TWI814546B - Memory device and method of fabricating the same - Google Patents

Memory device and method of fabricating the same Download PDF

Info

Publication number
TWI814546B
TWI814546B TW111131575A TW111131575A TWI814546B TW I814546 B TWI814546 B TW I814546B TW 111131575 A TW111131575 A TW 111131575A TW 111131575 A TW111131575 A TW 111131575A TW I814546 B TWI814546 B TW I814546B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor layer
source
layers
drain
Prior art date
Application number
TW111131575A
Other languages
Chinese (zh)
Other versions
TW202410388A (en
Inventor
余秉隆
邵柏竣
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW111131575A priority Critical patent/TWI814546B/en
Application granted granted Critical
Publication of TWI814546B publication Critical patent/TWI814546B/en
Publication of TW202410388A publication Critical patent/TW202410388A/en

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Electrotherapy Devices (AREA)
  • Multi-Process Working Machines And Systems (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A memory device includes: a stack structure disposed above a substrate. The stack structure includes a plurality of stacks and a plurality of isolation layers that alternate with each other. Each stack includes: a first source and drain electrode layer, an insulating layer disposed on the first source and drain layer; and a second source and drain layer disposed on the insulating layer; and a channel layer disposed on sidewalls of the insulating layer. The lower surface of the channel layer is connected to the first source and drain layer, and the upper surface of the channel layer is connected to the second source and drain layer. The memory device further includes a gate pillar extends through the stacked structure, and a charge storage structure disposed between the channel layer and the gate pillar.

Description

記憶體元件及其製造方法Memory device and method of manufacturing same

本發明實施例是有關於一種半導體元件及其製造方法,且特別是有關於一種記憶體元件及其製造方法。 Embodiments of the present invention relate to a semiconductor element and a manufacturing method thereof, and in particular, to a memory element and a manufacturing method thereof.

非揮發性記憶體元件(如,快閃記憶體)由於具有使存入的資料在斷電後也不會消失的優點,因此成為個人電腦和其他電子設備所廣泛採用的一種記憶體元件。反或閘(NOR)快閃記憶體是目前業界較常使用的一種快閃記憶體陣列。為了進一步提升記憶體元件的積集度,而發展出一種三維NOR快閃記憶體。然而,三維NOR快閃記憶體在沉積堆疊的膜層時,容易因為高溫而造成源極與汲極層的摻質擴散,進而無法控制源極與汲極層的摻質濃度與阻值。 Non-volatile memory components (such as flash memory) have become a memory component widely used in personal computers and other electronic devices because they have the advantage that stored data will not disappear even after a power outage. NOR flash memory is a flash memory array that is commonly used in the industry. In order to further improve the integration of memory components, a three-dimensional NOR flash memory was developed. However, when depositing stacked film layers in a three-dimensional NOR flash memory, it is easy to cause dopant diffusion in the source and drain layers due to high temperatures, making it impossible to control the dopant concentration and resistance of the source and drain layers.

本發明實施例提出一種記憶體元件,包括:堆疊結構,設置於基底上方,其中所述堆疊結構包括相互交替的多個疊層與多個隔離層,且每一疊層包括:第一源極與汲極層;絕緣層,設 置於所述第一源極與汲極層上;第二源極與汲極層,設置於所述絕緣層上;以及通道層,設置於所述絕緣層的側壁,且所述通道層的下表面與所述第一源極與汲極層連接,所述通道層的上表面與所述第二源極與汲極層連接;閘極柱穿過所述堆疊結構;以及電荷儲存結構,設置於所述通道層與所述閘極柱之間。 An embodiment of the present invention provides a memory element, including: a stacked structure disposed above a substrate, wherein the stacked structure includes a plurality of alternating stacks and a plurality of isolation layers, and each stack includes: a first source and drain layer; insulation layer, set placed on the first source and drain layers; a second source and drain layer disposed on the insulating layer; and a channel layer disposed on the sidewalls of the insulating layer, and the channel layer The lower surface is connected to the first source and drain layers, the upper surface of the channel layer is connected to the second source and drain layers; the gate pillar passes through the stacked structure; and the charge storage structure, Disposed between the channel layer and the gate pillar.

本發明實施例提出一種記憶體元件的製造方法,包括在基底上方形成堆疊結構,其中所述堆疊結構包括相互交替的多個疊層與多個隔離層,且每一疊層包括依序堆疊的第一半導體層、絕緣層與第二半導體層;圖案化所述堆疊結構,以形成第一開口;移除所述第一開口的側壁暴露的部分的所述第一半導體層與部分的所述第二半導體層,以分別形成第一凹槽與第二凹槽;在所述第一凹槽與所述第二凹槽中各自分別形成第三半導體層與第四半導體層,其中所述第三半導體層與所述第四半導體層的摻雜濃度大於所述第一半導體層與所述第二半導體層的摻雜濃度;進行回火製程,以使所述所述第三半導體層與所述第四半導體層的摻質驅入所述第一半導體層與所述第二半導體層中,以形成第一源極與汲極層與第二源極與汲極層;移除所述第一開口的所述側壁暴露的部分的所述絕緣層,以形成第三凹槽;於第三凹槽中形成通道層;在所述第一開口中形成絕緣填充層;在所述絕緣填充層中形成第二開口;以及在所述第二開口中形成電荷儲存結構與閘極柱。 An embodiment of the present invention provides a method for manufacturing a memory element, including forming a stacked structure above a substrate, wherein the stacked structure includes a plurality of alternating stacked layers and a plurality of isolation layers, and each stacked layer includes sequentially stacked A first semiconductor layer, an insulating layer and a second semiconductor layer; patterning the stacked structure to form a first opening; removing the exposed portion of the first semiconductor layer and the portion of the sidewall of the first opening. a second semiconductor layer to form a first groove and a second groove respectively; a third semiconductor layer and a fourth semiconductor layer are respectively formed in the first groove and the second groove, wherein the third semiconductor layer The doping concentration of the third semiconductor layer and the fourth semiconductor layer is greater than the doping concentration of the first semiconductor layer and the second semiconductor layer; a tempering process is performed to make the third semiconductor layer and the second semiconductor layer Dopants of the fourth semiconductor layer are driven into the first semiconductor layer and the second semiconductor layer to form first source and drain layers and second source and drain layers; the third semiconductor layer is removed. The insulating layer exposes the sidewall of an opening to form a third groove; forming a channel layer in the third groove; forming an insulating filling layer in the first opening; in the insulating filling layer forming a second opening in the second opening; and forming a charge storage structure and a gate pillar in the second opening.

基於上述,本發明實施例之記憶體元件及其製造方法, 可以在堆疊的膜層形成後,對源極與汲極層的摻質進行調整,使得源極與汲極層具有適當濃度,以降低阻值。 Based on the above, the memory device and its manufacturing method according to the embodiment of the present invention, After the stacked film layers are formed, the dopants of the source and drain layers can be adjusted so that the source and drain layers have appropriate concentrations to reduce the resistance.

100:基底 100:Base

102:元件層 102:Component layer

104:介電層 104:Dielectric layer

105:金屬內連線 105: Metal interconnection

106:插塞 106:Plug

108:導線 108:Wire

110:金屬內連線結構 110: Metal interconnect structure

112、128:停止層 112, 128: Stop layer

114:疊層 114:Laminate

120:隔離層 120:Isolation layer

122、122a、126、126a、130L、130U、138:半導體層 122, 122a, 126, 126a, 130L, 130U, 138: semiconductor layer

122R、124R、126R:凹槽 122R, 124R, 126R: Groove

122S:側壁 122S: Side wall

124、124a:絕緣層 124, 124a: Insulating layer

130:半導體材料層 130: Semiconductor material layer

132、136、232、236:源極與汲極層 132, 136, 232, 236: source and drain layers

132I、136I:界面 132I, 136I: interface

134:阻擋間隙壁 134: Block the gap wall

138a:通道層 138a: Channel layer

140:絕緣填充層 140: Insulating filling layer

140S:絕緣填充層 140S: Insulating filling layer

142:硬罩幕層 142:Hard curtain layer

144:電荷儲存結構 144:Charge storage structure

146:閘極柱 146: Gate post

230L、230U:磊晶層 230L, 230U: epitaxial layer

OP1、OP2:開口 OP1, OP2: Open your mouth

OP3:孔 OP3: hole

PR:罩幕層 PR: mask layer

SK1、SK2、SK3:堆疊結構 SK1, SK2, SK3: stacked structure

W1、W2、W3:寬度 W1, W2, W3: Width

X、Y、Z:方向 X, Y, Z: direction

I-I’:切線 I-I’: Tangent line

圖1A至圖1G是依照本發明一實施例所繪示的一種三維記憶體元件製造方法的立體示意圖。 1A to 1G are schematic three-dimensional views of a method for manufacturing a three-dimensional memory device according to an embodiment of the present invention.

圖2A至圖2O是依照本發明一種實施例所繪示的一種三維記憶體元件的製造流程的剖面示意圖。圖2A、圖2B、圖2C至圖2K、圖2L、圖2M、圖2N與圖2O分別是圖1A、圖1B、圖1C、圖1D、圖1E、圖1F與圖1G的切線I-I’的局部剖面示意圖。 2A to 2O are schematic cross-sectional views of a manufacturing process of a three-dimensional memory device according to an embodiment of the present invention. Figures 2A, 2B, 2C to 2K, 2L, 2M, 2N and 2O are tangent lines I-I of Figures 1A, 1B, 1C, 1D, 1E, 1F and 1G respectively. 'A partial cross-section diagram.

圖3A至圖3C是依照本發明另一實施例所繪示的一種三維記憶體元件的製造流程的剖面示意圖。 3A to 3C are schematic cross-sectional views of a manufacturing process of a three-dimensional memory device according to another embodiment of the present invention.

參照圖1A與圖2A,提供基底100。基底100。基底100可為半導體基底,例如含矽基底。在基底100上依序形成元件層102。元件層102可以包括主動元件或是被動元件。主動元件例如是電晶體、二極體等。被動元件例如是電容器、電感等。電晶體可以是N型金氧半(NMOS)電晶體、P型金氧半(PMOS)電晶體或是互補式金氧半元件(CMOS)等。 Referring to FIGS. 1A and 2A , a substrate 100 is provided. Base 100. The substrate 100 may be a semiconductor substrate, such as a silicon-containing substrate. Device layers 102 are sequentially formed on the substrate 100 . The component layer 102 may include active components or passive components. Active components are, for example, transistors, diodes, etc. Passive components are, for example, capacitors, inductors, etc. The transistor may be an N-type metal oxide half (NMOS) transistor, a P-type metal oxide half (PMOS) transistor, or a complementary metal oxide half element (CMOS), etc.

在元件層102上形成金屬內連線結構110。金屬內連線結構110可以包括多層介電層104以及形成在多層介電層104中的 金屬內連線105。金屬內連線105包括多個插塞106與多個導線108等。介電層104分隔相鄰的導線108。導線108之間可藉由插塞106連接,且導線108可藉由插塞106連接到元件層102。在一些實施例中,金屬內連線結構110還包括停止層(未示出)。停止層可以設置在介電層104之間及/或最頂層的介電層104上方。停止層與介電層104的材質不同,例如是氮化矽、氮氧化矽、碳化矽、氧化鋁或其組合。 A metal interconnect structure 110 is formed on the device layer 102 . The metal interconnect structure 110 may include a multi-layer dielectric layer 104 and a multi-layer dielectric layer 104 formed in the multi-layer dielectric layer 104 Metal interconnection 105. The metal interconnect 105 includes a plurality of plugs 106 and a plurality of wires 108. Dielectric layer 104 separates adjacent conductors 108 . The wires 108 can be connected to each other through plugs 106, and the wires 108 can be connected to the component layer 102 through the plugs 106. In some embodiments, metal interconnect structure 110 also includes a stop layer (not shown). The stop layer may be disposed between the dielectric layers 104 and/or above the topmost dielectric layer 104 . The stop layer and the dielectric layer 104 are made of different materials, such as silicon nitride, silicon oxynitride, silicon carbide, aluminum oxide or combinations thereof.

於金屬內連線結構110上形成堆疊結構SK1。堆疊結構SK1包括彼此交替堆疊的多個疊層114以及隔離層120。疊層114以及隔離層120的數量不限於圖中所示者。 A stacked structure SK1 is formed on the metal interconnect structure 110 . The stacked structure SK1 includes a plurality of stacked layers 114 and isolation layers 120 stacked alternately with each other. The number of stacked layers 114 and isolation layers 120 is not limited to those shown in the figure.

每一疊層114包括半導體層122、絕緣層124與半導體層126。半導體層122與126包括多晶矽。絕緣層124例如是氧化矽。隔離層120將疊層114彼此分隔。隔離層120可以是單層或是多層,且其材料例如是碳化矽或氮化矽。圖1A的示例中,隔離層120可以包括層120a、層120b與層120c,且其材料分別例如是碳化矽、氮化矽、碳化矽。 Each stack 114 includes a semiconductor layer 122 , an insulating layer 124 and a semiconductor layer 126 . Semiconductor layers 122 and 126 include polysilicon. The insulating layer 124 is, for example, silicon oxide. Isolation layer 120 separates stacks 114 from each other. The isolation layer 120 can be a single layer or multiple layers, and its material is, for example, silicon carbide or silicon nitride. In the example of FIG. 1A , the isolation layer 120 may include a layer 120a, a layer 120b, and a layer 120c, and the materials thereof are, for example, silicon carbide, silicon nitride, and silicon carbide respectively.

堆疊結構SK1還包括停止層112以及128,分別位於最底層的疊層114下方以及最頂層疊層114的上方。停止層112以及128包括氮化矽、氮氧化矽或碳化矽。堆疊結構SK1的半導體層122與126、絕緣層124、隔離層120以及停止層112與128可以在相同的機台中原位形成。由於半導體層122與126可與堆疊結構SK1的其他層在相同的機台中原位形成,因此,為了顧及堆疊結構SK1的整體的沉積的速率,所沉積的半導體層122與126的摻雜濃度無法太高,因此,半導體層122與126的摻雜濃度會 低於後續形成的半導體材料層130(示於圖2D)的摻雜濃度。半導體層122與126的摻質例如是砷(As)、硼(B)、磷(P)、銻(Sb)、氟化硼(BF2)或銦(In),摻雜濃度可以是低於E17原子/立方公分(atoms/cm3),例如是E12 atoms/cm3至E17 atoms/cm3The stack structure SK1 also includes stop layers 112 and 128, respectively located below the bottom stack 114 and above the top stack 114. Stop layers 112 and 128 include silicon nitride, silicon oxynitride, or silicon carbide. The semiconductor layers 122 and 126, the insulating layer 124, the isolation layer 120, and the stop layers 112 and 128 of the stacked structure SK1 can be formed in situ on the same machine. Since the semiconductor layers 122 and 126 can be formed in-situ on the same machine as other layers of the stacked structure SK1, in order to take into account the overall deposition rate of the stacked structure SK1, the doping concentration of the deposited semiconductor layers 122 and 126 cannot be determined. Too high, therefore, the doping concentration of the semiconductor layers 122 and 126 will be lower than the doping concentration of the subsequently formed semiconductor material layer 130 (shown in FIG. 2D ). The dopants of the semiconductor layers 122 and 126 are, for example, arsenic (As), boron (B), phosphorus (P), antimony (Sb), boron fluoride (BF 2 ) or indium (In), and the doping concentration may be lower than E17 atoms/cm 3 , for example, E12 atoms/cm 3 to E17 atoms/cm 3 .

參照圖1B與圖2B,圖案化堆疊結構SK1,以形成堆疊結構SK2與多個開口OP1。在一些實施例中,堆疊結構SK2為沿著Y方向延伸的多個長條。開口OP1例如是沿著Y方向延伸的溝渠。在另一些實施例中,堆疊結構SK2為柵格狀,開口OP1的四周被堆疊結構SK2包圍(未示出)。 Referring to FIG. 1B and FIG. 2B , the stacked structure SK1 is patterned to form a stacked structure SK2 and a plurality of openings OP1 . In some embodiments, the stacked structure SK2 is a plurality of strips extending along the Y direction. The opening OP1 is, for example, a trench extending in the Y direction. In other embodiments, the stacking structure SK2 is in a grid shape, and the opening OP1 is surrounded by the stacking structure SK2 (not shown).

圖2C至圖2K為圖1C的切線I-I’的局部剖面示意圖。 2C to 2K are partial cross-sectional schematic views of the tangent line I-I' in FIG. 1C.

請參照圖2C,對半導體層122與126進行拉回製程,以形成半導體層122a與126a以及多個凹槽122R與126R。拉回製程例如是蝕刻製程。半導體層122a與半導體層126a裸露出不完整的晶粒,且半導體層122a與半導體層126a形成的側壁122S與126S的高低起伏程度(粗糙度)大於半導體層122a或126a之中的晶粒之晶界122B與126B的高低起伏程度(粗糙度)。 Referring to FIG. 2C , a pullback process is performed on the semiconductor layers 122 and 126 to form the semiconductor layers 122 a and 126 a and a plurality of grooves 122R and 126R. The pullback process is, for example, an etching process. The semiconductor layer 122a and the semiconductor layer 126a expose incomplete crystal grains, and the sidewalls 122S and 126S formed by the semiconductor layer 122a and the semiconductor layer 126a have higher undulations (roughness) than the crystal grains in the semiconductor layer 122a or 126a. The degree of fluctuation (roughness) of boundaries 122B and 126B.

參照圖2D與圖2E,在開口OP1中沉積半導體材料層130,並且使得半導體材料層130填入凹槽122R與126R之中,且與半導體層122a與126a接觸,且半導體材料層130與半導體層122a之間具有界面(interface)132I與半導體材料層130與半導體層126a之間具有界面136I。半導體材料層130例如是以化學氣相沉積法形成的摻雜多晶矽層。在一些實施例中,半導體材料層130、半導體層122a與126a均為摻雜半導體層,且半導體材料層130的摻雜濃度大於半導體層122a與126a的摻雜濃度。半導體材 料層130的摻質例如是As、B、P、Sb、BF2或In,摻雜濃度可以是大於E12 atoms/cm3,例如是E12 atoms/cm3至E21 atoms/cm32D and 2E, the semiconductor material layer 130 is deposited in the opening OP1, and the semiconductor material layer 130 fills the grooves 122R and 126R, and is in contact with the semiconductor layers 122a and 126a, and the semiconductor material layer 130 is in contact with the semiconductor layer 130. There is an interface 132I between 122a and an interface 136I between the semiconductor material layer 130 and the semiconductor layer 126a. The semiconductor material layer 130 is, for example, a doped polycrystalline silicon layer formed by chemical vapor deposition. In some embodiments, the semiconductor material layer 130 and the semiconductor layers 122a and 126a are all doped semiconductor layers, and the doping concentration of the semiconductor material layer 130 is greater than the doping concentration of the semiconductor layers 122a and 126a. The dopant of the semiconductor material layer 130 is, for example, As, B, P, Sb, BF 2 or In, and the doping concentration may be greater than E12 atoms/cm 3 , for example, E12 atoms/cm 3 to E21 atoms/cm 3 .

之後,進行局部移除製程,移除凹槽122R與126R以外的半導體材料層130,以於凹槽122R與126R之中分別形成半導體層130L與130U。半導體層130L與半導體層122a之間具有界面132I,半導體層130U與半導體層126a具有界面136I。 Afterwards, a partial removal process is performed to remove the semiconductor material layer 130 outside the grooves 122R and 126R, so as to form the semiconductor layers 130L and 130U respectively in the grooves 122R and 126R. The semiconductor layer 130L and the semiconductor layer 122a have an interface 132I, and the semiconductor layer 130U and the semiconductor layer 126a have an interface 136I.

參照圖2F,在開口OP1的側壁形成阻擋間隙壁134。阻擋間隙壁134的材料例如是氮化矽、氮氧化矽或其組合。阻擋間隙壁134的形成方法例如是先形成阻擋層,以覆蓋開口OP1的側壁與底面,之後,再進行非等向性蝕刻製程,以移除覆蓋停止層128的頂面與開口OP1的底面的阻擋層。 Referring to FIG. 2F , a blocking spacer 134 is formed on the side wall of the opening OP1. The material of the barrier spacer 134 is, for example, silicon nitride, silicon oxynitride or a combination thereof. The barrier spacer 134 is formed by, for example, first forming a barrier layer to cover the sidewalls and bottom surface of the opening OP1, and then performing an anisotropic etching process to remove the barrier layer covering the top surface of the stop layer 128 and the bottom surface of the opening OP1. barrier layer.

參照圖2G,進行回火製程,以使半導體層130L與130U的摻質驅入於半導體層122a與126a之中。在進行回火製程時,阻擋間隙壁134可以阻擋半導體層130L與130U的摻質擴散到其他區域,使得半導體層130L與130U的摻質朝向半導體層122a與126a擴散,而形成源極與汲極層132和136。回火製程的溫度例如是攝氏400度至攝氏1200度。源極與汲極層132和136的摻雜濃度例如是E12 atoms/cm3至E21 atoms/cm3。在一些實施例中,源極與汲極層132和136中還存在著界面132I與136I。 Referring to FIG. 2G, a tempering process is performed to drive the dopants of the semiconductor layers 130L and 130U into the semiconductor layers 122a and 126a. During the tempering process, the barrier spacer 134 can prevent the dopants of the semiconductor layers 130L and 130U from diffusing to other areas, so that the dopants of the semiconductor layers 130L and 130U diffuse toward the semiconductor layers 122a and 126a to form the source and drain electrodes. Layers 132 and 136. The temperature of the tempering process is, for example, 400 degrees Celsius to 1200 degrees Celsius. The doping concentration of the source and drain layers 132 and 136 is, for example, E12 atoms/cm 3 to E21 atoms/cm 3 . In some embodiments, interfaces 132I and 136I also exist in source and drain layers 132 and 136 .

參照圖2H與圖2I,移除阻擋間隙壁134。之後,對疊層114的絕緣層124進行拉回(pull back)製程,例如是非等向性蝕刻製程,以形成絕緣層124a與凹槽124R。 Referring to FIGS. 2H and 2I , the blocking spacer 134 is removed. Afterwards, a pull back process, such as an anisotropic etching process, is performed on the insulating layer 124 of the stack 114 to form the insulating layer 124a and the groove 124R.

參照圖2J與圖2K,在開口OP1中形成半導體層138,並且使得半導體層138填入凹槽124R之中。半導體層138例如是多 晶矽層。之後,對半導體層138局部移除製程,以於凹槽124R之中形成通道層138a。通道層138a位於絕緣層124a的側壁。通道層138a的上表面與下表面分別連接且接觸源極與汲極層132和136。在一些實施例中,通道層138a的側壁與接觸源極與汲極層132和136齊平。至此,形成了堆疊結構SK3,如圖1C與圖2K所示。 Referring to FIGS. 2J and 2K , the semiconductor layer 138 is formed in the opening OP1 and filled in the groove 124R. The semiconductor layer 138 is, for example, a plurality of Crystalline silicon layer. Afterwards, a partial removal process is performed on the semiconductor layer 138 to form the channel layer 138a in the groove 124R. The channel layer 138a is located on the sidewall of the insulating layer 124a. The upper surface and lower surface of the channel layer 138a are connected and contact the source and drain layers 132 and 136 respectively. In some embodiments, the sidewalls of channel layer 138a are flush with contact source and drain layers 132 and 136. At this point, the stacked structure SK3 is formed, as shown in FIG. 1C and FIG. 2K .

參照圖1D與圖2L,在基底100上形成絕緣填充層140,並使絕緣填充層140填入開口OP1之中。絕緣填充層140的材料例如是氧化矽。 1D and 2L, an insulating filling layer 140 is formed on the substrate 100, and the insulating filling layer 140 is filled into the opening OP1. The material of the insulating filling layer 140 is, for example, silicon oxide.

參照圖1E與圖2M,在絕緣填充層140上形成多層142與罩幕層PR。多層142可以包括抵抗反射層、硬罩幕層等。罩幕層PR例如是圖案化的光阻層,且具有多個開口OP2。 Referring to FIGS. 1E and 2M , a multilayer 142 and a mask layer PR are formed on the insulating filling layer 140 . Multilayer 142 may include anti-reflective layers, hard mask layers, and the like. The mask layer PR is, for example, a patterned photoresist layer and has a plurality of openings OP2.

請參照圖1F與圖2N,進行圖案化製程,將罩幕層PR轉移至絕緣填充層140與堆疊結構SK3,以形成孔OP3。在一些實施例中,孔OP3排列成陣列。之後,再將罩幕層PR與硬罩幕層142移除。 Referring to FIG. 1F and FIG. 2N, a patterning process is performed to transfer the mask layer PR to the insulating filling layer 140 and the stacked structure SK3 to form the hole OP3. In some embodiments, holes OP3 are arranged in an array. Afterwards, the mask layer PR and the hard mask layer 142 are removed.

請參照圖1G與圖2O,孔OP3中形成電荷儲存結構144與閘極柱146。電荷儲存結構144與閘極柱146的形成方法例如是在絕緣填充層140上表面與孔OP3中形成先形成電荷儲存材料層,然後經由回蝕刻製程,移除孔OP3底面的電荷儲存材料層。之後,再於絕緣填充層140上表面上方與孔OP3之中形成閘極材料層,然後,以化學機械研磨法進行平坦化製程,以移除絕緣填充層140上表面上多餘的閘極材料層。電電荷儲存材料層例如是氧化物/氮化物/氧化物(ONO)複合層。閘極材料層例如是導體層。導體層 包括阻障層與金屬層。阻障層的材料包括鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合,而金屬層的材料包括鎢(W)。在一些實施例中,閘極柱146排列成陣列。相鄰兩行的閘極柱146可以相錯或對齊。位於相鄰兩行的閘極柱146之間的絕緣填充層140S可做為分隔牆(slit)。 Referring to FIG. 1G and FIG. 2O , a charge storage structure 144 and a gate post 146 are formed in the hole OP3. The charge storage structure 144 and the gate pillar 146 are formed by, for example, forming a charge storage material layer on the upper surface of the insulating filling layer 140 and in the hole OP3, and then removing the charge storage material layer on the bottom of the hole OP3 through an etch-back process. After that, a gate material layer is formed above the upper surface of the insulating filling layer 140 and in the hole OP3, and then a planarization process is performed using a chemical mechanical polishing method to remove the excess gate material layer on the upper surface of the insulating filling layer 140. . The electrical charge storage material layer is, for example, an oxide/nitride/oxide (ONO) composite layer. The gate material layer is, for example, a conductor layer. conductor layer Including barrier layer and metal layer. The material of the barrier layer includes titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN) or a combination thereof, and the material of the metal layer includes tungsten (W). In some embodiments, gate posts 146 are arranged in an array. Gate posts 146 in two adjacent rows may be staggered or aligned. The insulating filling layer 140S located between two adjacent rows of gate posts 146 may serve as a slit.

閘極柱146在Z方向上連續延伸,且與下方的金屬內連線105電性連接。電荷儲存結構144在Z方向上連續延伸,且環繞於閘極柱146的側壁周圍。每一個通道層138a的側壁與閘極柱146的側壁之間夾著電荷儲存結構144。在Z方向上堆疊的源極與汲極層132、絕緣層124a與源極與汲極層136。在X方向上絕緣層124a的寬度W1小於源極與汲極層132、136的寬度W2與W3。通道層138a設置在絕緣層124a的側壁。每一個通道層138a的下表面與源極與汲極層132連接,每一個通道層138a的上表面與源極與汲極層136連接。此外,在Z方向上的多個通道層138a彼此分離。 The gate post 146 extends continuously in the Z direction and is electrically connected to the metal interconnect 105 below. The charge storage structure 144 extends continuously in the Z direction and surrounds the sidewalls of the gate pillars 146 . The charge storage structure 144 is sandwiched between the sidewalls of each channel layer 138a and the sidewalls of the gate pillars 146. The source and drain layers 132, the insulating layer 124a and the source and drain layers 136 are stacked in the Z direction. The width W1 of the insulating layer 124a in the X direction is smaller than the widths W2 and W3 of the source and drain layers 132 and 136. The channel layer 138a is disposed on the sidewall of the insulating layer 124a. The lower surface of each channel layer 138a is connected to the source and drain layers 132, and the upper surface of each channel layer 138a is connected to the source and drain layers 136. In addition, the plurality of channel layers 138a in the Z direction are separated from each other.

本發明源極與汲極層132和136的形成方法不以上述實施例為限。在另一些實施例中,源極與汲極層132和136的形成方法如下所述。請參照圖3A,依照前述的方法形成半導體層122a與126a以及多個凹槽122R與126R。之後,進行磊晶成長製程,以在凹槽122R與126R之中形成磊晶層230L與230U,如圖3B所示。磊晶層230L與230U又稱為半導體層。之後,依照上述圖2F至圖2H的製程,以形成源極與汲極層232和236、電荷儲存結構144以及閘極柱閘極146等,如圖3C所示。 The method of forming the source and drain layers 132 and 136 of the present invention is not limited to the above embodiment. In other embodiments, source and drain layers 132 and 136 are formed as follows. Referring to FIG. 3A, the semiconductor layers 122a and 126a and the plurality of grooves 122R and 126R are formed according to the aforementioned method. Afterwards, an epitaxial growth process is performed to form epitaxial layers 230L and 230U in the grooves 122R and 126R, as shown in FIG. 3B . The epitaxial layers 230L and 230U are also called semiconductor layers. Thereafter, the source and drain layers 232 and 236, the charge storage structure 144, the gate pillar gate 146, etc. are formed according to the above-mentioned process of FIGS. 2F to 2H, as shown in FIG. 3C.

本發明實施例將源極與汲極層以多個階段的方式形成。 先配合製程形成濃度較低的半導體層,再將半導體層的側壁部分移除,再於所形成的凹槽中形成高濃度的半導體層(磊晶層)。其後,經由回火製程,使高濃度的摻質擴散驅入濃度較低的半導體層,以形成具有適合摻雜濃度的源極與汲極層。以此方法可以在相同的機台中原位形成具有疊層與絕緣層的堆疊結構,並可以在堆疊結構形成後,對源極與汲極層的濃度進行調整,使得源極與汲極層具有適當濃度,以降低阻值。 In embodiments of the present invention, the source and drain layers are formed in multiple stages. First, a semiconductor layer with a lower concentration is formed according to the process, and then the sidewall portion of the semiconductor layer is removed, and then a high-concentration semiconductor layer (epitaxial layer) is formed in the formed groove. Thereafter, through a tempering process, the high-concentration dopant is diffused and driven into the lower-concentration semiconductor layer to form source and drain layers with suitable doping concentration. In this way, a stacked structure with stacked layers and insulating layers can be formed in situ on the same machine, and after the stacked structure is formed, the concentrations of the source and drain layers can be adjusted so that the source and drain layers have Appropriate concentration to reduce resistance.

128:停止層 128: Stop layer

120:隔離層 120:Isolation layer

122a、126a、130L、130U:半導體層 122a, 126a, 130L, 130U: semiconductor layer

124:絕緣層 124:Insulation layer

132I、136I:界面 132I, 136I: interface

134:阻擋間隙壁 134: Block the gap wall

OP1:開口 OP1: Open your mouth

X、Y、Z:方向 X, Y, Z: direction

Claims (10)

一種記憶體元件,包括:堆疊結構,設置於基底上方,其中所述堆疊結構包括相互交替的多個疊層與多個隔離層,且每一疊層包括:第一源極與汲極層;絕緣層,設置於所述第一源極與汲極層上;第二源極與汲極層,設置於所述絕緣層上;以及通道層,設置於所述絕緣層的側壁,且所述通道層的下表面與所述第一源極與汲極層連接,所述通道層的上表面與所述第二源極與汲極層連接;閘極柱穿過所述堆疊結構;以及電荷儲存結構,設置於所述通道層與所述閘極柱之間,其中所述第一源極與汲極層與所述第二源極與汲極層中具有界面。 A memory element includes: a stacked structure disposed above a substrate, wherein the stacked structure includes a plurality of alternating stacked layers and a plurality of isolation layers, and each stacked layer includes: a first source electrode and a drain electrode layer; An insulating layer is disposed on the first source and drain layers; a second source and drain layer is disposed on the insulating layer; and a channel layer is disposed on the sidewall of the insulating layer, and the The lower surface of the channel layer is connected to the first source and drain layers, and the upper surface of the channel layer is connected to the second source and drain layers; gate pillars pass through the stacked structure; and charges A storage structure is disposed between the channel layer and the gate pillar, wherein the first source and drain layer and the second source and drain layer have interfaces. 如請求項1所述的記憶體元件,其中所述所述第一源極與汲極層與所述第二源極與汲極層的側壁與所述通道層的側壁齊平。 The memory device of claim 1, wherein side walls of the first source and drain layer and the second source and drain layer are flush with side walls of the channel layer. 如請求項1所述的記憶體元件,更包括:金屬內連線結構,設置於所述堆疊結構與所述基底之間,其中所述閘極柱電性連接所述金屬內連線結構的金屬內連線。 The memory device of claim 1, further comprising: a metal interconnect structure disposed between the stacked structure and the substrate, wherein the gate post is electrically connected to the metal interconnect structure. Metal interconnections. 一種記憶體元件的製造方法,包括:在基底上方形成堆疊結構,其中所述堆疊結構包括相互交替 的多個疊層與多個隔離層,且每一疊層包括依序堆疊的第一半導體層、絕緣層與第二半導體層;圖案化所述堆疊結構,以形成第一開口;移除所述第一開口的側壁暴露的部分的所述第一半導體層與部分的所述第二半導體層,以分別形成第一凹槽與第二凹槽;在所述第一凹槽與所述第二凹槽中各自分別形成第三半導體層與第四半導體層,其中所述第三半導體層與所述第四半導體層的摻雜濃度大於所述第一半導體層與所述第二半導體層的摻雜濃度;進行回火製程,以使所述所述第三半導體層與所述第四半導體層的摻質驅入所述第一半導體層與所述第二半導體層中,以形成第一源極與汲極層與第二源極與汲極層;移除所述第一開口的所述側壁暴露的部分的所述絕緣層,以形成第三凹槽;於第三凹槽中形成通道層;在所述第一開口中形成絕緣填充層;在所述絕緣填充層中形成第二開口;以及在所述第二開口中形成電荷儲存結構與閘極柱。 A method for manufacturing a memory element, including: forming a stacked structure above a substrate, wherein the stacked structure includes alternating A plurality of stacked layers and a plurality of isolation layers, and each stacked layer includes a first semiconductor layer, an insulating layer and a second semiconductor layer stacked in sequence; patterning the stacked structure to form a first opening; removing all The exposed portion of the first semiconductor layer and the portion of the second semiconductor layer on the sidewall of the first opening form a first groove and a second groove respectively; A third semiconductor layer and a fourth semiconductor layer are respectively formed in the two grooves, wherein the doping concentrations of the third semiconductor layer and the fourth semiconductor layer are greater than those of the first semiconductor layer and the second semiconductor layer. Doping concentration; perform a tempering process so that the dopants of the third semiconductor layer and the fourth semiconductor layer are driven into the first semiconductor layer and the second semiconductor layer to form the first source and drain layers and second source and drain layers; remove the insulating layer at the exposed portion of the sidewall of the first opening to form a third groove; form in the third groove a channel layer; forming an insulating filling layer in the first opening; forming a second opening in the insulating filling layer; and forming a charge storage structure and a gate pillar in the second opening. 如請求項4所述的記憶體元件的製造方法,其中所述第三半導體層與所述第四半導體層的形成方法包括:在所述基底上沉積半導體材料層,並填入所述第一開口以及所述第一凹槽與所述第二凹槽;以及 進行局部移除製程,移除所述第一凹槽與所述第二凹槽以外的所述半導體材料層。 The manufacturing method of a memory element according to claim 4, wherein the forming method of the third semiconductor layer and the fourth semiconductor layer includes: depositing a semiconductor material layer on the substrate and filling the first the opening and the first groove and the second groove; and A local removal process is performed to remove the semiconductor material layer outside the first groove and the second groove. 如請求項4所述的記憶體元件的製造方法,其中所述第三半導體層與所述第四半導體層的形成方法包括進行磊晶成長製程以在所述第一凹槽與所述第二凹槽分別形成第一磊晶層與第二磊晶層。 The method of manufacturing a memory element according to claim 4, wherein the forming method of the third semiconductor layer and the fourth semiconductor layer includes performing an epitaxial growth process to form a gap between the first groove and the second semiconductor layer. The grooves respectively form a first epitaxial layer and a second epitaxial layer. 如請求項4所述的記憶體元件的製造方法,其中所述第一半導體層、所述絕緣層、所述第二半導體層以及所述隔離層在相同的機台原位形成。 The method of manufacturing a memory element according to claim 4, wherein the first semiconductor layer, the insulating layer, the second semiconductor layer and the isolation layer are formed in situ on the same machine. 如請求項4所述的記憶體元件的製造方法,更包括:在所述基底上方形成所述堆疊結構之前,於所述基底上形成金屬內連線結構,其中所述閘極柱電性連接所述金屬內連線結構的金屬內連線。 The method of manufacturing a memory device according to claim 4, further comprising: forming a metal interconnect structure on the substrate before forming the stacked structure on the substrate, wherein the gate posts are electrically connected Metal interconnects of the metal interconnect structure. 如請求項4所述的記憶體元件的製造方法,更包括:在進行所述回火製程之前,在所述第一開口的所述側壁形成阻擋間隙壁;以及在進行所述回火製程之後,移除所述阻擋間隙壁。 The method of manufacturing a memory element according to claim 4, further comprising: before performing the tempering process, forming a blocking spacer on the side wall of the first opening; and after performing the tempering process. , remove the blocking spacer wall. 如請求項9所述的記憶體元件的製造方法,其中所述阻擋間隙壁的材料包括氮化矽、氮氧化矽或其組合。 The method of manufacturing a memory element according to claim 9, wherein the material of the blocking spacer includes silicon nitride, silicon oxynitride or a combination thereof.
TW111131575A 2022-08-22 2022-08-22 Memory device and method of fabricating the same TWI814546B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111131575A TWI814546B (en) 2022-08-22 2022-08-22 Memory device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111131575A TWI814546B (en) 2022-08-22 2022-08-22 Memory device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TWI814546B true TWI814546B (en) 2023-09-01
TW202410388A TW202410388A (en) 2024-03-01

Family

ID=88966032

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111131575A TWI814546B (en) 2022-08-22 2022-08-22 Memory device and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI814546B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140269103A1 (en) * 2009-06-19 2014-09-18 Samsung Electronics Co., Ltd. Nonvolatile memory device and method of manufacturing the same
US20200044095A1 (en) * 2017-03-30 2020-02-06 Intel Corporation Vertical multi-gate thin film transistors
US20220013533A1 (en) * 2019-04-08 2022-01-13 Monolithic 3D Inc. 3d memory semiconductor devices and structures
TW202230746A (en) * 2021-01-27 2022-08-01 美商日升存儲公司 Quasi-volatile memory with reference bit line structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140269103A1 (en) * 2009-06-19 2014-09-18 Samsung Electronics Co., Ltd. Nonvolatile memory device and method of manufacturing the same
US20200044095A1 (en) * 2017-03-30 2020-02-06 Intel Corporation Vertical multi-gate thin film transistors
US20220013533A1 (en) * 2019-04-08 2022-01-13 Monolithic 3D Inc. 3d memory semiconductor devices and structures
TW202230746A (en) * 2021-01-27 2022-08-01 美商日升存儲公司 Quasi-volatile memory with reference bit line structure

Also Published As

Publication number Publication date
TW202410388A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
US10886289B2 (en) Integrated circuit device including vertical memory device and method of manufacturing the same
US11765904B2 (en) Non-volatile memory device having at least one metal and one semiconductor body extending through the electrode stack
US7183164B2 (en) Methods of reducing floating body effect
US12080713B2 (en) Self-aligned etch in semiconductor devices
CN110896074A (en) Integrated circuit memory and manufacturing method thereof
US11974441B2 (en) Memory array including epitaxial source lines and bit lines
US20220028889A1 (en) Vertical-type memory device
KR102707881B1 (en) Three dimensional semiconductor memory device
TW201725731A (en) Fin-type field effect transistor structure and manufacturing method thereof
US11862556B2 (en) Semiconductor devices
JP2006344809A (en) Semiconductor device and its manufacturing method
US11837535B2 (en) Semiconductor devices including decoupling capacitors
TWI792071B (en) On-chip capacitor structure in semiconductor element
TWI814546B (en) Memory device and method of fabricating the same
US20230120621A1 (en) Memory device and method of fabricating the same
CN112992911B (en) Semiconductor device and method of manufacturing the same
US20240204049A1 (en) Memory device and method of fabricating the same
CN117715430A (en) Memory device and method of manufacturing the same
US20240250032A1 (en) Transistor Gate Contacts and Methods of Forming the Same
US20240306363A1 (en) Stacked capacitor, method for making the same and memory device
KR20230047966A (en) semiconductor aparatus and Manufacturing method of THE same
TW202305893A (en) Method for making semiconductor device and semiconductor device
TW202416812A (en) Semiconductor memory device
CN113707664A (en) Three-dimensional memory and preparation method thereof