TWI813145B - Multiple fluorescent tissue image analysis method and system thereof - Google Patents

Multiple fluorescent tissue image analysis method and system thereof Download PDF

Info

Publication number
TWI813145B
TWI813145B TW111103135A TW111103135A TWI813145B TW I813145 B TWI813145 B TW I813145B TW 111103135 A TW111103135 A TW 111103135A TW 111103135 A TW111103135 A TW 111103135A TW I813145 B TWI813145 B TW I813145B
Authority
TW
Taiwan
Prior art keywords
parameter
cell
axis
image
cells
Prior art date
Application number
TW111103135A
Other languages
Chinese (zh)
Other versions
TW202331233A (en
Inventor
許仁駿
游舒涵
林瑋晨
彭冠儒
葉致宏
Original Assignee
佛教慈濟醫療財團法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛教慈濟醫療財團法人 filed Critical 佛教慈濟醫療財團法人
Priority to TW111103135A priority Critical patent/TWI813145B/en
Publication of TW202331233A publication Critical patent/TW202331233A/en
Application granted granted Critical
Publication of TWI813145B publication Critical patent/TWI813145B/en

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

The present invention provides a multiple fluorescent tissue image analysis method and system thereof. The method comprises obtaining an analysis data of a tissue section image; filtering the analysis data with a first parameter; using a second parameter and a third parameter in the filtered analysis data as an x axis and an y axis of a graph respectively; plotting the corresponding values of the second parameter and the third parameter in the graph to present a plurality of mark points in the graph; and defining an x-axis threshold and a y-axis threshold for the graph to distribute the plurality of the mark points into a plurality of quadrants. The present invention can process the data generated from the fluorescent imaging analysis tools of the prior art and can redefine multiple cell markers for a single cell to classify in detail and to output analysis result intuitively with image cytometry.

Description

多重螢光組織影像分析方法及其系統 Multiple fluorescent tissue image analysis method and system

本發明係有關一種影像分析方法及其系統,尤指一種易於篩選欲分析之細胞並可對單一細胞定義多種細胞標誌之多重螢光組織影像分析方法及其系統。 The present invention relates to an image analysis method and its system, in particular to a multiple fluorescent tissue image analysis method and its system that is easy to screen cells to be analyzed and can define multiple cell markers for a single cell.

螢光免疫組織化學染色提供了免疫學研究中一些可視化的證據,例如要尋找CD8+ T細胞且欲得知CD8+ T細胞有無毒殺功能,可將CD8作為目標標誌並以紅色螢光作染色,另外以Granzyme B的綠色螢光作染色,即可同時在影像上清楚看到活化的CD8+ T細胞的位置。 Fluorescent immunohistochemical staining provides some visual evidence in immunological research. For example, if you want to look for CD8 + T cells and want to know whether CD8 + T cells have cytotoxic function, you can use CD8 as the target marker and stain with red fluorescence. In addition, using the green fluorescence of Granzyme B for staining, the location of activated CD8 + T cells can be clearly seen on the image at the same time.

為了更清楚判斷組織切片上各細胞的功能性,現有的螢光影像分析工具(例如PhenopticsTM Tissue Analysis Software系統,由Akoya Biosciences研發,博克科技股份有限公司代理)提供了能夠一次性呈現並區分更多細胞標誌之方法,例如提供了七種不同螢光染劑─CD4、CD8、CD56、Granzyme B、Foxp3、PanCK、Nucleus來提供七種細胞標誌(maker),並能夠運用人工智慧對大量組織切片影像在短時間內完成分析。 In order to more clearly judge the functionality of each cell on the tissue section, existing fluorescence image analysis tools (such as the Phenoptics TM Tissue Analysis Software system, developed by Akoya Biosciences and represented by Bock Technology Co., Ltd.) provide the ability to present and distinguish more detailed information at once. The multi-cell marker method, for example, provides seven different fluorescent dyes - CD4, CD8, CD56, Granzyme B, Foxp3, PanCK, and Nucleus to provide seven cell markers (maker), and can use artificial intelligence to slice a large number of tissues Images are analyzed in a short time.

然而,現有的螢光影像分析工具(例如PhenopticsTM Tissue Analysis Software系統內的inForm® Image Analysis Software)在定義細胞時,除了只能選取主體細胞作為定義目標之外,在目標細胞數量過少時,現有的螢光影像分析工具需要先找到單一細胞含有多個螢光訊號,且細胞數量要充足(例如大於等於5),因此在無法針對所有的染色結果進行精準多個螢光的細胞定義,且只能為單一細胞進行一個螢光訊號的定義。在某些特殊情況下,例如螢光訊號高度重合時,也會有使用者判斷困難以及軟體運算錯誤等問題。因此,現有的螢光影像分析工具在定義多種細胞時仍有改善空間。 However, when defining cells, existing fluorescence image analysis tools (such as inForm® Image Analysis Software in the Phenoptics TM Tissue Analysis Software system) can only select main cells as defined targets. When the number of target cells is too small, existing The fluorescence image analysis tool needs to first find a single cell containing multiple fluorescent signals, and the number of cells must be sufficient (for example, greater than or equal to 5). Therefore, it is impossible to accurately define multiple fluorescent cells for all staining results, and only A fluorescent signal can be defined for a single cell. In some special circumstances, such as when fluorescent signals are highly overlapping, there may also be problems such as difficulty in user judgment and software calculation errors. Therefore, existing fluorescence image analysis tools still have room for improvement in defining a variety of cells.

為解決上述先前技術之問題,本發明之一目的在於提供一種多重螢光組織影像分析方法,包括:取得一具有複數細胞之組織切片影像的分析資料以及對應該分析資料之複數分析影像;從該分析資料篩選出該複數細胞中具有至少一第一參數者,並以經篩選後具有該第一參數之該複數細胞中的第二參數及第三參數分別作為一圖形之X軸及Y軸;從對應有該第二參數之該複數分析影像中選取其中之一者作為第一欲分析影像,以從該第一欲分析影像取得該X軸之閾值,以及從對應有該第三參數之該複數分析影像中選取其中之一者作為第二欲分析影像,以從該第二欲分析影像取得該Y軸之閾值;以及將該第二參數及該第三參數所對應之數值繪製於該圖形中,以在該圖形中呈現對應該第一參數之複數標記點,且根據該X軸之閾值及該Y軸之閾值將該複數標記點分佈在複數象限中。 In order to solve the above-mentioned problems of the prior art, one purpose of the present invention is to provide a multiple fluorescent tissue image analysis method, which includes: obtaining analysis data of a tissue slice image with a plurality of cells and plural analysis images corresponding to the analysis data; from the Analyze the data to screen out those cells that have at least one first parameter, and use the second parameter and the third parameter in the screened cells that have the first parameter as the X-axis and Y-axis of a graph respectively; Select one of the plurality of analysis images corresponding to the second parameter as the first image to be analyzed to obtain the threshold value of the X-axis from the first image to be analyzed, and obtain the threshold value of the Select one of the plurality of analyzed images as the second image to be analyzed to obtain the threshold value of the Y-axis from the second image to be analyzed; and draw the values corresponding to the second parameter and the third parameter on the graph , a plurality of mark points corresponding to the first parameter are presented in the graph, and the plurality of mark points are distributed in a plurality of quadrants according to the threshold of the X-axis and the threshold of the Y-axis.

如前述之多重螢光組織影像分析方法中,該第一參數為細胞表型,且該細胞表型為CD8+ T cell或CD4+ T cell。 As in the aforementioned multiple fluorescent tissue image analysis method, the first parameter is cell phenotype, and the cell phenotype is CD8 + T cell or CD4 + T cell.

如前述之多重螢光組織影像分析方法中,更包括在以該第二參數及該第三參數分別作為該圖形之X軸及Y軸之後,將經篩選後具有該第一參數之該複數細胞再以一第四參數進行區分,其中,該第四參數為組織種類,該組織種類為PanCK+或PanCK-As in the aforementioned multiple fluorescent tissue image analysis method, it further includes using the second parameter and the third parameter as the X-axis and Y-axis of the graph respectively, and filtering the plurality of cells having the first parameter. A fourth parameter is used to differentiate, wherein the fourth parameter is the tissue type, and the tissue type is PanCK + or PanCK - .

如前述之多重螢光組織影像分析方法中,該第二參數或該第三參數為細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑種類或自體螢光,且該第二參數或該第三參數所對應之數值為細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑之訊號強度或自體螢光之訊號強度。 As in the aforementioned multiple fluorescent tissue image analysis method, the second parameter or the third parameter is a plurality of fluorescent dye types or autofluorescence of the cell nucleus, cytoplasm, cell membrane, entire cells, and the second parameter or the The value corresponding to the third parameter is the signal intensity of multiple fluorescent dyes or the signal intensity of autofluorescence in the nucleus, cytoplasm, cell membrane, and the entire cell.

如前述之多重螢光組織影像分析方法中,從該第一欲分析影像取得該X軸之閾值之步驟更包括:從該第一欲分析影像中取得複數第一點選座標,以將該複數第一點選座標所對應之細胞中訊號強度最弱者作為該X軸之閾值。 As in the aforementioned multiple fluorescence tissue image analysis method, the step of obtaining the threshold value of the X-axis from the first image to be analyzed further includes: obtaining a plurality of first click coordinates from the first image to be analyzed, so as to combine the plural The weakest signal strength among the cells corresponding to the first clicked coordinates is used as the threshold of the X-axis.

如前述之多重螢光組織影像分析方法中,從該第二欲分析影像取得該Y軸之閾值之步驟更包括:從該第二欲分析影像中取得複數第二點選座標,以將該複數第二點選座標所對應之細胞中訊號強度最弱者作為該Y軸之閾值。 As in the aforementioned multiple fluorescent tissue image analysis method, the step of obtaining the threshold value of the Y-axis from the second image to be analyzed further includes: obtaining a plurality of second click coordinates from the second image to be analyzed, so as to convert the plurality of second click coordinates into The second point selects the weakest signal strength among the cells corresponding to the coordinates as the threshold of the Y-axis.

如前述之多重螢光組織影像分析方法中,更包括:在以經篩選後具有該第一參數之該複數細胞中的該第二參數及該第三參數分別作為該圖形之X軸及Y軸之同時,將該第二參數及該第三參數所對應之數值進行標準化。 As in the aforementioned multiple fluorescent tissue image analysis method, it further includes: using the second parameter and the third parameter in the plurality of cells having the first parameter after screening as the X-axis and Y-axis of the graph respectively. At the same time, the values corresponding to the second parameter and the third parameter are standardized.

如前述之多重螢光組織影像分析方法中,更包括:針對不同象限之標記點分別定義不同顏色,並依據該複數標記點所對應之細胞在該組織切片影像中的XY座標,將不同顏色之標記點輸出成一對應該組織切片影像之細胞分佈圖。 For example, the aforementioned multiple fluorescent tissue image analysis method further includes: defining different colors for the marker points in different quadrants, and based on the XY coordinates of the cells corresponding to the plurality of marker points in the tissue slice image, dividing the different colors into The marked points are output into a cell distribution map corresponding to the tissue section image.

如前述之多重螢光組織影像分析方法中,更包括:將該複數標記點及其所對應之顏色附加至該分析資料中,以輸出一更新後分析資料。 For example, the aforementioned multiple fluorescence tissue image analysis method further includes: appending the plurality of marker points and their corresponding colors to the analysis data to output updated analysis data.

本發明之另一目的在於提供一種多重螢光組織影像處理系統,包括:輸入模組,用以取得一具有複數細胞之組織切片影像的分析資料以及對應該分析資料之複數分析影像;篩選及座標定義模組,用以從該分析資料篩選出該複數細胞中具有至少一第一參數者,並以將經篩選後具有該第一參數之該複數細胞中的第二參數及第三參數分別作為一圖形之X軸及Y軸;閾值定義模組,用以從對應有該第二參數之該複數分析影像中選取其中之一者作為第一欲分析影像,以從該第一欲分析影像取得該X軸之閾值,以及從對應有該第三參數之該複數分析影像中選取其中之一者作為第二欲分析影像,以從該第二欲分析影像取得該Y軸之閾值;圖形繪製模組,用以將該第二參數及該第三參數所對應之數值繪製於該圖形中,以在該圖形中呈現對應該第一參數之複數標記點,且根據該X軸之閾值及該Y軸之閾值將該複數標記點分佈在複數象限中。 Another object of the present invention is to provide a multiple fluorescent tissue image processing system, including: an input module for obtaining analysis data of a tissue slice image with a plurality of cells and plural analysis images corresponding to the analysis data; screening and coordinates Define a module to filter out those cells with at least one first parameter from the analysis data, and use the second parameter and the third parameter in the filtered cells with the first parameter as respectively The X-axis and Y-axis of a graph; the threshold definition module is used to select one of the plurality of analysis images corresponding to the second parameter as the first image to be analyzed, to obtain from the first image to be analyzed The threshold value of the A group is used to draw the values corresponding to the second parameter and the third parameter in the graph, so as to present a plurality of mark points corresponding to the first parameter in the graph, and according to the threshold of the X-axis and the Y The axis threshold distributes the complex marker points into complex quadrants.

如前述之多重螢光組織影像處理系統中,該第一參數為細胞表型,且該細胞表型為CD8+ T cell或CD4+ T cell。 As in the aforementioned multiple fluorescent tissue image processing system, the first parameter is cell phenotype, and the cell phenotype is CD8 + T cell or CD4 + T cell.

如前述之多重螢光組織影像處理系統中,該篩選及座標定義模組在以該第二參數及該第三參數分別作為該圖形之X軸及Y軸之後,將經篩選後具有該第一參數之該複數細胞再以一第四參數進行區分,其中,該第四參數為組織種類,該組織種類為PanCK+或PanCK-As in the aforementioned multiple fluorescent tissue image processing system, after using the second parameter and the third parameter as the X-axis and Y-axis of the graph respectively, the filtering and coordinate definition module will filter to have the first The plurality of cells of the parameters are further distinguished by a fourth parameter, wherein the fourth parameter is a tissue type, and the tissue type is PanCK + or PanCK .

如前述之多重螢光組織影像處理系統中,該第二參數或該第三參數為細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑種類或自體螢光,且該第二參數或該第三參數所對應之數值為細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑之訊號強度或自體螢光之訊號強度。 As in the aforementioned multiple fluorescent tissue image processing system, the second parameter or the third parameter is a plurality of fluorescent dye types or autofluorescence of the cell nucleus, cytoplasm, cell membrane, the entire cell, and the second parameter or the The value corresponding to the third parameter is the signal intensity of multiple fluorescent dyes or the signal intensity of autofluorescence in the nucleus, cytoplasm, cell membrane, and the entire cell.

如前述之多重螢光組織影像處理系統中,該閾值定義模組係先從該第一欲分析影像中取得複數第一點選座標,以將該複數第一點選座標所對應之細胞中訊號強度最弱者作為該X軸之閾值。 As in the aforementioned multiple fluorescent tissue image processing system, the threshold definition module first obtains a plurality of first click coordinates from the first image to be analyzed, so as to convert the signals in cells corresponding to the plurality of first click coordinates into The one with the weakest intensity is used as the threshold of the X-axis.

如前述之多重螢光組織影像處理系統中,該閾值定義模組係先從該第二欲分析影像中取得複數第二點選座標,以將該複數第二點選座標所對應之細胞中訊號強度最弱者作為該Y軸之閾值。 As in the aforementioned multiple fluorescent tissue image processing system, the threshold definition module first obtains a plurality of second click coordinates from the second image to be analyzed, so as to convert the signals in cells corresponding to the plurality of second click coordinates into The one with the weakest intensity is used as the threshold of the Y-axis.

如前述之多重螢光組織影像處理系統中,該篩選及座標定義模組在以經篩選後具有該第一參數之該複數細胞中的該第二參數及該第三參數分別作為該圖形之X軸及Y軸之同時,將該第二參數及該第三參數所對應之數值進行標準化。 As in the aforementioned multiple fluorescent tissue image processing system, the screening and coordinate definition module uses the second parameter and the third parameter in the plurality of cells that have the first parameter after screening as the X of the graph respectively. axis and the Y-axis, the values corresponding to the second parameter and the third parameter are normalized.

如前述之多重螢光組織影像處理系統中,更包括輸出模組,用以針對不同象限之標記點分別定義不同顏色,並依據該複數標記點所對應之細胞在該組織切片影像中的XY座標,將不同顏色之標記點輸出成一對應該組織切片影像之細胞分佈圖,或將該複數標記點及其所對應之顏色附加至該分析資料中,以輸出一更新後分析資料。 For example, the aforementioned multiple fluorescent tissue image processing system also includes an output module for defining different colors for the marker points in different quadrants, and based on the XY coordinates of the cells corresponding to the plurality of marker points in the tissue slice image. , output the marker points of different colors into a cell distribution map corresponding to the tissue section image, or append the plurality of marker points and their corresponding colors to the analysis data to output an updated analysis data.

透過本發明之多重螢光組織影像處理方法及系統,可易於篩選出欲分析之細胞,並可以本發明所定義之影像細胞術(image cytometry),輸出更直觀的分析結果,例如子細胞群占主細胞的比例與子細胞群占ROI影像之分佈圖,可方便使用者對照回現有的螢光影像分析工具所給出之病理圖,判斷其定義是否無誤。此外,本發明更可對各個螢光訊號依訊號強度建立閾值,並將閾值以上及以下的細胞分別定義為陽性及陰性,藉此可分析各細胞在圖形中之多重螢光陽性訊號,達到對單一細胞定義多種細胞標誌之目的,解決先前技術中只能為單一細胞進行一個螢光訊號定義的問題,來提供使用者更加了解各細胞 的表型狀態,並可方便分析某細胞群之子細胞型態。 Through the multiple fluorescent tissue image processing method and system of the present invention, the cells to be analyzed can be easily screened out, and more intuitive analysis results can be output, such as the proportion of sub-cell groups, using the image cytometry defined in the present invention. The proportion of main cells and the distribution of sub-cell groups in the ROI image can facilitate users to compare the pathological diagrams provided by existing fluorescence image analysis tools to determine whether the definition is correct. In addition, the present invention can also establish a threshold for each fluorescent signal according to the signal intensity, and define cells above and below the threshold as positive and negative respectively, thereby analyzing the multiple fluorescent positive signals of each cell in the graph to achieve accurate analysis. The purpose of defining multiple cell markers for a single cell is to solve the problem in the previous technology that only one fluorescent signal can be defined for a single cell, so as to provide users with a better understanding of each cell. phenotypic status, and can facilitate the analysis of daughter cell types of a certain cell group.

1:多重螢光組織影像處理系統 1:Multiple fluorescent tissue image processing system

11:輸入模組 11:Input module

12:篩選及座標定義模組 12: Filtering and coordinate definition module

13:閾值定義模組 13: Threshold definition module

14:圖形繪製模組 14: Graphic drawing module

15:輸出模組 15:Output module

21:X軸閾值 21:X-axis threshold

22:Y軸閾值 22: Y axis threshold

31:第一象限 31: The first quadrant

32:第二象限 32:Second Quadrant

33:第三象限 33: The third quadrant

34:第四象限 34:The fourth quadrant

41:第一欲分析影像 41: The first desire is to analyze images

411:第一點選座標 411: First click to select coordinates

42:第二欲分析影像 42: The second desire to analyze images

421:第二點選座標 421: Second click coordinates

S1-S5:步驟 S1-S5: Steps

圖1為本發明之多重螢光組織影像分析方法之步驟流程圖。 Figure 1 is a flow chart of the steps of the multiple fluorescent tissue image analysis method of the present invention.

圖2為本發明之多重螢光組織影像分析系統之系統架構圖。 Figure 2 is a system architecture diagram of the multiple fluorescent tissue image analysis system of the present invention.

圖3及圖4為本發明之第一/二欲分析影像及複數第一/二點選座標之示意圖。 3 and 4 are schematic diagrams of the first/second image to be analyzed and the plurality of first/second click coordinates of the present invention.

圖5為本發明所繪示具有複數標記點、X軸閾值及Y軸閾值之圖形之示意圖。 FIG. 5 is a schematic diagram of a graph with multiple marker points, X-axis thresholds and Y-axis thresholds according to the present invention.

圖6為本發明所輸出之對應組織切片影像之細胞分佈圖之示意圖。 Figure 6 is a schematic diagram of the cell distribution map corresponding to the tissue section image output by the present invention.

以下藉由特定之具體實施例加以說明本發明之實施方式,而熟悉此技術之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點和功效,亦可藉由其他不同的具體實施例加以施行或應用。 The following describes the implementation of the present invention through specific embodiments, and those familiar with the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification, and can also use other different specific embodiments. carry out or apply.

請參閱圖1,本發明之多重螢光組織影像分析方法於步驟S1中,係先取得一具有複數細胞之組織切片影像的分析資料及對應分析資料之複數分析影像。以下將先以PhenopticsTM Tissue Analysis Software系統等軟體為例,來說明該分析資料及複數分析影像之產生方式、來源、格式與相關實驗流程等內容,但本發明並不以只有該軟體才能產生該分析資料及複數分析影像為限(例如也可以使用HALO® image analysis platform,Indica Labs此軟體)。 Please refer to Figure 1. In the step S1 of the multiple fluorescent tissue image analysis method of the present invention, analysis data of a tissue slice image with a plurality of cells and plural analysis images corresponding to the analysis data are first obtained. The following will first take software such as Phenoptics TM Tissue Analysis Software system as an example to illustrate the generation method, source, format and related experimental procedures of the analysis data and complex analysis images. However, the present invention does not assume that only this software can generate the analysis data and complex analysis images. Limited to analysis data and complex analysis images (for example, you can also use HALO® image analysis platform, Indica Labs software).

首先,取得病患檢體所製成之組織蠟塊並將其切片,使其厚度能被光穿透(例如5μm)。接著,將組織切片依照需求進行染色,例如以CD4、CD8、CD56、Granzyme B、FoxP3、PanCK、Nucleus等七種不同的螢光染劑對不同的細胞標誌進行染色。之後,可將完成染色之組織切片以PhenopticsTM Tissue Analysis Software系統進行分析,例如有全片掃描、感興趣區域(ROI)圈選、對各ROI進行細部掃描、對部分ROI進行AI training、將AI training後的參數套用在所有ROI上來進行分析、產生分析結果等分析步驟。 First, a tissue wax block made from the patient's specimen is obtained and sliced into sections so that the thickness can be penetrated by light (for example, 5 μm). Then, the tissue sections are stained as required, for example, seven different fluorescent dyes, including CD4, CD8, CD56, Granzyme B, FoxP3, PanCK, and Nucleus, are used to stain different cell markers. Afterwards, the stained tissue sections can be analyzed using the Phenoptics TM Tissue Analysis Software system, such as scanning the entire section, selecting regions of interest (ROI), detailed scanning of each ROI, AI training on part of the ROI, and AI training. The parameters after training are applied to all ROIs to perform analysis, generate analysis results and other analysis steps.

詳細而言,全片掃描之後可產生一具有複數細胞之組織切片影像,每個組織切片影像上可圈選出複數ROI,且每個組織切片影像上共會圈選出75%的腫瘤區域以及25%的良性區域。對各ROI進行細部掃描以及螢光成像。接著可先挑選5~10個ROI來進行AI training,以將腫瘤區域的ROI再細分為腫瘤細胞(Tumor)、基質細胞(Stromal)以及良性區域(Benign)。於一實施例中,可使用PanCK訊號之有無來區分腫瘤細胞及基質細胞,例如有PanCK訊號(PanCK+)的細胞為腫瘤細胞,沒有PanCK訊號(PanCK-)的細胞為基質細胞。 Specifically, after scanning the whole film, a tissue section image with multiple cells can be generated. Multiple ROIs can be circled on each tissue section image, and a total of 75% of the tumor area and 25% of the tumor area will be circled on each tissue section image. benign area. Perform detailed scanning and fluorescence imaging of each ROI. Then, 5 to 10 ROIs can be selected for AI training to subdivide the ROI in the tumor area into tumor cells (Tumor), stromal cells (Stroma), and benign areas (Benign). In one embodiment, the presence or absence of PanCK signal can be used to distinguish tumor cells and stromal cells. For example, cells with PanCK signal (PanCK + ) are tumor cells, and cells without PanCK signal (PanCK - ) are stromal cells.

接著,使用者為組織切片影像上的細胞進行定義,例如定義什麼是細胞,以及細胞核、細胞質、細胞膜的範圍。可根據Nucleus此螢光染劑所產生之DAPI訊號之有無來定義細胞,即有DAPI訊號就代表其為一顆細胞,並以DAPI訊號為基礎,為細胞核制定一個大小範圍,在此範圍內讀到的螢光訊號皆會被定義為在細胞核上的染色訊號。同樣地,以Granzyme B此螢光染劑所產生之訊號來決定細胞質收取訊號的範圍,以CD4、CD8、CD56此螢光染劑所產生之訊號來決定細胞膜收取訊號的範圍。在決定好各個細胞上細胞核、細胞質、 細胞膜訊號的讀取範圍後,使用者可為組織切片影像上的細胞進行定義,例如切換至CD8的訊號後,將在影像上特定顏色區域定義為Cytotoxic T cell,在重複此步驟數次後,可對AI作訓練(例如監督式學習),以訓練出可推斷其他Cytotoxic T cell在其他ROI中之位置的模型。同理,CD4 Helper T cell及CD 56 NK cell也可以用此定義及訓練方式。 Next, the user defines the cells on the tissue slice image, such as defining what a cell is and the range of the cell nucleus, cytoplasm, and cell membrane. Cells can be defined based on the presence or absence of the DAPI signal generated by the fluorescent dye Nucleus. That is, the presence of DAPI signal means that it is a cell. Based on the DAPI signal, a size range is defined for the cell nucleus. Readings within this range The fluorescent signals detected are defined as staining signals on the cell nucleus. Similarly, the signal generated by the fluorescent dye Granzyme B determines the range of the cytoplasm receiving the signal, and the signals generated by the fluorescent dyes CD4, CD8, and CD56 determine the range of the cell membrane receiving the signal. After determining the nucleus, cytoplasm, and After reading the range of the cell membrane signal, the user can define the cells on the tissue section image. For example, after switching to the CD8 signal, a specific color area on the image will be defined as Cytotoxic T cell. After repeating this step several times, The AI can be trained (e.g., supervised learning) to train a model that can infer the location of other Cytotoxic T cells in other ROIs. In the same way, CD4 Helper T cells and CD 56 NK cells can also use this definition and training method.

在完成分析後,可產生分析結果,例如輸出成txt檔或excel檔來作為本發明之分析資料(例如以PhenopticsTM Tissue Analysis Software系統內的inForm® Image Analysis Software輸出),分析資料內的每一列皆代表著一顆細胞之數據,且各列可對應複數欄位,欄位可包括:每一顆細胞所在的ROI編號、組織種類(例如PanCK+或PanCK-)、細胞表型(例如CD8+ T cell或CD4+ T cell,或是CD8定義之Cytotoxic T cell、CD4定義之Helper T cell、CD56定義之NK cell等),細胞ID、細胞在ROI中的XY座標。除了上述欄位之外,還有下列欄位:每一顆細胞的細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑種類與自體螢光,欄位內之數值為其訊號強度。換言之,若是使用了七種螢光染劑,每一顆細胞將會取得32筆螢光數據((n+1)*4筆螢光數據,n為螢光染劑數量)。另外,分析結果還可以輸出複數分析影像(pathology病理學圖),複數分析影像以不同螢光染劑種類及其ROI作分類,換言之,每一分析影像內包含具有相同螢光染劑種類及在同一ROI的所有細胞(例如以分析資料中的ROI編號、細胞在ROI中的XY座標及螢光染劑種類來作對應)。 After the analysis is completed, the analysis results can be generated, for example, output into a txt file or excel file as the analysis data of the present invention (for example, output by inForm® Image Analysis Software in the Phenoptics TM Tissue Analysis Software system), and each column in the data is analyzed All represent the data of one cell, and each column can correspond to multiple fields. The fields can include: the ROI number where each cell is located, the tissue type (such as PanCK + or PanCK - ), and the cell phenotype (such as CD8 + T cell or CD4 + T cell, or Cytotoxic T cell defined by CD8, Helper T cell defined by CD4, NK cell defined by CD56, etc.), cell ID, XY coordinates of the cell in the ROI. In addition to the above fields, there are also the following fields: the nucleus, cytoplasm, cell membrane of each cell, multiple fluorescent dye types and autofluorescence of the entire cell. The values in the fields are the signal intensity. In other words, if seven fluorescent dyes are used, each cell will obtain 32 fluorescent data ((n+1)*4 fluorescent data, n is the number of fluorescent dyes). In addition, the analysis results can also output complex analysis images (pathology diagrams). The complex analysis images are classified by different fluorescent dye types and their ROIs. In other words, each analysis image contains the same fluorescent dye type and ROI. All cells in the same ROI (for example, corresponding to the ROI number in the analysis data, the XY coordinates of the cells in the ROI, and the type of fluorescent dye).

在取得分析資料後,可進至步驟S2,從分析資料篩選出複數細胞中具有第一參數者,並以經篩選後具有該第一參數之該複數細胞中的第二參數及第三參數分別作為一圖形之X軸及Y軸,其中,第一參數為細胞表型,細胞表 型為CD8+ T cell或CD4+ T cell,該第二參數或該第三參數為細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑種類或自體螢光,且該第二參數或該第三參數所對應之數值為細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑之訊號強度或自體螢光之訊號強度。例如,若欲分析CD8+ T cell,且欲得知CD8+ T cell是否具有毒殺功能,則第一參數會選擇細胞表型為CD8+ T cell,第二參數或第三參數會選擇細胞質的Granzyme B,因為Granzyme B是一種表現在細胞質的細胞標誌。於另一實施例中,可選擇細胞核的FoxP3來作為X軸,並選擇細胞質的Granzyme B來作為Y軸,以進一步得到經篩選後所得到之每一個細胞在細胞核的FoxP3與細胞質的Granzyme B之欄位中所對應之數值。另外,在以第二參數及第三參數分別作為圖形之X軸及Y軸之後,將經篩選後具有第一參數之複數細胞再以一第四參數進行區分,其中,第四參數為組織種類,該組織種類為PanCK+或PanCK-。具體而言,分析資料之篩選方式,可僅選擇組織種類,或僅選擇細胞表型,或同時選擇組織總類及細胞表型。於一實施例中,可先篩選細胞表型後,再篩選組織種類,例如先篩選出細胞表型為CD8+ T cell的細胞資料,再從中篩選出組織種類為PanCK+的細胞資料等等,本發明並不以此為限,反之亦可。 After obtaining the analysis data, step S2 can be performed to screen out the cells with the first parameter from the analysis data, and use the second parameter and the third parameter in the cells with the first parameter after screening to As the X-axis and Y-axis of a graph, the first parameter is the cell phenotype, the cell phenotype is CD8 + T cell or CD4 + T cell, the second parameter or the third parameter is the cell nucleus, cytoplasm, cell membrane, Multiple fluorescent dye types or autofluorescence of the entire cell, and the value corresponding to the second parameter or the third parameter is the signal intensity of the nucleus, cytoplasm, cell membrane, multiple fluorescent dyes of the entire cell, or autofluorescence. Fluorescent signal strength. For example, if you want to analyze CD8 + T cells and want to know whether CD8 + T cells have a cytotoxic function, the first parameter will select the cell phenotype as CD8 + T cell, and the second or third parameter will select cytoplasmic Granzyme. B, because Granzyme B is a cell marker expressed in the cytoplasm. In another embodiment, FoxP3 in the nucleus can be selected as the X-axis, and Granzyme B in the cytoplasm can be selected as the Y-axis, to further obtain the difference between FoxP3 in the nucleus and Granzyme B in the cytoplasm of each cell obtained after screening. The corresponding value in the field. In addition, after using the second parameter and the third parameter as the X-axis and Y-axis of the graph respectively, the plurality of cells having the first parameter after screening are further distinguished by a fourth parameter, where the fourth parameter is the tissue type. , the tissue type is PanCK + or PanCK- . Specifically, the analysis data can be filtered by selecting only tissue types, only cell phenotypes, or both tissue types and cell phenotypes. In one embodiment, the cell phenotype can be screened first, and then the tissue type can be screened. For example, cell data whose cell phenotype is CD8 + T cell can be screened first, and then cell data whose tissue type is PanCK + can be screened out, etc. The present invention is not limited to this, and vice versa.

於一實施例中,在以經篩選後具有第一參數之複數細胞中的第二參數及第三參數分別作為圖形之X軸及Y軸之同時,可將第二參數及第三參數所對應之數值進行標準化(normalization),將所有數值壓縮到0至1之間,以使各細胞標誌的螢光強度有一致的基準。接著可進至步驟S3。 In one embodiment, while using the second parameter and the third parameter in the plurality of cells with the first parameter after screening as the X-axis and Y-axis of the graph respectively, the corresponding values of the second parameter and the third parameter can be Normalize the values and compress all values to between 0 and 1 so that the fluorescence intensity of each cell marker has a consistent basis. Then proceed to step S3.

於步驟S3中,從對應有該第二參數之該複數分析影像中選取其中之一者作為第一欲分析影像,以從該第一欲分析影像取得該X軸之閾值,以及 從對應有該第三參數之該複數分析影像中選取其中之一者作為第二欲分析影像,以從該第二欲分析影像取得該Y軸之閾值。 In step S3, one of the plurality of analyzed images corresponding to the second parameter is selected as the first image to be analyzed, so as to obtain the threshold value of the X-axis from the first image to be analyzed, and Select one of the plurality of analyzed images corresponding to the third parameter as the second image to be analyzed, so as to obtain the threshold of the Y-axis from the second image to be analyzed.

詳細而言,可在對應有第二參數之複數分析影像中隨機選取其中一者來作為第一欲分析影像,如圖3所示,其即為隨機選取出的FoxP3的第一欲分析影像41,上面顯示有具有相同螢光染劑種類(如FoxP3)及在同一ROI的所有細胞,且每個細胞皆可對應至分析資料。可在第一欲分析影像41中點選複數第一點選座標411(圖3以點選5個為例),每一個第一點選座標411皆可對應回分析資料中「細胞在ROI中的XY座標」此一欄位,藉此得知每一個第一點選座標411所對應之細胞,如此一來即可得知每一個第一點選座標411所對應之訊號強度,並將最弱的訊號強度作為X軸之閾值。 Specifically, one of the plurality of analyzed images corresponding to the second parameter can be randomly selected as the first image to be analyzed, as shown in Figure 3, which is the randomly selected first image 41 of FoxP3 to be analyzed. , all cells with the same fluorescent dye type (such as FoxP3) and in the same ROI are displayed, and each cell can be mapped to the analysis data. Multiple first click coordinates 411 can be clicked in the first image 41 to be analyzed (Figure 3 takes 5 clicks as an example), and each first click coordinate 411 can be mapped back to "cells in the ROI" in the analysis data. "XY coordinate" field, thereby knowing the cell corresponding to each first clicked coordinate 411. In this way, the signal strength corresponding to each first clicked coordinate 411 can be known, and the final Weak signal strength is used as the threshold on the x-axis.

相同地,可在對應有第三參數之複數分析影像中隨機選取其中一者來作為第二欲分析影像,如圖4所示,其即為隨機選取出的Granzyme B的第二欲分析影像42,上面顯示有具有相同螢光染劑種類(如Granzyme B)及在同一ROI的所有細胞,且每個細胞皆可對應至分析資料。可在第二欲分析影像42中點選複數第二點選座標421(圖4以點選5個為例),每一個第二點選座標421皆可對應回分析資料中「細胞在ROI中的XY座標」此一欄位,藉此得知每一個第二點選座標421所對應之細胞,如此一來即可得知每一個第二點選座標421所對應之訊號強度,並將最弱的訊號強度作為Y軸之閾值。 Similarly, one of the plural analysis images corresponding to the third parameter can be randomly selected as the second image to be analyzed, as shown in Figure 4, which is the randomly selected second image to be analyzed 42 of Granzyme B. , all cells with the same fluorescent dye type (such as Granzyme B) and in the same ROI are displayed, and each cell can be mapped to the analysis data. Multiple second click coordinates 421 can be clicked in the second image 42 to be analyzed (Figure 4 takes five clicks as an example), and each second click coordinate 421 can be mapped back to "cells in the ROI" in the analysis data. "XY coordinate" field, thereby knowing the cell corresponding to each second clicked coordinate 421. In this way, the signal strength corresponding to each second clicked coordinate 421 can be known, and the final Weak signal strength is used as the Y-axis threshold.

上述實施例中是以第一/二點選座標即為「細胞在ROI中的XY座標」為例來進行說明,但本發明並不以此為限。若第一/二點選座標無法對應「細胞在ROI中的XY座標」時(例如滑鼠游標點擊所直接讀取的座標與分析資料中的座標不完全吻合),可在第一/二點選座標的正負特定數值(例如x、y座 標值的±5)的區間內搜尋是否具有細胞,藉此將第一/二點選座標對應至所搜尋到的細胞。接著進至步驟S4。 In the above embodiment, the first/second click coordinate is the "XY coordinate of the cell in the ROI" as an example for explanation, but the present invention is not limited to this. If the first/second clicked coordinates cannot correspond to the "XY coordinates of the cells in the ROI" (for example, the coordinates read directly by clicking the mouse cursor do not exactly match the coordinates in the analysis data), you can click the first/second point Select the positive and negative specific values of the coordinates (such as x, y Search whether there is a cell within the interval of ±5) of the scalar value, thereby mapping the first/second click coordinates to the searched cell. Then proceed to step S4.

於步驟S4中,將第二參數及第三參數所對應之數值繪製於圖形中,以在該圖形中呈現對應該第一參數之複數標記點。 In step S4, the values corresponding to the second parameter and the third parameter are plotted on the graph to present a plurality of mark points corresponding to the first parameter in the graph.

接著,根據X軸之閾值及Y軸之閾值將該複數標記點分佈在複數象限。如圖5所示,X軸閾值21可約為0.04,Y軸閾值22可約為0.05,如此一來可定義出四個象限:第一象限31、第二象限32、第三象限33及第四象限34。另外,若X軸閾值及Y軸閾值之其中之一為0者,則可定義出二個象限,本發明並不限制象限個數。 Then, the plurality of marker points are distributed in the plurality of quadrants according to the threshold of the X-axis and the Y-axis. As shown in Figure 5, the X-axis threshold 21 can be about 0.04, and the Y-axis threshold 22 can be about 0.05. In this way, four quadrants can be defined: the first quadrant 31, the second quadrant 32, the third quadrant 33 and the Four Quadrants34. In addition, if one of the X-axis threshold and the Y-axis threshold is 0, then two quadrants can be defined, and the present invention does not limit the number of quadrants.

於其他的實施例中,X軸之閾值及Y軸之閾值亦可使用其他方式來定義,例如X軸之閾值為第二參數所對應之所有數值之平均數、所有數值之中位數,或是一在0至1之間的自定義數值,Y軸之閾值為該第三參數所對應之所有數值之平均數、所有數值之中位置,或是一在0至1之間的自定義數值,自定義數值是使用者觀察複數標記點的分佈情形後所自行決定的閾值,此時本發明就可以省略上述步驟S3。 In other embodiments, the threshold of the X-axis and the threshold of the Y-axis can also be defined in other ways. For example, the threshold of the X-axis is the average of all values corresponding to the second parameter, the median of all values, or Is a custom value between 0 and 1. The threshold of the Y-axis is the average of all values corresponding to the third parameter, the position among all values, or a custom value between 0 and 1. , the custom value is a threshold value determined by the user after observing the distribution of multiple marker points. In this case, the present invention can omit the above step S3.

為更便利使用者進行後續實驗,可在完成步驟S4之後,即在將複數標記點分佈在複數象限中之後,進行步驟S5,針對不同象限之標記點分別定義不同顏色,例如將第一象限31內的所有標記點(FoxP3+/Granzyme B+)定義為紅色,第二象限32內的所有標記點(FoxP3-/Granzyme B+)定義為綠色,第三象限33內的所有標記點(FoxP3-/Granzyme B-)定義為黑色,第四象限34內的所有標記點(FoxP3+/Granzyme B-)定義為藍色等,並依據複數標記點所對應之細胞在組織切片影像中的XY座標,將不同顏色之標記點輸出成一對應組織切片影像 之細胞分佈圖(如圖6所示),或是將複數標記點及其所對應之顏色附加至該分析資料中(例如增加新的欄位),以輸出一更新後分析資料。如此一來,使用者後續可根據不同象限內的標記點所對應之細胞表型、數量以及比例,來進一步設計複數染色的實驗,亦可從CD8+ T cell中定義出具有Granzyme B+表現之細胞。 In order to make it easier for the user to conduct subsequent experiments, after completing step S4, that is, after distributing the plurality of marker points in multiple quadrants, step S5 can be performed to define different colors for the marker points in different quadrants. For example, the first quadrant 31 All marker points in the second quadrant 32 (FoxP3 - / Granzyme B + ) are defined as red, and all marker points in the third quadrant 33 (FoxP3 - /Granzyme B - ) is defined as black, and all marker points in the fourth quadrant 34 (FoxP3 + /Granzyme B - ) are defined as blue, etc., and based on the XY coordinates of the cells corresponding to the plurality of marker points in the tissue section image, Output the marker points of different colors into a cell distribution map corresponding to the tissue section image (as shown in Figure 6), or append multiple marker points and their corresponding colors to the analysis data (such as adding new fields) , to output an updated analysis data. In this way, users can further design multiple staining experiments based on the cell phenotype, number and proportion corresponding to the marker points in different quadrants, and can also define cells with Granzyme B + performance from CD8 + T cells. cells.

於一實施例中,上述本發明之多重螢光組織影像分析方法,可在一電腦中使用Anaconda軟體來加以執行,亦可在一電腦、伺服器、雲端伺服器、筆記型電腦、平板或手機等硬體中使用其他種類之軟體或程式語言來進行,本發明並不以此為限。 In one embodiment, the multiple fluorescent tissue image analysis method of the present invention can be executed on a computer using Anaconda software, or on a computer, server, cloud server, laptop, tablet or mobile phone Other types of software or programming languages are used in other hardware, and the present invention is not limited thereto.

請參閱圖2,本發明之多重螢光組織影像處理系統1包括輸入模組11、篩選及座標定義模組12、閾值定義模組13、圖形繪製模組14以及輸出模組15。本文中所稱之模組具體為供微處理器執行之程式碼片段、軟體或韌體。各模組之功能與前述之多重螢光組織影像處理方法中所述的技術內容相同者,於下將不再贅述。 Please refer to FIG. 2 . The multiple fluorescent tissue image processing system 1 of the present invention includes an input module 11 , a filtering and coordinate definition module 12 , a threshold definition module 13 , a graphics rendering module 14 and an output module 15 . The modules referred to in this article are specifically program code fragments, software or firmware for microprocessor execution. The functions of each module are the same as the technical content described in the aforementioned multiple fluorescent tissue image processing method, and will not be described again below.

輸入模組11用以取得一具有複數細胞之組織切片影像的分析資料及對應該分析資料之複數分析影像,分析資料內的每一列皆代表著一顆細胞之數據,且各列可對應複數欄位,欄位可包括:每一顆細胞所在的ROI編號、組織種類(例如PanCK+或PanCK-)、細胞表型(例如CD8+ T cell或CD4+ T cell,或是CD8定義之Cytotoxic T cell、CD4定義之Helper T cell、CD56定義之NK cell等),細胞ID、細胞在ROI中的XY座標、每一顆細胞的細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑種類與自體螢光等等。該分析資料可例如以PhenopticsTM Tissue Analysis Software系統軟體所輸出之txt檔或excel檔,但本發明 並不以此為限。另外,複數分析影像(pathology病理學圖)以不同螢光染劑種類及其ROI作分類,換言之,每一分析影像內包含具有相同螢光染劑種類及在同一ROI的所有細胞(例如以分析資料中的ROI編號、細胞在ROI中的XY座標及螢光染劑種類來作對應)。 The input module 11 is used to obtain analysis data of a tissue slice image with multiple cells and multiple analysis images corresponding to the analysis data. Each column in the analysis data represents the data of one cell, and each column can correspond to multiple columns. Fields may include: ROI number where each cell is located, tissue type (such as PanCK + or PanCK - ), cell phenotype (such as CD8 + T cell or CD4 + T cell, or Cytotoxic T cell defined by CD8 , Helper T cell defined by CD4, NK cell defined by CD56, etc.), cell ID, XY coordinates of the cell in the ROI, the nucleus, cytoplasm, cell membrane of each cell, multiple fluorescent dye types and autologous of the entire cell Fluorescent and so on. The analysis data can be, for example, a txt file or excel file output by the Phenoptics TM Tissue Analysis Software system software, but the present invention is not limited thereto. In addition, plural analysis images (pathology pathology maps) are classified by different fluorescent dye types and their ROIs. In other words, each analysis image contains all cells with the same fluorescent dye type and in the same ROI (for example, by analyzing Correspond to the ROI number in the data, the XY coordinates of the cells in the ROI, and the type of fluorescent dye).

篩選及座標定義模組12用以從分析資料篩選出複數細胞中具有至少一第一參數者,並以將經篩選後具有該第一參數之該複數細胞中的第二參數及第三參數分別作為一圖形之X軸及Y軸,其中,第一參數為細胞表型,且細胞表型可為CD8+ T cell或CD4+ T cell,該第二參數或該第三參數為細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑種類或自體螢光,但本發明並不以此為限。於一實施例中,可選擇細胞核的FoxP3來作為X軸,並選擇細胞質的Granzyme B來作為Y軸,以進一步得到經篩選後所得到之每一個細胞在細胞核的FoxP3與細胞質的Granzyme B之欄位中所對應之數值。另外,篩選及座標定義模組12在以第二參數及第三參數分別作為圖形之X軸及Y軸之後,將經篩選後具有第一參數之複數細胞再以一第四參數進行區分,其中,第四參數為組織種類,該組織種類為PanCK+或PanCK-。又,篩選及座標定義模組12在以經篩選後具有第一參數之複數細胞中的第二參數及第三參數分別作為圖形之X軸及Y軸之同時,可將第二參數及第三參數所對應之數值進行標準化,將所有數值壓縮到0至1之間,以使各細胞標誌的螢光強度有一致的基準。 The screening and coordinate definition module 12 is used to screen out cells with at least one first parameter from the analysis data, and to separate the second parameter and the third parameter in the cells with the first parameter after screening. As the X-axis and Y-axis of a graph, the first parameter is cell phenotype, and the cell phenotype can be CD8 + T cell or CD4 + T cell, and the second parameter or the third parameter is cell nucleus, cytoplasm, Multiple fluorescent dye types or autofluorescence of cell membranes, entire cells, but the invention is not limited thereto. In one embodiment, FoxP3 in the nucleus can be selected as the X-axis, and Granzyme B in the cytoplasm can be selected as the Y-axis, to further obtain the column of FoxP3 in the nucleus and Granzyme B in the cytoplasm of each cell obtained after screening. The value corresponding to the bit. In addition, after using the second parameter and the third parameter as the X-axis and Y-axis of the graph respectively, the filtering and coordinate definition module 12 distinguishes the filtered plurality of cells with the first parameter using a fourth parameter, where , the fourth parameter is the tissue type, which is PanCK + or PanCK - . In addition, while using the second parameter and the third parameter in the filtered plurality of cells with the first parameter as the X-axis and Y-axis of the graph respectively, the screening and coordinate definition module 12 can also use the second parameter and the third parameter as the X-axis and Y-axis of the graph. The values corresponding to the parameters are standardized and all values are compressed between 0 and 1 so that the fluorescence intensity of each cell marker has a consistent basis.

閾值定義模組13用以從對應有該第二參數之該複數分析影像中選取其中之一者作為第一欲分析影像,以從該第一欲分析影像取得該X軸之閾值,以及從對應有該第三參數之該複數分析影像中選取其中之一者作為第二欲 分析影像,以從該第二欲分析影像取得該Y軸之閾值。取得X軸及Y軸之閾值的詳細步驟說明如下。 The threshold definition module 13 is used to select one of the plurality of analyzed images corresponding to the second parameter as the first image to be analyzed, to obtain the threshold value of the X-axis from the first image to be analyzed, and from the corresponding Select one of the plurality of analyzed images with the third parameter as the second desired Analyze the image to obtain the threshold value of the Y-axis from the second image to be analyzed. The detailed steps for obtaining the threshold values of the X-axis and Y-axis are described below.

詳細而言,閾值定義模組13在對應有第二參數之複數分析影像中隨機選取其中一者來作為第一欲分析影像,選取後的第一欲分析影像41可如圖3所示,可在第一欲分析影像41中點選複數第一點選座標411(圖3以點選5個為例),閾值定義模組13可將每一個第一點選座標411皆對應回分析資料中「細胞在ROI中的XY座標」此一欄位,藉此得知每一個第一點選座標411所對應之細胞,如此一來閾值定義模組13即可得知每一個第一點選座標411所對應之訊號強度,並將最弱的訊號強度作為X軸之閾值。 Specifically, the threshold definition module 13 randomly selects one of the plurality of analyzed images corresponding to the second parameter as the first image to be analyzed. The selected first image 41 to be analyzed can be as shown in Figure 3. Click multiple first click coordinates 411 in the first image 41 to be analyzed (Figure 3 takes five clicks as an example). The threshold definition module 13 can map each first click coordinate 411 back to the analysis data. The "XY coordinates of the cell in the ROI" field is used to know the cell corresponding to each first click coordinate 411. In this way, the threshold definition module 13 can know each first click coordinate. 411 corresponding signal strength, and use the weakest signal strength as the threshold of the X-axis.

相同地,閾值定義模組13在對應有第三參數之複數分析影像中隨機選取其中一者來作為第二欲分析影像,選取後的第二欲分析影像42可如圖4所示,可在第二欲分析影像42中點選複數第二點選座標421(圖4以點選5個為例),閾值定義模組13可將每一個第二點選座標421皆對應回分析資料中「細胞在ROI中的XY座標」此一欄位,藉此得知每一個第二點選座標421所對應之細胞,如此一來閾值定義模組13即可得知每一個第二點選座標411所對應之訊號強度,並將最弱的訊號強度作為Y軸之閾值。 Similarly, the threshold definition module 13 randomly selects one of the plurality of analyzed images corresponding to the third parameter as the second image to be analyzed. The selected second image 42 to be analyzed can be as shown in Figure 4, and can be found in If multiple second click coordinates 421 are clicked in the second image 42 to be analyzed (Figure 4 takes five clicks as an example), the threshold definition module 13 can map each second click coordinate 421 back to the analysis data. The XY coordinates of the cell in the ROI" field is used to know the cell corresponding to each second click coordinate 421. In this way, the threshold definition module 13 can know each second click coordinate 411. The corresponding signal strength, and the weakest signal strength is used as the threshold of the Y-axis.

上述實施例中是以第一/二點選座標即為細胞在ROI中的XY座標為例來進行說明,但本發明並不以此為限。若第一/二點選座標無法對應細胞在ROI中的XY座標時,閾值定義模組13可在第一/二點選座標的正負特定數值(例如x、y座標值的±5)的區間內搜尋是否具有細胞,藉此將第一/二點選座標對應至所搜尋到的細胞。 In the above embodiment, the first/second selected coordinates are the XY coordinates of the cells in the ROI as an example for explanation, but the present invention is not limited to this. If the first/second click coordinates cannot correspond to the XY coordinates of the cell in the ROI, the threshold definition module 13 can be in the range of the positive and negative specific values of the first/second click coordinates (for example, ±5 of the x, y coordinate values) Search for cells within the cell, thereby mapping the first/second click coordinates to the searched cells.

在其他實施例中,閾值定義模組13更可以下述方法定義X軸及Y軸之閾值:X軸閾值為第二參數所對應之所有數值之平均數、所有數值之中位數或自定義數值,Y軸閾值為該第三參數所對應之所有數值之平均數、所有數值之中位數或自定義數值,本發明並不以此為限。 In other embodiments, the threshold definition module 13 can further define the thresholds of the X-axis and the Y-axis in the following method: the X-axis threshold is the average of all values corresponding to the second parameter, the median of all values, or customized Value, the Y-axis threshold is the average of all values corresponding to the third parameter, the median of all values, or a custom value. The present invention is not limited to this.

圖形繪製模組14用以將該第二參數及該第三參數所對應之數值繪製於該圖形中,以在該圖形中呈現對應該第一參數之複數標記點,且根據X軸之閾值及Y軸之閾值將該複數標記點分佈在複數象限,其中,該第二參數或該第三參數所對應之數值為細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑之訊號強度或自體螢光之訊號強度,且如圖5所示,複數象限可為四個象限,但亦可為二個象限。 The graph drawing module 14 is used to draw the values corresponding to the second parameter and the third parameter in the graph, so as to present a plurality of mark points corresponding to the first parameter in the graph, and according to the threshold value of the X-axis and The threshold value of the Y-axis distributes the plurality of marker points in a plurality of quadrants, where the value corresponding to the second parameter or the third parameter is the signal intensity of multiple fluorescent dyes in the nucleus, cytoplasm, cell membrane, the entire cell, or autologous Fluorescence signal intensity, and as shown in Figure 5, the plural quadrants can be four quadrants, but they can also be two quadrants.

輸出模組15用以針對不同象限之標記點分別定義不同顏色,並依據該複數標記點所對應之細胞在該組織切片影像中的XY座標,將不同顏色之標記點輸出成一對應組織切片影像之細胞分佈圖(如圖6所示),或將該複數標記點及其所對應之顏色附加至該分析資料中,以輸出一更新後分析資料(例如增加新的欄位)。 The output module 15 is used to define different colors for the marker points in different quadrants, and output the marker points of different colors into a corresponding tissue slice image based on the XY coordinates of the cells corresponding to the plurality of marker points in the tissue slice image. Cell distribution chart (as shown in Figure 6), or appending the plurality of marker points and their corresponding colors to the analysis data to output updated analysis data (for example, adding a new column).

綜上所述,本發明之多重螢光組織影像處理方法及系統,可易於篩選出欲分析之細胞,例如Opal dye產生之螢光訊號,會表現在細胞膜、細胞質、細胞核以及整個細胞,本發明可將這些螢光數據做更進一步的分析,依照各種細胞標誌,在細胞染色上的位置(細胞膜、細胞質或細胞核),去選取合理位置上的訊號定義好的細胞,再給予更多的定義,方便使用者做後續的資料處理。另外,本發明所定義之影像細胞術可輸出更直觀的分析結果,例如子細胞群占主細胞的比例與子細胞群占ROI影像之分佈圖,可方便使用者對照回現有的螢 光影像分析工具所給出之病理圖,判斷其定義是否無誤。此外,本發明更可對各個螢光訊號依訊號強度建立閾值,並將閾值以上的細胞定義為陽性,將閾值以下的細胞定義為陰性,藉此可分析各細胞在圖形中之多重螢光陽性訊號,便能分出單一細胞上多種螢光訊號的定義,不須耗費時間去找>=5顆細胞進行定義,達到對單一細胞定義多種細胞標誌之目的,解決先前技術中只能為單一細胞進行一個螢光訊號定義的問題,來提供使用者更加了解各細胞的表型狀態,並可方便分析某細胞群之子細胞型態,且可在較短時間內得到比現有的螢光影像分析工具做單一細胞之多螢光定義更符合個人化需求的結果。 In summary, the multiple fluorescent tissue image processing method and system of the present invention can easily screen out the cells to be analyzed. For example, the fluorescent signal generated by Opal dye will be displayed on the cell membrane, cytoplasm, nucleus and the entire cell. The present invention These fluorescence data can be further analyzed. According to various cell markers and the position on the cell stain (cell membrane, cytoplasm or nucleus), cells with well-defined signals at reasonable positions can be selected, and then more definitions can be given. It is convenient for users to do subsequent data processing. In addition, the imaging cytometry defined in the present invention can output more intuitive analysis results, such as the proportion of daughter cell groups in main cells and the distribution map of daughter cell groups in ROI images, which can facilitate users to compare and return existing fluorescent data. Use the pathological diagram provided by the optical image analysis tool to determine whether its definition is correct. In addition, the present invention can also establish a threshold for each fluorescent signal according to the signal intensity, and define cells above the threshold as positive and cells below the threshold as negative, thereby analyzing the multiple fluorescent positivity of each cell in the graph. Signals can be used to distinguish the definitions of multiple fluorescent signals on a single cell. There is no need to spend time looking for >= 5 cells to define, achieving the purpose of defining multiple cell markers for a single cell, solving the problem that in the previous technology, only a single cell can be defined A problem of fluorescence signal definition is provided to provide users with a better understanding of the phenotypic status of each cell, and facilitate the analysis of daughter cell types of a certain cell group, and can obtain the results in a shorter time than existing fluorescence image analysis tools. Multiple fluorescence definitions of a single cell can provide results that are more in line with individual needs.

上述實施形態僅為例示性說明本發明之技術原理、特點及其功效,並非用以限制本發明之可實施範疇,任何熟習此技術之人士均可在不違背本發明之精神與範疇下,對上述實施形態進行修飾與改變。然任何運用本發明所教示內容而完成之等效修飾及改變,均仍應為下述之申請專利範圍所涵蓋。而本發明之權利保護範圍,應如下述之申請專利範圍所列。 The above embodiments are only for illustrating the technical principles, characteristics and effects of the present invention, and are not intended to limit the scope of the present invention. Anyone familiar with this technology can implement the present invention without violating the spirit and scope of the present invention. Modifications and changes are made to the above embodiments. However, any equivalent modifications and changes accomplished by applying the teachings of the present invention should still be covered by the following patent application scope. The scope of protection of the rights of the present invention shall be as listed in the following patent application scope.

S1-S5:步驟 S1-S5: Steps

Claims (13)

一種多重螢光組織影像分析方法,包括:取得一具有複數細胞之組織切片影像的分析資料以及對應該分析資料之複數分析影像;從該分析資料篩選出該複數細胞中具有至少一第一參數者,並以經篩選後具有該第一參數之該複數細胞中的第二參數及第三參數分別作為一圖形之X軸及Y軸;從對應有該第二參數之該複數分析影像中選取其中之一者作為第一欲分析影像,從該第一欲分析影像中取得複數第一點選座標,以將該複數第一點選座標所對應之細胞中訊號強度最弱者作為該X軸之閾值,以及從對應有該第三參數之該複數分析影像中選取其中之一者作為第二欲分析影像,從該第二欲分析影像中取得複數第二點選座標,以將該複數第二點選座標所對應之細胞中訊號強度最弱者作為該Y軸之閾值;以及將該第二參數及該第三參數所對應之數值繪製於該圖形中,以在該圖形中呈現對應該第一參數之複數標記點,且根據該X軸之閾值及該Y軸之閾值將該複數標記點分佈在複數象限中。 A multiple fluorescence tissue image analysis method, including: obtaining analysis data of a tissue slice image with a plurality of cells and a plurality of analysis images corresponding to the analysis data; screening out those cells with at least one first parameter from the analysis data , and use the second parameter and the third parameter in the plurality of cells with the first parameter after screening as the X-axis and Y-axis of a graph respectively; select one of the plurality of analysis images corresponding to the second parameter. One of them is used as the first image to be analyzed, and a plurality of first click coordinates are obtained from the first image to be analyzed, and the weakest signal intensity among the cells corresponding to the plurality of first click coordinates is used as the threshold of the X-axis , and select one of the plurality of analysis images corresponding to the third parameter as the second image to be analyzed, and obtain the plurality of second point selection coordinates from the second image to be analyzed, so as to combine the plurality of second points Select the weakest signal strength among the cells corresponding to the coordinates as the threshold of the Y-axis; and draw the values corresponding to the second parameter and the third parameter in the graph to present the corresponding first parameter in the graph A plurality of marked points, and the plurality of marked points are distributed in a plurality of quadrants according to the threshold of the X-axis and the threshold of the Y-axis. 如請求項1所述之多重螢光組織影像分析方法,其中,該第一參數為細胞表型,且該細胞表型為CD8+ T cell或CD4+ T cell。 The multiple fluorescent tissue image analysis method as described in claim 1, wherein the first parameter is a cell phenotype, and the cell phenotype is CD8 + T cell or CD4 + T cell. 如請求項1所述之多重螢光組織影像分析方法,更包括在以該第二參數及該第三參數分別作為該圖形之X軸及Y軸之後,將經篩選後具有該第一參數之該複數細胞再以一第四參數進行區分,其中,該第四參數為組織種類,該組織種類為PanCK+或PanCK-The multiple fluorescent tissue image analysis method as described in claim 1 further includes, after using the second parameter and the third parameter as the X-axis and Y-axis of the graph respectively, filtering the first parameter. The plurality of cells are further distinguished by a fourth parameter, wherein the fourth parameter is a tissue type, and the tissue type is PanCK + or PanCK . 如請求項1所述之多重螢光組織影像分析方法,其中,該第二參數或該第三參數為細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑種類或自體螢光,且該第二參數或該第三參數所對應之數值為細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑之訊號強度或自體螢光之訊號強度。 The multiple fluorescent tissue image analysis method as described in claim 1, wherein the second parameter or the third parameter is a plurality of fluorescent dye types or autofluorescence of the cell nucleus, cytoplasm, cell membrane, the entire cell, and the The value corresponding to the second parameter or the third parameter is the signal intensity of multiple fluorescent dyes or the signal intensity of autofluorescence in the cell nucleus, cytoplasm, cell membrane, or the entire cell. 如請求項1所述之多重螢光組織影像分析方法,更包括:在以經篩選後具有該第一參數之該複數細胞中的該第二參數及該第三參數分別作為該圖形之X軸及Y軸之同時,將該第二參數及該第三參數所對應之數值進行標準化。 The multiple fluorescent tissue image analysis method as described in claim 1, further comprising: using the second parameter and the third parameter in the plurality of cells having the first parameter after screening as the X-axis of the graph respectively. and the Y-axis, normalize the values corresponding to the second parameter and the third parameter. 如請求項1所述之多重螢光組織影像分析方法,更包括:針對不同象限之標記點分別定義不同顏色,並依據該複數標記點所對應之細胞在該組織切片影像中的XY座標,將不同顏色之標記點輸出成一對應該組織切片影像之細胞分佈圖。 The multiple fluorescence tissue image analysis method as described in claim 1 further includes: defining different colors for the marker points in different quadrants, and based on the XY coordinates of the cells corresponding to the plurality of marker points in the tissue slice image, The marked points of different colors are output into a cell distribution map corresponding to the tissue section image. 如請求項6所述之多重螢光組織影像分析方法,更包括:將該複數標記點及其所對應之顏色附加至該分析資料中,以輸出一更新後分析資料。 The multiple fluorescence tissue image analysis method as described in claim 6 further includes: appending the plurality of marker points and their corresponding colors to the analysis data to output updated analysis data. 一種多重螢光組織影像處理系統,包括:輸入模組,用以取得一具有複數細胞之組織切片影像的分析資料以及對應該分析資料之複數分析影像;篩選及座標定義模組,用以從該分析資料篩選出該複數細胞中具有至少一第一參數者,並以將經篩選後具有該第一參數之該複數細胞中的第二參數及第三參數分別作為一圖形之X軸及Y軸;閾值定義模組,用以從對應有該第二參數之該複數分析影像中選取其中之一者作為第一欲分析影像,從該第一欲分析影像中取得複數第一點選座標,以將 該複數第一點選座標所對應之細胞中訊號強度最弱者作為該X軸之閾值,以及從對應有該第三參數之該複數分析影像中選取其中之一者作為第二欲分析影像,從該第二欲分析影像中取得複數第二點選座標,以將該複數第二點選座標所對應之細胞中訊號強度最弱者作為該Y軸之閾值;以及圖形繪製模組,用以將該第二參數及該第三參數所對應之數值繪製於該圖形中,以在該圖形中呈現對應該第一參數之複數標記點,且根據該X軸之閾值及該Y軸之閾值將該複數標記點分佈在複數象限中。 A multiple fluorescent tissue image processing system, including: an input module for obtaining analysis data of a tissue slice image with a plurality of cells and a plurality of analysis images corresponding to the analysis data; a screening and coordinate definition module for obtaining the analysis data from the Analyze the data to screen out those cells that have at least one first parameter, and use the second parameter and the third parameter in the screened cells that have the first parameter as the X-axis and Y-axis of a graph respectively. ; The threshold definition module is used to select one of the plurality of analysis images corresponding to the second parameter as the first image to be analyzed, and to obtain the plurality of first click coordinates from the first image to be analyzed, to will The weakest signal intensity among the cells corresponding to the plurality of first click coordinates is used as the threshold of the X-axis, and one of the plurality of analysis images corresponding to the third parameter is selected as the second image to be analyzed, from A plurality of second click coordinates are obtained from the second image to be analyzed, and the weakest signal intensity among the cells corresponding to the plurality of second click coordinates is used as the threshold of the Y-axis; and a graphics drawing module is used to convert the The values corresponding to the second parameter and the third parameter are plotted in the graph to present a plurality of mark points corresponding to the first parameter in the graph, and the plurality of points are divided according to the threshold value of the X-axis and the threshold value of the Y-axis. Marked points are distributed in complex quadrants. 如請求項8所述之多重螢光組織影像處理系統,其中,該第一參數為細胞表型,且其中該細胞表型為CD8+ T cell或CD4+ T cell。 The multiple fluorescent tissue image processing system of claim 8, wherein the first parameter is a cell phenotype, and the cell phenotype is CD8 + T cell or CD4 + T cell. 如請求項8所述之多重螢光組織影像處理系統,其中,該篩選及座標定義模組在以該第二參數及該第三參數分別作為該圖形之X軸及Y軸之後,將經篩選後具有該第一參數之該複數細胞再以一第四參數進行區分,其中,該第四參數為組織種類,該組織種類為PanCK+或PanCK-The multiple fluorescent tissue image processing system as described in claim 8, wherein the filtering and coordinate definition module will be filtered after using the second parameter and the third parameter as the X-axis and Y-axis of the graph respectively. The plurality of cells having the first parameter are then distinguished by a fourth parameter, wherein the fourth parameter is a tissue type, and the tissue type is PanCK + or PanCK . 如請求項8所述之多重螢光組織影像處理系統,其中,該第二參數或該第三參數為細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑種類或自體螢光,且該第二參數或該第三參數所對應之數值為細胞核、細胞質、細胞膜、整個細胞之複數螢光染劑之訊號強度或自體螢光之訊號強度。 The multiple fluorescent tissue image processing system as described in claim 8, wherein the second parameter or the third parameter is a plurality of fluorescent dye types or autofluorescence of the cell nucleus, cytoplasm, cell membrane, the entire cell, and the The value corresponding to the second parameter or the third parameter is the signal intensity of multiple fluorescent dyes or the signal intensity of autofluorescence in the cell nucleus, cytoplasm, cell membrane, or the entire cell. 如請求項8所述之多重螢光組織影像處理系統,其中,該篩選及座標定義模組在以經篩選後具有該第一參數之該複數細胞中的該第二參數及該第三參數分別作為該圖形之X軸及Y軸之同時,將該第二參數及該第三參數所對應之數值進行標準化。 The multiple fluorescent tissue image processing system as described in claim 8, wherein the screening and coordinate definition module uses the second parameter and the third parameter in the plurality of cells having the first parameter after screening, respectively. As the X-axis and Y-axis of the graph, the values corresponding to the second parameter and the third parameter are normalized. 如請求項8所述之多重螢光組織影像處理系統,更包括輸出模組,用以針對不同象限之標記點分別定義不同顏色,並依據該複數標記點所對應之細胞在該組織切片影像中的XY座標,將不同顏色之標記點輸出成一對應該組織切片影像之細胞分佈圖,或將該複數標記點及其所對應之顏色附加至該分析資料中,以輸出一更新後分析資料。 The multiple fluorescent tissue image processing system as described in claim 8 further includes an output module for defining different colors for the marker points in different quadrants, and according to the cells corresponding to the plurality of marker points in the tissue slice image. XY coordinates, the marker points of different colors are output into a cell distribution map corresponding to the tissue section image, or the plurality of marker points and their corresponding colors are appended to the analysis data to output an updated analysis data.
TW111103135A 2022-01-25 2022-01-25 Multiple fluorescent tissue image analysis method and system thereof TWI813145B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111103135A TWI813145B (en) 2022-01-25 2022-01-25 Multiple fluorescent tissue image analysis method and system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111103135A TWI813145B (en) 2022-01-25 2022-01-25 Multiple fluorescent tissue image analysis method and system thereof

Publications (2)

Publication Number Publication Date
TW202331233A TW202331233A (en) 2023-08-01
TWI813145B true TWI813145B (en) 2023-08-21

Family

ID=88559275

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111103135A TWI813145B (en) 2022-01-25 2022-01-25 Multiple fluorescent tissue image analysis method and system thereof

Country Status (1)

Country Link
TW (1) TWI813145B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140030737A1 (en) * 2012-07-25 2014-01-30 Theranos, Inc. Image analysis and measurement of biological samples
US20140133733A1 (en) * 2012-11-15 2014-05-15 Siemens Corporation Cell Feature-Based Automatic Circulating Tumor Cell Detection
US20200219256A1 (en) * 2014-12-03 2020-07-09 Ventana Medical Systems, Inc. Methods, Systems, and Apparatuses for Quantitative Analysis of Heterogeneous Biomarker Distribution
WO2020217123A1 (en) * 2019-04-23 2020-10-29 Stellenbosch University Method and system for visualising colocalised fluorescence signals
TW202142856A (en) * 2019-11-17 2021-11-16 美商伯克利之光生命科技公司 Systems and methods for analyses of biological samples

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140030737A1 (en) * 2012-07-25 2014-01-30 Theranos, Inc. Image analysis and measurement of biological samples
US20140038206A1 (en) * 2012-07-25 2014-02-06 Theranos, Inc. Image analysis and measurement of biological samples
US20140133733A1 (en) * 2012-11-15 2014-05-15 Siemens Corporation Cell Feature-Based Automatic Circulating Tumor Cell Detection
US20200219256A1 (en) * 2014-12-03 2020-07-09 Ventana Medical Systems, Inc. Methods, Systems, and Apparatuses for Quantitative Analysis of Heterogeneous Biomarker Distribution
WO2020217123A1 (en) * 2019-04-23 2020-10-29 Stellenbosch University Method and system for visualising colocalised fluorescence signals
TW202142856A (en) * 2019-11-17 2021-11-16 美商伯克利之光生命科技公司 Systems and methods for analyses of biological samples

Also Published As

Publication number Publication date
TW202331233A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
CN110023994B (en) Histopathological image analysis
CA2473325C (en) Method and/or system for analyzing biological samples using a computer system
Kujan et al. Why oral histopathology suffers inter-observer variability on grading oral epithelial dysplasia: an attempt to understand the sources of variation
US7979212B2 (en) Method and system for morphology based mitosis identification and classification of digital images
JP2019533805A (en) Digital pathology system and associated workflow for providing visualized slide-wide image analysis
US20130290225A1 (en) Systems and methods for selecting and analyzing particles in a biological tissue
EP2845137B1 (en) Systems and methods for performing quality review scoring of biomarkers and image analysis methods for biological tissue
JP2018512072A (en) Quality control for automated slide-wide analysis
CN111656393A (en) Histological image analysis
Takko et al. ShapeMetrics: A userfriendly pipeline for 3D cell segmentation and spatial tissue analysis
Schäfer et al. CD30 cell graphs of Hodgkin lymphoma are not scale-free—an image analysis approach
Levy et al. Large‐scale validation study of an improved semiautonomous urine cytology assessment tool: AutoParis‐X
TWI813145B (en) Multiple fluorescent tissue image analysis method and system thereof
Boukhar et al. Ki-67 proliferation index assessment in gastroenteropancreatic neuroendocrine tumors by digital image analysis with stringent case and hotspot level concordance requirements
Krenacs et al. Digital microscopy: the upcoming revolution in histopathology teaching, diagnostics, research and quality assurance
Nirmal et al. Cell Spotter (CSPOT): A machine-learning approach to automated cell spotting and quantification of highly multiplexed tissue images
EP3563342B1 (en) Automated system and method for creating and executing a scoring guide to assist in the analysis of tissue specimen
TWI845373B (en) Multiple fluorescent tissue image analysis method and system thereof
Munoz‐Erazo et al. How to Build an Image‐Processing Pipeline for Automating Multiparameter Histocytometry Analysis
Sugano et al. Semi‐automatic rating method for neutrophil alkaline phosphatase activity
US20130286043A1 (en) Systems and methods for analyzing biomarker co-localization in a biological tissue
Tomioka et al. Development of a novel artificial intelligence system for laparoscopic hepatectomy
Song et al. Utility of cellular imaging modality in subcellular spatial transcriptomic profiling of tumor tissues
Khan et al. Multimodal image segmentation of cellular fragmentation using edge detector and morphological operators
Monteiro et al. Applied medical informatics in the detection and counting of erythrocytes and leukocytes through an image segmentation algorithm