TWI816432B - A bacillus safensis strain providing beneficial effects on growth performance and health, and application thereof - Google Patents

A bacillus safensis strain providing beneficial effects on growth performance and health, and application thereof Download PDF

Info

Publication number
TWI816432B
TWI816432B TW111121963A TW111121963A TWI816432B TW I816432 B TWI816432 B TW I816432B TW 111121963 A TW111121963 A TW 111121963A TW 111121963 A TW111121963 A TW 111121963A TW I816432 B TWI816432 B TW I816432B
Authority
TW
Taiwan
Prior art keywords
cdata
strain
aforementioned
growth
group
Prior art date
Application number
TW111121963A
Other languages
Chinese (zh)
Other versions
TW202348795A (en
Inventor
胡紹揚
劉俊宏
Original Assignee
國立屏東科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立屏東科技大學 filed Critical 國立屏東科技大學
Priority to TW111121963A priority Critical patent/TWI816432B/en
Application granted granted Critical
Publication of TWI816432B publication Critical patent/TWI816432B/en
Publication of TW202348795A publication Critical patent/TW202348795A/en

Links

Landscapes

  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Fodder In General (AREA)

Abstract

本發明係提供一種沙福桿菌(Bacillus safensis),其係寄存於台灣新竹食品工業發展研究所生物資源保存及研究中心,寄存日期為民國111年6月10日,寄存編號為BCRC 911134。本發明亦提供一種該沙福桿菌菌株作為益生菌餵食水產養殖生物之用途,藉此可促進水產養殖生物之營養代謝與生長表現,亦可改善其腸道微生物相,同時可提昇先天免疫功能,降低病原菌感染後的存活率。 The present invention provides Bacillus safensis, which is deposited at the Biological Resource Preservation and Research Center of the Food Industry Development Institute in Hsinchu, Taiwan. The deposit date is June 10, 2011, and the deposit number is BCRC 911134. The present invention also provides a use of the Salfordella strain as a probiotic to feed aquaculture organisms, thereby promoting the nutritional metabolism and growth performance of aquaculture organisms, improving the intestinal microbial phase, and improving the innate immune function. Reduce the survival rate after pathogenic bacteria infection.

Description

一種強化魚類成長與健康效益之沙福芽孢桿菌及其應用 A kind of Bacillus sulfaensis that enhances the growth and health benefits of fish and its application

本發明係關於一種沙福桿菌( Bacillus safensis),其可作為益生菌餵食水產養殖生物,可促進營養代謝與生長表現,改善腸道微生物相,同時可提昇免疫功能,降低病原菌感染後的存活率。 The invention relates to Bacillus safensis , which can be used as a probiotic to feed aquaculture organisms, which can promote nutritional metabolism and growth performance, improve intestinal microbial phase, improve immune function, and reduce the survival rate after pathogenic bacteria infection. .

由於海洋資源的浩劫以及世界人口劇增,目前捕撈漁業的漁獲量已達上限,為了滿足人類的食用需求,近年來世界各地水產養殖的重要性逐漸提高。根據聯合國糧農組織(FAO)2018年的報告顯示,水產養殖佔漁業總產量的53%,產值達2320億美元(參見非專利文獻1)。Due to the catastrophe of marine resources and the rapid increase in the world's population, the current catch of capture fisheries has reached the upper limit. In order to meet human food needs, the importance of aquaculture around the world has gradually increased in recent years. According to a 2018 report by the Food and Agriculture Organization of the United Nations (FAO), aquaculture accounts for 53% of total fishery production, with an output value of US$232 billion (see non-patent document 1).

水產養殖業者經常會事先使用抗菌藥物以預防疾病的發生,但過度使用時往往會形成嚴重的負面效應,細菌可能因此產生抗藥性,導致抗菌藥物對病原菌失去抑制的功效,或殘留在水產動物體內無法排除,對生態環境造成重大影響,從而引發水產養殖品的質量安全問題。當人們進食的同時亦有可能把抗菌藥物攝入並累積在體內,如此便會對人類造成危害之風險。因此必須找出能夠取代抗菌藥物使用之方法,已成為當下最重要的議題,而使用益生菌係一項值得關注的方法。Aquaculture operators often use antibacterial drugs in advance to prevent the occurrence of diseases. However, excessive use often leads to serious negative effects. Bacteria may develop resistance to the antibiotics, causing the antibacterial drugs to lose their inhibitory effect on pathogenic bacteria, or remain in the bodies of aquatic animals. It cannot be ruled out that it will have a significant impact on the ecological environment, thus causing quality and safety issues in aquaculture products. When people eat, they may also ingest and accumulate antibacterial drugs in their bodies, which may pose a risk of harm to humans. Therefore, it is necessary to find a method that can replace the use of antibacterial drugs, which has become the most important issue at present, and the use of probiotics is a method worthy of attention.

生物防治法中,使用從自然界分離之益生菌,係對環境影響較小,且可減少抗藥性菌株產生之風險,為替代抗生素預防疾病的有效策略之一。此外,對於多種病原菌皆具有拮抗能力亦為益生菌非常重要的特性之一。在水產養殖領域中,以乳酸菌與芽孢桿菌的應用最為廣泛,此乃因為此等益生菌可產生之水解酶 (例如植酸酶、纖維酶、蛋白酶及木聚糖酶) 可提昇養分利用率,且因其長期使用於哺乳動物,故安全無虞。此外,專利文獻1及2亦分別揭示了可作為益生菌使用的水生色桿菌菌株JS-1(Chromobacterium aquaticum)及魯梅利桿菌株BST-01(Rummeliibacillus stabekisii)。In the biological control method, the use of probiotics isolated from nature has less impact on the environment and can reduce the risk of the emergence of drug-resistant strains. It is one of the effective strategies to replace antibiotics in preventing diseases. In addition, the ability to fight various pathogenic bacteria is also one of the very important characteristics of probiotics. In the field of aquaculture, lactic acid bacteria and Bacillus are the most widely used. This is because the hydrolytic enzymes (such as phytase, fiberase, protease and xylanase) produced by these probiotics can improve nutrient utilization. And because it has been used on mammals for a long time, it is safe. In addition, Patent Documents 1 and 2 respectively disclose Chromobacterium aquaticum strain JS-1 (Chromobacterium aquaticum) and Rummeliibacillus stabekisii strain BST-01 (Rummeliibacillus stabekisii) that can be used as probiotics.

前述芽孢桿菌屬( Bacillusspp.),由於能夠產生對胃腸道的低pH值具有抵抗性的內生孢子,因此經常作為益生菌使用(參見非專利文獻2)。儘管芽孢桿菌屬( Bacillus)已被廣泛用作水產養殖的益生菌被廣泛用作水產養殖中的益生菌,但到目前為止,對於該菌屬中之沙福桿菌( Bacillus safensis)作為水產養殖中益生菌的相關揭露仍極少。Zhang等人的研究(參照非專利文獻3)雖提及沙福桿菌,但在其研究中作為發酵飼料品之膳食補充而使用的益生菌,為多種菌株之混合物,該研究中並未單獨探討任一沙福桿菌作為益生菌之效果,且該研究僅揭露該混合益生菌對南美白蝦(Penaeus vannamei)之效果。 [先前技術文獻] The aforementioned Bacillus spp. can produce endospores that are resistant to the low pH value of the gastrointestinal tract, and therefore is often used as a probiotic (see Non-Patent Document 2). Although the genus Bacillus has been widely used as a probiotic in aquaculture, so far, Bacillus safensis in this genus has not been used as a probiotic in aquaculture. Relevant disclosures about probiotics are still minimal. Although the study by Zhang et al. (see Non-Patent Document 3) mentions Salfobacillus spp., the probiotics used as dietary supplements for fermented feed products in their study are a mixture of multiple strains and were not separately discussed in this study. The effect of any Sulfobacterium as a probiotic, and this study only revealed the effect of the mixed probiotic on Penaeus vannamei. [Prior technical literature]

[專利文獻1]中華民國專利公開號 202143852 [專利文獻2]中華民國專利公開號 202022108 [Patent Document 1] Republic of China Patent Publication No. 202143852 [Patent Document 2] Republic of China Patent Publication No. 202022108

〔非專利文獻1〕 FAO, The State of World Fisheries and Aquaculture, Meeting the Sustainable Development Goals Rome, Licence: CC BY-NC-SA 3.0 IGO, 2018. [Non-patent document 1] FAO, The State of World Fisheries and Aquaculture, Meeting the Sustainable Development Goals Rome, License: CC BY-NC-SA 3.0 IGO, 2018.

〔非專利文獻2〕 Kuebutornye, F., Abarike, E., & Lu, Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish & Shellfish Immunology, 87, 820-828. [Non-patent document 2] Kuebutornye, F., Abarike, E., & Lu, Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish & Shellfish Immunology, 87, 820-828.

〔非專利文獻3〕 Zhang, M.; Pan, L.; Fan, D.; He, J.; Su, C.; Gao, S.; Zhang, M. Study of fermented feed by mixed strains and their effects on the survival, growth, digestive enzyme activity and intestinal flora of Penaeus vannamei. Aquaculture 2021 530, 735703. [Non-patent document 3] Zhang, M.; Pan, L.; Fan, D.; He, J.; Su, C.; Gao, S.; Zhang, M. Study of fermented feed by mixed strains and their effects on the survival, growth, digestive enzyme activity and intestinal flora of Penaeus vannamei. Aquaculture 2021 530, 735703.

本發明鑑於上述問題,目的在於提供一種可替代抗生素及化學藥劑使用之的益生菌,期望其具有調節免疫功能的效果,藉此優勢廣泛應用於多種病害之防治。進一步地,為追求產量提昇及飼料效益,亦期望該益生菌兼具促進養殖生物營養代謝及生長表現之功效。 In view of the above problems, the purpose of the present invention is to provide a probiotic that can replace antibiotics and chemical agents. It is expected that it has the effect of regulating immune function and can be widely used in the prevention and treatment of various diseases. Furthermore, in order to pursue increased production and feed efficiency, it is also expected that the probiotics can have the effect of promoting the nutritional metabolism and growth performance of cultured organisms.

本發明經發明人深入研究,發現由吳郭魚腸道中分離出之沙福桿菌菌株(Bacillus safensis)NPUST1(以下亦簡稱為沙福桿菌菌株NPUST1或NPUST1),其具有分泌蛋白酶、澱粉酶及脂酶等多種水解酶之能力,係具潛力做為水產養殖應用之益生菌。且該菌株可提昇吳郭魚先天免疫表現,強化對病原菌之抗病能力。 After in-depth research by the inventor of the present invention, it was discovered that Bacillus safensis NPUST1 (hereinafter also referred to as Bacillus safensis strain NPUST1 or NPUST1) isolated from the intestine of tilapia has the ability to secrete protease, amylase and lipase. With the ability of various hydrolytic enzymes such as enzymes, it has the potential to be used as a probiotic for aquaculture applications. Moreover, this strain can improve the innate immune performance of tilapia and strengthen its resistance to pathogenic bacteria.

因此,本發明提供以下技術手段。 Therefore, the present invention provides the following technical means.

一種沙福桿菌菌株(Bacillus safensis),其特徵係該沙福桿菌菌株寄存於台灣新竹食品工業發展研究所生物資源保存及研究中心,寄存日期為民國111年6月10日,寄存編號為BCRC 911134。 A Bacillus safensis strain ( Bacillus safensis ), characterized by the fact that the Bacillus safensis strain is deposited at the Biological Resource Preservation and Research Center of the Food Industry Development Institute in Hsinchu, Taiwan. The deposit date is June 10, 2011, and the deposit number is BCRC 911134. .

一種前述沙福桿菌菌株作為飼料添加物的用途,該飼料添加物係用於水產養殖魚類。 Use of the aforementioned Salfobacillus strain as a feed additive, the feed additive being used for aquaculture fish.

在部分實施型態中,前述飼料添加物係用於提昇水產養殖魚類之營養代謝。在部分實施型態中,前述飼料添加物係用於提昇水產養殖魚類之生長表現。在部分實施型態中,前述飼料添加物係用於提昇水產養殖魚類之先天免疫力。 In some embodiments, the aforementioned feed additives are used to improve the nutritional metabolism of aquaculture fish. In some implementation forms, the aforementioned feed additives are used to improve the growth performance of aquaculture fish. In some embodiments, the aforementioned feed additives are used to enhance the innate immunity of aquaculture fish.

在部分實施型態中,前述提昇水產養殖魚類之營養代謝,係指提昇飼料轉換率(FE)。 In some implementation forms, the aforementioned improvement of nutritional metabolism of aquaculture fish refers to improvement of feed conversion rate (FE).

在部分實施型態中,前述提昇水產養殖魚類之營養代謝,係指提昇營養代謝相關基因的表現,前述營養代謝相關基因為葡萄糖激酶(glucokinase,GK)或葡萄糖6-磷酸酶(glucose-6-phosphatase,G6Pase)。 In some implementation forms, the aforementioned improvement of nutritional metabolism of aquaculture fish refers to improving the expression of nutritional metabolism-related genes. The aforementioned nutritional metabolism-related genes are glucokinase (GK) or glucose-6-phosphatase (glucose-6-phosphatase). phosphatase, G6Pase).

在部分實施型態中,前述提昇水產養殖魚類之生長表現,係指提昇體重、提昇特定生長率(SGR)或生長相關基因的表現,前述生長相關基因為生長激素受體(growth hormone receptor,GHR)或第一型類胰島素生長因子(insulin-like growth factor-1,IFG-1)。 In some implementation forms, the aforementioned improvement of the growth performance of aquaculture fish refers to the improvement of body weight, specific growth rate (SGR) or the performance of growth-related genes. The aforementioned growth-related genes are growth hormone receptors (GHR). ) or type 1 insulin-like growth factor (insulin-like growth factor-1, IFG-1).

在部分實施型態中,前述提昇水產養殖魚類之先天免疫力,係指提昇先天免疫相關基因的表現,前述先天免疫相關基因為介白素-1β(Interleukin-1β,IL-1β)、介白素-8(Interleukin-8,IL-8)、腫瘤壞死因子(Tumor necrosis factor-α, TNF-α)或溶菌酶(Lysozyme,LYZ)。In some implementation forms, the aforementioned improvement of the innate immunity of aquaculture fish refers to the improvement of the expression of innate immunity-related genes. The aforementioned innate immunity-related genes are interleukin-1β (IL-1β), interleukin-1β, and interleukin-1β. Interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α) or lysozyme (LYZ).

在部分實施型態中,前述飼料添加物係用於提昇水產養殖魚類對鏈球菌S.iniaee之抗病能力。In some embodiments, the aforementioned feed additives are used to improve the disease resistance of aquaculture fish to Streptococcus S.iniaee.

在部分實施型態中,前述飼料添加物係用於增加水產養殖魚類腸道微生物相中益生菌之比例,且前述益生菌為 Bacillus licheniformisLactococcus lactis In some embodiments, the feed additive is used to increase the proportion of probiotics in the intestinal microbial phase of aquaculture fish, and the probiotics are Bacillus licheniformis or Lactococcus lactis .

在部分實施型態中,前述飼料添加物係用於降低水產養殖魚類腸道微生物相中病原菌之比例,且前述病原菌為 Aeromonas veronii 、Aeromonas jandaei 、Enterovibrio nigricansc或 Enterovibrio coraliiIn some embodiments, the aforementioned feed additive is used to reduce the proportion of pathogenic bacteria in the intestinal microbial phase of aquaculture fish, and the aforementioned pathogenic bacteria are Aeromonas veronii , Aeromonas jandaei , Enterovibrio nigricans c or Enterovibrio coralii .

將本發明之沙福桿菌菌株NPUST1作為水產養殖業上之飼料補充物來使用,可提高水產養殖魚類體內之營養代謝而促進飼料轉換效率,並提高生長表現。此外,本發明之沙福桿菌菌株作為飼料補充物使用時,可促進先天免疫力,進而提高對病原菌之抗病能力。同時,本發明之沙福桿菌菌株提供了改善魚類腸道微生物相的效果,可增加腸道微生物相中益生菌比例並減少病原菌比例。The use of the Salfordella strain NPUST1 of the present invention as a feed supplement in the aquaculture industry can improve the nutritional metabolism of aquaculture fish, promote feed conversion efficiency, and improve growth performance. In addition, when used as a feed supplement, the Salfordella strain of the present invention can promote innate immunity and thereby improve disease resistance against pathogenic bacteria. At the same time, the Salfordella strain of the present invention provides the effect of improving the intestinal microbial phase of fish, increasing the proportion of probiotics and reducing the proportion of pathogenic bacteria in the intestinal microbial phase.

以下揭示本發明實施方式,其並非限制本發明必須以下述方式實施,而係為了闡釋本發明之詳細內容與實施之效果。The following discloses the embodiments of the present invention, which does not limit the present invention to be implemented in the following manner, but is intended to illustrate the details and implementation effects of the present invention.

〔菌株之篩選〕[Screening of bacterial strains]

首先,對源自台灣屏東當地養殖池的六條吳郭魚進行腸道組織採樣,將腸道組織均質後,於28℃TSB培養基中隔夜培養,再取培養物至另一新鮮的培養基中以45℃條件培養2天,誘導產內孢子菌的孢子形成。隨後進行20分鐘的80℃水浴,將不產內孢子菌消滅,並進一步分離出單一菌株。藉由將86個分離菌株(isolates)培養於篩選性瓊脂平板,從所有分離菌株中篩選潛在益生菌。篩選後,獲得一具有較強烈的蛋白酶、澱粉酶、纖維素酶和木聚糖酶活性,可能為有潛力之益生菌的菌株(參照圖1與後述實施例1),故將該菌株命名為NPUST1菌株,並經由台灣新竹食品工業發展研究所生物資源保存及研究中心(Bioresource Collection and Research Center)進行後述生化特徵及16S rDNA親緣關係鑑定。First, the intestinal tissues of six tilapia from local breeding ponds in Pingtung, Taiwan were sampled. After the intestinal tissues were homogenized, they were cultured in TSB medium at 28°C overnight, and then the culture was taken into another fresh medium. Incubate at 45°C for 2 days to induce sporulation of endosporogenic bacteria. This was followed by a 20-minute 80°C water bath to eliminate the non-endospore-producing bacteria and further isolate a single strain. Potential probiotics were screened from all isolates by culturing them on screening agar plates. After screening, a strain with strong protease, amylase, cellulase and xylanase activities was obtained, which may be a potential probiotic (refer to Figure 1 and Example 1 described below), so the strain was named NPUST1 strain, and the following biochemical characteristics and 16S rDNA genetic relationship identification were conducted by the Bioresource Collection and Research Center of Hsinchu Food Industry Development Research Institute in Taiwan.

〔菌株之生化特徵鑑定〕[Identification of biochemical characteristics of bacterial strains]

沙福桿菌菌株NPUST1之特徵分析結果顯示,在生物化學特性上,該菌株為好氧且具運動性的產內孢子革蘭陽性桿菌。該菌株具有強烈的蛋白酶、澱粉酶、纖維素酶和木聚糖酶活性。同時,該菌株亦具有過氧化氫酶、β-半乳糖苷酶及明膠酶活性,且可發酵多種碳水化合物,包括例如L-阿拉伯糖、D-核糖、D-木糖、D-半乳糖、D-葡萄糖、D-果糖、D-甘露糖、D-甘露醇。 D-纖維雙糖、D-麥芽糖、D-蔗糖、D-海藻糖及D-塔格糖。The characterization results of the Salfordella strain NPUST1 showed that in terms of biochemical characteristics, the strain is an aerobic and motile endospore-producing Gram-positive bacillus. This strain has strong protease, amylase, cellulase and xylanase activities. At the same time, this strain also has catalase, β-galactosidase and gelatinase activities, and can ferment a variety of carbohydrates, including, for example, L-arabinose, D-ribose, D-xylose, D-galactose, D-glucose, D-fructose, D-mannose, D-mannitol. D-cellobiose, D-maltose, D-sucrose, D-trehalose and D-tagatose.

沙福桿菌菌株NPUST1能分泌上述多種酵素,因此對於提昇動物的營養代謝及生長表現具有正向的效果,這是由於此等酵素有利於飼料中的大分子降解為腸道內易於消化吸收的形式,從而提高飼料中營養成分的利用率。The Sulfobacterium strain NPUST1 can secrete the above-mentioned enzymes, so it has a positive effect on improving the nutritional metabolism and growth performance of animals. This is because these enzymes help degrade macromolecules in the feed into forms that are easy to digest and absorb in the intestines. , thereby improving the utilization of nutrients in feed.

16S rDNA 序列分析結果16S rDNA sequence analysis results

對NPUST1的16S rDNA進行定序,並與NCBI GenBank資料庫中已知的細菌16S rDNA序列比對,根據比對結果,該序列(GenBank 登錄號:OL477428,SEQ ID NO:1)與沙福桿菌PgKB20(GenBank 登錄號:CP043404.1)有99%的相似度。根據BLAST結果,NPUST1與Bacillus safensis PgKB20有99%的相似性。根據16S rDNA序列建立親緣樹(參照圖2),親緣樹顯示NPUST1屬於沙福桿菌。The 16S rDNA of NPUST1 was sequenced and compared with the known bacterial 16S rDNA sequence in the NCBI GenBank database. According to the comparison results, the sequence (GenBank accession number: OL477428, SEQ ID NO: 1) is identical to that of Sulfobacter sp. PgKB20 (GenBank accession number: CP043404.1) has 99% similarity. According to the BLAST results, NPUST1 is 99% similar to Bacillus safensis PgKB20. A genetic tree was established based on the 16S rDNA sequence (refer to Figure 2), and the genetic tree showed that NPUST1 belonged to Salfobacterium.

以下實施例以吳郭魚為試驗動物模型,評估沙福桿菌菌株NPUST1作為益生菌餵食魚類之效果。The following examples use tilapia as a test animal model to evaluate the effect of Salfordella strain NPUST1 as a probiotic fed to fish.

〔吳郭魚動物模型之建立〕 [Establishment of tilapia animal model]

為建立吳郭魚試驗動物模型,在試驗開始前,從台灣屏東當地魚場購入吳郭魚,於含有120L淡水之150L玻璃魚缸中先行適應性飼養7天。該飼養設施已通過國際實驗動物管理評鑑及認證協會(Association for Assessment and Accreditation of Laboratory Animal Care International, AAALAC)認證。飼養過程中,每周將30%的飼養水共更換3次以保持飼養品質。在適應期及後續餵食試驗期中,飼養水環境條件為:水溫保持於28 ± 1 °C, pH 保持於6.7 ± 0.2,溶氧量保持於6.1 ± 0.45 mg/L。後述各實施例中的試驗方案皆符合試驗當地之動物福利規定,且經國立屏東科技大學之實驗動物照護及使用委員會批准(批准號:NPUST‐107‐063)。In order to establish a tilapia experimental animal model, before the start of the experiment, tilapia were purchased from a local fish farm in Pingtung, Taiwan, and were adaptively raised in a 150L glass fish tank containing 120L fresh water for 7 days. The breeding facility has been certified by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC). During the feeding process, 30% of the feeding water was replaced three times a week to maintain the feeding quality. During the adaptation period and the subsequent feeding test period, the feeding water environment conditions were as follows: water temperature was maintained at 28 ± 1 °C, pH was maintained at 6.7 ± 0.2, and dissolved oxygen was maintained at 6.1 ± 0.45 mg/L. The experimental protocols in each of the following examples were in compliance with the animal welfare regulations of the place where the experiment was conducted, and were approved by the Laboratory Animal Care and Use Committee of the National Pingtung University of Science and Technology (Approval Number: NPUST-107-063).

將平均體重為0.55 ± 0.042g的360條吳郭魚隨機分配為對照組、G1組、G2組及G3組共四組。每組共90隻,各為三重複獨立飼養於120L玻璃魚缸(30隻/缸),且各缸具有獨立的再循環系統。如表1所示,各試驗中,對照組被餵食基礎飲食飼料,G1組、G2組及G3組則分別被餵食不同含量的含NPUST1之飼料,含量分別為10 5CFU/g、10 6CFU/g及10 7CFU/g。各組每日餵食兩次,飼料的餵食量約為魚體重的5%。試驗期間,每兩週秤重一次,並因應體重變化調整餵食量。試驗期間,每日清理魚缸,並於餵食後1小時收集未被食用的飼料,從而確認飼料之攝取量。經飼料餵食8週後,對各組魚進行生長表現數值、消化酶活性、先天免疫相關數值、營養或免疫相關基因表現的分析,並進行鏈球菌攻擊試驗(Challenge experiment)及腸道微生物相分析。 360 tilapia with an average weight of 0.55 ± 0.042g were randomly assigned into four groups: control group, G1 group, G2 group and G3 group. There are 90 fish in each group, each with three replicates and independently raised in a 120L glass fish tank (30 fish/tank), and each tank has an independent recirculation system. As shown in Table 1, in each experiment, the control group was fed basic diet feed, and the G1, G2, and G3 groups were fed different contents of NPUST1-containing feed, with the contents being 10 5 CFU/g and 10 6 CFU respectively. /g and 10 7 CFU/g. Each group was fed twice a day, and the amount of feed was approximately 5% of the fish's body weight. During the trial, the animals were weighed every two weeks and the feeding amount was adjusted according to changes in body weight. During the test period, the fish tank was cleaned every day and uneaten feed was collected 1 hour after feeding to confirm the feed intake. After 8 weeks of feeding, the fish in each group were analyzed for growth performance values, digestive enzyme activities, innate immunity-related values, nutritional or immune-related gene expressions, and streptococcal challenge experiments and intestinal microbial phase analysis were conducted. .

表1 原料 配方(g/Kg) 對照組 G1組 G2組 G3組 沙福桿菌菌株NPUST1 0 10 8CFU 10 9CFU 10 10CFU 魚粉 50 50 50 50 大豆粉 300 300 300 300 粗麥粉 161 161 161 161 米糠 300 300 300 300 α‐澱粉 60 60 60 60 纖維素 70 70 70 70 脫脂乳 10 10 10 10 大豆油 30 30 30 30 礦物質混合物 16 16 16 16 維生素混合物 3 3 3 3 主成分 粗蛋白質 236.1 234.0 236.1 230.1 粗脂質 103.5 104.8 102.1 101.6 水分 96.8 96.2 93.8 96.5 灰份 65.9 64.9 66.1 64.2 Table 1 raw material Formula (g/Kg) control group G1 group G2 group G3 group Sarfordella strain NPUST1 0 10 8 CFU 10 9 CFU 10 10 CFU fishmeal 50 50 50 50 soy flour 300 300 300 300 couscous 161 161 161 161 rice bran 300 300 300 300 α‐starch 60 60 60 60 cellulose 70 70 70 70 Skim milk 10 10 10 10 Soybean oil 30 30 30 30 mineral mixture 16 16 16 16 vitamin mixture 3 3 3 3 main ingredient crude protein 236.1 234.0 236.1 230.1 crude lipid 103.5 104.8 102.1 101.6 Moisture 96.8 96.2 93.8 96.5 Ash 65.9 64.9 66.1 64.2

〔試驗接種用鏈球菌菌液之製備〕[Preparation of Streptococcus bacterial liquid for test inoculation]

關於後述實施例之中作為試驗用病原菌使用的鏈球菌( Streptococcus iniae)樣本,其製備方式如下:將保存之鏈球菌菌種,由 -80℃冷凍櫃中拿出,首先吸取0.5 mL之菌液至50 mL之TSB培養液中,在28℃下培養12小時後,吸取1 mL之菌液至100 mL之TSB培養液中,在28℃下活化12小時。藉由例行試驗方式測定培養液之吸光值OD600 nm,並進行經序列稀釋菌液的培養與菌數計算。藉由計算結果,建立橫軸為吸光值OD600 nm且縱軸為菌種濃度 (CFU/mL)的標準曲線。後述實施例中,根據此標準曲線配置試驗用菌液。 Regarding the Streptococcus iniae samples used as test pathogens in the examples described below, the preparation method is as follows: take out the stored Streptococcus strains from the -80°C freezer, and first absorb 0.5 mL of bacterial liquid. into 50 mL of TSB culture medium, and incubate at 28°C for 12 hours. Then add 1 mL of bacterial liquid to 100 mL of TSB culture medium, and activate at 28°C for 12 hours. The absorbance value OD600 nm of the culture solution was measured through routine experiments, and the serially diluted bacterial solution was cultured and the number of bacteria was calculated. Through the calculation results, a standard curve was established with the horizontal axis being the absorbance value OD600 nm and the vertical axis being the bacterial concentration (CFU/mL). In the examples described below, the bacterial solution for testing is prepared based on this standard curve.

〔營養補充品(沙福桿菌菌株NPUST1)之製備〕 下述各實施例中,沙福桿菌菌株NPUST1作為營養補充品添加於飼料時,是藉由以下方式製備:將沙福桿菌菌株NPUST1加入100mL TSB培養基,於28℃、175rpm下培養16小時。再將該培養液在4℃下離心(6000×g,15分鐘),收集細菌細胞。將所收集細菌顆粒以磷酸鹽緩衝液(PBS)重複洗淨3次後,重新懸浮於無菌水中,使其濃度為1×10 9CFU/mL。將懸浮液添加於基礎飼料,以製備具有不同含量之沙福桿菌菌株NPUST1的試驗用飼料。前述試驗用飼料之原料與主成分組成如表1所示。表1中礦物質混合物與維生素混合物,為從長興食品化工原料股份有限公司(台灣)所購入者。將原料充分混合後,以鎚碎機研磨,並以80目篩網(150 μm)過篩。將混合物以攪拌機攪拌而形成硬糰狀物,藉由研磨機(模徑3mm)使該糰狀物形成粒徑約1cm之顆粒。在37℃下乾燥至水份為約10%後,貯藏於4℃供後述試驗使用。同時,在進行餵養試驗期間,每兩周在TSB培養基平板上進行一次計數,監控飼料中菌株之存活率。 [Preparation of nutritional supplement (Sulfobacterium strain NPUST1)] In each of the following examples, when Sulfobacterium strain NPUST1 is added to feed as a nutritional supplement, it is prepared in the following manner: Add Sulfobacterium strain NPUST1 to 100 mL TSB medium, incubate at 28°C and 175rpm for 16 hours. The culture solution was centrifuged at 4°C (6000×g, 15 minutes) to collect bacterial cells. The collected bacterial particles were washed three times with phosphate buffer saline (PBS) and then resuspended in sterile water to a concentration of 1×10 9 CFU/mL. The suspension was added to the basal feed to prepare test feeds with different contents of Salfordella strain NPUST1. The raw materials and main component compositions of the aforementioned test feeds are shown in Table 1. The mineral mixture and vitamin mixture in Table 1 were purchased from Changxing Food Chemical Raw Materials Co., Ltd. (Taiwan). After the raw materials are thoroughly mixed, they are ground with a hammer mill and sieved with an 80 mesh screen (150 μm). The mixture was stirred with a mixer to form a hard mass, and the mass was formed into particles with a particle size of about 1 cm using a grinder (die diameter: 3 mm). After drying at 37°C until the moisture content is about 10%, store at 4°C for use in the tests described later. At the same time, during the feeding trial, counts were performed on the TSB medium plate every two weeks to monitor the survival rate of the strains in the feed.

〔營養代謝、生長及免疫功能相關基因表現量之分析〕 後述各實施例中關於營養代謝、生長及免疫功能相關基因表現量的分析,係藉由以下步驟執行:因應各實施例之分析需求,收集魚隻的血液、肝臟、脾臟或頭腎組織樣本。使用TriPure萃取套組(Roche,德國)抽取RNA。以超微量分光光度計檢測RNA濃度,檢測後使用iScript TMcDNA Synthesis Kit(Bio-Rad ,美國)將1μg RNA轉為cDNA並放置於-20 ℃保存。之後以表2所列各指標基因之對應引子,進行定量PCR(qPCR),檢測營養代謝、生長以及免疫相關基因的表現量。前述定量PCR使用KAPA SYBR FAST qPCR Master Mix套組(KR0389,KAPA,美國),PCR程序條件設定為:60℃反應2分鐘,95℃反應10分鐘,再進行40個循環,循環條件為95℃15秒、60℃1分鐘。以延伸因子(EF-1α)基因的表現量作為內部對照組(internal control),將各基因標準化為相對表現量,並表示為平均值±標準誤差(SE)。 [Analysis of Expression Levels of Genes Related to Nutritional Metabolism, Growth and Immune Function] The analysis of expression levels of genes related to nutritional metabolism, growth and immune function in each of the examples described below is performed by the following steps: In response to the analysis needs of each example, Collect blood, liver, spleen or head kidney tissue samples from the fish. RNA was extracted using a TriPure extraction kit (Roche, Germany). The RNA concentration was detected with an ultramicrovolume spectrophotometer. After detection, 1 μg of RNA was converted into cDNA using iScript TM cDNA Synthesis Kit (Bio-Rad, USA) and stored at -20°C. Then, quantitative PCR (qPCR) was performed using the corresponding primers of each indicator gene listed in Table 2 to detect the expression of nutritional metabolism, growth and immune-related genes. The aforementioned quantitative PCR uses the KAPA SYBR FAST qPCR Master Mix kit (KR0389, KAPA, USA). The PCR program conditions are set as follows: 60°C for 2 minutes, 95°C for 10 minutes, and then 40 cycles. The cycle conditions are 95°C for 15 minutes. seconds, 60°C for 1 minute. The expression level of the elongation factor (EF-1α) gene was used as the internal control, and each gene was normalized to the relative expression level and expressed as the mean ± standard error (SE).

表2 基因 引子序列 (5’→ 3’) 參考序列 擴增子 大小 (bp) 序列編號(SEQ ID NO:) 葡萄糖激酶 (GK) GCAGCGAGGAAGCCATGAAGA XM_003451020 101bp 2 GAGGTCCCTGACGACTTTGTGG 3 葡萄糖6- 磷酸酶(G6Pase) AGCGCGAGCCTGAAGAAGTACT XM_003448671 107bp 4 ATGGTCCACAGCAGGTCCACAT 5 生長激素受體 (GHR) GAATACAAGTCCTTCCGGGCTAA AY973232 100bp 6 CTCATACTCCACACGCATCCA 7 第一型類胰島素生長因子(IGF-1) TGTCTGCCAGTAAGGATGTTCTTG EU272149 100bp 8 GGCTTTCCACGCCACTTAAC 9 腫瘤壞死因子-α (TNF-α) CCAGAAGCACTAAAGGCGAAGA AY428948 82bp 10 CCTTGGCTTTGCTGCTGATC 11 介白素-1β (IL-1β) TGTCGCTCTGGGCATCAA KJ574402 63bp 12 GGCTTGTCGTCATCCTTGTGA 13 介白素-8 (IL-8) CCTCGAGAAGGTGGATGTGAA GQ355864 100bp 14 CATGAGACCCAGGGCATCA 15 溶菌酶(LYZ) GCCTGACCGAACATGAGTCA LC012581 100bp 16 CACCAGCGGCTATTTATCTGAA 17 延伸因子- 1α (EF-1α) CCACACAGTGCCCATCTACGA EU887951 111bp 18 CCACGCTCTGTCAGGATCTTCA 19 Table 2 Gene Primer sequence (5'→ 3') reference sequence Amplicon size (bp) SEQ ID NO: Glucokinase (GK) GCAGCGAGGAAGCCATGAAGA XM_003451020 101bp 2 GAGGTCCCTGACGACTTTGTGG 3 Glucose 6- phosphatase (G6Pase) AGCGCGAGCCTGAAGAAGTACT XM_003448671 107bp 4 ATGGTCCAGCAGGTCCACAT 5 growth hormone receptor (GHR) GAATACAAGTCCTTCCGGGCTAA AY973232 100bp 6 CTCATACTCCACACGCATCCA 7 Insulin-like growth factor type 1 (IGF-1) TGTCTGCCAGTAAGGATGTTCTTG EU272149 100bp 8 GGCTTTCCACGCCACTTAAC 9 Tumor necrosis factor-alpha (TNF-alpha) CCAGAAGCACTAAAGGCGAAGA AY428948 82bp 10 CCTTGGCTTTGCTGCTGATC 11 Interleukin-1β (IL-1β) TGTCGCTCTGGGCATCAA KJ574402 63bp 12 GGCTTGTCGTCATCCTTGTGA 13 Interleukin-8 (IL-8) CCTCGAGAAGGTGGATGTGAA GQ355864 100bp 14 CATGAGACCCAGGGCATCA 15 Lysozyme (LYZ) GCCTGACCGAACATGAGTCA LC012581 100bp 16 CACCAGCGGCTATTTATCTGAA 17 Elongation factor-1α (EF-1α) CCACACAGTGCCCATCTACGA EU887951 111bp 18 CCACGCTCTGTCAGGATCTTCA 19

後述各實施例中所獲得之試驗數據,以one-way ANOVA進行統計分析。根據分析結果進一步以 Tukey's multiple comparison test 進行組別間差異顯著性檢測(p<0.05)。鏈球菌攻擊試驗中的累積存活率,則以Kaplan–Meier法分析。數據分析時使用SAS軟體(賽仕電腦軟體,美國)。The test data obtained in each example described below were statistically analyzed by one-way ANOVA. According to the analysis results, Tukey's multiple comparison test was further used to detect the significance of differences between groups (p<0.05). The cumulative survival rate in the streptococcal challenge test was analyzed by the Kaplan–Meier method. SAS software (SAS Computer Software, USA) was used for data analysis.

實施例1:沙福桿菌菌株NPUST1酵素活性之評估Example 1: Evaluation of enzyme activity of Sarfordella strain NPUST1

本實施例中,以TSB作為基礎培養基,分別加入0.5 %脫脂乳(蛋白酶測試用)、0.2%澱粉(澱粉酶測試用)、0.5%羧甲基纖維素(纖維素酶測試用)、1%木聚糖(木聚醣酶測試用),製作成測試用平板培養基。將沙福桿菌菌株NPUST1接種於各培養基後,培養24小時,再以例行試驗步驟,將澱粉酶測試用培養基以5%碘液染色,並將纖維素酶測試用培養基及木聚醣酶測試用培養基另以0.4%剛果紅溶液染色。在已培養24小時的各培養基中,接種孔外圍的透明區域會反映營養物質是否已被代謝,因此可顯示菌株分泌的各酵素之活性。 In this example, TSB was used as the basic culture medium, and 0.5 % skim milk (for protease test), 0.2% starch (for amylase test), 0.5% carboxymethyl cellulose (for cellulase test), 1% xylan (for xylanase test), made of Plate media for testing. After inoculating the Salfordella strain NPUST1 into each culture medium, culture it for 24 hours, and then follow the routine test steps to stain the amylase test medium with 5% iodine solution, and stain the cellulase test medium and xylanase test The culture medium was stained with 0.4% Congo red solution. In each culture medium that has been cultured for 24 hours, the transparent area around the inoculation hole will reflect whether the nutrients have been metabolized, and therefore can display the activity of each enzyme secreted by the strain.

圖1係表示培養48小時後之菌株酵素活性特性分析結果。圖中培養基分別代表:(a)為 蛋白酶測試;(b)澱粉酶測試;(c) 纖維素酶測試;(d) 木聚醣酶測試。各培養基中,中上NC代表負對照組( Escherichia coli),左下PC代表正對照組 ( Bacillus amyloliquefaciensR8);右下為本發明之沙福桿菌菌株NPUST1。 Figure 1 shows the analysis results of the enzyme activity characteristics of the strain after 48 hours of culture. The culture media in the figure respectively represent: (a) protease test; (b) amylase test; (c) cellulase test; (d) xylanase test. In each culture medium, NC in the upper middle represents the negative control group ( Escherichia coli ), PC in the lower left represents the positive control group ( Bacillus amyloliquefaciens R8); and the lower right represents the Salfordella strain NPUST1 of the present invention.

分析結果顯示,本發明之沙福桿菌菌株NPUST1與正對照組相比,有相近的蛋白酶活性,以及相對較高的澱粉酶、纖維素酶及木聚糖酶活性。The analysis results show that compared with the positive control group, the Salfordella strain NPUST1 of the present invention has similar protease activity and relatively high amylase, cellulase and xylanase activities.

實施例2:沙福桿菌菌株NPUST1提昇生長表現之效果Example 2: Effect of Sarfordella strain NPUST1 on improving growth performance

根據前述餵食試驗期間所測定之體重(BW)等數值,計算對照組及G1~G3組之增重(WG)、特定生長率(SGR)、飼料效益(FE)及存活率(SR)。計算公式如下: 增重(WG)=最終體重-初始體重 特定生長率(SGR)=(ln最終體重-ln體重)×100/試驗持續時間(天) 飼料轉換率(FE)=(最終體重-初始體重)/飼料攝入量 存活率(SR)=100×(最終試驗魚數量)/(初始試驗魚數量) Based on the body weight (BW) and other values measured during the aforementioned feeding test, the weight gain (WG), specific growth rate (SGR), feed efficiency (FE) and survival rate (SR) of the control group and G1~G3 groups were calculated. The calculation formula is as follows: Weight gain (WG) = final weight – initial weight Specific growth rate (SGR) = (ln final body weight - ln body weight) × 100/test duration (days) Feed conversion ratio (FE) = (final body weight – initial body weight)/feed intake Survival rate (SR)=100×(final number of test fish)/(initial number of test fish)

餵食8週後之各組成長表現數值如表3所示,表3中數值為三重複之平均值±標準誤差(S.E.),上標字母表示各組別間是否有顯著差異。結果顯示,各組間存活率無顯著差異,顯示沙福桿菌菌株NPUST1的投予對吳郭魚為無害。餵食含有10 6CFU/g與10 7CFU/g NPUST1菌株之G2組及G3組,吳郭魚之體重增長(WG)分別為0.87 ± 0.114 g與1.02 ± 0.111 g,顯著高於G1組(0.71± 0.025 g)及未餵食對照組的0.75± 0.020 g。同樣地,G2組及G3組的特定生長率(SGR)及飼料轉換率(FE)也顯著高於對照組。G2組與G3組之間的WG、FE及SGR則無顯著差異。此結果證實本發明菌株具有促進生長表現之效果。 The growth performance values of each group after 8 weeks of feeding are shown in Table 3. The values in Table 3 are the mean ± standard error (SE) of three replicates. The superscript letters indicate whether there are significant differences between each group. The results showed that there was no significant difference in the survival rate between the groups, indicating that administration of the Sarfordella strain NPUST1 was harmless to tilapia. When fed the G2 and G3 groups containing 10 6 CFU/g and 10 7 CFU/g NPUST1 strains, the weight gain (WG) of tilapia was 0.87 ± 0.114 g and 1.02 ± 0.111 g respectively, which was significantly higher than that of the G1 group (0.71 ± 0.025 g) and 0.75± 0.020 g in the unfed control group. Similarly, the specific growth rate (SGR) and feed conversion rate (FE) of the G2 and G3 groups were also significantly higher than those of the control group. There were no significant differences in WG, FE and SGR between the G2 group and the G3 group. This result confirms that the strain of the present invention has the effect of promoting growth performance.

表3 生長表現數值 投予量 對照組 10 5CFU/g(G1) 10 6CFU/g(G2) 10 7CFU/g(G3) 初始體重(g) 0.56 ± 0.021 a 0.54 ± 0.016 a 0.54 ± 0.020 a 0.56 ± 0.017 a 最終體重(g) 1.31 ± 0.004 a 1.25 ± 0.025 a 1.41 ± 0.095 b 1.58 ± 0.125 b 增重(g) 0.75 ± 0.020 a 0.71 ± 0.013 a 0.87 ± 0.114 b 1.02 ± 0.111 b 飼料效益 0.33 ± 0.010 a 0.33 ± 0.015 a 0.39 ± 0.044 b 0.41 ± 0.034 b 特定生長率 2.41 ± 0.153 a 2.34 ± 0.061 a 2.81 ± 0.471 b 3.26 ± 0.290 b 存活率(%) 97.8 ± 1.92 a 95.6 ± 3.85 a 96.7 ± 0.00 a 97.8 ± 1.92 a table 3 Growth performance value Dosage control group 10 5 CFU/g(G1) 10 6 CFU/g(G2) 10 7 CFU/g(G3) Initial weight (g) 0.56± 0.021a 0.54± 0.016a 0.54± 0.020a 0.56± 0.017a Final weight (g) 1.31± 0.004a 1.25± 0.025a 1.41 ± 0.095b 1.58 ± 0.125b Weight gain (g) 0.75± 0.020a 0.71± 0.013a 0.87 ± 0.114b 1.02 ± 0.111b feed efficiency 0.33± 0.010a 0.33± 0.015a 0.39 ± 0.044b 0.41 ± 0.034b specific growth rate 2.41 ± 0.153 a 2.34± 0.061a 2.81 ± 0.471b 3.26 ± 0.290b Survival rate (%) 97.8 ± 1.92 a 95.6 ± 3.85 a 96.7 ± 0.00 a 97.8 ± 1.92 a

實施例3:沙福桿菌菌株NPUST1提昇腸道消化酶活性之效果Example 3: Effect of Salfordella strain NPUST1 on improving intestinal digestive enzyme activity

經8週餵食後,每組隨機選6隻吳郭魚犧牲解剖,收集200g腸道組織樣本,於1 mL PBS緩衝液中均質後,以6000×g、4 °C離心10分鐘,再將上清液移至1.7mL離心管中,置於冰上,置於冰上,進行上清液蛋白質與消化酶活性的定量檢測,各項目之檢測方式如下所述。After 8 weeks of feeding, 6 tilapias from each group were randomly selected and sacrificed for dissection. 200g of intestinal tissue samples were collected, homogenized in 1 mL of PBS buffer, and centrifuged at 6000×g and 4°C for 10 minutes. Transfer the supernatant to a 1.7 mL centrifuge tube, place it on ice, and perform quantitative detection of supernatant protein and digestive enzyme activity. The detection methods of each item are as follows.

上清液總蛋白量:以布拉福法(Bradford method)測定,首先配製100 µg/mL的BSA,之後序列稀釋成 80、60、40、20 和 0 µg/mL。取50 µL上清液蛋白樣品與各濃度之BSA標準品取加入至96 孔盤中,再分別加入200 µL已稀釋5倍的Bio-Rad蛋白濃度檢測劑,於避光處反應10分鐘後,以分光光度計測定OD 595 nm之吸光值並製作標準曲線,將樣品之吸光值代入標準曲線計算蛋白質含量。The total protein amount of the supernatant was determined by the Bradford method. First, 100 µg/mL BSA was prepared, and then serially diluted to 80, 60, 40, 20 and 0 µg/mL. Add 50 µL of the supernatant protein sample and BSA standard of each concentration into a 96-well plate, then add 200 µL of Bio-Rad protein concentration detection reagent that has been diluted 5 times, and react in a dark place for 10 minutes. Use a spectrophotometer to measure the absorbance value at OD 595 nm and prepare a standard curve. Substitute the absorbance value of the sample into the standard curve to calculate the protein content.

蛋白酶活性測定:首先,配製100、80、60、40、 20、0 µg/mL之酪胺酸(L-tyrosine)溶液作為標準品,取 100 µL各濃度的酪胺酸溶液,加入500 mM 的碳酸鈉 (Na 2CO 3) 溶液500 µL和已稀釋5倍的福林酚試劑 (Sigma-Aldrich 製,No. F-9252)100 µL。在37°C環境中反應 10 分鐘後,以分光光度計測定OD660 nm 之吸光值,並製作標準曲線。以50 mM 磷酸氫二鉀 (Potassium phosphate) 溶液配置0.65%的酪蛋白(casein)溶液,於加熱板上以 80~90°C加熱溶解並冷卻至室溫備用,然後分別取100 µL腸道上清液與 500 µL的 0.65 %酪蛋白溶液均勻混合,在 37°C下反應 10 分鐘後加入 110 mM 的三氯乙酸 (Trichloroacetic acid, TCA) 500 µL,繼續在 37°C下反應30 分鐘,反應結束後使用 0.45 µm 的過濾膜過濾。取200 µL的濾液加入500mM的碳酸鈉溶液 500 µL和已稀釋 5 倍的福林酚試劑100 µL,在 37°C下反應 10 分鐘,反應完成後以分光光度計測定OD660 nm之吸光值,並將數值代入標準曲線,計算樣品酪胺酸含量。蛋白酶活性單位 (U) 定義為:在37℃下,每分鐘產生1 µmole的tyrosine為一個活性單位。 Determination of protease activity: First, prepare 100, 80, 60, 40, 20, 0 µg/mL tyrosine (L-tyrosine) solutions as standards, take 100 µL of tyrosine solutions of each concentration, and add 500 mM of 500 µL of sodium carbonate (Na 2 CO 3 ) solution and 100 µL of Folinol reagent (manufactured by Sigma-Aldrich, No. F-9252) diluted 5 times. After reacting for 10 minutes at 37°C, measure the absorbance value of OD660 nm with a spectrophotometer and prepare a standard curve. Prepare 0.65% casein solution with 50 mM Potassium phosphate solution, heat to dissolve on a hot plate at 80~90°C and cool to room temperature for later use. Then take 100 µL of intestinal supernatant. Mix evenly with 500 µL of 0.65% casein solution, react at 37°C for 10 minutes, add 500 µL of 110 mM trichloroacetic acid (TCA), and continue to react at 37°C for 30 minutes. The reaction is completed. Then filter with a 0.45 µm filter membrane. Take 200 µL of the filtrate, add 500 µL of 500mM sodium carbonate solution and 100 µL of 5-fold diluted folinol reagent, and react at 37°C for 10 minutes. After the reaction is completed, measure the absorbance value of OD660 nm with a spectrophotometer, and Substitute the values into the standard curve to calculate the tyrosine content of the sample. Protease activity unit (U) is defined as: an activity unit that produces 1 µmole of tyrosine per minute at 37°C.

澱粉酶、纖維素酶與木聚糖酶活性測定:首先,配製0、0.2、0.4、0.6、0.8、1 mg/mL之葡萄糖溶液作為標準品,分別取100 µL各濃度的葡萄糖溶液與100 µL DNS 試劑混和均勻於玻璃試管中,並放置於沸水中加熱 15 分鐘後,隨後取200 µL混合液至96孔盤中,利用分光光度計測定OD540 nm之吸光值並製作標準曲線。 澱粉酶活性的測定,係以1%的可溶性澱粉(soluble starch)溶液作為測定之基質,取100 µL腸道上清液與100 µL的澱粉溶液均勻混合,在室溫中反應10分鐘,隨後加入200 µL DNS試劑,並在沸水中反應15分鐘,待冷卻後以分光光度計測定OD540 nm之吸光值,並將樣品測得數值代入標準曲線計算葡萄糖含量。澱粉酶活性單位(U)定義為:每分鐘可釋放出1 µmole的還原糖為一個活性單位。 纖維素酶活性的測定,係以1%羧甲基纖維素(CMC)溶液作為測定之基質,分別取200 µL腸道上清液、1%羧甲基纖維素溶液和PBS緩衝溶液均勻混合,在50°C下反應15分鐘,隨後加入600 µL DNS試劑在沸水中反應15分鐘,待冷卻後以分光光度計測定OD540 nm之吸光值,並將樣品測得數值代入標準曲線計算葡萄糖含量。纖維素酶活性單位(U)定義為:每分鐘可釋放出1 µmole的還原糖為一個活性單位。 木聚糖酶活性的測定,係以1%木糖(Xylan)溶液作為測定之基質,分別取100 µL腸道上清液與100 µL的1%木聚醣溶液均勻混合,在55°C下反應15分鐘,隨後加入200 µL DNS 試劑在沸水中反應15分鐘,待冷卻後以分光光度計測定OD540 nm之吸光值,並將樣品測得數值代入標準曲線計算葡萄糖含量。木聚醣酶活性單位(U)定義為:每分鐘可釋放1 µmole的還原糖為一個活性單位。 Determination of amylase, cellulase and xylanase activities: First, prepare glucose solutions of 0, 0.2, 0.4, 0.6, 0.8, and 1 mg/mL as standards, and take 100 µL of glucose solutions of each concentration and 100 µL Mix the DNS reagent evenly in a glass test tube and heat it in boiling water for 15 minutes. Then take 200 µL of the mixture into a 96-well plate. Use a spectrophotometer to measure the absorbance value of OD540 nm and prepare a standard curve. For the measurement of amylase activity, 1% soluble starch solution is used as the measurement matrix. 100 µL of intestinal supernatant and 100 µL of starch solution are evenly mixed, react at room temperature for 10 minutes, and then add 200 µL DNS reagent, and react in boiling water for 15 minutes. After cooling, measure the absorbance value of OD540 nm with a spectrophotometer, and substitute the measured value of the sample into the standard curve to calculate the glucose content. Amylase activity unit (U) is defined as an activity unit that can release 1 µmole of reducing sugar per minute. For the determination of cellulase activity, 1% carboxymethylcellulose (CMC) solution is used as the measurement matrix. 200 µL of intestinal supernatant, 1% carboxymethylcellulose solution and PBS buffer solution are taken and mixed evenly. React at 50°C for 15 minutes, then add 600 µL DNS reagent and react in boiling water for 15 minutes. After cooling, measure the absorbance value of OD540 nm with a spectrophotometer, and substitute the measured value of the sample into the standard curve to calculate the glucose content. Cellulase activity unit (U) is defined as an activity unit that can release 1 µmole of reducing sugar per minute. For the determination of xylanase activity, 1% xylose (Xylan) solution is used as the assay matrix. 100 µL of intestinal supernatant and 100 µL of 1% xylan solution are uniformly mixed and reacted at 55°C. 15 minutes, then add 200 µL DNS reagent and react in boiling water for 15 minutes. After cooling, measure the absorbance value of OD540 nm with a spectrophotometer, and substitute the measured value of the sample into the standard curve to calculate the glucose content. Xylanase activity unit (U) is defined as: one activity unit can release 1 µmole of reducing sugar per minute.

脂肪酶活性測定:以含有0.5% Triton-X 100之磷酸鈉緩衝液(pH 7.0)配製0、115、230、345、460、575 µM的p-Nitrophenol溶液作為標準品,分別取200 µL不同濃度之標準品加入至96孔盤中,以分光光度計測定OD 405 nm之吸光值並製作標準曲線。木聚糖酶活性以溶於磷酸鈉緩衝液(pH 7.0)之0.5 mM p-nitrophenyl butyrate 溶液作為基質。分別取10 µL樣品與190 µL反應基質加至96孔盤中混合均勻,於37 ℃下反應30分鐘後測定OD 405 nm之吸光值,並將樣品測得數值代入標準曲線計算p-Nitrophenol含量。脂肪酶活性單位(U)定義為:在37℃,每分鐘可水解產生1 µmole的p-Nitrophenol為一個活性單位。Lipase activity determination: Use sodium phosphate buffer (pH 7.0) containing 0.5% Triton-X 100 to prepare 0, 115, 230, 345, 460, 575 µM p-Nitrophenol solutions as standards, and take 200 µL of different concentrations. The standard solution was added to a 96-well plate, and the absorbance value at OD 405 nm was measured using a spectrophotometer and a standard curve was prepared. The xylanase activity was based on a 0.5 mM p-nitrophenyl butyrate solution in sodium phosphate buffer (pH 7.0). Add 10 µL sample and 190 µL reaction matrix to a 96-well plate and mix evenly. After reacting at 37°C for 30 minutes, measure the absorbance value of OD 405 nm. Substitute the measured value of the sample into the standard curve to calculate the p-Nitrophenol content. Lipase activity unit (U) is defined as: at 37°C, one unit of p-Nitrophenol can be hydrolyzed to produce 1 µmole per minute.

餵食8週後之各組腸道消化酶活性數值(U/mg)如表4所示,表4中數值為各組之平均值±標準差(S.D.),上標字母表示各組別間是否有顯著差異。結果顯示,與對照組相比,G2組及G3組的腸道蛋白酶、澱粉酶、脂酶活性顯著增加。且與對照組相比,G3組的纖維素酶活性顯著增加。本實施例證明,將本發明菌株作為飼料之營養補充品,可提高飼養魚隻對飼料中營養物質之利用率,進而提昇飼養魚隻的生長表現。The intestinal digestive enzyme activity values (U/mg) of each group after 8 weeks of feeding are shown in Table 4. The values in Table 4 are the mean ± standard deviation (S.D.) of each group. The superscript letters indicate whether there are differences between each group. There are significant differences. The results showed that compared with the control group, the intestinal protease, amylase, and lipase activities of the G2 group and G3 group were significantly increased. And compared with the control group, the cellulase activity of the G3 group increased significantly. This example proves that using the strain of the present invention as a nutritional supplement for feed can improve the utilization rate of nutrients in the feed by fish, thereby improving the growth performance of fish.

表4 活性(U/mg) 對照組 G1 G2 G3 蛋白酶 0.50 ± 0.007 a 0.51 ± 0.009 a 0.64 ± 0.013 b 0.68 ± 0.005 b 澱粉酶 0.15 ± 0.003 a 0.15 ± 0.08 a b 0.18 ± 0.004 b 0.18 ± 0.009 b 纖維素酶 0.14 ± 0.010 a 0.15 ± 0.005 a b 0.16 ± 0.004 a b 0.18 ± 0.025 b 木聚糖酶 0.10 ± 0.001 a 0.11 ± 0.013 a 0.11 ± 0.007 a 0.10 ± 0.001 a 脂肪酶 0.03 ± 0.003 a 0.05 ± 0.004 b 0.05 ± 0.003 b 0.06 ± 0.003 c Table 4 Activity(U/mg) control group G1 G2 G3 Protease 0.50± 0.007a 0.51± 0.009a 0.64 ± 0.013b 0.68 ± 0.005b amylase 0.15± 0.003a 0.15 ± 0.08a b 0.18 ± 0.004b 0.18 ± 0.009b cellulase 0.14± 0.010a 0.15 ± 0.005a b 0.16 ± 0.004a b 0.18 ± 0.025b Xylanase 0.10± 0.001a 0.11± 0.013a 0.11± 0.007a 0.10± 0.001a Lipase 0.03± 0.003a 0.05 ± 0.004b 0.05± 0.003b 0.06± 0.003c

實施例4:沙福桿菌菌株NPUST1提昇葡萄糖代謝及生長相關指標基因表現之效果Example 4: The effect of Sarfordella strain NPUST1 on improving the expression of glucose metabolism and growth-related index genes

經8週餵食後,每組隨機選6隻吳郭魚犧牲解剖,分析肝臟組織中葡萄糖代謝及生長相關基因之表現。前述葡萄糖代謝相關基因包含葡萄糖激酶(glucokinase,GK)及葡萄糖6-磷酸酶(glucose-6-phosphatase,G6Pase)。前述生長相關基因包含生長激素受體(growth hormone receptor,GHR)及第一型類胰島素生長因子(insulin-like growth factor-1,IFG-1)。分析結果示於圖3,圖3中,各組的基因相對表現量係表示為平均值±標準差(S.D.),長柱圖上側所標示字母,表示各組別間是否有顯著差異。After 8 weeks of feeding, 6 tilapias from each group were randomly selected and sacrificed for dissection, and the expression of glucose metabolism and growth-related genes in liver tissue was analyzed. The aforementioned glucose metabolism-related genes include glucokinase (GK) and glucose-6-phosphatase (G6Pase). The aforementioned growth-related genes include growth hormone receptor (GHR) and insulin-like growth factor-1 (IFG-1). The analysis results are shown in Figure 3. In Figure 3, the relative expression of genes in each group is expressed as the mean ± standard deviation (S.D.). The letters marked on the upper side of the long bar graph indicate whether there is a significant difference between each group.

分析結果顯示,與對照組相比,G2組及G3組的GK、G6 Pase、GHR-1及IGF-1的表現量皆顯著增加。且G3組的GK及G6 Pase表現量亦顯著高於G2組。The analysis results showed that compared with the control group, the expression amounts of GK, G6 Pase, GHR-1 and IGF-1 in the G2 group and G3 group were significantly increased. Moreover, the expression amounts of GK and G6 Pase in the G3 group were also significantly higher than those in the G2 group.

肝臟在葡萄糖之平衡及代謝中扮演重要角色,肝臟中的GK為主要的六鄰酸酶,將葡萄糖轉化為葡萄糖-6-磷酸鹽,此為葡萄糖代謝的首要步驟。肝臟中的G6P酶則發揮將葡萄糖釋放到血液中的作用。另一方面,生長激素(GH)-IGF-I軸為調節脊椎動物生長的重要內分泌機制,而肝臟中的GHR會接收來自腦下腺的GH訊號,從而觸發肝臟將IGF-1釋放至循環系統,進而刺激身體生長。因此,本實施例證明,本發明菌株可促此等葡萄糖代謝及生長相關基因表現量提昇,進而達到促進飼養魚隻營養代謝與生長表現的效果。The liver plays an important role in glucose balance and metabolism. GK in the liver is the main hexonase, which converts glucose into glucose-6-phosphate, which is the primary step in glucose metabolism. The G6P enzyme in the liver releases glucose into the blood. On the other hand, the growth hormone (GH)-IGF-I axis is an important endocrine mechanism regulating the growth of vertebrates, and GHR in the liver receives GH signals from the subbrain glands, thereby triggering the liver to release IGF-1 into the circulation system. , thereby stimulating body growth. Therefore, this example proves that the strain of the present invention can promote the expression of these glucose metabolism and growth-related genes, thereby achieving the effect of promoting the nutritional metabolism and growth performance of reared fish.

實施例5:沙福桿菌菌株NPUST1提昇先天性免疫反應之效果 經8週餵食後,每組隨機選6隻吳郭魚收集其巨噬細胞及血液樣本,評估以下先天性免疫主要指標之表現:吞噬細胞活性 (phagocytic activity, PA) 、呼吸爆(respiratory burst activity, RB)活性與超氧化物歧化酶(superoxide dismutase activity, SOD)活性,以及血液中溶菌酶活性。Example 5: The effect of Salfordella strain NPUST1 on improving innate immune response. After 8 weeks of feeding, 6 tilapias from each group were randomly selected to collect their macrophages and blood samples to evaluate the performance of the following main indicators of innate immunity: Phagocytic activity (PA), respiratory burst activity (RB), superoxide dismutase activity (SOD), and lysozyme activity in the blood.

首先,經由不同濃度的Percoll經過離心將巨噬細胞分離。本實驗選用之濃度為32 %/51 % (V/V),一開始先將32 %以及51 %的Percoll分別配置,之後先加入2 mL 32 %的Percoll至15 mL離心管中,再利用注射針頭將2 mL的51 % Percoll伸入至15 mL離心管的底部緩慢注入,由於藉此可使32 %之Percoll完整地壓在51 %的Percoll上方,從而發生層次現象。之後再從上方緩慢滴入200 - 500 μL的頭腎樣品,最後再以1 mL微量吸管吸取1 mL pH 7.6的1 x PBS緩慢滴入,壓於頭腎樣品之上方,從而保持不同濃度的Percoll、頭腎樣品以及1 x PBS的層次分明,之後將離心管放置於離心機中,以400 x g在4℃的環境下離心30分鐘。離心結束後若發現有混濁狀物質夾在兩種濃度的Percoll之間即表示巨噬細胞已被成功分離出來,將中間這層巨噬細胞以微量吸管吸出置於1.7 mL微量離心管中,並放置於冰上以保持低溫狀態,最後分別由各樣品中取10 μL於血球計數板上進行計數,並將不同樣本的巨噬細胞稀釋成相同的次方數,供後續試驗使用。前述各項目之試驗及分析方法如下所述。First, macrophages were separated by centrifugation with different concentrations of Percoll. The concentration selected in this experiment is 32%/51% (V/V). At the beginning, 32% and 51% Percoll were prepared separately, and then 2 mL of 32% Percoll was added to a 15 mL centrifuge tube, and then the injection The needle extends 2 mL of 51% Percoll into the bottom of the 15 mL centrifuge tube and slowly injects it. This allows 32% Percoll to be completely pressed on top of the 51% Percoll, causing a layering phenomenon. Then slowly drop 200 - 500 μL of head kidney sample from above, and finally use a 1 mL micropipette to draw 1 mL of 1 x PBS with pH 7.6 and slowly drip it in, pressing it on top of the head kidney sample to maintain different concentrations of Percoll. , head kidney samples and 1 x PBS were separated into distinct layers, and then the centrifuge tube was placed in a centrifuge and centrifuged at 400 x g for 30 minutes at 4°C. After centrifugation, if turbid material is found sandwiched between the two concentrations of Percoll, it means that the macrophages have been successfully separated. Use a micropipette to suck out the middle layer of macrophages and place it in a 1.7 mL microcentrifuge tube. Place on ice to maintain low temperature. Finally, take 10 μL from each sample and count on a hemocytometer, and dilute macrophages from different samples to the same power for subsequent experiments. The test and analysis methods for each of the aforementioned items are as follows.

吞噬活性 (PA) :此試驗需要在無菌操作台內進行,在操作螢光乳珠的時候需要全程避光。在試驗開始前先配置螢光乳珠以及碘化物 (PI),取15 mL的L-15培養液於15 mL離心管中,之後加入0.4 μL的螢光乳珠,而碘化物係以滅菌過的無菌水配置,其濃度為1 mg/mL。前置作業完成後,先取300μL的巨噬細胞樣品加入至12孔細胞培養盤中,靜置1小時讓吞噬細胞吸附在孔洞中,之後將上清液倒除再加入300μL的L-15培養液重複清洗3次,清洗完後加入300μL配置好的螢光乳珠,隨後以鋁箔紙將12孔細胞培養盤包起來靜置2小時,等待反應結束後,加入300μL的PBS清洗一次,將大部分未攝取的螢光乳珠清除,再加入300μL的1 %甲醛用以固定巨噬細胞,反應30分鐘過後以300μL的PBS清洗2至3次後將殘留的1 %甲醛洗掉,再加入300μL的碘化物染色10分鐘,染色過後以300μL的PBS清洗2次,靜置待風乾後,最後於Olympus IX50螢光顯微鏡下觀察吞噬細胞之吞噬情形。計算200個巨噬細胞中具有吞噬熒光乳珠能力之數量,藉由以下公式求出吞噬活性。Phagocytic activity (PA): This test needs to be conducted in a sterile operating table, and the entire process needs to be protected from light when operating fluorescent emulsion beads. Before starting the test, prepare fluorescent emulsion beads and iodide (PI). Take 15 mL of L-15 culture medium in a 15 mL centrifuge tube, then add 0.4 μL of fluorescent emulsion beads, and the iodide system is sterilized. It is prepared in sterile water with a concentration of 1 mg/mL. After the preparatory work is completed, add 300 μL of macrophage sample to the 12-well cell culture plate, let it sit for 1 hour to allow the phagocytes to adsorb in the holes, then discard the supernatant and add 300 μL of L-15 culture medium. Repeat washing three times. After washing, add 300 μL of prepared fluorescent emulsion beads, then wrap the 12-well cell culture plate with aluminum foil and let it stand for 2 hours. After the reaction is completed, add 300 μL of PBS and wash once, and remove most of the cells. Remove the uningested fluorescent emulsion beads, and then add 300 μL of 1% formaldehyde to fix the macrophages. After the reaction for 30 minutes, wash 2 to 3 times with 300 μL of PBS to wash away the remaining 1% formaldehyde, and then add 300 μL of Iodide staining was performed for 10 minutes. After staining, the cells were washed twice with 300 μL of PBS and left to air dry. Finally, the phagocytosis of phagocytes was observed under an Olympus IX50 fluorescence microscope. Calculate the number of 200 macrophages with the ability to phagocytose fluorescent emulsion beads, and calculate the phagocytic activity using the following formula.

吞噬活性 (%) = [100 x (吞噬熒光乳珠之巨噬細胞量) x (巨噬細胞總量) -1] Phagocytic activity (%) = [100 x (number of macrophages phagocytosing fluorescent emulsion beads) x (total number of macrophages) -1 ]

呼吸爆(RB)活性:分組為對照組與試驗組。先吸取100 μL的0.2 % Poly-L-Lysine於96孔盤中放置30分鐘,之後再加入100 μL的巨噬細胞樣品,放置於離心機中以300 x g離心20分鐘,將上清液去除後,對照組加入100 μL的MCHBSS,試驗組加入100 μL的Zymosan A,靜置30分鐘,反應結束後去除上清液,以100 μL的MCHBSS重複清洗3次,之後加入100 μL的0.3 % NBT染色30分鐘,之後再加入100 μL的100 %甲醇終止反應,輕微搖晃後將上清液去除,再以100 μL的70 %甲醇重複清洗3次,清洗過後將上清液去除,放置於桌面風乾約20~30分鐘,等待風乾後再加入120 μL的2 M KOH以及140 μL的Dimethyl Sulfoxide (DMSO) 溶解細胞質甲染料(cytoplasmic formazan),靜置2分鐘後以分光光度計測定吸光值OD630 nm。在本試驗中,以添加非免疫刺激物MCHBSS處理者為基礎活性(BA),而添加免疫刺激物Zymosan A處理者為經刺激活性(SA),兩者間之差值為respiratory burst activity (RBA) ,用以表示巨噬細胞產生超氧陰離子產量之增減。Respiratory blast (RB) activity: divided into control group and experimental group. First, take 100 μL of 0.2% Poly-L-Lysine and place it in a 96-well plate for 30 minutes. Then add 100 μL of macrophage sample, place it in a centrifuge and centrifuge at 300 x g for 20 minutes. Remove the supernatant. , add 100 μL of MCHBSS to the control group, add 100 μL of Zymosan A to the test group, and let stand for 30 minutes. After the reaction, remove the supernatant, repeat washing three times with 100 μL of MCHBSS, and then add 100 μL of 0.3% NBT for staining. 30 minutes, and then add 100 μL of 100% methanol to terminate the reaction. Shake slightly and remove the supernatant. Repeat three times with 100 μL of 70% methanol. After cleaning, remove the supernatant and place it on the table to air dry for about 30 minutes. Wait for 20 to 30 minutes, wait for air drying, then add 120 μL of 2 M KOH and 140 μL of Dimethyl Sulfoxide (DMSO) to dissolve the cytoplasmic formazan, let it stand for 2 minutes, and then measure the absorbance value OD630 nm with a spectrophotometer. In this experiment, those treated with the addition of the non-immunostimulant MCHBSS were regarded as the basal activity (BA), while those treated with the addition of the immune stimulant Zymosan A were regarded as the stimulated activity (SA). The difference between the two is the respiratory burst activity (RBA). ), used to express the increase or decrease in superoxide anion production produced by macrophages.

超氧化物歧化酶(SOD)活性:首先吸取200 μL巨噬細胞樣品放置於1.7 mL微量離心管中,加入500 μL的HBSS混合均勻,放置於離心機中以400 x g在4℃的環境下離心20分鐘,之後去除上清液並重複加入500 μL的HBSS清洗血球以及離心,此步驟需重複進行3次,用以清洗巨噬細胞。清洗完後加入150 μL pH 7.8的1 x PBS讓巨噬細胞懸浮,以超音波細胞粉碎機將血球震破,再置於離心機中以1500 x g在4℃的環境下離心10分鐘,將上清液去除,吸取100 μL至1.7 mL微量離心管中,再依序加入250 μL 0.15 M Phosphate Buffer (pH 7.8)、75 μL 0.13 M Methionine、75 μL 之1 mM Na2EDTA、75 μL 之0.63 mM NBT、以及150 μL之 7.5 μM Riboflavin。之後放置於25℃培養箱中用4000 Lux以上的光照反應10分鐘,反應結束後吸取200 μL至96孔盤以分光光度計測定吸光值OD560 nm。在此條件下,超氧化物歧化酶活性的單位被定義為:以抑制硝基四氮唑藍(Nitrotetrazolium Blue Chloride, NBT)光化還原50 %時所需酶量為1個SOD活性單位 (U)。以Bradford法進行樣品蛋白質濃度定量後,依下方公式計算出每毫克的樣品蛋白中含有的SOD活性。Superoxide dismutase (SOD) activity: First, take 200 μL of macrophage sample and place it in a 1.7 mL microcentrifuge tube. Add 500 μL of HBSS and mix evenly. Place it in a centrifuge and centrifuge at 400 x g at 4°C. After 20 minutes, remove the supernatant and repeat adding 500 μL of HBSS to clean the blood cells and centrifuge. This step needs to be repeated three times to clean the macrophages. After washing, add 150 μL of 1x PBS with pH 7.8 to suspend the macrophages. Break the blood cells with an ultrasonic cell crusher, then place them in a centrifuge and centrifuge them at 1500 x g for 10 minutes at 4°C. Remove the supernatant, pipet 100 μL into a 1.7 mL microcentrifuge tube, and then add 250 μL 0.15 M Phosphate Buffer (pH 7.8), 75 μL 0.13 M Methionine, 75 μL 1 mM Na2EDTA, 75 μL 0.63 mM NBT, and and 150 μL of 7.5 μM Riboflavin. Then place it in a 25°C incubator and react with light above 4000 Lux for 10 minutes. After the reaction, pipet 200 μL into a 96-well plate and measure the absorbance value OD560 nm with a spectrophotometer. Under these conditions, the unit of superoxide dismutase activity is defined as: the amount of enzyme required to inhibit the photochemical reduction of nitrotetrazolium blue chloride (NBT) by 50% is 1 SOD activity unit (U ). After quantifying the protein concentration of the sample using the Bradford method, calculate the SOD activity contained in each milligram of sample protein according to the formula below.

SOD活性公式:(空白對照組 –樣本) / (空白對照組/ 2) x 6 / 毫克蛋白SOD activity formula: (blank control group – sample) / (blank control group / 2) x 6 / mg protein

血液中溶菌酶活性:於試驗開始前先行配置pH 6.2的0.05 M Sodium Phosphate Buffer。以pH 6.2的0.05 M Sodium Phosphate Buffer配置0.16 mg/mL溶菌酶 (Lysozyme, from chicken egg white, Sigma)以及0.2 mg/mL的溶壁微球菌 (Micrococcus lysodeikticus, ATCC No. 4698, Sigma),先將溶菌酶作為標準品進行試驗測試,稀釋成0.08、0.04、0.02、0.01、0 mg/mL,將標準品各吸取10 μL放置於96孔盤中,再加入200 μL的M. lysodeikticus混合,以每孔添加完菌液即刻測定的方式,利用分光光度計測定吸光值OD530 nm於第0分鐘及第5分鐘之反應數值,依據0至5分鐘內吸光值OD530 nm的差異來判斷溶菌酶的活性,並將此差異數值製作成標準曲線,利用直線迴歸方法計算血清樣品中溶菌酶的含量。待標準曲線完成後即可開始測定血液樣品,將放置於4℃冰箱中24小時後的血液樣品取出,放置於離心機中以3000 x g在4℃的環境下離心5分鐘,之後吸取上層的血清放置於新的1.7 mL微量離心管中,置於冰上以接著進行溶菌酶活性分析的試驗,或保存於 -80℃冰箱中備用,將取出後的血清樣品各吸取10 μL放置於96孔盤中,再加入200 μL的M. lysodeikticus混合,以每孔添加完菌液即刻測定的方式,利用分光光度計測定吸光值OD530 nm於第0分鐘及第5分鐘之反應數值,依據0至5分鐘內吸光值OD530 nm的差異來判斷血清中溶菌酶的活性,最後將各樣品之吸光值OD530 nm代入標準曲線計算,即可得到血清中溶菌酶的含量。在此條件下,溶菌酶活性的單位被定義為:於室溫下,每分鐘能使吸光值OD530 nm降低0.001即為1個酶活力單位 (U)。故根據溶菌酶破壞細菌細胞壁,從而降低細菌懸浮液的濁度的原理,可用分光光度法測定。同樣以Bradford法將血清樣品蛋白質濃度定量後,即可計算出每毫克的血清樣品蛋白中含有的溶菌酶活性。Lysozyme activity in blood: Before starting the test, prepare 0.05 M Sodium Phosphate Buffer with pH 6.2. Use 0.05 M Sodium Phosphate Buffer with pH 6.2 to prepare 0.16 mg/mL lysozyme (Lysozyme, from chicken egg white, Sigma) and 0.2 mg/mL Micrococcus lysodeikticus (ATCC No. 4698, Sigma). Lysozyme was used as a standard substance for experimental testing. It was diluted to 0.08, 0.04, 0.02, 0.01, and 0 mg/mL. Take 10 μL of each standard substance and place it in a 96-well plate. Then add 200 μL of M. lysodeikticus and mix. The method of measuring immediately after adding the bacterial solution to the well is to use a spectrophotometer to measure the reaction value of the absorbance value OD530 nm at 0 minutes and 5 minutes. The activity of lysozyme is judged based on the difference in the absorbance value OD530 nm between 0 and 5 minutes. The difference value was made into a standard curve, and the linear regression method was used to calculate the lysozyme content in the serum sample. After the standard curve is completed, the blood samples can be measured. Take out the blood samples that have been placed in the refrigerator at 4°C for 24 hours, place them in a centrifuge and centrifuge at 3000 x g for 5 minutes at 4°C, and then absorb the serum from the upper layer. Place it in a new 1.7 mL microcentrifuge tube and place it on ice to proceed with the lysozyme activity analysis test, or store it in a -80°C refrigerator for later use. Take 10 μL of each serum sample after removal and place it in a 96-well plate. Then add 200 μL of M. lysodeikticus and mix. Use a spectrophotometer to measure the absorbance value OD530 nm at 0 minutes and 5 minutes by measuring immediately after adding the bacterial solution to each well. The reaction values are based on 0 to 5 minutes. The difference in the internal absorbance value OD530 nm is used to determine the activity of lysozyme in the serum. Finally, the absorbance value OD530 nm of each sample is substituted into the standard curve for calculation, and the lysozyme content in the serum can be obtained. Under these conditions, the unit of lysozyme activity is defined as: one unit of enzyme activity (U) can reduce the absorbance value OD530 nm by 0.001 per minute at room temperature. Therefore, based on the principle that lysozyme destroys the bacterial cell wall and thereby reduces the turbidity of the bacterial suspension, it can be measured by spectrophotometry. Similarly, after quantifying the protein concentration of the serum sample using the Bradford method, the lysozyme activity contained in each milligram of serum sample protein can be calculated.

分析結果示於圖4,圖4中,前述各分析項目之數值係表示為平均值±標準差(S.D.),長柱圖上側所標示字母,表示各組別間是否有顯著差異。分析結果顯示,與對照組相比,G2組及G3組的吞噬活性 (PA) 與血液中溶菌酶活性皆顯著增加。且G2組及G3組之間無顯著差異。與對照組相比,投予沙福桿菌菌株NPUST1的G1、G2及G3組,呼吸爆(RB)活性與超氧化物歧化酶(SOD)活性皆顯著提高。此外,G2組的超氧化物歧化酶(SOD)活性係顯著高於G1組及G3組。The analysis results are shown in Figure 4. In Figure 4, the values of each of the aforementioned analysis items are expressed as mean ± standard deviation (S.D.). The letters marked on the upper side of the long bar graph indicate whether there are significant differences between each group. The analysis results showed that compared with the control group, the phagocytic activity (PA) and lysozyme activity in the blood of the G2 and G3 groups were significantly increased. And there was no significant difference between the G2 group and the G3 group. Compared with the control group, respiratory burst (RB) activity and superoxide dismutase (SOD) activity were significantly increased in the G1, G2 and G3 groups that were administered the Salfobacillus strain NPUST1. In addition, the superoxide dismutase (SOD) activity of the G2 group was significantly higher than that of the G1 group and G3 group.

頭腎與脾臟是魚類的主要淋巴器官,在調節先天免疫上發揮重要作用。頭腎中的白血球,例如嗜中性白血球及巨噬細胞,會透過吞噬作用吞噬病原體。吞噬過程中會釋放活性氧(ROS)等物質破壞被吞噬的病原體,此等物質的釋放會反映於呼吸爆(RB)上。超氧化物歧化酶(SOD)會對氧化壓力反應,催化O2 -分解為過氧化氫,因此可作為對ROS損害之保護能力的指標。另一方面,溶菌酶則會破壞細菌的細胞壁從而抑制病原菌的生長。本實施例證明,餵食本發明菌株可提高魚類的上述各先天性免疫主要指標表現,亦即,本發明菌株可提高魚類之先天免疫力,且係藉由10 6CFU/g之投予量即可達到效果。 The head kidney and spleen are the main lymphoid organs of fish and play an important role in regulating innate immunity. White blood cells in the head kidney, such as neutrophils and macrophages, engulf pathogens through phagocytosis. During the phagocytosis process, substances such as reactive oxygen species (ROS) are released to destroy the engulfed pathogens, and the release of these substances is reflected in the respiratory burst (RB). Superoxide dismutase (SOD) reacts to oxidative stress by catalyzing the decomposition of O2- into hydrogen peroxide and therefore serves as an indicator of the ability to protect against ROS damage. Lysozyme, on the other hand, destroys bacterial cell walls and inhibits the growth of pathogenic bacteria. This example proves that feeding the strain of the present invention can improve the above-mentioned main indicators of innate immunity of fish. That is, the strain of the present invention can improve the innate immunity of fish, and the dosage of 10 6 CFU/g is The effect can be achieved.

實施例6:沙福桿菌菌株NPUST1提昇免疫相關指標基因表現之效果Example 6: Effect of Sarfordella strain NPUST1 on improving immune-related index gene expression

經8週餵食後,每組隨機選6隻吳郭魚犧牲解剖,分析頭腎與脾臟組織中免疫相關基因之表現。前述免疫相關基因包含介白素-1β(Interleukin-1β, IL-1β)、介白素-8(Interleukin-8, IL-8)、腫瘤壞死因子(Tumor necrosis factor-α, TNF-α)及溶菌酶(Lysozyme,LYZ)。分析結果示於圖5,圖5中,(a)~(d)為頭腎中基因相對表現量,(e)~(h)則為脾臟中表現量。各組係表示為平均值±標準差(S.D.),長柱圖上側所標示字母,表示各組別間是否有顯著差異。After 8 weeks of feeding, 6 tilapias from each group were randomly selected and sacrificed for dissection, and the expression of immune-related genes in the head kidney and spleen tissues was analyzed. The aforementioned immune-related genes include interleukin-1β (IL-1β), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α) and Lysozyme (LYZ). The analysis results are shown in Figure 5. In Figure 5, (a)~(d) are the relative expression amounts of genes in the head kidney, and (e)~(h) are the expression amounts in the spleen. Each group is expressed as the mean ± standard deviation (S.D.). The letters marked on the upper side of the long bar graph indicate whether there is a significant difference between each group.

分析結果顯示,與對照組相比,G1組、G2組及G3組之頭腎中IL-1β及IL-8表現量顯著增加,且G2組表現量顯著高於G1組。同時,與對照組及G1組相比,G2組及G3組之頭腎中TNF-α及LYZ表現量顯著增加。G2組及G3組之脾臟中此4個免疫相關基因的表現量,亦顯著高於對照組。且與對照組相比,G1組之脾臟中IL-8及LYZ的表現量也顯著較高。本實施例證明,本發明菌株可促使此等免疫相關基因表現量提昇,進而達到對魚隻的免疫調節效果。此外,G2組及G3組在表現量量無顯著差異,The analysis results showed that compared with the control group, the expression amounts of IL-1β and IL-8 in the head kidneys of the G1, G2 and G3 groups were significantly increased, and the expression amounts of the G2 group were significantly higher than those of the G1 group. At the same time, compared with the control group and G1 group, the expression amounts of TNF-α and LYZ in the head kidney of the G2 group and G3 group were significantly increased. The expression amounts of these four immune-related genes in the spleens of the G2 and G3 groups were also significantly higher than those of the control group. And compared with the control group, the expression levels of IL-8 and LYZ in the spleen of the G1 group were also significantly higher. This example proves that the strain of the present invention can promote the expression of these immune-related genes, thereby achieving an immune-regulating effect on fish. In addition, there was no significant difference in performance between the G2 group and the G3 group.

IL-1β和TNF-α為促發炎細胞激素,在病原體感染的早期階段被誘發,以提高巨噬細胞之生存率,並藉由在吞噬過程中增加ROS的產生而提高白血球殺菌活性。IL-8為魚類趨化因子,在發炎過程中吸引並活化嗜中性球。因此,本實施例可證明,本發明菌株具有提昇免疫相關指標基因表現之效果。且藉由10 6CFU/g之投予量即足以達到提昇免疫相關基因表現之效果。 IL-1β and TNF-α are pro-inflammatory cytokines that are induced in the early stages of pathogen infection to increase the survival rate of macrophages and increase leukocyte bactericidal activity by increasing ROS production during the phagocytosis process. IL-8 is a fish chemokine that attracts and activates neutrophils during inflammation. Therefore, this example can prove that the strain of the present invention has the effect of improving the expression of immune-related indicator genes. And the dosage of 10 6 CFU/g is enough to achieve the effect of improving the expression of immune-related genes.

實施例7:沙福桿菌菌株NPUST1提昇抗病能力之效果Example 7: Effect of Sarfordella strain NPUST1 on improving disease resistance

將前述鏈球菌菌液培養於TSB培養基24小時後,以無菌水稀釋,根據各組別餵食兩個月後之吳郭魚之體重,進行與體重相對應之菌數的腹腔內注射,使每隻吳郭魚之注射濃度皆為1 x 10 5CFU/體重克數。負對照組處理條件則為:餵食不含沙福桿菌菌株NPUST1之基礎飼料,且改為注射生理食鹽水。各組別皆為三重複獨立飼養於含有40L淡之60L魚缸(10隻/缸),飼養溫度為28±1℃。注射後持續7天每日進行觀察,並記錄累積存活率,進行對照組與餵食含NPUST1飼料之G1~G3組間的比較。 The aforementioned Streptococcus bacteria liquid was cultured in TSB medium for 24 hours, diluted with sterile water, and based on the weight of the tilapia fish in each group after two months of feeding, the number of bacteria corresponding to the body weight was injected intraperitoneally, so that each group The injection concentration for tilapia is 1 x 10 5 CFU/g body weight. The treatment conditions of the negative control group were as follows: feeding the basal feed without Salfordella strain NPUST1, and injecting physiological saline instead. Each group was independently raised in three replicates in a 60L fish tank containing 40L fresh water (10 fish/tank), and the breeding temperature was 28±1°C. Observations were conducted every day for 7 days after injection, and the cumulative survival rate was recorded. Comparisons were made between the control group and the G1~G3 groups fed NPUST1-containing feed.

各組別存活率結果示於圖6。注射後7天內,負對照組(注射PBS)存活率維持在100%。相對地,對照組(注射鏈球菌菌液)的累積存活率在2天後明顯下降,之後維持在43 ± 5.7%。G2組及G3組的累積存活率分別為60% 與73 ± 5.7%,與對照組相比係顯著增加,但G2組與G3組之間則無顯著差異。本實施例證實,餵食含沙福桿菌菌株NPUST1之飼料,可提昇吳郭魚對鏈球菌感染之免疫力,且藉由10 6CFU/g之劑量即足以達到此效果。 The survival rate results of each group are shown in Figure 6. Within 7 days after injection, the survival rate of the negative control group (injected with PBS) was maintained at 100%. In contrast, the cumulative survival rate of the control group (injected with streptococcal bacterial solution) decreased significantly after 2 days and remained at 43 ± 5.7% thereafter. The cumulative survival rates of the G2 group and G3 group were 60% and 73 ± 5.7% respectively, which were significantly increased compared with the control group, but there was no significant difference between the G2 group and the G3 group. This example confirms that feeding feed containing Salfordella strain NPUST1 can improve the immunity of tilapia against streptococcal infection, and a dose of 10 6 CFU/g is sufficient to achieve this effect.

實施例8:沙福桿菌菌株NPUST1改善腸道微生物相之效果Example 8: Effect of Sarfordella strain NPUST1 on improving intestinal microbiome

餵食飼料8週後,每一組取4隻吳郭魚,以EasyPure Genomic DNA Spin套組抽取腸道微生物基因體DNA,並進行16S基因(V1-V9區)全長片段的PCR。PCR試劑使用KAPA HiFi HotStart ReadyMix套組。PCR使用的引子為:正向引子(SEQ ID NO:20),5端磷酸鹽修飾且經條形碼退化,5′-Phos/GCATCAGRGTTYGATYMTGGCTCA-3′;反向引子(SEQ ID NO:21),5′-Phos/GCAT-CRGYTACCTTGTTACGACTT-3′。PCR程序條件設定為: 95℃反應3分鐘,再進行20~27個循環(因應樣本),循環條件為95℃30秒、57℃30秒、72℃60秒,最後72℃反應5分鐘。經由DNA膠體電泳分析確認片段大小為約1500 bp後,以AMPure PB珠粒純化PCR產物。進行高通量NGS分析:以全長16S SMRTbell Library Preparation and Sequencing 套組(PacBio)建庫,以a PacBio Sequel IIe 系統進行定序,模式為循環共識定序模式( circular consensus sequence ,CCS),取得最小預測準確度為0.9之HiFi讀取值。解訊後,以DADA2演算法進一步處理CCS,獲得具有單核苷酸解析度的擴增子。DADA2演算法可以錯誤率接近零的單核苷酸解析度解析全長16S rRNA基因的準確擴增子序列變異(amplicon sequence variants,ASVs)。使用距離矩陣執行主座標分析(principal coordinate analysis,PCoA),獲得用於將複雜且多維之資料視覺化的主座標。對於每個代表性的序列,採用QIIME2中的feature‐classifier及classify‐consensus‐blast演算法,根據從NCBI資料庫中檢索的資訊進行分類註解。After feeding the diet for 8 weeks, 4 tilapia were taken from each group, and the intestinal microbial genomic DNA was extracted using the EasyPure Genomic DNA Spin kit, and PCR was performed on the full-length fragment of the 16S gene (V1-V9 region). Use the KAPA HiFi HotStart ReadyMix kit for PCR reagents. The primers used in PCR are: forward primer (SEQ ID NO: 20), 5-terminal phosphate modification and barcode degradation, 5′-Phos/GCATCAGRGTTYGATYMTGGCTCA-3′; reverse primer (SEQ ID NO: 21), 5′ -Phos/GCAT-CRGYTACCTTGTTACGACTT-3′. The PCR program conditions are set as follows: 95°C for 3 minutes, followed by 20 to 27 cycles (depending on the sample). The cycle conditions are 95°C for 30 seconds, 57°C for 30 seconds, 72°C for 60 seconds, and finally 72°C for 5 minutes. After DNA gel electrophoresis analysis confirmed that the fragment size was approximately 1500 bp, the PCR product was purified with AMPure PB beads. Carry out high-throughput NGS analysis: use the full-length 16S SMRTbell Library Preparation and Sequencing kit (PacBio) to build the library, and use a PacBio Sequel IIe system for sequencing. The mode is circular consensus sequence (CCS) mode to obtain the minimum HiFi reading with prediction accuracy of 0.9. After decoding, the CCS was further processed using the DADA2 algorithm to obtain amplicons with single nucleotide resolution. The DADA2 algorithm can resolve accurate amplicon sequence variants (ASVs) of the full-length 16S rRNA gene at single-nucleotide resolution with near-zero error rate. Use the distance matrix to perform principal coordinate analysis (PCoA) to obtain principal coordinates for visualizing complex and multidimensional data. For each representative sequence, the feature-classifier and classify-consensus-blast algorithms in QIIME2 are used to classify and annotate based on the information retrieved from the NCBI database.

從四個組別的共16個樣本中總共檢索出259,936條核苷酸序列,使用QIIME pipeline將經驗證的序列分配給465個ASVs,相似度97%,繪製稀釋曲線。同步進行各組別腸道微生物相關係之主成分分析,及相對豐度分析。結果如圖8所示,圖8中,(a)為各樣本稀釋曲線圖(rarefaction curve);(b)為各組別腸道微生物相之稀釋曲線圖;(c) 為各組別腸道微生物組成之主成分分析結果;(d) 為各組別腸道中不同菌種相對豐度分析結果,圖中組別C為對照組。A total of 259,936 nucleotide sequences were retrieved from a total of 16 samples in four groups. The QIIME pipeline was used to assign the verified sequences to 465 ASVs with a similarity of 97%, and a dilution curve was drawn. Simultaneously conduct principal component analysis and relative abundance analysis of the correlation between intestinal microorganisms in each group. The results are shown in Figure 8. In Figure 8, (a) is the dilution curve of each sample (rarefaction curve); (b) is the dilution curve of the intestinal microbial phase of each group; (c) is the intestinal microbial phase of each group Principal component analysis results of microbial composition; (d) is the relative abundance analysis results of different bacterial species in the intestines of each group. Group C in the figure is the control group.

結果顯示,稀釋曲線偏向高原型,代表各組皆達到足夠採樣深度(覆蓋率達99.9%)。根據主成分分析結果,餵食含沙福桿菌菌株NPUST1之飼料的G1、G2及G3組之間腸道微生物相彼此密切聚集,但皆與對照組分開,此表示餵食本發明之沙福桿菌菌株NPUST1會使得吳郭魚腸胃道中微生物之菌相產生改變。相對豐度最高之菌種為Cetobacterium somerae,在對照組、G1、G2及G3組中所佔讀取量分別為60.72%、60.28%、61.05%及68.19%。四個組別中,有3個優勢菌種是相同的:Bacteroides lutiPlesiomonas shigelloidesDeefgea chitinilyticaBacteroides luti在對照組、G1、G2及G3組中相對豐度分別為22.23%、18.58%、20.50%及21.69%;Plesiomonas shigelloide在對照組、G1、G2及G3組中相對豐度分別為3.20%、6.03%、5.27%及4.45%;Deefgea chitinilytica在對照組、G1、G2及G3組中相對豐度分別為3.31%、3.10%、3.19%及2.34%。四個優勢菌種的相對比例沒有顯著差異。菌種之深入分析揭示了相對豐度的顯著變化,經推定之潛在益生菌(包含沙福桿菌)與病原菌的所佔比例示於表5。 The results show that the dilution curve is biased towards the plateau, which means that each group has reached sufficient sampling depth (coverage rate reaches 99.9%). According to the results of the principal component analysis, the intestinal microorganisms of the G1, G2 and G3 groups fed with the feed containing the Salfordella strain NPUST1 were closely clustered with each other, but all were separated from the control group. This means that the intestinal microorganisms of the G1, G2 and G3 groups fed with the Salfordella strain NPUST1 of the present invention were all separated from each other. It will cause changes in the microbial phase in the gastrointestinal tract of tilapia. The bacterial species with the highest relative abundance is Cetobacterium somerae , accounting for 60.72%, 60.28%, 61.05% and 68.19% of reads in the control group, G1, G2 and G3 groups respectively. Among the four groups, three dominant bacterial species are the same: Bacteroides luti , Plesiomonas shigelloides and Deefgea chitinilytica . The relative abundance of Bacteroides luti in the control group, G1, G2 and G3 groups was 22.23%, 18.58%, 20.50% and 21.69% respectively; the relative abundance of Plesiomonas shigelloide in the control group, G1, G2 and G3 groups was 3.20% respectively. , 6.03%, 5.27% and 4.45%; the relative abundance of Deefgea chitinilytica in the control group, G1, G2 and G3 groups were 3.31%, 3.10%, 3.19% and 2.34% respectively. There were no significant differences in the relative proportions of the four dominant bacterial species. In-depth analysis of bacterial species revealed significant changes in relative abundance, and the proportions of putative potential probiotics (including Sulforaphane) and pathogenic bacteria are shown in Table 5.

如表5所示,與餵食基礎飼料之對照組相比,沙福桿菌Bacillus safensis在餵食含本發明之沙福桿菌菌株NPUST1之飼料的組別中豐度較高,顯示本發明之菌株確實可定殖於吳郭魚腸道中。G1、G2及G3組中,潛在益生菌Bacillus licheniformisLactococcus lactis的豐度顯著高於對照組。相對地,與對照組相比,G1、G2及G3組中潛在病原菌Aeromonas veronii、Aeromonas jandaei、Enterovibrio nigricansEnterovibrio coralii的豐度皆顯著較低。本實施例結果顯示餵食含本發明之沙福桿菌菌株NPUST1之飼料可改善腸道微生物相。 As shown in Table 5, compared with the control group fed basal feed, the abundance of Bacillus safensis was higher in the group fed the feed containing the Bacillus strain NPUST1 of the present invention, indicating that the strain of the present invention can indeed Colonizes in the gut of tilapia. In the G1, G2 and G3 groups, the abundance of potential probiotics Bacillus licheniformis and Lactococcus lactis was significantly higher than that in the control group. Relatively, compared with the control group, the abundance of potential pathogenic bacteria Aeromonas veronii, Aeromonas jandaei, Enterovibrio nigricans and Enterovibrio coralii in the G1, G2 and G3 groups were significantly lower. The results of this example show that feeding feed containing the Salfordella strain NPUST1 of the present invention can improve the intestinal microbial phase.

Figure 111121963-A0305-02-0027-1
Figure 111121963-A0305-02-0027-1

將本發明之沙福桿菌菌株NPUST1作為水產養殖業上之飼料補充物來使用,可提高水產養殖魚類體內之營養代謝而促進飼料轉換效率,並提高生長表現。此外,本發明之沙福桿菌菌株作為飼料補充物使用時,可促進先天免疫力,進而提高對病原菌之抗病能力。同時,本發明之沙福桿菌菌株提供了改善魚類腸道微生物相的效果,可增加益生菌比例並減少病原菌比例。 The use of the Salfordella strain NPUST1 of the present invention as a feed supplement in the aquaculture industry can improve the nutritional metabolism of aquaculture fish, promote feed conversion efficiency, and improve growth performance. In addition, when used as a feed supplement, the Salfordella strain of the present invention can promote innate immunity and thereby improve disease resistance against pathogenic bacteria. At the same time, the Salfordella strain of the present invention provides the effect of improving the intestinal microbial phase of fish, increasing the proportion of probiotics and reducing the proportion of pathogenic bacteria.

因此,本發明之沙福桿菌菌株NPUST1可有效降低生產成本、縮短水產養殖魚類成長時間、提高增重率、增強抗病性,使未來的水產魚類養殖能朝著營養的、經濟的、環保的方向發展。 Therefore, the Salfordella strain NPUST1 of the present invention can effectively reduce production costs, shorten the growth time of aquaculture fish, increase the weight gain rate, and enhance disease resistance, so that future aquatic fish farming can be nutritional, economical, and environmentally friendly. direction development.

【生物材料寄存】 【Storage of Biological Materials】

國內寄存資訊:TW中華民國、台灣新竹食品工業發展研究所生物資源保存及研究中心、2022/06/10、BCRC 911134 Domestic storage information: TW Republic of China, Taiwan Hsinchu Food Industry Development Institute Biological Resource Preservation and Research Center, 2022/06/10, BCRC 911134

                                  序列表
          <![CDATA[<110>  國立屏東科技大學]]>
          <![CDATA[<120>  一種強化魚類成長與健康效之沙福芽孢桿菌及其應用]]>
          <![CDATA[<130>  P00001-P23]]>
          <![CDATA[<160>  21    ]]>
          <![CDATA[<170>  PatentIn version 3.5]]>
          <![CDATA[<210>  1]]>
          <![CDATA[<211>  1487]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Bacillus safensis]]>
          <![CDATA[<400>  1]]>
          gacgaacgct ggcggcgtgc ctaatacatg caagtcgagc ggacagaagg gagcttgctc       60
          ccggatgtta gcggcggacg ggtgagtaac acgtgggtaa cctgcctgta agactgggat      120
          aactccggga aaccggagct aataccggat agttccttga accgcatggt tcaaggatga      180
          aagacggttt cggctgtcac ttacagatgg acccgcggcg cattagctag ttggtggggt      240
          aatggctcac caaggcgacg atgcgtagcc gacctgagag ggtgatcggc cacactggga      300
          ctgagacacg gcccagactc ctacgggagg cagcagtagg gaatcttccg caatggacga      360
          aagtctgacg gagcaacgcc gcgtgagtga tgaaggtttt cggatcgtaa agctctgttg      420
          ttagggaaga acaagtgcga gagtaactgc tcgcaccttg acggtaccta accagaaagc      480
          cacggctaac tacgtgccag cagccgcggt aatacgtagg tggcaagcgt tgtccggaat      540
          tattgggcgt aaagggctcg caggcggttt cttaagtctg atgtgaaagc ccccggctca      600
          accggggagg gtcattggaa actgggaaac ttgagtgcag aagaggagag tggaattcca      660
          cgtgtagcgg tgaaatgcgt agagatgtgg aggaacacca gtggcgaagg cgactctctg      720
          gtctgtaact gacgctgagg agcgaaagcg tggggagcga acaggattag ataccctggt      780
          agtccacgcc gtaaacgatg agtgctaagt gttagggggt ttccgcccct tagtgctgca      840
          gctaacgcat taagcactcc gcctggggag tacggtcgca agactgaaac tcaaaggaat      900
          tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc      960
          ttaccaggtc ttgacatcct ctgacaaccc tagagatagg gctttccctt cggggacaga     1020
          gtgacaggtg gtgcatggtt gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgc     1080
          aacgagcgca acccttgatc ttagttgcca gcattcagtt gggcactcta aggtgactgc     1140
          cggtgacaaa ccggaggaag gtggggatga cgtcaaatca tcatgcccct tatgacctgg     1200
          gctacacacg tgctacaatg gacagaaaca aagggctgca agaccgcaag gtttagccaa     1260
          tcccataaat ctgttctcag ttcggatcgc agtctgcaac tcgactgcgt gaagctggaa     1320
          tcgctagtaa tcgcggatca gcatgccgcg gtgaatacgt tcccgggcct tgtacacacc     1380
          gcccgtcaca ccacgagagt ttgcaacacc cgaagtcggt gaggtaacct ttatggagcc     1440
          agccgccgaa ggtggggcag atgattgggg tgaagtcgta acaaggt                   1487
          <![CDATA[<210>  2]]>
          <![CDATA[<211>  21]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅GK基因的正向引子]]>
          <![CDATA[<400>  2]]>
          gcagcgagga agccatgaag a                                                 21
          <![CDATA[<210>  3]]>
          <![CDATA[<211>  22]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅GK基因的反向引子]]>
          <![CDATA[<400>  3]]>
          gaggtccctg acgactttgt gg                                                22
          <![CDATA[<210>  4]]>
          <![CDATA[<211>  22]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅G6Pase基因的正向引子]]>
          <![CDATA[<400>  4]]>
          agcgcgagcc tgaagaagta ct                                                22
          <![CDATA[<210>  5]]>
          <![CDATA[<211>  22]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅G6Pase基因的反向引子]]>
          <![CDATA[<400>  5]]>
          atggtccaca gcaggtccac at                                                22
          <![CDATA[<210>  6]]>
          <![CDATA[<211>  23]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅GHR基因的正向引子]]>
          <![CDATA[<400>  6]]>
          gaatacaagt ccttccgggc taa                                               23
          <![CDATA[<210>  7]]>
          <![CDATA[<211>  21]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅GHR基因的反向引子]]>
          <![CDATA[<400>  7]]>
          ctcatactcc acacgcatcc a                                                 21
          <![CDATA[<210>  8]]>
          <![CDATA[<211>  24]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅IGF-1基因的正向引子]]>
          <![CDATA[<400>  8]]>
          tgtctgccag taaggatgtt cttg                                              24
          <![CDATA[<210>  9]]>
          <![CDATA[<211>  20]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅IGF-1基因的反向引子]]>
          <![CDATA[<400>  9]]>
          ggctttccac gccacttaac                                                   20
          <![CDATA[<210>  10]]>
          <![CDATA[<211>  22]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅TNF-α基因的正向引子]]>
          <![CDATA[<400>  10]]>
          ccagaagcac taaaggcgaa ga                                                22
          <![CDATA[<210>  11]]>
          <![CDATA[<211>  20]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅TNF-α基因的反向引子]]>
          <![CDATA[<400>  11]]>
          ccttggcttt gctgctgatc                                                   20
          <![CDATA[<210>  12]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅IL-1β基因的正向引子]]>
          <![CDATA[<400>  12]]>
          tgtcgctctg ggcatcaa                                                     18
          <![CDATA[<210>  13]]>
          <![CDATA[<211>  21]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅IL-1β基因的反向引子]]>
          <![CDATA[<400>  13]]>
          ggcttgtcgt catccttgtg a                                                 21
          <![CDATA[<210>  14]]>
          <![CDATA[<211>  21]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅IL-8基因的正向引子]]>
          <![CDATA[<400>  14]]>
          cctcgagaag gtggatgtga a                                                 21
          <![CDATA[<210>  15]]>
          <![CDATA[<211>  19]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅IL-8基因的反向引子]]>
          <![CDATA[<400>  15]]>
          catgagaccc agggcatca                                                    19
          <![CDATA[<210>  16]]>
          <![CDATA[<211>  20]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅LYZ基因的正向引子]]>
          <![CDATA[<400>  16]]>
          gcctgaccga acatgagtca                                                   20
          <![CDATA[<210>  17]]>
          <![CDATA[<211>  22]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅LYZ基因的反向引子]]>
          <![CDATA[<400>  17]]>
          caccagcggc tatttatctg aa                                                22
          <![CDATA[<210>  18]]>
          <![CDATA[<211>  21]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅EF-1α基因的正向引子]]>
          <![CDATA[<400>  18]]>
          ccacacagtg cccatctacg a                                                 21
          <![CDATA[<210>  19]]>
          <![CDATA[<211>  22]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  增幅EF-1α基因的反向引子]]>
          <![CDATA[<400>  19]]>
          ccacgctctg tcaggatctt ca                                                22
          <![CDATA[<210>  20]]>
          <![CDATA[<211>  24]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  用於增幅16S基因(V1-V9區)全長片段的正向引子,5端磷酸鹽修飾且經條形]]>
                 碼退化
          <![CDATA[<400>  20]]>
          gcatcagrgt tygatymtgg ctca                                              24
          <![CDATA[<210>  21]]>
          <![CDATA[<211>  24]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  用於增幅16S基因(V1-V9區)全長片段的反向引子,5端磷酸鹽修飾且經條形]]>
                 碼退化
          <![CDATA[<400>  21]]>
          gcatcrgyta ccttgttacg actt                                              24
                                   sequence list
          <![CDATA[<110> National Pingtung University of Science and Technology]]>
          <![CDATA[<120> A kind of Bacillus sulforaphane that enhances the growth and health of fish and its application]]>
          <![CDATA[<130> P00001-P23]]>
          <![CDATA[<160> 21 ]]>
          <![CDATA[<170> PatentIn version 3.5]]>
          <![CDATA[<210> 1]]>
          <![CDATA[<211> 1487]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Bacillus safensis]]>
          <![CDATA[<400> 1]]>
          gacgaacgct ggcggcgtgc ctaatacatg caagtcgagc ggacagaagg gagcttgctc 60
          ccggatgtta gcggcggacg ggtgagtaac acgtgggtaa cctgcctgta agactggggat 120
          aactccggga aaccggagct aataccggat agttccttga accgcatggt tcaaggatga 180
          aagacggttt cggctgtcac ttacagatgg acccgcggcg cattagctag ttggtggggt 240
          aatggctcac caaggcgacg atgcgtagcc gacctgagag ggtgatcggc cacactggga 300
          ctgagacacg gcccagactc ctacgggagg cagcagtagg gaatcttccg caatggacga 360
          aagtctgacg gagcaacgcc gcgtgagtga tgaaggtttt cggatcgtaa agctctgttg 420
          ttagggaaga acaagtgcga gagtaactgc tcgcaccttg acggtaccta accagaaagc 480
          cacggctaac tacgtgccag cagccgcggt aatacgtagg tggcaagcgt tgtccggaat 540
          tattgggcgt aaagggctcg caggcggttt cttaagtctg atgtgaaagc ccccggctca 600
          accggggagg gtcattggaa actgggaaac ttgagtgcag aagaggagag tggaattcca 660
          cgtgtagcgg tgaaatgcgt agagatgtgg aggaacacca gtggcgaagg cgactctctg 720
          gtctgtaact gacgctgagg agcgaaagcg tggggagcga acaggattag ataccctggt 780
          agtccacgcc gtaaacgatg agtgctaagt gttagggggt ttccgcccct tagtgctgca 840
          gctaacgcat taagcactcc gcctggggag tacggtcgca agactgaaac tcaaaggaat 900
          tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 960
          ttaccaggtc ttgacatcct ctgacaaccc tagagatagg gctttccctt cggggacaga 1020
          gtgacaggtg gtgcatggtt gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgc 1080
          aacgagcgca acccttgatc ttagttgcca gcattcagtt gggcactcta aggtgactgc 1140
          cggtgacaaa ccggaggaag gtggggatga cgtcaaatca tcatgcccct tatgacctgg 1200
          gctacacacg tgctacaatg gacagaaaca aagggctgca agaccgcaag gtttagccaa 1260
          tcccataaat ctgttctcag ttcggatcgc agtctgcaac tcgactgcgt gaagctggaa 1320
          tcgctagtaa tcgcggatca gcatgccgcg gtgaatacgt tcccgggcct tgtacacacc 1380
          gcccgtcaca ccacgagagt ttgcaacacc cgaagtcggt gaggtaacct ttatggagcc 1440
          agccgccgaa ggtggggcag atgattgggg tgaagtcgta acaaggt 1487
          <![CDATA[<210> 2]]>
          <![CDATA[<211> 21]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the forward primer of GK gene]]>
          <![CDATA[<400> 2]]>
          gcagcgagga agccatgaag a 21
          <![CDATA[<210> 3]]>
          <![CDATA[<211> 22]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the reverse primer of GK gene]]>
          <![CDATA[<400> 3]]>
          gaggtccctg acgactttgt gg 22
          <![CDATA[<210> 4]]>
          <![CDATA[<211> 22]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the forward primer of G6Pase gene]]>
          <![CDATA[<400> 4]]>
          agcgcgagcc tgaagaagta ct 22
          <![CDATA[<210> 5]]>
          <![CDATA[<211> 22]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the reverse primer of G6Pase gene]]>
          <![CDATA[<400> 5]]>
          atggtccaca gcaggtccac at 22
          <![CDATA[<210> 6]]>
          <![CDATA[<211> 23]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the forward primer of GHR gene]]>
          <![CDATA[<400> 6]]>
          gaatacaagt ccttccgggc taa 23
          <![CDATA[<210> 7]]>
          <![CDATA[<211> 21]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the reverse primer of GHR gene]]>
          <![CDATA[<400> 7]]>
          ctcatactcc acacgcatcc a 21
          <![CDATA[<210> 8]]>
          <![CDATA[<211> 24]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the forward primer of IGF-1 gene]]>
          <![CDATA[<400> 8]]>
          tgtctgccag taaggatgtt cttg 24
          <![CDATA[<210> 9]]>
          <![CDATA[<211> 20]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the reverse primer of IGF-1 gene]]>
          <![CDATA[<400> 9]]>
          ggctttccac gccacttaac 20
          <![CDATA[<210> 10]]>
          <![CDATA[<211> 22]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the forward primer of TNF-α gene]]>
          <![CDATA[<400> 10]]>
          ccagaagcac taaaggcgaa ga 22
          <![CDATA[<210> 11]]>
          <![CDATA[<211> 20]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the reverse primer of TNF-α gene]]>
          <![CDATA[<400> 11]]>
          ccttggcttt gctgctgatc 20
          <![CDATA[<210> 12]]>
          <![CDATA[<211> 18]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the forward primer of IL-1β gene]]>
          <![CDATA[<400> 12]]>
          tgtcgctctgggcatcaa 18
          <![CDATA[<210> 13]]>
          <![CDATA[<211> 21]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify reverse primer of IL-1β gene]]>
          <![CDATA[<400> 13]]>
          ggcttgtcgt catccttgtg a 21
          <![CDATA[<210> 14]]>
          <![CDATA[<211> 21]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the forward primer of IL-8 gene]]>
          <![CDATA[<400> 14]]>
          cctcgagaag gtggatgtga a 21
          <![CDATA[<210> 15]]>
          <![CDATA[<211> 19]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify reverse primer of IL-8 gene]]>
          <![CDATA[<400> 15]]>
          catgagaccc agggcatca 19
          <![CDATA[<210> 16]]>
          <![CDATA[<211> 20]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the forward primer of LYZ gene]]>
          <![CDATA[<400> 16]]>
          gcctgaccga acatgagtca 20
          <![CDATA[<210> 17]]>
          <![CDATA[<211> 22]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the reverse primer of LYZ gene]]>
          <![CDATA[<400> 17]]>
          caccagcggctatttatctg aa 22
          <![CDATA[<210> 18]]>
          <![CDATA[<211> 21]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the forward primer of EF-1α gene]]>
          <![CDATA[<400> 18]]>
          ccacacagtg cccatctacg a 21
          <![CDATA[<210> 19]]>
          <![CDATA[<211> 22]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Amplify the reverse primer of EF-1α gene]]>
          <![CDATA[<400> 19]]>
          ccacgctctg tcaggatctt ca 22
          <![CDATA[<210> 20]]>
          <![CDATA[<211> 24]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Forward primer used to amplify the full-length fragment of the 16S gene (V1-V9 region), 5-terminal phosphate modified and striped]]>
                 code degradation
          <![CDATA[<400> 20]]>
          gcatcagrgt tygatymtgg ctca 24
          <![CDATA[<210> 21]]>
          <![CDATA[<211> 24]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Artificial Sequence]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> Reverse primer used to amplify the full-length fragment of the 16S gene (V1-V9 region), 5-terminal phosphate modified and bar-shaped]]>
                 code degradation
          <![CDATA[<400> 21]]>
          gcatcrgyta ccttgttacg actt 24
          
      

Claims (7)

一種沙福桿菌菌株(Bacillus safensis),其特徵係該沙福桿菌菌株寄存於台灣新竹食品工業發展研究所生物資源保存及研究中心,寄存日期為民國111年6月10日,寄存編號為BCRC 911134。 A Bacillus safensis strain (Bacillus safensis), characterized by the fact that the Bacillus safensis strain is deposited at the Biological Resource Preservation and Research Center of the Food Industry Development Institute in Hsinchu, Taiwan. The deposit date is June 10, 2011, and the deposit number is BCRC 911134. . 一種如請求項1所述沙福桿菌菌株作為飼料添加物的用途,該飼料添加物係用於水產養殖魚類。 A use of the Salfordella strain described in claim 1 as a feed additive, the feed additive being used for aquaculture fish. 如請求項2所述之用途,其中,前述飼料添加物係用於提昇水產養殖魚類的營養代謝相關基因表現,前述營養代謝相關基因為葡萄糖激酶(glucokinase,GK)或葡萄糖6-磷酸酶(glucose-6-phosphatase,G6Pase)。 The use as described in claim 2, wherein the aforementioned feed additive is used to improve the expression of nutritional metabolism-related genes of aquaculture fish, and the aforementioned nutritional metabolism-related genes are glucokinase (GK) or glucose 6-phosphatase (glucose -6-phosphatase, G6Pase). 如請求項2所述之用途,其中,前述飼料添加物係用於提昇水產養殖魚類的體重、特定生長率或生長相關基因的表現,前述生長相關基因為生長激素受體(growth hormone receptor,GHR)或第一型類胰島素生長因子(insulin-like growth factor-1,IFG-1)。 The use as described in claim 2, wherein the aforementioned feed additive is used to increase the body weight, specific growth rate or expression of growth-related genes of aquaculture fish, and the aforementioned growth-related genes are growth hormone receptors (GHR). ) or type 1 insulin-like growth factor (insulin-like growth factor-1, IFG-1). 如請求項2所述之用途,其中,前述飼料添加物係用於增加水產養殖魚類腸道微生物相中益生菌之比例,且前述益生菌為Bacillus licheniformis或Lactococcus lactis。 The use as described in claim 2, wherein the aforementioned feed additive is used to increase the proportion of probiotics in the intestinal microbial phase of aquaculture fish, and the aforementioned probiotics are Bacillus licheniformis or Lactococcus lactis. 如請求項2所述之用途,其中,前述飼料添加物係用於降低水產養殖魚類腸道微生物相中病原菌之比例,且前述病原菌為Aeromonas veronii、Aeromonas jandaei、Enterovibrio nigricansc或Enterovibrio coralii。 The use as described in claim 2, wherein the aforementioned feed additive is used to reduce the proportion of pathogenic bacteria in the intestinal microbial phase of aquaculture fish, and the aforementioned pathogenic bacteria are Aeromonas veronii, Aeromonas jandaei, Enterovibrio nigricansc or Enterovibrio coralii. 一種吳郭魚用飼料,其特徵係其含有請求項1所述沙福桿菌菌株(Bacillus safensis)。A feed for tilapia, characterized by containing the Bacillus safensis strain described in claim 1.
TW111121963A 2022-06-14 2022-06-14 A bacillus safensis strain providing beneficial effects on growth performance and health, and application thereof TWI816432B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111121963A TWI816432B (en) 2022-06-14 2022-06-14 A bacillus safensis strain providing beneficial effects on growth performance and health, and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111121963A TWI816432B (en) 2022-06-14 2022-06-14 A bacillus safensis strain providing beneficial effects on growth performance and health, and application thereof

Publications (2)

Publication Number Publication Date
TWI816432B true TWI816432B (en) 2023-09-21
TW202348795A TW202348795A (en) 2023-12-16

Family

ID=88966318

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111121963A TWI816432B (en) 2022-06-14 2022-06-14 A bacillus safensis strain providing beneficial effects on growth performance and health, and application thereof

Country Status (1)

Country Link
TW (1) TWI816432B (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
網路文獻 Zhang, M.; Pan, L.; Fan, D.; He, J.; Su, C.; Gao, S.; Zhang, M. Study of fermented feed by mixed strains and their effects on the survival, growth, digestive enzyme activity and intestinal flora of Penaeus vannamei. ,屏東科Aquaculture 2021,

Also Published As

Publication number Publication date
TW202348795A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
Tan et al. Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus)
Kavitha et al. Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822)
Snel et al. Dietary strategies to influence the gastro-intestinal microflora of young animals, and its potential to improve intestinal health
TW201143631A (en) Novel Enterococcus faecium LJS-01 and its use as probiotic
JP2015528705A (en) Composition for feed addition
JP2014507946A (en) Composition for feed addition
Yao et al. Effects of dietary synbiotics supplementation methods on growth, intestinal health, non-specific immunity and disease resistance of Pacific white shrimp, Litopenaeus vannamei
CN103429093A (en) Feed additive composition
JP2015521029A (en) New Bacillus subtilis {NOVELBACILLUSSUBTILIS}
CN107858302B (en) Bacillus subtilis 7K and application thereof
US20220330576A1 (en) Compositions for gut health
Fernandes et al. Probiotic role of salt pan bacteria in enhancing the growth of whiteleg shrimp, Litopenaeus vannamei
Amenyogbe et al. Probiotic potential of indigenous (Bacillus sp. RCS1, Pantoea agglomerans RCS2, and Bacillus cereus strain RCS3) isolated from cobia fish (Rachycentron canadum) and their antagonistic effects on the growth of pathogenic Vibrio alginolyticus, Vibrio harveyi, Streptococcus iniae, and Streptococcus agalactiae
Bhatnagar et al. Molecular characterization and dosage application of autochthonous potential probiotic bacteria in Cirrhinus mrigala
JP2010161944A (en) Lactobacillus paracasei subsp. paracasei (sg96) of new type, microbe-inhibiting composition containing the same and application thereof
Du et al. Enhancement of growth, survival, immunity and disease resistance in Litopenaeus vannamei, by the probiotic, Lactobacillus plantarum Ep-M17
Elsadek et al. Characterization of Bacillus spp. isolated from the intestines of Rhynchocypris lagowskii as a potential probiotic and their effects on fish pathogens
Fossi et al. Probiotic lactic acid bacteria isolated from traditional cameroonian palm wine and corn beer exhibiting cholesterol lowering activity
Tseng et al. Lactobacillus plantarum isolated from kefir enhances immune responses and survival of white shrimp (Penaeus vannamei) challenged with Vibrio alginolyticus
US11752178B2 (en) Methods for the isolation of microbes with enhanced persistance and compositions with such microbes
TWI816432B (en) A bacillus safensis strain providing beneficial effects on growth performance and health, and application thereof
EP2659786A2 (en) Probiotic food suitable for salmonid fish species and the preparation thereof
TWI686473B (en) Lumelis sp. to promote fish growth and immune regulation and application thereof
WO2022169933A2 (en) Compositions for gut health
Hu et al. Improvement of non-specific immunity, intestinal health and microbiota of crucian carp (Carassius auratus) juvenile with dietary supplementation of Bacillus coagulans BC1