探針 (P2B) GGACTTGGAAATAGAGAGAATTGGC (SEQ ID NO. 8) 4055 第二探針 (P2S) AGATGTCATTTTTAT (SEQ ID NO. 9) N/A 位點三 第一探針 (P3A) TTTCAAGCTATAATTTCTGAGTATA (SEQ ID NO. 10) 4015 第一探針 (P3B) TTTCAAGCTATAATTTCTGAGTATG (SEQ ID NO. 11) 3935 第二探針 (P3S) CTTGGCACTCTCTGC (SEQ ID NO. 12) N/A Table 4 Probe numbers and detected SNP site types detection site Probe number sequence Digital magnetic bead number without blank probe Nucleotide sequence (digital magnetic beads without coupling oligo) 0 site one First probe (P1A) GCTCAGGGTCAAGGTGGAAAGGCCA (SEQ ID NO. 4) 4090 First probe (P1B) GCTCAGGGTCAAGGTGGAAAGGCCG (SEQ ID NO. 5) 4085 Second probe (P1S) GGTAGACACATGGAA (SEQ ID NO. 6) N/A site two First Probe (P2A) GGACTTGGAAATAGAGAGAATTGGA (SEQ ID NO. 7) 4075 First Probe (P2B) GGACTTGGAAATAGAGAGAATTGGC (SEQ ID NO. 8) 4055 Second Probe (P2S) AGATGTCATTTTTAT (SEQ ID NO. 9) N/A Site three First Probe (P3A) TTTCAAGCTATAATTTCTGAGTATA (SEQ ID NO. 10) 4015 First Probe (P3B) TTTCAAGCTATAATTTCTGAGTATG (SEQ ID NO. 11) 3935 Second probe (P3S) CTTGGCACTCTCTGC (SEQ ID NO. 12) N/A

此處實施例2以三個SNP位點的偵測為例來進行第一探針之設計,故將第一探針P1設計為P1A、P1B用於偵測SNP位點一;第一探針P2設計為P2A、P2B用於偵測SNP位點二;第一探針P3設計為P3A、P3B用於偵測SNP位點三。然第一探針之設計並不限於此。Here, Example 2 takes the detection of three SNP sites as an example to design the first probe. Therefore, the first probe P1 is designed as P1A and P1B for detecting SNP site one; the first probe P2 is designed as P2A and P2B for detecting SNP site two; the first probe P3 is designed as P3A and P3B for detecting SNP site three. However, the design of the first probe is not limited to this.

此外,設計偵測三個SNP位點之第二探針,第二探針設計為P1S為可與第一探針P1連接之序列,故;第二探針P2S為可與第一探針P2連接之序列\;第二探針P3S為可與第一探針P3連接之序列。In addition, a second probe is designed to detect three SNP sites. The second probe is designed such that P1S is a sequence that can be connected to the first probe P1. Therefore, the second probe P2S is a sequence that can be connected to the first probe P2. The connecting sequence\; the second probe P3S is a sequence that can be connected to the first probe P3.

其中,空白探針係作為校正螢光基礎值使用。Among them, the blank probe is used as the basic value for calibrating fluorescence.

根據下表5進行反應試劑的製備。Prepare the reagents according to Table 5 below.

表5 反應試劑配方 組分 含量 (μl) 無菌去離子水 9 10X擴增酶反應緩衝液 2 第一探針 P1 (P1A+ P1B) 1 第二探針 P1S 1 第一探針 P2 (P2A+ P2B) 1 第二探針 P2S 1 第一探針 P3 (P3A+ P3B) 1 第二探針 P3S 1 酵素 1 模板(多重PCR產物) 2 總計 20 Table 5 Reaction reagent formula Components Content (μl) Sterile deionized water 9 10X amplification enzyme reaction buffer 2 First probe P1 (P1A+ P1B) 1 Second probe P1S 1 First probe P2 (P2A+ P2B) 1 Second probe P2S 1 First probe P3 (P3A+ P3B) 1 Second probe P3S 1 enzyme 1 Template (multiplex PCR product) 2 total 20

實驗步驟Experimental steps

1. 將家豬第6號染色體(NCBI Reference Sequence: NC_010448.4)以多重PCR進行放大,並控制放大的PCR產物片段大小在100-600 bp之間,以作為檢測模板使用。1. Amplify domestic pig chromosome 6 (NCBI Reference Sequence: NC_010448.4) using multiplex PCR, and control the amplified PCR product fragment size to be between 100-600 bp to use as a detection template.

2. 於PCR產物中加入反應試劑,使模板與反應試劑同時進行雜交與連結反應20分鐘,使該試劑中的第一探針(P1、P2、P3)、第二探針(P1S、P2S、P3S)與多個模板進行雜交;以及使第一探針(P1、P2、P3)與第二探針(P1S、P2S、P3S)透過酵素進行連接,產生數位磁珠-核酸-螢光標記產物,以作為螢光分析使用。2. Add reaction reagents to the PCR product, allow the template and reaction reagents to perform hybridization and conjugation reactions at the same time for 20 minutes, so that the first probe (P1, P2, P3) and the second probe (P1S, P2S, P2S, P3S) hybridizes with multiple templates; and the first probe (P1, P2, P3) and the second probe (P1S, P2S, P3S) are connected through enzymes to produce a digital magnetic bead-nucleic acid-fluorescent labeling product , for use as fluorescence analysis.

3. 以緩衝溶液去除未能與模板進行雜交之第一探針(P1、P2、P3)以及未能與第一探針(P1、P2、P3)進行連結之第二探針(P1S、P2S、P3S)。3. Use buffer solution to remove the first probes (P1, P2, P3) that fail to hybridize to the template and the second probes (P1S, P2S) that fail to connect to the first probes (P1, P2, P3). , P3S).

4. 以具備螢光分析系統之螢光顯微鏡進行螢光標記之偵測。4. Use a fluorescence microscope equipped with a fluorescence analysis system to detect fluorescent markers.

5. 資料分析,讀取第一探針(P1、P2、P3)其數位磁珠所帶之變異位點資訊。5. Data analysis, read the mutation site information carried by the digital magnetic beads of the first probe (P1, P2, P3).

6. 結果判定,判定檢測標的DNA序列其基因型是否變異。6. Result judgment, determine whether the genotype of the target DNA sequence is mutated.

實驗結果Experimental results

根據螢光顯微鏡之螢光分析偵測解果,讀取第一探針(P1、P2、P3)其數位磁珠變異位點資訊,進行檢測標的DNA序列基因型的判讀,實驗結果如下表6與圖2所示。Based on the fluorescence analysis detection results of the fluorescence microscope, read the digital magnetic bead mutation site information of the first probe (P1, P2, P3), and interpret the genotype of the target DNA sequence. The experimental results are as follows in Table 6 As shown in Figure 2.

表6  家豬第6號染色體之第94601670號核苷酸多SNPs位點基因型檢測結果 樣本編號 數位磁珠編號 磁珠數目 螢光強度(校正)* 探針基因型 樣本基因型 1 4090 303 1783 A A/G 4085 352 1789 G 4075 355 1278 A AA 4055 342 0 - 4015 345 0 - GG 3935 491 1864 G 2 4090 437 0 - GG 4085 383 1987 G 4075 455 1163 A AA 4055 334 0 - 4015 420 1648 A AG 3935 439 1761 G 3 4090 324 1781 A AG 4085 462 1725 G 4075 468 1314 A AG 4055 389 1631 G 4015 388 1897 A AA 3935 329 0 - 4 4090 306 1879 A AG 4085 380 1720 G 4075 489 1348 A AA 4055 475 0 - 4015 475 0 - GG 3935 315 1419 G 5 4090 405 1650 A AG 4085 451 1820 G 4075 460 1789 A AC 4055 499 1605 G 4015 448 1685 A AG 3935 425 1330 G *:以空白探針校正後螢光強度為0表無偵測到該特定編號之數位磁珠資訊。 Table 6 Genotype detection results of the 94601670 nucleotide multi-SNPs site on chromosome 6 of domestic pigs Sample number Digital magnetic bead number Number of magnetic beads Fluorescence intensity (corrected)* Probe genotype Sample genotype 1 4090 303 1783 A A/G 4085 352 1789 G 4075 355 1278 A AA 4055 342 0 - 4015 345 0 - GG 3935 491 1864 G 2 4090 437 0 - GG 4085 383 1987 G 4075 455 1163 A AA 4055 334 0 - 4015 420 1648 A AG 3935 439 1761 G 3 4090 324 1781 A AG 4085 462 1725 G 4075 468 1314 A AG 4055 389 1631 G 4015 388 1897 A AA 3935 329 0 - 4 4090 306 1879 A AG 4085 380 1720 G 4075 489 1348 A AA 4055 475 0 - 4015 475 0 - GG 3935 315 1419 G 5 4090 405 1650 A AG 4085 451 1820 G 4075 460 1789 A AC 4055 499 1605 G 4015 448 1685 A AG 3935 425 1330 G *: The fluorescence intensity after correction with a blank probe is 0, indicating that no digital magnetic bead information of that specific number was detected.

圖2之為本實施例樣品5之多個SNPs位點之螢光分析偵測照片中,以空白探針(數位磁珠編號0,僅於圖2中呈現)之螢光訊號強度3627,與其它數位磁珠編號0之訊號強度平均後,作為螢光背景校正值後,可發現數位磁珠編號4075、4055、3935 、4015之螢光訊號強度較強,因此可知該等編號磁珠之第一探針與第二探針之雜交及連接反應成功;另數位磁珠編號4090因其平均螢光訊號強度為5292,較接近背景值,可知其探針之雜交及連接反應與模板間的反應較差,故可做為判斷基因型之參考,由此可確認樣本1至5DNA序列基因型。Figure 2 is a photo of fluorescence analysis and detection of multiple SNPs sites in sample 5 of this embodiment. The fluorescence signal intensity of the blank probe (digital magnetic bead number 0, only shown in Figure 2) is 3627, and After averaging the signal intensities of other digital bead numbers 0 and using them as fluorescence background correction values, it can be found that the fluorescence signal intensities of digital bead numbers 4075, 4055, 3935, and 4015 are stronger, so it can be known that the number of these numbered beads is The hybridization and ligation reaction between one probe and the second probe was successful; the other digital magnetic bead number 4090 has an average fluorescence signal intensity of 5292, which is closer to the background value. It can be seen that the hybridization and ligation reaction of the probe and the reaction between the template It is poor, so it can be used as a reference to determine the genotype, so that the genotype of the DNA sequence of samples 1 to 5 can be confirmed.

綜上所述,相較於習知的SNP檢測方式,本發明可同時進行多點SNP檢測,大幅提高SNP的檢測效率;且不須使用肽核酸(Peptide nucleic acid, PNA)以及鎖核酸(Locked nucleic acid, LNA),大幅降低檢測成本;另亦可使用多種類型之數位磁珠或是自行設計磁珠,達到降低檢測成本或是客製化之效;此外,本發明之方法不限於SNP檢測,亦可應用於其他DNA序列之基因型變異之測定,如點突變、插入突變、缺失突變、重排突變或移碼突變,應用範圍廣泛。In summary, compared with the conventional SNP detection methods, the present invention can detect multiple SNPs at the same time, greatly improving the detection efficiency of SNP; and does not require the use of peptide nucleic acid (PNA) and locked nucleic acid (Locked). nucleic acid, LNA), greatly reducing detection costs; in addition, various types of digital magnetic beads can also be used or self-designed magnetic beads can be used to reduce detection costs or achieve customization; in addition, the method of the present invention is not limited to SNP detection , and can also be applied to the determination of genotypic variation in other DNA sequences, such as point mutations, insertion mutations, deletion mutations, rearrangement mutations or frameshift mutations, with a wide range of applications.

以上已將本發明做一詳細說明,惟以上所述者僅為本發明之一較佳實施態樣與實施例而已,並非用以此限定本發明之範圍,即任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內當可進行之均等變化與修飾,皆仍屬本發明所涵蓋的保護範圍。The present invention has been described in detail above, but what is described above is only one of the preferred implementation modes and examples of the present invention, and is not intended to limit the scope of the present invention. That is, any person with common knowledge in the technical field However, equivalent changes and modifications that can be made without departing from the spirit and scope of the invention still fall within the protection scope of the invention.

without

圖1係單一SNP位點之螢光分析偵測照片。Figure 1 is a photo of a single SNP site detected by fluorescence analysis.

圖 2 係多個SNPs位點之螢光分析偵測照片。Figure 2 is a photo of fluorescence analysis detection of multiple SNPs sites.

無。without.

                                  序列表
          <![CDATA[<110>  中國文化大學]]>
          <![CDATA[<120>  一種檢測標的DNA序列基因型是否變異之方法]]>
          <![CDATA[<160>  12    ]]>
          <![CDATA[<170>  PatentIn version 3.5]]>
          <![CDATA[<210>  1]]>
          <![CDATA[<211>  25]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  探針]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  未知_特徵]]>
          <![CDATA[<222>  (1)..(25)]]>
          <![CDATA[<400>  1]]>
          gctcagggtc aaggtggaaa ggcca                                             25
          <![CDATA[<210>  2]]>
          <![CDATA[<211>  25]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  探針]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  未知_特徵]]>
          <![CDATA[<222>  (1)..(25)]]>
          <![CDATA[<400>  2]]>
          gctcagggtc aaggtggaaa ggccg                                             25
          <![CDATA[<210>  3]]>
          <![CDATA[<211>  15]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  探針]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  未知_特徵]]>
          <![CDATA[<222>  (1)..(15)]]>
          <![CDATA[<400>  3]]>
          ggtagacaca tggaa                                                        15
          <![CDATA[<210>  4]]>
          <![CDATA[<211>  25]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  探針]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  未知_特徵]]>
          <![CDATA[<222>  (1)..(25)]]>
          <![CDATA[<400>  4]]>
          gctcagggtc aaggtggaaa ggcca                                             25
          <![CDATA[<210>  5]]>
          <![CDATA[<211>  25]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  探針]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  未知_特徵]]>
          <![CDATA[<222>  (1)..(25)]]>
          <![CDATA[<400>  5]]>
          gctcagggtc aaggtggaaa ggccg                                             25
          <![CDATA[<210>  6]]>
          <![CDATA[<211>  15]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  探針]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  未知_特徵]]>
          <![CDATA[<222>  (1)..(15)]]>
          <![CDATA[<400>  6]]>
          ggtagacaca tggaa                                                        15
          <![CDATA[<210>  7]]>
          <![CDATA[<211>  25]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  探針]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  未知_特徵]]>
          <![CDATA[<222>  (1)..(25)]]>
          <![CDATA[<400>  7]]>
          ggacttggaa atagagagaa ttgga                                             25
          <![CDATA[<210>  8]]>
          <![CDATA[<211>  25]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  探針]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  未知_特徵]]>
          <![CDATA[<222>  (1)..(25)]]>
          <![CDATA[<400>  8]]>
          ggacttggaa atagagagaa ttggc                                             25
          <![CDATA[<210>  9]]>
          <![CDATA[<211>  15]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  探針]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  未知_特徵]]>
          <![CDATA[<222>  (1)..(15)]]>
          <![CDATA[<400>  9]]>
          agatgtcatt tttat                                                        15
          <![CDATA[<210>  10]]>
          <![CDATA[<211>  25]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  探針]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  未知_特徵]]>
          <![CDATA[<222>  (1)..(25)]]>
          <![CDATA[<400>  10]]>
          tttcaagcta taatttctga gtata                                             25
          <![CDATA[<210>  11]]>
          <![CDATA[<211>  25]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  探針]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  未知_特徵]]>
          <![CDATA[<222>  (1)..(25)]]>
          <![CDATA[<400>  11]]>
          tttcaagcta taatttctga gtatg                                             25
          <![CDATA[<210>  12]]>
          <![CDATA[<211>  15]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  探針]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  未知_特徵]]>
          <![CDATA[<222>  (1)..(15)]]>
          <![CDATA[<400>  12]]>
          cttggcactc tctgc                                                        15
                                   sequence list
          <![CDATA[<110> Chinese Culture University]]>
          <![CDATA[<120> A method to detect whether the target DNA sequence genotype is mutated]]>
          <![CDATA[<160> 12 ]]>
          <![CDATA[<170> PatentIn version 3.5]]>
          <![CDATA[<210> 1]]>
          <![CDATA[<211> 25]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> artificial sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> probe]]>
          <![CDATA[<220>]]>
          <![CDATA[<221> Unknown_Characteristics]]>
          <![CDATA[<222> (1)..(25)]]>
          <![CDATA[<400> 1]]>
          gctcagggtc aaggtggaaa ggcca 25
          <![CDATA[<210> 2]]>
          <![CDATA[<211> 25]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> artificial sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> probe]]>
          <![CDATA[<220>]]>
          <![CDATA[<221> Unknown_Characteristics]]>
          <![CDATA[<222> (1)..(25)]]>
          <![CDATA[<400> 2]]>
          gctcagggtc aaggtggaaa ggccg 25
          <![CDATA[<210> 3]]>
          <![CDATA[<211> 15]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> artificial sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> probe]]>
          <![CDATA[<220>]]>
          <![CDATA[<221> Unknown_Characteristics]]>
          <![CDATA[<222> (1)..(15)]]>
          <![CDATA[<400> 3]]>
          ggtagacaca tggaa 15
          <![CDATA[<210> 4]]>
          <![CDATA[<211> 25]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> artificial sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> probe]]>
          <![CDATA[<220>]]>
          <![CDATA[<221> Unknown_Characteristics]]>
          <![CDATA[<222> (1)..(25)]]>
          <![CDATA[<400> 4]]>
          gctcagggtc aaggtggaaa ggcca 25
          <![CDATA[<210> 5]]>
          <![CDATA[<211> 25]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> artificial sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> probe]]>
          <![CDATA[<220>]]>
          <![CDATA[<221> Unknown_Characteristics]]>
          <![CDATA[<222> (1)..(25)]]>
          <![CDATA[<400> 5]]>
          gctcagggtc aaggtggaaa ggccg 25
          <![CDATA[<210> 6]]>
          <![CDATA[<211> 15]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> artificial sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> probe]]>
          <![CDATA[<220>]]>
          <![CDATA[<221> Unknown_Characteristics]]>
          <![CDATA[<222> (1)..(15)]]>
          <![CDATA[<400> 6]]>
          ggtagacaca tggaa 15
          <![CDATA[<210> 7]]>
          <![CDATA[<211> 25]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> artificial sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> probe]]>
          <![CDATA[<220>]]>
          <![CDATA[<221> Unknown_Characteristics]]>
          <![CDATA[<222> (1)..(25)]]>
          <![CDATA[<400> 7]]>
          ggacttggaa atagagagaa ttgga 25
          <![CDATA[<210> 8]]>
          <![CDATA[<211> 25]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> artificial sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> probe]]>
          <![CDATA[<220>]]>
          <![CDATA[<221> Unknown_Characteristics]]>
          <![CDATA[<222> (1)..(25)]]>
          <![CDATA[<400> 8]]>
          ggacttggaa atagagagaa ttggc 25
          <![CDATA[<210> 9]]>
          <![CDATA[<211> 15]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> artificial sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> probe]]>
          <![CDATA[<220>]]>
          <![CDATA[<221> Unknown_Characteristics]]>
          <![CDATA[<222> (1)..(15)]]>
          <![CDATA[<400> 9]]>
          agatgtcatttttat 15
          <![CDATA[<210> 10]]>
          <![CDATA[<211> 25]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> artificial sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> probe]]>
          <![CDATA[<220>]]>
          <![CDATA[<221> Unknown_Characteristics]]>
          <![CDATA[<222> (1)..(25)]]>
          <![CDATA[<400> 10]]>
          tttcaagcta taatttctga gtata 25
          <![CDATA[<210> 11]]>
          <![CDATA[<211> 25]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> artificial sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> probe]]>
          <![CDATA[<220>]]>
          <![CDATA[<221> Unknown_Characteristics]]>
          <![CDATA[<222> (1)..(25)]]>
          <![CDATA[<400> 11]]>
          tttcaagcta taatttctga gtatg 25
          <![CDATA[<210> 12]]>
          <![CDATA[<211> 15]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> artificial sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> probe]]>
          <![CDATA[<220>]]>
          <![CDATA[<221> Unknown_Characteristics]]>
          <![CDATA[<222> (1)..(15)]]>
          <![CDATA[<400> 12]]>
          cttggcactc tctgc 15
          
      

Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0001

Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0002

Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0003

Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0004

Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0005

Claims (11)

一種檢測標的DNA序列基因型是否變異之方法,包含:(a)提供該標的DNA序列,該標的DNA序列具有一待偵測是否變異之基因型;(b)提供複數個第一探針,其中該第一探針具有一與該標的DNA互補之第一核苷酸序列片段,該第一核苷酸序列片段具有第1端跟第2端,該第一核苷酸序列片段之該第1端為欲偵測之變異位點,且該第一核苷酸序列片段之第2端接有一數位磁珠,每一數位磁珠對應每一該第一核苷酸序列片段之第1端之欲偵測之變異位點資訊;(c)提供複數個第二探針,其中該第二探針具有一與該標的DNA互補之第二核苷酸序列片段,該第二核苷酸序列片段具有第1端跟第2端,該第二核苷酸序列片段之該第1端帶有一標記,且該第二核苷酸序列片段之該第2端帶有磷酸根或該第一核苷酸序列片段之第1端帶有磷酸根,該第一核苷酸序列片段與該第二核苷酸序列片段互補於標的DNA之位置相連,而可同時進行雜交及連接反應;(d)去除未能同時進行雜交及連接反應之第一探針及第二探針;及(e)偵測成功雜交及連接反應之第一探針之數位磁珠之變異位點資訊與第二探針之標記,獲得該標的DNA序列之基因型變異與否之資訊。 A method for detecting whether the genotype of a target DNA sequence is mutated, including: (a) providing the target DNA sequence, which has a genotype to be detected as to whether the genotype is mutated; (b) providing a plurality of first probes, wherein The first probe has a first nucleotide sequence fragment that is complementary to the target DNA. The first nucleotide sequence fragment has a first end and a second end. The first nucleotide sequence fragment of the first nucleotide sequence fragment has a first end and a second end. The end is the mutation site to be detected, and the second end of the first nucleotide sequence fragment is connected to a digital magnetic bead, and each digital magnetic bead corresponds to the first end of each first nucleotide sequence fragment. Information on the mutation site to be detected; (c) providing a plurality of second probes, wherein the second probe has a second nucleotide sequence fragment that is complementary to the target DNA, and the second nucleotide sequence fragment Having a 1st end and a 2nd end, the 1st end of the second nucleotide sequence fragment has a label, and the 2nd end of the second nucleotide sequence fragment has a phosphate group or the first nucleoside The first end of the acid sequence fragment has a phosphate group, and the first nucleotide sequence fragment and the second nucleotide sequence fragment are complementary to the position of the target DNA, so that hybridization and ligation reactions can be performed at the same time; (d) removal The first probe and the second probe that cannot perform hybridization and ligation reactions at the same time; and (e) detect the variation site information of the first probe and the second probe’s digital magnetic beads that successfully hybridize and ligate the reaction. Mark to obtain information on whether the genotype of the target DNA sequence varies or not. 如請求項1之方法,其中該第一核苷酸序列片段之該第1端為3’端,該第一核苷酸序列片段之該第2端為5’端,且其中該第二核苷酸序列片段之該第1端為3’端,該第二核苷酸序列片段之該第2端為5’端並帶有磷酸根。 The method of claim 1, wherein the first end of the first nucleotide sequence fragment is the 3' end, the second end of the first nucleotide sequence fragment is the 5' end, and wherein the second core The first end of the nucleotide sequence fragment is the 3' end, and the second end of the second nucleotide sequence fragment is the 5' end and contains a phosphate group. 如請求項1之方法,其中該第一核苷酸序列片段之該第1端為5’端,該第一核苷酸序列片段之該第2端為3’端,且其中該第二核苷酸序列片段之該第1端為5’端並帶有磷酸根,該第二核苷酸序列片段之該第2端為3’端。 The method of claim 1, wherein the first end of the first nucleotide sequence fragment is the 5' end, the second end of the first nucleotide sequence fragment is the 3' end, and wherein the second core The first end of the nucleotide sequence fragment is the 5' end and contains a phosphate group, and the second end of the second nucleotide sequence fragment is the 3' end. 如請求項1至3任一項之方法,其中該第一核苷酸序列片段及/或該第二核苷酸序列片段之長度介於20~100bp。 The method of any one of claims 1 to 3, wherein the length of the first nucleotide sequence fragment and/or the second nucleotide sequence fragment is between 20 and 100 bp. 如請求項4之方法,其中該,其中該第一核苷酸序列片段及/或該第二核苷酸序列片段之長度介於50~100bp。 The method of claim 4, wherein the length of the first nucleotide sequence fragment and/or the second nucleotide sequence fragment is between 50 and 100 bp. 如請求項5之方法,其中該標記為可經生物素化(biotinylated)作用達到螢光發光之生物標記。 The method of claim 5, wherein the marker is a biomarker that can be biotinylated to achieve fluorescence. 如請求項1至3任一項之方法,其中該步驟(a)~(c)係可同時進行。 If the method of claim 1 to 3 is any one, the steps (a) ~ (c) can be performed simultaneously. 如請求項1至3任一項之方法,其中該第一探針與該第二探針之添加比例為1:1。 The method of claim 1 to 3, wherein the adding ratio of the first probe to the second probe is 1:1. 如請請求項1至3任一項之方法,其中該DNA序列基因型變異包含、點(point)突變、插入(insertion)突變、缺失(deletion)突變、重排突變或移碼(frameshift)突變。 Please request the method of any one of items 1 to 3, wherein the DNA sequence genotypic variation includes point mutation, insertion mutation, deletion mutation, rearrangement mutation or frameshift mutation. . 如請求項1至3任一項之方法,其可用於進行單一核苷酸多型性(single nucleotide polymorphism,SNP)之基因分型分析。 The method according to any one of claims 1 to 3 can be used to perform genotyping analysis of single nucleotide polymorphism (SNP). 一種檢測標的DNA序列基因型是否變異之套組,其包含:(1)至少一第一探針,其中該第一探針具有一與該標的DNA互補之第一核苷酸序列片段,該第一核苷酸序列片段具有第1端跟第2端,該第一核苷酸序列片段之該第1端為欲偵測之變異位點,且該第一核苷酸序列片段之第2端接有一數位磁珠,每一數位磁珠對應每一該第一核苷酸序列片段之第1端之欲偵測之變異位點資訊;(2)一第二探針,其中該第二探針具有一與該標的DNA互補之第二核苷酸序列片段,該第二核苷酸序列片段具有第1端跟第2端,該第二核苷酸序列片段之該第1端帶有一標記,且該第二核苷酸序列片段之該第2端帶有磷酸根或該第一核 苷酸序列片段之第1端帶有磷酸根,該第一核苷酸序列片段與該第二核苷酸序列片段互補於標的DNA之位置相連,而可同時進行雜交及連接反應;及(3)反應試劑,其包含一酵素,用以於適當條件下催化該連接反應。 A kit for detecting whether the genotype of a target DNA sequence is mutated, which includes: (1) at least one first probe, wherein the first probe has a first nucleotide sequence fragment complementary to the target DNA, and the first probe A nucleotide sequence fragment has a 1st end and a 2nd end, the 1st end of the first nucleotide sequence fragment is the mutation site to be detected, and the 2nd end of the first nucleotide sequence fragment Connected with a digital magnetic bead, each digital magnetic bead corresponds to the mutation site information to be detected at the first end of each first nucleotide sequence fragment; (2) a second probe, wherein the second probe The needle has a second nucleotide sequence fragment that is complementary to the target DNA. The second nucleotide sequence fragment has a 1st end and a 2nd end. The 1st end of the second nucleotide sequence fragment has a label. , and the second end of the second nucleotide sequence fragment has a phosphate group or the first core The first end of the nucleotide sequence fragment has a phosphate group, and the first nucleotide sequence fragment and the second nucleotide sequence fragment are complementary to each other at the position of the target DNA, so that hybridization and ligation reactions can be performed simultaneously; and (3) ) reaction reagent, which contains an enzyme for catalyzing the ligation reaction under appropriate conditions.
TW110135314A 2021-09-23 2021-09-23 Method for detecting genotypic variation of a target dna sequence TWI817200B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110135314A TWI817200B (en) 2021-09-23 2021-09-23 Method for detecting genotypic variation of a target dna sequence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110135314A TWI817200B (en) 2021-09-23 2021-09-23 Method for detecting genotypic variation of a target dna sequence

Publications (2)

Publication Number Publication Date
TW202313983A TW202313983A (en) 2023-04-01
TWI817200B true TWI817200B (en) 2023-10-01

Family

ID=86943325

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110135314A TWI817200B (en) 2021-09-23 2021-09-23 Method for detecting genotypic variation of a target dna sequence

Country Status (1)

Country Link
TW (1) TWI817200B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449169B (en) * 2009-04-01 2016-03-16 德克斯特里蒂诊断公司 The probe amplification (CLPA) of chemistry join dependency
US9709559B2 (en) * 2000-06-21 2017-07-18 Bioarray Solutions, Ltd. Multianalyte molecular analysis using application-specific random particle arrays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9709559B2 (en) * 2000-06-21 2017-07-18 Bioarray Solutions, Ltd. Multianalyte molecular analysis using application-specific random particle arrays
CN102449169B (en) * 2009-04-01 2016-03-16 德克斯特里蒂诊断公司 The probe amplification (CLPA) of chemistry join dependency

Also Published As

Publication number Publication date
TW202313983A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
AU2014308980B2 (en) Assays for single molecule detection and use thereof
DK2623613T3 (en) Increasing the reliability of the allele-indications by molecular counting
JP2021006028A (en) Multiplex detection of nucleic acids
JP5249581B2 (en) Nucleic acid isolation and amplification method
AU2011305445B2 (en) Direct capture, amplification and sequencing of target DNA using immobilized primers
US6709816B1 (en) Identification of alleles
JPH06505394A (en) Nucleic acid classification by polymerase extension of oligonucleotides using terminator complexes
EP3612641A1 (en) Compositions and methods for library construction and sequence analysis
CN102373265B (en) Kit for detecting hereditary hearing loss
KR20120024873A (en) Sample analysis method and assay kit for use in the method
US20140017688A1 (en) Compositions and Methods for Diagnosing Cancer
CN111154754A (en) Probe set for analyzing DNA sample and method for using the same
US20150322526A1 (en) Composition, kit, and method for diagnosing adhd risk
US20240060066A1 (en) Method for the clustering of dna sequences
AU2021359279B2 (en) Nucleic acid library construction method and application thereof in analysis of abnormal chromosome structure in preimplantation embryo
US6638719B1 (en) Genotyping biallelic markers
WO2016070164A1 (en) Assays for single molecule detection and use thereof
TWI817200B (en) Method for detecting genotypic variation of a target dna sequence
US20220136043A1 (en) Systems and methods for separating decoded arrays
EP3924510A1 (en) Method of determining the origin of nucleic acids in a mixed sample
WO2013085026A1 (en) Method for detecting nucleotide mutation, and detection kit
TWI707864B (en) Oligonucleotide microarray for detection of canine mdr1 gene mutations and determination method thereof and method for determination of the risk of chemotherapy side effects to a subject