TWI815382B - Method of generating holographic images - Google Patents

Method of generating holographic images Download PDF

Info

Publication number
TWI815382B
TWI815382B TW111112244A TW111112244A TWI815382B TW I815382 B TWI815382 B TW I815382B TW 111112244 A TW111112244 A TW 111112244A TW 111112244 A TW111112244 A TW 111112244A TW I815382 B TWI815382 B TW I815382B
Authority
TW
Taiwan
Prior art keywords
distribution
phase
plane
target image
input
Prior art date
Application number
TW111112244A
Other languages
Chinese (zh)
Other versions
TW202338735A (en
Inventor
陳建宇
Original Assignee
國立臺灣科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣科技大學 filed Critical 國立臺灣科技大學
Priority to TW111112244A priority Critical patent/TWI815382B/en
Application granted granted Critical
Publication of TWI815382B publication Critical patent/TWI815382B/en
Publication of TW202338735A publication Critical patent/TW202338735A/en

Links

Landscapes

  • Holo Graphy (AREA)

Abstract

The present invention provides a method for generating holographic images. The method includes the following steps. A controller generates multiple phase distributions corresponding to multiple target images. The controller superimposes the multiple phase distributions to obtain a phase-only mask. The phase-only mask is input to a spatial light modulator, so that the spatial light modulator represents the phase-only mask. An illuminating beam is generated by a light source to enter the spatial light modulator, and the spatial light modulator converts the illuminating beam into an image beam to generate a plurality of virtual images corresponding to the plurality of target images, wherein the plurality of virtual images Located in different locations in space.

Description

產生全像影像的方法Methods of producing holographic images

本發明是有關於一種光學成像方法,特別是一種產生全像影像的方法。The present invention relates to an optical imaging method, in particular to a method of generating a holographic image.

能產生真實立體影像的電腦產生全像術(computer-generated holography,CGH)已經廣泛應用於許多領域,包括應用於可穿戴裝置,或各種全像顯示器。一般而言,若要同時重建多個不同深度,不同位置,或不同傾斜角度的目標影像,需要同時具有多個成像系統來產生對應的目標影像,造成系統體積過於龐大且增加系統製造成本。此外,受限於成像系統組裝時的公差,以及成像系統的硬體與光學元件的限制,一般的成像系統無法對所產生的影像進行修正。Computer-generated holography (CGH), which can produce true three-dimensional images, has been widely used in many fields, including in wearable devices or various holographic displays. Generally speaking, if you want to simultaneously reconstruct multiple target images with different depths, different positions, or different tilt angles, you need to have multiple imaging systems at the same time to generate corresponding target images, resulting in a system that is too bulky and increases system manufacturing costs. In addition, limited by the tolerances during the assembly of the imaging system, as well as the limitations of the hardware and optical components of the imaging system, general imaging systems cannot correct the generated images.

本發明提供一種產生全像影像的方法,以在不同位置產生多個目標影像。The present invention provides a method for generating a holographic image to generate multiple target images at different locations.

本發明的一實施例提供一種產生全像影像的方法。所述方法包括:以一控制器產生對應多個目標影像的多個相位分佈;以所述控制器將所述多個相位分佈疊加以得到一唯相遮罩;將所述唯相遮罩輸入一空間光調變器,以使所述空間光調變器表現所述唯相遮罩;以一光源產生一照明光束入射所述空間光調變器,所述空間光調變器將所述照明光束轉換成影像光束,用以產生對應所述多個目標影像的多個虛像,其中所述多個虛像位於空間中不同位置。An embodiment of the present invention provides a method for generating a holographic image. The method includes: using a controller to generate multiple phase distributions corresponding to multiple target images; using the controller to superimpose the multiple phase distributions to obtain a phase-only mask; and inputting the phase-only mask. A spatial light modulator, so that the spatial light modulator expresses the phase-only mask; a light source is used to generate an illumination beam that is incident on the spatial light modulator, and the spatial light modulator converts the The illumination beam is converted into an image beam to generate multiple virtual images corresponding to the multiple target images, where the multiple virtual images are located at different locations in space.

基於上述,本發明可以產生單張帶有不同深度與不同傾斜角度的唯相遮罩,以重建多個位於不同深度,不同傾斜角度,與不同偏移距離的目標影像。Based on the above, the present invention can generate a single phase-only mask with different depths and different tilt angles to reconstruct multiple target images located at different depths, different tilt angles, and different offset distances.

圖1是依照本發明的實施例的一種光學系統的示意圖。光學系統10用以將照明光束L轉換成影像光束IB,以形成多個虛像V1、V2。光學系統10包括光源100、空間光調變器200、控制器300、以及分光鏡400。FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention. The optical system 10 is used to convert the illumination beam L into the image beam IB to form a plurality of virtual images V1 and V2. The optical system 10 includes a light source 100, a spatial light modulator 200, a controller 300, and a beam splitter 400.

在本實施例中的光源100例如是雷射二極體(Laser Diode, LD)光源、發光二極體(Light Emitting Diode, LED)光源或其他合適的光源或其組合。光源100用於發出照明光束L。照明光束L可為紅光、綠光、藍光或其他色光光束或其組合。The light source 100 in this embodiment is, for example, a laser diode (LD) light source, a light emitting diode (Light Emitting Diode, LED) light source, or other suitable light sources or combinations thereof. The light source 100 is used to emit the illumination beam L. The illumination beam L may be red light, green light, blue light or other colored light beams or a combination thereof.

空間光調變器200設置在照明光束L的傳遞路徑上。空間光調變器200例如是數位微鏡元件(Digital Micro-mirror Device, DMD)、矽基液晶面板(Liquid-crystal-on-silicon Panel, LCOS Panel)等任何適於重建全息影像的光學元件。The spatial light modulator 200 is disposed on the transmission path of the illumination beam L. The spatial light modulator 200 is, for example, a digital micro-mirror device (DMD), a silicon-based liquid crystal panel (liquid-crystal-on-silicon panel, LCOS panel), or any other optical element suitable for reconstructing a holographic image.

控制器300例如是包括微控制器單元(Microcontroller Unit,MCU)、中央處理單元(central processing unit,CPU)、微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP)、可程式化控制器、可程式化邏輯裝置(programmable logic device,PLD)或其他類似裝置或這些裝置的組合,本發明並不加以限制。此外,在一實施例中,控制器300的各功能可被實作為多個程式碼。這些程式碼會被儲存在一個記憶體中,由控制器300來執行這些程式碼。或者,在一實施例中,控制器300的各功能可被實作為一或多個電路。本發明並不限制用軟體或硬體的方式來實作控制器300的各功能。The controller 300 includes, for example, a microcontroller unit (MCU), a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a programmable The present invention is not limited to a controller, a programmable logic device (PLD) or other similar devices or a combination of these devices. In addition, in one embodiment, each function of the controller 300 may be implemented as multiple program codes. These program codes will be stored in a memory, and the controller 300 will execute these program codes. Alternatively, in one embodiment, each function of the controller 300 may be implemented as one or more circuits. The present invention is not limited to using software or hardware to implement each function of the controller 300 .

光學系統10的產生全像影像的方法如下。以控制器300產生對應多個目標影像的多個相位分佈。以控制器300將多個相位分佈疊加以得到一唯相遮罩(phase-only mask)。接著將唯相遮罩輸入空間光調變器200,以使空間光調變器200表現唯相遮罩。以光源100產生照明光束L入射分光鏡400,使照明光束入射空間光調變器200,以將照明光束L形成影像光束IB,用以產生對應多個目標影像的虛像V1、V2。如圖1所示,虛像V1、V2位於空間中不同位置。藉由控制器300產生的唯相遮罩,光學系統10可以同時產生多個不同的虛像。The method of generating a holographic image by the optical system 10 is as follows. The controller 300 is used to generate multiple phase distributions corresponding to multiple target images. The controller 300 is used to superimpose multiple phase distributions to obtain a phase-only mask. Then, the phase-only mask is input to the spatial light modulator 200, so that the spatial light modulator 200 represents the phase-only mask. The illumination beam L generated by the light source 100 is incident on the beam splitter 400, and the illumination beam is incident on the spatial light modulator 200, so that the illumination beam L is formed into an image beam IB to generate virtual images V1 and V2 corresponding to multiple target images. As shown in Figure 1, virtual images V1 and V2 are located at different locations in space. Through the phase-only mask generated by the controller 300, the optical system 10 can generate multiple different virtual images simultaneously.

以下說明控制器300產生對應多個目標影像的多個相位分佈。The following describes how the controller 300 generates multiple phase distributions corresponding to multiple target images.

圖2是依照本發明的實施例的光學架構圖。在輸入平面上具有唯相遮罩,帶有不同的相位分佈。當波長為λ的照明光束入射輸入平面(x 0, y 0, 0)的唯相遮罩時,藉由菲涅耳轉換(Fresnel transform),會在與參考平面(x, y, 0)平行的輸出平面(x, y, z i)上得到對應唯相遮罩的相位分佈的目標影像。例如藉由菲涅耳轉換,可以得到輸入平面一點 的相位對輸出平面上的一點 的貢獻。 Figure 2 is an optical architecture diagram according to an embodiment of the present invention. Have phase-only masks on the input plane, with different phase distributions. When the illumination beam with wavelength λ is incident on the phase-only mask of the input plane (x 0 , y 0 , 0), it will be parallel to the reference plane (x, y, 0) through Fresnel transform The target image corresponding to the phase distribution of the phase-only mask is obtained on the output plane (x, y, z i ). For example, through Fresnel transformation, one point on the input plane can be obtained The phase of the point on the output plane contribution.

1. 菲涅耳轉換1. Fresnel conversion

以下對菲涅耳轉換進行介紹。Fresnel conversion is introduced below.

假設有一三維物件具有沿z方向排列,位於z=z i處的多個目標影像 ,總個數為N,其中i=1~N。每個目標影像 可以以式(1)表示: (1), Suppose there is a three-dimensional object with multiple target images arranged along the z direction and located at z=z i , the total number is N, where i=1~N. each target image It can be expressed as formula (1): (1),

其中 為目標影像 在z=z i的輸出平面的振幅分佈, 為目標影像 在z=z i的輸出平面上的相位分佈。 in as the target image Amplitude distribution in the output plane of z=z i , as the target image Phase distribution on the output plane of z=z i .

而在輸入平面上,具有分別對應多個目標影像 的多個原始場訊號 ,總個數為N,其中i=1~N。每個原始場訊號 可以以下列式(2)表示: (2), On the input plane, there are multiple target images corresponding to multiple original field signals , the total number is N, where i=1~N. Each original field signal It can be expressed as the following formula (2): (2),

其中原始場訊號 的所有位置的強度分佈均為常數1,代表原始場訊號僅記錄相位,其中 為原始場訊號 在z=0的輸入平面上的相位分佈。 The original field signal The intensity distribution at all positions is constant 1, which means that the original field signal only records the phase, where is the original field signal Phase distribution on the input plane at z=0.

當入射光入射輸入平面時,藉由菲涅耳轉換,可以使原始場訊號 在z=z 0處產生對應的目標影像 ,如式(3)所示: When the incident light hits the input plane, the original field signal can be transformed into Generate the corresponding target image at z=z 0 , as shown in equation (3):

其中, 的菲涅耳轉換是以式(4)進行計算: in, The Fresnel transformation is calculated according to Equation (4):

最後,對所有的目標影像 進行疊加,便可得到完整的總目標影像 ,如式(5)所示: Finally, for all target images By superimposing, you can get a complete total target image. , as shown in equation (5):

另一方面,定義輸入平面上的總相位分佈 ,以使總相位分佈 經菲涅耳轉換之後,可以得到總目標影像 ,如式(6)所示: 比較式(5)與式(6),可得式(7): On the other hand, defining the total phase distribution on the input plane , so that the total phase distribution After Fresnel conversion, the total target image can be obtained , as shown in equation (6): Comparing formula (5) and formula (6), we can get formula (7):

由式(7)可知輸入平面上的總相位分佈為個目標影像所對應的輸入相位的總和。因此當入射光入射帶有總相位分佈的輸入平面時,便可同時生成所有目標影像。It can be seen from equation (7) that the total phase distribution on the input plane is the sum of the input phases corresponding to each target image. Therefore, when incident light strikes an input plane with a total phase distribution, all target images are generated simultaneously.

以上為菲涅耳轉換的基本原理。The above is the basic principle of Fresnel conversion.

2. 以遞迴演算法計算原始場訊號的相位分佈2. Calculate the phase distribution of the original field signal using a recursive algorithm

為了求得在輸入平面上對應位於z=z i處的目標影像 的原始場訊號 ,或是原始場訊號 的相位分佈 ,以使入射光與相位分佈 結合後,可以在位於z=z i產生近似於目標影像 的近似目標影像 ,本發明利用下述的遞迴演算法來求得位於輸入平面的相位分佈。 In order to obtain the target image corresponding to z=z i on the input plane original field signal , or the original field signal The phase distribution of , so that the incident light has a phase distribution After combination, an image similar to the target image can be produced at z=z i approximate target image , the present invention uses the following recursive algorithm to obtain the phase distribution located on the input plane.

以下說明如何以遞迴演算法來找出對應位於z=z i處的目標影像 的原始場訊號 的相位分佈 The following explains how to use a recursive algorithm to find the target image corresponding to z=z i original field signal The phase distribution of .

圖3是根據本發明的實施例的遞迴演算法的流程圖。Figure 3 is a flowchart of a recursive algorithm according to an embodiment of the present invention.

步驟1:於輸入平面產生一初始相位分佈與一初始振幅作為第一相位分佈 與第一振幅分佈 。初始相位分佈為隨機分佈相位 。初始振幅分佈 的振幅為單位強度1,即第一振幅分佈為均勻強度分佈。將第一振幅分佈 與第一相位分佈 相乘後得到輸入場訊號 Step 1: Generate an initial phase distribution and an initial amplitude on the input plane as the first phase distribution with the first amplitude distribution . The initial phase distribution is a randomly distributed phase . initial amplitude distribution The amplitude of is unit intensity 1, that is, the first amplitude distribution is a uniform intensity distribution. Distribute the first amplitude with the first phase distribution After multiplication, the input field signal is obtained or .

步驟2:將輸入場訊號,即第一振幅分佈 與第一相位分佈 相乘後的乘積,以式(4)進行菲涅耳轉換,以得到在z=z i處的輸出平面上的近似目標影像 ,如式(8)所示: 其中近似目標影像 的振幅分佈為 ,相位分佈 。將近似目標影像 的振幅分佈 作為第二振幅分佈 ,近似目標影像 的相位分佈 作為第二相位分佈 Step 2: Input field signal, i.e. first amplitude distribution with the first phase distribution The multiplied product is Fresnel transformed using equation (4) to obtain the approximate target image on the output plane at z=z i , as shown in equation (8): Among them, the approximate target image The amplitude distribution of , phase distribution . will approximate the target image The amplitude distribution of As the second amplitude distribution , approximate target image The phase distribution of As the second phase distribution .

步驟3:計算近似目標影像 的振幅分佈 (即第二振幅分佈)與目標影像 的振幅分佈 的相關係數(correlation coefficient),ρ,如式(9)所示: 其中f 1與f 2分別為近似目標影像 的振幅分佈 與目標影像 的振幅分佈 分別為f 1與f 2的標準差。 Step 3: Calculate approximate target image The amplitude distribution of (i.e. the second amplitude distribution) and the target image The amplitude distribution of The correlation coefficient (correlation coefficient), ρ, is shown in equation (9): where f 1 and f 2 are approximate target images respectively. The amplitude distribution of with target image The amplitude distribution of , and are the standard deviations of f 1 and f 2 respectively.

步驟4:若近似目標影像 的振幅分佈 與目標影像 的振幅分佈 的相關係數ρ大於等於一閥值(例如0.9,但本發明並不以此為限),則以第一相位分佈 作為原始場訊號 的相位分佈 ,並結束演算法,如式(10)所示: (10)。 Step 4: If the target image is approximated The amplitude distribution of with target image The amplitude distribution of The correlation coefficient ρ is greater than or equal to a threshold value (for example, 0.9, but the present invention is not limited to this), then the first phase distribution as original field signal The phase distribution of , and end the algorithm, as shown in equation (10): (10).

步驟5:若近似目標影像 的振幅分佈 與目標影像 的振幅分佈 的相關係數ρ小於閥值(例如0.9,但本發明並不以此為限),則將目標影像的振幅分佈 作為第三振幅分佈 ,第二相位分佈 作為第三相位分佈 ,將第三振幅 與第三相位 相乘後作逆菲涅耳轉換,即 ,以得到位於輸入平面的第四振幅分佈 與第四相位分佈 Step 5: If the target image is approximated The amplitude distribution of with target image The amplitude distribution of The correlation coefficient ρ is less than the threshold (for example, 0.9, but the present invention is not limited to this), then the amplitude distribution of the target image As the third amplitude distribution , the second phase distribution As the third phase distribution , convert the third amplitude with third phase After multiplication, the inverse Fresnel transformation is performed, that is, , to obtain the fourth amplitude distribution located in the input plane and the fourth phase distribution .

步驟6:將第四相位分佈 作為新的第一相位分佈 ,並且設定第一振幅分佈 的大小為單位強度,並重複步驟2至步驟6,直到近似目標影像 的振幅分佈 與目標影像 的振幅分佈 的相關係數ρ大於等於0.9時,以第一相位分佈 作為原始場訊號 的相位分佈 ,或是重複步驟2至步驟6至預設次數後,以第一相位分佈 作為原始場訊號 的相位分佈 Step 6: Distribute the fourth phase As the new first phase distribution , and set the first amplitude distribution The size is unit intensity, and repeat steps 2 to 6 until the target image is approximated The amplitude distribution of with target image The amplitude distribution of When the correlation coefficient ρ is greater than or equal to 0.9, the first phase distribution as original field signal The phase distribution of , or after repeating steps 2 to 6 for the preset number of times, use the first phase distribution as original field signal The phase distribution of .

根據前述遞迴演算法,可以依序求得對應各目標影像 的原始場訊號 的相位分佈 According to the aforementioned recursive algorithm, the corresponding target images can be obtained in sequence original field signal The phase distribution of .

將對應各目標影像 的原始場訊號 的相位分佈 疊加,以得到最後的總相位分佈 ,如式(11)所示: will correspond to each target image original field signal The phase distribution of superimposed to obtain the final total phase distribution , as shown in equation (11):

根據上述步驟所得到的總相位分布 又稱為唯相遮罩(phase-only mask, POM),藉由控制器使空間光調變器在輸入平面位置產生對應唯相遮罩的相位分布,則當入射光照射空間光調變器時,於輸出平面處產生對應目標影像的虛像,以達到投影的效果。 The total phase distribution obtained according to the above steps Also known as phase-only mask (POM), the controller causes the spatial light modulator to generate a phase distribution corresponding to the phase-only mask at the input plane position. When the incident light illuminates the spatial light modulator, When , a virtual image corresponding to the target image is generated at the output plane to achieve the projection effect.

3. 角度多工3. Angle multi-tasking

上文中所提到的遞迴演算法適用於輸出平面與輸入平面相互平行時的情形,也就是輸入平面上的原始場訊號 與輸入平面上的輸出平面上的目標影像 相互平行,因此原始場訊號 經過菲涅耳轉換後,得到輸出平面上的目標影像 The recursive algorithm mentioned above is applicable when the output plane and the input plane are parallel to each other, that is, the original field signal on the input plane and the target image on the output plane on the input plane parallel to each other, so the original field signal After Fresnel transformation, the target image on the output plane is obtained. .

當輸入平面上的原始場訊號 與輸出平面上的目標影像 不相互平行時,相當於以不同視角觀看位於輸出平面處的目標影像。這時需對應修改菲涅耳轉換公式,即式(4),以使原始場訊號 經菲涅耳轉換後,可以輸出與原始場訊號 不平行的目標影像 When the original field signal on the input plane and the target image on the output plane When they are not parallel to each other, it is equivalent to viewing the target image located on the output plane from different viewing angles. At this time, the Fresnel conversion formula needs to be modified accordingly, that is, equation (4), so that the original field signal After Fresnel conversion, the output can be the same as the original field signal. Non-parallel target images .

3.1 單一軸向旋轉3.1 Single axis rotation

以下以繞x軸旋轉一角度的投影平面為例,說明當投影平面不與輸入平面平行時,如何計算輸入平面上的相位訊號。The following takes a projection plane rotated by an angle around the x-axis as an example to illustrate how to calculate the phase signal on the input plane when the projection plane is not parallel to the input plane.

圖4是根據本發明的實施例的傾斜輸出平面的菲涅耳轉換的光學架構圖。輸入平面,參考平面,與輸出平面的菲涅爾繞射的幾何空間關係如圖4所示。4 is an optical architecture diagram of Fresnel transformation of a tilted output plane according to an embodiment of the present invention. The geometric spatial relationship between the input plane, the reference plane, and the Fresnel diffraction of the output plane is shown in Figure 4.

在圖4中,輸入平面為位於z=0的xy平面。參考平面為位於z=z 0處的xy平面。輸出平面為中心在z=z 0處,沿x軸方向旋轉𝜃 𝑥後的參考平面。也就是說,參考平面在z=z 0處沿x軸方向旋轉𝜃 𝑥後,可以得到輸出平面。 In Figure 4, the input plane is the xy plane located at z=0. The reference plane is the xy plane located at z=z 0 . The output plane is the reference plane centered at z=z 0 and rotated by 𝜃 igh along the x-axis direction. That is to say, after the reference plane is rotated by 𝜃 igh along the x-axis direction at z=z 0 , the output plane can be obtained.

輸入平面上的原始場訊號 經過菲涅耳轉換後可以得到位於傾斜的輸出平面上的目標影像 Original field signal on the input plane After Fresnel transformation, the target image located on the tilted output plane can be obtained. .

傾斜的輸出平面上的一點 對應到輸入平面一點 之距離 ,如式(12)所示: A point on the tilted output plane Corresponds to a point on the input plane distance , as shown in equation (12):

其中, 代表輸出平面繞 x軸旋轉的角度, 為傾斜的輸入平面旋轉中心點到輸出平面中心的距離。 in, Represents the angle of rotation of the output plane around the x- axis, The distance from the rotation center point to the center of the output plane for a tilted input plane.

因此透過式(12),可以得到輸入平面上各點 與傾斜的輸出平面上各點 的距離關係。 Therefore, through equation (12), we can get the points on the input plane points on the output plane with an inclination distance relationship.

為了使在輸入平面上原始場訊號 可以經菲涅耳轉換產生位於傾斜的輸出平面上的目標影像 ,將遞迴演算法中的式(8)的菲涅耳轉換所使用的式(4)以式(13)取代,讓在輸入平面上的原始場訊號 經過菲涅耳轉換後可以得到位於傾斜的輸出平面上的目標影像 In order to make the original field signal on the input plane Can be Fresnel transformed to produce a target image located on an inclined output plane , replace equation (4) used in the Fresnel transformation of equation (8) in the recursive algorithm with equation (13), so that the original field signal on the input plane After Fresnel transformation, the target image located on the tilted output plane can be obtained. .

對應輸出平面對x軸旋轉𝜃 x,菲涅耳轉換中的式(4)修改如式(13)所示: Corresponding to the rotation of the output plane 𝜃 x about the x-axis, the modification of equation (4) in Fresnel transformation is as shown in equation (13):

其中,𝜆為波長,z­ 0為傾斜的輸入平面旋轉中心點到輸出平面中心的距離。 Among them, 𝜆 is the wavelength, and z 0 is the distance from the rotation center point of the tilted input plane to the center of the output plane.

在一些實施例中,在z=z 0處可具有 N張目標影像 i=1 ~N,每張影像對應到不同的傾斜角度 ,經由前述的遞迴演算法與式(13),可以在輸入平面分別得到對應每個目標影像 的相位信號 ,將式(13)簡化成式(14): In some embodiments, there may be N target images at z = z 0 , i= 1 ~N , each image corresponds to a different tilt angle , through the aforementioned recursive algorithm and equation (13), the corresponding target image can be obtained on the input plane. phase signal , simplifying equation (13) into equation (14):

其中 ,i=1~𝑁做菲涅耳轉換後的個別相位分布。將個別相位分佈整合在單一張相位分布(Phase-only mask, POM),如式(15)所示: in for , i=1~𝑁 is the individual phase distribution after Fresnel transformation. Integrate individual phase distributions into a single phase distribution (Phase-only mask, POM), as shown in equation (15):

因此,當目標影像的輸出平面與輸入平面的夾角差異為繞x軸旋轉時,可以用式(13)來進行計算菲涅耳轉換,以得到正確的輸入相位分布。Therefore, when the angle difference between the output plane and the input plane of the target image is rotation around the x-axis, the Fresnel transformation can be calculated using Equation (13) to obtain the correct input phase distribution.

例如,圖5是根據本發明的實施例的重建多個不同傾斜角度的目標影像的示意圖。在圖5中,具有9個不同傾斜角度 的目標影像 ,其中i=1-9。對應這些目標影像 ,在輸入平面產生唯相遮罩POM,以使波長為λ的入射光通過POM後可以重建所有的目標影像 For example, FIG. 5 is a schematic diagram of reconstructing multiple target images with different tilt angles according to an embodiment of the present invention. In Figure 5, with 9 different tilt angles target image , where i=1-9. Corresponding to these target images , generate a phase-only mask POM on the input plane, so that all target images can be reconstructed after the incident light with wavelength λ passes through the POM. .

3.2 二重軸向旋轉3.2 Double axial rotation

目標影像除了可以相對於輸入平面繞x軸旋轉,在一些情形中,目標影像也可以具有其他的傾斜角度,例如同時對x軸與y軸旋轉,以得到更多不同傾斜角度的輸出平面。這時輸出平面相對於參考平面的旋轉角度可以分解為分別對y軸與對x軸進行的Euler旋轉,也就是參考平面先對y軸進行旋轉θ y後,再對旋轉後的參考平面的x軸進行旋轉θ x,以得到具有特定傾斜角度的輸出平面。圖6是根據本發明的實施例的傾斜輸出平面的菲涅耳轉換的光學架構圖。輸入平面,參考平面,與輸出平面的菲涅爾繞射的幾何空間關係如圖6所示。 In addition to being rotated around the x-axis relative to the input plane, the target image can also have other tilt angles in some cases, such as rotating the x-axis and the y-axis simultaneously to obtain more output planes with different tilt angles. At this time, the rotation angle of the output plane relative to the reference plane can be decomposed into Euler rotations on the y-axis and the x-axis respectively. That is, the reference plane first rotates the y-axis θ y , and then rotates the x-axis of the rotated reference plane. A rotation θ x is performed to obtain an output plane with a specific tilt angle. 6 is an optical architecture diagram of Fresnel transformation of a tilted output plane according to an embodiment of the present invention. The geometric spatial relationship between the input plane, the reference plane, and the Fresnel diffraction of the output plane is shown in Figure 6.

輸入平面上的原始場訊號 經過菲涅耳轉換後可以得到位於傾斜的輸出平面上的目標影像 Original field signal on the input plane After Fresnel transformation, the target image located on the tilted output plane can be obtained. .

傾斜的輸出平面上的一點 對應到輸入平面一點 之距離 ,如式(16)所示: A point on the tilted output plane Corresponds to a point on the input plane distance , as shown in equation (16):

其中, 代表輸出平面繞 x軸旋轉的角度, 代表輸出平面繞 y軸旋轉的角度, 為傾斜的輸入平面旋轉中心點到輸出平面中心的距離。為簡化符號, 可記為 in, Represents the angle of rotation of the output plane around the x- axis, Represents the angle of rotation of the output plane around the y- axis, The distance from the rotation center point to the center of the output plane for a tilted input plane. To simplify the notation, and can be recorded as .

因此透過式(16),可以得到輸入平面上各點 與傾斜的輸出平面上各點 的距離關係。 Therefore, through equation (16), we can get the points on the input plane points on the output plane with an inclination distance relationship.

為了使在輸入平面上原始場訊號 可以經菲涅耳轉換產生位於傾斜的輸出平面上的目標影像 ,將遞迴演算法中的式(8)的菲涅耳轉換所使用的式(4)以式(17)取代,讓在輸入平面上的原始場訊號 經過菲涅耳轉換後可以得到位於傾斜的輸出平面上的目標影像 In order to make the original field signal on the input plane Can be Fresnel transformed to produce a target image located on an inclined output plane , replace equation (4) used in the Fresnel transformation of equation (8) in the recursive algorithm with equation (17), so that the original field signal on the input plane After Fresnel transformation, the target image located on the tilted output plane can be obtained. .

對應輸出平面對x軸旋轉𝜃 x,對y軸旋轉𝜃 y,菲涅耳轉換中的式(4)修改如式(17)所示: Correspondingly, the output plane is rotated by 𝜃 x about the x-axis and rotated by 𝜃 y about the y-axis. The modification of equation (4) in Fresnel transformation is as shown in equation (17):

其中,𝜆為波長,z­ 0為傾斜的輸入平面旋轉中心點到輸出平面中心的距離。 Among them, 𝜆 is the wavelength, and z 0 is the distance from the rotation center point of the tilted input plane to the center of the output plane.

在一些實施例中,在z=z 0處可具有 N張目標影像 i=1 ~N,每張影像對應到不同的傾斜角度 (或),經由前述的遞迴演算法與式(17),可以在輸入平面分別得到對應每個目標影像 的相位信號 ,將公式(17)簡化成公式(18): In some embodiments, there may be N target images at z = z 0 , i= 1 ~N , each image corresponds to a different tilt angle and (or), through the aforementioned recursive algorithm and equation (17), the corresponding target image can be obtained on the input plane. phase signal , simplify formula (17) into formula (18):

其中 ,i=1~𝑁做菲涅耳轉換後的個別相位分布。將個別相位分部整合在單一張相位分布(Phase-only mask, POM),如式(19)所示: in for , i=1~𝑁 is the individual phase distribution after Fresnel transformation. Integrate individual phase components into a single phase distribution (Phase-only mask, POM), as shown in equation (19):

因此,當目標影像的輸出平面與輸入平面的夾角差異為繞x軸與繞y軸旋轉時,可以用式(19)來進行計算菲涅耳轉換,以得到正確的輸入相位分布。Therefore, when the angle difference between the output plane and the input plane of the target image is rotation around the x-axis and around the y-axis, equation (19) can be used to calculate the Fresnel transformation to obtain the correct input phase distribution.

例如,圖7是根據本發明的實施例的重建多個不同傾斜角度的目標影像的示意圖。在圖7中,具有9個不同傾斜角度 的目標影像 ,其中i=1-9。對應這些目標影像 ,在輸入平面產生唯相遮罩POM,以使波長為λ的入射光通過POM後可以重建所有的目標影像 For example, FIG. 7 is a schematic diagram of reconstructing multiple target images with different tilt angles according to an embodiment of the present invention. In Figure 7, with 9 different tilt angles target image , where i=1-9. Corresponding to these target images , generate a phase-only mask POM on the input plane, so that all target images can be reconstructed after the incident light with wavelength λ passes through the POM. .

4. 空間多工4. Space multiplexing

上文中所提到的遞迴演算法可以同時重建多個位於不同深度z=z i的目標影像 。但是如前文所述,所有目標影像 均位於z軸方向上,因此重建同光軸多深度影像會有前後影像相互遮擋的問題。 The recursive algorithm mentioned above can simultaneously reconstruct multiple target images located at different depths z=z i . But as mentioned earlier, all target images They are all located in the z-axis direction, so reconstructing multi-depth images on the same optical axis will cause the front and rear images to block each other.

圖8是根據本發明的實施例的多個虛像分別位於空間中的相同位置且不同深度的示意圖。虛像V1與虛像V2分別位於同光軸上,且位於不同的深度。因此由z方向看去,會產生兩者相互遮擋的問題。FIG. 8 is a schematic diagram of multiple virtual images located at the same position in space and at different depths according to an embodiment of the present invention. The virtual image V1 and the virtual image V2 are respectively located on the same optical axis and at different depths. Therefore, when viewed from the z direction, there will be a problem of mutual occlusion between the two.

因此,一個解決方法是讓每個目標影像 分別產生x軸與y軸方向的位移 ,使目標影像 平移為 ,以使位於不同深度z i的目標影像 得以產生x軸與y軸方向的位移 ,以避免產生相互遮擋的問題。 Therefore, one solution is to have each target image Produce displacements in the x-axis and y-axis directions respectively , so that the target image Translate to , so that target images located at different depths z i to produce displacements in the x-axis and y-axis directions , to avoid mutual occlusion problems.

計算輸入平面上對應位於z=z i處的目標影像 的原始場訊號 的方法如下。 Calculate the target image corresponding to z=z i on the input plane original field signal The method is as follows.

首先,利用前述的遞迴演算法,計算 , 時的目標影像 的原始場訊號 ,得到原始場訊號 的相位分佈 First, using the aforementioned recursive algorithm, calculate , target image at original field signal , get the original field signal The phase distribution of .

接著引入x軸方向的偏移量 與y軸方向的偏移量 ,以將相位分佈 調變為 ,使成像後的目標影像的中心位置由(0,0)可以在x軸與y軸方向位移至 Then introduce the offset in the x-axis direction Offset from y-axis direction , to divide the phase distribution Tune into , so that the center position of the imaged target image can be displaced from (0,0) in the x-axis and y-axis directions to .

將每一個調變後的相位分佈 疊加,以得到總相位分佈 The phase distribution after each modulation superimposed to obtain the total phase distribution

將總相位分佈 進行菲涅耳轉換,以得到N個近似目標影像 ,i=1~N。對近似目標影像 的振幅分佈與目標影像 的振幅分佈計算相關係數。若相關係數大於一閥值,則認為調變後的相位分佈可產生目標影像 。若相關係數小於一閥值,則重複上述步驟,直到相關係數大於一閥值,或重複次數超過一閥值。 The total phase distribution Perform Fresnel transformation to obtain N approximate target images ,i=1~N. Approximate target image Amplitude distribution and target image Calculate the correlation coefficient of the amplitude distribution. If the correlation coefficient is greater than a threshold, it is considered that the modulated phase distribution can produce the target image . If the correlation coefficient is less than a threshold, repeat the above steps until the correlation coefficient is greater than a threshold, or the number of repetitions exceeds a threshold.

藉由上述演算法,可以將目標影像 平移至 ,使位於同光軸上的目標影像 產生x軸與y軸方向的位移 以達到彼此分開的效果,不至在光軸上相互重疊。 Through the above algorithm, the target image can be Pan to , so that the target image located on the co-optical axis Produce displacement in the x-axis and y-axis directions In order to achieve the effect of being separated from each other, they will not overlap each other on the optical axis.

圖9是根據本發明的實施例的唯相遮罩的示意圖。圖10是根據本發明的實施例的多個虛像分別位於空間中的相同位置且不同深度的影像。Figure 9 is a schematic diagram of a phase-only mask according to an embodiment of the present invention. Figure 10 is an image of multiple virtual images located at the same position in space and at different depths according to an embodiment of the present invention.

請同時參考圖9與圖10。唯相遮罩POM為目標影像位經空間多工調變前的相位分佈。經入射光照射後,會產生多個虛像於空間中相互遮蔽的情形,造成無法清楚分辨個別影像。Please refer to both Figure 9 and Figure 10. The phase-only mask POM is the phase distribution of the target image bits before spatial multiplexing modulation. After being irradiated by incident light, multiple virtual images will block each other in space, making it impossible to clearly distinguish individual images.

圖11是根據本發明的實施例的多個虛像分別位於空間中的不同位置且不同深度的示意圖。圖12是根據本發明的實施例的多個虛像分別位於空間中的不同位置且不同深度的影像。FIG. 11 is a schematic diagram showing multiple virtual images located at different positions and at different depths in space according to an embodiment of the present invention. Figure 12 is an image of multiple virtual images located at different positions and different depths in space according to an embodiment of the present invention.

請同時參考圖11與圖12。經過空間多工調變後,虛像V1’與V2’分別對x軸與y軸位移了 ,使得所產生的虛像可以分開,利於辨識各個虛像。 Please refer to both Figure 11 and Figure 12. After spatial multiplexing, the virtual images V1' and V2' are displaced on the x-axis and y-axis respectively. and , so that the generated virtual images can be separated, which is convenient for identifying each virtual image.

此外,當應用於光學系統,例如雙光路抬頭顯示器時時,由於系統組裝時的公差,可能造成影像偏移或變形。藉由空間多工與角度多工,可以在不修改硬體的情形下,對影像進行修正,例如沿x軸或y軸方向平移,以得到更好的顯示效果。In addition, when applied to optical systems, such as dual-optical head-up displays, image deviation or deformation may occur due to tolerances during system assembly. Through spatial multiplexing and angle multiplexing, the image can be corrected without modifying the hardware, such as translation along the x-axis or y-axis, to obtain better display effects.

綜上所述,本發明可以重建出單張帶有不同深度與不同傾斜角度的唯相遮罩,可達到以單一顯示系統同時重建多深度投影的抬頭顯示器,可以有效進行系統微型化,並且能減少顯示單元數量,有效縮小系統體積並降低系統成本。To sum up, the present invention can reconstruct a single phase-only mask with different depths and different tilt angles, and can achieve the simultaneous reconstruction of multi-depth projection heads-up displays with a single display system. It can effectively miniaturize the system and can Reduce the number of display units, effectively shrink the system size and reduce system costs.

10:光學系統10:Optical system

100:光源100:Light source

200:空間光調變器200: Spatial light modulator

300:控制器300:Controller

400:分光鏡400: Beam splitter

:目標影像 , , :Target image

IB:影像光束IB: image beam

I0:目標影像振幅分佈I 0 : Target image amplitude distribution

I1:第一振幅分佈I 1 : first amplitude distribution

I2:第二振幅分佈I 2 : Second amplitude distribution

I3:第三振幅分佈I 3 : The third amplitude distribution

I4:第四振幅分佈I 4 : The fourth amplitude distribution

L:照明光束L: lighting beam

P、P’:點P, P’: point

POM:唯相遮罩POM: Phase Only Mask

rx、rxy:距離r x , r xy : distance

V1、V2、V1’、V2’:虛像V1, V2, V1’, V2’: virtual image

x0、x、y0、y、y’、z:座標軸x 0 , x, y 0 , y, y', z: coordinate axis

z0、z1、z2:距離z 0 , z 1 , z 2 : distance

μ1、ν1、μ2、ν2:位移μ 1 , ν 1 , μ 2 , ν 2 : displacement

λ:波長λ: wavelength

θx、θx1、θx2、θx3、θx4、θx5、θx6、θx7、θx8、θx9、θxy、θxy1、θxy2、θxy3、θxy4、θxy5、θxy6、θxy7、θxy8、θxy9:角度θ x , θ x1 , θ x2 , θ x3 , θ x4 , θ x5 , θ x6 , θ x7 , θ x8 , θ x9 , θ xy , θ xy1 , θ xy2 , θ xy3 , θ xy4 , θ xy5 , θ xy6 , θ xy7 , θ xy8 , θ xy9 : angle

Φ1:第一相位分佈Φ 1 : First phase distribution

Φ2:第二相位分佈Φ 2 : Second phase distribution

Φ3:第三相位分佈Φ 3 : Third phase distribution

Φ4:第四相位分佈Φ 4 : The fourth phase distribution

φi:相位分佈 φi : Phase distribution

圖1是依照本發明的實施例的一種光學系統的示意圖。 圖2是依照本發明的實施例的光學架構圖。 圖3是根據本發明的實施例的遞迴演算法的流程圖 圖4是根據本發明的實施例的傾斜輸出平面的菲涅耳轉換的光學架構圖。 圖5是根據本發明的實施例的重建多個不同傾斜角度的目標影像的示意圖。 圖6是根據本發明的實施例的另一種傾斜輸出平面的菲涅耳轉換的光學架構圖。 圖7是根據本發明的實施例的另一種重建多個不同傾斜角度的目標影像的示意圖。 圖8是根據本發明的實施例的多個虛像分別位於空間中的相同位置且不同深度的示意圖。 圖9是根據本發明的實施例的唯相遮罩的示意圖。 圖10是根據本發明的實施例的多個虛像分別位於空間中的相同位置且不同深度的影像。 圖11是根據本發明的實施例的多個虛像分別位於空間中的不同位置且不同深度的示意圖。 圖12是根據本發明的實施例的多個虛像分別位於空間中的不同位置且不同深度的影像。 FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention. Figure 2 is an optical architecture diagram according to an embodiment of the present invention. Figure 3 is a flow chart of a recursive algorithm according to an embodiment of the present invention. 4 is an optical architecture diagram of Fresnel transformation of a tilted output plane according to an embodiment of the present invention. FIG. 5 is a schematic diagram of reconstructing multiple target images with different tilt angles according to an embodiment of the present invention. FIG. 6 is an optical architecture diagram of another Fresnel transformation of a tilted output plane according to an embodiment of the present invention. FIG. 7 is a schematic diagram of another method of reconstructing multiple target images with different tilt angles according to an embodiment of the present invention. FIG. 8 is a schematic diagram of multiple virtual images located at the same position in space and at different depths according to an embodiment of the present invention. Figure 9 is a schematic diagram of a phase only mask according to an embodiment of the present invention. Figure 10 is an image of multiple virtual images located at the same position in space and at different depths according to an embodiment of the present invention. FIG. 11 is a schematic diagram of multiple virtual images located at different positions and different depths in space according to an embodiment of the present invention. Figure 12 is an image of multiple virtual images located at different positions and different depths in space according to an embodiment of the present invention.

I0:目標影像振幅分佈 I 0 : target image amplitude distribution

I1:第一振幅分佈 I 1 : first amplitude distribution

I2:第二振幅分佈 I 2 : Second amplitude distribution

I3:第三振幅分佈 I 3 : The third amplitude distribution

I4:第四振幅分佈 I 4 : The fourth amplitude distribution

Φ1:第一相位分佈 Φ 1 : First phase distribution

Φ2:第二相位分佈 Φ 2 : Second phase distribution

Φ3:第三相位分佈 Φ 3 : Third phase distribution

Φ4:第四相位分佈 Φ 4 : The fourth phase distribution

φi:原始場訊號的相位分佈 φ i : phase distribution of the original field signal

Claims (9)

一種產生全像影像的方法,包括:以一控制器分別對多個目標影像中的每一個產生對應的相位分佈;以所述控制器將所述多個相位分佈疊加以得到一唯相遮罩;將所述唯相遮罩輸入一空間光調變器,以使所述空間光調變器表現所述唯相遮罩;以一光源產生一照明光束入射所述空間光調變器,所述空間光調變器將所述照明光束轉換成影像光束,用以產生對應所述多個目標影像的多個虛像,其中所述多個虛像位於空間中不同位置。 A method for generating a holographic image, including: using a controller to generate a corresponding phase distribution for each of multiple target images; using the controller to superimpose the multiple phase distributions to obtain a phase-only mask ; Input the phase-only mask into a spatial light modulator, so that the spatial light modulator represents the phase-only mask; use a light source to generate an illumination beam that is incident on the spatial light modulator, so The spatial light modulator converts the illumination beam into an image beam to generate multiple virtual images corresponding to the multiple target images, wherein the multiple virtual images are located at different locations in space. 如請求項1所述的方法,其中,所述控制器以遞迴演算法分別對所述多個目標影像中的每一個產生所述對應的相位分佈,所述遞迴演算法包括:於輸入平面產生一初始相位分佈與一初始振幅作為第一相位分佈與第一振幅分佈,所述第一振幅分佈與所述第一相位分佈相乘後得到輸入場訊號;將所述輸入場訊號進行菲涅耳轉換以得到位於輸出平面上的近似目標影像,以所述近似目標影像的振幅分佈作為第二振幅分佈,以所述近似目標影像的相位分佈作為第二相位分佈;計算所述第二振幅分佈與所述目標影像的振幅分佈的相關係數; 若所述相關係數大於一閥值,則以所述第一相位分佈作為所述目標影像於輸入平面上的相位分佈並結束所述遞迴演算法;若所述相關係數小於所述閥值,以所述目標影像的所述振幅分佈作為第三振幅分佈,所述第二相位分佈作為第三相位分佈,將所述第三振幅分佈與所述第三相位分佈相乘後作逆菲涅耳轉換以得到位於所述輸入平面的第四振幅分佈與第四相位分佈;以所述第四相位分佈作為新的第一相位分佈,以所述初始振幅作為新的初始振幅,並重複所述遞迴演算法。 The method of claim 1, wherein the controller uses a recursive algorithm to generate the corresponding phase distribution for each of the plurality of target images, and the recursive algorithm includes: on the input The plane generates an initial phase distribution and an initial amplitude as the first phase distribution and the first amplitude distribution. The first amplitude distribution and the first phase distribution are multiplied to obtain an input field signal; the input field signal is processed Neel conversion is performed to obtain an approximate target image located on the output plane, using the amplitude distribution of the approximate target image as the second amplitude distribution, and using the phase distribution of the approximate target image as the second phase distribution; calculating the second amplitude The correlation coefficient between the distribution and the amplitude distribution of the target image; If the correlation coefficient is greater than a threshold, use the first phase distribution as the phase distribution of the target image on the input plane and end the recursive algorithm; if the correlation coefficient is less than the threshold, Taking the amplitude distribution of the target image as the third amplitude distribution and the second phase distribution as the third phase distribution, multiply the third amplitude distribution and the third phase distribution to obtain an inverse Fresnel Convert to obtain a fourth amplitude distribution and a fourth phase distribution located on the input plane; use the fourth phase distribution as a new first phase distribution, use the initial amplitude as a new initial amplitude, and repeat the iteration Backtracking algorithm. 如請求項2所述的方法,其中所述初始相位分佈為隨機分佈相位,所述初始振幅分佈的振幅為1。 The method of claim 2, wherein the initial phase distribution is a randomly distributed phase, and the amplitude of the initial amplitude distribution is 1. 如請求項2所述的方法,其中,當所述輸出平面與所述輸入平面平行時,對所述輸入場訊號進行所述菲涅耳轉換以得到位於所述輸出平面上的所述近似目標影像可表達為:
Figure 111112244-A0305-02-0024-1
其中g i (x 0 ,y 0;0)為所述輸入場訊號,G i (x,yz i )為所述近似目標影像,λ為波長,z0為輸入平面中心點到輸出平面中心點的距離。
The method of claim 2, wherein when the output plane is parallel to the input plane, the Fresnel transformation is performed on the input field signal to obtain the approximate target located on the output plane. The image can be expressed as:
Figure 111112244-A0305-02-0024-1
Where g i ( x 0 , y 0 ; 0) is the input field signal, G i ( x , y ; z i ) is the approximate target image, λ is the wavelength, z 0 is the input plane center point to the output plane distance from the center point.
如請求項2所述的方法,其中,當所述輸出平面與所述輸入平面不平行時,對所述輸入場訊號進行所述菲涅耳轉換以得到位於所述輸出平面上的所述近似目標影像可表達為:
Figure 111112244-A0305-02-0025-2
其中g(x 0 ,y 0)為所述輸入場訊號,G x (x',y')為所述近似目標影像,λ為波長,z0為傾斜的輸入平面旋轉中心點到輸出平面中心點的距離,θ x 為所述輸出平面繞x軸旋轉的角度,rx為所述輸入平面上點(x 0 ,y 0)與所述輸出平面上點(x',y')之間的距離。
The method of claim 2, wherein when the output plane is not parallel to the input plane, the Fresnel transformation is performed on the input field signal to obtain the approximation located on the output plane. The target image can be expressed as:
Figure 111112244-A0305-02-0025-2
Where g( x0 , y0 ) is the input field signal, Gx ( x',y' ) is the approximate target image, λ is the wavelength, z0 is the tilted input plane rotation center point to the output plane center The distance between points, θ x is the angle of rotation of the output plane around the x- axis, r distance.
如請求項2所述的方法,其中,當所述輸出平面與所述輸入平面不平行時,對所述輸入場訊號進行所述菲涅耳轉換以得到位於所述輸出平面上的所述近似目標影像可表達為:
Figure 111112244-A0305-02-0025-8
其中g(x 0 ,y 0)為所述輸入場訊號,G xy (x',y')為所述近似目標影像,λ為波長,z0為傾斜的輸入平面旋轉中心點到輸出平面中心點的距離,θ x 為所述輸出平面繞x軸旋轉的角度,θ y 為所述輸出平面繞y軸旋轉的角度,rxy為所述輸入平面上點(x 0 ,y 0)與所述輸出平面上點(x',y')之間的距離。
The method of claim 2, wherein when the output plane is not parallel to the input plane, the Fresnel transformation is performed on the input field signal to obtain the approximation located on the output plane. The target image can be expressed as:
Figure 111112244-A0305-02-0025-8
Where g( x0 , y0 ) is the input field signal, Gxy ( x',y' ) is the approximate target image, λ is the wavelength , z0 is the tilted input plane rotation center point to the output plane center The distance between points, θ x is the angle of rotation of the output plane around the x-axis, θ y is the angle of rotation of the output plane around the y- axis , r The distance between points ( x',y' ) on the output plane.
如請求項2所述的方法,其中當所述輸出平面與所述輸入平面平行時,對所述輸入場訊號進行調變以使位於所述輸出平面上的所述近似目標影像的中心位置由(0,0)位移至(μ,ν)。 The method of claim 2, wherein when the output plane is parallel to the input plane, the input field signal is modulated so that the center position of the approximate target image located on the output plane is (0,0) is shifted to (μ,ν). 如請求項2所述的方法,其中計算所述第二振幅分佈與所述目標影像的所述振幅分佈的相關係數ρ可表達為:
Figure 111112244-A0305-02-0026-5
其中f 1為所述第二振幅分佈,f 2為所述目標影像的所述振幅分佈,
Figure 111112244-A0305-02-0026-6
Figure 111112244-A0305-02-0026-7
分別為f1與f2的標準差。
The method of claim 2, wherein calculating the correlation coefficient ρ between the second amplitude distribution and the amplitude distribution of the target image can be expressed as:
Figure 111112244-A0305-02-0026-5
Where f 1 is the second amplitude distribution, f 2 is the amplitude distribution of the target image,
Figure 111112244-A0305-02-0026-6
and
Figure 111112244-A0305-02-0026-7
are the standard deviations of f 1 and f 2 respectively.
如請求項2所述的方法,其中所述閥值為0.9。 The method as described in request item 2, wherein the threshold is 0.9.
TW111112244A 2022-03-30 2022-03-30 Method of generating holographic images TWI815382B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111112244A TWI815382B (en) 2022-03-30 2022-03-30 Method of generating holographic images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111112244A TWI815382B (en) 2022-03-30 2022-03-30 Method of generating holographic images

Publications (2)

Publication Number Publication Date
TWI815382B true TWI815382B (en) 2023-09-11
TW202338735A TW202338735A (en) 2023-10-01

Family

ID=88965958

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111112244A TWI815382B (en) 2022-03-30 2022-03-30 Method of generating holographic images

Country Status (1)

Country Link
TW (1) TWI815382B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952034A (en) * 2014-03-27 2015-09-30 香港城市大学 Conversion of complex hologram to phases hologram
US20180203232A1 (en) * 2015-07-03 2018-07-19 Essilor International Methods and systems for augmented reality
CN108335364A (en) * 2018-01-23 2018-07-27 北京易智能科技有限公司 A kind of three-dimensional scenic display methods based on line holographic projections
US20200192288A1 (en) * 2015-05-21 2020-06-18 Real View Imaging Ltd. Producing a computer generated holographic image
CN111767562A (en) * 2020-07-08 2020-10-13 汪金玲 Three-dimensional image encryption method and system based on computer-generated hologram
US20210333546A1 (en) * 2012-12-21 2021-10-28 Envisics Ltd Holographic image projection with holographic correction
TW202209246A (en) * 2020-08-24 2022-03-01 英商杜阿里特斯有限公司 Image processing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210333546A1 (en) * 2012-12-21 2021-10-28 Envisics Ltd Holographic image projection with holographic correction
CN104952034A (en) * 2014-03-27 2015-09-30 香港城市大学 Conversion of complex hologram to phases hologram
US20200192288A1 (en) * 2015-05-21 2020-06-18 Real View Imaging Ltd. Producing a computer generated holographic image
US20180203232A1 (en) * 2015-07-03 2018-07-19 Essilor International Methods and systems for augmented reality
CN108335364A (en) * 2018-01-23 2018-07-27 北京易智能科技有限公司 A kind of three-dimensional scenic display methods based on line holographic projections
CN111767562A (en) * 2020-07-08 2020-10-13 汪金玲 Three-dimensional image encryption method and system based on computer-generated hologram
TW202209246A (en) * 2020-08-24 2022-03-01 英商杜阿里特斯有限公司 Image processing

Also Published As

Publication number Publication date
TW202338735A (en) 2023-10-01

Similar Documents

Publication Publication Date Title
He et al. Three-dimensional holographic communication system for the metaverse
Maimone et al. Holographic near-eye displays for virtual and augmented reality
CN108957746B (en) Near-to-eye device
Buckley 70.2: Invited paper: holographic laser projection technology
US11392089B2 (en) Multi-image display apparatus using holographic projection
CN106707680B (en) A kind of holographic projection methods based on light field
JP2002532771A (en) Computer-assisted three-dimensional image reproduction method and apparatus
TWI845862B (en) Reconstructing objects with display zero order light suppression
US9219905B1 (en) Systems and methodologies related to formatting data for 3-D viewing
JP2018517187A5 (en)
CN107479197B (en) Holographic near-eye display system
US7277209B1 (en) Computer-assisted holographic method and device
CN105158917B (en) Display and its transmittance/reflectance determine method and apparatus
CN108762033A (en) It imaging method and optical system and its storage medium, chip and combines
TWI815382B (en) Method of generating holographic images
JP4463567B2 (en) 3D image display device and 3D image display method
US9354606B1 (en) Systems and methodologies related to generating projectable data for 3-D viewing
Kondoh et al. Hidden surface removal in full‐parallax CGHs by silhouette approximation
Lee et al. See-through light field displays for augmented reality
TWI790969B (en) Projection device and method with liquid crystal on silicon panel
Hayashi et al. Improvement of camera arrangement in computer-generated holograms synthesized from multi-view images
Eybposh et al. Dynamic computer generated holography for virtual reality displays
CN115202174B (en) Holographic view acquisition method, system and application based on light field image
Munkelt et al. Continuous low-latency 3D measurements using efficient freeform GOBO pattern projection and close-to-sensor image rectification
JP6607491B2 (en) Hologram data generation device and program thereof