TWI814546B - Memory device and method of fabricating the same - Google Patents
Memory device and method of fabricating the same Download PDFInfo
- Publication number
- TWI814546B TWI814546B TW111131575A TW111131575A TWI814546B TW I814546 B TWI814546 B TW I814546B TW 111131575 A TW111131575 A TW 111131575A TW 111131575 A TW111131575 A TW 111131575A TW I814546 B TWI814546 B TW I814546B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- semiconductor layer
- source
- layers
- drain
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 238000002955 isolation Methods 0.000 claims abstract description 14
- 238000003860 storage Methods 0.000 claims abstract description 11
- 239000004065 semiconductor Substances 0.000 claims description 95
- 238000000034 method Methods 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 239000002019 doping agent Substances 0.000 claims description 11
- 125000006850 spacer group Chemical group 0.000 claims description 8
- 238000005496 tempering Methods 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 230000000903 blocking effect Effects 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 238000011065 in-situ storage Methods 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 222
- 230000004888 barrier function Effects 0.000 description 8
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 229910010271 silicon carbide Inorganic materials 0.000 description 5
- 239000004020 conductor Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000011232 storage material Substances 0.000 description 3
- 244000208734 Pisonia aculeata Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910015900 BF3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Landscapes
- Vehicle Body Suspensions (AREA)
- Electrotherapy Devices (AREA)
- Multi-Process Working Machines And Systems (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
本發明實施例是有關於一種半導體元件及其製造方法,且特別是有關於一種記憶體元件及其製造方法。 Embodiments of the present invention relate to a semiconductor element and a manufacturing method thereof, and in particular, to a memory element and a manufacturing method thereof.
非揮發性記憶體元件(如,快閃記憶體)由於具有使存入的資料在斷電後也不會消失的優點,因此成為個人電腦和其他電子設備所廣泛採用的一種記憶體元件。反或閘(NOR)快閃記憶體是目前業界較常使用的一種快閃記憶體陣列。為了進一步提升記憶體元件的積集度,而發展出一種三維NOR快閃記憶體。然而,三維NOR快閃記憶體在沉積堆疊的膜層時,容易因為高溫而造成源極與汲極層的摻質擴散,進而無法控制源極與汲極層的摻質濃度與阻值。 Non-volatile memory components (such as flash memory) have become a memory component widely used in personal computers and other electronic devices because they have the advantage that stored data will not disappear even after a power outage. NOR flash memory is a flash memory array that is commonly used in the industry. In order to further improve the integration of memory components, a three-dimensional NOR flash memory was developed. However, when depositing stacked film layers in a three-dimensional NOR flash memory, it is easy to cause dopant diffusion in the source and drain layers due to high temperatures, making it impossible to control the dopant concentration and resistance of the source and drain layers.
本發明實施例提出一種記憶體元件,包括:堆疊結構,設置於基底上方,其中所述堆疊結構包括相互交替的多個疊層與多個隔離層,且每一疊層包括:第一源極與汲極層;絕緣層,設 置於所述第一源極與汲極層上;第二源極與汲極層,設置於所述絕緣層上;以及通道層,設置於所述絕緣層的側壁,且所述通道層的下表面與所述第一源極與汲極層連接,所述通道層的上表面與所述第二源極與汲極層連接;閘極柱穿過所述堆疊結構;以及電荷儲存結構,設置於所述通道層與所述閘極柱之間。 An embodiment of the present invention provides a memory element, including: a stacked structure disposed above a substrate, wherein the stacked structure includes a plurality of alternating stacks and a plurality of isolation layers, and each stack includes: a first source and drain layer; insulation layer, set placed on the first source and drain layers; a second source and drain layer disposed on the insulating layer; and a channel layer disposed on the sidewalls of the insulating layer, and the channel layer The lower surface is connected to the first source and drain layers, the upper surface of the channel layer is connected to the second source and drain layers; the gate pillar passes through the stacked structure; and the charge storage structure, Disposed between the channel layer and the gate pillar.
本發明實施例提出一種記憶體元件的製造方法,包括在基底上方形成堆疊結構,其中所述堆疊結構包括相互交替的多個疊層與多個隔離層,且每一疊層包括依序堆疊的第一半導體層、絕緣層與第二半導體層;圖案化所述堆疊結構,以形成第一開口;移除所述第一開口的側壁暴露的部分的所述第一半導體層與部分的所述第二半導體層,以分別形成第一凹槽與第二凹槽;在所述第一凹槽與所述第二凹槽中各自分別形成第三半導體層與第四半導體層,其中所述第三半導體層與所述第四半導體層的摻雜濃度大於所述第一半導體層與所述第二半導體層的摻雜濃度;進行回火製程,以使所述所述第三半導體層與所述第四半導體層的摻質驅入所述第一半導體層與所述第二半導體層中,以形成第一源極與汲極層與第二源極與汲極層;移除所述第一開口的所述側壁暴露的部分的所述絕緣層,以形成第三凹槽;於第三凹槽中形成通道層;在所述第一開口中形成絕緣填充層;在所述絕緣填充層中形成第二開口;以及在所述第二開口中形成電荷儲存結構與閘極柱。 An embodiment of the present invention provides a method for manufacturing a memory element, including forming a stacked structure above a substrate, wherein the stacked structure includes a plurality of alternating stacked layers and a plurality of isolation layers, and each stacked layer includes sequentially stacked A first semiconductor layer, an insulating layer and a second semiconductor layer; patterning the stacked structure to form a first opening; removing the exposed portion of the first semiconductor layer and the portion of the sidewall of the first opening. a second semiconductor layer to form a first groove and a second groove respectively; a third semiconductor layer and a fourth semiconductor layer are respectively formed in the first groove and the second groove, wherein the third semiconductor layer The doping concentration of the third semiconductor layer and the fourth semiconductor layer is greater than the doping concentration of the first semiconductor layer and the second semiconductor layer; a tempering process is performed to make the third semiconductor layer and the second semiconductor layer Dopants of the fourth semiconductor layer are driven into the first semiconductor layer and the second semiconductor layer to form first source and drain layers and second source and drain layers; the third semiconductor layer is removed. The insulating layer exposes the sidewall of an opening to form a third groove; forming a channel layer in the third groove; forming an insulating filling layer in the first opening; in the insulating filling layer forming a second opening in the second opening; and forming a charge storage structure and a gate pillar in the second opening.
基於上述,本發明實施例之記憶體元件及其製造方法, 可以在堆疊的膜層形成後,對源極與汲極層的摻質進行調整,使得源極與汲極層具有適當濃度,以降低阻值。 Based on the above, the memory device and its manufacturing method according to the embodiment of the present invention, After the stacked film layers are formed, the dopants of the source and drain layers can be adjusted so that the source and drain layers have appropriate concentrations to reduce the resistance.
100:基底 100:Base
102:元件層 102:Component layer
104:介電層 104:Dielectric layer
105:金屬內連線 105: Metal interconnection
106:插塞 106:Plug
108:導線 108:Wire
110:金屬內連線結構 110: Metal interconnect structure
112、128:停止層 112, 128: Stop layer
114:疊層 114:Laminate
120:隔離層 120:Isolation layer
122、122a、126、126a、130L、130U、138:半導體層 122, 122a, 126, 126a, 130L, 130U, 138: semiconductor layer
122R、124R、126R:凹槽 122R, 124R, 126R: Groove
122S:側壁 122S: Side wall
124、124a:絕緣層 124, 124a: Insulating layer
130:半導體材料層 130: Semiconductor material layer
132、136、232、236:源極與汲極層 132, 136, 232, 236: source and drain layers
132I、136I:界面 132I, 136I: interface
134:阻擋間隙壁 134: Block the gap wall
138a:通道層 138a: Channel layer
140:絕緣填充層 140: Insulating filling layer
140S:絕緣填充層 140S: Insulating filling layer
142:硬罩幕層 142:Hard curtain layer
144:電荷儲存結構 144:Charge storage structure
146:閘極柱 146: Gate post
230L、230U:磊晶層 230L, 230U: epitaxial layer
OP1、OP2:開口 OP1, OP2: Open your mouth
OP3:孔 OP3: hole
PR:罩幕層 PR: mask layer
SK1、SK2、SK3:堆疊結構 SK1, SK2, SK3: stacked structure
W1、W2、W3:寬度 W1, W2, W3: Width
X、Y、Z:方向 X, Y, Z: direction
I-I’:切線 I-I’: Tangent line
圖1A至圖1G是依照本發明一實施例所繪示的一種三維記憶體元件製造方法的立體示意圖。 1A to 1G are schematic three-dimensional views of a method for manufacturing a three-dimensional memory device according to an embodiment of the present invention.
圖2A至圖2O是依照本發明一種實施例所繪示的一種三維記憶體元件的製造流程的剖面示意圖。圖2A、圖2B、圖2C至圖2K、圖2L、圖2M、圖2N與圖2O分別是圖1A、圖1B、圖1C、圖1D、圖1E、圖1F與圖1G的切線I-I’的局部剖面示意圖。 2A to 2O are schematic cross-sectional views of a manufacturing process of a three-dimensional memory device according to an embodiment of the present invention. Figures 2A, 2B, 2C to 2K, 2L, 2M, 2N and 2O are tangent lines I-I of Figures 1A, 1B, 1C, 1D, 1E, 1F and 1G respectively. 'A partial cross-section diagram.
圖3A至圖3C是依照本發明另一實施例所繪示的一種三維記憶體元件的製造流程的剖面示意圖。 3A to 3C are schematic cross-sectional views of a manufacturing process of a three-dimensional memory device according to another embodiment of the present invention.
參照圖1A與圖2A,提供基底100。基底100。基底100可為半導體基底,例如含矽基底。在基底100上依序形成元件層102。元件層102可以包括主動元件或是被動元件。主動元件例如是電晶體、二極體等。被動元件例如是電容器、電感等。電晶體可以是N型金氧半(NMOS)電晶體、P型金氧半(PMOS)電晶體或是互補式金氧半元件(CMOS)等。
Referring to FIGS. 1A and 2A , a
在元件層102上形成金屬內連線結構110。金屬內連線結構110可以包括多層介電層104以及形成在多層介電層104中的
金屬內連線105。金屬內連線105包括多個插塞106與多個導線108等。介電層104分隔相鄰的導線108。導線108之間可藉由插塞106連接,且導線108可藉由插塞106連接到元件層102。在一些實施例中,金屬內連線結構110還包括停止層(未示出)。停止層可以設置在介電層104之間及/或最頂層的介電層104上方。停止層與介電層104的材質不同,例如是氮化矽、氮氧化矽、碳化矽、氧化鋁或其組合。
A
於金屬內連線結構110上形成堆疊結構SK1。堆疊結構SK1包括彼此交替堆疊的多個疊層114以及隔離層120。疊層114以及隔離層120的數量不限於圖中所示者。
A stacked structure SK1 is formed on the
每一疊層114包括半導體層122、絕緣層124與半導體層126。半導體層122與126包括多晶矽。絕緣層124例如是氧化矽。隔離層120將疊層114彼此分隔。隔離層120可以是單層或是多層,且其材料例如是碳化矽或氮化矽。圖1A的示例中,隔離層120可以包括層120a、層120b與層120c,且其材料分別例如是碳化矽、氮化矽、碳化矽。
Each
堆疊結構SK1還包括停止層112以及128,分別位於最底層的疊層114下方以及最頂層疊層114的上方。停止層112以及128包括氮化矽、氮氧化矽或碳化矽。堆疊結構SK1的半導體層122與126、絕緣層124、隔離層120以及停止層112與128可以在相同的機台中原位形成。由於半導體層122與126可與堆疊結構SK1的其他層在相同的機台中原位形成,因此,為了顧及堆疊結構SK1的整體的沉積的速率,所沉積的半導體層122與126的摻雜濃度無法太高,因此,半導體層122與126的摻雜濃度會
低於後續形成的半導體材料層130(示於圖2D)的摻雜濃度。半導體層122與126的摻質例如是砷(As)、硼(B)、磷(P)、銻(Sb)、氟化硼(BF2)或銦(In),摻雜濃度可以是低於E17原子/立方公分(atoms/cm3),例如是E12 atoms/cm3至E17 atoms/cm3。
The stack structure SK1 also includes stop layers 112 and 128, respectively located below the
參照圖1B與圖2B,圖案化堆疊結構SK1,以形成堆疊結構SK2與多個開口OP1。在一些實施例中,堆疊結構SK2為沿著Y方向延伸的多個長條。開口OP1例如是沿著Y方向延伸的溝渠。在另一些實施例中,堆疊結構SK2為柵格狀,開口OP1的四周被堆疊結構SK2包圍(未示出)。 Referring to FIG. 1B and FIG. 2B , the stacked structure SK1 is patterned to form a stacked structure SK2 and a plurality of openings OP1 . In some embodiments, the stacked structure SK2 is a plurality of strips extending along the Y direction. The opening OP1 is, for example, a trench extending in the Y direction. In other embodiments, the stacking structure SK2 is in a grid shape, and the opening OP1 is surrounded by the stacking structure SK2 (not shown).
圖2C至圖2K為圖1C的切線I-I’的局部剖面示意圖。 2C to 2K are partial cross-sectional schematic views of the tangent line I-I' in FIG. 1C.
請參照圖2C,對半導體層122與126進行拉回製程,以形成半導體層122a與126a以及多個凹槽122R與126R。拉回製程例如是蝕刻製程。半導體層122a與半導體層126a裸露出不完整的晶粒,且半導體層122a與半導體層126a形成的側壁122S與126S的高低起伏程度(粗糙度)大於半導體層122a或126a之中的晶粒之晶界122B與126B的高低起伏程度(粗糙度)。
Referring to FIG. 2C , a pullback process is performed on the semiconductor layers 122 and 126 to form the semiconductor layers 122 a and 126 a and a plurality of
參照圖2D與圖2E,在開口OP1中沉積半導體材料層130,並且使得半導體材料層130填入凹槽122R與126R之中,且與半導體層122a與126a接觸,且半導體材料層130與半導體層122a之間具有界面(interface)132I與半導體材料層130與半導體層126a之間具有界面136I。半導體材料層130例如是以化學氣相沉積法形成的摻雜多晶矽層。在一些實施例中,半導體材料層130、半導體層122a與126a均為摻雜半導體層,且半導體材料層130的摻雜濃度大於半導體層122a與126a的摻雜濃度。半導體材
料層130的摻質例如是As、B、P、Sb、BF2或In,摻雜濃度可以是大於E12 atoms/cm3,例如是E12 atoms/cm3至E21 atoms/cm3。
2D and 2E, the semiconductor material layer 130 is deposited in the opening OP1, and the semiconductor material layer 130 fills the
之後,進行局部移除製程,移除凹槽122R與126R以外的半導體材料層130,以於凹槽122R與126R之中分別形成半導體層130L與130U。半導體層130L與半導體層122a之間具有界面132I,半導體層130U與半導體層126a具有界面136I。
Afterwards, a partial removal process is performed to remove the semiconductor material layer 130 outside the
參照圖2F,在開口OP1的側壁形成阻擋間隙壁134。阻擋間隙壁134的材料例如是氮化矽、氮氧化矽或其組合。阻擋間隙壁134的形成方法例如是先形成阻擋層,以覆蓋開口OP1的側壁與底面,之後,再進行非等向性蝕刻製程,以移除覆蓋停止層128的頂面與開口OP1的底面的阻擋層。
Referring to FIG. 2F , a blocking
參照圖2G,進行回火製程,以使半導體層130L與130U的摻質驅入於半導體層122a與126a之中。在進行回火製程時,阻擋間隙壁134可以阻擋半導體層130L與130U的摻質擴散到其他區域,使得半導體層130L與130U的摻質朝向半導體層122a與126a擴散,而形成源極與汲極層132和136。回火製程的溫度例如是攝氏400度至攝氏1200度。源極與汲極層132和136的摻雜濃度例如是E12 atoms/cm3至E21 atoms/cm3。在一些實施例中,源極與汲極層132和136中還存在著界面132I與136I。
Referring to FIG. 2G, a tempering process is performed to drive the dopants of the semiconductor layers 130L and 130U into the
參照圖2H與圖2I,移除阻擋間隙壁134。之後,對疊層114的絕緣層124進行拉回(pull back)製程,例如是非等向性蝕刻製程,以形成絕緣層124a與凹槽124R。
Referring to FIGS. 2H and 2I , the blocking
參照圖2J與圖2K,在開口OP1中形成半導體層138,並且使得半導體層138填入凹槽124R之中。半導體層138例如是多
晶矽層。之後,對半導體層138局部移除製程,以於凹槽124R之中形成通道層138a。通道層138a位於絕緣層124a的側壁。通道層138a的上表面與下表面分別連接且接觸源極與汲極層132和136。在一些實施例中,通道層138a的側壁與接觸源極與汲極層132和136齊平。至此,形成了堆疊結構SK3,如圖1C與圖2K所示。
Referring to FIGS. 2J and 2K , the
參照圖1D與圖2L,在基底100上形成絕緣填充層140,並使絕緣填充層140填入開口OP1之中。絕緣填充層140的材料例如是氧化矽。
1D and 2L, an insulating
參照圖1E與圖2M,在絕緣填充層140上形成多層142與罩幕層PR。多層142可以包括抵抗反射層、硬罩幕層等。罩幕層PR例如是圖案化的光阻層,且具有多個開口OP2。
Referring to FIGS. 1E and 2M , a
請參照圖1F與圖2N,進行圖案化製程,將罩幕層PR轉移至絕緣填充層140與堆疊結構SK3,以形成孔OP3。在一些實施例中,孔OP3排列成陣列。之後,再將罩幕層PR與硬罩幕層142移除。
Referring to FIG. 1F and FIG. 2N, a patterning process is performed to transfer the mask layer PR to the insulating
請參照圖1G與圖2O,孔OP3中形成電荷儲存結構144與閘極柱146。電荷儲存結構144與閘極柱146的形成方法例如是在絕緣填充層140上表面與孔OP3中形成先形成電荷儲存材料層,然後經由回蝕刻製程,移除孔OP3底面的電荷儲存材料層。之後,再於絕緣填充層140上表面上方與孔OP3之中形成閘極材料層,然後,以化學機械研磨法進行平坦化製程,以移除絕緣填充層140上表面上多餘的閘極材料層。電電荷儲存材料層例如是氧化物/氮化物/氧化物(ONO)複合層。閘極材料層例如是導體層。導體層
包括阻障層與金屬層。阻障層的材料包括鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合,而金屬層的材料包括鎢(W)。在一些實施例中,閘極柱146排列成陣列。相鄰兩行的閘極柱146可以相錯或對齊。位於相鄰兩行的閘極柱146之間的絕緣填充層140S可做為分隔牆(slit)。
Referring to FIG. 1G and FIG. 2O , a
閘極柱146在Z方向上連續延伸,且與下方的金屬內連線105電性連接。電荷儲存結構144在Z方向上連續延伸,且環繞於閘極柱146的側壁周圍。每一個通道層138a的側壁與閘極柱146的側壁之間夾著電荷儲存結構144。在Z方向上堆疊的源極與汲極層132、絕緣層124a與源極與汲極層136。在X方向上絕緣層124a的寬度W1小於源極與汲極層132、136的寬度W2與W3。通道層138a設置在絕緣層124a的側壁。每一個通道層138a的下表面與源極與汲極層132連接,每一個通道層138a的上表面與源極與汲極層136連接。此外,在Z方向上的多個通道層138a彼此分離。
The
本發明源極與汲極層132和136的形成方法不以上述實施例為限。在另一些實施例中,源極與汲極層132和136的形成方法如下所述。請參照圖3A,依照前述的方法形成半導體層122a與126a以及多個凹槽122R與126R。之後,進行磊晶成長製程,以在凹槽122R與126R之中形成磊晶層230L與230U,如圖3B所示。磊晶層230L與230U又稱為半導體層。之後,依照上述圖2F至圖2H的製程,以形成源極與汲極層232和236、電荷儲存結構144以及閘極柱閘極146等,如圖3C所示。
The method of forming the source and drain
本發明實施例將源極與汲極層以多個階段的方式形成。 先配合製程形成濃度較低的半導體層,再將半導體層的側壁部分移除,再於所形成的凹槽中形成高濃度的半導體層(磊晶層)。其後,經由回火製程,使高濃度的摻質擴散驅入濃度較低的半導體層,以形成具有適合摻雜濃度的源極與汲極層。以此方法可以在相同的機台中原位形成具有疊層與絕緣層的堆疊結構,並可以在堆疊結構形成後,對源極與汲極層的濃度進行調整,使得源極與汲極層具有適當濃度,以降低阻值。 In embodiments of the present invention, the source and drain layers are formed in multiple stages. First, a semiconductor layer with a lower concentration is formed according to the process, and then the sidewall portion of the semiconductor layer is removed, and then a high-concentration semiconductor layer (epitaxial layer) is formed in the formed groove. Thereafter, through a tempering process, the high-concentration dopant is diffused and driven into the lower-concentration semiconductor layer to form source and drain layers with suitable doping concentration. In this way, a stacked structure with stacked layers and insulating layers can be formed in situ on the same machine, and after the stacked structure is formed, the concentrations of the source and drain layers can be adjusted so that the source and drain layers have Appropriate concentration to reduce resistance.
128:停止層 128: Stop layer
120:隔離層 120:Isolation layer
122a、126a、130L、130U:半導體層 122a, 126a, 130L, 130U: semiconductor layer
124:絕緣層 124:Insulation layer
132I、136I:界面 132I, 136I: interface
134:阻擋間隙壁 134: Block the gap wall
OP1:開口 OP1: Open your mouth
X、Y、Z:方向 X, Y, Z: direction
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111131575A TWI814546B (en) | 2022-08-22 | 2022-08-22 | Memory device and method of fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111131575A TWI814546B (en) | 2022-08-22 | 2022-08-22 | Memory device and method of fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI814546B true TWI814546B (en) | 2023-09-01 |
TW202410388A TW202410388A (en) | 2024-03-01 |
Family
ID=88966032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111131575A TWI814546B (en) | 2022-08-22 | 2022-08-22 | Memory device and method of fabricating the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI814546B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140269103A1 (en) * | 2009-06-19 | 2014-09-18 | Samsung Electronics Co., Ltd. | Nonvolatile memory device and method of manufacturing the same |
US20200044095A1 (en) * | 2017-03-30 | 2020-02-06 | Intel Corporation | Vertical multi-gate thin film transistors |
US20220013533A1 (en) * | 2019-04-08 | 2022-01-13 | Monolithic 3D Inc. | 3d memory semiconductor devices and structures |
TW202230746A (en) * | 2021-01-27 | 2022-08-01 | 美商日升存儲公司 | Quasi-volatile memory with reference bit line structure |
-
2022
- 2022-08-22 TW TW111131575A patent/TWI814546B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140269103A1 (en) * | 2009-06-19 | 2014-09-18 | Samsung Electronics Co., Ltd. | Nonvolatile memory device and method of manufacturing the same |
US20200044095A1 (en) * | 2017-03-30 | 2020-02-06 | Intel Corporation | Vertical multi-gate thin film transistors |
US20220013533A1 (en) * | 2019-04-08 | 2022-01-13 | Monolithic 3D Inc. | 3d memory semiconductor devices and structures |
TW202230746A (en) * | 2021-01-27 | 2022-08-01 | 美商日升存儲公司 | Quasi-volatile memory with reference bit line structure |
Also Published As
Publication number | Publication date |
---|---|
TW202410388A (en) | 2024-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10886289B2 (en) | Integrated circuit device including vertical memory device and method of manufacturing the same | |
US11765904B2 (en) | Non-volatile memory device having at least one metal and one semiconductor body extending through the electrode stack | |
US7183164B2 (en) | Methods of reducing floating body effect | |
US12080713B2 (en) | Self-aligned etch in semiconductor devices | |
CN110896074A (en) | Integrated circuit memory and manufacturing method thereof | |
US11974441B2 (en) | Memory array including epitaxial source lines and bit lines | |
US20220028889A1 (en) | Vertical-type memory device | |
KR102707881B1 (en) | Three dimensional semiconductor memory device | |
TW201725731A (en) | Fin-type field effect transistor structure and manufacturing method thereof | |
US11862556B2 (en) | Semiconductor devices | |
JP2006344809A (en) | Semiconductor device and its manufacturing method | |
US11837535B2 (en) | Semiconductor devices including decoupling capacitors | |
TWI792071B (en) | On-chip capacitor structure in semiconductor element | |
TWI814546B (en) | Memory device and method of fabricating the same | |
US20230120621A1 (en) | Memory device and method of fabricating the same | |
CN112992911B (en) | Semiconductor device and method of manufacturing the same | |
US20240204049A1 (en) | Memory device and method of fabricating the same | |
CN117715430A (en) | Memory device and method of manufacturing the same | |
US20240250032A1 (en) | Transistor Gate Contacts and Methods of Forming the Same | |
US20240306363A1 (en) | Stacked capacitor, method for making the same and memory device | |
KR20230047966A (en) | semiconductor aparatus and Manufacturing method of THE same | |
TW202305893A (en) | Method for making semiconductor device and semiconductor device | |
TW202416812A (en) | Semiconductor memory device | |
CN113707664A (en) | Three-dimensional memory and preparation method thereof |