TWI815789B - Ran re-architecture for network slicing - Google Patents

Ran re-architecture for network slicing Download PDF

Info

Publication number
TWI815789B
TWI815789B TW105131893A TW105131893A TWI815789B TW I815789 B TWI815789 B TW I815789B TW 105131893 A TW105131893 A TW 105131893A TW 105131893 A TW105131893 A TW 105131893A TW I815789 B TWI815789 B TW I815789B
Authority
TW
Taiwan
Prior art keywords
network
ran
circuitry
rrh
bbu
Prior art date
Application number
TW105131893A
Other languages
Chinese (zh)
Other versions
TW201717686A (en
Inventor
牛華寧
慕嫻 房
阿波斯托羅斯 帕帕塔納席烏
庚 吳
Original Assignee
美商蘋果公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蘋果公司 filed Critical 美商蘋果公司
Publication of TW201717686A publication Critical patent/TW201717686A/en
Application granted granted Critical
Publication of TWI815789B publication Critical patent/TWI815789B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/04Traffic adaptive resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Abstract

Embodiments provide a radio access network (RAN) control entity apparatus operable in a wireless communication network, the apparatus comprising radio frequency (RF) circuitry to receive at least one communication originating from a wireless network device or transmit at least one communication to a wireless network device, wherein the RAN control entity is coupled to a baseband unit (BBU) and remote radio head (RRH), and circuitry to partition a physical RAN infrastructure or C-RAN into one or more network slices, and partition the BBU and/or RRH according to a deployment scenario of the one or more network slices.

Description

用於網路切片的無線電存取網路(RAN)重新架構之技術Radio Access Network (RAN) re-architecture technology for network slicing

本文中所述的實施例大致係有關於無線通訊系統領域,而且尤其有關於一無線通訊系統之無線電存取網路之管理。Embodiments described herein relate generally to the field of wireless communication systems, and more particularly to the management of radio access networks of a wireless communication system.

本發明之實作態樣大致可有關於無線通訊領域。Implementation aspects of the present invention may generally relate to the field of wireless communications.

依據本發明之一實施例,係特地提出一種可運作於一無線通訊網路中的無線電存取網路(RAN)控制實體之裝備,該RAN控制實體乃耦合至一基頻單元(BBU)及遠距無線電頭端(RRH),該裝備包含:射頻(RF)電路系統,其接收至少一個源自於一無線網路裝置之通訊、或傳送至少一個通訊至一無線網路裝置;以及電路系統,其:將一實體RAN基礎結構或雲端無線電存取網路(C-RAN)劃分成一或多個網路切片;以及根據該一或多個網路切片之一部署情境劃分該BBU及/或RRH。According to an embodiment of the present invention, a device for a radio access network (RAN) control entity operable in a wireless communication network is specifically proposed. The RAN control entity is coupled to a base frequency unit (BBU) and a remote From the radio head (RRH), the equipment includes: radio frequency (RF) circuitry that receives at least one communication from or transmits at least one communication to a wireless network device; and circuitry, It: divides a physical RAN infrastructure or cloud radio access network (C-RAN) into one or more network slices; and divides the BBU and/or RRH according to one of the deployment scenarios of the one or more network slices .

以下詳細說明涉及附圖。相同的參考數字符號可在不同圖式中用於指認相同或類似的元件。在以下說明中,為了解釋而非限制,提出諸如特定結構、架構、介面、技術等特定細節,以便可以透徹理解本揭露之各項態樣。然而,具有本揭露之效益的技術領域中具有通常知識者將會明白,可在脫離這些特定細節的其他實例中,實踐申請專利範圍的各項態樣。在某些例子中,眾所周知的裝置、電路及方法省略其說明,以免因不必要的細節而混淆本揭露之說明。The following detailed description refers to the accompanying drawings. The same reference numbers may be used in the different drawings to identify the same or similar elements. In the following description, for the purpose of explanation rather than limitation, specific details such as specific structures, architectures, interfaces, technologies, etc. are provided so that various aspects of the present disclosure can be thoroughly understood. However, one of ordinary skill in the art having the benefit of this disclosure will understand that various aspects of the claimed scope may be practiced in other instances that depart from these specific details. In some instances, descriptions of well-known devices, circuits, and methods are omitted to avoid obscuring the disclosure with unnecessary detail.

以下詳細說明涉及附圖。相同的參考數字符號可在不同圖式中用於指認相同或類似的元件。在以下說明中,為了解釋而非限制,提出諸如特定結構、架構、介面、技術等特定細節,以便可以透徹理解本揭露之各項態樣。然而,具有本揭露之效益的技術領域中具有通常知識者將會明白,可在脫離這些特定細節的其他實例中,實踐申請專利範圍的各項態樣。在某些例子中,眾所周知的裝置、電路及方法省略其說明,以免因不必要的細節而混淆本揭露之說明。The following detailed description refers to the accompanying drawings. The same reference numbers may be used in the different drawings to identify the same or similar elements. In the following description, for the purpose of explanation rather than limitation, specific details such as specific structures, architectures, interfaces, technologies, etc. are provided so that various aspects of the present disclosure can be thoroughly understood. However, one of ordinary skill in the art having the benefit of this disclosure will understand that various aspects of the claimed scope may be practiced in other instances that depart from these specific details. In some instances, descriptions of well-known devices, circuits, and methods are omitted to avoid obscuring the disclosure with unnecessary detail.

在第四代長期演進技術(4G-LTE)及進階LTE/專業無線通訊網路中,網路架構及應用中的異質性已經是一趨勢。這些趨勢的實例為小型胞元與中繼網路、裝置間(D2D)通訊網路(亦稱為鄰近服務)及機器類型通訊(MTC)之開發。小於胞元可視為比傳統巨集eNB/基地台(例如微型/微微型/毫微微型胞元)更小之任何胞元形式。進入第五代(5G)無線通訊網路後,此異質性趨勢可更顯著,而且適用於控制無線資源之改良型方法及裝備令人期望。舉例而言,因為預期5G無線通訊網路可伺服各式各樣的應用(帶有各種訊務類型及要求)、網路與用戶設備(帶有各種通訊與運算能力)、以及有別於更傳統語音服務(例如LTE語音,即VoLTE)與行動寬頻(MBB)之商用市場(即使用案例),因此期望控制這些使用案例之各者,從而可能最佳化、或至少改良、使用此等無線資源。In the fourth generation long-term evolution technology (4G-LTE) and advanced LTE/professional wireless communication networks, heterogeneity in network architecture and applications has become a trend. Examples of these trends are the development of small cell and relay networks, device-to-device (D2D) communication networks (also known as proximity services), and machine type communications (MTC). A sub-cell may be considered any cell form smaller than a traditional macro eNB/BS (e.g. micro/pico/femto cell). After entering the fifth generation (5G) wireless communication network, this heterogeneous trend may become more significant, and improved methods and equipment suitable for controlling wireless resources are expected. For example, because 5G wireless communication networks are expected to serve a wide variety of applications (with various traffic types and requirements), network and user equipment (with various communication and computing capabilities), and be different from more traditional Commercial markets (i.e. use cases) for voice services (e.g. Voice over LTE (VoLTE)) and mobile broadband (MBB) and therefore the desire to control each of these use cases so that it is possible to optimize, or at least improve, the use of these wireless resources .

本揭露之實施例大致係有關於一無線通訊網路之一無線電存取網路(RAN)架構之切片。此RAN可以是此無線通訊網路實施一或多種無線電存取技術(RAT)之部分,而且可視為常駐於介於諸如一行動電話之一使用者裝置(UE)、智慧型手機、已連線膝上型電腦、或任何遠端受控制(或單純可存取)之機器之間的一位置,並且提供與服務此無線通訊網路之核心網路(CN)的連線。此RAN可使用(多個)矽晶片來實施,常駐於此等UE及/或基地台,例如增強型節點B (eNB)、基地台、或類似者,其形成蜂巢式為基之無線通訊網路/系統。RAN之實例包括有,但不限於:GRAN (一GSM無線電存取網路);GERAN (實質為一EDGE啟用式GRAN);UTRAN (一UMTS無線電存取網路);以及E-UTRAN (一LTE或進階LTE/專業高速且低潛時無線電存取網路)。Embodiments of the present disclosure generally relate to slicing of a radio access network (RAN) architecture of a wireless communication network. The RAN may be part of the wireless communications network implementing one or more radio access technologies (RATs) and may be considered resident between a user device (UE) such as a mobile phone, smartphone, connected laptop, etc. A location between a laptop, or any remotely controlled (or simply accessible) machine, and provides a connection to the Core Network (CN) that serves the wireless communications network. The RAN may be implemented using silicon chip(s), resident on the UEs and/or base stations, such as enhanced Node Bs (eNBs), base stations, or the like, forming a cellular-based wireless communication network. /system. Examples of RAN include, but are not limited to: GRAN (a GSM radio access network); GERAN (essentially an EDGE-enabled GRAN); UTRAN (a UMTS radio access network); and E-UTRAN (an LTE or advanced LTE/professional high-speed and low-latency radio access network).

本文中所述的實施例論述一無線通訊網路之一無線電存取網路中之一般網路切片架構,例如,但不限於一5G無線通訊網路。特別的是,實施例可包括有水平與垂直網路切片的概念。垂直切片可包含有從許多現有及新類型的通訊(其可透過未來的無線通訊網路來實行,尤其包含有此無線電存取網路),根據垂直市場將此無線電存取網路切片,其中一垂直市場可包含有單一/特定的通訊類型(亦即,可將其定義為所涉及通訊用之單一或特定使用案例)。可佈建於一無線通訊網路之一商用市場亦可稱為一垂直市場。此等現有類型包括有行動寬頻(MBB)及語音(VoLTE),而新通訊類型則可包括有新類型的連線服務及使用案例,諸如機器類型通訊(MTC)、個人區域網路、專屬健康網路、機器間(M2M)、增強型MBB (eMBB)、關鍵時間通訊、車載通訊(V2X) (包括有車間(V2V)及車輛與基礎結構間(V2I))、及類似者。一垂直市場之定義並不受限,而且將會涵蓋一實體無線電存取網路之任何現有或未來邏輯區隔(即隔離、劃分或類似者),由無線通訊專用於特定用途、或通訊類型。在一些實例中,可以有多種所使用的實體無線電存取網路,每一種都分成以邏輯方式區隔之無線電存取網路。The embodiments described herein discuss a general network slicing architecture in a radio access network of a wireless communication network, such as, but not limited to, a 5G wireless communication network. In particular, embodiments may include the concepts of horizontal and vertical network slicing. Vertical slicing can include slicing the radio access network according to vertical markets, from many existing and new types of communications (which can be implemented through future wireless communication networks, including especially radio access networks), one of which A vertical market may encompass a single/specific type of communication (i.e., it may be defined as a single or specific use case for the communication involved). A commercial market that can be deployed in a wireless communication network can also be called a vertical market. These existing types include mobile broadband (MBB) and voice (VoLTE), while new communication types can include new types of connectivity services and use cases, such as machine type communication (MTC), personal area network, dedicated health Networking, machine-to-machine (M2M), enhanced MBB (eMBB), time-critical communications, vehicle-to-everything (V2X) (including workshop-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)), and the like. The definition of a vertical market is not limiting and will include any existing or future logical division (i.e., segregation, segmentation, or the like) of a physical radio access network dedicated to a particular purpose, or type of communication by wireless communications . In some examples, there may be multiple physical radio access networks used, each divided into logically separated radio access networks.

所提出的網路切片可以是可規劃又高度規模可調且靈活的,同時考量各特定使用案例所需之無線通訊網路之可用性、潛時與功率要求及對電池壽命的影響、可靠度、容量、安全以及速度。The proposed network slicing can be planable, highly scalable and flexible, taking into account the availability, latency and power requirements of the wireless communication network required for each specific use case and the impact on battery life, reliability and capacity. , safety and speed.

網路切片乃視為關鍵技術中用以滿足預期在5G通訊網路中得到支援之多樣要求及多樣服務與應用的一種技術。這是因為在無線通訊技術中,於無線電鏈路層級進一步改善頻譜效率時,挑戰性正日益提升,所以,已發現用來組建由那些無線網路所伺服之未來無線網路及裝置的新方式,以符合日益增加的容量需求。為了達到這些目標,5G及未來世代的無線網路、以及尤其是伺服那些無線網路、或由那些無線網路所伺服之無線裝置正在持續演進,即將要組合運算與通訊,並且佈建端對端解決方案。這是一種起於前幾代的典範轉移,前幾代的技術開發主要單獨著重在單層通訊。Network slicing is regarded as one of the key technologies used to meet the diverse requirements and diverse services and applications expected to be supported in 5G communication networks. This is because in wireless communications technology, the challenge of further improving spectral efficiency at the radio link level is increasing, so new ways have been discovered to build future wireless networks and devices served by those wireless networks , to meet increasing capacity requirements. To achieve these goals, 5G and future generations of wireless networks, and especially the wireless devices that serve or are served by those wireless networks, are continuing to evolve to combine computing and communications and deploy end-to-end end solution. This is a paradigm shift from previous generations, where technology development focused solely on single-layer communications.

無線網路中的容量若要增加,可將其切片來達成。這可涉及將傳統大型、單一、行動寬頻網路切片(亦即,以邏輯方式劃分/區隔)成多個虛擬網路,用來以更具有成本與資源效率的方式伺服垂直產業及應用。各網路切片可具有一不同網路架構、以及不同應用、控制、封包與信號處理能力及容量,以便達到最佳的投資報酬。可隨時將垂直切片(即服務的產業或類型)加入一現有可切式無線網路,而不是為該垂直市場部署一新的專屬無線網路。因此,垂直網路切片提供用以從一垂直應用觀點自一般行動寬頻服務之其餘部分隔離出訊務之一實用手段,藉此實際避免或大幅簡化傳統的QoS工程問題。無線網路切片可在核心網路與無線電存取網路兩者中包括有切片(亦即,屬於一種端對端解決方案)。If the capacity of a wireless network is to be increased, it can be achieved by slicing it. This may involve slicing (i.e., logically dividing/partitioning) traditional large, single, mobile broadband networks into multiple virtual networks to serve vertical industries and applications in a more cost- and resource-efficient manner. Each network slice can have a different network architecture, as well as different application, control, packet and signal processing capabilities and capacities to achieve the best return on investment. Vertical slicing (i.e., industry or type of service) can be added to an existing scalable wireless network at any time, rather than deploying a new dedicated wireless network for that vertical market. Vertical network slicing thus provides a practical means of isolating traffic from a vertical application perspective from the rest of the general mobile broadband service, thereby effectively avoiding or significantly simplifying traditional QoS engineering issues. Wireless network slicing can include slicing in both the core network and the radio access network (ie, an end-to-end solution).

在5G及以上的無線網路中,一網路的容量擴縮相較於前幾個世代,可不再那麼均勻。舉例而言,擴縮因子在無線網路較靠近一使用者時可能較高,而當我們更深入此無線網路之基礎結構移動時則較低。此非均勻擴縮可能導因於擴增的使用者體驗,由顯著增加的感測能力(及/或處理資源)所實現,可在利用無線網路之無線裝置處得到。與一網路主要當作一資料管道伺服之前幾世代無線網路(隨著空氣介面改善自端對端均勻(但奇異性)擴縮)不同的是,5G及未來世代的無線網路至少可部分依賴資訊網路,包含有此等無線網路及其伺服/接受伺服的無線裝置之多樣(異質及/或同質)性運算、網路連結及儲存能力。In wireless networks of 5G and above, the capacity expansion and contraction of a network is no longer so uniform compared to previous generations. For example, the scaling factor may be higher when the wireless network is closer to a user and lower as we move deeper into the wireless network's infrastructure. This non-uniform scaling may result from an enhanced user experience, enabled by significantly increased sensing capabilities (and/or processing resources) available at wireless devices utilizing wireless networks. Unlike previous generations of wireless networks where a network served primarily as a data conduit, which scaled evenly (but singularly) end-to-end as the air interface improved, 5G and future generations of wireless networks can at least Partially relies on information networks, including the diverse (heterogeneous and/or homogeneous) computing, network connectivity and storage capabilities of such wireless networks and the wireless devices that serve/receive services.

舉例而言,總體無線網路可持續快速擴大,但此網路邊緣處的運算及網路連結甚至可成長更快,因此,能夠在此無線網路的邊緣處,處理使用者資料流量(所謂的邊緣雲端應用)。使用者裝置可以不再單純是端接一通訊鏈路之「終端機」。反而,其可變為新一代移動或固定式網路節點,用於新一代消費性裝置、機器、以及東西。舉例而言,一膝上型電腦、一智慧型手機、一家庭閘道器或任何其他無線網路裝置(或形成此無線網路裝置、或其部分售予消費者之組件裝置)可變為一周圍部署有許多裝置或東西之一網路叢集之一運算與網路連結裝置。舉例而言,其可形成一個人區域網路(PAN)。許多此類行動或固定式無線網路裝置可形成可稱為一底層網路、5G及以上技術中之一新網路類型,帶有能夠彼此或與固定式網路直接通訊之裝置,以及帶有能夠予以卸載至更大形狀因子平台或邊緣雲端基地台之運算(亦即,此無線網路中帶有更大處理資源,完全、或單純在該時刻可用的實體)。可將此完成以透過包括有此邊緣雲端跨許多裝置之一虛擬化平台,達到最佳行動運算與通訊。For example, the overall wireless network will continue to expand rapidly, but the computing and network connections at the edge of the network will grow even faster, so that user data traffic can be processed at the edge of the wireless network (so-called edge cloud applications). User devices can no longer be simply "terminals" terminating a communications link. Instead, it can become a new generation of mobile or fixed network nodes for a new generation of consumer devices, machines, and tools. For example, a laptop, a smartphone, a home gateway, or any other wireless network device (or the component devices that form such a wireless network device, or are sold as part thereof to consumers) may become A network cluster of many devices or tools deployed around a computing and networking device. For example, it may form a Personal Area Network (PAN). Many of these mobile or fixed wireless network devices can form what can be called an underlay network, a new type of network in 5G and beyond technologies, with devices capable of communicating directly with each other or with fixed networks, and with There are computations that can be offloaded to larger form factor platforms or edge cloud base stations (i.e., entities in the wireless network with larger processing resources, either entirely or simply available at that moment). This can be accomplished through a virtualization platform that includes the edge cloud across many devices for optimal mobile computing and communications.

此新種類之無線網路擴縮可藉由若干因素來驅動。舉例而言,由於裝置感測典型屬於局部,感測資料之處理可屬於局部,而且依據感測資料之決策與動作變為局部。此趨勢可藉由穿戴式裝置與物聯網之增長來進一步放大。舉例而言,當機器在通訊方面開始扮演一比人類使用者作用更大的角色時,可增大整體通訊鏈路速度。The scaling of this new category of wireless networks can be driven by several factors. For example, since device sensing is typically local, processing of sensed data can be local, and decisions and actions based on sensed data become local. This trend can be further amplified by the growth of wearable devices and the Internet of Things. For example, when machines begin to play a larger role in communications than human users, overall communications link speeds can be increased.

當數量日益增加之通訊鏈路鄰近使用者與使用者裝置時,須再次討論端對端的定義。因此,提出要提供一雲端架構框架,可併入資料中心及邊緣雲端,提供更靠近終端使用者或裝置的局部智慧及服務。這舉例而言,可以是因為隨著無線網路及系統部署於企業、家庭、辦公室、工廠以及汽車,邊緣雲端伺服器對於效能及資訊隱私與安全性變為更重要。這些後項因素可由使用者(及政府)在隱私與安全性方面持續成長之關心來驅動。此外,深入此等固定式網路之資料中心可持續快速成長,因為許多現有服務可利用集中式架構、利用新一代可攜式與穿戴式裝置、無人靶機、工業機器、自動駕駛車、及類似者來更妥適地伺服,在此網路之邊緣處及使用者局部周圍處,促使通訊與運算能力方面成長益加快速。As the number of communication links increases in proximity to users and user devices, the definition of end-to-end must be discussed again. Therefore, it is proposed to provide a cloud architecture framework that can be integrated into data centers and edge clouds to provide local intelligence and services closer to end users or devices. This could be, for example, because as wireless networks and systems are deployed in businesses, homes, offices, factories and cars, edge cloud servers become more important for performance and information privacy and security. These latter factors may be driven by growing user (and government) concerns about privacy and security. In addition, data centers embedded in these fixed networks will continue to grow rapidly as many existing services can leverage centralized architectures, leverage new generations of portable and wearable devices, drones, industrial machines, autonomous vehicles, and Similar services can be served more appropriately at the edge of the network and around users, promoting faster growth in communication and computing capabilities.

此新引進的網路切片概念,尤其是那種提供具有端對端(E2E)垂直與水平網路切片之一無線網路系統架構的概念,可為空氣介面、無線電存取網路(RAN)及核心網路(CN)帶來變革,以實現帶有E2E網路切片之一無線網路系統。This newly introduced network slicing concept, specifically one that provides a wireless network system architecture with end-to-end (E2E) vertical and horizontal network slicing, can be used for air interfaces, radio access networks (RAN) and core network (CN) to bring about changes to implement a wireless network system with E2E network slicing.

簡言之,水平切片根據那些裝置隨時間與空間/位置的處理需要,藉由使伺服此無線網路或在此無線網路(亦即,中或上)受到伺服的裝置間共享運算資源,來增強裝置能力。In short, horizontal slicing works by sharing computing resources among devices serving or being served on (i.e., within or above) the wireless network, based on the processing needs of those devices over time and space/location. to enhance device capabilities.

水平網路切片的設計旨在適應新的訊務擴縮趨勢,並且實現邊緣雲端運算及運算卸載:基地台與可攜式裝置中的運算資源可進行水平切片,並且可連同穿戴式裝置整合這些切片,以透過如本文中所述之一新無線空氣介面設計形成一虛擬運算平台,以便顯著擴增未來可攜式與穿戴式裝置的運算能力。水平切片擴增裝置能力並且增強使用者體驗。Horizontal network slicing is designed to adapt to new traffic scaling trends and enable edge cloud computing and computing offloading: computing resources in base stations and portable devices can be sliced horizontally, and these can be integrated with wearable devices Slicing to form a virtual computing platform through a new wireless air interface design as described in this article to significantly expand the computing capabilities of future portable and wearable devices. Horizontal slicing expands device capabilities and enhances user experience.

網路切片以最一般的用語來講,可想成是一種方式,其使用虛擬化技術將一實體無線網路基礎結構之運算與通訊資源架構、劃分及組織成一或多個以邏輯方式區隔之無線電存取網路,以致能夠靈活支援多樣使用案例之落實。舉例而言,憑藉運作時之網路切片,可將一個實體無線網路切成多個邏輯無線電存取網路,各經架構與最佳化而符合一特定要求及/或特定應用/服務(即使用案例)。因此,一網路切片可依據運作與訊務流量定義為自含式,並且可具有其自有的網路架構、工程機制及網路佈建。如本文中提出的網路切片能夠簡化網路切片之建立與運作,並且容許實體無線網路基礎結構進行功能再利用與資源共享(亦即,提供效率),同時仍為無線網路所伺服之無線裝置提供充分的無線網路資源(通訊與處理資源)。In the most general terms, network slicing can be thought of as a method that uses virtualization technology to structure, divide and organize the computing and communication resources of a physical wireless network infrastructure into one or more logically partitioned The radio access network can flexibly support the implementation of various use cases. For example, with runtime network slicing, a physical wireless network can be divided into multiple logical radio access networks, each structured and optimized to meet a specific requirement and/or a specific application/service ( i.e. use cases). Therefore, a network slice can be defined as self-contained in terms of operations and traffic, and can have its own network architecture, engineering mechanisms, and network deployment. Network slicing, as proposed in this article, can simplify the creation and operation of network slicing and allow functional reuse and resource sharing (i.e., provide efficiency) of the physical wireless network infrastructure while still being served by the wireless network. Wireless devices provide sufficient wireless network resources (communication and processing resources).

垂直切片旨在支援多樣服務與應用(亦即,通訊的使用案例/類型)。實例包括有,但不限於:無線/行動寬頻(MBB)通訊;極端行動寬頻(E-MBB)通訊;諸如工業控制通訊、機器間通訊(MTC/MTC1)之即時使用案例;諸如物聯網(IoT)感測器通訊、或大規模機器間通訊(M-MTC/MTC2)之非即時使用案例;超可靠機器間通訊(U-MTC);例如快取緩存、通訊之行動邊緣雲端;車間(V2V)通訊;車輛與基礎結構間(V2I)通訊;車輛與任何東西間通訊(V2X)。也就是說,本揭露係有關於根據可透過一無線網路實行之任何輕易可定義/可區別通訊類型來提供網路切片。垂直網路切片在服務與應用中實現資源共享,並且可避免或簡化一傳統的QoS工程問題。Vertical slicing is designed to support diverse services and applications (ie, use cases/types of communications). Examples include, but are not limited to: wireless/mobile broadband (MBB) communications; extreme mobile broadband (E-MBB) communications; real-time use cases such as industrial control communications, machine-to-machine communications (MTC/MTC1); such as the Internet of Things (IoT) ) Sensor communication, or non-real-time use cases of large-scale machine-to-machine communication (M-MTC/MTC2); ultra-reliable machine-to-machine communication (U-MTC); mobile edge cloud such as cache and communication; workshop (V2V) ) communication; communication between vehicles and infrastructure (V2I); communication between vehicles and anything (V2X). That is, the present disclosure relates to providing network slicing based on any easily definable/differentiable communication type that can be implemented over a wireless network. Vertical network slicing enables resource sharing among services and applications and can avoid or simplify traditional QoS engineering issues.

同時,水平網路切片旨在延伸無線網路中的裝置能力,尤其是對其可用之局部資源可能有所限制之行動裝置,並且增強使用者體驗。水平網路切片的進行範圍跨且超過硬體平台之實體邊界。水平網路切片使網路節點與裝置間能夠共享資源,亦即,具有高度能力的網路節點/裝置可接著共享其資源(亦即,運算、通訊、儲存),以使能力較小之網路節點/裝置增強其能力。一簡單實例可以是使用一網路基地台及/或一智慧型手機行動裝置,以增補一穿戴式裝置之處理與通訊能力。水平網路切片之一最終結果可以是提供新一代行動(例如移動)底層網路叢集,其中行動終端機變為移動網路連結節點。水平切片可提供無線網路節點間透過空氣資源共享。所使用之無線網路空氣介面可以是水平切片之一整合部分及一促成器。At the same time, horizontal network slicing aims to extend the capabilities of devices in wireless networks, especially mobile devices that may have limited local resources available to them, and enhance user experience. Horizontal network slicing operates across and beyond the physical boundaries of the hardware platform. Horizontal network slicing enables resource sharing between network nodes and devices, i.e., highly capable network nodes/devices can then share their resources (i.e., computing, communications, storage) to enable less capable network nodes/devices. Road nodes/devices enhance their capabilities. A simple example could be to use a network base station and/or a smartphone mobile device to supplement the processing and communication capabilities of a wearable device. One end result of horizontal network slicing may be to provide a new generation mobile (eg mobile) underlying network cluster, where mobile terminals become mobile network connection nodes. Horizontal slicing provides over-the-air resource sharing between wireless network nodes. The wireless network air interface used may be an integrated part of the horizontal slice and an enabler.

垂直網路切片與水平網路切片可形成獨立切片。一垂直切片中之端對端訊務流量可在核心網路與終端裝置之間遞移。一水平切片中的端對端訊務流量可具有局部性,並且在一行動邊緣運算服務之用戶端與主機之間遞移。Vertical network slicing and horizontal network slicing can form independent slices. End-to-end traffic in a vertical slice can be moved between the core network and end devices. End-to-end traffic in a horizontal slice can be localized and shifted between clients and hosts in a mobile edge computing service.

在垂直切片中,各該網路節點可在不同切片中實施類似功能。垂直切片之一動態態樣主要可落在資源劃分中。然而,在水平切片中,新功能可在支援一切片時建立於一網路節點處。舉例而言,一可攜式裝置可使用不同功能以支援不同類型的穿戴式裝置。水平切片之動態態樣因此可落在網路功能及資源劃分中。In vertical slicing, each network node can implement similar functions in different slices. One dynamic aspect of vertical slicing can primarily fall into resource partitioning. However, in horizontal slicing, new functionality can be built at a network node when all slicing is supported. For example, a portable device may use different functions to support different types of wearable devices. The dynamic aspect of horizontal slicing can therefore fall within the partitioning of network functions and resources.

圖1展示垂直及水平網路切片廣義概念的一第一視圖。所示有一完整的無線網路100,包括有多個垂直切片110至140,各伺服一不同(或至少區隔)的垂直市場,即使用案例。在所示實例中,垂直切片#1 110伺服行動寬頻通訊,垂直切片#2 120伺服車間通訊,垂直切片#3 130伺服安全通訊,以及垂直切片#4 140伺服工業控制通訊。這些只是例示性使用案例,而根據本揭露可由可切式無線網路所伺服之使用案例實際上並無限制。Figure 1 shows a first view of the broad concept of vertical and horizontal network slicing. A complete wireless network 100 is shown, including multiple vertical slices 110 to 140, each serving a different (or at least segmented) vertical market, or use case. In the example shown, vertical slice #1 110 servo mobile broadband communications, vertical slice #2 120 servo shop floor communications, vertical slice #3 130 servo safety communications, and vertical slice #4 140 servo industrial control communications. These are only illustrative use cases, and there are virtually no limitations to the use cases that can be served by a switchable wireless network in accordance with the present disclosure.

無線網路100包括有一核心網路層部分150 (例如,具有eNode-B之多個伺服器/控制實體/控制部分等)、一無線電存取網路層部分160 (例如,包括有多個基地台、e-Node B等)、一裝置層部分170 (包括有諸如UE之可攜式裝置、車輛、監視裝置、工業裝置等)、以及一個人/穿戴層部分180 (包括有例如穿戴式裝置,諸如智慧錶、健康監視器、GoogleTM眼鏡/MicrosoftTM全息透鏡型裝置及類似者)。此穿戴式部分僅可涉及一些使用案例,如其僅含納於圖1之實例中的垂直切片#1及#2所示。The wireless network 100 includes a core network layer part 150 (for example, having multiple servers/control entities/control parts of eNode-B, etc.), a radio access network layer part 160 (for example, including multiple base stations). station, e-Node B, etc.), a device layer part 170 (including portable devices such as UEs, vehicles, surveillance devices, industrial devices, etc.), and a human/wearable layer part 180 (including, for example, wearable devices, Such as smart watches, health monitors, GoogleTM Glasses/MicrosoftTM Holographic Lens type devices and the like). This wearable segment can only cover some use cases, as shown by vertical slices #1 and #2 in the example of Figure 1 where it is included only.

在此垂直域中,網路基礎結構中之實體運算/儲存/無線電處理資源(如伺服器及基地台150/160)、以及實體無線電資源(依據時間、頻率及空間)乃藉由使用案例(即通訊類型)進行切片,以形成端對端垂直切片。在水平域中,此網路階層之相鄰層中的實體資源(依據運算、儲存、無線電)乃進行切片以形成水平切片。在所示實例中,在RAN 160與裝置170層之間運作有一第一水平網路切片190,而在裝置170與穿戴180層之間運作有一第二水平網路切片195。 整體由或待由無線網路100所伺服之任何給定裝置,以及尤其是RAN 160 (及下面諸層),可在多個網路切片上運作,任一(或兩種)類型都可以。舉例來說,一智慧型手機可在行動寬頻(MBB)服務上之一垂直切片、健康照護服務上之一垂直切片、以及支援穿戴式裝置之一水平切片中運作。In this vertical domain, the physical computing/storage/radio processing resources (such as servers and base stations 150/160), and the physical radio resources (in terms of time, frequency and space) in the network infrastructure are determined by use cases ( i.e. communication type) are sliced to form end-to-end vertical slices. In the horizontal domain, physical resources (in terms of computing, storage, radio) in adjacent layers of the network hierarchy are sliced to form horizontal slices. In the example shown, there is a first horizontal network slice 190 operating between the RAN 160 and device 170 layers, and a second horizontal network slice 195 operating between the device 170 and wear 180 layers. Any given device served or to be served by wireless network 100 in its entirety, and RAN 160 (and the layers below) in particular, may operate on multiple network slices, of either (or both) type. For example, a smartphone can operate in a vertical slice on mobile broadband (MBB) services, a vertical slice on health care services, and a horizontal slice on support for wearable devices.

在RAN (包括有運用於此RAN中之空氣介面)中實現網路切片時,除了符合5G要求(例如,資料率、潛時、連線數量等)以外,此等RAN/空氣介面用於實現網路切片而且一般為5G之進一步期望特徵還可包括有靈活性(亦即,在切片間支援靈活的無線電資源分配);擴縮性(亦即,利用新增新切片而輕易擴大);以及效率(例如,有效率地使用無線電與能量資源)。When implementing network slicing in the RAN (including air interfaces used in this RAN), in addition to complying with 5G requirements (e.g., data rate, latency, number of connections, etc.), these RAN/air interfaces are used to implement Further desirable characteristics of network slicing, and 5G in general, may include flexibility (i.e., supporting flexible radio resource allocation among slices); scalability (i.e., being easily expanded with the addition of new slices); and Efficiency (e.g. efficient use of radio and energy resources).

水平切片可包含有將網路階層切片,例如,網路連線能力與運算(即處理資源)能力諸層。這可跨網路100所伺服之任意數量的垂直切片來完成,舉例而言,由所有垂直市場向下到一或多個垂直切片內的任何東西來完成。此乃展示為圖1中不同寬度之兩個例示性水平切片 - 水平切片#1 190受限於單一垂直切片,而水平切片#2涵蓋兩個垂直切片。網路階層/層之實例可包括有,但不限於一巨集網路層、一微型/小型胞元網路層、一裝置間通訊層、以及類似者。也可涉及其他網路層。Horizontal slicing may include slicing network layers, such as network connectivity and computing (ie, processing resource) capability layers. This can be done across any number of vertical slices served by network 100, for example, from all vertical markets down to anything within one or more vertical slices. This is shown as two exemplary horizontal slices of different widths in Figure 1 - horizontal slice #1 190 is limited to a single vertical slice, while horizontal slice #2 encompasses two vertical slices. Examples of network layers/layers may include, but are not limited to, a macro network layer, a micro/small cell network layer, an inter-device communication layer, and the like. Other network layers may also be involved.

圖2展示圖1之無線網路100其中一部分的一第二視圖200。特別的是,圖2展示一特定切片RAN架構之一實例,其中諸切片可跨多個層級之傳統無線網路架構。舉例而言,取決於諸如訊務類型、訊務負載、QoS要求等因素,可動態組配各該切片之RAN架構。在一第一實例中,切片#1 210僅可在巨集胞元層級上運作。而切片#2 220僅在小型胞元層級上運作。最後,切片#3 230在巨集與小型胞元層級上都可運作。在另一實例中,一切片(例如切片#1 210)可在小型胞元上展開運作,而另一切片(例如切片#3 230)可在此等小型胞元其中一些上結束運作。FIG. 2 shows a second view 200 of a portion of the wireless network 100 of FIG. 1 . In particular, Figure 2 shows an example of a specific sliced RAN architecture, where slices can span multiple layers of a traditional wireless network architecture. For example, the RAN architecture of each slice can be dynamically configured depending on factors such as traffic type, traffic load, QoS requirements, etc. In a first example, slice #1 210 only operates at the macro cell level. Slice #2 220 only operates at the small cell level. Finally, slice #3 230 operates at both macro and small cell levels. In another example, one slice (eg, slice #1 210) may operate on small cells, while another slice (eg, slice #3 230) may end up operating on some of these small cells.

展開運作/啟動一切片可作為一網路切片開啟來參考,而結束運作/止動一切片可作為一網路切片關閉來參考。此特定切片RAN架構可能需要特定切片控制平面/使用者平面運作、切片啟/閉運作、以及存取控制與負載平衡切片式處理,下文將會有更加詳細的論述。Expanding/activating a slice can be referenced as a network slice opening, while deactivating/deactivating a slice can be referenced as a network slice closing. This specific slicing RAN architecture may require specific slicing control plane/user plane operations, slicing on/off operations, and access control and load balancing slicing processing, which will be discussed in more detail below.

包含有將網路/裝置運算與通訊資源切片之水平切片可達到運算卸載。實例包括有基地台使用其運算資源之一切片幫助使用者裝置進行運算,或一使用者裝置(例如智慧型手機)使用其運算資源之一切片幫助一(多個)相關聯穿戴式裝置進行運算。Horizontal slicing, which includes slicing network/device computing and communication resources, can achieve computing offloading. Examples include a base station using a slice of its computing resources to help a user device perform computing, or a user device (such as a smartphone) using a slice of its computing resources to help one (more) associated wearable devices perform computing. .

本揭露之實施例並不受限於順著垂直(市場)或水平(網路階層/層)方向之任何特定形式之切片。Embodiments of the present disclosure are not limited to any specific form of slicing along the vertical (market) or horizontal (network hierarchy/tier) direction.

本揭露之實施例可提供可跨控制平面(C平面)及/或使用者平面(U平面)運作之一管理實體,其可提供一管理平面實體,用於協調不同切片進行運作,可以是水平或垂直(或多個/組合式、或部分、其數者)的切片。此管理實體可使用一平坦管理架構或一階層式管理架構。Embodiments of the present disclosure can provide a management entity that can operate across the control plane (C plane) and/or the user plane (U plane), which can provide a management plane entity for coordinating the operation of different slices, which can be horizontal Or vertical (or multiple/combined, or partial, or several thereof) slices. This management entity may use a flat management structure or a hierarchical management structure.

無線電存取網路進行切片可視為此無線電存取網路根據網路之預定垂直市場、或水平網路層(或多個/部分層)進行切片。這可視為此無線電存取網路所提供、或所使用無線資源之間的一邏輯區隔形式。此等無線資源之邏輯區隔可容許可以分離地對其進行定義、管理、及/或(大致或具體地)提供資源。此區隔可讓不同切片有能力不能夠或不容許彼此影響。同等地,在一些實施例中,一或多個切片可具體地提供有為了運作而管理另一或多個切片的能力。Slicing of the radio access network can be seen as slicing the radio access network according to predetermined vertical markets of the network, or horizontal network layers (or multiple/partial layers). This can be considered a form of logical separation between the radio resources provided by or used by the radio access network. Logical partitioning of such wireless resources may allow them to be defined, managed, and/or provisioned (generally or specifically) separately. This separation allows different slices to have the ability to be unable or not allowed to affect each other. Likewise, in some embodiments, one or more slices may specifically be provided with the ability to manage another slice or slices for operations.

在一些實施例中,可將網路功能完全卸載至一網路切片,而且此切片可在一分立模式中運作,例如一分立毫米波(mmWave)小型胞元網路、以及一涵蓋範圍外D2D網路。一mmWave小型胞元是一種使用毫米尺寸無線電波(即高頻,例如60 GHz)之胞元。In some embodiments, network functions can be completely offloaded to a network slice, and the slice can operate in a discrete mode, such as a discrete millimeter wave (mmWave) small cell network, and an out-of-range D2D Internet. A mmWave small cell is a cell that uses millimeter-sized radio waves (i.e., high frequencies, such as 60 GHz).

在一些實施例中,可將(多個)網路功能部分卸載至一切片,而且此切片可在一非分立模式中運作,例如在一錨接-支援式架構中運作,其中一錨接-支援式架構可包含有一錨胞,提供一控制平面及一行動性定錨以供維持連線能力之用。在一實施例中,此錨胞可以是具有寬大涵蓋範圍之一胞元,例如一巨集胞元。此錨接-支援式架構可更包含有一增幅器胞元,提供使用者平面資料卸載。在一實施例中,此增幅器胞元可以是一小型胞元,並且可部署於一錨胞之涵蓋範圍下。從一裝置觀點來看,可將此控制平面與使用者平面解耦,亦即,可在此錨胞處維持此控制平面,而在此增幅器胞元處維持此資料平面。In some embodiments, network function(s) may be partially offloaded to a slice, and the slice may operate in a non-discrete mode, such as in an anchor-backed architecture where an anchor- The support architecture may include an anchor cell that provides a control plane and a mobility anchor for maintaining connectivity. In one embodiment, the anchor cell may be a cell with a wide coverage range, such as a macro cell. The anchor-supported architecture may further include an amplifier cell to provide user plane data offloading. In one embodiment, the amplifier cell may be a small cell and may be deployed within the coverage of an anchor cell. From a device perspective, the control plane can be decoupled from the user plane, that is, the control plane can be maintained at the anchor cell, and the data plane can be maintained at the amplifier cell.

在一些例示性實施例中,此等水平切片及垂直切片可視為交結式(亦即,其中此等垂直與水平切片間共享無線電存取網路功能/資源),如圖3之圖解300所示。因此,圖3根據屬於圖1所示實施例之替代例(或附加例)之一實施例,展示可以用何種方式將一無線電存取網路(RAN)切成水平及垂直切片,其中此等切片在訊務流量與運作方面全都具有獨立性。圖1之圖解300沿著y軸具有網路階層302 (即所涉及/使用的網路層),並且沿著x軸具有無線電資源304 (即指出使用分離的無線電資源,諸如頻率、時間槽等)。在圖1之實例中,所示垂直切片為包含有四個垂直切片306。然而,可涉及任意數量的不同市場/使用案例。所示選用於此等垂直切片之四個垂直市場/使用案例分別為行動寬頻(MBB) 110、一車載型通訊(V2X) 120、一第一機器類型通訊(MTC-1) 130、一第二機器類型通訊(MTC-2) 140,標示為切片Slice#1至Slice#4。這些只是可予以伺服之使用案例中的例示性選擇。In some exemplary embodiments, these horizontal slices and vertical slices may be viewed as interleaved (i.e., where radio access network functions/resources are shared between the vertical and horizontal slices), as shown in diagram 300 of FIG. 3 . Therefore, FIG. 3 shows how a radio access network (RAN) can be sliced into horizontal and vertical slices according to an embodiment that is an alternative (or additional) to the embodiment shown in FIG. 1 , where this Equal slices are all independent in terms of traffic flow and operation. The diagram 300 of Figure 1 has the network hierarchy 302 along the y-axis (i.e., the network layers involved/used), and the radio resources 304 along the x-axis (i.e., indicating the use of separate radio resources, such as frequencies, time slots, etc. ). In the example of FIG. 1 , the vertical slices shown include four vertical slices 306 . However, any number of different markets/use cases can be addressed. The four vertical markets/use cases shown selected for these vertical slices are Mobile Broadband (MBB) 110, One Vehicle-to-Everything (V2X) 120, One Machine Type 1 (MTC-1) 130, One Second Machine Type Communications (MTC-2) 140, labeled slices Slice#1 to Slice#4. These are just illustrative choices of use cases that can be served.

圖3中亦展示水平切片,在這項實例中,一樣包含有四個水平切片308。所示這四個水平切片為巨集網路層210、微型網路層220、裝置間網路層230、以及個人區域網路(PAN) (例如穿戴式)網路層240。根據一實例,各水平切片含有多個垂直切片其中一部分。同等地,各垂直切片含有各水平切片之一部分。此等分離部分如順著水平與垂直兩方向區隔時,可稱為一切片部分。因此,在圖1之實例中,MBB垂直切片110包含有四個切片部分:巨集網路層部分112;微型網路層部分114;D2D網路層部分116;以及PAN網路層部分118。類似的是,V2X垂直切片120包含有四個切片部分:巨集網路層部分122;微型網路層部分124;D2D網路層部分126;以及PAN網路層部分128。同時,MTC-1垂直切片130包含有四個切片部分:巨集網路層部分132;微型網路層部分134;D2D網路層部分136;以及PAN網路層部分138,而MTC-2垂直切片140包含有四個切片部分:巨集網路層部分142;微型網路層部分144;D2D網路層部分146;以及PAN網路層部分148。Horizontal slices are also shown in Figure 3. In this example, there are also four horizontal slices 308. The four horizontal slices shown are macro network layer 210, micro network layer 220, inter-device network layer 230, and personal area network (PAN) (eg, wearable) network layer 240. According to an example, each horizontal slice contains a portion of a plurality of vertical slices. Likewise, each vertical slice contains a portion of each horizontal slice. If these separated parts are divided along both horizontal and vertical directions, they can be called sliced parts. Therefore, in the example of FIG. 1, MBB vertical slice 110 includes four slice parts: macro network layer part 112; micro network layer part 114; D2D network layer part 116; and PAN network layer part 118. Similarly, the V2X vertical slice 120 includes four slice parts: a macro network layer part 122; a micro network layer part 124; a D2D network layer part 126; and a PAN network layer part 128. Meanwhile, MTC-1 vertical slice 130 includes four slice parts: macro network layer part 132; micro network layer part 134; D2D network layer part 136; and PAN network layer part 138, while MTC-2 vertical Slice 140 includes four slice parts: macro network layer part 142; micro network layer part 144; D2D network layer part 146; and PAN network layer part 148.

此一架構之一實例在一個人區域網路中為一穿戴式健康感測器,可屬於一專屬健康網路。此個人區域網路層接著可代表一水平網路切片。在此個人區域網路之涵蓋區下運行之健康網路可屬於一垂直網路切片。在相同的符記中,各水平網路切片可包含有多個垂直網路切片。各垂直網路切片可具有多個水平網路切片。另一實例為一巨集胞元(即巨集eNB),其伺服若干不同的使用案例通訊。同樣地,各垂直切片舉例而言,可在一V2X網路中含有多個水平切片之部分,可以有V2I及V2V層。在另一實例中,行動寬頻(MBB)垂直切片在各該巨集、微型及裝置間層中包括有部分,如所示。因此,實施例提供一種方式,用來根據使用案例(垂直方式)及網路層(水平方式)兩者 ,以邏輯方式刻分此無線電存取網路所提供、及/或使用之無線資源。One example of this architecture is a wearable health sensor in a personal area network, which may belong to a dedicated health network. This personal area network layer may then represent a horizontal network slice. The health network running under the coverage area of this personal area network may belong to a vertical network slice. Within the same token, each horizontal network slice can contain multiple vertical network slices. Each vertical network slice can have multiple horizontal network slices. Another example is a macro cell (ie macro eNB) that serves several different use case communications. Likewise, each vertical slice may, for example, be part of multiple horizontal slices in a V2X network, and may have V2I and V2V layers. In another example, a mobile broadband (MBB) vertical slice includes portions in each of the macro, micro, and inter-device layers, as shown. Therefore, embodiments provide a way to logically partition the radio resources provided and/or used by the radio access network based on both use cases (vertical approach) and network layer (horizontal approach).

通訊與運算已在推送資訊邊界及運算技術時互助。於網路側,已使用運算藉由將運算與儲存移至邊緣而有助於通訊。憑藉邊緣雲端與邊緣運算,來源與目的地之間的通訊變更短,藉此改善網路中的通訊效率,並且降低資訊傳播量。邊緣雲端與運算方案有不同的最佳部署。舉一通用規則來說,端裝置的能力愈小及/或裝置密度愈高,則雲端與運算愈靠近網路邊緣。Communications and computing have collaborated in pushing the boundaries of information and computing technologies. On the network side, computing has been used to facilitate communications by moving computing and storage to the edge. With edge cloud and edge computing, the communication between source and destination is shortened, thereby improving communication efficiency in the network and reducing the amount of information dissemination. Edge clouds and computing solutions have different optimal deployments. As a general rule, the smaller the capabilities of the end devices and/or the higher the device density, the closer the cloud and computing are to the edge of the network.

於裝置側向前移動時,隨著裝置由可攜式裝置到穿戴式裝置會有更小的尺寸,而且使用者對於運算的期望持續增加,我們期望進一步通訊將會有助於遞送使用者體驗,例如,此等網路節點自其運算資源部分切出以有助於可攜式裝置處的運算,而此等可攜式裝置自其運算資源部分切出以有助於穿戴式裝置處的運算。依此作法,網路得以進行水平切片。此等切出之運算資源及連接兩端之空氣介面形成遞送所需服務之一整合部分。As device sides move forward, as devices become smaller in size from portable to wearable, and as users' expectations for computing continue to increase, we expect further communication will help deliver the user experience , for example, the network nodes are carved out of their computing resources to facilitate computing at the portable device, and the portable devices are carved out of their computing resources to facilitate computing at the wearable device. Operation. In this way, the network can be sliced horizontally. These cut-out computing resources and the air interface connecting both ends form an integral part of delivering the required services.

圖4根據實施例展示一可切式無線網路架構中一更加詳細的水平切片實例。左手邊展示傳統的3G/4G架構(但僅從RAN開始往下)。此包含有一基地台部分410,包含有一上游/核心網路側通訊功能412、一基地台運算功能414 (亦即,基地台中可用之處理資源,或其密切耦合之實體)、以及一下游/無線/裝置側通訊功能416 (用來例如在前傳等情況下,與該基地台、或者對等基地台所伺服之裝置通訊)。亦展示有一可攜式部分420 (例如一用戶設備、或一相似裝置),其包含有上游與下游通訊資源及局部處理資源之一類似組合。在這種狀況中,此上游通訊鏈路為典型的蜂巢式無線通訊鏈路422 (例如,OFDM/CDMA/LTE型鏈路)及諸如一5G無線電存取技術(RAT) (例如OFDM/CDMA/LTE型鏈路)之一下游通訊鏈路426、諸如一5G PAN RAT (尚待建立)之一(多個)下一代通訊鏈路、或一當代或下一代其他PAN無線通訊技術,例如藍牙、zigbee或類似者。介於之間的是局部運算功能424,亦即,位處可攜式裝置本機之處理資源。最後,在本實例中,有穿戴式部分430,其典型僅具有單一上游通訊鏈路432及有限局部處理資源功能434。Figure 4 shows a more detailed example of horizontal slicing in a scalable wireless network architecture, according to an embodiment. The left hand side shows the traditional 3G/4G architecture (but only starting from RAN and going down). This includes a base station portion 410, including an upstream/core network-side communications function 412, a base station computing function 414 (i.e., the processing resources available in the base station, or closely coupled entities thereof), and a downstream/wireless/ Device-side communication function 416 (used to communicate with the device served by the base station or peer base station, for example, in fronthaul, etc.). Also shown is a portable portion 420 (such as a user equipment, or a similar device) that contains a similar combination of upstream and downstream communication resources and local processing resources. In this case, the upstream communication link is a typical cellular wireless communication link 422 (eg, OFDM/CDMA/LTE type link) and a 5G Radio Access Technology (RAT) (eg, OFDM/CDMA/ One of the downstream communication links 426 of an LTE type link), one of the next generation communication link(s) such as a 5G PAN RAT (yet to be established), or a current or next generation other PAN wireless communication technology, such as Bluetooth, zigbee or similar. In between are the local computing functions 424, that is, the processing resources local to the portable device. Finally, in this example, there is the wearable portion 430, which typically has only a single upstream communication link 432 and limited local processing resource functionality 434.

圖4的右手邊展示新提出之水平網路切片概念其中一者,尤其是網路中更高及更低實體之處理資源可用何種方式使用參與之實體之通訊與處理資源能力來「組合」,亦即,彼此間共享。基本功能是類似的,因此分別表示為項目410’至434’,並且以類似方式動作。然而,現在有水平切片的概念,在這種狀況中,其更加詳細展示圖1之水平切片#1 190及#2 195。在此基本實例中,穿戴式裝置430’能夠藉由使用通訊功能共享處理資料(例如,待處理資料及綜合處理資料),利用可攜式裝置420’之處理資源424’。類似的是,可攜式裝置420’能夠使用基地台410’處理資源414’。The right-hand side of Figure 4 shows one of the newly proposed concepts of horizontal network slicing, specifically how the processing resources of entities higher and lower in the network can be "combined" using the communication and processing resource capabilities of the participating entities. , that is, shared with each other. The basic functions are similar and are therefore designated as items 410' to 434' respectively, and act in a similar manner. However, there is now the concept of horizontal slices, in this case horizontal slices #1 190 and #2 195 of Figure 1 are shown in more detail. In this basic example, the wearable device 430' can utilize the processing resources 424' of the portable device 420' by sharing processing data (e.g., data to be processed and integrated processing data) using communication functions. Similarly, portable device 420' can use base station 410' processing resources 414'.

接下來將會根據本揭露,更加詳細說明網路切片概念之一部分。在一些實例中,可提供這些功能作為新網路功能(NF),其可例如藉由使用網路功能虛擬化(NFV),在一些狀況中予以虛擬化。這些NF及NFV可具有切片特定性,或運作於多個/所有切片。所提出的無線網路兩者皆作為一整體(例如,包括有核心網路),但特別的是,RAN現將具有切片感知性,所藉助利用的是新實施作的切片識別。Next, based on this disclosure, part of the network slicing concept will be explained in more detail. In some examples, these functions may be provided as new network functions (NFs), which may be virtualized in some cases, such as by using network functions virtualization (NFV). These NFs and NFVs can be slice specific, or operate on multiple/all slices. The proposed wireless network is both as a whole (e.g., including the core network), but in particular, the RAN will now be slice-aware by leveraging the newly implemented slice awareness.

在傳統的RAN基礎結構中,已提出一集中式處理雲端為基之RAN (雲端(C)-RAN)基礎結構。在C-RAN中,與傳統蜂巢式系統不同的是,基頻處理單元(BBU)之一中央池進行大部分基頻處理,而遠距無線電頭端(RRH)則進行無線電信號之傳送與接收。此C-RAN架構可藉由合併一BBU/BBU池的耗能硬體設備來改善能量效率。此C-RAN架構亦可藉由使集中式網路管理及網路升級更容易完成,將一網路之CAPEX與OPEX都降低。另外,此C-RAN架構可用於實施先進協調式多點(CoMP)通訊及干涉管理方案,諸如先進胞元間干涉協調(eICIC)。Among traditional RAN infrastructures, a centralized processing cloud-based RAN (Cloud (C)-RAN) infrastructure has been proposed. In C-RAN, unlike traditional cellular systems, a central pool of baseband processing units (BBUs) performs most of the baseband processing, while the remote radio heads (RRHs) perform the transmission and reception of radio signals. . This C-RAN architecture can improve energy efficiency by merging energy-consuming hardware devices into a BBU/BBU pool. This C-RAN architecture can also reduce both the CAPEX and OPEX of a network by making centralized network management and network upgrades easier to complete. In addition, this C-RAN architecture can be used to implement advanced coordinated multipoint (CoMP) communication and interference management solutions, such as advanced inter-cell interference coordination (eICIC).

圖5繪示一典型的C-RAN架構500。RRH 502、504及506可將無線信號發送及接收自帶有無線能力的裝置,諸如用戶設備(UE)。此等RRH 502、504及506可分別經由前傳鏈路516、518及520與一BBU/BBU池514進行通訊。前傳為介於集中式基頻控制器之一新網路架構與處於蜂窩站之遠距分立無線電頭端之間的連線。一通用公共無線電介面(CPRI)可以是用於經由前傳鏈路516、518及520將RRH 502、504及506 連線至BBU/BBU池514之介面類型。BBU/BBU池514可與一核心網路522進行通訊。在一項實例中,可將由核心網路522至RRH 502 (或RRH 504或RRH 506)之一涵蓋區裝置中之一無線裝置524的一通訊從核心網路522發送至BBU/BBU池514。BBU/BBU池514接著可經由前傳鏈路516 (或分別經由前傳鏈路518或前傳鏈路520),發送此通訊至RRH 502 (或RRH 504或RRH 506)。接著可經由一無線電信號,將此通訊從RRH 502 (或RRH 504或RRH 506)發送至無線裝置524。這典型稱為一下行鏈路通訊。Figure 5 illustrates a typical C-RAN architecture 500. RRHs 502, 504, and 506 may send and receive wireless signals from wireless-capable devices, such as user equipment (UE). The RRHs 502, 504 and 506 may communicate with a BBU/BBU pool 514 via fronthaul links 516, 518 and 520 respectively. Fronthaul is the connection between a new network architecture of centralized baseband controllers and long-distance discrete radio heads at cell sites. A common public radio interface (CPRI) may be the type of interface used to connect RRHs 502, 504 and 506 to the BBU/BBU pool 514 via fronthaul links 516, 518 and 520. BBU/BBU pool 514 can communicate with a core network 522. In one example, a communication from core network 522 to one of the wireless devices 524 in one of the coverage devices of RRH 502 (or RRH 504 or RRH 506) may be sent from core network 522 to BBU/BBU pool 514. BBU/BBU pool 514 may then send this communication to RRH 502 (or RRH 504 or RRH 506) via fronthaul link 516 (or via fronthaul link 518 or fronthaul link 520, respectively). This communication may then be sent from RRH 502 (or RRH 504 or RRH 506) to wireless device 524 via a radio signal. This is typically called downlink communication.

在另一實例中,由無線裝置524至核心網路之一通訊稱為一上行鏈路通訊,可經由一無線電信號,傳送自無線裝置524並接收於RRH 502 (或RRH 504或RRH 506)。RRH 502 (或RRH 504或RRH 506)可經由前傳鏈路516 (或分別經由前傳鏈路518或前傳鏈路520),發送此通訊至BBU/BBU池514。BBU/BBU池514接著可發送此通訊至核心網路522,其中此通訊可指向其意欲的目的地。In another example, a communication from wireless device 524 to the core network, referred to as an uplink communication, may be transmitted from wireless device 524 and received at RRH 502 (or RRH 504 or RRH 506) via a radio signal. RRH 502 (or RRH 504 or RRH 506) may send this communication to BBU/BBU pool 514 via fronthaul link 516 (or via fronthaul link 518 or fronthaul link 520, respectively). The BBU/BBU pool 514 can then send the communication to the core network 522, where the communication can be directed to its intended destination.

圖6繪示一CPRI為基之C-RAN架構600之一實例,其中一BBU/BBU池602乃藉由一前傳鏈路606連線至一RRH 604。RRH 604可包含有一類比前端(AFE) 608、一數位類比轉換器(DAC) 610、以及一類比數位轉換器(ADC) 612。AFE 608可能以可操作方式連接至複數個天線628。另外,如選擇614中所示,RRH 604可包含有至少兩個用於CPRI處理之模組:一壓縮與定框模組616及一解壓縮與定框模組618。BBU/BBU池602可包含有一層處理模組620,其處置一封包資料收斂協定(PDCP)層、一無線電鏈路控制(RLC)層、一媒體存取控制(MAC)層、以及一實體(PHY)層之處理。如選擇622中所示,BBU/BBU池602亦可包含有至少兩個用於CPRI處理之模組:一壓縮與定框模組624及一解壓縮與定框模組626。Figure 6 illustrates an example of a CPRI-based C-RAN architecture 600, in which a BBU/BBU pool 602 is connected to an RRH 604 through a fronthaul link 606. RRH 604 may include an analog front end (AFE) 608, a digital to analog converter (DAC) 610, and an analog to digital converter (ADC) 612. AFE 608 may be operatively connected to a plurality of antennas 628. Additionally, as shown in option 614, RRH 604 may include at least two modules for CPRI processing: a compression and framing module 616 and a decompression and framing module 618. The BBU/BBU pool 602 may include a processing module 620 that handles a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control (RLC) layer, a Media Access Control (MAC) layer, and an entity ( PHY) layer processing. As shown in selection 622, the BBU/BBU pool 602 may also include at least two modules for CPRI processing: a compression and framing module 624 and a decompression and framing module 626.

在一項實例中,進行一下行鏈路通訊時,可將一信號從BBU/BBU池602之層處理模組620發送至BBU/BBU池602之壓縮與定框模組624。壓縮與定框模組624可在此信號上進行時域壓縮與定框運作,並且使用CPRI協定,經由前傳鏈路606,將此信號發送至RRH 604之解壓縮與定框模組618。解壓縮與定框模組618可在此信號上進行解壓縮及定框運作,並且發送此信號至DAC 610。此DAC可將此信號轉換成一類比信號,並且將此類比信號發送至AFE 608。此AFE可傳送此類比信號至複數個天線628。複數個天線628能以無線方式發送此類比信號至一目的地裝置(例如一UE)。In one example, during downlink communication, a signal may be sent from the layer processing module 620 of the BBU/BBU pool 602 to the compression and framing module 624 of the BBU/BBU pool 602. The compression and framing module 624 can perform time domain compression and framing operations on the signal, and send the signal to the decompression and framing module 618 of the RRH 604 via the fronthaul link 606 using the CPRI protocol. The decompression and framing module 618 can perform decompression and framing operations on the signal and send the signal to the DAC 610 . The DAC converts this signal to an analog signal and sends the analog signal to the AFE 608. The AFE can transmit the analog signal to a plurality of antennas 628. A plurality of antennas 628 can wirelessly transmit such analog signals to a destination device (eg, a UE).

在另一實例中,進行一上行鏈路通訊時,複數個天線628可接收一無線電信號,並且將此信號傳送至AFE 608。AFE 608可傳送此信號至ADC 612。ADC 612可使用相位(I)與正交(Q)取樣將此信號數位化,並且將此數位化信號發送至壓縮與定框模組616。壓縮與定框模組616可在此信號上進行時域壓縮與定框運作,並且使用CPRI協定,經由前傳鏈路606,將此信號轉送至BBU/BBU池602之解壓縮與定框模組626。解壓縮與定框模組626可在此信號上進行解壓縮及定框運作,並且發送此信號至層處理模組620。層處理模組620可在此信號上進行更高層基頻處理。In another example, during an uplink communication, the plurality of antennas 628 may receive a radio signal and transmit the signal to the AFE 608 . AFE 608 can send this signal to ADC 612. ADC 612 may digitize this signal using phase (I) and quadrature (Q) sampling and send the digitized signal to compression and framing module 616. The compression and framing module 616 can perform time domain compression and framing operations on this signal, and forward this signal to the decompression and framing module of the BBU/BBU pool 602 via the fronthaul link 606 using the CPRI protocol. 626. The decompression and framing module 626 can perform decompression and framing operations on the signal and send the signal to the layer processing module 620 . The layer processing module 620 can perform higher-layer fundamental frequency processing on this signal.

儘管此C-RAN典範減輕許多與傳統RAN典範相關聯的問題,現有的C-RAN架構仍也引進一些新挑戰。特別的是,由於現有C-RAN典範要求使用一CPRI介面將一RRH連接至一BBU/BBU池,對於C-RAN架構中所用前傳鏈路之轉送率要求仍會有問題,因為透過前傳介面的預期轉送率(即前傳率)會顯著高於透過此無線電介面之資料轉送率。Although this C-RAN paradigm alleviates many of the problems associated with the traditional RAN paradigm, existing C-RAN architectures also introduce some new challenges. In particular, since the existing C-RAN paradigm requires the use of a CPRI interface to connect an RRH to a BBU/BBU pool, there will still be issues with the transfer rate requirements for the fronthaul links used in the C-RAN architecture because of the The expected transfer rate (i.e. the fronthaul rate) will be significantly higher than the data transfer rate through this radio interface.

舉例而言,思考帶有一10百萬赫茲(MHz)頻寬之一長期演進技術(LTE)上行鏈路(UL)系統、處於一RRH之兩個接收天線、以及一15.36 MHz取樣頻率。若使用的是一15位元表示型態之I/Q相位數位樣本,則I/Q資料率為每秒921.6百萬位元(Mbps)。若考慮的是每15位元組資料一個標頭位元組之CPRI基本訊框額外負荷、以及10/8之線編碼率,則實體線率變為每秒1.2288十億位元(Gbps)。另外,總體CPRI實體線率隨著天線數量線性提升,而系統頻寬在使用載波匯集時快速超出10 Gbps。這些因素因此會導致相當高的前傳率要求以供實際部署之用。For example, consider a Long Term Evolution (LTE) uplink (UL) system with a 10 megahertz (MHz) bandwidth, two receive antennas at an RRH, and a 15.36 MHz sampling frequency. If a 15-bit representation of I/Q phase bit samples is used, the I/Q data rate is 921.6 million bits per second (Mbps). If one considers the CPRI basic frame overhead of one header byte per 15 bytes of data and a line encoding rate of 10/8, the physical line rate becomes 1.2288 gigabits per second (Gbps). In addition, the overall CPRI physical line rate increases linearly with the number of antennas, while the system bandwidth quickly exceeds 10 Gbps when using carrier aggregation. These factors will therefore lead to rather high fronthaul rate requirements for practical deployment.

其他問題亦影響現有的C-RAN架構。舉例來說,CPRI之取樣率與LTE的取樣率一樣,而且獨立於一胞元內的使用者負載或使用者活動;結果是,沒有統計平均增益。另外,CPRI資料率要求大部分是由I/Q使用者平面資料樣本來驅動。一LTE信號因使用防護帶而固有地具有冗餘性。舉例而言,在一10 MHz LTE系統中,1024個可用副載波中僅600個用於資料;其他副載波則歸零當作防護帶使用。然而,雖然時域I/Q樣本具有一冗餘信號結構,仍需要一複雜的非線性方案才能利用此冗餘,以便達到一更高的壓縮因素。另外,在時域I/Q樣本上運作之前傳壓縮方案無法利用不同調變及編碼方案用之信號量化雜訊比(SQNR)、或使用者排程側資訊(例如,使用者活動,副載波佔有率),因為一旦一信號在時域中遭受分割,此資訊便大致遺失。基於至少這些理由,現有C-RAN架構中壓縮效能相對較差。Other issues also affect the existing C-RAN architecture. For example, CPRI's sampling rate is the same as that of LTE and is independent of user load or user activity within a cell; as a result, there is no statistical average gain. Additionally, CPRI data rate requirements are largely driven by I/Q user plane data samples. An LTE signal is inherently redundant due to the use of guardbands. For example, in a 10 MHz LTE system, only 600 of the 1,024 available subcarriers are used for data; the other subcarriers are zeroed out and used as guard bands. However, although the time-domain I/Q samples have a redundant signal structure, a complex nonlinear scheme is still required to exploit this redundancy in order to achieve a higher compression factor. In addition, forward-pass compression schemes operating on time-domain I/Q samples cannot take advantage of the signal quantization-to-noise ratio (SQNR) of different modulation and coding schemes, or user scheduling side information (e.g., user activity, subcarriers occupancy) because once a signal is split in the time domain, this information is largely lost. For at least these reasons, compression performance in existing C-RAN architectures is relatively poor.

根據本揭露之系統及方法呈現一替代的靈活性C-RAN架構框架,可在實施網路切片之一無線電存取網路中運作。Systems and methods in accordance with the present disclosure present an alternative flexible C-RAN architectural framework that can operate in a radio access network implementing network slicing.

無線電存取網路(RAN)重新架構已針對雲端無線電存取網路(CRAN)及第三代合夥專案(3GPP)第四代(4G)長期演進技術(LTE)進行論述。無線電存取網路重新架構的主要動機在於降低前傳率要求,同時根據CRAN技術前提維持效益。已提出各種無線電存取網路重新架構選項,包括有一單純的分割實體層(PHY)選項(僅快速傅立葉轉換(FFT)功能移至前端)、多輸入多輸出(MIMO)處理移至前端之一先進分割PHY選項(適用於天線元件數量遠大於資料串流數量之大規模MIMO應用)、以及一遠端PHY選項(其中整體PHY功能移至前端)。其他提案包括有基於PHY分割選項用以進一步降低前傳率之壓縮技術。Radio Access Network (RAN) re-architecture has been discussed for Cloud Radio Access Network (CRAN) and 3rd Generation Partnership Project (3GPP) fourth generation (4G) Long Term Evolution (LTE) technology. The main motivation for radio access network re-architecture is to reduce fronthaul rate requirements while maintaining efficiency based on CRAN technical premises. Various radio access network re-architecture options have been proposed, including a pure split physical layer (PHY) option (only the fast Fourier transform (FFT) function is moved to the front end), multiple input multiple output (MIMO) processing is moved to one of the front ends Advanced split PHY option (suitable for massive MIMO applications where the number of antenna elements is much greater than the number of data streams), and a remote PHY option (where the overall PHY functionality is moved to the front end). Other proposals include compression techniques based on PHY segmentation options to further reduce fronthaul rates.

前述提案為對稱選項,其中同一功能分割乃應用於下行鏈路(DL)及上行鏈路(UL)兩者。一不對稱選項乃基於多點協調(CoMP)觀測,其中UL中之聯合接收比DL中之聯合傳輸帶來更多效益。此不對稱重新架構在UL中實現聯合接收,但只有諸如DL中協調式排程/協調式波束形成(CS/CB)等技術才在DL中提供適合的聯合接收。The aforementioned proposal is a symmetrical option, where the same functional split applies to both the downlink (DL) and the uplink (UL). An asymmetric option is based on Coordinated Multipoint (CoMP) observation, where joint reception in UL brings more benefits than joint transmission in DL. This asymmetric re-architecture enables joint reception in the UL, but only technologies such as coordinated scheduling/coordinated beamforming (CS/CB) in the DL provide suitable joint reception in the DL.

在第五代(5G) LTE時代中,對無線電存取網路重新架構工作有新要求。應用於基本新5G無線電存取技術(RAT)、或若干不同RAT之新網路切片技術可用於支援多樣應用及非常不同的要求。這些可以是上述驅動(垂直)網路切片概念之垂直市場。舉例而言,增強型行動寬頻(eMBB)可提供高頻寬及一高日期率,其可受恵於先進MIMO傳輸,例如波束匯集與無胞元運作。另一方面,關鍵任務物聯網(IoT)應用可受恵於極低延遲,其可由一低潛時訊框結構來提供。一低潛時訊框結構之一實例為一自含子訊框結構,其可實現幾乎立即之確認/否認(ACK/NACK)回授、快速混合自動重複請求(HARQ)再傳輸、以及自然擴張至無需特許或共享之波段傳輸。然而,上述不同應用及不同技術對使用C-RAN之無線電存取網路重新架構(及其選項)產生衝突要求。In the fifth generation (5G) LTE era, there are new requirements for radio access network re-architecture. New network slicing technology applied to the basic new 5G radio access technology (RAT), or several different RATs, can be used to support a variety of applications and very different requirements. These can be the vertical markets that drive the (vertical) network slicing concept mentioned above. For example, enhanced mobile broadband (eMBB) can provide high bandwidth and a high date rate, which can benefit from advanced MIMO transmission, such as beamforming and cell-free operation. On the other hand, mission-critical Internet of Things (IoT) applications can benefit from extremely low latency, which can be provided by a low-latency frame structure. An example of a low-latency frame structure is a self-contained subframe structure that allows for near-immediate acknowledgment/negative (ACK/NACK) feedback, fast hybrid automatic repeat request (HARQ) retransmission, and natural expansion Transmission to bands that do not require licensing or sharing. However, the different applications and different technologies mentioned above create conflicting requirements for radio access network re-architecture (and its options) using C-RAN.

關鍵任務服務正持續開發中,以利在LTE及未來無線網路上使用,舉例而言,第三代合夥專案(3GPP)具有被設定用以開發這些服務類型之一標準群組(SA6 - 關鍵任務應用)。一關鍵任務服務可包括有一關鍵任務按鍵通話(MCPTT)服務,同時,一關鍵任務IoT服務之一實例可以是車間(V2V)通訊、或車輛與基礎結構間(V2I)通訊,其舉例而言,可容許或實現自動駕駛車、自動化緊急回應服務、及類似者。關鍵任務基於其本質,相較於正常電信服務,屬於可受恵於優先處置之服務,例如支援警察或消防隊方面,其包括有針對緊急事故及立即性威脅處置優先訊息及/或呼叫(例如MCPTT呼叫)、遞送可實現自動化控制之即時遙測或控制訊息(尤其與快速移動車輛有關)及類似者。例示性MCPTT服務可用於公共安全應用,並且亦用於一般商業應用,例如公用設施公司及鐵路。其他關鍵任務服務可包括有緊急服務、不可中斷之企業服務等。具有關鍵任務屬性之服務亦可屬於大規模(亦即,非常大量之此類使用者正由、或待由無線網路伺服),例如V2V或V2I。一「非常大量」的範圍可以是數百到數百萬或更多,而且亦可按照每基地台之數量或類似者來定義。替代地或另外,一非常大量可包含有無線網路中一伺服或控制實體所在處或可得之可用(處理/運算、或無線)資源之一高百分比。非關鍵任務服務亦可屬於大規模(例如智慧電表,此為一種機器類型通訊形式)。「關鍵任務」及「大規模」等詞典型可針對使用者、系統設計人員、及/或標準(例如3GPP)定義,而且其定義可隨時間而變。本揭露係意欲涵蓋如相關之目前或新標準(例如3GPP標準)中所發現之這些用語的所有目前與未來定義。Mission-critical services are continuously being developed for use on LTE and future wireless networks. For example, the 3rd Generation Partnership Project (3GPP) has one of the standards groups (SA6 - Mission-Critical) set up to develop these service types. application). A mission-critical service may include a mission-critical push-to-talk (MCPTT) service, and an example of a mission-critical IoT service may be vehicle-to-vehicle (V2V) communication, or vehicle-to-infrastructure (V2I) communication, for example, May permit or enable autonomous vehicles, automated emergency response services, and the like. Mission critical, by its very nature, is a service that is subject to priority processing compared to normal telecommunications services, such as supporting the police or fire brigade. This includes the handling of priority messages and/or calls for emergencies and immediate threats (e.g. MCPTT calls), delivering real-time telemetry or control messages that enable automated control (particularly related to fast-moving vehicles), and the like. Exemplary MCPTT services may be used in public safety applications, and also in general commercial applications, such as utility companies and railroads. Other mission-critical services may include emergency services, uninterruptible enterprise services, etc. Services that are mission-critical can also be large-scale (ie, a very large number of such users are, or are to be, served by the wireless network), such as V2V or V2I. A "very large amount" can range from hundreds to millions or more, and can also be defined in terms of the number of base stations per base station or the like. Alternatively or additionally, a very large amount may comprise a high percentage of the available (processing/computing, or wireless) resources in the wireless network where a serving or controlling entity is located or available. Non-mission-critical services can also be large-scale (such as smart meters, which are a form of machine-type communication). The terms "mission critical" and "large scale" can typically be defined by users, system designers, and/or standards (such as 3GPP), and their definitions can change over time. This disclosure is intended to cover all current and future definitions of these terms as found in relevant current or new standards (eg, 3GPP standards).

例示性實施例提供用於網路切片/服務之一靈活性無線電存取網路重新架構框架。例示性實施例可基於一軟體定義RAN (軟式RAN)之概念,其中各RAN功能可予以虛擬化。舉例而言,在一軟式RAN架構中,可將所使用或可由無線網路使用之每個網路服務指定為在一更通用硬體平台上運行之一軟體應用程式(舉例如圖9或12中所示,下文有說明)。此通用硬體平台可使用商品硬體來提供,例如資料伺服器、網路交換器、通用射頻(RF)電路系統及類似者。因此,在一軟式RAN中,無線網路營運商/業主能夠單純地指定一適合的資料平面與控制平面處理機制,以利其期望部署一個此無線網路之任何(新)服務。這甚至可使用高階語言來完成。此作法舉例而言,藉由縮減硬體置換及/或設定成本,縮減上市時間及部署成本。此在時間與成本方面的縮減,進而提升本文中所揭示軟式RAN為基之無線網路實施正開發與待開發演進與革命性新技術的能力。此所謂的敏捷式開發過程可用於使網路營運商的投資報酬達到最大。Exemplary embodiments provide a flexible radio access network re-architecture framework for network slicing/services. Exemplary embodiments may be based on a software-defined RAN (soft RAN) concept, where various RAN functions may be virtualized. For example, in a soft RAN architecture, each network service used or available by the wireless network can be designated as a software application running on a more general hardware platform (for example, Figure 9 or 12 shown in and explained below). This common hardware platform may be provided using commodity hardware, such as data servers, network switches, common radio frequency (RF) circuitry, and the like. Therefore, in a soft RAN, the wireless network operator/owner can simply specify a suitable data plane and control plane processing mechanism to facilitate any (new) service it wishes to deploy a wireless network. This can even be done using high-level languages. This approach reduces time to market and deployment costs, for example, by reducing hardware replacement and/or setup costs. This reduction in time and cost further enhances the ability of the soft RAN-based wireless network disclosed in this article to implement evolving and revolutionary new technologies under development and to be developed. This so-called agile development process can be used to maximize return on investment for network operators.

可部署一軟式RAN作業系統(OS)以管理跨通用/商品硬體實施並且部署此(等)網路服務背後的所有複雜度。此通用/商品硬體可位於中央辦公室中及/或處於遠端蜂窩站,端視實施所揭示軟式RAN提供之網路切片感知C-RAN的任何給定無線網路上所使用之一部署設定檔而定。A soft RAN operating system (OS) can be deployed to manage all the complexities behind implementing and deploying network services(s) across generic/commodity hardware. This general/commodity hardware can be located in the central office and/or at remote cell sites, as implemented in one of the deployment profiles used on any given wireless network for the network slice-aware C-RAN provided by the disclosed soft RAN. Depends.

在此等RAN功能中有些無法虛擬化的情境中,(多個)專屬硬體加速器也可或取而代之地予以使用。In situations where some of these RAN functions cannot be virtualized, dedicated hardware accelerator(s) may also or instead be used.

例示性實施例提供用於網路切片/服務之一靈活性無線電存取網路重新架構框架。此等例示性實施例之框架可使用基地台(例如一演進式nodeB (eNB))排程資訊,並且可基於待由(重新架構/可重新架構) RAN支援之不同網路切片/服務來動態進行無線電存取網路重新架構。Exemplary embodiments provide a flexible radio access network re-architecture framework for network slicing/services. The framework of these exemplary embodiments may use base station (e.g., an evolved nodeB (eNB)) scheduling information and may be dynamically based on different network slices/services to be supported by the (re-architected/re-architectable) RAN Perform radio access network re-architecture.

以上論述的使用C-RAN之先前無線電存取網路重新架構不知道網路切片,並且運作時主要僅考慮前傳資料率及延遲取捨。不過,例示性實施例之靈活性無線電存取網路重新架構對於前傳頻寬(BW)與延遲、所使用任何特定服務/切片之網路設定檔、服務品質(QoS)、各節點所在處之運算考量及/或能力、以及類似者,支援不同的5G服務(即使用案例/垂直市場,例如垂直網路切片)、及技術或架構(例如運算切片,例如水平網路切片)。Previous radio access network re-architectures using C-RAN discussed above were unaware of network slicing and operated primarily with only fronthaul data rate and latency trade-offs in mind. However, the flexible radio access network re-architecture of the illustrative embodiments has significant impact on fronthaul bandwidth (BW) and latency, network profile of any specific service/slice used, quality of service (QoS), where each node is located. Computing considerations and/or capabilities, and the like, support different 5G services (i.e. use cases/vertical markets, e.g. vertical network slicing), and technologies or architectures (e.g. compute slicing, e.g. horizontal network slicing).

例示性實施例提供一5G空氣介面,其藉由實現靈活選擇波形(例如正交分頻多工(OFDM)/分碼多重進接(CDMA)/等)及命理學,支援不同網路服務之靈活性多工處理。舉例而言,大規模物聯網(IoT)可使用一更窄的副載波間距,或甚至可使用某一時間/頻率網格之分碼多重進接(CDMA)波形,而行動寬頻服務可使用帶有更大副載波間距之一正交分頻多工(OFDM)波形。也就是說,以一種通訊參數類型對一第一組(例如數量大,帶有特定潛時要求)裝置佈建無線通訊服務時,對帶有第二種通訊參數類型之一第二組(例如沒這麼大規模,但更加需要資料)裝置會有非常不同的需要,而且這在單一同質網路中會難以調解。因此,本揭露例如在C-RAN中提供網路切片,藉此提供手段用來針對不同通訊參數/效能提供不同的想法集合。舉例而言,根據實施例,基地台(例如eNB)在進行排程時,可感知用於相同單一實體無線電存取網路上所使用各不同網路服務或切片(例如由各邏輯區隔之無線電存取網路所伺服)之不同資源。Exemplary embodiments provide a 5G air interface that supports different network services by enabling flexible selection of waveforms (e.g., Orthogonal Frequency Division Multiplexing (OFDM)/Code Division Multiple Access (CDMA)/etc.) and numerology Flexibility and multitasking. For example, massive Internet of Things (IoT) could use a narrower subcarrier spacing, or even code division multiple access (CDMA) waveforms using a time/frequency grid, while mobile broadband services could use band One of the orthogonal frequency division multiplexing (OFDM) waveforms with larger subcarrier spacing. That is to say, when deploying wireless communication services to a first group of devices with one communication parameter type (for example, a large number, with specific latency requirements), a second group of devices with a second communication parameter type (such as (less large, but more data hungry) devices will have very different needs, and this will be difficult to reconcile within a single homogeneous network. Therefore, the present disclosure provides network slicing in C-RAN, for example, thereby providing means to provide different sets of ideas for different communication parameters/performance. For example, according to embodiments, a base station (e.g., eNB) may be aware of different network services or slices (e.g., logically separated radios) used on the same single entity radio access network during scheduling. Access the different resources served by the network.

不同服務亦可能需要不同的5G技術,例如無線電存取技術(RAT)。舉例而言,行動寬頻服務可能需要高產出量,因此,預期大規模MIMO/波束匯集技術對於符合此高產出量要求非常有用。然而,對於關鍵任務服務,尖峰產出量可能不必然高,但延遲要求可能非常嚴格。同樣地,在一些實作態樣中,可將使用之(多個) 5G RAT (或其中一者)設計成用於廣域網路(WAN)通訊,而在其他實作態樣中,可將此(等) 5G RAT (或其中一者)設計成用於個人區域網路(PAN)通訊。這些後項RAT可為藍牙、Zigbee或相似通訊之置換者(或替代者)。Different services may also require different 5G technologies, such as radio access technology (RAT). For example, mobile broadband services may require high throughput, so massive MIMO/beam aggregation technology is expected to be very useful in meeting this high throughput requirement. However, for mission-critical services, peak throughput may not necessarily be high, but latency requirements may be very stringent. Likewise, in some implementations, the 5G RAT(s) used (or one of them) may be designed for wide area network (WAN) communications, while in other implementations, the (etc.) ) 5G RAT (or one thereof) is designed for Personal Area Network (PAN) communications. These latter RATs may be replacements (or replacements) for Bluetooth, Zigbee or similar communications.

因此,此等例示性實施例之靈活性無線電存取網路重新架構可支援不同的5G服務及技術。同樣地,前傳頻寬(BW)乃視為用於4G無線電存取網路重新架構工作之主要決策點,可用於對包括有網路切片概念之較佳無線電存取網路架構選項驅動關鍵決策。Therefore, the flexible radio access network re-architecture of these exemplary embodiments can support different 5G services and technologies. Likewise, fronthaul bandwidth (BW) is considered a primary decision point for 4G radio access network re-architecture efforts and can be used to drive key decisions on better radio access network architecture options including network slicing concepts. .

圖7根據一第一實例展示用於靈活性無線電存取網路重新架構之總體程序700。此程序可在一每傳輸時間間隔(TTI)時段為基礎的運作頻率(也視為運作繁簡程度)上運作,例如每1 ms。然而,本揭露並不受限於任何特定的運作頻率/速率。在各時段內,判定用於不同運作(或即將要運作之 - 例如,當一切片即將要開啟)網路切片之頻率資源710。頻率資源可以是時間槽或頻率(請參照圖3)、或使用之命理學或類似者。所揭示之程序接著可判定可在RAN/C-RAN中使用的是哪一種運作形式或類型,亦即使用的是哪一種無線電存取網路架構類型。一無線電存取網路架構於本文中使用時,可以想成是一無線網路、尤其是RAN中任何形式之特定技術、(多種)技術、實作態樣細節、其運作之改善或類型。架構典型是在標準文件中介紹、維持及更新,以利各別無線網路技術使用。Figure 7 shows an overall process 700 for flexible radio access network re-architecture according to a first example. This procedure can operate at an operating frequency (also considered an operating complexity level) based on a transmission time interval (TTI) period, such as every 1 ms. However, the present disclosure is not limited to any specific operating frequency/rate. Within each time period, frequency resources 710 for different operating (or upcoming operating - for example, when slicing is about to be turned on) network slices are determined. Frequency resources can be time slots or frequencies (please refer to Figure 3), or use numerology or similar. The disclosed process then determines which mode or type of operation can be used in RAN/C-RAN, ie which type of radio access network architecture is used. A radio access network architecture, as used herein, can be thought of as any form of specific technology, technology(s), implementation details, improvements or types of its operation within a wireless network, in particular a RAN. Architectures are typically described, maintained, and updated in standards documents to facilitate the use of individual wireless network technologies.

一第一例示性選項可使用聯合傳輸(JT) CoMP及/或聯合接收(JR) CoMP,可能還配合波束匯集720,服務由網路切片/RAN所伺服之(多個)無線裝置。這舉例而言,可在密集環境中提供一高產出量行動寬頻(MBB)服務時使用。同時,波束匯集及JT/JR在mmWave波段中對於高產出量及穩固鏈路特別有用。在一些實例中,封包前傳可提供使用一分割實體層(PHY)布置結構750之前傳封包化,其中舉例而言,分割PHY處理(SPP)架構為一C-RAN之一布置結構,其分割無線通道編碼/解碼與無線調變/解調變之間的基地台(BS)功能,以及其中能夠提供CoMP聯合傳輸與接收方案。A first exemplary option may use Joint Transmit (JT) CoMP and/or Joint Receive (JR) CoMP, possibly with beam aggregation 720, to serve wireless device(s) served by network slicing/RAN. This could be used, for example, when providing a high-throughput mobile broadband (MBB) service in a dense environment. At the same time, beam pooling and JT/JR are particularly useful in mmWave bands for high throughput and robust links. In some examples, packetized fronthaul may provide forward packetization using a split physical layer (PHY) arrangement 750, where, for example, the split PHY processing (SPP) architecture is a C-RAN arrangement that splits the wireless Base station (BS) functions between channel encoding/decoding and wireless modulation/demodulation, and the ability to provide CoMP joint transmission and reception solutions.

一第二例示性選項可使用大量(即許多)連線服務由網路切片/RAN所伺服之(多個)無線裝置,舉例如可在IoT部署中使用。這舉例而言,可在裝置大規模用於資料蒐集/報告時使用,例如,智慧電網/電表、以及其他(大規模)機器間類型通訊。A second illustrative option may use a large number (ie, many) connections to serve wireless device(s) served by a network slice/RAN, such as may be used in an IoT deployment. This can be used, for example, when devices are used for data collection/reporting on a large scale, such as smart grids/meters, and other (large-scale) machine-to-machine type communications.

在這種狀況中,可提供不同的前傳架構760,舉例而言,端視所用大規模/IoT部署各別特形式所適用(或所需)之前傳資料率而定。其他判定因素可能影響前傳架構之選擇,例如潛時、或類似者。可部署之不同前傳架構之實例可包括有下列任何一者:通用公共無線電介面(CPRI)、或類CPRI/進階型架構(例如,CPRI壓縮及乙太網路CPRI)、遠端PHY、或第2層(L2)/第3層(L3)分割類型架構、及/或舉例而言,遠距無線電頭端(RRH)中之一分割實體層(PHY)/媒體存取控制層(MAC)。In this case, different fronthaul architectures 760 may be provided, for example, depending on the fronthaul data rates applicable (or required) for each particular form of large-scale/IoT deployment being used. Other factors may influence the choice of prequel architecture, such as latency, or the like. Examples of different fronthaul architectures that may be deployed may include any of the following: Common Public Radio Interface (CPRI), or CPRI-like/Advanced architectures (e.g., CPRI compression and Ethernet CPRI), remote PHY, or Layer 2 (L2)/Layer 3 (L3) segmented type architecture, and/or for example, one of the segmented physical layer (PHY)/media access control layer (MAC) in the remote radio head (RRH) .

一第三例示性選項可以是使用關鍵任務類型服務標準740 (其亦可包括有一大量連線,例如V2X用),服務由網路切片/RAN所伺服之(多個)無線裝置,舉例而言,其中此等裝置乃用在關鍵時間(例如V2X)、或關鍵遞送(例如緊急服務)使用案例中、或類似者。A third exemplary option may be to use a mission-critical service standard 740 (which may also include a large number of connections, such as for V2X) to serve wireless device(s) served by a network slice/RAN, for example , where these devices are used in time-critical (e.g., V2X), or critical delivery (e.g., emergency services) use cases, or similar.

在這種狀況中,可提供不同前傳架構770,舉例而言,端視關鍵任務類型服務類型之特定需要而定。舉例而言,可使用一第2層(L2)/第3層(L3)分割類型架構770 (舉例如上用以包括有在RRH中分割之PHY/MAC)。In this situation, different fronthaul architectures 770 may be provided, for example, depending on the specific needs of the mission-critical type of service type. For example, a Layer 2 (L2)/Layer 3 (L3) split type architecture 770 may be used (such as used above to include PHY/MAC split in the RRH).

介於基頻單元(BBU)與遠距無線電頭端(RRH)之間的介面及封包格式在3GPP中可以具有專屬性、或經過標準化。The interface and packet format between the baseband unit (BBU) and the remote radio head (RRH) can be proprietary or standardized in 3GPP.

圖8展示用於靈活性無線電存取網路重新架構之一第二、更詳細/特定、例示性總體程序800,尤其是用在一例示性封包化布置結構中。這項實例依據圖7,亦以基於每TTI時段繁簡程度判定網路切片用頻率資源為基礎來展示,並且具有例示性的三種選項。Figure 8 shows a second, more detailed/specific, exemplary overall process 800 for a flexible radio access network re-architecture, particularly within an exemplary packetized arrangement. This example is shown in Figure 7, which is also based on determining frequency resources for network slicing based on the complexity of each TTI period, and has three illustrative options.

一第一例示性選項820是用來將對應的資源塊(RB)用於波束匯集、及/或JT/JR CoMP,在這種狀況中,此程序將進階CPRI技術850用於下列任何一種狀況(或需要):高頻寬、低潛時、或暗纖前傳可用性(例如,如果對RRH有一些備用纖維容量(目前為暗態,非亮態)。至少在此時間點之前,這在附加頻寬有用時可能相關,但未支援JT/JR),或者,此程序使用I/Q樣本之量化,舉例而言,端視RAT上所用之壓縮方案而定,舉例而言,用來提供下列任何一者:某一頻寬量(例如低、中、高)、低潛時前傳、或類似者。諸如固定式均勻量化、非線性量化等其他方法也是有可能的。所用之一特定標準典型會指定此量化方案,舉例而言,用來容許多廠商實作態樣。A first illustrative option 820 is to use the corresponding resource blocks (RBs) for beamforming, and/or JT/JR CoMP, in which case the process uses the advanced CPRI technology 850 for any of the following Situation (or need): High bandwidth, low latency, or dark fiber fronthaul availability (e.g., if there is some spare fiber capacity for the RRH (currently dark, not light). At least until this point in time, this will may be relevant when wide (but JT/JR is not supported), or this program uses quantization of I/Q samples, for example, depending on the compression scheme used on the RAT, to provide, for example, any of the following One: a certain amount of bandwidth (such as low, medium, high), low latency fronthaul, or similar. Other methods such as fixed uniform quantization, nonlinear quantization, etc. are also possible. This quantization scheme is typically specified by a particular standard being used, for example, to allow multiple vendor implementations.

一第二例示性選項830可以是使用大量連線服務大規模(即許多)裝置,舉例如可在IoT部署中使用。在這種狀況中,與以上相似,可提供不同前傳架構870,但這次舉例而言,端視前傳頻寬與延遲參數而定。其他判定因素可能影響前傳架構之選擇,例如潛時、或類似者。可部署之不同前傳架構之實例可包括有下列任何一者:通用公共無線電介面(CPRI)、或類CPRI/進階類型架構(例如,CPRI壓縮及乙太網路CPRI)、遠端PHY、或第2層(L2)/第3層(L3)分割類型架構(舉例如上文用來包括有在RRH中分割之PHY/MAC)。各種可能的RAN分割類型具有一對應的資料封包化格式。A second exemplary option 830 may be to use a large number of connections to serve large-scale (ie, many) devices, such as may be used in IoT deployments. In this case, similar to the above, different fronthaul architectures 870 can be provided, but this time, for example, depending on the fronthaul bandwidth and delay parameters. Other factors may influence the choice of prequel architecture, such as latency, or the like. Examples of different fronthaul architectures that may be deployed may include any of the following: Common Public Radio Interface (CPRI), or CPRI-like/advanced type architectures (e.g., CPRI compression and Ethernet CPRI), remote PHY, or Layer 2 (L2)/Layer 3 (L3) split type architecture (example used above to include PHY/MAC split in RRH). Each possible RAN segmentation type has a corresponding data packetization format.

一第三例示性選項840可用於極端延遲敏感資料為基之裝置,在這種狀況中,可使用一自含子訊框格式。在此一例示性情境中,可使用一媒體存取控制(MAC)協定資料單元(PDU)、MAC PDU為基之前傳架構880。在一些實例中,此程序可包括有無胞元運作。A third exemplary option 840 may be used for extremely delay-sensitive data-based devices, in which case a self-contained subframe format may be used. In this exemplary scenario, a media access control (MAC) protocol data unit (PDU), MAC PDU-based fronthaul architecture 880 may be used. In some instances, this process may include operations with and without cells.

「電路系統」一詞於本文中使用時,可意指為、屬於部分之、或包括有一特定應用積體電路(ASIC)、一電子電路、一處理器(共享、專屬、或群組)、及/或記憶體(共享、專屬、或群組),其執行提供所述功能之一或多個軟體或韌體程式、一組合邏輯電路、及/或其他適合的硬體組件。在一些實施例中,此電路系統可在一或多個軟體或韌體模組中實施,或與此電路系統相關聯之功能可藉由此一或多個軟體或韌體模組來實施。在一些實施例中,電路系統可包括有至少部分可在硬體中運作的邏輯。裝置(由一RAN或網路切片所伺服)及UE等詞於本文中使用時,可以互換。The term "circuitry" as used herein may mean, be part of, or include an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or grouped), and/or memory (shared, dedicated, or grouped) that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the functions described. In some embodiments, the circuitry may be implemented in one or more software or firmware modules, or functions associated with the circuitry may be implemented by the one or more software or firmware modules. In some embodiments, circuitry may include logic that may be at least partially operable in hardware. The terms device (served by a RAN or network slice) and UE are used interchangeably in this document.

本文中所述之實施例可使用任何經適當組配之硬體及/或軟體實施成一系統。圖9針對一項實施例展示一電子裝置900之例示性組件。在實施例中,電子裝置900可以是、可實施、可予以併入、或按其他方式可以是一部分之一用戶設備(UE)、一演進式NodeB (eNB)、或另一網路組件(例如,對應於一網路虛擬化裝置及/或一軟體定義網路裝置之一網路組件)。在一些實施例中,電子裝置900可包括有至少如所示耦合在一起的應用電路系統910、基頻電路系統920、射頻(RF)電路系統930、前端模組(FEM)電路系統940及一或多個天線950。The embodiments described herein may be implemented as a system using any suitably configured hardware and/or software. Figure 9 shows exemplary components of an electronic device 900 for one embodiment. In embodiments, the electronic device 900 may be, implement, be incorporated into, or otherwise be part of a user equipment (UE), an evolved NodeB (eNB), or another network component (e.g., , corresponding to a network virtualization device and/or a network component of a software-defined network device). In some embodiments, electronic device 900 may include application circuitry 910, baseband circuitry 920, radio frequency (RF) circuitry 930, front-end module (FEM) circuitry 940 and a or multiple antennas 950.

應用電路系統910可包括有一或多個應用處理器。舉例而言,應用電路系統910可包括有諸如,但不限於一或多個單核心或多核心處理器之電路系統。此(等)處理器可包括有通用處理器及專屬處理器(圖形處理器、應用處理器等)之任何組合。此等處理器可與記憶體/儲存器耦合及/或可包括有記憶體/儲存器,並且可被組配用以執行此記憶體/儲存器中所儲存的指令以允許各種應用程式及/或作業系統在此系統上運行。Application circuitry 910 may include one or more application processors. For example, application circuitry 910 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. The processor(s) may include any combination of general-purpose processors and specialized processors (graphics processors, application processors, etc.). Such processors may be coupled to and/or include memory/storage and may be configured to execute instructions stored in such memory/storage to allow various applications and/or or operating system is running on this system.

基頻電路系統920可包括有諸如,但不限於一或多個單核心或多核心處理器之電路系統。基頻電路系統920可包括有一或多個基頻處理器及/或控制邏輯以處理從RF電路系統930之一接收信號路徑收到之基頻信號,並且為RF電路系統930之一傳送信號路徑產生基頻信號。基頻處理電路系統920可與應用電路系統910介接,用於產生並處理此等基頻信號,還用於控制RF電路系統930之運作。舉例而言,在一些實施例中,基頻電路系統920可包括有一第二代(2G)基頻處理器921、第三代(3G)基頻處理器922、第四代(4G)基頻處理器923、及/或其他現存世代、開發中或未來待開發世代(例如第五代(5G)、6G等)之(多個)其他基頻處理器924。基頻電路系統920(例如基頻處理器921至924之一或多者)可處理允許經由RF電路系統930與一或多個無線電網路進行通訊之各種無線電控制功能。此等無線電控制功能可包括有,但不限於信號調變/解調變、編碼/解碼、射頻偏移等。在一些實施例中,基頻電路系統920的調變/解調變電路系統可包括有快速傅立葉轉換(FFT)、預編碼、及/或星座圖映射/解映射功能。在一些實施例中,基頻電路系統920的編碼/解碼電路系統可包括有卷積、尾碼消除卷積、渦輪、維特比(Viterbi)、及/或低密度同位檢查(LDPC)編碼器/解碼器功能。調變/解調變及編碼器/解碼器功能的實施例不受限於這些實例,並且可以在其他實施例中包括有其他適合的功能。Baseband circuitry 920 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. Baseband circuitry 920 may include one or more baseband processors and/or control logic to process baseband signals received from one of the receive signal paths of RF circuitry 930 and for one of the transmit signal paths of RF circuitry 930 Generate fundamental frequency signal. The baseband processing circuitry 920 can be interfaced with the application circuitry 910 for generating and processing the baseband signals, and for controlling the operation of the RF circuitry 930 . For example, in some embodiments, the baseband circuit system 920 may include a second generation (2G) baseband processor 921, a third generation (3G) baseband processor 922, a fourth generation (4G) baseband processor Processor 923, and/or other baseband processor(s) 924 of other existing generations, under development, or in future generations to be developed (such as fifth generation (5G), 6G, etc.). Baseband circuitry 920 (eg, one or more of baseband processors 921 - 924 ) may handle various radio control functions that allow communication with one or more radio networks via RF circuitry 930 . These radio control functions may include, but are not limited to, signal modulation/demodulation, encoding/decoding, radio frequency offset, etc. In some embodiments, the modulation/demodulation circuitry of baseband circuitry 920 may include fast Fourier transform (FFT), precoding, and/or constellation mapping/demapping functions. In some embodiments, the encoding/decoding circuitry of baseband circuitry 920 may include convolutional, tail-code deconvolution, turbo, Viterbi, and/or low density parity check (LDPC) encoders/ Decoder function. Embodiments of modulation/demodulation and encoder/decoder functions are not limited to these examples, and other suitable functions may be included in other embodiments.

在一些實施例中,基頻電路系統920可包括有一協定堆疊之元素,舉例而言例如一演進式通用地面無線電存取網路(EUTRAN)協定之元素,包括有例如實體(PHY)、媒體存取控制(MAC)、無線電鏈路控制(RLC)、封包資料收斂協定(PDCP)、及/或無線電資源控制(RRC)元素。基頻電路系統920的中央處理單元(CPU) 925可組配來運行此協定堆疊的元素以供PHY、MAC、RLC、PDCP及/或RRC傳訊之用。在一些實施例中,此基頻電路系統可包括有一或多個音訊數位信號處理器(DSP) 926。這(多個)音訊DSP 926可以是或可包括有用於壓縮/解壓縮及回音消除的元件,並且在其他實施例中可包括有其他適合的處理元件。In some embodiments, baseband circuitry 920 may include elements of a protocol stack, for example, elements of an Evolved Universal Terrestrial Radio Access Network (EUTRAN) protocol, including, for example, physical (PHY), media storage, etc. Access Control (MAC), Radio Link Control (RLC), Packet Data Convergence Protocol (PDCP), and/or Radio Resource Control (RRC) elements. The central processing unit (CPU) 925 of the baseband circuitry 920 may be configured to run elements of the protocol stack for PHY, MAC, RLC, PDCP and/or RRC signaling. In some embodiments, the baseband circuitry may include one or more audio digital signal processors (DSPs) 926. The audio DSP(s) 926 may be or include components for compression/decompression and echo cancellation, and may include other suitable processing components in other embodiments.

基頻電路系統920可更包括有記憶體/儲存器927。記憶體/儲存器927可用於載入並且儲存資料及/或指令以供基頻電路系統920之處理器進行運作之用。用於一項實施例之記憶體/儲存器可包括有適合的依電性記憶體及/或非依電性記憶體之任何組合。記憶體/儲存器927可包括有各種記憶體/儲存器層級的任何組合,包括有,但不限於具有嵌入式軟體指令(例如韌體)之唯讀記憶體(ROM)、隨機存取記憶體(例如動態隨機存取記憶體(DRAM))、快取記憶體、緩衝區等。記憶體/儲存器927可共享於此等各種處理器或專屬於特定處理器。The baseband circuit system 920 may further include a memory/storage 927 . Memory/storage 927 may be used to load and store data and/or instructions for operation by the processor of baseband circuitry 920 . Memory/storage for an embodiment may include any combination of dependent memory and/or non-volatile memory as appropriate. Memory/storage 927 may include any combination of various memory/storage levels, including, but not limited to, read-only memory (ROM), random access memory with embedded software instructions (e.g., firmware) (such as dynamic random access memory (DRAM)), cache, buffer, etc. Memory/storage 927 may be shared among the various processors or may be dedicated to a particular processor.

在一些實施例中,此基頻電路系統的組件可適當地組合於一單晶片、一單晶片組中、或設置於同一電路板上。在一些實施例中,基頻電路系統920及應用電路系統910的構成組件中有一些或全部可實施在一起,舉例而言例如實施於一晶片上之一系統(SOC)上。In some embodiments, the components of the baseband circuit system may be appropriately combined into a single chip, a single chip set, or disposed on the same circuit board. In some embodiments, some or all of the constituent components of baseband circuitry 920 and application circuitry 910 may be implemented together, for example, on a system on a chip (SOC).

在一些實施例中,基頻電路系統920可用來進行與一或多種無線電技術相容的通訊。舉例而言,在一些實施例中,基頻電路系統920可支援與一演進式通用地面無線電存取網路(EUTRAN)及/或其他無線都會區域網路(WMAN)、一無線區域網路(WLAN)、一無線個人區域網路(WPAN)進行通訊。基頻電路系統920被組配用以支援超過一種無線協定之無線電通訊的實施例可稱為多模式基頻電路系統。In some embodiments, baseband circuitry 920 may be used to conduct communications compatible with one or more radio technologies. For example, in some embodiments, baseband circuitry 920 may support communications with an Evolved Universal Terrestrial Radio Access Network (EUTRAN) and/or other wireless metropolitan area networks (WMAN), a wireless LAN ( WLAN), a Wireless Personal Area Network (WPAN) for communication. Embodiments in which baseband circuitry 920 is configured to support radio communications with more than one wireless protocol may be referred to as multi-mode baseband circuitry.

RF電路系統930可允許透過一非固體介質使用已調變電磁輻射與無線網路進行通訊。在各項實施例中,RF電路系統930可包括有開關、濾波器、放大器等而有助於與此無線網路進行通訊。RF電路系統930可包括有一接收信號路徑,其可包括有用以將接收自FEM電路系統940之RF信號降頻轉換並且對基頻電路系統920提供基頻信號的電路系統。RF電路系統930亦可包括有一傳送信號路徑,其可包括有用以將基頻電路系統920所提供之基頻信號升頻轉換並且對FEM電路系統940提供RF輸出信號以供傳輸之用的電路系統。RF circuitry 930 may allow communication with a wireless network using modulated electromagnetic radiation through a non-solid medium. In various embodiments, RF circuitry 930 may include switches, filters, amplifiers, etc. to facilitate communication with the wireless network. RF circuitry 930 may include a receive signal path, which may include circuitry to downconvert the RF signal received from FEM circuitry 940 and provide a baseband signal to baseband circuitry 920 . RF circuitry 930 may also include a transmission signal path, which may include circuitry for upconverting the baseband signal provided by baseband circuitry 920 and providing an RF output signal to FEM circuitry 940 for transmission. .

在一些實施例中,RF電路系統930可包括有一接收信號路徑及一傳送信號路徑。RF電路系統930的接收信號路徑可包括有混頻器電路系統931、放大器電路系統932及濾波器電路系統933。RF電路系統930的傳送信號路徑可包括有濾波器電路系統933及混頻器電路系統931。RF電路系統930亦可包括有用於將一頻率合成以供該接收信號路徑及該傳送信號路徑之混頻器電路系統931使用之合成器電路系統934。在一些實施例中,該接收信號路徑之混頻器電路系統931可組配來基於合成器電路系統934所提供的已合成頻率,將接收自FEM電路系統940的RF信號降頻轉換。放大器電路系統932可被組配用以放大此等已降頻轉換信號,並且濾波器電路系統933可以是被組配用以將不需要的信號從此等已降頻轉換信號移除以產生輸出基頻信號之一低通濾波器(LPF)或帶通濾波器(BPF)。可對基頻電路系統920提供輸出基頻信號以供進一步處理之用。在一些實施例中,此等輸出基頻信號可以是零頻基頻信號,但這非為必要條件。在一些實施例中,該接收信號路徑之混頻器電路系統931可包含有被動式混頻器,但此等實施例的範疇在這方面並不受限。In some embodiments, RF circuitry 930 may include a receive signal path and a transmit signal path. The receive signal path of the RF circuit system 930 may include a mixer circuit system 931 , an amplifier circuit system 932 and a filter circuit system 933 . The transmission signal path of the RF circuit system 930 may include a filter circuit system 933 and a mixer circuit system 931 . RF circuitry 930 may also include synthesizer circuitry 934 for combining a frequency for use by mixer circuitry 931 of the receive signal path and the transmit signal path. In some embodiments, the mixer circuitry 931 of the receive signal path may be configured to down-convert the RF signal received from the FEM circuitry 940 based on the synthesized frequency provided by the synthesizer circuitry 934 . Amplifier circuitry 932 may be configured to amplify the down-converted signals, and filter circuitry 933 may be configured to remove unwanted signals from the down-converted signals to generate an output basis. Frequency signal is either a low-pass filter (LPF) or a band-pass filter (BPF). An output baseband signal may be provided to baseband circuitry 920 for further processing. In some embodiments, the output fundamental frequency signal may be a zero-frequency fundamental frequency signal, but this is not a necessary condition. In some embodiments, the receive signal path mixer circuitry 931 may include a passive mixer, although the scope of such embodiments is not limited in this regard.

在一些實施例中,該傳送信號路徑之混頻器電路系統931可被組配用以基於合成器電路系統932所提供的已合成頻率而將輸入基頻信號升頻轉換以產生供FEM電路系統940用的RF輸出信號。此等基頻信號可藉由基頻電路系統920來提供,並且可藉由濾波器電路系統933來濾波。濾波器電路系統933可包括有一低通濾波器(LPF),但此等實施例之範疇在這方面並不受限。In some embodiments, the mixer circuitry 931 of the transmission signal path may be configured to upconvert the input baseband signal based on the synthesized frequency provided by the synthesizer circuitry 932 to generate a signal for the FEM circuitry. RF output signal used by 940. These baseband signals may be provided by baseband circuitry 920 and filtered by filter circuitry 933 . Filter circuitry 933 may include a low pass filter (LPF), but the scope of the embodiments is not limited in this regard.

在一些實施例中,該接收信號路徑之混頻器電路系統931及該傳送信號路徑之混頻器電路系統931可包括有二或更多個混頻器,並且可布置成分別用於正交降頻轉換及/或升頻轉換。在一些實施例中,該接收信號路徑之混頻器電路系統931及該傳送信號路徑之混頻器電路系統931可包括有二或更多個混頻器,並且可布置成用於影像排斥(例如哈特萊(Hartley)影像排斥)。在一些實施例中,此接收信號路徑之混頻器電路系統931、及混頻器電路系統931可分別布置成用於直接降頻轉換及/或直接轉換。在一些實施例中,該接收信號路徑之混頻器電路系統931及該傳送信號路徑之混頻器電路系統931可組配成用於超外差運作。In some embodiments, the mixer circuitry 931 of the receive signal path and the mixer circuitry 931 of the transmit signal path may include two or more mixers and may be arranged for quadrature operation, respectively. Downconversion and/or upconversion. In some embodiments, the mixer circuitry 931 of the receive signal path and the mixer circuitry 931 of the transmit signal path may include two or more mixers and may be arranged for image rejection ( For example, Hartley image rejection). In some embodiments, the mixer circuitry 931 of the receive signal path and the mixer circuitry 931 may be arranged for direct down conversion and/or direct conversion, respectively. In some embodiments, the mixer circuitry 931 of the receive signal path and the mixer circuitry 931 of the transmit signal path may be configured for superheterodyne operation.

在一些實施例中,此等輸出基頻信號及此等輸入基頻信號可以是類比基頻信號,但此等實施例的範疇在這方面並不受限。在一些交替實施例中,此等輸出基頻信號及此等輸入基頻信號可以是數位基頻信號。在這些交替實施例中,RF電路系統930可包括有類比數位轉換器(ADC)及數位類比轉換器(DAC)電路系統,而基頻電路系統920可包括有一用以與RF電路系統930進行通訊之數位基頻介面。In some embodiments, the output fundamental frequency signals and the input fundamental frequency signals may be analog fundamental frequency signals, although the scope of these embodiments is not limited in this regard. In some alternative embodiments, the output baseband signals and the input baseband signals may be digital baseband signals. In these alternate embodiments, RF circuitry 930 may include analog-to-digital converter (ADC) and digital-to-analog converter (DAC) circuitry, and baseband circuitry 920 may include a circuit for communicating with RF circuitry 930 Digital baseband interface.

在一些雙模實施例中,可為各頻譜提供一用於處理信號的分離無線IC,但此等實施例的範疇在這方面並不受限。In some dual-mode embodiments, a separate wireless IC for signal processing may be provided for each spectrum, although the scope of such embodiments is not limited in this regard.

在一些實施例中,合成器電路系統934可以是一分數N合成器或一分數N/N+1合成器,但此等實施例的範疇在這方面並無限制,因為可以有其他適合類型的頻率合成器。舉例而言,合成器電路系統934可以是一三角積分合成器、一倍頻器、或一包含有具有一除頻器之一鎖相迴路的合成器。In some embodiments, synthesizer circuitry 934 may be a fractional N synthesizer or a fractional N/N+1 synthesizer, but the scope of such embodiments is not limited in this regard as there may be other suitable types. frequency synthesizer. For example, the synthesizer circuitry 934 may be a sigma delta synthesizer, a frequency doubler, or a synthesizer including a phase locked loop with a frequency divider.

合成器電路系統934可被組配用以基於一頻率輸入及一除法器控制輸入而將一輸出頻率合成以供RF電路系統930之混頻器電路系統931使用。在一些實施例中,合成器電路系統934可以是一分數N/N+1合成器。Synthesizer circuitry 934 may be configured to synthesize an output frequency for use by mixer circuitry 931 of RF circuitry 930 based on a frequency input and a divider control input. In some embodiments, synthesizer circuitry 934 may be a fractional N/N+1 synthesizer.

在一些實施例中,頻率輸入可藉由一電壓控制振盪器(VCO)來提供,但這非為必要條件。除法器控制輸入可藉由基頻電路系統920或應用處理器910擇一來提供,端視所欲輸出頻率而定。在一些實施例中,一除法器控制輸入(例如N)可基於一由應用處理器910所指示的通道而經由一查詢表來判定。In some embodiments, the frequency input may be provided by a voltage controlled oscillator (VCO), but this is not a requirement. The divider control input may be provided by either the baseband circuitry 920 or the application processor 910, depending on the desired output frequency. In some embodiments, a divider control input (eg, N) may be determined via a lookup table based on a channel indicated by the application processor 910 .

RF電路系統930的合成器電路系統934可包括有一除法器、一延遲鎖定迴路(DLL)、一多工器及一相位累加器。在一些實施例中,此除法器可以是一雙模數除法器(DMD)而該相位累加器可以是一數位相位累加器(DPA)。在一些實施例中,該DMD可組配來將該輸入信號除以N或N+1 (例如基於一進位輸出)以提供一分數分配比。在一些例示性實施例中,該DLL可包括有一組串級、可調、延遲元件、一檢相器、一電荷泵以及一D型正反器。在這些實施例中,此等延遲元件可被組配用以將一VCO週期分成Nd個相等的相位封包,其中Nd是延遲線中延遲元件的數量。依此作法,此DLL提供負回授而有助於確保經過此延遲線的總延遲為一個VCO週期。The synthesizer circuitry 934 of the RF circuitry 930 may include a divider, a delay locked loop (DLL), a multiplexer, and a phase accumulator. In some embodiments, the divider may be a dual analog-to-digital divider (DMD) and the phase accumulator may be a digital phase accumulator (DPA). In some embodiments, the DMD may be configured to divide the input signal by N or N+1 (eg, based on a carry output) to provide a fractional distribution ratio. In some exemplary embodiments, the DLL may include a set of cascaded, adjustable, delay elements, a phase detector, a charge pump, and a D-type flip-flop. In these embodiments, the delay elements may be configured to divide a VCO cycle into Nd equal phase packets, where Nd is the number of delay elements in the delay line. In this way, the DLL provides negative feedback and helps ensure that the total delay through the delay line is one VCO cycle.

在一些實施例中,合成器電路系統934可被組配用以產生一載波頻率作為輸出頻率,而在其他實施例中,此輸出頻率可以是此載波頻率的倍數(例如此載波頻率的兩倍、此載波頻率的四倍),並且可搭配正交產生器及除法器電路系統用於在該載波頻率產生具有多個彼此不同相位的多個信號。在一些實施例中,此輸出頻率可以是一LO頻率(fLO)。在一些實施例中,RF電路系統930可包括有一IQ/極性轉換器。In some embodiments, the synthesizer circuitry 934 may be configured to generate a carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (eg, twice the carrier frequency , four times the carrier frequency), and can be used with a quadrature generator and divider circuit system to generate multiple signals with different phases at the carrier frequency. In some embodiments, the output frequency may be an LO frequency (fLO). In some embodiments, RF circuitry 930 may include an IQ/polarity converter.

FEM電路系統940可包括有一接收信號路徑,其可包括有被組配用以在接收自一或多個天線950之RF信號上運作、將此等已接收信號放大、以及對RF電路系統930提供此等放大版本已接收信號以供進一步處理之用的電路系統。FEM電路系統940亦可包括有一傳送信號路徑,其可包括有被組配用以將RF電路系統930所提供傳輸用信號放大以供一或多個天線950其中一或多者傳輸之用的電路系統。FEM circuitry 940 may include a receive signal path, which may include circuits configured to operate on RF signals received from one or more antennas 950 , amplify the received signals, and provide This amplified version of the circuitry that has received the signal for further processing. FEM circuitry 940 may also include a transmission signal path, which may include circuitry configured to amplify transmission signals provided by RF circuitry 930 for transmission by one or more of one or more antennas 950 system.

在一些實施例中,FEM電路系統940可包括有一用以在傳送模式與接收模式運作之間進行切換的TX/RX開關。此FEM電路系統可包括有一接收信號路徑及一傳送信號路徑。此FEM電路系統之接收信號路徑可包括有一用以將已接收RF信號放大並提供此等經放大已接收RF信號作為一輸出(例如送至RF電路系統930)的低雜訊放大器(LNA)。FEM電路系統940之傳送信號路徑可包括有一用以將(例如RF電路系統930所提供之)輸入RF信號放大的功率放大器(PA)、以及一或多個用以產生RF信號以供(例如藉由一或多個天線950其中一或多者進行)後續傳輸之用的濾波器。In some embodiments, FEM circuitry 940 may include a TX/RX switch to switch between transmit mode and receive mode operation. The FEM circuit system may include a receive signal path and a transmit signal path. The receive signal path of the FEM circuitry may include a low noise amplifier (LNA) for amplifying received RF signals and providing the amplified received RF signals as an output (eg, to RF circuitry 930). The transmission signal path of FEM circuitry 940 may include a power amplifier (PA) for amplifying an input RF signal (eg, provided by RF circuitry 930 ), and one or more RF signals for generating (eg, by A filter for subsequent transmissions by one or more antennas 950.

在各項實施例中,網路介面控制器(NIC)電路系統960可包括有一或多條傳送與接收(TX/RX)信號路徑,其可經由網路介面電路系統965連接至一或多個資料封包網路。在一些實施例中,NIC電路系統960可經由多個網路介面電路系統965連接至此等資料封包網路。NIC電路系統960可支援一或多種資料鍵路層標準,諸如乙太網路、纖維、符記環、非同步傳輸模式(ATM)、及/或任何其他(多種)適合的資料鍵路層標準。在一些實施例中,電子裝置900可連接到的各網路元件(例如一基地台、網路控制器、一無線電存取網路(RAN)裝置、一S-GW、SDN交換器、MME、P-GW、及類似者)可含有一相同或類似的網路介面電路系統965。再者,NIC電路系統960可包括有處理電路系統、或與其相關聯,諸如一或多個單核心或多核心處理器及/或邏輯電路,用來提供適用於根據此NIC電路系統所使用之一或多種資料鍵路層標準實行通訊之處理技術。In various embodiments, network interface controller (NIC) circuitry 960 may include one or more transmit and receive (TX/RX) signal paths that may be connected to one or more Data packet network. In some embodiments, NIC circuitry 960 may be connected to these data packet networks via multiple network interface circuits 965 . NIC circuitry 960 may support one or more data link layer standards, such as Ethernet, Fiber, Token Ring, Asynchronous Transfer Mode (ATM), and/or any other suitable data link layer standard(s) . In some embodiments, the electronic device 900 can be connected to various network elements (such as a base station, a network controller, a radio access network (RAN) device, an S-GW, an SDN switch, an MME, P-GW, and the like) may contain an identical or similar network interface circuitry 965. Furthermore, NIC circuitry 960 may include or be associated with processing circuitry, such as one or more single-core or multi-core processors and/or logic circuitry, to provide processing suitable for use in accordance with the NIC circuitry. One or more data link layer standards implement communication processing technology.

在一些實施例中,電子裝置900可包括有附加元件,舉例而言例如記憶體/儲存器、顯示器、相機、感測器、及/或輸入/輸出(I/O)介面。In some embodiments, the electronic device 900 may include additional components, such as memory/storage, a display, a camera, a sensor, and/or an input/output (I/O) interface.

在電子裝置900為、實施、遭併入、一無線電存取網路(RAN)或按其他方式成為其部分的實施例中,NIC電路系統960可用來將網路資源區分成一或多個切片,其中此一或多個切片各對應於待由一無線電存取網路(RAN)所提供之一服務;以及網路介面電路系統965可根據待提供之一對應服務,用來提供此一或多個切片其中一切片之網路資源。In embodiments in which electronic device 900 is, implements, is incorporated into, or is otherwise part of a radio access network (RAN), NIC circuitry 960 may be used to partition network resources into one or more slices. Each of the one or more slices corresponds to a service to be provided by a radio access network (RAN); and the network interface circuitry 965 can be used to provide the one or more slices according to a corresponding service to be provided. Network resources for all slices.

在電子裝置900為、實施、遭併入、一演進式nodeB (eNB)或按其他方式成為其部分的實施例中,網路介面電路系統965可用來接收區分成一或多個切片之一網路資源段組,其中此一或多個切片各對應於待由一無線電存取網路(RAN)所提供之一服務。基頻電路系統920可根據此網路資源段組,用來分配此一或多個切片其中一切片之網路資源。In embodiments in which electronic device 900 is, implements, is incorporated into, or is otherwise part of an evolved nodeB (eNB), network interface circuitry 965 may be used to receive a network partitioned into one or more slices. A group of resource segments, where each of the one or more slices corresponds to a service to be provided by a radio access network (RAN). The baseband circuit system 920 can be used to allocate network resources of each of the one or more slices according to the network resource segment group.

在一些實施例中,圖9之電子裝置可被組配用以進行如本文中所述的一或多種過程、技術及/或方法、或其部分。圖10繪示此一過程之一第一例示方法。舉例而言,此過程可包括有劃分基頻單元(BBU)及遠距無線電頭端(RRH)功能1010,用來根據不同部署情境1020實現網路切片。圖11展示一第二例示方法。舉例而言,此過程可包括有將網路資源1110區分成一或多個切片。此一或多個切片各可對應於待由一無線電存取網路(RAN)提供之一服務。此過程可包括有根據待提供之一對應服務,提供1120此一或多個切片其中一切片之網路資源。這兩種例示方法都根據RAN及/或網路切片在任何給定時間點運作此RAN之需要,動態(重新)組配RAN或C-RAN上所用之RAN架構。In some embodiments, the electronic device of Figure 9 may be configured to perform one or more processes, techniques and/or methods, or portions thereof, as described herein. Figure 10 illustrates a first illustrative method of this process. For example, this process may include dividing baseband unit (BBU) and remote radio head (RRH) functions 1010 to implement network slicing according to different deployment scenarios 1020. Figure 11 shows a second example method. For example, this process may include partitioning the network resource 1110 into one or more slices. Each of the one or more slices may correspond to a service to be provided by a radio access network (RAN). This process may include providing 1120 network resources for each of the one or more slices according to a corresponding service to be provided. Both illustrative approaches dynamically (re)configure the RAN architecture used on the RAN or C-RAN based on the needs of the RAN and/or network slicing to operate this RAN at any given point in time.

圖12根據一些例示性實施例繪示組件的一方塊圖,此等組件能夠從一機器可讀或電腦可讀媒體(例如一機器可讀儲存媒體)讀取指令,並且進行本文中所論述方法中之任何一或多者。具體而言,圖12展示硬體資源1200的一示意圖,其包括有互相經由一匯流排1240通訊性耦合之一或多個處理器(或處理器核心) 1210、一或多個記憶體/儲存裝置1220、以及一或多個通訊資源1230。Figure 12 illustrates a block diagram of components capable of reading instructions from a machine-readable or computer-readable medium (eg, a machine-readable storage medium) and performing the methods discussed herein, in accordance with some exemplary embodiments. any one or more of them. Specifically, FIG. 12 shows a schematic diagram of a hardware resource 1200, which includes one or more processors (or processor cores) 1210, one or more memories/storage communicatively coupled to each other via a bus 1240. Device 1220, and one or more communication resources 1230.

處理器1210 (例如一中央處理單元(CPU)、一精簡指令集運算(RISC)處理器、一複雜指令集運算(CISC)處理器、一圖形處理單元(GPU)、諸如一基頻處理器之一數位信號處理器(DSP)、一特定應用積體電路(ASIC)、一射頻積體電路(RFIC)、另一處理器、或以上任何適當的組合)舉例而言,可包括有一處理器1212及一處理器1214。記憶體/儲存裝置1220可包括有主記憶體、碟片儲存器、或以上任何適當的組合。Processor 1210 (e.g., a central processing unit (CPU), a reduced instruction set computing (RISC) processor, a complex instruction set computing (CISC) processor, a graphics processing unit (GPU), such as a baseband processor For example, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a radio frequency integrated circuit (RFIC), another processor, or any suitable combination of the above) may include a processor 1212 and a processor 1214. The memory/storage device 1220 may include main memory, disk storage, or any suitable combination thereof.

通訊資源1230可包括有經由一網路1208與一或多個週邊裝置1204及/或一或多個資料庫1206進行通訊的互連及/或網路介面組件、或其他適當裝置。舉例而言,通訊資源1230可包括有線通訊組件(例如用於經由一通用串列匯流排(USB)進行耦合)、蜂巢式通訊組件、近場通訊(NFC)組件、BluetoothR組件(例如BluetoothR低能量)、Wi-FiR組件、以及其他通訊組件。Communication resources 1230 may include interconnection and/or network interface components, or other appropriate devices, for communicating with one or more peripheral devices 1204 and/or one or more databases 1206 via a network 1208 . For example, communication resources 1230 may include wired communication components (eg, for coupling via a universal serial bus (USB)), cellular communication components, near field communication (NFC) components, BluetoothR components (eg, BluetoothR low energy ), Wi-FiR components, and other communication components.

指令1250可包含有軟體、一程式、一應用程式、一小型應用程式、一app、或用於令至少任何處理器1210進行本文中所論述方法中任何一或多者的其他可執行碼。指令1250可完全或部分常駐於下列至少一者內:處理器1210 (例如:此處理器之快取記憶體內)、記憶體/儲存裝置1220、或以上任何適當的組合。再者,可將指令1250之任何部分從週邊裝置1204及/或資料庫1206之任何組合轉移至硬體資源1200。因此,處理器1210之記憶體、記憶體/儲存裝置1220、週邊裝置1204及資料庫1206為電腦可讀與機器可讀媒體的實例。實例 Instructions 1250 may include software, a program, an application, a mini-application, an app, or other executable code for causing at least any processor 1210 to perform any one or more of the methods discussed herein. Instructions 1250 may reside, in whole or in part, within at least one of: processor 1210 (eg, within the processor's cache), memory/storage 1220, or any appropriate combination thereof. Furthermore, any portion of instructions 1250 may be transferred to hardware resources 1200 from any combination of peripheral devices 1204 and/or database 1206 . Accordingly, the memory of processor 1210, memory/storage 1220, peripheral devices 1204, and database 1206 are examples of computer-readable and machine-readable media. Example

實例1可包括有一種以不同部署情境實現網路切片進行基頻單元(BBU)與遠距無線電頭端(RRH)功能劃分之方法。Example 1 may include a method of implementing network slicing to divide functions between baseband units (BBUs) and remote radio heads (RRH) in different deployment scenarios.

實例2可包括有如實例1或本文中一些其他實例之方法,其中一演進式nodeB (eNB)將會以各網路切片用之排程資訊來進行該BBU及RRH功能劃分。該eNB只是一基地台之一項實例。Example 2 may include methods like Example 1 or some other examples herein, in which an evolved nodeB (eNB) will use scheduling information for each network slice to partition the BBU and RRH functions. The eNB is just one example of a base station.

實例3可包括有如實例2或本文中一些其他實例之方法,其中該eNB對經排程用於具有先進多輸入多輸出(MIMO)方案及中/高頻寬(BW)前傳之行動寬頻服務之頻率/時間資源,進行一類通用公共無線電介面(CPRI)及/或進階CPRI或實體層(PHY)分割BBU及RRH功能劃分。Example 3 may include a method as in Example 2 or some other examples herein, wherein the eNB pairs frequencies scheduled for mobile broadband services with advanced multiple-input multiple-output (MIMO) schemes and medium/high bandwidth (BW) fronthaul/ Time resources are used to divide BBU and RRH functions into Class 1 Common Public Radio Interface (CPRI) and/or Advanced CPRI or Physical Layer (PHY) segmentation.

實例4可包括有如實例2或本文中一些其他實例之方法,其中該eNB將會對經排程用於低潛時服務之頻率/時間資源,例如關鍵任務物聯網(IoT)應用及/或裝置,進行第2層(L2)/第3層(L3) BBU及RRH功能劃分。Example 4 may include a method as in Example 2 or some other examples herein, where the eNB will use frequency/time resources scheduled for low-latency services, such as mission-critical Internet of Things (IoT) applications and/or devices , perform functional division of Layer 2 (L2)/Layer 3 (L3) BBU and RRH.

實例5可包括有如實例2或本文中一些其他實例之方法,其中該eNB對經排程用於大規模機器類型通訊(MTC)服務或行動寬頻服務之頻率/時間資源,進行一類CPRI、PHY分割、遠端PHY、或L2/L3分割BBU及RRH功能分割。Example 5 may include a method as in Example 2 or some other examples herein, wherein the eNB performs a type of CPRI, PHY partitioning of frequency/time resources scheduled for massive machine type communications (MTC) services or mobile broadband services , remote PHY, or L2/L3 split BBU and RRH functional split.

實例6可包括有如實例1或本文中一些其他實例之方法,其中該eNB對各網路切片使用排程資訊進行前傳封包化。Example 6 may include a method as in Example 1 or some other examples herein, wherein the eNB uses scheduling information for fronthaul packetization for each network slice.

實例7可包括有如實例6或本文中一些其他實例之方法,其中該eNB對經排程用以支援如多點協調(CoMP)、波束匯集、無胞元運作等先進MIMO方案之該頻率/時間資源,進行為類CPRI或PHY分割BBU及RRH劃分而定義之前傳封包化。Example 7 may include a method as in Example 6 or some other examples herein, wherein the eNB pairs the frequency/time scheduled to support advanced MIMO schemes such as coordinated multipoint (CoMP), beam pooling, cellless operation, etc. Resources for forward packetization defined for CPRI-like or PHY segmentation BBU and RRH segmentation.

實例8可包括有如實例6或本文中一些其他實例之方法,其中該eNB對經排程用於諸如關鍵任務IoT應用或關鍵任務IoT裝置等極端延遲敏感應用之該頻率/時間資源,進行為L2/L3 BBU及RRH劃分而定義之前傳封包化程序。Example 8 may include a method as in Example 6 or some other example herein, wherein the eNB performs L2 for the frequency/time resources scheduled for extremely delay-sensitive applications such as mission-critical IoT applications or mission-critical IoT devices. /L3 BBU and RRH division define the forward packetization procedure.

實例9可包括有如實例6或本文中一些其他實例之方法,其中該eNB對經排程用於大規模IoT及行動寬頻服務之該頻率/時間資源,基於前傳BW及延遲,進行包括類CPRI、PHY分割、遠端PHY、L2/L3分割等之前傳封包化程序。Example 9 may include a method as in Example 6 or some other examples herein, wherein the eNB performs, based on fronthaul BW and delay, including CPRI-like, PHY segmentation, remote PHY, L2/L3 segmentation and other forward packetization procedures.

實例10可包括有一種方法,其包含有:將網路資源區分成一或多個切片,其中此一或多個切片各對應於待由一無線電存取網路(RAN)所提供之一服務;以及根據待提供之一對應服務,提供此一或多個切片其中一切片之網路資源。Example 10 may include a method comprising: partitioning network resources into one or more slices, wherein the one or more slices each correspond to a service to be provided by a radio access network (RAN); and providing network resources of each of the one or more slices according to a corresponding service to be provided.

實例11可包括有如實例10或本文中一些其他實例之方法,其中該區分包括有定義該一或多個切片之一第一切片與大規模物聯網(IoT)應用及/或IoT裝置相關聯、及定義該一或多個切片之一第二切片與行動寬頻服務相關聯,以及其中該提供包括有對與該第一切片相關聯之服務於一所欲時間/頻率網格分配一窄副載波間距或分碼多重進接(CDMA)波形、及對與該第二切片相關聯之服務以一更大的副載波間距分配一正交分頻多工(OFDM)波形。Example 11 may include a method as in Example 10 or some other examples herein, wherein the differentiating includes defining a first slice of the one or more slices to be associated with a large-scale Internet of Things (IoT) application and/or IoT device , and defining a second one of the one or more slices to be associated with a mobile broadband service, and wherein the providing includes allocating a narrow bandwidth to a desired time/frequency grid for the service associated with the first slice. subcarrier spacing or code division multiple access (CDMA) waveforms, and allocating an orthogonal frequency division multiplexing (OFDM) waveform with a larger subcarrier spacing to services associated with the second slice.

實例12可包括有如實例11或本文中一些其他實例之方法,其中該提供包括有對與第二切片相關聯之服務分配用於高產出量要求之網路資源、以及對與該第一切片相關聯之服務分配低潛時資源。Example 12 may include the method of Example 11 or some other examples herein, wherein the providing includes allocating network resources for high throughput requirements to services associated with the second slice, and allocating network resources to services associated with the first slice. Allocate low-latency resources to slice-related services.

實例13可包括有如實例10或本文中一些其他實例之方法,其更包含有針對一傳輸時間間隔(TTI),判定該一或多個切片之各者用的頻率資源;判斷與該TTI相關聯之一服務是否為帶有大規模連線之一服務;以及當判定與該TTI相關聯之該服務為帶有大規模連線之一服務並且乃基於一前傳率時,選擇一無線電存取網路(RAN)分割。 實例14可包括有如實例10或本文中一些其他實例之方法,其中該RAN分割包括有對頻率/時間資源進行一類通用公共無線電介面(CPRI)、PHY分割、遠端PHY、或L2/L3分割、基頻單元(BBU)及遠距無線電頭端(RRH)功能分割其中一者。Example 13 may include a method as in Example 10 or some other examples herein, which further includes determining frequency resources used by each of the one or more slices for a transmission time interval (TTI); determining the frequency resources associated with the TTI. Whether a service is a service with large-scale connections; and when determining that the service associated with the TTI is a service with large-scale connections and is based on a fronthaul rate, select a radio access network Road (RAN) segmentation. Example 14 may include a method as in Example 10 or some other example herein, wherein the RAN partitioning includes a Common Public Radio Interface (CPRI), PHY partitioning, remote PHY, or L2/L3 partitioning of frequency/time resources, The baseband unit (BBU) and remote radio head (RRH) functions are divided into one of them.

實例15可包括有如實例13或本文中一些其他實例之方法,其更包含有判斷與該TTI相關聯之該服務是否為一服務波束匯集;以及當與該TTI相關聯之該服務為一使用波束匯集之服務時,使用一分割PHY架構進行前傳封包之封包化。Example 15 may include a method as in Example 13 or some other examples herein, further including determining whether the service associated with the TTI is a service beam aggregation; and when the service associated with the TTI is a usage beam When aggregating services, a split PHY architecture is used to encapsulate the fronthaul packets.

實例16可包括有如實例15或本文中一些其他實例之方法,其更包含有:判斷與該TTI相關聯之該服務是否為一關鍵任務服務;以及當與該TTI相關聯之該服務為一關鍵任務服務時,使用該L2/L3分割。Example 16 may include a method like Example 15 or some other examples herein, which further includes: determining whether the service associated with the TTI is a mission-critical service; and when the service associated with the TTI is a critical When serving tasks, use this L2/L3 split.

實例17可包括有如實例14或本文中一些其他實例之方法,其中該選擇包含有當判定與該TTI相關聯之該服務為一帶有大規模連線之服務且乃基於一前傳頻寬(BW)及前傳延遲時,選擇該RAN分割,以及其中各RAN分割包括有一對應之資料封包化格式。Example 17 may include a method as in Example 14 or some other example herein, wherein the selection includes determining that the service associated with the TTI is a service with large-scale connections and is based on a fronthaul bandwidth (BW) and fronthaul delay, the RAN partition is selected, and each RAN partition includes a corresponding data packetization format.

實例18可包括有如實例17或本文中一些其他實例之方法,其中更包括有:判斷與該TTI相關聯之該服務是否為一服務波束匯集;將對應之資源塊(RB)用於該波束匯集;當該前傳包括有一高BW與低潛時時,選擇一進階CPRI之RAN分割;以及當該前傳包括有一中BW與低潛時時,選擇一I/Q量化及/或壓縮方案RAN分割。Example 18 may include a method as in Example 17 or some other examples herein, further including: determining whether the service associated with the TTI is a service beam aggregation; using corresponding resource blocks (RBs) for the beam aggregation ; when the fronthaul includes a high BW and low latency, select an advanced CPRI RAN segmentation; and when the fronthaul includes a medium BW and low latency, select an I/Q quantization and/or compression scheme RAN segmentation .

實例19可包括有如實例17或本文中一些其他實例之方法,其中更包含有:判斷與該TTI相關聯之該服務是否為一延遲敏感服務;以及選擇一媒體存取控制(MAC)協定資料單元(PDU)前傳。Example 19 may include the method of Example 17 or some other examples herein, further including: determining whether the service associated with the TTI is a delay-sensitive service; and selecting a Media Access Control (MAC) protocol data unit (PDU) prequel.

實例20可包括有一種裝備,其包含有:用以將網路資源區分成一或多個切片的網路介面控制器(NIC)電路系統,其中此一或多個切片各對應於待由一無線電存取網路(RAN)所提供之一服務;以及用以根據待提供之一對應服務提供此一或多個切片其中一切片之網路資源的網路介面電路系統。Example 20 may include an apparatus that includes network interface controller (NIC) circuitry for partitioning network resources into one or more slices, where each of the one or more slices corresponds to a radio to be used. a service provided by the access network (RAN); and network interface circuitry for providing network resources of each of the one or more slices according to a corresponding service to be provided.

實例21可包括有如實例20或本文中一些其他實例之裝備,其中為了區分網路資源,該NIC電路系統乃用以定義與大規模物聯網(IoT)應用及/或IoT裝置相關聯之該一或多個切片之一第一切片、及定義與行動寬頻服務相關聯之該一或多個切片之一第二切片,以及其中為了提供該等網路資源,該網路介面電路系統乃用以對與該第一切片相關聯之服務於一所欲時間/頻率網格分配一窄副載波間距或分碼多重進接(CDMA)波形、及對與該第二切片相關聯之服務以一更大的副載波間距分配一正交分頻多工(OFDM)波形。Example 21 may include equipment as in Example 20 or some other examples herein, where the NIC circuitry is used to define the NIC circuitry associated with a large-scale Internet of Things (IoT) application and/or IoT device in order to differentiate network resources. or a first slice of one or more slices, and a second slice defining the one or more slices associated with a mobile broadband service, and wherein in order to provide the network resources, the network interface circuitry is used to allocate a narrow subcarrier spacing or Code Division Multiple Access (CDMA) waveform to a desired time/frequency grid for services associated with the first slice, and to allocate a narrow subcarrier spacing or Code Division Multiple Access (CDMA) waveform to services associated with the second slice. A larger subcarrier spacing allocates an orthogonal frequency division multiplexing (OFDM) waveform.

實例22可包括有如實例21或本文中一些其他實例之裝備,其中為了提供該等網路資源,該網路介面電路系統乃用以對與第二切片相關聯之服務分配用於高產出量要求之網路資源、以及對與該第一切片相關聯之服務分配低潛時資源。Example 22 may include equipment as in Example 21 or some other example herein, wherein in order to provide the network resources, the network interface circuitry is used to allocate services associated with the second slice for high throughput Network resources are requested, and low-latency resources are allocated to services associated with the first slice.

實例23可包括有如實例20或本文中一些其他實例之裝備,其中該NIC電路系統乃用以針對一傳輸時間間隔(TTI),判定該一或多個切片之各者用的頻率資源;判斷與該TTI相關聯之一服務是否為帶有大規模連線之一服務;以及當判定與該TTI相關聯之該服務為帶有大規模連線之一服務並且乃基於一前傳率時,選擇一無線電存取網路(RAN)分割。Example 23 may include equipment as in Example 20 or some other examples herein, wherein the NIC circuitry is used to determine frequency resources for each of the one or more slices for a transmission time interval (TTI); determine and Whether a service associated with the TTI is a service with a large-scale connection; and when it is determined that the service associated with the TTI is a service with a large-scale connection and is based on a fronthaul rate, select a Radio Access Network (RAN) segmentation.

實例24可包括有如實例20或本文中一些其他實例之裝備,其中該RAN分割包括有對頻率/時間資源進行一類通用公共無線電介面(CPRI)、PHY分割、遠端PHY、或L2/L3分割、基頻單元(BBU)及遠距無線電頭端(RRH)功能分割其中一者。Example 24 may include equipment as in Example 20 or some other example herein, wherein the RAN partitioning includes a Common Public Radio Interface (CPRI), PHY partitioning, remote PHY, or L2/L3 partitioning of frequency/time resources, The baseband unit (BBU) and remote radio head (RRH) functions are divided into one of them.

實例25可包括有如實例23或本文中一些其他實例之裝備,該NIC電路系統乃用以判斷與該TTI相關聯之該服務是否為一服務波束匯集;以及當與該TTI相關聯之該服務為一使用波束匯集之服務時,使用一分割PHY架構進行前傳封包之封包化。Example 25 may include equipment like Example 23 or some other examples herein, the NIC circuitry is used to determine whether the service associated with the TTI is a service beam aggregation; and when the service associated with the TTI is When using beam aggregation services, a split PHY architecture is used for packetization of fronthaul packets.

實例26可包括有如實例25或本文中一些其他實例之裝備,該NIC電路系統乃用以判斷與該TTI相關聯之該服務是否為一關鍵任務服務;以及當與該TTI相關聯之該服務為一關鍵任務服務時,使用該L2/L3分割。Example 26 may include equipment like Example 25 or some other examples herein, the NIC circuitry is used to determine whether the service associated with the TTI is a mission-critical service; and when the service associated with the TTI is For a mission-critical service, use the L2/L3 split.

實例27可包括有如實例24或本文中一些其他實例之裝備,其中為了選擇,該NIC電路系統乃用以在判定與該TTI相關聯之該服務為一帶有大規模連線之服務且乃基於一前傳頻寬(BW)及前傳延遲時,選擇該RAN分割,以及其中各RAN分割包括有一對應之資料封包化格式。Example 27 may include an arrangement like Example 24 or some other example herein, wherein the NIC circuitry is used for selection purposes in determining that the service associated with the TTI is a service with large-scale connectivity and is based on a The RAN partition is selected based on the fronthaul bandwidth (BW) and fronthaul delay, and each RAN partition includes a corresponding data packetization format.

實例28可包括有如實例27或本文中一些其他實例之裝備,該NIC電路系統乃用以判斷與該TTI相關聯之該服務是否為一服務波束匯集;將對應之資源塊(RB)用於該波束匯集;當該前傳包括有一高BW與低潛時時,選擇一進階CPRI之RAN分割;以及當該前傳包括有一中BW與低潛時時,選擇一I/Q量化及/或壓縮方案RAN分割。Example 28 may include equipment like Example 27 or some other examples herein, the NIC circuitry is used to determine whether the service associated with the TTI is a service beam aggregation; use the corresponding resource block (RB) for the Beam pooling; selecting an advanced CPRI RAN segmentation when the fronthaul includes a high BW and low latency; and selecting an I/Q quantization and/or compression scheme when the fronthaul includes a medium BW and low latency RAN segmentation.

實例29可包括有如實例27或本文中一些其他實例之裝備,該NIC電路系統乃用以判斷與該TTI相關聯之該服務是否為一延遲敏感服務;以及選擇一媒體存取控制(MAC)協定資料單元(PDU)前傳。Example 29 may include equipment such as Example 27 or some other examples herein, the NIC circuitry is used to determine whether the service associated with the TTI is a delay-sensitive service; and select a media access control (MAC) protocol Data unit (PDU) forward transmission.

實例30可包括有如實例20至29或本文中一些其他實例之裝備,其中該等服務乃是由該RAN所提供,而該裝備乃是在與該RAN相關聯之一電子裝置中實施,並且根據實例20至29之網路資源分配乃是經由該網路介面電路系統提供予一或多個演進式nodeB (eNB)。Example 30 may include equipment as examples 20 to 29 or some other examples herein, wherein the services are provided by the RAN, and the equipment is implemented in an electronic device associated with the RAN, and according to Network resource allocation in Examples 20 to 29 is provided to one or more evolved nodeBs (eNBs) via the network interface circuitry.

實例31可包括有一種裝備,其包含有:用以接收區分成一或多個切片之一網路資源段組的網路介面電路系統,其中此一或多個切片各對應於待由一無線電存取網路(RAN)所提供之一服務;以及根據此網路資源段組用以分配此一或多個切片其中一切片之網路資源的基頻電路系統。Example 31 may include an apparatus that includes network interface circuitry for receiving a group of network resource segments partitioned into one or more slices, where each of the one or more slices corresponds to a radio memory to be used. Obtain a service provided by the network (RAN); and use the baseband circuit system to allocate the network resources of each of the one or more slices according to the network resource segment group.

實例32可包括有如實例31或本文中一些其他實例之裝備,其中該裝備乃用以在一演進式nodeB (eNB)中實施。Example 32 may include equipment as in Example 31 or some other example herein, where the equipment is for implementation in an evolved nodeB (eNB).

實例33可包括有如實例31或本文中一些其他實例之裝備,其中該裝備乃用以在該無線網路所伺服之諸如一用戶設備(UE)之一裝置中實施。Example 33 may include equipment as in Example 31 or some other example herein, where the equipment is for implementation in a device, such as a user equipment (UE), being served by the wireless network.

實例34可包含有可在一無線通訊網路中運作之一無線電存取網路(RAN)控制實體裝備,此裝備包含有:用以接收源自於一無線網路裝置之至少一個通訊、或傳送至少一個通訊至一無線網路裝置的射頻(RF)電路系統;其中此RAN控制實體乃耦合至一基頻單元(BBU)及遠距無線電頭端(RRH);還包含有電路系統,用以:將一實體RAN基礎結構或C-RAN劃分成一或多個網路切片;以及根據此一或多個網路切片之一部署情境將此BBU及/或RRH劃分。Example 34 may include a radio access network (RAN) control entity device operable in a wireless communication network, the device including: receiving at least one communication originating from a wireless network device, or transmitting At least one radio frequency (RF) circuitry that communicates to a wireless network device; wherein the RAN control entity is coupled to a baseband unit (BBU) and a remote radio head (RRH); and also includes circuitry to : Divide a physical RAN infrastructure or C-RAN into one or more network slices; and divide the BBU and/or RRH according to one of the deployment scenarios of the one or more network slices.

實例35可包括有如實例34或本文中一些其他實例之裝備,其中該電路系統是進一步用來使用該實體無線電存取網路、或C-RAN上運作、或待運作之該一或多個網路切片每一者之排程資訊,根據該一或多個網路切片之一部署情境,將該BBU及/或RRH劃分。Example 35 may include equipment as in Example 34 or some other example herein, wherein the circuitry is further configured to use the physical radio access network, or the one or more networks operating or to be operated on the C-RAN. Scheduling information for each of the network slices is used to divide the BBU and/or RRH according to one of the deployment scenarios of the one or more network slices.

實例36可包括有如實例34至36或本文中一些其他實例之裝備,其中該電路系統是進一步用來使用下列任何一或多者,根據該一或多個網路切片之一部署情境,將該BBU及/或RRH劃分:一類通用公共無線電介面(CPRI) /進階CPRI技術;跨該BBU與RRH之一實體層(PHY)分割技術。Example 36 may include the equipment of Examples 34-36 or some other examples herein, wherein the circuitry is further configured to use any one or more of the following to combine the one or more network slices according to one of the deployment scenarios of the one or more network slices. BBU and/or RRH partitioning: a type of Common Public Radio Interface (CPRI)/Advanced CPRI technology; a physical layer (PHY) partitioning technology across the BBU and RRH.

實例37可包括有如實例34至37或本文中一些其他實例之裝備,其中該電路系統是用來劃分該BBU及/或RRH以劃分該無線網路之無線網路資源,其中該等無線網路資源包括有頻率/時間資源及/或實體資源塊(PRB)。Example 37 may include equipment as examples 34 to 37 or some other examples herein, wherein the circuitry is used to partition the BBU and/or RRH to partition wireless network resources of the wireless network, wherein the wireless network Resources include frequency/time resources and/or physical resource blocks (PRBs).

實例38可包括有如實例34至37或本文中一些其他實例之裝備,其中該等無線網路資源乃根據一垂直切片或水平切片來劃分。Example 38 may include equipment such as Examples 34-37 or some other examples herein, in which the wireless network resources are divided according to a vertical slice or a horizontal slice.

實例39可包括有如實例34至38或本文中一些其他實例之裝備,其中一垂直切片為使用一先進多輸入多輸出(MIMO)方案及一中高頻寬前傳之行動寬頻服務。Example 39 may include equipment as in Examples 34-38, or some other examples herein, in which a vertical slice is a mobile broadband service using an advanced multiple-input multiple-output (MIMO) scheme and a medium-to-high bandwidth fronthaul.

實例40可包括有如實例34至39或本文中一些其他實例之裝備,其中該電路系統乃用以根據該垂直或水平網路切片之參數來劃分該BBU及/或RRH。Example 40 may include equipment such as Examples 34-39 or some other examples herein, wherein the circuitry is used to partition the BBU and/or RRH according to parameters of the vertical or horizontal network slice.

實例41可包括有如實例39至40或本文中一些其他實例之裝備,其中該垂直或水平網路切片之該等參數包括有下列任何一或多者:一資料率;一資料頻寬;若干待伺服裝置;一潛時;一任務關鍵性;一延遲;一服務品質(QoS);或一服務之一網路設定檔。Example 41 may include equipment as examples 39-40 or some other examples herein, wherein the parameters of the vertical or horizontal network slice include any one or more of the following: a data rate; a data bandwidth; a number of waiting A server device; a latency; a mission criticality; a delay; a quality of service (QoS); or a network profile of a service.

實例42可包括有如實例39至40或本文中一些其他實例之裝備,其中該電路系統乃進一步用來以用於或屬於各網路切片之排程資訊來判定或實行前傳封包化。Example 42 may include the apparatus of Examples 39-40 or some other examples herein, wherein the circuitry is further configured to determine or perform fronthaul packetization with scheduling information for or belonging to each network slice.

實例43可包括有如實例42或本文中一些其他實例之裝備,其中進一步用以判定或實行下列任何一者所定義之前傳封包化程序:一類通用公共無線電介面(CPRI)/進階CPRI技術;以及跨該BBU與RRH之一實體層(PHY)分割技術。Example 43 may include equipment as in Example 42 or some other example herein, further configured to determine or perform forward packetization procedures as defined in any of: a Common Public Radio Interface (CPRI)/Advanced CPRI technology; and A physical layer (PHY) segmentation technology across the BBU and RRH.

實例44可包括有如實例43或本文中一些其他實例之裝備,其中該電路系統是進一步用來判定或實行支援一先進MIMO技術之一頻率/時間資源排程所定義之前傳封包化程序,其中該技術可包括有CoMP、波束匯集或無胞元運作其中任何一或多者。Example 44 may include the apparatus of Example 43 or some other example herein, wherein the circuitry is further configured to determine or perform a forward packetization process defined by frequency/time resource scheduling supporting an advanced MIMO technology, wherein the Techniques may include any one or more of CoMP, beam pooling or cellless operation.

實例45可包括有如實例43或本文中一些其他實例之裝備,其中該電路系統是進一步用來判定或實行支援下列任何一者之一頻率/時間資源排程或技術所定義之前傳封包化程序:一任務關鍵性、延遲或頻寬。Example 45 may include equipment as in Example 43 or some other example herein, wherein the circuitry is further configured to determine or perform a forward packetization process as defined by a frequency/time resource schedule or technology that supports any of the following: -Mission criticality, latency or bandwidth.

實例46可包括有如實例45或本文中一些其他實例之裝備,其中任務關鍵性適用於一延遲敏感應用。Example 46 may include equipment like Example 45 or some other example herein where mission criticality applies to a latency sensitive application.

實例47可包括有如實例45或本文中一些其他實例之裝備,其中該裝備包含有一基地台。Example 47 may include equipment as in Example 45 or some other example herein, wherein the equipment includes a base station.

實例48可包括有如實例47或本文中一些其他實例之裝備,其中該基地台包含有一增強型節點B (eNB)。Example 48 may include equipment as in Example 47 or some other example herein, wherein the base station includes an enhanced Node B (eNB).

實例49可包括有如實例34至48或本文中一些其他實例之裝備,其中一垂直網路切片包含有下列任何一或多者:供用於或專用一單一通訊類型之一實體無線電存取網路基礎結構之一邏輯分區;供用於或由一特定通訊使用案例之通訊所專用之一實體無線電存取網路基礎結構之一邏輯分區;一實體無線電存取網路基礎結構之一邏輯分區,其具有與該實體無線電存取網路基礎結構之任何其他邏輯分區上之運作及訊務流量無關的自含運作及訊務流量;以及其中一水平網路切片包含有此RAN中運作之至少一個裝置之一運算資源之一邏輯分區,其中該至少一個裝置包含有一基地台、一控制器、或由該RAN所伺服之一裝置。Example 49 may include equipment such as Examples 34-48 or some other examples herein, wherein a vertical network slice includes any one or more of the following: a physical radio access network infrastructure for or dedicated to a single communication type A logical partition of a physical radio access network infrastructure; a logical partition of a physical radio access network infrastructure dedicated to or by communications for a specific communications use case; a logical partition of a physical radio access network infrastructure having Self-contained operations and traffic that are not related to operations and traffic on any other logical partition of the entity's radio access network infrastructure; and one of the horizontal network slices that contains at least one device operating in this RAN A logical partition of computing resources, wherein the at least one device includes a base station, a controller, or a device served by the RAN.

實例50可包括有用於與可在一無線通訊網路中運作之一無線電存取網路(RAN)控制實體裝備配合使用之一用戶設備,該裝備包含有:用以在該RAN控制實體之控制下接收源自於一無線網路裝置之至少一個通訊、或在該RAN控制實體下傳送至少一個通訊至一無線網路裝置的射頻(RF)電路系統;其中該RAN控制實體包含有如實例34至49或本文中一些其他實例之裝備。Example 50 may include user equipment for use with a radio access network (RAN) control entity equipment operable in a wireless communication network, the equipment including: for use under the control of the RAN control entity Receive at least one communication from a wireless network device, or transmit at least one communication to radio frequency (RF) circuitry of a wireless network device under the RAN control entity; wherein the RAN control entity includes as in Examples 34 to 49 Or some of the other examples in this article.

實例51可包括有包含指令之一或多個電腦可讀媒體,此等指令由一電子裝置之一或多個處理器執行時,令該電子裝置在一無線通訊網路之一無線電存取網路(RAN)中進行一方法之一或多個元素,該方法包含有:將一實體RAN基礎結構或C-RAN劃分成一或多個網路切片;以及根據該一或多個網路切片之一部署情境將該BBU及/或RRH劃分。Example 51 may include one or more computer-readable media containing instructions that, when executed by one or more processors of an electronic device, cause the electronic device to access a radio access network of a wireless communications network Perform one or more elements of a method in (RAN), the method comprising: dividing a physical RAN infrastructure or C-RAN into one or more network slices; and based on one of the one or more network slices The deployment scenario divides the BBU and/or RRH.

實例52可包括有如實例51或本文中一些其他實例之方法,其中該方法更包含有使用該實體無線電存取網路、或C-RAN上運作、或待運作之該一或多個網路切片每一者之排程資訊,根據該一或多個網路切片之一部署情境,將該BBU及/或RRH劃分。Example 52 may include a method as in Example 51 or some other examples herein, wherein the method further includes using the one or more network slices operating or to be operated on the physical radio access network, or C-RAN. The scheduling information of each partitions the BBU and/or RRH according to one of the deployment scenarios of the one or more network slices.

實例53可包括有如實例51至52或本文中一些其他實例之方法,其中該方法更包含有使用下列任何一或多者,根據該一或多個網路切片之一部署情境,將該BBU及/或RRH劃分:一類通用公共無線電介面(CPRI)/CPRI進階技術;跨該BBU與RRH之一實體層(PHY)分割技術。Example 53 may include a method as in Examples 51 to 52 or some other examples herein, wherein the method further includes using any one or more of the following, according to one of the deployment scenarios of the one or more network slices, combining the BBU and /or RRH division: a type of Common Public Radio Interface (CPRI)/CPRI advanced technology; a physical layer (PHY) division technology across the BBU and RRH.

實例54可包括有如實例51至53或本文中一些其他實例之方法,其中該方法更包含有劃分該BBU及/或RRH以劃分該無線網路之無線網路資源,其中該等無線網路資源包括有頻率/時間資源及/或實體資源塊(PRB)。Example 54 may include a method as in Examples 51 to 53 or some other examples herein, wherein the method further includes allocating the BBU and/or RRH to allocate wireless network resources of the wireless network, wherein the wireless network resources Includes frequency/time resources and/or physical resource blocks (PRB).

實例55可包括有如實例51至54或本文中一些其他實例之方法,其中該等無線網路資源乃根據一垂直切片或水平切片來劃分。Example 55 may include a method as in Examples 51 to 54 or some other examples herein, wherein the wireless network resources are divided according to a vertical slice or a horizontal slice.

實例56可包括有如實例51至55或本文中一些其他實例之方法,其中一垂直切片為使用一先進多輸入多輸出(MIMO)方案及一中高頻寬前傳之行動寬頻服務。Example 56 may include a method as in Examples 51 to 55 or some other examples herein, wherein a vertical slice is a mobile broadband service using an advanced multiple-input multiple-output (MIMO) scheme and a medium-to-high bandwidth fronthaul.

實例57可包括有如實例51至56或本文中一些其他實例之方法,該方法更包含有根據該垂直或水平網路切片之參數來劃分該BBU及/或RRH。Example 57 may include a method as in Examples 51 to 56 or some other examples herein, and the method may further include dividing the BBU and/or RRH according to parameters of the vertical or horizontal network slice.

實例58可包括有如實例51至57或本文中一些其他實例之方法,其中該垂直或水平網路切片之該等參數包括有下列任何一或多者:一資料率;一資料頻寬;若干待伺服裝置;一潛時;一任務關鍵性;一延遲;一服務品質(QoS);或一服務之一網路設定檔。Example 58 may include a method as in Examples 51 to 57 or some other examples herein, wherein the parameters of the vertical or horizontal network slice include any one or more of the following: a data rate; a data bandwidth; a number of waiting times. A server device; a latency; a mission criticality; a delay; a quality of service (QoS); or a network profile of a service.

實例59可包括有如實例51至58或本文中一些其他實例之方法,其中該方法更包含有以用於或屬於各網路切片之排程資訊來判定或實行前傳封包化。Example 59 may include a method as in Examples 51-58 or some other examples herein, wherein the method further includes determining or performing fronthaul packetization based on scheduling information for or belonging to each network slice.

實例60可包括有如實例59或本文中一些其他實例之方法,其中該方法更包含有判定或實行下列任何一者所定義之一前傳封包化程序:一類通用公共無線電介面(CPRI)/進階CPRI技術;以及跨該BBU與RRH之一實體層(PHY)分割技術。Example 60 may include a method as in Example 59 or some other example herein, wherein the method further includes determining or performing a fronthaul packetization procedure as defined in any of the following: Common Public Radio Interface (CPRI) Type 1/CPRI-Advanced Technology; and physical layer (PHY) segmentation technology across the BBU and RRH.

實例61可包括有如實例60或本文中一些其他實例之方法,其中該方法更包含有判定或實行支援一先進MIMO技術之一頻率/時間資源排程所定義之前傳封包化程序,其中該技術可包括有CoMP、波束匯集或無胞元運作其中任何一或多者。Example 61 may include a method as in Example 60 or some other examples herein, wherein the method may further include determining or performing a forward packetization process defined by a frequency/time resource schedule supporting an advanced MIMO technology, wherein the technology may Including any one or more of CoMP, beam pooling or cellless operation.

實例62可包括有如實例60或本文中一些其他實例之方法,其中該方法更包含有判定或實行支援下列任何一者之一頻率/時間資源排程或技術所定義之該前傳封包化程序:一任務關鍵性、延遲或頻寬。Example 62 may include a method as in Example 60 or some other examples herein, wherein the method further includes determining or performing the fronthaul packetization process as defined by a frequency/time resource schedule or technology that supports any of the following: - Mission criticality, latency or bandwidth.

實例63可包括有如實例62或本文中一些其他實例之方法,其中任務關鍵性適用於一延遲敏感應用。Example 63 may include a method as in Example 62 or some other example herein, where mission criticality applies to a delay-sensitive application.

實例64可包括有如實例62或本文中一些其他實例之方法,其中該方法、或至少其部分在一雲端無線電存取網路(C-RAN)、一RAN控制實體、一基地台、一由該RAN所伺服之裝置、一UE、一BBU或一RRH中執行。Example 64 may include a method as in Example 62 or some other examples herein, wherein the method, or at least a portion thereof, is performed in a Cloud Radio Access Network (C-RAN), a RAN control entity, a base station, a Executed in a device served by the RAN, a UE, a BBU or an RRH.

實例65可包括有如實例51至64或本文中一些其他實例之方法,其中一垂直網路切片包含有下列任何一或多者:供用於或專用一單一通訊類型之一實體無線電存取網路基礎結構之一邏輯分區;供用於或由一特定通訊使用案例之通訊所專用之一實體無線電存取網路基礎結構之一邏輯分區;一實體無線電存取網路基礎結構之一邏輯分區,其具有與該實體無線電存取網路基礎結構之任何其他邏輯分區上之運作及訊務流量無關的自含運作及訊務流量;以及其中一水平網路切片包含有此RAN中運作之至少一個裝置之一運算資源之一邏輯分區,其中該至少一個裝置包含有一基地台、一控制器、或由該RAN所伺服之一裝置。Example 65 may include the method of Examples 51-64 or some other examples herein, wherein a vertical network slice includes any one or more of the following: a physical radio access network infrastructure for or dedicated to a single communication type A logical partition of a physical radio access network infrastructure; a logical partition of a physical radio access network infrastructure dedicated to or by communications for a specific communications use case; a logical partition of a physical radio access network infrastructure having Self-contained operations and traffic that are not related to operations and traffic on any other logical partition of the entity's radio access network infrastructure; and one of the horizontal network slices that contains at least one device operating in this RAN A logical partition of computing resources, wherein the at least one device includes a base station, a controller, or a device served by the RAN.

實例67可包含有包含指令之一或多個電腦可讀媒體,此等指令由一電子裝置之一或多個處理器執行時,令該電子裝置進行實例1至19、51至64之任何一或多者中所述或與之有關之任何方法、或本文中所述任何其他方法或過程的一或多個元素、或根據實例20至50或66其中任何一或多者、或本文中所述任何其他裝置提供該裝備之功能。Example 67 may include one or more computer-readable media containing instructions that, when executed by one or more processors of an electronic device, cause the electronic device to perform any of Examples 1 to 19 and 51 to 64. or any method described in or in connection therewith, or one or more elements of any other method or process described herein, or according to any one or more of Examples 20 to 50 or 66, or as described herein. Any other device described above provides the functionality of this equipment.

實例66可包含有一種包含邏輯、模組、手段及/或電路系統之裝備,用來進行實例1至19、51至64之任何一者中所述或與之有關之一方法、或本文中所述任何其他方法或過程的一或多個元素。Example 66 may include an apparatus including logic, modules, means, and/or circuitry for performing one of the methods described in or related to any of Examples 1-19, 51-64, or herein. one or more elements of any other method or process described.

實例67可包含有一種如實例1至19、51至64之任何一者或其部分或零件中所述或有關之方法、技術、或過程。Example 67 may include a method, technique, or process as described in or related to any one of Examples 1 to 19, 51 to 64, or portions or components thereof.

實例68可包含有一種裝備,其包含有:包含有指令之一或多個處理器及一或多個電腦可讀媒體,此等指令在由該一或多個處理器執行時,令該一或多個處理器進行如實例1至19、51至64之任何一者、或其部分中所述或有關之方法、技術、或過程、或根據實例20至50或66其中任何一或多者、或本文中所述之任何其他裝置提供該裝備或裝置之功能。Example 68 may include an apparatus comprising: one or more processors and one or more computer-readable media including instructions that, when executed by the one or more processors, cause the or multiple processors to perform methods, techniques, or processes described in or related to any one of Examples 1 to 19, 51 to 64, or portions thereof, or according to any one or more of Examples 20 to 50, or 66 , or any other device described herein that provides the functionality of the equipment or device.

實例69可包含有一種在如本文中所示及所述之一無線網路中進行通訊之方法。實例70可包含有一種用於提供如本文中所示及所述無線通訊之系統。實例71可包含有一種用於提供如本文中所示及所述無線通訊之裝置。Example 69 may include a method of communicating in a wireless network as shown and described herein. Example 70 may include a system for providing wireless communications as shown and described herein. Example 71 may include an apparatus for providing wireless communications as shown and described herein.

通訊之例示性使用案例/類型可包括有:無線/行動寬頻(MBB)通訊;極端行動寬頻(E-MBB)通訊;諸如工業控制通訊、機器間通訊(MTC/MTC1)之即時使用案例;諸如物聯網(IoT)感測器通訊、或大規模機器間通訊(M-MTC/MTC2)之非即時使用案例;超可靠機器間通訊(U-MTC);例如快取緩存、通訊之行動邊緣雲端;車間(V2V)通訊;車輛與基礎結構間(V2I)通訊;車輛與任何東西間通訊(V2X)。也就是說,本揭露係有關於根據可透過一無線網路實行之任何輕易可定義/可區別通訊類型來提供網路切片。Exemplary use cases/types of communications may include: wireless/mobile broadband (MBB) communications; extreme mobile broadband (E-MBB) communications; real-time use cases such as industrial control communications, machine-to-machine communications (MTC/MTC1); such as Internet of Things (IoT) sensor communication, or non-real-time use cases of massive machine-to-machine communication (M-MTC/MTC2); ultra-reliable machine-to-machine communication (U-MTC); such as cache, mobile edge cloud communication ;Vehicle-to-vehicle (V2V) communication; Vehicle-to-infrastructure (V2I) communication; Vehicle-to-everything communication (V2X). That is, the present disclosure relates to providing network slicing based on any easily definable/differentiable communication type that can be implemented over a wireless network.

在一些實例中,此無線電存取網路(RAN)控制實體乃分布於部分此RAN。在一些實例中,此等RAN部分為此RAN之基地台(例如eNB),在其他實例中,此RAN之此(等)部分可以是一UE、或任何其他由或待由此無線網路/RAN所伺服、或形成其部分(或對其進行伺服)之裝置,例如,行動性管理引擎(MME)、基頻單元(BBU)、遠距無線電頭端(RRH)等。在一些實例中,若實體分布此RAN控制實體,則此RAN控制實體可與此巨集BS共置,並且僅管理此巨集BS之涵蓋範圍下的切片部分。在一些實例中,若此RAN控制實體位在一中央位置中,則此RAN控制實體可管理跨此RAN控制實體涵蓋範圍下多個BS之一切片部分。此RAN控制實體可包含有控制RAN或裝置分配之至少一部分,可根據此一或多個水平或垂直切片之一需要包含有資源,例如處於/位在、或可用於此無線網路中之一裝置的運算資源。In some examples, the radio access network (RAN) control entity is distributed over part of the RAN. In some examples, the portion of the RAN is a base station (e.g., eNB) of the RAN. In other examples, the portion(s) of the RAN may be a UE, or any other component of the wireless network/ Devices served by, or forming part of (or serving) RAN, such as Mobility Management Engine (MME), Baseband Unit (BBU), Remote Radio Head (RRH), etc. In some examples, if the entity distributes the RAN control entity, the RAN control entity may be co-located with the macro BS and only manage the slice portion under the coverage of the macro BS. In some examples, if the RAN control entity is located in a central location, the RAN control entity may manage a slice portion across multiple BSs covered by the RAN control entity. The RAN control entity may contain at least part of the control RAN or device allocation, which may contain resources as required by one of the one or more horizontal or vertical slices, such as being/located in, or available in one of the wireless networks. The computing resources of the device.

如本文中所述,倘若一實例或請求項明載RF電路系統,舉例而言,用來在此無線網路內形成一更大的實體,例如一基地台,此同樣意欲涵蓋不包括有此RF電路系統之此或一替代實施例,舉例而言,以利根據本揭露以一實體分布形式來使用(或提供)。這舉例而言,可適用於此實體形成一雲端無線電存取網路之部分時,其中此等無線電部分(例如RRH)並非如該控制功能(實體、模組等)之至少一顯著部分為共置之/位於相同實體內,例如BBU。因此,無實施例意欲受限於僅具有將訊息發送至或接收自此無線網路之一RF部分者。舉例而言,一些實作態樣可以是部分前傳能力,其可以是從一集中式、或其他集中式基頻功能(例如BBU)連至無線電前端(例如RRH)之連線。As described herein, if an instance or claim explicitly states that RF circuitry is, for example, used to form a larger entity within the wireless network, such as a base station, this is also intended to cover the exclusion of such circuitry. This or an alternative embodiment of RF circuitry, for example, may be used (or provided) in a physically distributed form in accordance with the present disclosure. This may apply, for example, when the entity forms part of a cloud radio access network, where the radio parts (eg RRH) are not common as at least a significant part of the control function (entity, module, etc.) Placed/located within the same entity, such as BBU. Therefore, no embodiments are intended to be limited to having only one RF portion of the wireless network that sends or receives messages to or from the wireless network. For example, some implementations may be partial fronthaul capability, which may be a connection from a centralized or other centralized baseband function (eg, BBU) to the radio front end (eg, RRH).

任何對電腦程式產品或電腦可讀媒體之參照於本文中使用時,可包括有對暫時性(例如實體媒體)及非暫時性(例如信號或其資料結構)兩形式之參照。Any reference to a computer program product or computer-readable medium when used herein may include references to both transitory (such as physical media) and non-transitory (such as signals or data structures thereof).

本文中所揭示之各種實例可提供許多優點,舉例而言,但不限於:為受到伺服之裝置、為任何給定量之核心網路及/或RAN資源(例如運算、無線電等)提供(更)完全的涵蓋範圍;傳輸點間控制傳訊延遲及傳訊交換額外負荷更少;提供改良型涵蓋範圍並同時減少網路節點(含傳輸點)間的控制傳訊交換;一更有效率之(總體、或實質部分)無線網路,因為舉例而言,其容許一給定量之(例如單一)實體無線電存取網路基礎結構由多個使用案例所使用,藉此導致硬體/基礎結構少於按其他方式會用到者(例如兩倍、或更多硬體,舉例而言,用以為各使用案例提供分離的實體無線電存取網路基礎結構);針對跨此RAN、以及在此RAN各切片內運作之所有裝置,無線電存取網路效能、效率、可靠度、服務與服務品質之維持/維護大致已改善。Various examples disclosed herein may provide a number of advantages, for example, but not limited to: for the device being served, for any given amount of core network and/or RAN resources (e.g., compute, radio, etc.) (more) Complete coverage; less control communication delay and communication overhead between transmission points; provides improved coverage while reducing control communication exchanges between network nodes (including transmission points); a more efficient (overall, or Substantial part) wireless network because, for example, it allows a given (e.g., a single) physical radio access network infrastructure to be used by multiple use cases, thereby resulting in less hardware/infrastructure than would otherwise be the case. method will be used (e.g. twice, or more hardware, for example, to provide separate physical radio access network infrastructure for each use case); for both across the RAN and within each slice of the RAN Maintenance/maintenance of radio access network performance, efficiency, reliability, service and quality of service has generally been improved across all devices operating.

此、或一網路切片之開啟、啟動或邏輯區隔、或類似者如本文中所述,可彼此均等以及均等於互換使用之用語。類似的是,一網路切片之關閉、止動或邏輯終止、或類似者可全部彼此均等、以及均等於互換使用之用語。亦可引用一網路切片作為一邏輯分離(區隔、劃分等)之無線電網路存取、或作為一邏輯分離(區隔、劃分等)之無線電網路存取部分。由或待由此實體無線電存取網路基礎結構、或一網路切片所伺服之一裝置可包括有一UE,可接受伺服之任何及所有其他裝置形式亦可參照本文中之一UE互換。可引用一裝置作為一無線網路裝置。然而,一無線網路裝置於本文中使用時,亦可參照一伺服實體,例如基地台、MME、BBU、RRH等,端視使用背景而定。在運作方面,依據本文揭示之網路切片,一接取點與基地台在使用或部署方面可視為類似。This, or the opening, enabling or logical partitioning of a network slice, or the like, as described herein, may be used interchangeably with each other and the terms are used interchangeably. Similarly, the closure, deactivation or logical termination of a network slice, or the like may all be equivalent to each other, and the terms used interchangeably. A network slice may also be referenced as a logical separation (partition, partition, etc.) of radio network access, or as a logical separation (partition, partition, etc.) of radio network access. One of the devices served by or to be served by this physical radio access network infrastructure, or a network slice, may include a UE, and any and all other device forms that may be served may also be interchanged with reference to a UE herein. A device can be referenced as a wireless network device. However, when a wireless network device is used in this article, it can also refer to a serving entity, such as a base station, MME, BBU, RRH, etc., depending on the usage context. Operationally, according to the network slicing disclosed in this article, an access point and a base station can be considered similar in use or deployment.

特定實例如本文中所述,已用於解釋本文揭示之方法及功能(以及實行那些功能之功能單元),然而,本揭露不如此受限。舉例而言,本揭露之實施例不受限於任何特定實例,例如:倘若所揭示之一特定垂直市場與一圖式有關,此僅為一實例,並且可使用任何垂直市場取而代之;倘若所揭示之一切片其中一特定部分與一圖式有關,可使用一切片之任何部分取而代之;倘若已將一RAN揭示為具有與一圖式有關之某一尺寸、類型或數量之切片(水平或垂直),可使用任何尺寸、類型或數量之切片取而代之;倘若已將一切片或切片部分揭示為具有與一圖式有關之某一尺寸、類型或數量(此水平或此垂直中),可使用任何尺寸、類型或數量之切片或切片部分取而代之。同樣地,在前述中,僅管此等切片已從1開始編號,其他編號方案也是可以實施的,例如號碼可從0開始取而代之,使得切片#1可以是切片#0、及類似者。因此,此等特定號碼並非限制,不同於藉助於展示切片彼此間之一例示性差別(因編號不同)、或已編號切片部分彼此間之一例示性關係(因同一編號切片之子部分連序編號)。Specific examples, such as those described herein, have been used to explain the methods and functions (and functional units that perform those functions) disclosed herein, however, the disclosure is not so limited. For example, embodiments of the present disclosure are not limited to any specific example. For example, if a specific vertical market is disclosed in relation to a diagram, this is only an example, and any vertical market can be used instead; A slice in which a particular part is relevant to a figure may be replaced by any part of the slice; if a RAN has been disclosed as having a certain size, type or number of slices (horizontal or vertical) relevant to a figure , any size, type or number of slices may be used instead; provided that all slices or portions of slices are disclosed to be of a certain size, type or number in relation to a figure (either horizontally or vertically), any size may be used , type or number of slices or sliced parts instead. Likewise, in the foregoing, although the slices have been numbered starting from 1, other numbering schemes may be implemented, for example, the numbers could start from 0 instead, so that slice #1 could be slice #0, and the like. Therefore, these specific numbers are not limiting, unlike showing an illustrative difference between slices (because they are numbered differently), or an illustrative relationship between numbered slice portions (because sub-portions of the same numbered slice are numbered sequentially). ).

「電路系統」一詞於本文中使用時,可意指為、屬於部分之、或包括有一特定應用積體電路(ASIC)、一電子電路、一處理器(共享、專屬、或群組)、及/或記憶體(共享、專屬、或群組),其執行一或多個軟體或韌體程式、一組合邏輯電路、及/或其他適合的硬體或軟體組件,包括有可提供所述功能之一或多個虛擬機器。在一些實施例中,此電路系統可在一或多個軟體或韌體模組中實施,或與此電路系統相關聯之功能可藉由此一或多個軟體或韌體模組來實施。在一些實施例中,電路系統可包括有至少部分可在硬體中運作的邏輯。在一些實施例中,此處理/執行可分布,而不是集中式處理/執行。The term "circuitry" as used herein may mean, be part of, or include an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or grouped), and/or memory (shared, dedicated, or grouped) that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware or software components, including those that provide the Function one or more virtual machines. In some embodiments, the circuitry may be implemented in one or more software or firmware modules, or functions associated with the circuitry may be implemented by the one or more software or firmware modules. In some embodiments, circuitry may include logic that may be at least partially operable in hardware. In some embodiments, this processing/execution may be distributed rather than centralized.

對一(RAN)架構之任何參照於本文中使用時,可包括有可定義為或視為一無線網路(或類似網路連結系統實體)之(多種)特定過程、技術、技術之任何形式、實作態樣細節、運作改良或類型的任何東西,尤其是在此RAN中。架構典型可在標準文件中介紹、維持及更新,以利各別無線網路技術使用,例如,第三代合夥專案(3GPP)標準、及類似者。Any reference to a (RAN) architecture when used herein may include any form of specific process(s), technology, technology(s) that may be defined or considered as a wireless network (or similar network connectivity system entity) , implementation details, operational improvements or anything of the type, especially in this RAN. Architectural examples may be introduced, maintained, and updated in standards documents to facilitate the use of various wireless network technologies, such as the 3rd Generation Partnership Project (3GPP) standards, and the like.

將了解的是,本文揭示之方法(或對應之裝備、程式、資料載器等)其中任何一者可藉由一主機或用戶端來實行,端視特定實作態樣而定(亦即,本文揭示之方法/裝備為一種通訊形式,而且如此,可由任一「觀點」來實行,亦即,與各其他方式相對應)。再者,將瞭解的是,「接收」及「傳送」等詞含括「輸入」及「輸出」,並且不受限於傳送及接收無線電波之一RF背景。因此,舉例而言,用於將實施例落實之一晶片或其他裝置或組件可產生用於輸出至另一晶片、裝置或組件之資料、或具有如來自另一晶片、裝置或組件之一輸入資料,而且此一輸出或輸入可意指為包括有動名詞形式之「傳送」及「接收」,亦即,「傳送中」及「接收中」、以及一RF背景中之此「傳送中」及「接收中」。It will be understood that any of the methods (or corresponding devices, programs, data carriers, etc.) disclosed herein may be implemented by a host or client, depending on the particular implementation (i.e., herein The method/equipment of revelation is a form of communication and, as such, can be carried out from any "point of view", i.e., corresponding to each other). Furthermore, it will be understood that the terms "receive" and "transmit" include "input" and "output" and are not limited to the RF context of transmitting and receiving radio waves. Thus, for example, a chip or other device or component used to implement embodiments may generate data for output to, or have an input from, another chip, device, or component data, and this output or input may be meant to include "transmitting" and "receiving" in gerund form, that is, "transmitting" and "receiving", and this "transmitting" in an RF context and "receiving".

以「A、B或C其中至少一者」樣式使用之任何陳述、以及「A、B及C其中至少一者」之陳述於本說明書中使用時,使用一反意連接詞「或」及一反意連接詞「及」,使得那些陳述包含有A、B、C之任何及全部結合與數種排列,亦即單獨A、單獨B、單獨C、任何順序的A與B、任何順序的A與C、任何順序的B與C、以及任何順序的A、B、C。此類陳述中使用的特徵可能多於或少於三個。Any statement used in the form of "at least one of A, B or C", and the statement "at least one of A, B and C" is used in this specification, use an antinomial connective "or" and a The negative connective "and" makes those statements include any and all combinations and several permutations of A, B, C, that is, A alone, B alone, C alone, A and B in any order, A in any order and C, B and C in any order, and A, B, C in any order. More or less than three characteristics may be used in such statements.

在請求項中,置放於括號之間的任何參照符號不得視為限制請求項。「包含有」一詞未排除一請求項中所列除外其他元件或步驟的存在。再者,「一」或其變形等用語於本文中使用時,乃定義一個或超過一個。同樣地,諸如「至少一個」及「一或多個」等前置詞之使用不應視為暗指介紹冠有不定冠詞「一」之另一主張元件時,會使含有所介紹主張元件之任何特定請求項受限於僅含有一個此元件之發明,即使當同一請求項包括有「一或多個」或「至少一個」等前置詞、及諸如「一」或其變形之不定冠詞時也不受限。除非另有陳述,諸如「第一」及「第二」等詞乃用於在此類用語所述元件彼此間進行任意區別。因此,這些用語不必然意欲指出此類元件之時間關係或其他優先化。在互不相同之請求項中明載某些量測的唯一事實不在於指出這些量測之一組合無法用於產生利益。In a request, any reference symbols placed between parentheses shall not be deemed to limit the request. The word "comprising" does not exclude the presence of elements or steps other than those listed in a claim. Furthermore, when the terms "a" or its variations are used in this article, they define one or more than one. Likewise, the use of prepositions such as "at least one" and "one or more" should not be taken to imply that the introduction of another claim element preceded by the indefinite article "a" would make any specific claim element containing the introduced claim element The claim is limited to an invention containing only one such element, even when the same claim includes prepositions such as "one or more" or "at least one", and indefinite articles such as "a" or its variations. . Unless stated otherwise, terms such as "first" and "second" are used to arbitrarily distinguish the elements described in such terms from each other. Therefore, these terms are not necessarily intended to indicate a temporal relationship or other prioritization of such elements. The mere fact that certain measurements are stated in mutually distinct claims does not indicate that a combination of these measurements cannot be used to produce a benefit.

除非另有明確敍述為不相容、或此等實施例、實例或請求項之物理層面或按其他方式防止此一組合,前述實施例與實例、以及後面請求項之特徵可依照任何適合的布置結構整合在一起,對於這麼做會造成有利功效之特徵尤其如此。這不受限於僅任何指定的效益,而是可由一「事後」效益引起。也就是說,特徵之組合不受限於所述形式,尤其是(多個)實例、(多個)實施例之形式(例如編號)、或(多個)請求項之相依性。此外,這也適用於「在一項實施例中」、「根據一實施例」等用語及類似者,其僅屬於一用字文體形式,並且對於相同或類似用字之所有其他例子,不應視為將後接特徵限制於另一實施例。也就是說,對「一」、「一個」或「一些」實施例之一參照可以是對任何一或多個、及/或所有所揭示實施例、或其組合之參照。同樣類似的是,對「該(此)」實施例之參照可不受限於緊接其前之實施例。Unless otherwise expressly stated to be incompatible, or the physical aspects of such embodiments, examples or claims otherwise prevent such combination, the features of the foregoing embodiments and examples, as well as the following claims, may be configured in any suitable arrangement. Structural integration, especially for features that would have beneficial effects in doing so. This is not limited to just any specific benefit, but can result from an "ex post" benefit. That is to say, the combination of features is not limited to the stated form, in particular the form(s) of the example(s), the form (eg numbering) of the embodiment(s), or the dependency of the claim(s). Furthermore, this also applies to terms such as "in one embodiment," "according to an embodiment," and the like, which are merely stylistic forms of a word and should not be used for all other instances of the same or similar word. The features that follow are considered to be limited to another embodiment. That is, a reference to "a," "an," or "some" embodiments may be a reference to any one or more, and/or all disclosed embodiments, or combinations thereof. Likewise, reference to "the" embodiment may not be limited to the embodiment immediately preceding it.

在前述中,對「層」之參照可以是對此基礎結構之一預定義(或可定義)部分之一參照,並且對「層」之參照可以是對此網路基礎結構、或其部分上/中所運作之一網路協定層之參照。一垂直切片於本文中使用時,可引用作為或有關於一垂直市場區隔。任何機器可執行指令、或運算可讀媒體於本文中使用時,可實行一所揭示之方法,並且因此可與方法一詞、或彼此當作同義詞使用。In the foregoing, a reference to a "layer" may be a reference to a predefined (or definable) part of the infrastructure, and a reference to a "layer" may be a reference to the network infrastructure, or a part thereof. A reference to a network protocol layer operating in /. A vertical slice, when used herein, may be referenced as or in relation to a vertical market segment. As used herein, any machine-executable instructions, or computationally readable medium, that can perform a disclosed method, and thus may be used synonymously with the term method or each other.

一或多個實作態樣之前述說明提供例示及說明,但非意欲徹底囊括全部態樣或使本發明之範疇受限於所揭示的精確形式。修改與變化鑑於以上教示是可能的,或可經由本發明之各種實作態樣之實作來取得。The foregoing description of one or more implementation aspects provides illustration and description, but is not intended to be exhaustive or to limit the scope of the invention to the precise forms disclosed. Modifications and variations are possible in light of the above teachings, or may be acquired from practicing various implementation aspects of the invention.

100‧‧‧無線網路 110~140、306‧‧‧垂直切片 112、122、132、142‧‧‧巨集網路層部分 114、124、134、144‧‧‧微型網路層部分 116、126、136、146‧‧‧D2D網路層部分 118、128、138、148‧‧‧PAN網路層部分 150‧‧‧核心網路層部分 160‧‧‧無線電存取網路層部分 170‧‧‧裝置層部分 180‧‧‧個人/穿戴層部分 190‧‧‧第一水平網路切片 195‧‧‧第二水平網路切片 200‧‧‧第二視圖 210‧‧‧切片#1 211‧‧‧切片#2 220‧‧‧微型網路層 230‧‧‧切片#3 240‧‧‧個人區域網路網路層 300‧‧‧圖解 302‧‧‧網路階層 304‧‧‧無線電資源 410‧‧‧基地台部分 410'‧‧‧基地台 412‧‧‧上游/核心網路側通訊功能 414‧‧‧基地台運算功能 414'、424'‧‧‧處理資源 416‧‧‧下游/無線/裝置側通訊功能 420‧‧‧可攜式部分 420'‧‧‧可攜式裝置 422‧‧‧典型的蜂巢式無線通訊鏈路 424‧‧‧局部運算功能 426‧‧‧下游通訊鏈路 430‧‧‧穿戴式部分 430'‧‧‧穿戴式裝置 432‧‧‧上游通訊鏈路 434‧‧‧有限局部處理資源功能 434'‧‧‧項目 500‧‧‧C-RAN架構 502~506、604‧‧‧RRH 514‧‧‧BBU/BBU池 516~520‧‧‧前傳鏈路 522‧‧‧核心網路 524‧‧‧無線裝置 600‧‧‧CPRI為基之C-RAN架構 602‧‧‧BBU/BBU池 606‧‧‧前傳鏈路 608‧‧‧類比前端 610‧‧‧數位類比轉換器 612‧‧‧類比數位轉換器 614、622‧‧‧選擇 616、624‧‧‧壓縮與定框模組 618、626‧‧‧解壓縮與定框模組 620‧‧‧層處理模組 628、950‧‧‧天線 700、800‧‧‧程序 710~770、850~870、1010~1020、1110~1120‧‧‧步驟 820~840‧‧‧例示性選項 900‧‧‧電子裝置 910‧‧‧應用電路系統 920‧‧‧基頻電路系統 921‧‧‧射頻(RF)電路系統 922‧‧‧第三代(3G)基頻處理器 923‧‧‧第四代(4G)基頻處理器 924‧‧‧基頻處理器 925‧‧‧中央處理單元 926‧‧‧音訊數位信號處理器 927‧‧‧記憶體/儲存器 930‧‧‧RF電路系統 931‧‧‧混頻器電路系統 932‧‧‧放大器電路系統 933‧‧‧濾波器電路系統 934‧‧‧合成器電路系統 940‧‧‧前端模組(FEM)電路系統 960‧‧‧網路介面控制器(NIC)電路系統 965‧‧‧網路介面電路系統 1200‧‧‧硬體資源 1204‧‧‧週邊裝置 1206‧‧‧資料庫 1208‧‧‧網路 1210‧‧‧處理器 1212‧‧‧處理器 1214‧‧‧處理器 1220‧‧‧記憶體/儲存裝置 1230‧‧‧通訊資源 1240‧‧‧匯流排 1250‧‧‧指令 100‧‧‧Wireless Internet 110~140, 306‧‧‧vertical slice 112, 122, 132, 142‧‧‧Macro network layer part 114, 124, 134, 144‧‧‧Micro network layer part 116, 126, 136, 146‧‧‧D2D network layer part 118, 128, 138, 148‧‧‧PAN network layer part 150‧‧‧Core network layer part 160‧‧‧Radio access network layer part 170‧‧‧Device layer part 180‧‧‧Personal/wearing layer part 190‧‧‧First horizontal network slicing 195‧‧‧Second horizontal network slicing 200‧‧‧Second view 210‧‧‧Slice #1 211‧‧‧Slice #2 220‧‧‧Micro network layer 230‧‧‧Slice #3 240‧‧‧Personal Area Network Network Layer 300‧‧‧Illustration 302‧‧‧Network Class 304‧‧‧Radio Resources 410‧‧‧Base station part 410'‧‧‧Base Station 412‧‧‧Upstream/core network side communication function 414‧‧‧Base station computing function 414', 424'‧‧‧Processing resources 416‧‧‧Downstream/wireless/device-side communication functions 420‧‧‧Portable part 420'‧‧‧Portable device 422‧‧‧Typical cellular wireless communication link 424‧‧‧Local operation function 426‧‧‧Downstream communication link 430‧‧‧Wearable part 430'‧‧‧Wearable device 432‧‧‧Upstream communication link 434‧‧‧Limited local processing resource function 434'‧‧‧Project 500‧‧‧C-RAN Architecture 502~506, 604‧‧‧RRH 514‧‧‧BBU/BBU Pool 516~520‧‧‧Fronthaul link 522‧‧‧Core Network 524‧‧‧Wireless Device 600‧‧‧CPRI-based C-RAN architecture 602‧‧‧BBU/BBU Pool 606‧‧‧Fronthaul link 608‧‧‧Analog front-end 610‧‧‧Digital to Analog Converter 612‧‧‧Analog-to-digital converter 614, 622‧‧‧Choose 616, 624‧‧‧Compression and framing modules 618, 626‧‧‧Decompression and framing modules 620‧‧‧Layer Processing Module 628, 950‧‧‧antenna 700, 800‧‧‧Procedure 710~770, 850~870, 1010~1020, 1110~1120‧‧‧Steps 820~840‧‧‧Illustrative options 900‧‧‧Electronic Devices 910‧‧‧Application circuit system 920‧‧‧Basic frequency circuit system 921‧‧‧Radio frequency (RF) circuit system 922‧‧‧Third generation (3G) baseband processor 923‧‧‧Fourth generation (4G) baseband processor 924‧‧‧baseband processor 925‧‧‧Central Processing Unit 926‧‧‧Audio Digital Signal Processor 927‧‧‧Memory/Storage 930‧‧‧RF Circuit System 931‧‧‧Mixer circuit system 932‧‧‧Amplifier circuit system 933‧‧‧Filter circuit system 934‧‧‧synthesizer circuit system 940‧‧‧Front-end module (FEM) circuit system 960‧‧‧Network Interface Controller (NIC) Circuit System 965‧‧‧Network interface circuit system 1200‧‧‧Hardware resources 1204‧‧‧Peripheral devices 1206‧‧‧Database 1208‧‧‧Network 1210‧‧‧Processor 1212‧‧‧Processor 1214‧‧‧Processor 1220‧‧‧Memory/storage device 1230‧‧‧Communication Resources 1240‧‧‧Bus 1250‧‧‧Instruction

本揭露之實施例之態樣、特徵及優點在參照附圖閱讀實施例說明後將會變為顯而易見,其中相似的符號表示相似的元件,其中: 圖1展示垂直及水平網路切片廣義概念的一第一視圖; 圖2展示圖1之無線網路其中一部分的一第二視圖; 圖3根據屬於圖1所示實施例之替代例(或附加例)之一實施例,展示可以用何種方式將一無線電存取網路(RAN)切成水平及垂直切片; 圖4根據實例展示一可切式無線網路架構中一更加詳細的水平切片實例; 圖5根據一實例展示一第一例示性雲端無線電存取網路(C-RAN)架構; 圖6根據一實例展示一第二例示性C-RAN架構; 圖7根據一實例展示用於靈活性無線電存取網路重新架構之一第一例示性程序; 圖8根據一實例展示用於靈活性無線電存取網路重新架構之一第二例示性程序; 圖9根據一實例展示一電子裝置(例如UE或基地台)之一例示性實作態樣; 圖10根據一實例展示無線電存取網路重新架構之一第一例示方法; 圖11根據一實例展示無線電存取網路重新架構之一第二例示方法; 圖12根據一實施例展示硬體資源之一示意圖。Aspects, features and advantages of embodiments of the present disclosure will become apparent upon reading the description of the embodiments with reference to the accompanying drawings, in which like symbols represent similar elements, in which: Figure 1 illustrates the broad concepts of vertical and horizontal network slicing. a first view; Figure 2 shows a second view of a part of the wireless network of Figure 1; Figure 3 shows what kind of The method slices a radio access network (RAN) into horizontal and vertical slices; Figure 4 shows a more detailed example of horizontal slicing in a scalable wireless network architecture based on an example; Figure 5 shows a first example based on an example Flexible cloud radio access network (C-RAN) architecture; Figure 6 shows a second exemplary C-RAN architecture according to an example; Figure 7 shows a first exemplary C-RAN architecture for flexible radio access network according to an example An exemplary process; Figure 8 shows a second exemplary process for flexible radio access network re-architecture according to an example; Figure 9 shows an exemplary process of an electronic device (such as a UE or a base station) according to an example Implementation aspect; Figure 10 shows a first illustrative method of radio access network re-architecture according to an example; Figure 11 shows a second illustrative method of radio access network re-architecture according to an example; Figure 12 according to an embodiment A schematic diagram showing one of the hardware resources.

700‧‧‧程序 700‧‧‧Procedure

710~770‧‧‧步驟 Steps 710~770‧‧‧

Claims (20)

一種可運作於一無線通訊網路中的無線電存取網路(RAN)控制實體之裝備,該RAN控制實體乃耦合至一基頻單元(BBU)及遠距無線電頭端(RRH),該裝備包含:射頻(RF)電路系統,其接收至少一個源自於一無線網路裝置之通訊、或傳送至少一個通訊至一無線網路裝置;以及電路系統,其:將一實體RAN基礎結構或雲端無線電存取網路(C-RAN)劃分成一或多個網路切片;以及根據該一或多個網路切片之一部署情境劃分該BBU及/或RRH,該等無線網路資源係根據一垂直切片或水平切片來劃分,其中一垂直網路切片包含下列任何一或多者:供用於或專用於一單一通訊類型之一實體無線電存取網路基礎結構之一邏輯分區;供用於或由一特定通訊使用案例之通訊所專用之一實體無線電存取網路基礎結構之一邏輯分區;一實體無線電存取網路基礎結構之一邏輯分區,其具有與在該實體無線電存取網路基礎結構之任何其他邏輯分區上之運作及訊務流量無關的自含運作及訊務流量;以及其中一水平網路切片包含至少一個在該RAN中運作之裝置的一運算資源之一邏輯分區,其中該至少一個裝置包含一基地台、一控制器、或由該RAN所伺服之一裝置。 An equipment that can operate as a radio access network (RAN) control entity in a wireless communication network. The RAN control entity is coupled to a baseband unit (BBU) and a remote radio head (RRH). The equipment includes : Radio frequency (RF) circuitry that receives at least one communication from or transmits at least one communication to a wireless network device; and circuitry that: connects a physical RAN infrastructure or cloud radio The access network (C-RAN) is divided into one or more network slices; and the BBU and/or RRH are divided according to one of the deployment scenarios of the one or more network slices, and the wireless network resources are based on a vertical A vertical network slice consists of any one or more of the following: a logical partition of a physical radio access network infrastructure used for or dedicated to a single communication type; a logical partition of a physical radio access network infrastructure used for or dedicated to a single communication type; A logical partition of a physical radio access network infrastructure that is specific to a communications use case; a logical partition of a physical radio access network infrastructure that has the same features as in the physical radio access network infrastructure self-contained operations and traffic that are unrelated to operations and traffic on any other logical partition; and one of the horizontal network slices includes a logical partition of the computing resources of at least one device operating in the RAN, where the At least one device includes a base station, a controller, or a device served by the RAN. 如請求項1之裝備,其中該電路系統是進一步用來使用在該實體無線電存取網路、或C-RAN上運作、或待運作之該一或多個網路切片每一者之排程資訊,根據該一或多個網路切片之一部署情境來劃分該BBU及/或RRH。 The equipment of claim 1, wherein the circuitry is further used to use a schedule for each of the one or more network slices operating or to be operated on the physical radio access network, or C-RAN Information, divide the BBU and/or RRH according to one of the deployment scenarios of the one or more network slices. 如請求項1之裝備,其中該電路系統是進一步用來使用下列任何一或多者,根據該一或多個網路切片之一部署情境來劃分該BBU及/或RRH:一類通用公共無線電介面(CPRI)/進階CPRI技術;以及一跨該BBU與RRH之實體層(PHY)分割技術。 The equipment of claim 1, wherein the circuit system is further used to divide the BBU and/or RRH according to one of the deployment scenarios of the one or more network slices using any one or more of the following: a type of universal public radio interface (CPRI)/Advanced CPRI technology; and a physical layer (PHY) segmentation technology across the BBU and RRH. 如請求項1之裝備,其中該電路系統是用來劃分該BBU及/或RRH以劃分該無線網路之無線網路資源,其中該等無線網路資源包括頻率/時間資源及/或實體資源塊(PRB)。 Such as requesting the equipment of item 1, wherein the circuit system is used to divide the BBU and/or RRH to divide wireless network resources of the wireless network, wherein the wireless network resources include frequency/time resources and/or physical resources block (PRB). 如請求項1之裝備,其中一垂直切片為使用一先進多輸入多輸出(MIMO)方案及一中高頻寬前傳之行動寬頻服務。 As claimed in claim 1, one of the vertical slices is a mobile broadband service using an advanced multiple-input multiple-output (MIMO) solution and a medium-to-high bandwidth fronthaul. 如請求項1之裝備,其中該電路系統是用來根據該垂直或水平網路切片之參數來劃分該BBU及/或RRH。 The equipment of claim 1, wherein the circuit system is used to divide the BBU and/or RRH according to the parameters of the vertical or horizontal network slicing. 如請求項6之裝備,其中該垂直或水平網路切片之該等參數包括下列任何一或多者:一資料率;一資料頻寬;若干待伺服裝置;一潛時;一任務關鍵性;一延遲;一服務品質(QoS);或一服務之一網路設定檔。 For example, the equipment of claim item 6, wherein the parameters of the vertical or horizontal network slice include any one or more of the following: a data rate; a data bandwidth; a number of devices to be served; a latency; a mission criticality; a latency; a quality of service (QoS); or a network profile of a service. 如請求項1之裝備,其中該電路系統是進一步使用用於或屬於各網路切片之排程資訊來判定或實行前傳封包化。 The apparatus of claim 1, wherein the circuitry further uses scheduling information for or belonging to each network slice to determine or perform fronthaul packetization. 如請求項8之裝備,其中該電路系統是進一步用來判定或實行下列任何一者所定義之前傳封包化程序:一類通用公共無線電介面(CPRI)/進階CPRI技術;以及一跨該BBU與RRH之實體層(PHY)分割技術。 The equipment of claim 8, wherein the circuitry is further used to determine or perform forward packetization procedures as defined in any of the following: a common public radio interface (CPRI)/Advanced CPRI technology; and a link between the BBU and RRH's physical layer (PHY) segmentation technology. 如請求項9之裝備,其中該電路系統是進一步用來判定或實行由支援一先進MIMO技術之一頻率/時間資源排程所定義之前傳封包化程序,其中該技術可包括多點協調(CoMP)、波束匯集或無胞元運作其中任何一或多者。 The apparatus of claim 9, wherein the circuitry is further configured to determine or perform a forward packetization process defined by a frequency/time resource schedule supporting an advanced MIMO technology, wherein the technology may include Coordinated Multipoint (CoMP) ), beam convergence or cellless operation any one or more of these. 如請求項9之裝備,其中該電路系統是進一步用來判定 或實行由支援下列任何一者之一頻率/時間資源排程或技術所定義之前傳封包化程序:一任務關鍵性、延遲或頻寬。 Such as the equipment of claim 9, wherein the circuit system is further used to determine or perform forward packetization procedures defined by a frequency/time resource schedule or technology that supports any of the following: mission criticality, latency, or bandwidth. 如請求項11之裝備,其中任務關鍵性適用於一延遲敏感應用。 Such as the equipment of claim 11, wherein the mission criticality applies to a delay-sensitive application. 如請求項11之裝備,其中該裝備包含一基地台。 Such as the equipment of claim 11, wherein the equipment includes a base station. 如請求項13之裝備,其中該基地台包含一增強型節點B(eNB)。 The equipment of claim 13, wherein the base station includes an enhanced Node B (eNB). 一種基頻單元(BBU)及遠距無線電頭端(RRH)功能劃分之裝備,包含以不同部署情境實現網路切片的手段,其中一演進式nodeB(eNB)將使用各網路切片之排程資訊來進行該BBU及RRH功能劃分,其中該eNB使用各網路切片之排程資訊來進行前傳封包化,且其中該eNB將對經排程用於低潛時服務之頻率/時間資源,諸如關鍵任務物聯網(IoT)應用及/或裝置,進行第2層(L2)/第3層(L3)BBU及RRH功能劃分。 An equipment for functional division of baseband unit (BBU) and remote radio head (RRH), including means to implement network slicing in different deployment scenarios, in which an evolved nodeB (eNB) will use the schedule of each network slice information to perform the BBU and RRH functional partitioning, where the eNB uses the scheduling information of each network slice for fronthaul packetization, and where the eNB will use frequency/time resources scheduled for low-latency services, such as For mission-critical Internet of Things (IoT) applications and/or devices, layer 2 (L2)/layer 3 (L3) BBU and RRH functions are divided. 如請求項15之裝備,其中該eNB對經排程用於具有先進多輸入多輸出(MIMO)方案及中/高頻寬(BW)前傳之行動寬頻服務的頻率/時間資源進行一類通用公共無線電介面(CPRI)及/或進階CPRI或實體層(PHY)分割BBU及RRH功能劃分。 Such as the equipment of claim 15, wherein the eNB performs a type of common public radio interface ( CPRI) and/or advanced CPRI or physical layer (PHY) segmentation BBU and RRH functional division. 如請求項15之裝備,其中該eNB對經排程用於大規模機器類型通訊(MTC)服務或行動寬頻服務之頻率/時間資源,進行一類CPRI、PHY分割、遠端PHY、或L2/L3分割BBU及RRH功能分割。 Such as requesting the equipment of item 15, wherein the eNB performs Type 1 CPRI, PHY split, remote PHY, or L2/L3 on frequency/time resources scheduled for massive machine type communications (MTC) services or mobile broadband services Split the BBU and RRH functions. 如請求項15之裝備,其中該eNB對經排程用以支援先進MIMO方案如多點協調(CoMP)、波束匯集、無胞元運作等之該頻率/時間資源,進行為類CPRI或PHY分割BBU及RRH劃分所定義之前傳封包化程序。 Such as the equipment of claim 15, wherein the eNB performs CPRI-like or PHY partitioning of the frequency/time resources scheduled to support advanced MIMO schemes such as coordinated multi-point (CoMP), beam pooling, cell-less operation, etc. The forward packetization procedure is defined by BBU and RRH partitioning. 如請求項15之裝備,其中該eNB對經排程用於極端延遲敏感應用諸如關鍵任務IoT應用或關鍵任務IoT裝置等之該頻率/時間資 源,進行為L2/L3BBU及RRH劃分所定義之前傳封包化程序。 Such as requesting the equipment of item 15, wherein the eNB is configured to use the frequency/time resources scheduled for extremely delay-sensitive applications such as mission-critical IoT applications or mission-critical IoT devices. source, performs the forward packetization process defined for L2/L3BBU and RRH partitioning. 如請求項15之裝備,其中該eNB對經排程用於大規模IoT及行動寬頻服務之該頻率/時間資源,基於前傳BW及延遲,進行包括類CPRI、PHY分割、遠端PHY、或L2/L3分割等之前傳封包化程序。 Such as requesting the equipment of item 15, wherein the eNB performs CPRI-like, PHY segmentation, remote PHY, or L2 based on fronthaul BW and delay on the frequency/time resources scheduled for large-scale IoT and mobile broadband services /L3 splitting, etc. before transmitting the packetization program.
TW105131893A 2015-11-03 2016-10-03 Ran re-architecture for network slicing TWI815789B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562250447P 2015-11-03 2015-11-03
US62/250,447 2015-11-03
PCT/US2016/020029 WO2017078770A1 (en) 2015-11-03 2016-02-29 Ran re-architecture for network slicing
WOPCT/US16/20029 2016-02-29

Publications (2)

Publication Number Publication Date
TW201717686A TW201717686A (en) 2017-05-16
TWI815789B true TWI815789B (en) 2023-09-21

Family

ID=55588558

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105131893A TWI815789B (en) 2015-11-03 2016-10-03 Ran re-architecture for network slicing

Country Status (2)

Country Link
TW (1) TWI815789B (en)
WO (1) WO2017078770A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10149193B2 (en) 2016-06-15 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for dynamically managing network resources
US10505870B2 (en) 2016-11-07 2019-12-10 At&T Intellectual Property I, L.P. Method and apparatus for a responsive software defined network
TWI655877B (en) 2017-02-06 2019-04-01 財團法人工業技術研究院 User equipment registration method for selecting network slicing, and network controller and network communication system using the method
US10819606B2 (en) 2017-04-27 2020-10-27 At&T Intellectual Property I, L.P. Method and apparatus for selecting processing paths in a converged network
US10749796B2 (en) 2017-04-27 2020-08-18 At&T Intellectual Property I, L.P. Method and apparatus for selecting processing paths in a software defined network
US10673751B2 (en) 2017-04-27 2020-06-02 At&T Intellectual Property I, L.P. Method and apparatus for enhancing services in a software defined network
US10382903B2 (en) 2017-05-09 2019-08-13 At&T Intellectual Property I, L.P. Multi-slicing orchestration system and method for service and/or content delivery
US10257668B2 (en) 2017-05-09 2019-04-09 At&T Intellectual Property I, L.P. Dynamic network slice-switching and handover system and method
CN108990068B (en) * 2017-06-01 2021-02-05 华为技术有限公司 Communication method and network device
CN109219090B (en) * 2017-06-30 2022-11-08 中兴通讯股份有限公司 Business characteristic data reporting method and device and network slice arranging method and device
US10070344B1 (en) 2017-07-25 2018-09-04 At&T Intellectual Property I, L.P. Method and system for managing utilization of slices in a virtual network function environment
US10973005B2 (en) * 2017-08-30 2021-04-06 Hon Hai Precision Industry Co., Ltd. Methods and related devices for resource allocation
US10433177B2 (en) 2017-12-01 2019-10-01 At&T Intellectual Property I, L.P. Adaptive pairing of a radio access network slice to a core network slice based on device information or service information
US10104548B1 (en) 2017-12-18 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for dynamic instantiation of virtual service slices for autonomous machines
US10721631B2 (en) 2018-04-11 2020-07-21 At&T Intellectual Property I, L.P. 5D edge cloud network design
WO2019229512A1 (en) * 2018-05-30 2019-12-05 Telefonaktiebolaget Lm Ericsson (Publ) Virtualized radio access network
US10405193B1 (en) 2018-06-28 2019-09-03 At&T Intellectual Property I, L.P. Dynamic radio access network and intelligent service delivery for multi-carrier access for 5G or other next generation network
WO2020163407A1 (en) * 2019-02-04 2020-08-13 Parallel Wireless, Inc. Hybrid base station and rrh
US11240690B2 (en) 2019-05-24 2022-02-01 Parallel Wireless, Inc. Streaming media quality of experience prediction for network slice selection in 5G networks
CN110138874A (en) * 2019-05-24 2019-08-16 深圳昆腾信息科技有限公司 Cloud distributed base station transceiver network framework
FR3102331B1 (en) * 2019-10-17 2022-07-08 Thales Sa Communication system comprising an interconnect network and a plurality of radio sites interconnected via the interconnect network
CN111343243B (en) * 2020-02-13 2022-06-17 北京中电飞华通信有限公司 File acquisition method and system based on 5G power slice
CN113498076A (en) * 2020-03-20 2021-10-12 北京三星通信技术研究有限公司 O-RAN-based performance optimization configuration method and device
CN112333717B (en) * 2020-11-13 2022-08-30 国网安徽省电力有限公司信息通信分公司 5G access network slice resource allocation method and device considering power multi-service requirements
CN114727394A (en) * 2021-01-06 2022-07-08 大唐移动通信设备有限公司 Information transmission method and device and communication equipment
US11570066B1 (en) * 2021-07-07 2023-01-31 Cisco Technology, Inc. Slice intent efficiency assurance and enhancement in enterprise private 5G network
TWI821926B (en) * 2022-03-02 2023-11-11 陳立新 Method of automately processing cross communication type for multipoint connections with single account
CN115883789B (en) * 2022-11-30 2023-12-01 中国铁道科学研究院集团有限公司 System for monitoring railway infrastructure and protecting information safety based on 5G

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120155264A1 (en) * 2010-12-21 2012-06-21 Puneet Sharma Dynamic Balancing Priority Queue Assignments for Quality-of-Service Network Flows
WO2012108928A1 (en) * 2011-02-07 2012-08-16 Intel Corporation Wireless communication system with common cell id
US20140031049A1 (en) * 2012-07-26 2014-01-30 Nec Laboratories America, Inc. Cloud-based Radio Access Network for Small Cells
US20140233479A1 (en) * 2013-02-21 2014-08-21 Altiostar Networks, Inc. Systems and methods for scheduling of data packets based on application detection in a base station
WO2015021248A1 (en) * 2013-08-09 2015-02-12 Nec Laboratories America, Inc. Hybrid network management
WO2015044871A1 (en) * 2013-09-24 2015-04-02 Andrew Wireless Systems Gmbh Distributed processing in a centralized radio access network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8817733B2 (en) * 2012-08-16 2014-08-26 Intel Corporation Mobile proxy for cloud radio access network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120155264A1 (en) * 2010-12-21 2012-06-21 Puneet Sharma Dynamic Balancing Priority Queue Assignments for Quality-of-Service Network Flows
WO2012108928A1 (en) * 2011-02-07 2012-08-16 Intel Corporation Wireless communication system with common cell id
US20140031049A1 (en) * 2012-07-26 2014-01-30 Nec Laboratories America, Inc. Cloud-based Radio Access Network for Small Cells
US20140233479A1 (en) * 2013-02-21 2014-08-21 Altiostar Networks, Inc. Systems and methods for scheduling of data packets based on application detection in a base station
WO2015021248A1 (en) * 2013-08-09 2015-02-12 Nec Laboratories America, Inc. Hybrid network management
WO2015044871A1 (en) * 2013-09-24 2015-04-02 Andrew Wireless Systems Gmbh Distributed processing in a centralized radio access network

Also Published As

Publication number Publication date
TW201717686A (en) 2017-05-16
WO2017078770A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
TWI815789B (en) Ran re-architecture for network slicing
TWI721085B (en) Slicing architecture for wireless communication
CN108141412B (en) Slice-based operation in a wireless network with end-to-end network slices
TWI737626B (en) Sliceable radio access network architecture for wireless communications
TWI745297B (en) Air interface slicing architecture for wireless communication systems
US11039466B2 (en) User equipment (UE), evolved node-B (ENB) and methods for multiplexing new radio (NR) physical uplink shared channel (NR PUSCH) and NR physical uplink control channel (NR PUCCH)
US11291080B2 (en) Link quality reporting enhancements for new radio
CN107079513B (en) Apparatus configured for reporting aperiodic channel state information of dual connectivity
US20230328827A1 (en) Slicing of Network Resources for Dual Connectivity using NR
EP3143817B1 (en) Apparatus and method for resource allocation for device-to-device communications
CN107852635B (en) Multi-user based separation for multi-RAT aggregation
TWI707603B (en) EVOLVED NODE-B (eNB), RADIO ACCESS NETWORK (RAN) CENTRAL UNIT (RCU) AND METHODS FOR RADIO RESOURCE CONTROL (RRC)
JP6916378B2 (en) Transmission profile for NR
US20210022007A1 (en) Criteria Based Method for Cell Channel Allocation Based on Authorization from an External System
EP3453131B1 (en) User equipment (ue) and methods for reception of packets on a split radio bearer
WO2018031069A1 (en) Hierarchical media access control (mac) control structure in intra mac fronthauling split
US20210144061A1 (en) Decomposition and Distribution of Network Functions for Deployment Flexibility
US20220104179A1 (en) Methods providing resource coordination information between ran nodes for sidelink communications and related network nodes
US11019617B1 (en) Narrow band internet of things deployment modes
WO2017171898A1 (en) User equipment (ue), evolved node-b (enb) and methods for suspension and resumption of communication links of a radio bearer
US20220322366A1 (en) Radio Resource Allocation for Multi-User MIMO
TWI794144B (en) Horizontal network slicing in a wireless network
CN115276927A (en) Communication method, device and system
WO2017171921A1 (en) Staggering unattended traffic in lte after barring