TWI812883B - Method and server for recommending products on mobile payment platform - Google Patents
Method and server for recommending products on mobile payment platform Download PDFInfo
- Publication number
- TWI812883B TWI812883B TW109132705A TW109132705A TWI812883B TW I812883 B TWI812883 B TW I812883B TW 109132705 A TW109132705 A TW 109132705A TW 109132705 A TW109132705 A TW 109132705A TW I812883 B TWI812883 B TW I812883B
- Authority
- TW
- Taiwan
- Prior art keywords
- specific
- product
- feature vector
- neural network
- processor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000036541 health Effects 0.000 claims abstract description 99
- 230000007613 environmental effect Effects 0.000 claims abstract description 52
- 239000013598 vector Substances 0.000 claims description 146
- 238000013528 artificial neural network Methods 0.000 claims description 65
- 238000012549 training Methods 0.000 claims description 40
- 230000007246 mechanism Effects 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 2
- 230000003542 behavioural effect Effects 0.000 claims 1
- 230000006399 behavior Effects 0.000 description 25
- 230000036772 blood pressure Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 4
- 206010020772 Hypertension Diseases 0.000 description 3
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 244000269722 Thea sinensis Species 0.000 description 2
- 241000396377 Tranes Species 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 208000001871 Tachycardia Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 235000001497 healthy food Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 235000013606 potato chips Nutrition 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 239000006041 probiotic Substances 0.000 description 1
- 235000018291 probiotics Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 235000015598 salt intake Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000006794 tachycardia Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Images
Landscapes
- Medical Treatment And Welfare Office Work (AREA)
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
Description
本發明是有關於一種推薦商品的方法及伺服器,且特別是有關於一種在行動支付平台上推薦商品的方法及伺服器。 The present invention relates to a method and a server for recommending products, and in particular, to a method and a server for recommending products on a mobile payment platform.
目前電商於購物商城的背後,常利用「使用者購買習慣」或是「位置資訊」推薦用戶廣告或商品。近年人們注重健康管理以及著重運動習慣的培養,智慧手錶與手環(腕帶)約占整體穿戴式裝置市場約八成。智慧手環可記錄心率、睡眠深度、心跳數及血壓等相關的身體數據,並可將資訊上傳至雲端。並且,行動支付應用程式的點數還可用來兌換買商品。然而,在應用程式的介面中充斥各類商品的情況下,用戶一般難以在玲瑯滿目的商品之中進行挑選。 Currently, e-commerce companies often use "user purchasing habits" or "location information" behind shopping malls to recommend ads or products to users. In recent years, people have focused on health management and the cultivation of exercise habits. Smart watches and bracelets (wristbands) account for about 80% of the overall wearable device market. The smart bracelet can record relevant body data such as heart rate, sleep depth, heart rate and blood pressure, and can upload the information to the cloud. Moreover, points from mobile payment applications can also be used to redeem goods. However, when the interface of the application is filled with various products, it is generally difficult for users to choose among the dazzling products.
因此,對於本領域技術人員而言,如何設計一種可將適合的商品推薦給用戶的機制實為一項重要議題。 Therefore, for those skilled in the art, how to design a mechanism that can recommend suitable products to users is actually an important issue.
有鑑於此,本發明提供一種在行動支付平台上推薦商品的方法及伺服器,其可用於解決上述技術問題。 In view of this, the present invention provides a method and server for recommending products on a mobile payment platform, which can be used to solve the above technical problems.
本發明提供一種在行動支付平台上推薦商品的方法,包括:在對應於行動支付平台的一特定應用程式被一特定使用者啟動時,取得特定使用者的至少一特定健康數據及關聯於特定使用者的至少一特定環境數據;取得行動支付平台提供的多個商品;基於至少一特定健康數據及至少一特定環境數據估計各商品的一商品推薦分數;基於各商品的商品推薦分數在所述多個商品中挑選多個特定商品,並將所述多個特定商品推薦予特定使用者。 The present invention provides a method for recommending products on a mobile payment platform, including: when a specific application corresponding to the mobile payment platform is launched by a specific user, obtaining at least one specific health data of the specific user and associated with a specific use At least one specific environmental data of the user; obtain multiple products provided by the mobile payment platform; estimate a product recommendation score of each product based on at least one specific health data and at least one specific environmental data; based on the product recommendation score of each product in the multiple products Select multiple specific products from the products and recommend the multiple specific products to specific users.
本發明提供一種在行動支付平台上推薦商品的伺服器,其包括儲存電路及處理器。儲存電路儲存多個模組。處理器耦接儲存電路,存取所述多個模組以執行下列步驟:在對應於行動支付平台的一特定應用程式被一特定使用者啟動時,取得特定使用者的至少一特定健康數據及關聯於特定使用者的至少一特定環境數據;取得行動支付平台提供的多個商品;基於至少一特定健康數據及至少一特定環境數據估計各商品的一商品推薦分數;基於各商品的商品推薦分數在所述多個商品中挑選多個特定商品,並將所述多個特定商品推薦予特定使用者。 The invention provides a server for recommending products on a mobile payment platform, which includes a storage circuit and a processor. The storage circuit stores multiple modules. The processor is coupled to the storage circuit and accesses the plurality of modules to perform the following steps: when a specific application corresponding to the mobile payment platform is launched by a specific user, obtain at least one specific health data of the specific user and At least one specific environmental data associated with a specific user; obtaining multiple products provided by a mobile payment platform; estimating a product recommendation score for each product based on at least one specific health data and at least one specific environmental data; based on the product recommendation score of each product A plurality of specific products are selected from the plurality of products, and the multiple specific products are recommended to a specific user.
100:伺服器 100:Server
102:儲存電路 102:Storage circuit
104:處理器 104: Processor
400:知識圖譜 400:Knowledge Graph
r:關係向量 r: relationship vector
h,t:實體節點向量 h,t: entity node vector
S210~S240:步驟 S210~S240: steps
圖1是依據本發明之一實施例繪示的在行動支付平台上推薦 商品的伺服器示意圖。 Figure 1 illustrates recommendations on a mobile payment platform according to an embodiment of the present invention. Product server diagram.
圖2是依據本發明之一實施例繪示的在行動支付平台上推薦商品的方法流程圖。 FIG. 2 is a flow chart of a method for recommending products on a mobile payment platform according to an embodiment of the present invention.
圖3是依據本發明第一實施方式繪示的知識圖譜示意圖。 FIG. 3 is a schematic diagram of a knowledge graph according to the first embodiment of the present invention.
圖4是依據本發明第二實施方式繪示的知識圖譜示意圖。 FIG. 4 is a schematic diagram of a knowledge graph according to a second embodiment of the present invention.
圖5是依據本發明第二實施方式繪示的TranE三元組示意圖。 Figure 5 is a schematic diagram of a TranE triplet according to a second embodiment of the present invention.
請參照圖1,其是依據本發明之一實施例繪示的在行動支付平台上推薦商品的伺服器示意圖。在不同的實施例中,伺服器100例如可用於維護一行動支付平台,此行動支付平台可經廠商設計有對應的特定應用程式。在一實施例中,使用者可藉由在其所使用的電腦裝置/智慧型裝置上安裝並開啟所述特定應用程式來存取上述行動支付平台所提供的各式服務,例如以點數、現金或其他類似方式購買行動支付平台所提供的商品等,但可不限於此。 Please refer to FIG. 1 , which is a schematic diagram of a server for recommending products on a mobile payment platform according to an embodiment of the present invention. In different embodiments, the server 100 may be used, for example, to maintain a mobile payment platform, and the mobile payment platform may be designed with corresponding specific applications by the manufacturer. In one embodiment, users can access various services provided by the above-mentioned mobile payment platform by installing and opening the specific application on the computer device/smart device they are using, such as paying points, Use cash or other similar methods to purchase goods provided by the mobile payment platform, but it is not limited to this.
此外,在一些實施例中,伺服器100可從各式管道取得量測自多個使用者的健康數據(例如年齡、性別、視力、身高、體重、血糖、血壓、心跳、脈搏、睡眠深度等)。例如,上述健康數據可由管理所述多個使用者的物聯網平台經穿戴於使用者身上的穿戴式裝置所測得,並由所述物聯網平台提供予伺服器100,但可不限於此。 In addition, in some embodiments, the server 100 can obtain health data measured from multiple users (such as age, gender, vision, height, weight, blood sugar, blood pressure, heartbeat, pulse, sleep depth, etc.) from various channels. ). For example, the above health data can be measured by an IoT platform that manages the multiple users through a wearable device worn on the user, and provided to the server 100 by the IoT platform, but it is not limited to this.
在本發明的實施例中,伺服器100亦可取得各個使用者在購買某個商品時當下的健康數據、環境數據(例如溫度、濕度、經緯度、氣壓、雨量、時間等)及相關的使用者行為(例如對於某商品的累計購買次數等),並用以作為日後向其他使用者推薦商品的依據,相關細節將在之後詳述。 In an embodiment of the present invention, the server 100 can also obtain the current health data and environmental data (such as temperature, humidity, longitude and latitude, air pressure, rainfall, time, etc.) of each user when purchasing a certain product, and related users. Behavior (such as the cumulative number of purchases of a product, etc.), and used as a basis for recommending products to other users in the future, the relevant details will be detailed later.
如圖1所示,伺服器100可包括儲存電路102及處理器104。儲存電路102例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、硬碟或其他類似裝置或這些裝置的組合,而可用以記錄多個程式碼或模組。 As shown in FIG. 1 , the server 100 may include a storage circuit 102 and a processor 104 . The storage circuit 102 is, for example, any type of fixed or removable random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), flash memory (Flash memory), hardware disc or other similar device, or a combination of such devices, which may be used to record multiple codes or modules.
處理器104耦接於儲存電路102,並可為一般用途處理器、特殊用途處理器、傳統的處理器、數位訊號處理器、多個微處理器(microprocessor)、一個或多個結合數位訊號處理器核心的微處理器、控制器、微控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)、現場可程式閘陣列電路(Field Programmable Gate Array,FPGA)、任何其他種類的積體電路、狀態機、基於進階精簡指令集機器(Advanced RISC Machine,ARM)的處理器以及類似品。 The processor 104 is coupled to the storage circuit 102 and can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor, a plurality of microprocessors, one or more combined digital signal processing Microprocessors, controllers, microcontrollers, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), and any other types of integrated circuits at the core of the processor , state machines, Advanced RISC Machine (ARM)-based processors, and the like.
在本發明的實施例中,處理器104可存取儲存電路102中記錄的模組、程式碼來實現本發明提出的在行動支付平台上推薦商品的方法,其細節詳述如下。 In an embodiment of the present invention, the processor 104 can access the modules and program codes recorded in the storage circuit 102 to implement the method of recommending products on a mobile payment platform proposed by the present invention, the details of which are described in detail below.
請參照圖2,其是依據本發明之一實施例繪示的在行動支 付平台上推薦商品的方法流程圖。本實施例的方法可由圖1的伺服器100執行,以下即搭配圖1所示的元件說明圖2各步驟的細節。 Please refer to FIG. 2 , which illustrates a mobile support system according to an embodiment of the present invention. Flowchart of the method to pay for recommended products on the platform. The method in this embodiment can be executed by the server 100 in Figure 1. The details of each step in Figure 2 will be described below with reference to the components shown in Figure 1.
首先,在步驟S210中,處理器104可在對應於行動支付平台的特定應用程式被特定使用者啟動時,取得特定使用者的特定健康數據及關聯於特定使用者的特定環境數據。舉例而言,假設處理器104偵測到所述特定使用者在其所使用的智慧型裝置上啟動上述特定應用程式,則處理器104例如可經由上述物聯網平台取得所述特定使用者身上的穿戴式裝置或其他相關的感測器對於所述特定使用者所測得的特定健康數據(例如脈搏、血壓等),以及對於所述特定使用者所處環境所測得的特定環境數據(例如溫度、濕度等),但可不限於此。 First, in step S210, the processor 104 may obtain specific health data of the specific user and specific environmental data associated with the specific user when a specific application corresponding to the mobile payment platform is launched by the specific user. For example, if the processor 104 detects that the specific user launches the specific application on the smart device used by the processor 104, the processor 104 can obtain the information of the specific user through the Internet of Things platform. Specific health data (such as pulse, blood pressure, etc.) measured by wearable devices or other related sensors for the specific user, and specific environmental data measured for the environment in which the specific user is located (such as temperature, humidity, etc.), but may not be limited to this.
之後,在步驟S220中,處理器104可取得行動支付平台提供的多個商品。在不同的實施例中,行動支付平台所提供的商品可包括各式生活家電、運動用品、健康食品等,但可不限於此。 Afterwards, in step S220, the processor 104 may obtain multiple commodities provided by the mobile payment platform. In different embodiments, the products provided by the mobile payment platform may include various household appliances, sporting goods, healthy food, etc., but may not be limited thereto.
在步驟S230中,處理器104可基於特定健康數據及特定環境數據估計各商品的商品推薦分數。 In step S230, the processor 104 may estimate the product recommendation score of each product based on the specific health data and the specific environmental data.
在本發明的實施例中,處理器104可基於類似的原則估計各商品的商品推薦分數,而為便於說明本發明的概念,以下將僅說明對於其中一種商品(下稱第一商品)的商品推薦分數估計機制,但本發明可不限於此。 In an embodiment of the present invention, the processor 104 can estimate the product recommendation score of each product based on similar principles. To facilitate the explanation of the concept of the present invention, only products for one of the products (hereinafter referred to as the first product) will be described below. A score estimation mechanism is recommended, but the invention may not be limited thereto.
在第一實施例中,處理器104可經配置以將各特定健康 數據轉換為對應的特定健康特徵向量,將各特定環境數據轉換為對應的特定環境特徵向量;取得第一商品對應的商品特徵向量;將各特定健康數據對應的特定健康特徵向量、各特定環境數據對應的特定環境特徵向量及第一商品對應的商品特徵向量輸入至特定神經網路,且特定神經網路可因應於各特定健康數據對應的特定健康特徵向量、各特定環境數據對應的特定環境特徵向量及第一商品對應的商品特徵向量產生第一商品的商品推薦分數。 In a first embodiment, the processor 104 may be configured to assign each specific health Convert the data into the corresponding specific health feature vector, convert each specific environment data into the corresponding specific environment feature vector; obtain the product feature vector corresponding to the first product; convert the specific health feature vector corresponding to each specific health data, each specific environment data The corresponding specific environment feature vector and the product feature vector corresponding to the first product are input to a specific neural network, and the specific neural network can respond to the specific health feature vector corresponding to each specific health data and the specific environmental features corresponding to each specific environmental data. The vector and the product feature vector corresponding to the first product generate a product recommendation score for the first product.
在第一實施例中,特定神經網路係經第一預訓練機制訓練而得,而其相關細節及上述各種特徵向量的轉換方式將在之後說明。 In the first embodiment, the specific neural network is trained through the first pre-training mechanism, and the relevant details and the conversion methods of the various feature vectors mentioned above will be described later.
在第二實施例中,處理器104可經配置以:將各該特定健康數據轉換為對應的特定健康特徵向量,並將特定健康特徵向量輸入至第一特定神經網路,其中第一特定神經網路因應於該特定健康特徵向量產生一第一分數;將各特定環境數據轉換為對應的特定環境特徵向量,並將特定環境特徵向量輸入至第二特定神經網路,其中第二特定神經網路因應於特定環境特徵向量產生一第二分數;取得第一商品對應的商品特徵向量,並將商品特徵向量輸入至第三特定神經網路,其中第三特定神經網路因應於商品特徵向量產生一第三分數;對第一分數、第二分數及第三分數進行一加權運算以取得第一商品的商品推薦分數。 In the second embodiment, the processor 104 may be configured to: convert each of the specific health data into a corresponding specific health feature vector, and input the specific health feature vector to the first specific neural network, wherein the first specific neural network The network generates a first score in response to the specific health feature vector; converts each specific environment data into a corresponding specific environment feature vector, and inputs the specific environment feature vector into a second specific neural network, where the second specific neural network The route generates a second score in response to the specific environment feature vector; obtains the product feature vector corresponding to the first product, and inputs the product feature vector to the third specific neural network, wherein the third specific neural network generates a product feature vector in response to the product feature vector a third score; performing a weighted operation on the first score, the second score and the third score to obtain the product recommendation score of the first product.
在第二實施例中,上述第一、第二、第三特定神經網路係經第二預訓練機制訓練而得,而其相關細節及上述各種特徵向 量的轉換方式將在之後說明。 In the second embodiment, the above-mentioned first, second, and third specific neural networks are trained by the second pre-training mechanism, and the relevant details and the above-mentioned various characteristics are directed to The method of converting quantities will be explained later.
在基於上述原則取得各商品的商品推薦分數之後,在步驟S240中,處理器104可基於各商品的商品推薦分數在所述多個商品中挑選多個特定商品,並將所述多個特定商品推薦予特定使用者。舉例而言,處理器104例如可將商品推薦分數較高的一或數個商品作為特定商品而推薦予特定使用者,以讓特定使用者較容易在特定應用程式的介面中看到這些特定商品,進而提高特定使用者對於這些特定商品的購買機率。 After obtaining the product recommendation scores of each product based on the above principles, in step S240, the processor 104 may select multiple specific products from the multiple products based on the product recommendation scores of each product, and add the multiple specific products to Recommended for specific users. For example, the processor 104 may recommend one or several products with higher product recommendation scores as specific products to a specific user, so that the specific user can more easily see these specific products in the interface of a specific application. , thereby increasing the purchase probability of specific users for these specific products.
以下將針對第一實施例中對於特定神經網路所採用的第一預訓練機制進行說明。概略而言,處理器104可收集多個使用者各自在購買某個商品時當下的健康數據、環境數據(例如溫度、濕度、經緯度、氣壓、雨量、時間等)及相關的使用者行為(例如對於某商品的累計購買次數等),並用以建立可用於訓練特定神經網路的訓練資料。 The following will describe the first pre-training mechanism used for a specific neural network in the first embodiment. Briefly speaking, the processor 104 can collect the current health data, environmental data (such as temperature, humidity, longitude and latitude, air pressure, rainfall, time, etc.) of multiple users when they purchase a certain product, and related user behaviors (such as for the cumulative number of purchases of a certain product, etc.), and used to create training data that can be used to train a specific neural network.
具體而言,對於上述使用者中的一參考使用者而言,處理器104可收集此參考使用者對於參考商品的購買行為,以及參考使用者購買參考商品時的健康數據、環境數據及參考商品的商品資訊。之後,處理器104可取得對應於所述購買行為的使用者行為特徵向量,取得對應於上述健康數據的健康特徵向量,取得對應於上述環境數據的環境特徵向量及取得對應於參考商品的商品資訊的商品特徵向量。 Specifically, for a reference user among the above users, the processor 104 can collect the reference user's purchasing behavior for the reference product, as well as the reference user's health data, environmental data and reference product when purchasing the reference product. product information. Afterwards, the processor 104 can obtain the user behavior feature vector corresponding to the purchase behavior, obtain the health feature vector corresponding to the above health data, obtain the environment feature vector corresponding to the above environmental data, and obtain product information corresponding to the reference product. product feature vector.
在第一實施方式中,處理器104可基於多個預定義特徵 規則將上述購買行為轉換為對應的使用者行為特徵向量、將上述健康數據轉換為對應的健康特徵向量、將上述環境數據轉換為對應的環境特徵向量,以及將參考商品的商品資訊轉換為對應的商品特徵向量。 In a first embodiment, the processor 104 may The rules convert the above purchasing behavior into the corresponding user behavior feature vector, the above health data into the corresponding health feature vector, the above environmental data into the corresponding environmental feature vector, and the product information of the reference product into the corresponding Product feature vector.
舉例而言,假設所考慮的其中一種環境數據為濕度,則設計者例如可先對各種濕度預先定義對應的描述值,如下表一所例示。 For example, assuming that one of the environmental data being considered is humidity, the designer can first pre-define corresponding description values for various humidity levels, as shown in Table 1 below.
由表一可知,當所取得的其中一種環境數據為50%的濕度時,處理器104將對應地將此環境數據轉換為1,而當所取得的環境數據為60%的濕度時,處理器104將對應地將此環境數據轉換為0.8。其餘濕度與對應描述值的關係可依此類推,於此不另贅述。 It can be seen from Table 1 that when one of the obtained environmental data is a humidity of 50%, the processor 104 will correspondingly convert the environmental data to 1, and when the obtained environmental data is a humidity of 60%, the processor 104 104 will correspondingly convert this environment data to 0.8. The relationship between the remaining humidity and the corresponding description value can be deduced in the same way, and will not be described again here.
相似地,對於其他種類的環境數據(例如溫度、時間等)、健康數據(例如血壓、身高、體重、心跳等)及參考商品,設計者亦可基於相似的原則設定對應的轉換關係,進而得到對應的健康特徵向量、環境特徵向量及參考商品對應的商品特徵向量。 Similarly, for other types of environmental data (such as temperature, time, etc.), health data (such as blood pressure, height, weight, heartbeat, etc.) and reference products, designers can also set corresponding conversion relationships based on similar principles to obtain The corresponding health feature vector, environment feature vector and product feature vector corresponding to the reference product.
在一實施例中,假設參考使用者在購買參考商品時的健康數據如表二所示,則處理器104可基於對應的預定義特徵規則將各個健康數據轉換為對應的描述值,進而組成健康特徵向量。舉例而言,設計者例如可針對血壓設計類似於表一形式的表格,而處理器104在取得數值為140/100mmHg的血壓時,即可基於所述表格而將此血壓轉換為對應的描述值,例如0.8。基於相似原理,處理器104亦可基於表二中的其他健康數據推估參考使用者的肥胖程度描述值(例如0.9)及心跳過快程度描述值(例如0.7)。藉此,處理器104即可將表二中的健康數據轉換為對應的健康特徵向量,即[0.8,0.9,0.7],但可不限於此。 In one embodiment, assuming that the health data of the reference user when purchasing the reference product is as shown in Table 2, the processor 104 can convert each health data into a corresponding description value based on the corresponding predefined feature rules, and then form a health data. eigenvector. For example, the designer can design a table similar to Table 1 for blood pressure, and when the processor 104 obtains the blood pressure with a value of 140/100mmHg, it can convert the blood pressure into a corresponding description value based on the table. , for example 0.8. Based on a similar principle, the processor 104 can also estimate the reference user's obesity level description value (eg, 0.9) and tachycardia level description value (eg, 0.7) based on other health data in Table 2. Thereby, the processor 104 can convert the health data in Table 2 into the corresponding health feature vector, that is, [0.8, 0.9, 0.7], but it is not limited to this.
在一實施例中,假設參考使用者在購買參考商品時的環境數據如表三,而參考商品的商品資訊如表四所示,則處理器104亦可基於對應的預定義特徵規則將各個環境數據及商品資訊轉換為對應的描述值,進而組成環境特徵向量(例如[0.4,0.7])及商品特徵向量(例如[0.8,0.3,0.6]),但可不限於此。 In one embodiment, assuming that the environment data of the reference user when purchasing the reference product is as shown in Table 3, and the product information of the reference product is as shown in Table 4, the processor 104 can also classify each environment based on the corresponding predefined feature rules. The data and product information are converted into corresponding description values, and then formed into an environment feature vector (for example, [0.4, 0.7]) and a product feature vector (for example, [0.8, 0.3, 0.6]), but it is not limited to this.
另外,對於參考使用者在購買參考商品時的購買行為(例如對於參考商品的累計購買次數等),處理器104亦可基於相似的原則將其轉換為對應的使用者行為特徵向量,但可不限於此。 In addition, for the reference user's purchasing behavior when purchasing the reference product (such as the cumulative number of purchases of the reference product, etc.), the processor 104 can also convert it into a corresponding user behavior feature vector based on similar principles, but it may not be limited to this.
在第一實施方式中,設計者可基於知識延伸的概念建立一知識圖譜。舉例而言,假設已知1為「高血壓→原因→鹽份攝取過多」,已知2為「洋芋片→組成→鈉含量高」,則其相關的推論可為「高血壓→少吃洋芋片」。 In the first embodiment, the designer can establish a knowledge graph based on the concept of knowledge extension. For example, assuming that 1 is "high blood pressure → cause → excessive salt intake" and 2 is "potato chips → composition → high sodium content", then the related inference can be "high blood pressure → eat less potatoes" piece".
請參照圖3,其是依據本發明第一實施方式繪示的知識圖譜示意圖。在本實施例中,圖3例如是設計者基於上述知識延伸的概念所建立的知識圖譜,而在取得上述健康特徵向量、環境特徵向量及商品特徵向量及使用者行為特徵向量之後,處理器104 可相應地將這些特徵向量填入圖3中的對應節點,但可不限於此。 Please refer to FIG. 3 , which is a schematic diagram of a knowledge graph according to the first embodiment of the present invention. In this embodiment, Figure 3 is, for example, a knowledge graph established by the designer based on the concept of knowledge extension. After obtaining the above health feature vector, environment feature vector, product feature vector and user behavior feature vector, the processor 104 These feature vectors can be filled in corresponding nodes in Figure 3 accordingly, but are not limited thereto.
在第二實施方式中,設計者可預先建立一知識圖譜,而此知識圖譜可包括相連的多個節點,其中各節點可對應於健康因子、環境因子、商品資訊因子及使用者行為因子的其中之一,但可不限於此。 In the second embodiment, the designer can pre-establish a knowledge graph, and this knowledge graph can include multiple connected nodes, where each node can correspond to one of health factors, environmental factors, product information factors, and user behavior factors. One, but not limited to this.
請參照圖4,其是依據本發明第二實施方式繪示的知識圖譜示意圖。在圖4中,設計者可預先將各節點及相關的連接關係予以建立,以形成知識圖譜400。之後,處理器104可再基於知識圖譜400執行TransE演算法、PTransE演算法或TransR演算法,以產生各節點對應的特徵向量。
Please refer to FIG. 4 , which is a schematic diagram of a knowledge graph according to a second embodiment of the present invention. In Figure 4, the designer can establish each node and related connection relationships in advance to form a
為便於理解本發明的概念,以下將以TransE演算法為例進行說明,但本發明可不限於此。請參照圖5,其是依據本發明第二實施方式繪示的TranE三元組示意圖。在圖5中,對於以關係向量r連接的兩個實體節點向量h、t而言,TransE的目標函數是最小化正確樣本的d(h+r,t)及最大化錯誤樣本的d(h’+r,t’),其中d(x,y)是向量距離,利用L2平方差(歐氏距離)來進行關係的遠近的運算。例如高血壓向量會與血壓或中風、洋芋片向量距離較近,而與性別或溫度、蔬菜餅向量距離較遠。 In order to facilitate understanding of the concept of the present invention, the TransE algorithm will be used as an example for description below, but the present invention is not limited thereto. Please refer to FIG. 5 , which is a schematic diagram of a TranE triplet according to a second embodiment of the present invention. In Figure 5, for two entity node vectors h and t connected by a relationship vector r, the objective function of TransE is to minimize d(h+r,t) of the correct sample and maximize d(h '+r,t'), where d(x,y) is the vector distance, and the L2 square difference (Euclidean distance) is used to calculate the distance of the relationship. For example, the high blood pressure vector will be closer to the blood pressure, stroke, and potato chip vectors, but farther from the gender, temperature, and vegetable pie vectors.
在一實施例中,處理器104執行TransE的具體步驟可包括:(1)初始化所有實體節點與關聯向量,為亂數分布於,其中k為向量維度,每一筆訓練資料為(h,r,t)組合;(2)從訓練資料取樣出n筆資料做批次,針對每一筆資料,產生出對應錯誤關聯 資料(固定h,r替換t,或固定r,t替換h);(3)針對這批正確及關聯錯誤資料T,使用最小化邊界法則迭代更新L=Σ T [γ+d(h+r,t)-d(h'+r,t')]+,其中d是L1或L2距離,+表示使用距離相減為正值的部分,γ是可調整的邊界參數;(4)重複步驟(2)、(3)直到收斂。 In one embodiment, the specific steps for the processor 104 to execute TransE may include: (1) Initializing all entity nodes and associated vectors as random numbers distributed among , where k is the vector dimension, and each piece of training data is a combination of ( h, r, t ); (2) Sample n pieces of data from the training data to make a batch, and for each piece of data, the corresponding error correlation data (fixed h ,r replaces t , or fixed r,t replaces h ); (3) For this batch of correct and associated error data T , use the minimization boundary rule to iteratively update L =Σ T [ γ + d ( h + r,t )- d ( h' + r,t' )] + , where d is the L 1 or L 2 distance, + represents the part using the distance subtracted to a positive value, γ is an adjustable boundary parameter; (4) Repeat step (2) ), (3) until convergence.
在圖4中,共存在12個實體節點,6種關聯(共12條)。假設向量維度為3(即,k為3),批次大小為1,則使用L1距離,初始向量值會分布在-到之間。一般而言,知識圖譜400中有關聯節點的距離會較小,反之無關聯的距離會較大,如下表五所例示。
In Figure 4, there are a total of 12 entity nodes and 6 types of associations (12 in total). Assuming that the vector dimension is 3 (i.e., k is 3) and the batch size is 1, then using L1 distance, the initial vector values will be distributed in - arrive between. Generally speaking, the distance between related nodes in the
在第二實施方式中,在處理器104基於知識圖譜400執行TransE演算法之後,所得到的各節點的特徵向量可如下表六所例示。
In the second embodiment, after the processor 104 executes the TransE algorithm based on the
之後,處理器104可在各節點的特徵向量中找出對應於購買行為的使用者行為特徵向量、對應於健康數據的健康特徵向量、對應於環境數據的環境特徵向量及對應於參考商品的商品資訊的商品特徵向量。 After that, the processor 104 can find the user behavior feature vector corresponding to the purchase behavior, the health feature vector corresponding to the health data, the environment feature vector corresponding to the environment data, and the product corresponding to the reference product from the feature vectors of each node. Product feature vector of information.
在基於第一實施方式或第二實施方式得到對應於購買行為的使用者行為特徵向量、對應於健康數據的健康特徵向量、對應於環境數據的環境特徵向量及對應於參考商品的商品資訊的商品特徵向量之後,處理器104可基於使用者行為特徵向量、健康特徵向量、環境特徵向量及商品特徵向量產生參考訓練資料,並基於參考訓練資料訓練特定神經網路。 Based on the first embodiment or the second embodiment, the user behavior feature vector corresponding to the purchasing behavior, the health feature vector corresponding to the health data, the environment feature vector corresponding to the environment data, and the product information corresponding to the reference product are obtained. After the feature vector, the processor 104 can generate reference training data based on the user behavior feature vector, health feature vector, environment feature vector and product feature vector, and train a specific neural network based on the reference training data.
在第一實施例中,處理器104例如可將使用者行為特徵向量、健康特徵向量、環境特徵向量及商品特徵向量組合為一個超向量,並以此超向量作為一筆訓練資料來訓練所述特定神經網路,但可不限於此。 In the first embodiment, the processor 104 may, for example, combine the user behavior feature vector, the health feature vector, the environment feature vector and the product feature vector into a super vector, and use this super vector as a piece of training data to train the specific Neural network, but is not limited to this.
在一實施例中,訓練特定神經網路的訓練目標函數例如可表徵為:p'(y|x)=(1-α-β).p(y|x)+α.h(x)+β.h(y),其中p(y|x)為使用者x購買或點選商品y的機率,h(x)為使用者健康程度指標,h(y)為商品有益健康指標,α、β為權重。此外,訓練特定神經網路的損失函數交叉熵可表徵為: H ( p ,q )=-Σ t p (t)log q (t),其中 p 為訓練語料分布(即,p'(y|x)), q 為特定神經網路的預測分布,t為特定神經網路的訓練資料,且特定神經網路的訓練目標包括最小化損失函數交叉熵。 In one embodiment, the training objective function for training a specific neural network can be characterized as: p' ( y | x ) = (1- α - β ). p ( y | x )+ α . h ( x )+ β . h ( y ) , where p ( y | x ) is the probability of user weight. In addition, the cross entropy of the loss function for training a specific neural network can be characterized as: H ( p , q )=-Σ t p ( t )log q ( t ), where p is the training corpus distribution (i.e., p' ( y | _ _
應了解的是,在處理器104執行步驟S230的過程中,可基於第一/第二實施方式記載的概念來將各特定健康數據轉換為對應的特定健康特徵向量,將各特定環境數據轉換為對應的特定環境特徵向量,以及取得第一商品對應的商品特徵向量。並且,在 第一實施例中,處理器104可將各特定健康數據對應的特定健康特徵向量、各特定環境數據對應的特定環境特徵向量及第一商品對應的商品特徵向量組合為一超向量,再將此超向量輸入至訓練後的特定神經網路,以由特定神經網路產生第一商品的商品推薦分數。從另一觀點而言,由特定神經網路的訓練目標函數可知,第一商品的商品推薦分數可理解為特定使用者購買或點選第一商品的機率及第一商品有助於改善特定使用者健康的一綜合分數,但可不限於此。 It should be understood that when the processor 104 executes step S230, each specific health data can be converted into a corresponding specific health feature vector based on the concepts described in the first/second embodiment, and each specific environment data can be converted into The corresponding specific environment feature vector, and obtain the product feature vector corresponding to the first product. And, in In the first embodiment, the processor 104 may combine the specific health feature vector corresponding to each specific health data, the specific environment feature vector corresponding to each specific environment data, and the product feature vector corresponding to the first product into a super vector, and then The supervector is input to the trained specific neural network, so that the specific neural network generates a product recommendation score for the first product. From another point of view, it can be known from the training objective function of a specific neural network that the product recommendation score of the first product can be understood as the probability that a specific user purchases or clicks on the first product and that the first product helps improve specific usage. A comprehensive score of the patient's health, but may not be limited to this.
以下的第二實施例將針對第二預訓練機制進行說明。在第二實施例中,上述第二預訓練機制例如可用於聯合地訓練第一、第二、第三及第四特定神經網路。相似於第一實施例,第二實施例中的處理器104亦可收集多個使用者各自在購買某個商品時當下的健康數據、環境數據(例如溫度、濕度、經緯度、氣壓、雨量、時間等)、商品資訊及相關的使用者行為(例如對於某商品的累計購買次數等),以作為用於訓練第一、第二、第三及第四特定神經網路的訓練資料。 The following second embodiment will describe the second pre-training mechanism. In the second embodiment, the above-mentioned second pre-training mechanism may be used to jointly train the first, second, third and fourth specific neural networks, for example. Similar to the first embodiment, the processor 104 in the second embodiment can also collect current health data and environmental data (such as temperature, humidity, longitude and latitude, air pressure, rainfall, time) of multiple users when purchasing a certain product. etc.), product information and related user behavior (such as the cumulative number of purchases of a product, etc.) as training data for training the first, second, third and fourth specific neural networks.
具體而言,在執行第二預訓練機制時,處理器104可收集參考使用者對於參考商品的購買行為,以及參考使用者購買參考商品時的健康數據、環境數據及參考商品的商品資訊。並且,處理器104可取得對應於購買行為的使用者行為特徵向量,取得對應於健康數據的健康特徵向量,取得對應環境數據的環境特徵向量及取得對應於參考商品的該商品資訊的商品特徵向量。上述 步驟可參照第一實施例中對於第一、第二實施方式的說明,於此不另贅述。 Specifically, when executing the second pre-training mechanism, the processor 104 may collect the reference user's purchasing behavior for the reference product, as well as the reference user's health data, environmental data and product information of the reference product when purchasing the reference product. Furthermore, the processor 104 can obtain the user behavior feature vector corresponding to the purchase behavior, obtain the health feature vector corresponding to the health data, obtain the environment feature vector corresponding to the environment data, and obtain the product feature vector corresponding to the product information of the reference product. . above For the steps, please refer to the description of the first and second embodiments in the first embodiment, and will not be described again here.
在第二實施例中,在取得對應於購買行為的使用者行為特徵向量、對應於健康數據的健康特徵向量、對應環境數據的環境特徵向量及對應於參考商品的商品資訊的商品特徵向量之後,處理器104可分別基於健康特徵向量、環境特徵向量、商品特徵向量及使用者行為特徵向量聯合地訓練第一、第二、第三及第四特定神經網路。 In the second embodiment, after obtaining the user behavior feature vector corresponding to the purchasing behavior, the health feature vector corresponding to the health data, the environment feature vector corresponding to the environment data, and the product feature vector corresponding to the product information of the reference product, The processor 104 may jointly train the first, second, third and fourth specific neural networks based on the health feature vector, the environment feature vector, the product feature vector and the user behavior feature vector respectively.
簡言之,第一、第二、第三及第四特定神經網路個別可基於對應的訓練資料及目標函數(例如p'(y|x))及訓練目標(例如最小化 H ( p ,q ))進行訓練,但可不限於此。 In short, the first, second, third and fourth specific neural networks can respectively be based on corresponding training data and objective functions (such as p' ( y | x )) and training objectives (such as minimizing H ( p , q )) for training, but may not be limited to this.
應了解的是,在處理器104執行步驟S230的過程中,可基於第一/第二實施方式記載的概念來將各特定健康數據轉換為對應的特定健康特徵向量,將各特定環境數據轉換為對應的特定環境特徵向量,以及取得第一商品對應的商品特徵向量。並且,在第二實施例中,處理器104可以第一特定神經網路將各特定健康數據對應的特定健康特徵向量轉換為第一分數,以第二特定神經網路將各特定環境數據對應的特定環境特徵向量轉換為第二分數,以第三特定神經網路將第一商品對應的商品特徵向量轉換為第三分數,再將第一、第二、第三分數乘以對應的權重而加總為第一商品的商品推薦分數。 It should be understood that when the processor 104 executes step S230, each specific health data can be converted into a corresponding specific health feature vector based on the concepts described in the first/second embodiment, and each specific environment data can be converted into The corresponding specific environment feature vector, and obtain the product feature vector corresponding to the first product. Furthermore, in the second embodiment, the processor 104 may use a first specific neural network to convert the specific health feature vector corresponding to each specific health data into a first score, and use a second specific neural network to convert the specific health feature vector corresponding to each specific environmental data into a first score. The specific environment feature vector is converted into a second score, a third specific neural network is used to convert the product feature vector corresponding to the first product into a third score, and then the first, second, and third scores are multiplied by the corresponding weights and added The product recommendation score is always the first product.
在一實施例中,假設行動支付平台所提供的商品包括除 塵蟎吸塵器、益生菌、除濕機、燕麥片、健腹器及燃脂茶。在此情況下,若特定使用者的特定健康數據顯示特定使用者體脂較高或血糖太高,且特定使用者所處環境對應的特定環境數據顯示環境較為潮濕,則處理器104可基於上述特定健康數據及特定環境數據估計上述商品個別的商品推薦分數。假設除塵蟎吸塵器及燃脂茶的商品推薦分數較高(即,處理器104判定特定使用者較有可能購買此二商品及/或此二商品對於特定使用者的健康較有助益),處理器104即可將此二商品優先推薦予特定使用者,但可不限於此。 In one embodiment, it is assumed that the goods provided by the mobile payment platform include Dust mite vacuum cleaner, probiotics, dehumidifier, oatmeal, tummy toner and fat burning tea. In this case, if the specific health data of the specific user shows that the specific user has high body fat or high blood sugar, and the specific environmental data corresponding to the environment of the specific user shows that the environment is relatively humid, the processor 104 can based on the above Specific health data and specific environmental data estimate individual product recommendation scores for the above products. Assuming that the product recommendation scores of the dust mite-removing vacuum cleaner and the fat-burning tea are relatively high (that is, the processor 104 determines that a specific user is more likely to purchase these two products and/or these two products are more beneficial to the specific user's health), the process The device 104 can preferentially recommend these two products to specific users, but is not limited to this.
綜上所述,本發明至少具備以下特點:(1)本發明可利用穿戴裝置蒐集諸多個人化的健康資訊與當下的環境因子上傳雲端;(2)本發明將諸多個人化的健康資訊與環境因子利用知識圖譜建立特徵向量;(3)本發明將結合類神經網路深度學習方法將使用者行為、健康因子、環境因子、商品等特徵向量,事先訓練一或多個特定神經網路以進行後續商品推薦分數排序;(4)本發明主動幫助使用者推薦適合用戶本身的商品資訊。藉此,本發明可結合環境因素與個人健康因子,做到貼身適切的精準商品推薦行銷。 To sum up, the present invention at least has the following characteristics: (1) The present invention can use wearable devices to collect a lot of personalized health information and current environmental factors and upload them to the cloud; (2) The present invention can collect a lot of personalized health information and environmental factors. Factors use knowledge graphs to establish feature vectors; (3) The present invention will combine neural network-like deep learning methods to use feature vectors such as user behavior, health factors, environmental factors, products, etc., and train one or more specific neural networks in advance to perform Subsequent product recommendation scores are sorted; (4) The present invention actively helps users recommend product information that is suitable for the user. In this way, the present invention can combine environmental factors and personal health factors to achieve personalized and accurate product recommendation marketing.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.
S210~S240:步驟 S210~S240: steps
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109132705A TWI812883B (en) | 2020-09-22 | 2020-09-22 | Method and server for recommending products on mobile payment platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109132705A TWI812883B (en) | 2020-09-22 | 2020-09-22 | Method and server for recommending products on mobile payment platform |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202213221A TW202213221A (en) | 2022-04-01 |
TWI812883B true TWI812883B (en) | 2023-08-21 |
Family
ID=82197402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109132705A TWI812883B (en) | 2020-09-22 | 2020-09-22 | Method and server for recommending products on mobile payment platform |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI812883B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW569116B (en) * | 2000-10-18 | 2004-01-01 | Johnson & Johnson Consumer | Intelligent performance-based product recommendation system |
CN111275521A (en) * | 2020-01-16 | 2020-06-12 | 华南理工大学 | Commodity recommendation method based on user comment and satisfaction level embedding |
-
2020
- 2020-09-22 TW TW109132705A patent/TWI812883B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW569116B (en) * | 2000-10-18 | 2004-01-01 | Johnson & Johnson Consumer | Intelligent performance-based product recommendation system |
CN111275521A (en) * | 2020-01-16 | 2020-06-12 | 华南理工大学 | Commodity recommendation method based on user comment and satisfaction level embedding |
Also Published As
Publication number | Publication date |
---|---|
TW202213221A (en) | 2022-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI740106B (en) | Product recommendation method and device | |
US11659050B2 (en) | Discovering signature of electronic social networks | |
CN108510437B (en) | Virtual image generation method, device, equipment and readable storage medium | |
US11983748B2 (en) | Using artificial intelligence to determine a size fit prediction | |
CN104778173B (en) | Target user determination method, device and equipment | |
CN109829775A (en) | A kind of item recommendation method, device, equipment and readable storage medium storing program for executing | |
CN107341679A (en) | Obtain the method and device of user's portrait | |
CN111144933B (en) | Commodity recommendation method and device, electronic equipment and storage medium | |
CN109903103B (en) | Method and device for recommending articles | |
CN108629608A (en) | User data processing method and processing device | |
CN104794367B (en) | Medical treatment resource scoring based on hidden semantic model is with recommending method | |
CA3047068A1 (en) | Vector-based characterizations of products and individuals with respect to personal partialities | |
CN110706783B (en) | Recipe recommendation method, apparatus, computing device and computer storage medium | |
JP2018045649A (en) | Determination device, determination method, and determination program | |
Rubin et al. | Investigating adoption factors of wearable technology in health and fitness | |
TW201636930A (en) | Providing service based on user operation behavior | |
US20180091594A1 (en) | Systems and methods for utilizing athlete data to increase athlete performance | |
TWI812883B (en) | Method and server for recommending products on mobile payment platform | |
CN108647986A (en) | A kind of target user determines method, apparatus and electronic equipment | |
CN116977019A (en) | Merchant recommendation method and device, electronic equipment and storage medium | |
CN110288419A (en) | A kind of dynamic updates the electric business agricultural product recommended method of weight | |
CN113935251A (en) | User behavior prediction model generation method and device and user behavior prediction method and device | |
JP2023019770A (en) | Information processor, information processing method, and information processing program | |
CN113409123A (en) | Information recommendation method, device, equipment and storage medium | |
Krause et al. | Beyond the rating matrix: debiasing implicit feedback loops in collaborative filtering |