TWI813976B - Carboxylate, use of carboxylate for producing metal sulfide with nanostructure, method of preparation of metal sulfide with nanostructure, use of liguid medium ,and use of gaseous sulfuric source - Google Patents

Carboxylate, use of carboxylate for producing metal sulfide with nanostructure, method of preparation of metal sulfide with nanostructure, use of liguid medium ,and use of gaseous sulfuric source Download PDF

Info

Publication number
TWI813976B
TWI813976B TW110113632A TW110113632A TWI813976B TW I813976 B TWI813976 B TW I813976B TW 110113632 A TW110113632 A TW 110113632A TW 110113632 A TW110113632 A TW 110113632A TW I813976 B TWI813976 B TW I813976B
Authority
TW
Taiwan
Prior art keywords
acid
nanostructure
metal sulfide
preparing
carboxylate
Prior art date
Application number
TW110113632A
Other languages
Chinese (zh)
Other versions
TW202241837A (en
Inventor
謝賢德
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to TW110113632A priority Critical patent/TWI813976B/en
Publication of TW202241837A publication Critical patent/TW202241837A/en
Application granted granted Critical
Publication of TWI813976B publication Critical patent/TWI813976B/en

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A carboxylate, a use of a carboxylate for producing metal sulfide with nanostructure, a method of preparation of metal sulfide with nanostructure, a use of liquid medium, and a use of gaseous sulfuric source are provided. The carboxylate is represented by formula (I), wherein R 1, R 2, and R 3are linear alkyl groups, branched alkyl groups, or hydrogen, x is an integer between 1 and3, M is a transition metal.

Description

羧酸鹽、其作為製備具奈米結構金屬硫化物之用途、具奈米結構金屬硫化物之製備方法、液態媒介之用途、以及氣態硫源之用途Carboxylate, its use as a preparation method of metal sulfide with nanostructure, preparation method of metal sulfide with nanostructure, use of liquid medium, and use of gaseous sulfur source

本發明關於一種羧酸鹽、其作為製備具奈米結構金屬硫化物之用途、具奈米結構金屬硫化物之製備方法、液態媒介之用途、以及氣態硫源之用途。The present invention relates to a carboxylate, its use as a preparation method of metal sulfide with nanostructure, the preparation method of metal sulfide with nanostructure, the use of liquid medium, and the use of gaseous sulfur source.

具奈米結構之半導體材料之習知製造方法包含 (一)Top-down 及(二)Bottom up 兩大技術領域。(一)Top-down 主要採取機械方式,將材料透過高壓、高速等研磨方式使其尺寸逐漸縮小,此類技術主要缺失為所製備的奈米粉體之尺寸分佈大、幾何型態均勻性較差、粉體間即易產生聚集之現象,因此在實際應用上有其限制。(二)Bottom-up 為奈米粉體製備之主流技術,相較於上述Top-down方法可較精確控制奈米材料之各項條件。Conventional manufacturing methods of semiconductor materials with nanostructures include two major technical fields: (1) Top-down and (2) Bottom up. (1) Top-down mainly uses mechanical methods to gradually reduce the size of the material through high-pressure, high-speed and other grinding methods. The main shortcomings of this technology are the large size distribution and poor geometric uniformity of the prepared nanopowders. The phenomenon of aggregation between powders is easy to occur, so there are limitations in practical application. (2) Bottom-up is the mainstream technology for nanopowder preparation. Compared with the above-mentioned Top-down method, it can control various conditions of nanomaterials more accurately.

Bottom-up 可再區分為(1)氣相法、(2)固相法、(3)液相法等三大類別技術領域。(1)氣相法包含氣-液-固Vapor-liquid-solid, VLS)法、化學氣相沈積(Chemical vapor deposition, CVD)、熱蒸鍍(Thermal evaporation)等,雖可精確控制奈米材料之成長速度、型態及尺寸,但其主要缺失為合成環境條件較嚴苛,包含價格高昂設備、高真空環境、高純度金屬前趨物,因此製備成本高昂。(2)固相法不使用溶劑,但須在高溫環境下裂解金屬前驅物,該前驅物之化學組成須包含金屬、硫兩種元素,但其限制為前趨物來源種類較少、取得不易且昂貴。(3)液相法又稱濕式化學法,製造過程使用溶劑或稱液態媒介其特點為金屬前趨物、溶劑、保護劑的選擇具有多樣性,可藉由改變反應物濃度、溫度、時間等條件而製備各種奈米結構金屬硫化物,也具有較佳奈米尺寸均勻性及分散性。Bottom-up can be further divided into three major categories of technical fields: (1) gas phase method, (2) solid phase method, and (3) liquid phase method. (1) Vapor phase methods include Vapor-liquid-solid (VLS) method, chemical vapor deposition (CVD), thermal evaporation (Thermal evaporation), etc., although nanomaterials can be precisely controlled The growth rate, shape and size, but its main shortcoming is that the synthesis environmental conditions are relatively harsh, including expensive equipment, high vacuum environment, and high-purity metal precursors, so the preparation cost is high. (2) The solid-phase method does not use solvents, but must crack the metal precursor in a high-temperature environment. The chemical composition of the precursor must include metal and sulfur, but its limitation is that the source of the precursor is small and difficult to obtain. And expensive. (3) The liquid phase method is also called the wet chemical method. The manufacturing process uses solvents or liquid media. It is characterized by diverse choices of metal precursors, solvents, and protective agents. It can be changed by changing the concentration, temperature, and time of the reactants. Various nanostructured metal sulfides are prepared under the same conditions, and also have better nanometer size uniformity and dispersion.

然而,濕式化學法製備具奈米結構金屬硫化物之先前技術,其限制須在較高的反應溫度,先前技術甚至須達400°C,其原因在於(a)固態金屬源通常採用金屬氧化物(例如cadmium oxide,CdO)、無機金屬鹽類(例如zinc chloride,copper chloride、cadmium chloride)、乙醯丙酮金屬鹽(例如copper acetylacetone)、硫醇金屬鹽類(例如copper dodecanethiolate)、直鏈烷基羧酸金屬鹽類(例如copperoleate),在液相中須達高溫條件才能溶解、裂解產生金屬離子;(b)液態、固態硫源通常採用硫醇(例如octanethiol、dodecanethiol、octadecanethiol)、硫粉(S) 、二硫化碳(carbon disulfide)、二乙基二硫代氨基甲酸铵(ammonium diethyldithiocarbamate)、硫乙醯胺(thioacetamide)、烷基硫醇等,在液相中須達高溫條件下才能裂解產生硫離子;(c)液態媒介通常採用高沸點溶劑,例如9-十八烯胺(tri-n-octylphosphine,沸點約348°C)、三辛胺(trioctylamine,沸點約365°C)、三正辛基氧化磷(tri-n-octylphosphine oxide,沸點約411°C)、十六胺(hexadecylamine,沸點約330°C)、十二硫醇(dodecanethiol,沸點約266°C),方能提供高溫合成環境;(d)反應完成後須於液態媒介中添加反溶劑(如乙醇、丙酮等),使奈米結構金屬硫化物從液態媒介中沉澱,再經過濾或離心、潤洗(如乙醇、丙酮等)、乾燥等多道程序,方能取得具奈米結構金屬硫化物產物。However, the previous technology for preparing nanostructured metal sulfide by wet chemical method is limited to higher reaction temperature, which even needs to reach 400°C. The reason is that (a) the solid metal source usually uses metal oxidation Materials (such as cadmium oxide, CdO), inorganic metal salts (such as zinc chloride, copper chloride, cadmium chloride), acetylacetone metal salts (such as copper acetylacetone), thiol metal salts (such as copper dodecanethiolate), linear alkanes Carboxylic acid metal salts (such as copperoleate) must reach high temperature conditions in the liquid phase to dissolve and crack to produce metal ions; (b) Liquid and solid sulfur sources usually use mercaptans (such as octanethiol, dodecanethiol, octadecanethiol), sulfur powder ( S), carbon disulfide, ammonium diethyldithiocarbamate, thioacetamide, alkyl mercaptans, etc., must reach high temperatures in the liquid phase to produce sulfide ions. ; (c) Liquid media usually use high boiling point solvents, such as 9-octylamine (tri-n-octylphosphine, boiling point about 348°C), trioctylamine (trooctylamine, boiling point about 365°C), tri-n-octylamine Phosphorus oxide (tri-n-octylphosphine oxide, boiling point is about 411°C), hexadecylamine (boiling point is about 330°C), and dodecanethiol (boiling point is about 266°C) to provide a high-temperature synthesis environment ; (d) After the reaction is completed, an antisolvent (such as ethanol, acetone, etc.) must be added to the liquid medium to precipitate the nanostructured metal sulfide from the liquid medium, and then filtered or centrifuged, rinsed (such as ethanol, acetone, etc.) ), drying and other multiple procedures to obtain metal sulfide products with nanostructures.

本發明之目的在於提供一種羧酸鹽,可在低溫(小於或等於150℃)溶解於低沸點(小於或等於125℃)有機溶劑。The object of the present invention is to provide a carboxylate that can be dissolved in a low boiling point (less than or equal to 125°C) organic solvent at low temperature (less than or equal to 150°C).

本發明之另一目的在於提供一種羧酸鹽作為製備具奈米結構金屬硫化物之用途,可在低溫製備具奈米結構金屬硫化物。Another object of the present invention is to provide a carboxylate for use in preparing metal sulfides with nanostructures, which can prepare metal sulfides with nanostructures at low temperatures.

本發明之另一目的在於提供一種具奈米結構金屬硫化物之製備方法,可在低溫進行。Another object of the present invention is to provide a method for preparing metal sulfide with nanostructure, which can be carried out at low temperature.

本發明之羧酸鹽,以下式(I)表示, 式(I); 其中, R 1、R 2、R 3為含1-22 碳數之直鏈型烷基、分支型烷基或氫,X為介於1至3之間的整數,M為過渡金屬。 The carboxylate salt of the present invention is represented by the following formula (I), Formula (I); wherein, R 1 , R 2 , R 3 are linear alkyl groups, branched alkyl groups or hydrogen containing 1-22 carbon atoms, X is an integer between 1 and 3, and M is Transition metals.

在本發明的一實施例中,R 1及R 2分別為具有一個叔丁基的含1-22 碳數之直鏈型烷基或分支型烷基。 In one embodiment of the present invention, R 1 and R 2 are respectively a linear or branched alkyl group having a carbon number of 1-22 and having a tert-butyl group.

在本發明的一實施例中,R 1及R 2一起為具有一個叔丁基的含2-22 碳數之環烷基。 In one embodiment of the present invention, R 1 and R 2 together are a cycloalkyl group having a carbon number of 2-22 and having a tert-butyl group.

在本發明的一實施例中,M不為銀或鈀。In one embodiment of the invention, M is not silver or palladium.

本發明具奈米結構金屬硫化物之製備方法,依序包含以下步驟:(A1000)提供前述之羧酸鹽;(A2000)將羧酸鹽及液態媒介混合溶解,以形成液態反應物漿料;(A3000)將液態反應漿料與氣態硫源混合並反應,以生成具奈米結構金屬硫化物。The preparation method of metal sulfide with nanostructure of the present invention includes the following steps in sequence: (A1000) providing the aforementioned carboxylate; (A2000) mixing and dissolving the carboxylate and liquid medium to form a liquid reactant slurry; (A3000) Mix and react the liquid reaction slurry with the gaseous sulfur source to generate nanostructured metal sulfides.

在本發明的一實施例中,步驟A1000依序包含以下步驟:(A1100)將支鏈烷基羧酸、鈉鹽或鉀鹽、以及溶劑混合形成第一液態漿料,其中羧酸以下式(II)表示, 式(II); 其中, R 1、R 2、R 3為含1-22 碳數之直鏈型烷基、分支型烷基或氫,該溶劑為水、甲醇、乙醇、丙酮或其混合物;(A1200)將第一液態漿料與水溶性過渡金屬M之鹽混合並反應,以形成羧酸鹽。 In one embodiment of the present invention, step A1000 includes the following steps in sequence: (A1100) Mix branched alkyl carboxylic acid, sodium salt or potassium salt, and solvent to form a first liquid slurry, wherein the carboxylic acid is of the following formula ( II) means, Formula (II); wherein, R 1 , R 2 and R 3 are linear alkyl groups, branched alkyl groups or hydrogen containing 1-22 carbon atoms, and the solvent is water, methanol, ethanol, acetone or a mixture thereof; (A1200) The first liquid slurry is mixed and reacted with a salt of a water-soluble transition metal M to form a carboxylate salt.

在本發明的一實施例中,液態媒介為沸點小於或等於125℃之有機溶劑。In one embodiment of the present invention, the liquid medium is an organic solvent with a boiling point less than or equal to 125°C.

在本發明的一實施例中,有機溶劑為含4-12 碳數之碳氫化合物、氯仿、四氫呋喃或其混合物。In one embodiment of the present invention, the organic solvent is a hydrocarbon containing 4-12 carbon atoms, chloroform, tetrahydrofuran or a mixture thereof.

在本發明的一實施例中,有機溶劑為己烷、環己烷、庚烷、 環庚烷、辛烷、甲苯、二甲苯、或其混合物。In one embodiment of the present invention, the organic solvent is hexane, cyclohexane, heptane, cycloheptane, octane, toluene, xylene, or mixtures thereof.

在本發明的一實施例中,步驟A2000進一步包含將羧酸鹽、液態媒介與分散劑混合。In an embodiment of the present invention, step A2000 further includes mixing a carboxylate, a liquid medium and a dispersant.

在本發明的一實施例中,分散劑為具有烷基之胺類、羧酸類、硫醇類,烷基含1-22 碳數。In one embodiment of the present invention, the dispersant is an amine, a carboxylic acid, or a mercaptan having an alkyl group, and the alkyl group contains 1-22 carbon atoms.

在本發明的一實施例中,分散劑為丁胺、第二-丁胺、異丁胺、第三丁胺、3-甲氧丙胺、(2-甲基丁基)胺、1, 2-二甲基丙胺、1-乙基丙胺、2-胺基戊烷、戊胺、異戊胺、第三戊胺、3-乙氧基丙胺、3, 3-二甲基丁胺、己胺、3-異丙氧基丙胺、庚胺、2-庚胺、1, 4-二甲基戊胺、1, 5-二甲基己胺、1-甲基庚胺、2-乙基-1-己胺、辛胺、1, 1, 3, 3-四甲基丁胺、壬胺、癸胺、十二胺、十三胺、十四胺、十六胺、 油胺、十八胺、己酸、庚酸 辛酸、壬酸、癸酸、十一酸、十二酸、十三酸、十四酸、十五酸、十六酸、十七酸、硬脂酸、十九酸、二十酸、二十一酸、二十二酸、二十三酸、二十四酸、二十六酸、8-甲基壬酸、1 1-甲基月桂酸、12-甲基十三酸、1 2-甲基十四酸、13-甲基十四酸、異十六酸、1 4-甲基十六酸、 1 5-甲基十六酸、1 6-甲基十七酸、17-甲基硬脂酸、18-甲基十九酸、2, 6, 10, 14-四甲十六烷酸、19-甲基二十酸或2,2,4,8,10,10- 六甲基十一烷-5- 羧酸(2, 2, 4, 8, 10, 10-六甲基十一烷-5-羧)、丙硫醇、2-甲基-1-丙硫醇、丁硫醇、2-甲基-1-丁硫醇、2-丁硫醇、2,3-丁雙硫醇、3-甲基-1-丁硫醇、戊硫醇、己硫醇、庚硫醇、辛硫醇、十硫醇、十一硫醇、十二硫醇、十四烷基硫醇、十五烷基硫醇、十八烷基硫醇、二十烷基硫醇或二十二烷基硫醇。In one embodiment of the invention, the dispersant is butylamine, second-butylamine, isobutylamine, third-butylamine, 3-methoxypropylamine, (2-methylbutyl)amine, 1,2- Dimethylpropylamine, 1-ethylpropylamine, 2-aminopentane, pentylamine, isopentylamine, tertiarypentylamine, 3-ethoxypropylamine, 3, 3-dimethylbutylamine, hexylamine, 3-isopropoxypropylamine, heptylamine, 2-heptylamine, 1, 4-dimethylpentylamine, 1, 5-dimethylhexylamine, 1-methylheptylamine, 2-ethyl-1- Hexylamine, octylamine, 1, 1, 3, 3-tetramethylbutylamine, nonylamine, decylamine, dodecaamine, tridecaamine, tetradecalyamine, hexadecylamine, oleylamine, octadecylamine, hexylamine Acid, caprylic acid, nonanoic acid, capric acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, stearic acid, nonadecaic acid, 20 Acid, eicosanoid acid, behenic acid, eicosanoid acid, eicosanoid acid, hexadecanoic acid, 8-methylnonanoic acid, 1 1-methyllauric acid, 12-methyltridecanoic acid, 1 2-methyltetradecanoic acid, 13-methyltetradecanoic acid, isohexadecanoic acid, 1 4-methylhexadecanoic acid, 1 5-methylhexadecanoic acid, 1 6-methylhexadecanoic acid, 17 -Methyl stearic acid, 18-methylnonadecanoic acid, 2, 6, 10, 14-tetramethylhexadecanoic acid, 19-methyl eicosanoic acid or 2,2,4,8,10,10- Hexamethylundecan-5-carboxylic acid (2, 2, 4, 8, 10, 10-hexamethylundecane-5-carboxylic acid), propanethiol, 2-methyl-1-propanethiol , Butanethiol, 2-methyl-1-butanethiol, 2-butanethiol, 2,3-butanediol, 3-methyl-1-butanethiol, pentanethiol, hexanethiol, Heptylmercaptan, Octylmercaptan, Decanethiol, Undecylmercaptan, Dodecylmercaptan, Tetradecylmercaptan, Pentadecylmercaptan, Octadecylmercaptan, Eicosylmercaptan or Behenylmercaptan.

在本發明的一實施例中,分散劑溶解於液態媒介之濃度為小於或等於5000 mM。In one embodiment of the present invention, the concentration of the dispersant dissolved in the liquid medium is less than or equal to 5000 mM.

在本發明的一實施例中,氣態硫源包含一硫化氫及一惰性氣體,該惰性氣體包含氮氣、氦氣、二氧化碳。In one embodiment of the present invention, the gaseous sulfur source includes hydrogen sulfide and an inert gas, and the inert gas includes nitrogen, helium, and carbon dioxide.

在本發明的一實施例中,步驟A3000包含將該液態反應漿料與該氣態硫源在40℃~150℃之溫度混合並反應。In one embodiment of the present invention, step A3000 includes mixing and reacting the liquid reaction slurry and the gaseous sulfur source at a temperature of 40°C to 150°C.

在本發明的一實施例中,具奈米結構金屬硫化物之係於小於或等於150℃之溫度進行。In one embodiment of the present invention, the metal sulfide with nanostructure is processed at a temperature less than or equal to 150°C.

在本發明的一實施例中,具奈米結構金屬硫化物之製備方法進一步包含:(A4000)將具奈米結構金屬硫化物及液態媒介分離。In one embodiment of the present invention, the method for preparing a metal sulfide with a nanostructure further includes: (A4000) separating the metal sulfide with a nanostructure and a liquid medium.

本發明的液態媒介之用途,液態媒介與前述之羧酸鹽混合,以形成製備具奈米結構金屬硫化物之液態反應物漿料,其中該液態媒介為沸點小於或等於125℃之有機溶劑。The use of the liquid medium of the present invention is to mix the liquid medium with the aforementioned carboxylate to form a liquid reactant slurry for preparing metal sulfides with nanostructures, wherein the liquid medium is an organic solvent with a boiling point less than or equal to 125°C.

本發明的氣態硫源之用途,氣態硫源與前述之羧酸鹽反應,以生成具奈米結構金屬硫化物。In the use of the gaseous sulfur source of the present invention, the gaseous sulfur source reacts with the aforementioned carboxylate to generate a metal sulfide with a nanostructure.

本發明之羧酸鹽,以下式(I)表示, 式(I); 其中, R 1、R 2、R 3為含1-22 碳數之直鏈型烷基、分支型烷基或氫,X為介於1至3之間的整數,M為過渡金屬。本發明之羧酸鹽可在低溫溶解於低沸點溶劑,更具體而言,本發明之羧酸鹽具有支鏈,可在小於或等於150℃之操作溫度溶解於沸點小於或等於125℃之溶劑。 The carboxylate salt of the present invention is represented by the following formula (I), Formula (I); wherein, R 1 , R 2 , R 3 are linear alkyl groups, branched alkyl groups or hydrogen containing 1-22 carbon atoms, X is an integer between 1 and 3, and M is Transition metals. The carboxylic acid salt of the present invention can be dissolved in a low-boiling point solvent at low temperature. More specifically, the carboxylic acid salt of the present invention has a branched chain and can be dissolved in a solvent with a boiling point of less than or equal to 125°C at an operating temperature of less than or equal to 150°C. .

進一步而言,在一實施例中,R 1及R 2分別為具有一個叔丁基的含1-22 碳數之直鏈型烷基或分支型烷基。在不同實施例中,R 1及R 2一起為具有一個叔丁基的含2-22 碳數之環烷基。在一實施例中,M不為銀或鈀。 Furthermore, in one embodiment, R 1 and R 2 are respectively a linear or branched alkyl group having a carbon number of 1-22 and having a tert-butyl group. In different embodiments, R 1 and R 2 together are a cycloalkyl group having a carbon number of 2-22 and having a tert-butyl group. In one embodiment, M is not silver or palladium.

如圖1A所示之實施例流程示意圖,本發明具奈米結構金屬硫化物之製備方法,依序包含例如以下步驟。As shown in the schematic flow chart of the embodiment shown in FIG. 1A , the method for preparing a metal sulfide with a nanostructure of the present invention includes, for example, the following steps in sequence.

步驟A1000(金屬源之製備步驟),提供前述之羧酸鹽(金屬源)。更具體而言,步驟A1000依序包含例如以下步驟。Step A1000 (preparation step of metal source) provides the aforementioned carboxylate (metal source). More specifically, step A1000 includes, for example, the following steps in sequence.

步驟A1100,將支鏈烷基羧酸、鈉鹽或鉀鹽、以及溶劑混合形成第一液態漿料,其中羧酸以下式(II)表示, 式(II); 其中, R 1、R 2、R 3為含1-22 碳數之直鏈型烷基、分支型烷基或氫,該溶劑為水、甲醇、乙醇、丙酮或其混合物。更具體而言,在此步驟中,支鏈烷基羧酸與鈉鹽或鉀鹽進行陽離子交換反應並形成第一液態漿料。 Step A1100: Mix branched alkyl carboxylic acid, sodium salt or potassium salt, and solvent to form a first liquid slurry, wherein the carboxylic acid is represented by the following formula (II), Formula (II); wherein, R 1 , R 2 and R 3 are linear alkyl groups, branched alkyl groups or hydrogen containing 1 to 22 carbon atoms, and the solvent is water, methanol, ethanol, acetone or a mixture thereof. More specifically, in this step, the branched alkyl carboxylic acid undergoes a cation exchange reaction with the sodium salt or potassium salt and forms a first liquid slurry.

步驟A1200,將第一液態漿料與水溶性過渡金屬M之鹽混合並反應,以形成羧酸鹽。更具體而言,在此步驟中,第一液態漿料與過渡金屬M之鹽進行陽離子交換反應,形成第二液態漿料,而後可再經由例如過濾等程序將液體排除,以獲得羧酸鹽。Step A1200, mix and react the first liquid slurry and the salt of the water-soluble transition metal M to form a carboxylate. More specifically, in this step, the first liquid slurry and the salt of the transition metal M undergo a cation exchange reaction to form a second liquid slurry, and then the liquid can be removed through procedures such as filtration to obtain the carboxylate salt. .

步驟A2000(液態反應物漿料之製備步驟),將羧酸鹽及液態媒介混合,以形成液態反應物漿料。在一實施例中,有機溶劑為含4-12 碳數之碳氫化合物、氯仿、四氫呋喃或其混合物。在另一實施例中,有機溶劑為己烷、環己烷、庚烷、 環庚烷、辛烷、甲苯、二甲苯、或其混合物。更具體而言,液態媒介為沸點小於或等於125℃之有機溶劑。其中,由於羧酸鹽具有支鏈,可在小於或等於150℃之操作溫度溶解於沸點小於或等於125℃之液態媒介,而液態媒介沸點小於或等於125℃,可利用低溫蒸餾等方式回收再利用,因此在操作上更為便利。以不同角度觀之,液態媒介與羧酸鹽混合,用於形成製備具奈米結構金屬硫化物之液態反應物漿料。Step A2000 (preparation step of liquid reactant slurry), mix carboxylate and liquid medium to form liquid reactant slurry. In one embodiment, the organic solvent is a hydrocarbon containing 4-12 carbon atoms, chloroform, tetrahydrofuran or a mixture thereof. In another embodiment, the organic solvent is hexane, cyclohexane, heptane, cycloheptane, octane, toluene, xylene, or mixtures thereof. More specifically, the liquid medium is an organic solvent with a boiling point less than or equal to 125°C. Among them, because the carboxylate has a branched chain, it can be dissolved in a liquid medium with a boiling point of less than or equal to 125°C at an operating temperature of less than or equal to 150°C. The boiling point of the liquid medium is less than or equal to 125°C, and can be recycled by low-temperature distillation or other methods. Utilization makes operation more convenient. Viewed from a different angle, the liquid medium is mixed with the carboxylate to form a liquid reactant slurry for preparing metal sulfides with nanostructures.

另一方面,步驟A2000進一步包含將羧酸鹽、液態媒介與分散劑混合。換言之,在步驟A2000中,可加入分散劑與羧酸鹽、液態媒介混合,促進羧酸鹽於液態媒介中之溶解。其中,分散劑溶解於液態媒介之濃度較佳為小於或等於5000 mM。在一實施例中,分散劑為具有烷基之胺類、羧酸類、硫醇類,烷基含1-22 碳數。在另一實施例中,分散劑為丁胺、第二-丁胺、異丁胺、第三丁胺、3-甲氧丙胺、(2-甲基丁基)胺、1, 2-二甲基丙胺、1-乙基丙胺、2-胺基戊烷、戊胺、異戊胺、第三戊胺、3-乙氧基丙胺、3, 3-二甲基丁胺、己胺、3-異丙氧基丙胺、庚胺、2-庚胺、1, 4-二甲基戊胺、1, 5-二甲基己胺、1-甲基庚胺、2-乙基-1-己胺、辛胺、1, 1, 3, 3-四甲基丁胺、壬胺、癸胺、十二胺、十三胺、十四胺、十六胺、 油胺、十八胺、己酸、庚酸 辛酸、壬酸、癸酸、十一酸、十二酸、十三酸、十四酸、十五酸、十六酸、十七酸、硬脂酸、十九酸、二十酸、二十一酸、二十二酸、二十三酸、二十四酸、二十六酸、8-甲基壬酸、1 1-甲基月桂酸、12-甲基十三酸、1 2-甲基十四酸、13-甲基十四酸、異十六酸、1 4-甲基十六酸、 1 5-甲基十六酸、1 6-甲基十七酸、17-甲基硬脂酸、18-甲基十九酸、2, 6, 10, 14-四甲十六烷酸、19-甲基二十酸或2,2,4,8,10,10- 六甲基十一烷-5- 羧酸(2, 2, 4, 8, 10, 10-六甲基十一烷-5-羧)、丙硫醇、2-甲基-1-丙硫醇、丁硫醇、2-甲基-1-丁硫醇、2-丁硫醇、2,3-丁雙硫醇、3-甲基-1-丁硫醇、戊硫醇、己硫醇、庚硫醇、辛硫醇、十硫醇、十一硫醇、十二硫醇、十四烷基硫醇、十五烷基硫醇、十八烷基硫醇、二十烷基硫醇或二十二烷基硫醇。On the other hand, step A2000 further includes mixing the carboxylate salt, the liquid vehicle and the dispersant. In other words, in step A2000, a dispersant can be added to mix with the carboxylate and the liquid medium to promote the dissolution of the carboxylate in the liquid medium. Among them, the concentration of the dispersant dissolved in the liquid medium is preferably less than or equal to 5000 mM. In one embodiment, the dispersant is an amine, a carboxylic acid, or a mercaptan having an alkyl group, and the alkyl group contains 1-22 carbon atoms. In another embodiment, the dispersant is butylamine, second-butylamine, isobutylamine, third-butylamine, 3-methoxypropylamine, (2-methylbutyl)amine, 1,2-dimethylamine Propylamine, 1-ethylpropylamine, 2-aminopentane, pentylamine, isopentylamine, tertiarypentylamine, 3-ethoxypropylamine, 3, 3-dimethylbutylamine, hexylamine, 3- Isopropoxypropylamine, heptylamine, 2-heptylamine, 1, 4-dimethylpentylamine, 1, 5-dimethylhexylamine, 1-methylheptylamine, 2-ethyl-1-hexylamine , octylamine, 1, 1, 3, 3-tetramethylbutylamine, nonylamine, decylamine, dodecaamine, tridecaamine, tetradecalyamine, hexadecylamine, oleylamine, stearylamine, hexanoic acid, Octanoic acid, nonanoic acid, capric acid, undecanoic acid, dodecanoic acid, tridecanoic acid, myristanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, stearic acid, nonadecanoic acid, eicosanoic acid, Heconic acid, behenic acid, hexaconic acid, icosanoic acid, hexacosonic acid, 8-methylnonanoic acid, 1 1-methyllauric acid, 12-methyltridecanoic acid, 1 2 -Methyl myristanoic acid, 13-methyltetradecanoic acid, isohexadecanoic acid, 1 4-methyl hexadecanoic acid, 1 5-methyl hexadecanoic acid, 1 6-methyl heptadecanoic acid, 17-methyl Stearic acid, 18-methylnonadecanoic acid, 2, 6, 10, 14-tetramethylhexadecanoic acid, 19-methyleicosanoids or 2,2,4,8,10,10-hexamethyl Undecane-5-carboxylic acid (2, 2, 4, 8, 10, 10-hexamethylundecane-5-carboxylic acid), propanethiol, 2-methyl-1-propanethiol, butyl Thiol, 2-methyl-1-butanethiol, 2-butanethiol, 2,3-butanedithiol, 3-methyl-1-butanethiol, pentylthiol, hexanethiol, heptylthiol alcohol, octyl mercaptan, deca mercaptan, undeca mercaptan, dodecyl mercaptan, tetradecyl mercaptan, pentadecyl mercaptan, octadecyl mercaptan, eicosyl mercaptan or eicosyl mercaptan. Dialkylmercaptans.

步驟A3000(具奈米結構金屬硫化物之生成步驟),將液態反應漿料與氣態硫源混合並反應,以生成具奈米結構金屬硫化物。更具體而言,氣態硫源包含硫化氫及惰性氣體,惰性氣體包含氮氣、氦氣、二氧化碳。在一實施例中,液態反應漿料與氣態硫源在40℃~150℃之溫度混合並反應。以不同角度觀之,氣態硫源與羧酸鹽反應,用於生成具奈米結構金屬硫化物。Step A3000 (generation step of metal sulfide with nanostructure), the liquid reaction slurry and the gaseous sulfur source are mixed and reacted to generate metal sulfide with nanostructure. More specifically, the gaseous sulfur source includes hydrogen sulfide and inert gases, and the inert gases include nitrogen, helium, and carbon dioxide. In one embodiment, the liquid reaction slurry and the gaseous sulfur source are mixed and reacted at a temperature of 40°C to 150°C. Viewed from a different perspective, the gaseous sulfur source reacts with the carboxylate to generate nanostructured metal sulfides.

進一步而言,當氣體硫源溶解進入液態媒介時,金屬源之硫化反應啟動,其中,會分解產生具奈米結構之金屬硫化物及分支鏈烷基之羧酸根游離配體,具奈米結構之金屬硫化物其外側表面與游離配體進行結合,而形成穩定具奈米結構金屬硫化物,而不會產生聚集現象,形成含有具奈米結構金屬硫化物之液態漿料。在有添加的分散劑的情況下,具奈米結構之金屬硫化物其外側表面與游離配體、添加的分散劑進行結合,而形成穩定具奈米結構金屬硫化物,而不會產生聚集現象,形成含有具奈米結構金屬硫化物之液態漿料。由於此液態漿料包含之前述液態媒介具有低沸點特性,可於低溫下將液態媒介除去並回收,並作為另一批次所使用之液態媒介,殘餘物即為具奈米結構金屬硫化物之固態產物。分離液態媒介使其回收之方法,可包含但不限於加熱冷凝、常壓蒸餾、真空蒸餾等。Furthermore, when the gaseous sulfur source dissolves into the liquid medium, the sulfidation reaction of the metal source starts, which decomposes to produce metal sulfides with nanostructures and carboxylate free ligands of branched chain alkyl groups with nanostructures. The outer surface of the metal sulfide is combined with free ligands to form a stable metal sulfide with a nanostructure without aggregation, forming a liquid slurry containing the metal sulfide with a nanostructure. In the presence of an added dispersant, the outer surface of the nanostructured metal sulfide combines with the free ligands and the added dispersant to form a stable nanostructured metal sulfide without aggregation. , forming a liquid slurry containing metal sulfides with nanostructures. Since this liquid slurry contains the aforementioned liquid medium and has a low boiling point, the liquid medium can be removed and recovered at low temperature and used as a liquid medium for another batch. The residue is a nanostructured metal sulfide. Solid products. Methods for separating the liquid medium for recovery may include, but are not limited to, heating and condensation, atmospheric distillation, vacuum distillation, etc.

基於上述,本發明具奈米結構金屬硫化物之製備方法係於小於或等於150℃之溫度進行,在操作上更為便利。以下進一步對本發明提出實施例說明。Based on the above, the method for preparing the metal sulfide with nanostructure of the present invention is carried out at a temperature of less than or equal to 150°C, which is more convenient in operation. The following further provides examples to illustrate the present invention.

羧酸鹽之製備Preparation of carboxylic acid salts

實施例甲   合成2,2,4,8,10,10- 六甲基十一烷-5- 羧酸金屬鹽Example A Synthesis of 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid metal salt

在此實施例中,本發明之羧酸鹽可採取具有分支鏈烷基之羧酸官能基及過渡金屬離子進行製備。2,2,4,8,10,10- 六甲基十一烷-5- 羧酸具有分支鏈烷基, 其中R 1=C 9H 18、R 2=C 7H 15、R 3=H。以2.85 g 2,2,4,8,10,10- 六甲基十一烷-5- 羧酸(10mmol)、0.4 g 氫氧化鈉(10 mmol)及100 ml 去離子水於70°C 下,均勻混合並攪拌30 分鐘後,形成含2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鈉鹽之透明水溶液。 In this embodiment, the carboxylate salt of the present invention can be prepared using a carboxylic acid functional group with a branched alkyl group and a transition metal ion. 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid has a branched chain alkyl group, where R 1 =C 9 H 18 , R 2 =C 7 H 15 , R 3 =H . With 2.85 g 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid (10mmol), 0.4g sodium hydroxide (10 mmol) and 100 ml deionized water at 70°C , mixed evenly and stirred for 30 minutes, a transparent aqueous solution containing 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid sodium salt was formed.

將硫酸鋅 (1.44 g,5 mmol) 水溶液逐滴加入上述溶液後,反應1 小時,2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鈉鹽與硫酸鋅水合物進行陽離子交換反應,製備得到2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鋅鹽,其分子式(C 17H 36CO 2) 2Zn,經收集洗滌後,置於於40°C 下乾燥24 小時。2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鎘鹽、鉛鹽、鈷鹽、鎳鹽、錳鹽、銅鹽之製備方法與2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鋅鹽相似,以2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鈉鹽分別與醋酸鎘、硝酸鉛、氯化鈷、硫酸鎳、硫酸錳、硫酸酮進行陽離子交換反應,其產物分別為透明、乳白、白色、藍色、淺綠、棕色、及深綠之2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鎘鹽(C 17H 36CO 2) 2Cd 、2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鉛鹽(C 17H 36CO 2) 2Pb 、2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鈷鹽(C 17H 36CO 2) 2Co 、2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鎳鹽(C 17H 36CO 2) 2Ni 、2,2,4,8,10,10- 六甲基十一烷-5- 羧酸錳鹽(C 17H 36CO 2) 2Mn 、2,2,4,8,10,10- 六甲基十一烷-5- 羧酸銅鹽(C 17H 36CO 2) 2Cu。其成品外觀如圖1B所示。 After adding zinc sulfate (1.44 g, 5 mmol) aqueous solution dropwise to the above solution, react for 1 hour, 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid sodium salt and zinc sulfate The hydrate undergoes a cation exchange reaction to prepare 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid zinc salt, whose molecular formula is (C 17 H 36 CO 2 ) 2 Zn, which is collected After washing, place to dry at 40°C for 24 hours. The preparation method of 2,2,4,8,10,10-hexamethylundecan-5-carboxylate cadmium salt, lead salt, cobalt salt, nickel salt, manganese salt and copper salt is the same as 2,2,4, 8,10,10-Hexamethylundecan-5-carboxylic acid zinc salt is similar to 2,2,4,8,10,10-hexamethylundecane-5-carboxylic acid sodium salt and acetic acid respectively. Cadmium, lead nitrate, cobalt chloride, nickel sulfate, manganese sulfate, and ketone sulfate undergo cation exchange reactions. The products are transparent, milky white, white, blue, light green, brown, and dark green 2, 2, 4, respectively. 8,10,10-Hexamethylundecan-5-carboxylic acid cadmium salt (C 17 H 36 CO 2 ) 2 Cd, 2,2,4,8,10,10-Hexamethylundecane-5 - Lead carboxylate salt (C 17 H 36 CO 2 ) 2 Pb, 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid cobalt salt (C 17 H 36 CO 2 ) 2 Co, 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid nickel salt (C 17 H 36 CO 2 ) 2 Ni, 2,2,4,8,10,10- Hexamethylundecane-5-carboxylic acid manganese salt (C 17 H 36 CO 2 ) 2 Mn, 2,2,4,8,10,10-hexamethylundecane-5-carboxylic acid copper salt ( C 17 H 36 CO 2 ) 2 Cu. The finished product appearance is shown in Figure 1B.

具奈米結構金屬硫化物之製備Preparation of metal sulfide with nanostructure

本發明之液態反應物漿料與氣態硫源進行混合於反應容器,於低溫條件下,經濕式化學硫化反應後,可製備具奈米結構之金屬硫化物。其中,反應器可以是但不限於100 ml 之雙頸玻璃圓底瓶,並置入磁石。反應器置於含矽油之油浴鍋內加熱。磁力加熱平台與溫度控制器連接,並以熱電偶測量油浴之溫度,以回饋溫控器之溫度設定。該反應器除了可加熱、可控溫、可攪拌,亦具有進/出氣口及進料口。The liquid reactant slurry of the present invention and the gaseous sulfur source are mixed in a reaction vessel, and after wet chemical vulcanization reaction under low temperature conditions, metal sulfides with nanostructures can be prepared. The reactor can be, but is not limited to, a 100 ml double-necked glass round-bottomed bottle with a magnet placed inside it. The reactor was heated in an oil bath containing silicone oil. The magnetic heating platform is connected to the temperature controller, and a thermocouple is used to measure the temperature of the oil bath to feed back the temperature setting of the thermostat. In addition to being able to be heated, temperature controlled, and stirred, the reactor also has air inlets/outlets and a feed port.

實施例2   具奈米結構硫化鋅之製備Example 2 Preparation of zinc sulfide with nanostructure

在此實施例中,將10 mM 之2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鋅鹽/甲苯(50 ml)/油胺分散劑(10 mM)置入100 ml 反應器中,以氮氣通入反應器30 分鐘,可排除反應器內部水汽及空氣。溫控器設定至所需反應溫度後,開啟加熱及攪拌功能,轉速設定為300 rpm,使2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鋅鹽溶解,形成液態反應物漿料。油浴溫度達設定之反應溫度後,平衡10 分鐘後,注入10 ml 之硫化氫氣體至反應器中開始進行反應。第一組進行40°C 硫化反應,反應時間2 小時;第二組進行100°C 硫化反應,反應時間8 小時。將兩組反應產物液體進行真空蒸餾,所得到之固態產物為具奈米結構硫化鋅。第一組、第二組以不同反應溫度及反應時間下所製備之具奈米結構硫化鋅,其穿透式電子顯微鏡觀察相片如圖2A、2B所示,標尺為50 奈米。In this example, 10 mM of 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid zinc salt/toluene (50 ml)/oleylamine dispersant (10 mM) Place it into a 100 ml reactor and pass nitrogen into the reactor for 30 minutes to eliminate water vapor and air inside the reactor. After the temperature controller is set to the required reaction temperature, turn on the heating and stirring functions, and set the rotation speed to 300 rpm to dissolve 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid zinc salt , forming a liquid reactant slurry. After the oil bath temperature reaches the set reaction temperature, and after balancing for 10 minutes, inject 10 ml of hydrogen sulfide gas into the reactor to start the reaction. The first group was subjected to a 40°C vulcanization reaction with a reaction time of 2 hours; the second group was subjected to a 100°C vulcanization reaction with a reaction time of 8 hours. The two sets of reaction product liquids are vacuum distilled, and the solid product obtained is zinc sulfide with nanostructure. The transmission electron microscope observation photos of the first and second groups of zinc sulfide with nanostructures prepared at different reaction temperatures and reaction times are shown in Figures 2A and 2B, and the scale bar is 50 nanometers.

實施例3   具奈米結構硫化鎘之製備Example 3 Preparation of cadmium sulfide with nanostructure

在此實施例中,將5 mM 之2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鎘鹽/二甲苯(50 ml)/十六酸(10 mM)置入100 ml 反應器中,以氮氣通入反應器30 分鐘,可排除反應器內部水汽及空氣。溫控器設定至所需反應溫度後,開啟加熱及攪拌功能,轉速設定為300 rpm,使2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鎘鹽溶解,形成液態反應物漿料。油浴溫度達設定之反應溫度後,平衡10 分鐘後,注入10 ml 之硫化氫氣體至反應器中開始進行反應。第一組進行40°C 硫化反應,反應時間2 小時;第二組進行80°C 硫化反應,反應時間8 小時;第三組進行120°C 硫化反應,反應時間12 小時。將兩組反應產物液體進行真空蒸餾,所得到之固態產物為具奈米結構硫化鋅。第一組、第二組、第三組以不同反應溫度及反應時間下所製備之具奈米結構硫化鎘,其穿透式電子顯微鏡觀察相片如圖3A、3B、3C所示,標尺為50 奈米。In this example, 5 mM of cadmium salt of 2,2,4,8,10,10-hexamethylundecan-5-carboxylate/xylene (50 ml)/hexadecanoic acid (10 mM) Place it into a 100 ml reactor and pass nitrogen into the reactor for 30 minutes to eliminate water vapor and air inside the reactor. After the temperature controller is set to the required reaction temperature, turn on the heating and stirring functions, and set the rotation speed to 300 rpm to dissolve the cadmium salt of 2,2,4,8,10,10-hexamethylundecan-5-carboxylate. , forming a liquid reactant slurry. After the oil bath temperature reaches the set reaction temperature, and after balancing for 10 minutes, inject 10 ml of hydrogen sulfide gas into the reactor to start the reaction. The first group was subjected to a vulcanization reaction at 40°C, with a reaction time of 2 hours; the second group was subjected to a vulcanization reaction at 80°C, with a reaction time of 8 hours; and the third group was subjected to a 120°C vulcanization reaction, with a reaction time of 12 hours. The two sets of reaction product liquids are vacuum distilled, and the solid product obtained is zinc sulfide with nanostructure. The transmission electron microscope observation photos of the first, second and third groups of cadmium sulfide with nanostructures prepared at different reaction temperatures and reaction times are shown in Figures 3A, 3B and 3C. The scale bar is 50 Nano.

實施例4   具奈米結構硫化鉛之製備Example 4 Preparation of lead sulfide with nanostructure

在此實施例中,將0.5 mM 之2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鉛鹽/甲苯(50 ml)置入100 ml 反應器中,以氮氣通入反應器30 分鐘,可排除反應器內部水汽及空氣。溫控器設定至所需反應溫度後,開啟加熱及攪拌功能,轉速設定為300 rpm,使2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鉛鹽溶解,形成液態反應物漿料。油浴溫度達設定之反應溫度後,平衡10 分鐘後,注入10 ml 之硫化氫氣體至反應器中開始進行60°C 硫化反應,反應時間24 小時。將此組反應產物液體進行真空蒸餾,所得到之固態產物為具奈米結構硫化鉛,其穿透式電子顯微鏡觀察相片如圖4所示,標尺為50 奈米。In this example, 0.5 mM of lead salt of 2,2,4,8,10,10-hexamethylundecan-5-carboxylate/toluene (50 ml) was placed in a 100 ml reactor to Pour nitrogen into the reactor for 30 minutes to eliminate water vapor and air inside the reactor. After the temperature controller is set to the required reaction temperature, turn on the heating and stirring functions, and set the rotation speed to 300 rpm to dissolve the 2,2,4,8,10,10-hexamethylundecan-5-carboxylate lead salt. , forming a liquid reactant slurry. After the oil bath temperature reaches the set reaction temperature, and after balancing for 10 minutes, inject 10 ml of hydrogen sulfide gas into the reactor to start the 60°C sulfurization reaction, with a reaction time of 24 hours. The reaction product liquid of this group is vacuum distilled, and the solid product obtained is lead sulfide with a nanostructure. The transmission electron microscope observation photo is shown in Figure 4, and the scale is 50 nanometers.

實施例5   具奈米結構硫化鈷之製備Example 5 Preparation of cobalt sulfide with nanostructure

在此實施例中,將5 mM 之2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鈷鹽/甲苯(50 ml)/十二胺(10 mM)置入100 ml 反應器中,以氮氣通入反應器30 分鐘,可排除反應器內部水汽及空氣。溫控器設定至所需反應溫度後,開啟加熱及攪拌功能,轉速設定為300 rpm,使2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鈷鹽溶解,形成液態反應物漿料。油浴溫度達設定之反應溫度後,平衡10 分鐘後,注入10 ml 之硫化氫氣體至反應器中開始進行100°C 硫化反應,反應時間24小時。將反應產物液體進行真空蒸餾,所得到之固態產物為具奈米結構硫化鈷,其穿透式電子顯微鏡觀察相片如圖5所示,標尺為50 奈米。In this example, 5 mM of 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid cobalt salt/toluene (50 ml)/dodecylamine (10 mM) was placed. into a 100 ml reactor, and flow nitrogen into the reactor for 30 minutes to eliminate water vapor and air inside the reactor. After the temperature controller is set to the required reaction temperature, turn on the heating and stirring functions, and set the rotation speed to 300 rpm to dissolve the 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid cobalt salt. , forming a liquid reactant slurry. After the oil bath temperature reaches the set reaction temperature, and after balancing for 10 minutes, inject 10 ml of hydrogen sulfide gas into the reactor to start the 100°C sulfurization reaction. The reaction time is 24 hours. The reaction product liquid is vacuum distilled, and the solid product obtained is cobalt sulfide with a nanostructure. Its transmission electron microscope observation photo is shown in Figure 5, and the scale bar is 50 nanometers.

實施例6   具奈米結構硫化鎳之製備Example 6 Preparation of nickel sulfide with nanostructure

在此實施例中,將2 mM 之2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鎳鹽/甲苯及二甲苯(容積比1:1)(50 ml)置入100 ml 反應器中,以氮氣通入反應器30 分鐘,可排除反應器內部水汽及空氣。溫控器設定至所需反應溫度後,開啟加熱及攪拌功能,轉速設定為300 rpm,使2,2,4,8,10,10- 六甲基十一烷-5- 羧酸鎳鹽溶解,形成液態反應物漿料。油浴溫度達設定之反應溫度後,平衡10 分鐘後,注入10 ml 之硫化氫氣體至反應器中開始進行80°C 硫化反應,反應時間8 小時。將反應產物液體進行真空蒸餾,所得到之固態產物為具奈米結構硫化鎳,其穿透式電子顯微鏡觀察相片如圖6所示,標尺為50 奈米。In this example, 2 mM of 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid nickel salt/toluene and xylene (volume ratio 1:1) (50 ml ) into a 100 ml reactor, and pass nitrogen into the reactor for 30 minutes to eliminate water vapor and air inside the reactor. After the temperature controller is set to the required reaction temperature, turn on the heating and stirring functions, and set the rotation speed to 300 rpm to dissolve 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid nickel salt , forming a liquid reactant slurry. After the oil bath temperature reaches the set reaction temperature, and after balancing for 10 minutes, inject 10 ml of hydrogen sulfide gas into the reactor to start the 80°C sulfurization reaction, with a reaction time of 8 hours. The reaction product liquid is vacuum distilled, and the solid product obtained is nickel sulfide with a nanostructure. The transmission electron microscope observation photo is shown in Figure 6, and the scale bar is 50 nanometers.

實施例7   具奈米結構硫化錳之製備Example 7 Preparation of Manganese Sulfide with Nanostructure

在此實施例中,將1 mM 之2,2,4,8,10,10- 六甲基十一烷-5- 羧酸錳鹽/氯仿(50 ml)置入100 ml 反應器中,以氮氣通入反應器30 分鐘,可排除反應器內部水汽及空氣。溫控器設定至所需反應溫度後,開啟加熱及攪拌功能,轉速設定為300 rpm,使2,2,4,8,10,10- 六甲基十一烷-5- 羧酸錳鹽溶解,形成液態反應物漿料。油浴溫度達設定之反應溫度後,平衡10 分鐘後,注入10 ml 之硫化氫氣體至反應器中開始進行40°C 硫化反應,反應時間8 小時。將反應產物液體進行真空蒸餾,所得到之固態產物為具奈米結構硫化錳,其穿透式電子顯微鏡觀察相片如圖7所示,標尺為50 奈米。In this example, 1 mM of 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid manganese salt/chloroform (50 ml) was placed in a 100 ml reactor to Pour nitrogen into the reactor for 30 minutes to eliminate water vapor and air inside the reactor. After the temperature controller is set to the required reaction temperature, turn on the heating and stirring functions, and set the rotation speed to 300 rpm to dissolve 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid manganese salt. , forming a liquid reactant slurry. After the oil bath temperature reaches the set reaction temperature, and after balancing for 10 minutes, inject 10 ml of hydrogen sulfide gas into the reactor to start the 40°C sulfurization reaction, with a reaction time of 8 hours. The reaction product liquid is vacuum distilled, and the solid product obtained is manganese sulfide with a nanostructure. Its transmission electron microscope observation photo is shown in Figure 7, and the scale bar is 50 nanometers.

實施例8   具奈米結構硫化銅之製備Example 8 Preparation of nanostructured copper sulfide

在此實施例中,將20 mM 之2,2,4,8,10,10- 六甲基十一烷-5- 羧酸銅鹽/辛烷(50 ml)/十八烷基硫醇(10 mM)置入100 ml反應器中,以氮氣通入反應器30 分鐘,可排除反應器內部水汽及空氣。溫控器設定至所需反應溫度後,開啟加熱及攪拌功能,轉速設定為300rpm,使2,2,4,8,10,10- 六甲基十一烷-5- 羧酸銅鹽溶解,形成液態反應物漿料。油浴溫度達設定之反應溫度後,平衡10 分鐘後,注入10 ml 之硫化氫氣體至反應器中開始進行反應。第一組進行40°C硫化反應,反應時間8 小時;第二組進行80°C 硫化反應,反應時間8 小時。將兩組反應產物液體進行真空蒸餾,所得到之固態產物為具奈米結構硫化鋅。第一組、第二組以不同反應溫度及反應時間下所製備之具奈米結構硫化鋅,其穿透式電子顯微鏡觀察相片如圖8A、8B所示,標尺為50 奈米。In this example, 20 mM of 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid copper salt/octane (50 ml)/octadecylmercaptan ( 10 mM) was placed into a 100 ml reactor, and nitrogen was introduced into the reactor for 30 minutes to eliminate water vapor and air inside the reactor. After the temperature controller is set to the required reaction temperature, turn on the heating and stirring functions, and set the rotation speed to 300 rpm to dissolve the 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid copper salt. A liquid reactant slurry is formed. After the oil bath temperature reaches the set reaction temperature, and after balancing for 10 minutes, inject 10 ml of hydrogen sulfide gas into the reactor to start the reaction. The first group performed a vulcanization reaction at 40°C, with a reaction time of 8 hours; the second group performed a vulcanization reaction at 80°C, with a reaction time of 8 hours. The two sets of reaction product liquids are vacuum distilled, and the solid product obtained is zinc sulfide with nanostructure. The transmission electron microscope observation photos of the first and second groups of zinc sulfide with nanostructures prepared at different reaction temperatures and reaction times are shown in Figures 8A and 8B, and the scale bar is 50 nanometers.

雖然前述的描述及圖式已揭示本發明之較佳實施例,必須瞭解到各種增添、許多修改和取代可能使用於本發明較佳實施例,而不會脫離如所附申請專利範圍所界定的本發明原理之精神及範圍。熟悉本發明所屬技術領域之一般技藝者將可體會,本發明可使用於許多形式、結構、佈置、比例、材料、元件和組件的修改。因此,本文於此所揭示的實施例應被視為用以說明本發明,而非用以限制本發明。本發明的範圍應由後附申請專利範圍所界定,並涵蓋其合法均等物,並不限於先前的描述。Although the foregoing description and drawings disclose the preferred embodiments of the present invention, it must be understood that various additions, many modifications and substitutions may be made to the preferred embodiments of the present invention without departing from the scope of the appended claims. spirit and scope of the principles of the invention. One of ordinary skill in the art to which this invention pertains will appreciate that the invention is susceptible to modifications in many forms, structures, arrangements, proportions, materials, elements and assemblies. Therefore, the embodiments disclosed herein should be regarded as illustrating the present invention rather than limiting the present invention. The scope of the present invention should be defined by the appended patent claims and cover their legal equivalents, and is not limited to the previous description.

A1000:步驟 A1100:步驟 A1200:步驟 A2000:步驟 A3000:步驟 A1000: Steps A1100: Steps A1200: Steps A2000: Steps A3000: Steps

圖1A為本發明具奈米結構金屬硫化物之製備方法之實施例流程示意圖。FIG. 1A is a schematic flowchart of a method for preparing a metal sulfide with a nanostructure according to an embodiment of the present invention.

圖1B為本發明羧酸鹽之實施例外觀示意圖。Figure 1B is a schematic diagram of the appearance of an embodiment of the carboxylic acid salt of the present invention.

圖2A、2B為本發明製成之具奈米結構硫化鋅之穿透式電子顯微鏡觀察相片。Figures 2A and 2B are transmission electron microscope photos of zinc sulfide with nanostructures made according to the present invention.

圖3A、3B、3C為本發明製成之奈米結構硫化鎘之穿透式電子顯微鏡觀察相片。Figures 3A, 3B, and 3C are transmission electron microscope photos of the nanostructured cadmium sulfide produced in the present invention.

圖4為本發明製成之具奈米結構硫化鉛之穿透式電子顯微鏡觀察相片。Figure 4 is a transmission electron microscope observation photo of the lead sulfide with nanostructure made according to the present invention.

圖5為本發明製成之具奈米結構硫化鈷之穿透式電子顯微鏡觀察相片。Figure 5 is a transmission electron microscope observation photo of the cobalt sulfide with nanostructure made by the present invention.

圖6為本發明製成之具奈米結構硫化鎳之穿透式電子顯微鏡觀察相片。Figure 6 is a transmission electron microscope observation photo of the nickel sulfide with nanostructure made according to the present invention.

圖7為本發明製成之具奈米結構硫化錳之穿透式電子顯微鏡觀察相片。Figure 7 is a transmission electron microscope observation photo of the manganese sulfide with nanostructure made according to the present invention.

圖8A、8B為本發明製成之具奈米結構硫化銅之穿透式電子顯微鏡觀察相片。Figures 8A and 8B are transmission electron microscope photos of the copper sulfide with nanostructure made according to the present invention.

A1000:步驟 A1000: Steps

A1100:步驟 A1100: Steps

A1200:步驟 A1200: Steps

A2000:步驟 A2000: Steps

A3000:步驟 A3000: Steps

Claims (15)

一種具奈米結構金屬硫化物之製備方法,依序包含以下步驟:(A1000)在70℃下以一段式升溫程序製成一羧酸鹽,以下式(I)表示,
Figure 110113632-A0305-02-0018-1
其中,R1、R2、R3為含1-22碳數之直鏈型烷基、分支型烷基或氫,X為介於1至3之間的整數,M為過渡金屬;(A2000)將該羧酸鹽及一液態媒介混合,以形成一液態反應物漿料,其中該液態媒介為一沸點小於或等於125℃之有機溶劑;(A3000)將該液態反應漿料與一氣態硫源混合並反應,以生成一具奈米結構金屬硫化物。
A method for preparing metal sulfides with nanostructures, including the following steps in sequence: (A1000) using a one-stage temperature rise program at 70°C to prepare a monocarboxylate, represented by the following formula (I),
Figure 110113632-A0305-02-0018-1
Among them, R 1 , R 2 and R 3 are linear alkyl groups, branched alkyl groups or hydrogen containing 1-22 carbon atoms, X is an integer between 1 and 3, and M is a transition metal; (A2000 ) Mix the carboxylate and a liquid medium to form a liquid reactant slurry, wherein the liquid medium is an organic solvent with a boiling point less than or equal to 125°C; (A3000) Mix the liquid reaction slurry with a gaseous sulfur The sources mix and react to create a nanostructured metal sulfide.
如請求項1所述的具奈米結構金屬硫化物之製備方法,其中R1及R2分別為具有一個叔丁基的含1-22碳數之直鏈型烷基或分支型烷基。 The method for preparing a metal sulfide with a nanostructure as described in claim 1, wherein R 1 and R 2 are respectively a linear alkyl group or a branched alkyl group having a tert-butyl group and containing 1-22 carbon atoms. 如請求項1所述的具奈米結構金屬硫化物之製備方法,其中R1及R2一起為具有一個叔丁基的含2-22碳數之環烷基。 The method for preparing a metal sulfide with a nanostructure as described in claim 1, wherein R 1 and R 2 together are a cycloalkyl group having a tert-butyl group containing 2-22 carbon atoms. 如請求項1所述的具奈米結構金屬硫化物之製備方法,其中M不為銀或鈀。 The method for preparing a metal sulfide with a nanostructure as described in claim 1, wherein M is not silver or palladium. 如請求項1所述的具奈米結構金屬硫化物之製備方法,其中該步驟A1000依序包含以下步驟: (A1100)將一支鏈烷基羧酸、一鈉鹽或鉀鹽、以及一溶劑混合形成一第一液態漿料,其中羧酸以下式(II)表示,
Figure 110113632-A0305-02-0019-2
其中,R1、R2、R3為含1-22碳數之直鏈型烷基、分支型烷基或氫,該溶劑為水、甲醇、乙醇、丙酮或其混合物;(A1200)將該第一液態漿料與一水溶性過渡金屬M之鹽混合並反應,以形成該羧酸鹽。
The method for preparing a metal sulfide with a nanostructure as described in claim 1, wherein step A1000 includes the following steps in sequence: (A1100) adding a branched chain alkyl carboxylic acid, a sodium salt or a potassium salt, and a solvent Mix to form a first liquid slurry, wherein the carboxylic acid is represented by the following formula (II),
Figure 110113632-A0305-02-0019-2
Among them, R 1 , R 2 and R 3 are linear alkyl groups, branched alkyl groups or hydrogen containing 1-22 carbon atoms, and the solvent is water, methanol, ethanol, acetone or mixtures thereof; (A1200) convert the The first liquid slurry is mixed and reacted with a water-soluble salt of transition metal M to form the carboxylate salt.
如請求項1所述的具奈米結構金屬硫化物之製備方法,其中該有機溶劑為含4-12碳數之碳氫化合物、氯仿、四氫呋喃或其混合物。 The method for preparing a metal sulfide with a nanostructure as described in claim 1, wherein the organic solvent is a hydrocarbon containing 4-12 carbon atoms, chloroform, tetrahydrofuran or a mixture thereof. 如請求項1所述的具奈米結構金屬硫化物之製備方法,其中該有機溶劑為己烷、環己烷、庚烷、環庚烷、辛烷、甲苯、二甲苯、或其混合物。 The method for preparing a metal sulfide with a nanostructure as described in claim 1, wherein the organic solvent is hexane, cyclohexane, heptane, cycloheptane, octane, toluene, xylene, or a mixture thereof. 如請求項1所述的具奈米結構金屬硫化物之製備方法,其中該步驟A2000進一步包含將該羧酸鹽、該液態媒介與一分散劑混合。 The method for preparing a metal sulfide with a nanostructure as described in claim 1, wherein step A2000 further includes mixing the carboxylate, the liquid medium and a dispersant. 如請求項8所述的具奈米結構金屬硫化物之製備方法,其中該分散劑為具有烷基之胺類、羧酸類、硫醇類,烷基含1-22碳數。 The method for preparing a metal sulfide with a nanostructure as described in claim 8, wherein the dispersant is an amine, a carboxylic acid, or a thiol having an alkyl group, and the alkyl group contains 1-22 carbon atoms. 如請求項8所述的具奈米結構金屬硫化物之製備方法,其中該分散劑為丁胺、第二-丁胺、異丁胺、第三丁胺、3-甲氧丙胺、(2-甲基丁基)胺、1,2-二甲基丙胺、1-乙基丙胺、2-胺基戊烷、戊胺、異戊胺、第三戊胺、3-乙氧基丙胺、3,3-二甲基丁胺、己胺、3-異丙氧基丙胺、庚胺、2-庚胺、1,4-二 甲基戊胺、1,5-二甲基己胺、1-甲基庚胺、2-乙基-1-己胺、辛胺、1,1,3,3-四甲基丁胺、壬胺、癸胺、十二胺、十三胺、十四胺、十六胺、油胺、十八胺、己酸、庚酸辛酸、壬酸、癸酸、十一酸、十二酸、十三酸、十四酸、十五酸、十六酸、十七酸、硬脂酸、十九酸、二十酸、二十一酸、二十二酸、二十三酸、二十四酸、二十六酸、8-甲基壬酸、11-甲基月桂酸、12-甲基十三酸、12-甲基十四酸、13-甲基十四酸、異十六酸、14-甲基十六酸、15-甲基十六酸、16-甲基十七酸、17-甲基硬脂酸、18-甲基十九酸、2,6,10,14-四甲十六烷酸、19-甲基二十酸或2,2,4,8,10,10-六甲基十一烷-5-羧酸(2,2,4,8,10,10-六甲基十一烷-5-羧)、丙硫醇、2-甲基-1-丙硫醇、丁硫醇、2-甲基-1-丁硫醇、2-丁硫醇、2,3-丁雙硫醇、3-甲基-1-丁硫醇、戊硫醇、己硫醇、庚硫醇、辛硫醇、十硫醇、十一硫醇、十二硫醇、十四烷基硫醇、十五烷基硫醇、十八烷基硫醇、二十烷基硫醇或二十二烷基硫醇。 The preparation method of metal sulfide with nanostructure as described in claim 8, wherein the dispersant is butylamine, second-butylamine, isobutylamine, third-butylamine, 3-methoxypropylamine, (2- Methylbutyl)amine, 1,2-dimethylpropylamine, 1-ethylpropylamine, 2-aminopentane, pentylamine, isopentylamine, tertiarypentylamine, 3-ethoxypropylamine, 3, 3-dimethylbutylamine, hexylamine, 3-isopropoxypropylamine, heptylamine, 2-heptylamine, 1,4-di Methylpentylamine, 1,5-dimethylhexylamine, 1-methylheptylamine, 2-ethyl-1-hexylamine, octylamine, 1,1,3,3-tetramethylbutylamine, nonane Amine, decylamine, dodecylamine, tridecylamine, tetradecylamine, hexadecylamine, oleylamine, stearylamine, hexanoic acid, heptanoic acid, nonanoic acid, capric acid, undecanoic acid, dodecanoic acid, ten Trisaccharide, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, stearic acid, nonadecaic acid, eicosanoic acid, 21 acid, 22 acid, 23 acid, 24 acid , Hexadecanoic acid, 8-methylnonanoic acid, 11-methyllauric acid, 12-methyltridecanoic acid, 12-methyltetradecanoic acid, 13-methyltetradecanoic acid, isohexadecanoic acid, 14 -Methyl hexadecanoic acid, 15-methyl hexadecanoic acid, 16-methyl heptadecanoic acid, 17-methylstearic acid, 18-methyl nonadecanoic acid, 2,6,10,14-tetramethyldecanoic acid Hexadecanoic acid, 19-methyleicosanoic acid or 2,2,4,8,10,10-hexamethylundecan-5-carboxylic acid (2,2,4,8,10,10-hexamethyl (Undecane-5-carboxylic acid), propanethiol, 2-methyl-1-propanethiol, butanethiol, 2-methyl-1-butanethiol, 2-butanethiol, 2,3- Butanethiol, 3-methyl-1-butanethiol, pentylthiol, hexanethiol, heptylthiol, octylthiol, decamercaptan, undecanethiol, dodecylthiol, tetradecyl Thiol, pentadecylmercaptan, stearylmercaptan, eicosylmercaptan or behenylmercaptan. 如請求項8所述的具奈米結構金屬硫化物之製備方法,其中該分散劑溶解於液態媒介之濃度為小於或等於5000mM。 The method for preparing a metal sulfide with a nanostructure as described in claim 8, wherein the concentration of the dispersant dissolved in the liquid medium is less than or equal to 5000mM. 如請求項1所述的具奈米結構金屬硫化物之製備方法,其中該氣態硫源包含一硫化氫及一惰性氣體,該惰性氣體包含氮氣、氦氣、二氧化碳。 The method for preparing a metal sulfide with a nanostructure as described in claim 1, wherein the gaseous sulfur source includes hydrogen sulfide and an inert gas, and the inert gas includes nitrogen, helium, and carbon dioxide. 如請求項1所述的具奈米結構金屬硫化物之製備方法,其中該步驟A3000包含將該液態反應漿料與該氣態硫源在40℃~150℃之溫度混合並反應。 The method for preparing a metal sulfide with a nanostructure as described in claim 1, wherein the step A3000 includes mixing and reacting the liquid reaction slurry and the gaseous sulfur source at a temperature of 40°C to 150°C. 如請求項1所述的具奈米結構金屬硫化物之製備方法,係於小於或等於150℃之溫度進行。 The method for preparing a metal sulfide with a nanostructure as described in claim 1 is carried out at a temperature less than or equal to 150°C. 如請求項1所述的具奈米結構金屬硫化物之製備方法,進一步包含:(A4000)將該具奈米結構金屬硫化物及該液態媒介分離。 The method for preparing a metal sulfide with a nanostructure as described in claim 1 further includes: (A4000) separating the metal sulfide with a nanostructure and the liquid medium.
TW110113632A 2021-04-15 2021-04-15 Carboxylate, use of carboxylate for producing metal sulfide with nanostructure, method of preparation of metal sulfide with nanostructure, use of liguid medium ,and use of gaseous sulfuric source TWI813976B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110113632A TWI813976B (en) 2021-04-15 2021-04-15 Carboxylate, use of carboxylate for producing metal sulfide with nanostructure, method of preparation of metal sulfide with nanostructure, use of liguid medium ,and use of gaseous sulfuric source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110113632A TWI813976B (en) 2021-04-15 2021-04-15 Carboxylate, use of carboxylate for producing metal sulfide with nanostructure, method of preparation of metal sulfide with nanostructure, use of liguid medium ,and use of gaseous sulfuric source

Publications (2)

Publication Number Publication Date
TW202241837A TW202241837A (en) 2022-11-01
TWI813976B true TWI813976B (en) 2023-09-01

Family

ID=85793185

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110113632A TWI813976B (en) 2021-04-15 2021-04-15 Carboxylate, use of carboxylate for producing metal sulfide with nanostructure, method of preparation of metal sulfide with nanostructure, use of liguid medium ,and use of gaseous sulfuric source

Country Status (1)

Country Link
TW (1) TWI813976B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220045A (en) * 1991-05-08 1993-06-15 Bayer Aktiengesellschaft Process for the production of metal carboxylates and their use for the polymerization of monomers suitable for ziegler-natta polymerization
CN1422839A (en) * 2001-12-07 2003-06-11 北京燕山石油化工公司研究院 Preparation method for active chromium of organic acid
CN105460903A (en) * 2015-09-22 2016-04-06 苏州星烁纳米科技有限公司 Nanocrystal preparation method, nanocrystal, and preparation and preservation apparatus of gas solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220045A (en) * 1991-05-08 1993-06-15 Bayer Aktiengesellschaft Process for the production of metal carboxylates and their use for the polymerization of monomers suitable for ziegler-natta polymerization
CN1422839A (en) * 2001-12-07 2003-06-11 北京燕山石油化工公司研究院 Preparation method for active chromium of organic acid
CN105460903A (en) * 2015-09-22 2016-04-06 苏州星烁纳米科技有限公司 Nanocrystal preparation method, nanocrystal, and preparation and preservation apparatus of gas solution

Also Published As

Publication number Publication date
TW202241837A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
JP5356030B2 (en) Method for producing cerium oxide nanocrystals
US6929675B1 (en) Synthesis metal nanoparticle
US7785392B2 (en) Method for manufacturing metal nanoparticles
US7867463B2 (en) Process for producing cerium oxide nanocrystals
EP2621859B1 (en) "one-pot" synthesis of 2d, 1d, e 0d nano crystals of tungsten and molybdenum chalcogenides (ws2,mos2) functionalized with long chain amine and/or carboxylic acid and/or thiol
Sabah et al. Fabrication and characterization of CdS nanoparticles annealed by using different radiations
JP5115983B2 (en) Synthesis of organically modified metal sulfide nanoparticles by supercritical hydrothermal synthesis
JP2009511403A5 (en)
US20050036938A1 (en) Method for synthesizing nanoparticles of metal sulfides
TANG et al. A solvothermal route to Cu2O nanocubes and Cu nanoparticles
JP2010502540A (en) How to make nanoparticles
US9938148B2 (en) Method of synthesising nitride nanocrystals
JP4809384B2 (en) Method for producing copper-based nanoparticles
US7704413B2 (en) Method for the preparation of a composition of nanoparticles of at least one crystalline metal oxide
Mousavi-Kamazani et al. Preparation of stochiometric CuInS2 nanostructures by ultrasonic method
Hu et al. Template-mediated growth of Cu3SnS4 nanoshell tubes
TWI813976B (en) Carboxylate, use of carboxylate for producing metal sulfide with nanostructure, method of preparation of metal sulfide with nanostructure, use of liguid medium ,and use of gaseous sulfuric source
CN108516579B (en) Preparation method of lead sulfide nanocrystals
Dumbrava et al. ZINC SULFIDE FINE PARTICLES OBTAINED AT LOW TEMPERATURE.
KR100753095B1 (en) Metal nano particle and method for producing the same
JP4634670B2 (en) Composite modified metal chalcogenide ultrafine particles
US7591871B1 (en) Solution synthesis of germanium nanocrystals
KR100582921B1 (en) Preparation of metal nano-particles from metal compounds containing aminoalkoxide ligands
Zhang et al. Synthesis of metal and metal oxide nanocrystallines by pyrolysis of metal complex
Sarigiannidis et al. Vapor-phase synthesis and surface passivation of ZnSe nanocrystals