TWI812572B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI812572B
TWI812572B TW112102172A TW112102172A TWI812572B TW I812572 B TWI812572 B TW I812572B TW 112102172 A TW112102172 A TW 112102172A TW 112102172 A TW112102172 A TW 112102172A TW I812572 B TWI812572 B TW I812572B
Authority
TW
Taiwan
Prior art keywords
gate
charge storage
well region
disposed
dielectric layer
Prior art date
Application number
TW112102172A
Other languages
Chinese (zh)
Other versions
TW202322371A (en
Inventor
陳駿盛
黃丘宗
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW112102172A priority Critical patent/TWI812572B/en
Publication of TW202322371A publication Critical patent/TW202322371A/en
Application granted granted Critical
Publication of TWI812572B publication Critical patent/TWI812572B/en

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)
  • Noodles (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

A semiconductor device including a substrate including a first and second wells with a first interface therebetween and in contact with each other, an isolation structure in the first well, a control gate on the isolation structure, a first gate on the second well, a first charge storage structure on a region of the substrate between the control gate and the first gate and including the first interface, and source/drain regions in the substrate. The isolation structure spaces apart from the first interface by a first distance. The isolation structure is located between the source/drain regions in a top view. The first charge storage structure is disposed on a first sidewall of the control gate that faces the first gate and on a first sidewall of the first gate that faces the control gate.

Description

半導體裝置Semiconductor device

本發明是有關於一種半導體裝置,且特別是有關於一種記憶體裝置。The present invention relates to a semiconductor device, and in particular to a memory device.

快閃記憶體(flash memory)是一種廣泛使用的非揮發性記憶體(non-volatile memory,NVM)。矽-氧化物-氮化物-氧化物-矽(silicon-oxide-nitride-oxide-silicon,SONOS)記憶體、金屬-氧化物-氮化物-氧化物-矽(metal-oxide-nitride-oxide-silicon,MONOS)和浮置閘極(floating gate)記憶體等為一些常見的非揮發性記憶體。在上述這些揮發性記憶體中,相較於浮置閘極記憶體而言,SONOS記憶體和MONOS記憶體具有較低的操作電壓。然而,在製程方面來說,SONOS記憶體和MONOS記憶體需要額外的光微影製程(photolithography process),所以不易整合於互補式金屬氧化物半導體(complementary metal oxide semiconductor,CMOS)邏輯製程中。Flash memory is a widely used non-volatile memory (NVM). Silicon-oxide-nitride-oxide-silicon (SONOS) memory, metal-oxide-nitride-oxide-silicon (metal-oxide-nitride-oxide-silicon) , MONOS) and floating gate memories are some common non-volatile memories. Among the above-mentioned volatile memories, SONOS memories and MONOS memories have lower operating voltages compared to floating gate memories. However, in terms of manufacturing processes, SONOS memory and MONOS memory require additional photolithography processes, so they are not easily integrated into complementary metal oxide semiconductor (CMOS) logic processes.

本發明提供一種半導體裝置,其可相容於CMOS邏輯製程。The present invention provides a semiconductor device that is compatible with CMOS logic processes.

本發明提供一種半導體裝置,其包括基底、隔離結構、控制閘極、第一閘極、第一電荷儲存結構以及多個源極/汲極區。基底包括第一井區和第二井區。第一井區具有第一導電型。第二井區具有不同於第一導電型的第二導電型。第一井區和第二井區之間具有彼此接觸的第一界面。隔離結構設置在基底的第一井區中且與第一界面間隔開第一距離。控制閘極設置在隔離結構上且包括彼此相對的第一側壁和第二側壁。第一閘極設置在基底的第二井區上且包括彼此相對的第一側壁和第二側壁,其中第一閘極的第一側壁與控制閘極的第一側壁彼此相互面對。第一電荷儲存結構設置在控制閘極的第一側壁上、第一閘極的第一側壁上以及基底的位在控制閘極和第一閘極之間且包含有第一界面的區域上。多個源極/汲極區分別設置在基底中。從俯視的角度來看,隔離結構設置在多個源極/汲極區之間,第一閘極設置在隔離結構與多個源極/汲極區中的一者之間。The present invention provides a semiconductor device, which includes a substrate, an isolation structure, a control gate, a first gate, a first charge storage structure and a plurality of source/drain regions. The substrate includes a first well region and a second well region. The first well region has a first conductivity type. The second well region has a second conductivity type that is different from the first conductivity type. The first well area and the second well area have a first interface in contact with each other. The isolation structure is disposed in the first well region of the substrate and is spaced a first distance from the first interface. The control gate is disposed on the isolation structure and includes first sidewalls and second sidewalls opposite to each other. The first gate is disposed on the second well region of the substrate and includes first sidewalls and second sidewalls opposite to each other, wherein the first sidewall of the first gate and the first sidewall of the control gate face each other. The first charge storage structure is disposed on the first sidewall of the control gate, the first sidewall of the first gate, and a region of the substrate between the control gate and the first gate and including the first interface. A plurality of source/drain regions are respectively disposed in the substrate. From a top view, the isolation structure is disposed between the plurality of source/drain regions, and the first gate is disposed between the isolation structure and one of the plurality of source/drain regions.

在本發明的一實施例中,第一電荷儲存結構包括第一介電層和第一電荷儲存層。第一介電層設置在控制閘極的第一側壁上、第一閘極的第一側壁上以及基底的上述區域上。第一電荷儲存層設置在第一介電層上。In an embodiment of the invention, the first charge storage structure includes a first dielectric layer and a first charge storage layer. The first dielectric layer is disposed on the first sidewall of the control gate, the first sidewall of the first gate and the above-mentioned area of the substrate. The first charge storage layer is disposed on the first dielectric layer.

在本發明的一實施例中,第一介電層的頂端高於第一電荷儲存層的頂端。In an embodiment of the present invention, the top of the first dielectric layer is higher than the top of the first charge storage layer.

在本發明的一實施例中,半導體裝置更包括多個虛設電荷儲存結構,其分別設置在第一閘極的第二側壁上以及控制閘極的第二側壁上。In an embodiment of the present invention, the semiconductor device further includes a plurality of dummy charge storage structures, which are respectively disposed on the second sidewall of the first gate and the second sidewall of the control gate.

在本發明的一實施例中,基底包括具有第一導電型的摻雜區。摻雜區與第一電荷儲存結構、第一井區和第二井區接觸。In an embodiment of the invention, the substrate includes a doped region having a first conductivity type. The doped region is in contact with the first charge storage structure, the first well region, and the second well region.

在本發明的一實施例中,基底包括具有第二導電型的第三井區,第一井區在第二井區和第三井區之間,第一井區和第三井區之間具有彼此接觸的第二界面,隔離結構與第二界面間隔開第二距離,且半導體裝置更包括第二閘極和第二電荷儲存結構。第二閘極設置在基底的第三井區上且包括彼此相對的第一側壁和第二側壁,第二閘極的第一側壁面對控制閘極的第二側壁。第二電荷儲存結構設置在控制閘極的第二側壁上、第二閘極的第一側壁上以及基底的位在控制閘極和第二閘極之間且包括第二界面的區域上。In an embodiment of the invention, the substrate includes a third well region having a second conductivity type, the first well region is between the second well region and the third well region, and the first well region is between the first well region and the third well region. There is a second interface in contact with each other, the isolation structure is spaced a second distance from the second interface, and the semiconductor device further includes a second gate and a second charge storage structure. The second gate is disposed on the third well region of the substrate and includes first sidewalls and second sidewalls opposite to each other. The first sidewall of the second gate faces the second sidewall of the control gate. The second charge storage structure is disposed on the second sidewall of the control gate, the first sidewall of the second gate, and a region of the substrate between the control gate and the second gate and including the second interface.

在本發明的一實施例中,第二閘極設置在隔離結構與多個源極/汲極區中的另一者之間。In one embodiment of the present invention, the second gate is disposed between the isolation structure and another one of the plurality of source/drain regions.

在本發明的一實施例中,第二閘極和第二電荷儲存結構在以穿過基底的第一井區、隔離結構和控制閘極的軸線上與第一閘極和第一電荷儲存結構呈鏡像對稱。In one embodiment of the invention, the second gate and the second charge storage structure are aligned with the first gate and the first charge storage structure on an axis passing through the first well region of the substrate, the isolation structure and the control gate. Mirror symmetry.

在本發明的一實施例中,基底包括具有第一導電型的多個摻雜區。多個摻雜區中的一者與第一電荷儲存結構、第一井區和第二井區接觸。多個摻雜區中的另一者與第二電荷儲存結構、第一井區和第三井區接觸。In an embodiment of the invention, the substrate includes a plurality of doped regions having a first conductivity type. One of the plurality of doped regions is in contact with the first charge storage structure, the first well region, and the second well region. Another of the plurality of doped regions is in contact with the second charge storage structure, the first well region, and the third well region.

在本發明的一實施例中,第一閘極的頂表面或第二閘極的頂表面高於控制閘極的頂表面。In an embodiment of the present invention, the top surface of the first gate or the top surface of the second gate is higher than the top surface of the control gate.

本發明另提供一種半導體裝置,其包括基底、隔離結構、導電插塞、第一閘極、第一間隔件、介電襯層以及多個源極/汲極區。基底包括第一井區和第二井區。第一井區具有第一導電型。第二井區具有不同於第一導電型的第二導電型。第一井區和第二井區之間具有彼此接觸的第一界面。隔離結構設置在基底的第一井區中且與第一界面間隔開第一距離。導電插塞設置在隔離結構上。第一閘極設置在基底的第二井區上且包括面對導電插塞的第一側壁以及與第一側壁相對的第二側壁。第一間隔件設置在第一閘極的第一側壁上且包括第一穿隧介電層和設置在第一穿隧介電層上的第一電荷儲存層。第一穿隧介電層設置在第一閘極的第一側壁上和基底的位在導電插塞和第一閘極之間且包含有第一界面的區域上。介電襯層設置在導電插塞和第一間隔件之間,以使第一電荷儲存層與導電插塞間隔開來。多個源極/汲極區分別設置在基底中。從俯視的角度來看,隔離結構在多個源極/汲極區之間,且第一閘極設置在隔離結構與多個源極/汲極區中的一者之間。The present invention further provides a semiconductor device, which includes a substrate, an isolation structure, a conductive plug, a first gate, a first spacer, a dielectric liner and a plurality of source/drain regions. The substrate includes a first well region and a second well region. The first well region has a first conductivity type. The second well region has a second conductivity type that is different from the first conductivity type. The first well area and the second well area have a first interface in contact with each other. The isolation structure is disposed in the first well region of the substrate and is spaced a first distance from the first interface. The conductive plug is provided on the isolation structure. The first gate is disposed on the second well region of the substrate and includes a first sidewall facing the conductive plug and a second sidewall opposite to the first sidewall. The first spacer is disposed on the first sidewall of the first gate and includes a first tunnel dielectric layer and a first charge storage layer disposed on the first tunnel dielectric layer. The first tunneling dielectric layer is disposed on the first sidewall of the first gate and on a region of the substrate between the conductive plug and the first gate and including the first interface. A dielectric liner is disposed between the conductive plug and the first spacer to space the first charge storage layer from the conductive plug. A plurality of source/drain regions are respectively disposed in the substrate. From a top view, the isolation structure is between the plurality of source/drain regions, and the first gate is disposed between the isolation structure and one of the plurality of source/drain regions.

在本發明的一實施例中,第一穿隧介電層的頂端高於第一電荷儲存層的頂端。In an embodiment of the present invention, the top of the first tunneling dielectric layer is higher than the top of the first charge storage layer.

在本發明的一實施例中,基底包括具有第一導電型的摻雜區。摻雜區與第一間隔件、第一井區和第二井區接觸。In an embodiment of the invention, the substrate includes a doped region having a first conductivity type. The doped region is in contact with the first spacer, the first well region and the second well region.

在本發明的一實施例中,基底包括具有第二導電型的第三井區。第一井區在第二井區和第三井區之間,且第一井區和第三井區之間具有彼此接觸的第二界面。隔離結構與第二界面間隔開第二距離。半導體裝置更包括第二閘極和第二間隔件。第二閘極設置在基底的第三井區上且包括面對導電插塞的第一側壁以及與第一側壁相對的第二側壁。第二間隔件設置在第二閘極的第一側壁上且包括第二穿隧介電層和設置在第二穿隧介電層上的第二電荷儲存層。第二穿隧介電層設置在第二閘極的第一側壁上和基底的位在導電插塞和第二閘極之間且包含有第二界面的區域上。In an embodiment of the invention, the substrate includes a third well region having a second conductivity type. The first well area is between the second well area and the third well area, and the first well area and the third well area have a second interface in contact with each other. The isolation structure is spaced a second distance from the second interface. The semiconductor device further includes a second gate and a second spacer. The second gate is disposed on the third well region of the substrate and includes a first sidewall facing the conductive plug and a second sidewall opposite to the first sidewall. The second spacer is disposed on the first sidewall of the second gate and includes a second tunnel dielectric layer and a second charge storage layer disposed on the second tunnel dielectric layer. The second tunneling dielectric layer is disposed on the first sidewall of the second gate and on a region of the substrate between the conductive plug and the second gate and including the second interface.

在本發明的一實施例中,從俯視的角度來看,第二閘極設置在隔離結構與多個源極/汲極區中的另一者之間。In an embodiment of the present invention, from a top view, the second gate is disposed between the isolation structure and another one of the plurality of source/drain regions.

在本發明的一實施例中,第二閘極和第二間隔件在以穿過基底的第一井區、隔離結構和導電插塞的軸線上與第一閘極和第一間隔件呈鏡像對稱。In one embodiment of the invention, the second gate and the second spacer are mirror images of the first gate and the first spacer on an axis passing through the first well region of the substrate, the isolation structure and the conductive plug. Symmetry.

在本發明的一實施例中,基底包括具有第一導電型的多個摻雜區。多個摻雜區中的一者與第一間隔件、第一井區和第二井區接觸。多個摻雜區中的另一者與第二間隔件、第一井區和第三井區接觸。In an embodiment of the invention, the substrate includes a plurality of doped regions having a first conductivity type. One of the plurality of doped regions is in contact with the first spacer, the first well region, and the second well region. Another one of the plurality of doped regions is in contact with the second spacer, the first well region, and the third well region.

在本發明的一實施例中,導電插塞的頂表面高於第一閘極的頂表面或第二閘極的頂表面。In an embodiment of the present invention, the top surface of the conductive plug is higher than the top surface of the first gate or the top surface of the second gate.

在本發明的一實施例中,半導體裝置更包括第三間隔件,其設置在第一閘極的第二側壁上或第二閘極的第二側壁上。第三間隔件包括虛設電荷儲存層和虛設穿隧介電層。虛設穿隧介電層設置在第一閘極和虛設電荷儲存層之間或是第二閘極和虛設電荷儲存層之間。In an embodiment of the present invention, the semiconductor device further includes a third spacer disposed on the second side wall of the first gate or the second side wall of the second gate. The third spacer includes a dummy charge storage layer and a dummy tunneling dielectric layer. The dummy tunneling dielectric layer is disposed between the first gate and the dummy charge storage layer or between the second gate and the dummy charge storage layer.

基於上述,在本發明的實施例中,由於控制閘極是設計在隔離結構上且第一電荷儲存結構是設計在控制閘極的第一側壁上、第一閘極的第一側壁上以及基底的位在控制閘極和第一閘極之間且包含有第一界面的區域上,如此可使得本發明實施例的半導體裝置能夠易於整合至CMOS邏輯製程中。在本發明的另一實施例中,由於導電插塞是設計在隔離結構上且包括第一穿隧介電層和第一電荷儲存層的第一間隔件是設計在第一閘極的第一側壁上,如此可使得本發明另一實施例的半導體裝置能夠易於整合至CMOS邏輯製程中。Based on the above, in the embodiment of the present invention, since the control gate is designed on the isolation structure and the first charge storage structure is designed on the first side wall of the control gate, the first side wall of the first gate and the substrate The position is on the area between the control gate and the first gate and including the first interface, so that the semiconductor device according to the embodiment of the present invention can be easily integrated into the CMOS logic process. In another embodiment of the present invention, since the conductive plug is designed on the isolation structure and the first spacer including the first tunneling dielectric layer and the first charge storage layer is designed on the first gate of the first On the sidewall, this allows the semiconductor device according to another embodiment of the present invention to be easily integrated into a CMOS logic process.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。The present invention will be described more fully with reference to the drawings of this embodiment. However, the present invention may also be embodied in various forms and should not be limited to the embodiments described herein. The thickness of layers and regions in the drawings are exaggerated for clarity. The same or similar reference numbers indicate the same or similar components, and will not be repeated one by one in the following paragraphs.

應當理解,當諸如元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者也可存在中間元件。若當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,則不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接,而「電性連接」或「耦合」可為二元件間存在其它元件。本文中所使用的「電性連接」可包括物理連接(例如有線連接)及物理斷接(例如無線連接)。It will be understood that when an element is referred to as being "on" or "connected to" another element, it can be directly on or connected to the other element or intervening elements may also be present. When an element is referred to as being "directly on" or "directly connected to" another element, there are no intervening elements present. As used herein, "connection" may refer to a physical and/or electrical connection, and "electrical connection" or "coupling" may refer to the presence of other components between two components. "Electrical connection" as used herein may include physical connections (such as wired connections) and physical disconnections (such as wireless connections).

本文使用的「約」、「近似」或「實質上」包括所提到的值和在所屬技術領域中具有通常知識者能夠確定之特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制)。例如,「約」可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。再者,本文使用的「約」、「近似」或「實質上」可依光學性質、蝕刻性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。As used herein, "about," "approximately" or "substantially" includes the recited value and the average within an acceptable range of deviations from the specific value that a person with ordinary skill in the art can determine, taking into account the Discuss the measurement and the specific amount of error associated with the measurement (i.e., the limitations of the measurement system). For example, "about" may mean within one or more standard deviations of the stated value, or within ±30%, ±20%, ±10%, ±5%. Furthermore, "about", "approximately" or "substantially" used in this article can be used to select a more acceptable deviation range or standard deviation based on optical properties, etching properties or other properties, and one standard deviation does not apply to all properties. .

使用本文中所使用的用語僅為闡述例示性實施例,而非限制本揭露。在此種情形中,除非在上下文中另有解釋,否則單數形式包括多數形式。The terminology used herein is used only to describe illustrative embodiments and does not limit the disclosure. In such cases, the singular form includes the plural form unless the context dictates otherwise.

圖1是本發明第一實施例的半導體裝置的剖面示意圖。FIG. 1 is a schematic cross-sectional view of a semiconductor device according to a first embodiment of the present invention.

請參照圖1,半導體裝置10包括基底100、隔離結構STI1、控制閘極110、第一閘極120、第一電荷儲存結構130以及多個源極/汲極區SD1和SD2。Referring to FIG. 1 , the semiconductor device 10 includes a substrate 100 , an isolation structure STI1 , a control gate 110 , a first gate 120 , a first charge storage structure 130 and a plurality of source/drain regions SD1 and SD2 .

基底100可包括具有第一導電型的深井區101和第一井區103以及具有第二導電型的第二井區104。基底100可例如是具有第二導電型的基底。深井區101可形成於基底100的由隔離結構STI2所定義的主動區中。第一井區103和第二井區104可形成於深井區101中,且第一井區103和第二井區104之間具有彼此接觸的第一界面103a。在一些實施例中,隔離結構STI2可以是淺溝渠隔離(shallow trench isolation),但並不以此為限。第一導電型不同於第二導電型。舉例來說,第一導電型可以是N型;而第二導電型可以是P型,但並不以此為限。第一導電型也可以是P型;而第二導電型也可以是N型。The substrate 100 may include a deep well region 101 and a first well region 103 having a first conductivity type and a second well region 104 having a second conductivity type. The substrate 100 may be, for example, a substrate having the second conductivity type. Deep well region 101 may be formed in an active region of substrate 100 defined by isolation structure STI2. The first well area 103 and the second well area 104 may be formed in the deep well area 101 with a first interface 103a in contact with each other. In some embodiments, the isolation structure STI2 may be shallow trench isolation, but is not limited thereto. The first conductivity type is different from the second conductivity type. For example, the first conductivity type may be N-type; and the second conductivity type may be P-type, but is not limited thereto. The first conductivity type may also be P type; and the second conductivity type may also be N type.

隔離結構STI1設置在基底100的第一井區103中且與第一界面103a間隔開第一距離d1。在一些實施例中,第一距離d1可根據需要進行調整但第一界面103a必須位於隔離結構STI1和第一閘極120之間。在一些實施例中,隔離結構STI1可以是淺溝渠隔離。The isolation structure STI1 is disposed in the first well region 103 of the substrate 100 and is spaced apart from the first interface 103a by a first distance d1. In some embodiments, the first distance d1 can be adjusted as needed but the first interface 103a must be located between the isolation structure STI1 and the first gate 120 . In some embodiments, the isolation structure STI1 may be a shallow trench isolation.

控制閘極110設置在隔離結構STI1上且包括彼此相對的第一側壁110a和第二側壁110b。在一些實施例中,控制閘極110可直接設置在隔離結構STI1上以與隔離結構STI1接觸。在一些實施例中,控制閘極110在第一方向D1上的寬度小於隔離結構STI1在第一方向D1上的寬度。舉例來說,從上視的角度來看,隔離結構STI1可包括未被控制閘極110所覆蓋的部分。如圖1所示,隔離結構STI1可包括未被控制閘極110所覆蓋的第一部分和第二部分,其中第一部分位在控制閘極110的一側(例如鄰近第一側壁110a的一側);而第二部分則位在控制閘極110的另一側(例如鄰近第二側壁110b的一側)。在一些實施例中,控制閘極110的材料可包括多晶矽。The control gate 110 is disposed on the isolation structure STI1 and includes a first sidewall 110a and a second sidewall 110b opposite to each other. In some embodiments, the control gate 110 may be directly disposed on the isolation structure STI1 to contact the isolation structure STI1. In some embodiments, the width of the control gate 110 in the first direction D1 is smaller than the width of the isolation structure STI1 in the first direction D1. For example, from a top view, the isolation structure STI1 may include a portion that is not covered by the control gate 110 . As shown in FIG. 1 , the isolation structure STI1 may include a first part and a second part that are not covered by the control gate 110 , wherein the first part is located on one side of the control gate 110 (for example, the side adjacent to the first side wall 110 a ). ; and the second part is located on the other side of the control gate 110 (for example, the side adjacent to the second side wall 110b). In some embodiments, the material of the control gate 110 may include polysilicon.

第一閘極120設置在基底100的第二井區104上且包括彼此相對的第一側壁120a和第二側壁120b。第一閘介電層122可設置在第一閘極120和基底100的第二井區104之間。第一閘極120的第一側壁120a可面對控制閘極110的第一側壁110a。在一些實施例中,第一閘極120在垂直於基底100的方向上(例如第二方向D2)可未與基底100的第一井區103重疊。在一些實施例中,第一閘極120的材料可包括多晶矽。在一些實施例中,第一閘介電層122可包括諸如二氧化矽或高介電常數(high-k)等常見的閘極介電材料。在一些實施例中,控制閘極110和第一閘極120可經由相同製程同時形成。如此一來,在隔離結構STI1的頂表面與基底100的頂表面處在相同的水平高度處且第一閘介電層122設置在第一閘極120和基底100之間的情況下,第一閘極120的頂表面可高於直接設置在隔離結構STI1上的控制閘極110的頂面表。The first gate 120 is disposed on the second well region 104 of the substrate 100 and includes first sidewalls 120a and second sidewalls 120b opposite to each other. The first gate dielectric layer 122 may be disposed between the first gate 120 and the second well region 104 of the substrate 100 . The first side wall 120a of the first gate 120 may face the first side wall 110a of the control gate 110. In some embodiments, the first gate 120 may not overlap the first well region 103 of the substrate 100 in a direction perpendicular to the substrate 100 (eg, the second direction D2 ). In some embodiments, the material of the first gate 120 may include polysilicon. In some embodiments, the first gate dielectric layer 122 may include common gate dielectric materials such as silicon dioxide or high-k. In some embodiments, the control gate 110 and the first gate 120 may be formed simultaneously through the same process. In this way, when the top surface of the isolation structure STI1 and the top surface of the substrate 100 are at the same level and the first gate dielectric layer 122 is disposed between the first gate 120 and the substrate 100 , the first The top surface of the gate 120 may be higher than the top surface of the control gate 110 disposed directly on the isolation structure STI1.

第一電荷儲存結構130設置在控制閘極110的第一側壁110a上、第一閘極120的第一側壁120a上以及基底100的位在控制閘極110和第一閘極120之間且包含有第一界面103a的區域上。第一電荷儲存結構130可包括第一介電層132和設置在第一介電層132上的第一電荷儲存層134。第一介電層132可設置在控制閘極110的第一側壁110a上、第一閘極120的第一側壁120a上以及基底100的位在控制閘極110和第一閘極120之間且包含有第一界面103a的區域上。在控制閘極110暴露出隔離結構STI1的實施例中,第一介電層132還可形成於控制閘極110所暴露出之隔離結構STI1的一部分上(例如前述所提到的第一部分)。The first charge storage structure 130 is disposed on the first sidewall 110a of the control gate 110, the first sidewall 120a of the first gate 120, and the substrate 100 is between the control gate 110 and the first gate 120 and includes On the area with the first interface 103a. The first charge storage structure 130 may include a first dielectric layer 132 and a first charge storage layer 134 disposed on the first dielectric layer 132 . The first dielectric layer 132 may be disposed on the first sidewall 110a of the control gate 110, the first sidewall 120a of the first gate 120, and between the control gate 110 and the first gate 120 of the substrate 100. on the area containing the first interface 103a. In an embodiment in which the control gate 110 exposes the isolation structure STI1, the first dielectric layer 132 may also be formed on a portion of the isolation structure STI1 exposed by the control gate 110 (such as the aforementioned first part).

在一些實施例中,第一電荷儲存結構130可經由以下步驟形成。首先,於基底100上形成覆蓋控制閘極110和第一閘極120的介電材料層(未示出)。介電材料層可共形地形成於基底100、控制閘極110和第一閘極120的表面上。接著,於介電材料層上形成電荷儲存材料層(未示出)。控制閘極110和第一閘極120之間的間距設計成足夠小,使得位在控制閘極110的第一側壁110a上的電荷儲存材料層和位在第一閘極120的第一側壁120a上的電荷儲存材料層合併在一起而填滿控制閘極110和第一閘極120之間的空間。之後,將位於控制閘極110和第一閘極120的頂表面上的電荷儲存材料層和介電材料層以及位在基底100的頂表面上的電荷儲存材料層和介電材料層移除,如此可於控制閘極110的第一側壁110a和第一閘極120的第一側壁120a上形成第一介電層132和位於第一介電層132上的第一電荷儲存層134。由於控制閘極110和第一閘極120之間的間距設計成足夠小,所以相較於形成在控制閘極110和第一閘極120的頂表面上的電荷儲存材料層而言,形成在控制閘極110和第一閘極120之間的電荷儲存材料層會因填滿控制閘極110和第一閘極120之間的空間而具有較大的厚度。因此,在經過上述移除電荷儲存材料層和介電材料層的步驟後,位於控制閘極110和第一閘極120之間的介電材料層僅位在控制閘極110的第一側壁110a上的頂端的一部分以及位在第一閘極120的第一側壁120a上的頂端的一部分被移除;而位於控制閘極110和第一閘極120之間的電荷儲存材料層僅頂端的一部分被移除。也就是說,如圖1所示,第一電荷儲存結構130的形狀可例如是將形成在控制閘極110的第一側壁110a上的間隔件和形成在第一閘極120的第一側壁120a上的間隔件合併在一起的形狀(頂表面的輪廓可例如是兩個方向相對的1/4圓彼此接觸的形貌)。在上述實施例中,第一電荷儲存層134可形成為中央區域的水平高度(例如在第二方向D2上的高度)低於鄰近控制閘極110和第一閘極120的周圍區域的水平高度。在上述實施例中,第一介電層132可形成為頂端高於第一電荷儲存層134的頂端。In some embodiments, the first charge storage structure 130 may be formed through the following steps. First, a dielectric material layer (not shown) covering the control gate 110 and the first gate 120 is formed on the substrate 100 . The dielectric material layer may be conformally formed on the surfaces of the substrate 100 , the control gate 110 and the first gate 120 . Next, a charge storage material layer (not shown) is formed on the dielectric material layer. The distance between the control gate 110 and the first gate 120 is designed to be small enough so that the charge storage material layer located on the first sidewall 110a of the control gate 110 and the first sidewall 120a of the first gate 120 The charge storage material layers above merge together to fill the space between the control gate 110 and the first gate 120 . Afterwards, the charge storage material layer and the dielectric material layer located on the top surfaces of the control gate 110 and the first gate 120 and the charge storage material layer and the dielectric material layer located on the top surface of the substrate 100 are removed, In this way, the first dielectric layer 132 and the first charge storage layer 134 located on the first dielectric layer 132 can be formed on the first sidewall 110a of the control gate 110 and the first sidewall 120a of the first gate 120. Since the distance between the control gate 110 and the first gate 120 is designed to be small enough, compared with the charge storage material layer formed on the top surfaces of the control gate 110 and the first gate 120 , the charge storage material layer formed on The charge storage material layer between the control gate 110 and the first gate 120 will have a larger thickness because it fills the space between the control gate 110 and the first gate 120 . Therefore, after the above steps of removing the charge storage material layer and the dielectric material layer, the dielectric material layer located between the control gate 110 and the first gate 120 is only located on the first sidewall 110a of the control gate 110 A portion of the top end on the first gate electrode 120 and a portion of the top end located on the first sidewall 120a of the first gate electrode 120 are removed; and only a portion of the top end of the charge storage material layer located between the control gate electrode 110 and the first gate electrode 120 is removed. was removed. That is, as shown in FIG. 1 , the shape of the first charge storage structure 130 may be, for example, a spacer formed on the first side wall 110 a of the control gate 110 and a spacer formed on the first side wall 120 a of the first gate 120 . The shape of the spacers on the top surface merged together (the profile of the top surface can be, for example, the shape of two 1/4 circles in opposite directions touching each other). In the above embodiment, the first charge storage layer 134 may be formed such that the central region has a lower level (eg, a height in the second direction D2 ) than a surrounding area adjacent to the control gate 110 and the first gate 120 . In the above embodiment, the first dielectric layer 132 may be formed with a top end higher than a top end of the first charge storage layer 134 .

第一介電層132的材料可包括氧化物,例如氧化矽。第一電荷儲存層134的材料可包括氮化物,例如氮化矽。在一些實施例中,第一介電層132可作為SONOS記憶體的穿隧介電層和/或SONOS記憶體的阻擋介電層。舉例來說,第一介電層132在鄰近通道的部分(例如第一介電層132與基底100接觸的部分)可作為SONOS記憶體的穿隧介電層;而第一介電層132在鄰近控制閘極110的部分(例如位於控制閘極110的第一側壁110a上的第一介電層132)可作為SONOS記憶體的阻擋介電層。在一些實施例中,第一電荷儲存層134可作為SONOS記憶體的電荷捕捉層。The material of the first dielectric layer 132 may include an oxide, such as silicon oxide. The material of the first charge storage layer 134 may include nitride, such as silicon nitride. In some embodiments, the first dielectric layer 132 may serve as a tunneling dielectric layer of the SONOS memory and/or a blocking dielectric layer of the SONOS memory. For example, the portion of the first dielectric layer 132 adjacent to the channel (for example, the portion where the first dielectric layer 132 contacts the substrate 100) can be used as a tunneling dielectric layer of the SONOS memory; while the first dielectric layer 132 is in The portion adjacent to the control gate 110 (eg, the first dielectric layer 132 located on the first sidewall 110 a of the control gate 110 ) may serve as a blocking dielectric layer of the SONOS memory. In some embodiments, the first charge storage layer 134 may serve as a charge trapping layer of the SONOS memory.

在一些實施例中,在第一電荷儲存結構130經由上述步驟形成的情況下,半導體裝置10可更包括分別形成在控制閘極110的第二側壁110b上和第一閘極120的第二側壁120b上的多個虛設電荷儲存結構140。虛設電荷儲存結構140可例如是在執行上述移除電荷儲存材料層和介電材料層的步驟後,相應地形成於控制閘極110的第二側壁110b上和第一閘極120的第二側壁120b上。也就是說,虛設電荷儲存結構140可包括介電層142和形成於介電層142上的電荷儲存層144。介電層142的材料可包括氧化物,例如氧化矽。電荷儲存層144的材料可包括氮化物,例如氮化矽。在一些實施例中。由於介電層142不作為SONOS記憶體的穿隧介電層,故又可稱為虛設穿隧介電層。在一些實施例中,由於電荷儲存層144不作為SONOS記憶體的電荷捕捉層,故又可稱為虛設電荷儲存層。In some embodiments, in the case where the first charge storage structure 130 is formed through the above steps, the semiconductor device 10 may further include a second sidewall formed on the second sidewall 110b of the control gate 110 and the first gate 120 respectively. A plurality of dummy charge storage structures 140 on 120b. The dummy charge storage structure 140 may be, for example, formed on the second sidewall 110b of the control gate 110 and the second sidewall of the first gate 120 after performing the above steps of removing the charge storage material layer and the dielectric material layer. 120b on. That is, the dummy charge storage structure 140 may include a dielectric layer 142 and a charge storage layer 144 formed on the dielectric layer 142 . The material of dielectric layer 142 may include an oxide, such as silicon oxide. The material of charge storage layer 144 may include nitride, such as silicon nitride. In some embodiments. Since the dielectric layer 142 does not serve as a tunneling dielectric layer of the SONOS memory, it can also be called a dummy tunneling dielectric layer. In some embodiments, since the charge storage layer 144 does not serve as a charge trapping layer of the SONOS memory, it can also be called a dummy charge storage layer.

源極/汲極區SD1和源極/汲極區SD2分別設置在基底100中。從俯視的角度來看,隔離結構STI1設置在源極/汲極區SD1和源極/汲極區SD2之間,且第一閘極120設置在隔離結構STI1與源極/汲極區SD1和源極/汲極區SD2中的一者之間。在一些實施例中,源極/汲極區SD1和源極/汲極區SD2可摻雜有具有第一導電型的摻雜物,但不以此為限。在一些實施例中,源極/汲極區SD1可設置在基底100的第二井區104中,且源極/汲極區SD2可設置在基底100的第一井區103中。The source/drain region SD1 and the source/drain region SD2 are respectively provided in the substrate 100 . From a top view, the isolation structure STI1 is disposed between the source/drain region SD1 and the source/drain region SD2, and the first gate 120 is disposed between the isolation structure STI1 and the source/drain region SD1 and between one of the source/drain regions SD2. In some embodiments, the source/drain region SD1 and the source/drain region SD2 may be doped with a dopant having the first conductivity type, but are not limited thereto. In some embodiments, the source/drain region SD1 may be disposed in the second well region 104 of the substrate 100 , and the source/drain region SD2 may be disposed in the first well region 103 of the substrate 100 .

以下,將以第一導電型為N型且第二導電型為P型來說明半導體裝置10作為SONOS記憶體的操作方式,但並不以此為限。在一些實施例中,半導體裝置10可例如是藉由以下電壓操作方式來執行程式化(programming)操作:對源極/汲極區SD2和控制閘極110施加高正電壓;對第一閘極120施加大於閾值電壓(threshold voltage)的電壓;以及對源極/汲極區SD1施加接地電壓。如此一來,電子可沿著如圖1所示出之路徑(見實線箭頭),自源極/汲極區SD1依序通過第二井區104以及第一井區103而傳遞至源極/汲極區SD2。在電子自源極/汲極區SD1傳遞至源極/汲極區SD2的過程中,由於控制閘極110也施加了高正電壓,故電子會受到控制閘極110的吸引而進入到第一電荷儲存結構130中並儲存至第一電荷儲存層134中。在一些實施例中,半導體裝置10可例如是藉由以下電壓操作方式來通過福勒-諾德漢穿隧(Fowler-Nordheim tunneling,FN-tunneling)機制進行抹除(Erase)操作:對控制閘極110施加高負電壓;以及對第二井區104施加高正電壓。如此一來,可將儲存於第一電荷儲存層134中的電子抹除。In the following, the operation mode of the semiconductor device 10 as a SONOS memory will be described by assuming that the first conductivity type is N type and the second conductivity type is P type, but it is not limited thereto. In some embodiments, the semiconductor device 10 may perform a programming operation by, for example, the following voltage operation mode: applying a high positive voltage to the source/drain region SD2 and the control gate 110; applying a high positive voltage to the first gate 120 applies a voltage greater than the threshold voltage (threshold voltage); and applies a ground voltage to the source/drain region SD1. In this way, electrons can be transferred from the source/drain region SD1 through the second well region 104 and the first well region 103 to the source along the path shown in FIG. 1 (see the solid arrow). /Drain area SD2. During the process of electrons transferring from the source/drain region SD1 to the source/drain region SD2, since the control gate 110 also applies a high positive voltage, the electrons will be attracted by the control gate 110 and enter the first gate. The charge storage structure 130 is stored in the first charge storage layer 134 . In some embodiments, the semiconductor device 10 may perform an erase operation through a Fowler-Nordheim tunneling (FN-tunneling) mechanism by, for example, the following voltage operation: changing the control gate A high negative voltage is applied to pole 110; and a high positive voltage is applied to second well region 104. In this way, the electrons stored in the first charge storage layer 134 can be erased.

在一些實施例中,為了進一步提升半導體裝置10的表現,基底100可包括具有第一導電型的摻雜區105。摻雜區105可位於第一電荷儲存結構130下方且與第一電荷儲存結構130、第一井區103和第二井區104接觸。如此一來,當半導體裝置10在執行程式操作時,電子更易於進入第一電荷儲存結構130的第一電荷儲存層134中,或者是半導體裝置10在執行抹除操作時,電子更易於自第一電荷儲存層134中抹除。在一些實施例中,如圖1所示,摻雜區105可橫跨第一井區103和第二井區104之間的第一界面103a。在一些實施例中,摻雜區105還可形成於虛設荷儲存結構140下方。在一些實施例中,摻雜區105可整合於CMOS邏輯製程中形成淡摻雜汲極(lightly doped drain,LDD)的製程中。In some embodiments, to further improve the performance of the semiconductor device 10, the substrate 100 may include a doped region 105 having a first conductivity type. The doped region 105 may be located under the first charge storage structure 130 and in contact with the first charge storage structure 130 , the first well region 103 and the second well region 104 . In this way, when the semiconductor device 10 performs a program operation, it is easier for electrons to enter the first charge storage layer 134 of the first charge storage structure 130 , or when the semiconductor device 10 performs an erasure operation, it is easier for electrons to escape from the third charge storage layer 134 . A charge storage layer 134 is erased. In some embodiments, as shown in FIG. 1 , the doped region 105 may span the first interface 103 a between the first well region 103 and the second well region 104 . In some embodiments, the doped region 105 may also be formed under the dummy charge storage structure 140 . In some embodiments, the doped region 105 may be integrated into a lightly doped drain (LDD) process in a CMOS logic process.

在一些實施例中,源極/汲極區SD1和SD2的摻雜濃度可大於摻雜區105和第一井區103的摻雜濃度。在一些實施例中,摻雜區105的摻雜濃度可大於第一井區103的摻雜濃度。In some embodiments, the doping concentration of the source/drain regions SD1 and SD2 may be greater than the doping concentration of the doping region 105 and the first well region 103 . In some embodiments, the doping concentration of the doping region 105 may be greater than the doping concentration of the first well region 103 .

基於如上所描述之結構和製造方法,控制閘極110、第一閘極120和第一電荷儲存結構130可相容於CMOS邏輯製程中,故不需要額外的罩幕來進行額外的微影製程。舉例來說,控制閘極110和第一閘極120可相容於邏輯製程中形成CMOS的閘極的步驟中。第一電荷儲存結構130可相容於邏輯製程中形成在CMOS的閘極的側壁上的間隙壁的步驟中。在一些實施例中,上述結構和製造方法不僅可整合於平面式場效電晶體的製程中,其還可應用於鰭式場效電晶體(FinFET)或是環繞閘極場效電晶體(GAAFET)的製程中。Based on the structure and manufacturing method as described above, the control gate 110, the first gate 120 and the first charge storage structure 130 are compatible with the CMOS logic process, so no additional mask is required for additional lithography processes. . For example, the control gate 110 and the first gate 120 may be compatible with a step of forming a CMOS gate in a logic process. The first charge storage structure 130 may be compatible with the step of forming spacers on the sidewalls of the CMOS gate during the logic process. In some embodiments, the above structure and manufacturing method can not only be integrated into the process of planar field effect transistors, but can also be applied to fin field effect transistors (FinFET) or surround gate field effect transistors (GAAFET). In process.

在一些實施例中,半導體裝置10可選擇性地包括形成於源極/汲極區SD1和SD2、控制閘極110和第一閘極120上的矽化物層150。矽化物層150例如是自行對準金屬矽化物(self-aligned silicide,Salicide)。矽化物層150可分別與其所接觸的源極/汲極區SD1和SD2、控制閘極110和第一閘極120電性連接。矽化物層150的材料可包括金屬矽化物。舉例來說,矽化物層150的材料可包括鈷、鈦或鎳的矽化物,例如矽化鈦(TiSi 2)、矽化鈷(CoSi 2)或矽化鎳(NiSi)。 In some embodiments, the semiconductor device 10 may optionally include a silicone layer 150 formed on the source/drain regions SD1 and SD2 , the control gate 110 and the first gate 120 . The silicide layer 150 is, for example, self-aligned silicide (Salicide). The silicon compound layer 150 may be electrically connected to the source/drain regions SD1 and SD2, the control gate 110 and the first gate 120 that it contacts, respectively. The material of the silicide layer 150 may include metal silicide. For example, the material of the silicide layer 150 may include cobalt, titanium or nickel silicide, such as titanium silicide (TiSi 2 ), cobalt silicide (CoSi 2 ) or nickel silicide (NiSi).

在一些實施例中,半導體裝置10可更包括形成於基底上100上的介電層160以及形成於介電層160中的導電插塞170。介電層160覆蓋基底100、隔離結構STI2、控制閘極110、第一閘極120、第一電荷儲存結構130、虛設電荷儲存結構140、矽化物層150以及源極/汲極區SD1和SD2。導電插塞170可分別與相應之控制閘極110、第一閘極120及源極/汲極區SD1和SD2電性連接。在一些實施例中,導電插塞170可分別通過矽化物層150與相應之控制閘極110、第一閘極120及源極/汲極區SD1和SD2電性連接。在一些實施例中,第一閘極120可通過導電插塞170與字元線電性連接(例如與共用字元線連接)。源極/汲極區SD1和SD2中的一者可通過導電插塞170與源極線電性連接。源極/汲極區SD1和SD2中的另一者可通過導電插塞170與位元線電性連接。介電層160的材料可包括氧化物,例如是由四乙氧基矽烷(tetraethoxysilane,TEOS)源進行沉積所形成的氧化矽。導電插塞170的材料可包括金屬、金屬合金、金屬氮化物、金屬矽化物或其組合。在一些實施例中,金屬與金屬合金可例如是Cu、Al、Ti、Ta、W、Pt、Cr、Mo或其合金。金屬氮化物可例如是氮化鈦、氮化鎢、氮化鉭、氮化矽鉭、氮化矽鈦、氮化矽鎢或其組合。金屬矽化物例如是矽化鎢、矽化鈦、矽化鈷、矽化鋯、矽化鉑、矽化鉬、矽化銅、矽化鎳或其組合。In some embodiments, the semiconductor device 10 may further include a dielectric layer 160 formed on the substrate 100 and a conductive plug 170 formed in the dielectric layer 160 . The dielectric layer 160 covers the substrate 100, the isolation structure STI2, the control gate 110, the first gate 120, the first charge storage structure 130, the dummy charge storage structure 140, the silicide layer 150, and the source/drain regions SD1 and SD2 . The conductive plug 170 can be electrically connected to the corresponding control gate 110 , the first gate 120 and the source/drain regions SD1 and SD2 respectively. In some embodiments, the conductive plug 170 can be electrically connected to the corresponding control gate 110 , the first gate 120 and the source/drain regions SD1 and SD2 respectively through the silicon compound layer 150 . In some embodiments, the first gate 120 may be electrically connected to the word line (eg, connected to a common word line) through the conductive plug 170 . One of the source/drain regions SD1 and SD2 may be electrically connected to the source line through the conductive plug 170 . The other one of the source/drain regions SD1 and SD2 may be electrically connected to the bit line through the conductive plug 170 . The material of the dielectric layer 160 may include an oxide, such as silicon oxide deposited from a tetraethoxysilane (TEOS) source. The material of the conductive plug 170 may include metal, metal alloy, metal nitride, metal silicide, or combinations thereof. In some embodiments, metals and metal alloys may be, for example, Cu, Al, Ti, Ta, W, Pt, Cr, Mo, or alloys thereof. The metal nitride may be, for example, titanium nitride, tungsten nitride, tantalum nitride, silicon tantalum nitride, silicon titanium nitride, silicon tungsten nitride, or combinations thereof. The metal silicide is, for example, tungsten silicide, titanium silicide, cobalt silicide, zirconium silicide, platinum silicide, molybdenum silicide, copper silicide, nickel silicide or combinations thereof.

圖2是本發明第二實施例的半導體裝置的剖面示意圖。圖3是本發明第二實施例的半導體裝置的等效電路圖。FIG. 2 is a schematic cross-sectional view of a semiconductor device according to a second embodiment of the present invention. 3 is an equivalent circuit diagram of the semiconductor device according to the second embodiment of the present invention.

圖2中所示出之半導體裝置20與圖1所示出之半導體裝置10相似,其差異在於半導體裝置20更包括第二閘極220、第二閘介電層222和第二電荷儲存結構230,且基底200包括第三井區204。其他相同或相似構件採用相同或相似元件標號,下文中不再作進一步的贅述。The semiconductor device 20 shown in FIG. 2 is similar to the semiconductor device 10 shown in FIG. 1 . The difference is that the semiconductor device 20 further includes a second gate 220 , a second gate dielectric layer 222 and a second charge storage structure 230 , and the substrate 200 includes a third well region 204 . Other identical or similar components use the same or similar element numbers and will not be described further below.

半導體裝置20的基底200包括位於深井區101中且具有第二導電型的第三井區204。第一井區103在第二井區104和第三井區204之間,且第一井區103和第三井區204之間具有彼此接觸的第二界面103b。隔離結構STI1與第二界面103b間隔開第二距離d2。The substrate 200 of the semiconductor device 20 includes a third well region 204 located in the deep well region 101 and having a second conductivity type. The first well area 103 is between the second well area 104 and the third well area 204, and the first well area 103 and the third well area 204 have a second interface 103b in contact with each other. The isolation structure STI1 is spaced apart from the second interface 103b by a second distance d2.

第二閘極220設置在基底200的第三井區204上且包括彼此相對的第一側壁220a和第二側壁220b。第二閘極220的第一側壁220a面對控制閘極110的第二側壁110b。第二閘介電層222可設置在第二閘極220和基底200的第三井區204之間。在一些實施例中,第二閘極220在垂直於基底200的方向上(例如第二方向D2)可未與基底200的第一井區103重疊。在一些實施例中,第二閘極220的材料可包括多晶矽。在一些實施例中,第二閘介電層222可包括諸如二氧化矽或高介電常數(high-k)等常見的閘極介電材料。在一些實施例中,控制閘極110、第一閘極120和第二閘極220可經由相同製程同時形成。如此一來,在隔離結構STI1的頂表面與基底200的頂表面處在相同的水平高度處且第一閘介電層122和第二閘介電層222分別設置在第一閘極120和基底200之間以及第二閘極220和基底200之間的情況下,第一閘極120或第二閘極220的頂表面可高於直接設置在隔離結構STI1上的控制閘極110的頂面表。The second gate 220 is disposed on the third well region 204 of the substrate 200 and includes first sidewalls 220a and second sidewalls 220b opposite to each other. The first side wall 220a of the second gate 220 faces the second side wall 110b of the control gate 110. The second gate dielectric layer 222 may be disposed between the second gate 220 and the third well region 204 of the substrate 200 . In some embodiments, the second gate 220 may not overlap the first well region 103 of the substrate 200 in a direction perpendicular to the substrate 200 (eg, the second direction D2 ). In some embodiments, the material of the second gate 220 may include polysilicon. In some embodiments, the second gate dielectric layer 222 may include common gate dielectric materials such as silicon dioxide or high-k. In some embodiments, the control gate 110 , the first gate 120 and the second gate 220 may be formed simultaneously through the same process. In this way, the top surface of the isolation structure STI1 and the top surface of the substrate 200 are at the same level, and the first gate dielectric layer 122 and the second gate dielectric layer 222 are respectively disposed on the first gate 120 and the substrate. 200 and between the second gate 220 and the substrate 200 , the top surface of the first gate 120 or the second gate 220 may be higher than the top surface of the control gate 110 directly disposed on the isolation structure STI1 surface.

第二電荷儲存結構230設置在控制閘極110的第二側壁110b上、第二閘極220的第一側壁220a上以及基底200的位在控制閘極110和第二閘極220之間且包括第二界面103b的區域上。第二電荷儲存結構230可包括第二介電層232和設置在第二介電層232上的第二電荷儲存層234。第二介電層232可設置在控制閘極110的第二側壁110b上、第二閘極220的第一側壁220a上以及基底200的位在控制閘極110和第二閘極220之間且包含有第二界面103b的區域上。在控制閘極110暴露出隔離結構STI1的實施例中,第二介電層232還可形成於控制閘極110所暴露出之隔離結構STI1的一部分上(例如前述所提到的第二部分)。The second charge storage structure 230 is disposed on the second sidewall 110b of the control gate 110, the first sidewall 220a of the second gate 220, and the substrate 200 is between the control gate 110 and the second gate 220 and includes on the area of the second interface 103b. The second charge storage structure 230 may include a second dielectric layer 232 and a second charge storage layer 234 disposed on the second dielectric layer 232 . The second dielectric layer 232 may be disposed on the second sidewall 110b of the control gate 110, the first sidewall 220a of the second gate 220, and the substrate 200 between the control gate 110 and the second gate 220. On the area including the second interface 103b. In an embodiment where the control gate 110 is exposed to the isolation structure STI1, the second dielectric layer 232 may also be formed on a portion of the isolation structure STI1 where the control gate 110 is exposed (such as the aforementioned second part). .

在一些實施例中,第二電荷儲存結構230可經由如同上述形成第一電荷儲存結構130的步驟形成。也就是說,控制閘極110和第二閘極220之間的間距設計成足夠小,使得位在控制閘極110的第二側壁110b上的電荷儲存材料層和位在第二閘極220的第一側壁220a上的電荷儲存材料層合併在一起而填滿控制閘極110和第二閘極220之間的空間。因此,在將位於控制閘極110和第一閘極120的頂表面上的電荷儲存材料層和介電材料層以及位在基底200的頂表面上的電荷儲存材料層和介電材料層移除時,可於控制閘極110的第二側壁110b和第二閘極220的第一側壁220a上形成第二介電層232和位於第二介電層232上的第二電荷儲存層234。由於控制閘極110和第二閘極220之間的間距設計成足夠小,所以相較於形成在控制閘極110和第二閘極220的頂表面上的電荷儲存材料層而言,形成在控制閘極110和第二閘極220之間的電荷儲存材料層會因填滿控制閘極110和第二閘極220之間的空間而具有較大的厚度。因此,在經過移除電荷儲存材料層和介電材料層的步驟後,位於控制閘極110和第二閘極220之間的介電材料層僅位在控制閘極110的第二側壁110b上的頂端的一部分以及位在第二閘極220的第一側壁220a上的頂端的一部分被移除;而位於控制閘極110和第二閘極220之間的電荷儲存材料層僅頂端的一部分被移除。也就是說,如圖2所示,第二電荷儲存結構230的形狀可例如是將形成在控制閘極110的第二側壁110b上的間隔件和形成在第二閘極220的第一側壁220a上的間隔件合併在一起的形狀(頂表面的輪廓可例如是兩個方向相對的1/4圓彼此接觸的形貌)。在上述實施例中,第二電荷儲存層234可形成為中央區域的水平高度(例如在第二方向D2上的高度)低於鄰近控制閘極110和第二閘極220的周圍區域的水平高度。在上述實施例中,第二介電層232可形成為頂端高於第二電荷儲存層234的頂端。In some embodiments, the second charge storage structure 230 may be formed through the steps described above for forming the first charge storage structure 130 . That is to say, the distance between the control gate 110 and the second gate 220 is designed to be small enough so that the charge storage material layer located on the second sidewall 110b of the control gate 110 and the charge storage material layer located on the second gate 220 The charge storage material layers on the first sidewall 220a merge together to fill the space between the control gate 110 and the second gate 220. Therefore, the charge storage material layer and the dielectric material layer located on the top surfaces of the control gate 110 and the first gate 120 and the charge storage material layer and the dielectric material layer located on the top surface of the substrate 200 are removed. At this time, the second dielectric layer 232 and the second charge storage layer 234 located on the second dielectric layer 232 can be formed on the second sidewall 110b of the control gate 110 and the first sidewall 220a of the second gate 220. Since the distance between the control gate 110 and the second gate 220 is designed to be small enough, compared with the charge storage material layer formed on the top surfaces of the control gate 110 and the second gate 220, the charge storage material layer formed on The charge storage material layer between the control gate 110 and the second gate 220 will have a larger thickness due to filling the space between the control gate 110 and the second gate 220 . Therefore, after the steps of removing the charge storage material layer and the dielectric material layer, the dielectric material layer located between the control gate 110 and the second gate 220 is only located on the second sidewall 110b of the control gate 110 A portion of the top end and a portion of the top end located on the first sidewall 220a of the second gate 220 are removed; and only a portion of the top end of the charge storage material layer located between the control gate 110 and the second gate 220 is removed. Remove. That is, as shown in FIG. 2 , the shape of the second charge storage structure 230 may be, for example, a spacer formed on the second sidewall 110b of the control gate 110 and a first sidewall 220a formed on the second gate 220 . The shape in which the spacers on the top surface merge together (the profile of the top surface can be, for example, the shape of two 1/4 circles in opposite directions touching each other). In the above embodiment, the second charge storage layer 234 may be formed such that the central region has a lower level (for example, a height in the second direction D2 ) than a surrounding area adjacent to the control gate 110 and the second gate 220 . . In the above embodiment, the second dielectric layer 232 may be formed with a top end higher than a top end of the second charge storage layer 234 .

第二介電層232的材料可包括氧化物,例如氧化矽。第二電荷儲存層234的材料可包括氮化物,例如氮化矽。在一些實施例中,第二介電層232可作為SONOS記憶體的穿隧介電層和/或SONOS記憶體的阻擋介電層。舉例來說,第二介電層232在鄰近通道的部分(例如第二介電層232與基底200接觸的部分)可作為SONOS記憶體的穿隧介電層;而第二介電層232在鄰近控制閘極110的部分(例如位於控制閘極110的第二側壁110b上的第二介電層232)可作為SONOS記憶體的阻擋介電層。在一些實施例中,第二電荷儲存層234可作為SONOS記憶體的電荷捕捉層。The material of the second dielectric layer 232 may include an oxide, such as silicon oxide. The material of the second charge storage layer 234 may include nitride, such as silicon nitride. In some embodiments, the second dielectric layer 232 may serve as a tunneling dielectric layer of the SONOS memory and/or a blocking dielectric layer of the SONOS memory. For example, the portion of the second dielectric layer 232 adjacent to the channel (for example, the portion where the second dielectric layer 232 contacts the substrate 200) can serve as a tunneling dielectric layer of the SONOS memory; while the second dielectric layer 232 is in The portion adjacent to the control gate 110 (eg, the second dielectric layer 232 located on the second sidewall 110b of the control gate 110) may serve as a blocking dielectric layer of the SONOS memory. In some embodiments, the second charge storage layer 234 may serve as a charge trapping layer of the SONOS memory.

在一些實施例中,第二閘極220可與第一閘極120於相同製程中同時形成。在一些實施例中,第二電荷儲存結構230可與第一電荷儲存結構130於相同製程中同時形成。在一些實施例中,第二閘極220和第二電荷儲存結構230在以穿過基底200的第一井區103、隔離結構STI1和控制閘極110的軸線上與第一閘極120和第一電荷儲存結構130呈鏡像對稱。In some embodiments, the second gate 220 and the first gate 120 may be formed simultaneously in the same process. In some embodiments, the second charge storage structure 230 and the first charge storage structure 130 may be formed simultaneously in the same process. In some embodiments, the second gate 220 and the second charge storage structure 230 are aligned with the first gate 120 and the first gate 120 on an axis passing through the first well region 103 of the substrate 200 , the isolation structure STI1 and the control gate 110 . A charge storage structure 130 has mirror symmetry.

在一些實施例中,從俯視的角度來看,第一閘極120可設置在隔離結構STI1與源極/汲極區SD1之間,且第二閘極220可設置在隔離結構STI1與源極/汲極區SD2之間。In some embodiments, from a top view, the first gate 120 may be disposed between the isolation structure STI1 and the source/drain region SD1 , and the second gate 220 may be disposed between the isolation structure STI1 and the source region SD1 /Drain area between SD2.

在一些實施例中,在第二電荷儲存結構230經由如形成第一電荷儲存結構130的步驟形成時,虛設電荷儲存結構140可形成於第一閘極120的第二側壁120b以及第二閘極220的第二側壁220b上。In some embodiments, when the second charge storage structure 230 is formed through the steps of forming the first charge storage structure 130, the dummy charge storage structure 140 may be formed on the second sidewall 120b of the first gate 120 and the second gate. on the second side wall 220b of 220.

以下,將以第一導電型為N型且第二導電型為P型來說明半導體裝置20作為SONOS記憶體的操作方式,但並不以此為限。在一些實施例中,半導體裝置20可例如是藉由以下電壓操作方式來執行程式化(programming)操作:對源極/汲極區SD2和控制閘極110施加高正電壓;對第一閘極120和第二閘極220施加大於閾值電壓(threshold voltage)的電壓;以及對源極/汲極區SD1施加接地電壓。如此一來,電子可沿著如圖2所示出之路徑(見實線箭頭),自源極/汲極區SD1依序通過第二井區104、第一井區103以及第三井區204而傳遞至源極/汲極區SD2。在電子自源極/汲極區SD1傳遞至源極/汲極區SD2的過程中,由於控制閘極110也施加了高正電壓,故電子會受到控制閘極110的吸引而進入到第一電荷儲存結構130中並儲存至第一電荷儲存層134中。在一些實施例中,由於源極/汲極區SD2可施加大於控制閘極110的電壓而使得電子自源極/汲極區SD1傳遞至源極/汲極區SD2的過程中只會進入到第一電荷儲存結構130中,而不會進入到第二電荷儲存結構230中。也就是說,半導體裝置20可進行二位元的程式化操作。舉例來說,半導體裝置20可例如是藉由以下電壓操作方式來執行另一位元的程式化(programming)操作:對源極/汲極區SD1和控制閘極110施加高正電壓;對第一閘極120和第二閘極220施加大於閾值電壓(threshold voltage)的電壓;以及對源極/汲極區SD2施加接地電壓。如此一來,電子可沿著如圖2所示出之路徑(見虛線箭頭),自源極/汲極區SD2依序通過第三井區204、第一井區103以及第二井區104而傳遞至源極/汲極區SD1。在電子自源極/汲極區SD2傳遞至源極/汲極區SD1的過程中,由於控制閘極110也施加了高正電壓,故電子會受到控制閘極110的吸引而進入到第二電荷儲存結構230中並儲存至第二電荷儲存層234中。在一些實施例中,由於源極/汲極區SD1可施加大於控制閘極110的電壓而使得電子自源極/汲極區SD2傳遞至源極/汲極區SD1的過程中只會進入到第二電荷儲存結構230中,而不會進入到第一電荷儲存結構130中。In the following, the operation mode of the semiconductor device 20 as a SONOS memory will be described by assuming that the first conductivity type is N type and the second conductivity type is P type, but it is not limited thereto. In some embodiments, the semiconductor device 20 may perform a programming operation by, for example, the following voltage operation mode: applying a high positive voltage to the source/drain region SD2 and the control gate 110; applying a high positive voltage to the first gate 120 and the second gate 220 apply a voltage greater than the threshold voltage (threshold voltage); and apply a ground voltage to the source/drain region SD1. In this way, electrons can pass from the source/drain region SD1 through the second well region 104, the first well region 103 and the third well region in sequence along the path shown in Figure 2 (see the solid arrow). 204 and passed to the source/drain region SD2. During the process of electrons transferring from the source/drain region SD1 to the source/drain region SD2, since the control gate 110 also applies a high positive voltage, the electrons will be attracted by the control gate 110 and enter the first gate. The charge storage structure 130 is stored in the first charge storage layer 134 . In some embodiments, since the source/drain region SD2 can apply a voltage greater than the control gate 110 , electrons will only enter into the source/drain region SD2 during the transfer from the source/drain region SD1 to the source/drain region SD2 . into the first charge storage structure 130 without entering the second charge storage structure 230 . In other words, the semiconductor device 20 can perform two-bit programming operations. For example, the semiconductor device 20 can perform a programming operation of another bit through the following voltage operation mode: applying a high positive voltage to the source/drain region SD1 and the control gate 110; The first gate 120 and the second gate 220 apply a voltage greater than a threshold voltage (threshold voltage); and a ground voltage is applied to the source/drain region SD2. In this way, electrons can pass from the source/drain region SD2 through the third well region 204, the first well region 103 and the second well region 104 sequentially along the path shown in Figure 2 (see the dotted arrow). And passed to the source/drain region SD1. During the process of electrons transferring from the source/drain region SD2 to the source/drain region SD1, since the control gate 110 also applies a high positive voltage, the electrons will be attracted by the control gate 110 and enter the second gate. The charge storage structure 230 is stored in the second charge storage layer 234 . In some embodiments, since the source/drain region SD1 can apply a voltage greater than the control gate 110 , electrons will only enter into the source/drain region SD1 during the transfer from the source/drain region SD2 to the source/drain region SD1 . into the second charge storage structure 230 without entering the first charge storage structure 130 .

在一些實施例中,半導體裝置20可例如是藉由以下電壓操作方式來通過福勒-諾德漢穿隧(Fowler-Nordheim tunneling,FN-tunneling)機制進行抹除(Erase)操作:對控制閘極110施加高負電壓;以及對第二井區104或第三井區204施加高正電壓。如此一來,可將儲存於第一電荷儲存層134中或第二電荷儲存層234中的電子抹除。In some embodiments, the semiconductor device 20 may perform an erase operation through a Fowler-Nordheim tunneling (FN-tunneling) mechanism by, for example, the following voltage operation: changing the control gate A high negative voltage is applied to the pole 110; and a high positive voltage is applied to the second well region 104 or the third well region 204. In this way, the electrons stored in the first charge storage layer 134 or the second charge storage layer 234 can be erased.

在一些實施例中,為了進一步提升半導體裝置20的表現,基底200可包括具有第一導電型的摻雜區105。摻雜區105可位於第一電荷儲存結構130下方且與第一電荷儲存結構130、第一井區103和第二井區104接觸。另一方面,摻雜區105可位於第二電荷儲存結構230下方且與第二電荷儲存結構230、第一井區103和第三井區204接觸。如此一來,當半導體裝置20在執行程式操作時,電子更易於進入第一電荷儲存結構130的第一電荷儲存層134中和/或第二電荷儲存結構230的第二電荷儲存層234中,或者是半導體裝置20在執行抹除操作時,電子更易於自第一電荷儲存層134中和/或第二電荷儲存層234中抹除。在一些實施例中,如圖2所示,第一電荷儲存結構130下方的摻雜區105可橫跨第一井區103和第二井區104之間的第一界面103a。第二電荷儲存結構230下方的摻雜區105可橫跨第一井區103和第三井區204之間的第二界面103b。In some embodiments, to further improve the performance of the semiconductor device 20 , the substrate 200 may include a doped region 105 having a first conductivity type. The doped region 105 may be located under the first charge storage structure 130 and in contact with the first charge storage structure 130 , the first well region 103 and the second well region 104 . On the other hand, the doped region 105 may be located under the second charge storage structure 230 and in contact with the second charge storage structure 230, the first well region 103 and the third well region 204. In this way, when the semiconductor device 20 is executing a program operation, electrons are more likely to enter the first charge storage layer 134 of the first charge storage structure 130 and/or the second charge storage layer 234 of the second charge storage structure 230, Or when the semiconductor device 20 performs an erasing operation, electrons are more easily erased from the first charge storage layer 134 and/or the second charge storage layer 234 . In some embodiments, as shown in FIG. 2 , the doped region 105 below the first charge storage structure 130 may span the first interface 103 a between the first well region 103 and the second well region 104 . The doped region 105 below the second charge storage structure 230 may span the second interface 103b between the first well region 103 and the third well region 204.

請參照圖3所示出之半導體裝置20的等效電路圖。第一閘極120可作為第一選擇電晶體ST1的閘極並與字元線WL1電性連接。第二閘極220可作為第二選擇電晶體ST2的閘極並與字元線WL2電性連接。第一電荷儲存結構130和第二電荷儲存結構230可分別作為第一記憶體單元M1和第二記憶體單元M2。控制閘極110可電性連接至控制訊號線CG。源極/汲極區SD1可連接至源極線SL和位元線BL中的一者(例如BL/SL),源極/汲極區SD2可連接至源極線SL和位元線BL中的另一者(例如SL/BL)。Please refer to the equivalent circuit diagram of the semiconductor device 20 shown in FIG. 3 . The first gate 120 may serve as the gate of the first selection transistor ST1 and be electrically connected to the word line WL1. The second gate 220 can serve as the gate of the second selection transistor ST2 and is electrically connected to the word line WL2. The first charge storage structure 130 and the second charge storage structure 230 may serve as the first memory unit M1 and the second memory unit M2 respectively. The control gate 110 can be electrically connected to the control signal line CG. The source/drain region SD1 may be connected to one of the source line SL and the bit line BL (eg BL/SL), and the source/drain region SD2 may be connected to the source line SL and the bit line BL. the other of (e.g. SL/BL).

圖4是本發明第三實施例的半導體裝置的剖面示意圖。4 is a schematic cross-sectional view of a semiconductor device according to a third embodiment of the present invention.

圖4中所示出之半導體裝置30與圖1所示出之半導體裝置10相似,其差異在於半導體裝置30以導電插塞370替換控制閘極110並以包含第一穿隧介電層332和第一電荷儲存層334的第一間隔件330替換第一電荷儲存結構130,且半導體裝置30更包括介電襯層372。其他相同或相似構件採用相同或相似元件標號,下文中不再作進一步的贅述。The semiconductor device 30 shown in FIG. 4 is similar to the semiconductor device 10 shown in FIG. 1 . The difference is that the semiconductor device 30 replaces the control gate 110 with a conductive plug 370 and includes a first tunneling dielectric layer 332 and a The first spacer 330 of the first charge storage layer 334 replaces the first charge storage structure 130, and the semiconductor device 30 further includes a dielectric liner 372. Other identical or similar components use the same or similar element numbers and will not be described further below.

導電插塞370設置在隔離結構STI1上。第一閘極120設置在基底100的第二井區104上且包括面對導電插塞370的第一側壁120a以及與第一側壁120a相對的第二側壁120b。在一些實施例中,導電插塞370的材料可包括金屬、金屬合金、金屬氮化物、金屬矽化物或其組合。在一些實施例中,金屬與金屬合金可例如是Cu、Al、Ti、Ta、W、Pt、Cr、Mo或其合金。金屬氮化物可例如是氮化鈦、氮化鎢、氮化鉭、氮化矽鉭、氮化矽鈦、氮化矽鎢或其組合。金屬矽化物例如是矽化鎢、矽化鈦、矽化鈷、矽化鋯、矽化鉑、矽化鉬、矽化銅、矽化鎳或其組合。在一些實施例中,導電插塞370與導電插塞170於相同製程中同時形成,但不以此為限。在一些實施例中,導電插塞370的頂表面高於第一閘極120的頂表面。在一些實施例中,導電插賽370可延伸至隔離結構STI1中。The conductive plug 370 is provided on the isolation structure STI1. The first gate 120 is disposed on the second well region 104 of the substrate 100 and includes a first sidewall 120a facing the conductive plug 370 and a second sidewall 120b opposite to the first sidewall 120a. In some embodiments, the material of the conductive plug 370 may include metal, metal alloy, metal nitride, metal silicide, or combinations thereof. In some embodiments, metals and metal alloys may be, for example, Cu, Al, Ti, Ta, W, Pt, Cr, Mo, or alloys thereof. The metal nitride may be, for example, titanium nitride, tungsten nitride, tantalum nitride, silicon tantalum nitride, silicon titanium nitride, silicon tungsten nitride, or combinations thereof. The metal silicide is, for example, tungsten silicide, titanium silicide, cobalt silicide, zirconium silicide, platinum silicide, molybdenum silicide, copper silicide, nickel silicide or combinations thereof. In some embodiments, the conductive plug 370 and the conductive plug 170 are formed simultaneously in the same process, but this is not a limitation. In some embodiments, the top surface of the conductive plug 370 is higher than the top surface of the first gate 120 . In some embodiments, conductive plug 370 may extend into isolation structure STI1.

第一間隔件330設置在第一閘極120的第一側壁120a上且包括第一穿隧介電層332和設置在第一穿隧介電層332上的第一電荷儲存層334。第一穿隧介電層332設置在第一閘極120的第一側壁120a上以及基底100的位在導電插塞370和第一閘極120之間且包含有第一界面103a的區域上。在導電插塞370暴露出隔離結構STI1的實施例中,第一穿隧介電層332還可形成於導電插塞370所暴露出之隔離結構STI1的一部分上。The first spacer 330 is disposed on the first sidewall 120 a of the first gate 120 and includes a first tunnel dielectric layer 332 and a first charge storage layer 334 disposed on the first tunnel dielectric layer 332 . The first tunnel dielectric layer 332 is disposed on the first sidewall 120a of the first gate 120 and on the region of the substrate 100 between the conductive plug 370 and the first gate 120 and including the first interface 103a. In an embodiment in which the conductive plug 370 exposes the isolation structure STI1, the first tunnel dielectric layer 332 may also be formed on a portion of the isolation structure STI1 exposed by the conductive plug 370.

介電襯層372設置在導電插塞370和第一間隔件330之間,以使第一電荷儲存層334與導電插塞370間隔開來。The dielectric liner 372 is disposed between the conductive plug 370 and the first spacer 330 to space the first charge storage layer 334 from the conductive plug 370 .

在一些實施例中,第一間隔件330可經由以下步驟形成。首先,於基底100上形成覆蓋隔離結構STI1和第一閘極120的介電材料層(未示出)。介電材料層可共形地形成於基底100和第一閘極120的表面上。接著,於介電材料層上形成電荷儲存材料層(未示出)。之後,將位於第一閘極120的頂表面上的電荷儲存材料層和介電材料層以及位在基底100的頂表面上的電荷儲存材料層和介電材料層移除,如此可於第一閘極120的第一側壁120a上形成第一穿隧介電層332和位於第一穿隧介電層332上的第一電荷儲存層334。在上述實施例中,第一穿隧介電層332可形成為頂端高於第一電荷儲存層334的頂端。In some embodiments, the first spacer 330 may be formed via the following steps. First, a dielectric material layer (not shown) covering the isolation structure STI1 and the first gate 120 is formed on the substrate 100 . The dielectric material layer may be conformally formed on the surfaces of the substrate 100 and the first gate 120 . Next, a charge storage material layer (not shown) is formed on the dielectric material layer. After that, the charge storage material layer and the dielectric material layer located on the top surface of the first gate 120 and the charge storage material layer and the dielectric material layer located on the top surface of the substrate 100 are removed, so that the first A first tunnel dielectric layer 332 and a first charge storage layer 334 located on the first tunnel dielectric layer 332 are formed on the first sidewall 120a of the gate 120 . In the above embodiment, the first tunnel dielectric layer 332 may be formed with a top end higher than a top end of the first charge storage layer 334 .

在一些實施例中,導電插塞370和介電襯層372可經由以下步驟形成。首先,於介電層160中形成暴露出第一間隔件330和隔離結構STI1的開口(未示出)。接著,於開孔的側壁上形成介電襯層372。之後,於開口中填入導電材料以於介電襯層372上形成導電插塞370。在移除部分的介電層160以形成開口的步驟中,第一間隔件330可作為蝕刻罩幕,故所形成的導電插塞370可稱為自對準導電插塞。在此實施例中,介電層160可選用與第一穿隧介電層332和第一電荷儲存層334具有蝕刻選擇比的材料。在一些實施例中,形成導電插塞170的步驟可與形成導電插塞370的步驟整合在一起,但不以此為限。In some embodiments, conductive plug 370 and dielectric liner 372 may be formed via the following steps. First, an opening (not shown) exposing the first spacer 330 and the isolation structure STI1 is formed in the dielectric layer 160 . Next, a dielectric liner 372 is formed on the sidewall of the opening. Afterwards, a conductive material is filled into the opening to form a conductive plug 370 on the dielectric liner 372 . In the step of removing part of the dielectric layer 160 to form the opening, the first spacer 330 can serve as an etching mask, so the formed conductive plug 370 can be called a self-aligned conductive plug. In this embodiment, the dielectric layer 160 may be made of a material that has an etching selectivity ratio with the first tunneling dielectric layer 332 and the first charge storage layer 334 . In some embodiments, the step of forming the conductive plug 170 may be integrated with the step of forming the conductive plug 370, but this is not a limitation.

在一些實施例中,第一穿隧介電層332可作為MONOS記憶體的穿隧介電層、導電插塞370可作為MONOS記憶體的控制閘極、介電襯層372可作為MONOS記憶體的阻擋介電層且第一電荷儲存層334可作為MMONOS記憶體的電荷捕捉層。In some embodiments, the first tunnel dielectric layer 332 can be used as the tunnel dielectric layer of the MONOS memory, the conductive plug 370 can be used as the control gate of the MONOS memory, and the dielectric liner 372 can be used as the control gate of the MONOS memory. The blocking dielectric layer and the first charge storage layer 334 can serve as the charge trapping layer of the MMONOS memory.

在一些實施例中,在第一間隔件330經由上述步驟形成的情況下,半導體裝置30可更包括形成在第一閘極120的第二側壁120b上的虛設電荷儲存結構140。虛設電荷儲存結構140可例如是在執行上述移除電荷儲存材料層和介電材料層的步驟後,相應地形成於第一閘極120的第二側壁120b上。也就是說,虛設電荷儲存結構140可包括虛設穿隧介電層142和形成於虛設穿隧介電層142上的虛設電荷儲存層144,其中虛設穿隧介電層142可設置在第一閘極120和虛設電荷儲存層144之間。In some embodiments, in the case where the first spacer 330 is formed through the above steps, the semiconductor device 30 may further include a dummy charge storage structure 140 formed on the second sidewall 120b of the first gate 120 . The dummy charge storage structure 140 may be correspondingly formed on the second sidewall 120b of the first gate 120 after performing the above steps of removing the charge storage material layer and the dielectric material layer. That is to say, the dummy charge storage structure 140 may include a dummy tunneling dielectric layer 142 and a dummy charge storage layer 144 formed on the dummy tunneling dielectric layer 142, wherein the dummy tunneling dielectric layer 142 may be disposed on the first gate. between pole 120 and dummy charge storage layer 144.

圖5是本發明第四實施例的半導體裝置的剖面示意圖。FIG. 5 is a schematic cross-sectional view of a semiconductor device according to a fourth embodiment of the present invention.

圖5中所示出之半導體裝置40與圖4所示出之半導體裝置30相似,其差異在於半導體裝置40更包括第二閘極220、第二閘介電層222和第二間隔件430,且基底200包括第三井區204。其他相同或相似構件採用相同或相似元件標號,下文中不再作進一步的贅述。The semiconductor device 40 shown in FIG. 5 is similar to the semiconductor device 30 shown in FIG. 4 . The difference is that the semiconductor device 40 further includes a second gate 220 , a second gate dielectric layer 222 and a second spacer 430 . And the substrate 200 includes a third well region 204. Other identical or similar components use the same or similar element numbers and will not be described further below.

半導體裝置40的基底200包括位於深井區101中且具有第二導電型的第三井區204。第一井區103在第二井區104和第三井區204之間,且第一井區103和第三井區204之間具有彼此接觸的第二界面103b。隔離結構STI1與第二界面103b間隔開第二距離d2。The substrate 200 of the semiconductor device 40 includes a third well region 204 located in the deep well region 101 and having a second conductivity type. The first well area 103 is between the second well area 104 and the third well area 204, and the first well area 103 and the third well area 204 have a second interface 103b in contact with each other. The isolation structure STI1 is spaced apart from the second interface 103b by a second distance d2.

第二閘極220設置在基底200的第三井區204上且包括彼此相對的第一側壁220a和第二側壁220b。第二閘極220的第一側壁220a面對導電插塞370。第二閘介電層222可設置在第二閘極220和基底200的第三井區204之間。在一些實施例中,第二閘極220在垂直於基底200的方向上(例如第二方向D2)可未與基底200的第一井區103重疊。在一些實施例中,第二閘極220的材料可包括多晶矽。在一些實施例中,第二閘介電層222可包括諸如二氧化矽或高介電常數(high-k)等常見的閘極介電材料。在一些實施例中,第一閘極120和第二閘極220可經由相同製程同時形成。在一些實施例中,導電插塞370的頂表面可高於第二閘極220的頂表面。The second gate 220 is disposed on the third well region 204 of the substrate 200 and includes first sidewalls 220a and second sidewalls 220b opposite to each other. The first side wall 220a of the second gate 220 faces the conductive plug 370. The second gate dielectric layer 222 may be disposed between the second gate 220 and the third well region 204 of the substrate 200 . In some embodiments, the second gate 220 may not overlap the first well region 103 of the substrate 200 in a direction perpendicular to the substrate 200 (eg, the second direction D2 ). In some embodiments, the material of the second gate 220 may include polysilicon. In some embodiments, the second gate dielectric layer 222 may include common gate dielectric materials such as silicon dioxide or high-k. In some embodiments, the first gate 120 and the second gate 220 may be formed simultaneously through the same process. In some embodiments, the top surface of the conductive plug 370 may be higher than the top surface of the second gate 220 .

第二間隔件430設置在第二閘極220的第一側壁220a上且包括第二穿隧介電層432和設置在所述第二穿隧介電層432上的第二電荷儲存層434。第二穿隧介電層432設置在第二閘極220的第一側壁220a上和基底200的位在導電插塞370和第二閘極220之間且包含有第二界面103b的區域上。在導電插塞370暴露出隔離結構STI1的實施例中,第二穿隧介電層432還可形成於導電插塞370所暴露出之隔離結構STI1的一部分上。第二間隔件430可經由如同上述形成第一間隔件330的步驟形成,於此不再重複贅述。在一些實施例中,第二穿隧介電層432可形成為頂端高於第二電荷儲存層434的頂端。The second spacer 430 is disposed on the first sidewall 220a of the second gate 220 and includes a second tunnel dielectric layer 432 and a second charge storage layer 434 disposed on the second tunnel dielectric layer 432 . The second tunneling dielectric layer 432 is disposed on the first sidewall 220a of the second gate 220 and on the region of the substrate 200 between the conductive plug 370 and the second gate 220 and including the second interface 103b. In an embodiment in which the conductive plug 370 exposes the isolation structure STI1 , the second tunnel dielectric layer 432 may also be formed on a portion of the isolation structure STI1 exposed by the conductive plug 370 . The second spacer 430 can be formed through the steps of forming the first spacer 330 described above, which will not be repeated here. In some embodiments, the second tunneling dielectric layer 432 may be formed with a top end higher than a top end of the second charge storage layer 434 .

在一些實施例中,第二穿隧介電層432可作為MONOS記憶體的穿隧介電層、導電插塞370可作為MONOS記憶體的控制閘極、介電襯層372可作為MONOS記憶體的阻擋介電層且第二電荷儲存層434可作為MMONOS記憶體的電荷捕捉層。如同上文中於半導體裝置20所描述的內容,半導體裝置40也可進行二位元操作。In some embodiments, the second tunneling dielectric layer 432 can be used as the tunneling dielectric layer of the MONOS memory, the conductive plug 370 can be used as the control gate of the MONOS memory, and the dielectric liner 372 can be used as the control gate of the MONOS memory. The blocking dielectric layer and the second charge storage layer 434 can serve as the charge trapping layer of the MMONOS memory. As described above for semiconductor device 20 , semiconductor device 40 may also perform two-bit operations.

在一些實施例中,第二閘極220和第二間隔件430在以穿過基底200的第一井區103、隔離結構STI1和導電插塞370的軸線上與第一閘極120和第一間隔件330呈鏡像對稱。In some embodiments, the second gate 220 and the second spacer 430 are aligned with the first gate 120 and the first spacer 430 on an axis passing through the first well region 103 of the substrate 200 , the isolation structure STI1 and the conductive plug 370 . The spacer 330 is mirror symmetrical.

在一些實施例中,在第二間隔件430經由如同上述形成第一間隔件330的步驟形成的情況下,半導體裝置40可更包括形成在第一閘極120的第二側壁120b上以及第二閘極220的第二側壁220b上的虛設電荷儲存結構140。虛設電荷儲存結構140可例如是在執行上述移除電荷儲存材料層和介電材料層的步驟後,相應地形成於第一閘極120的第二側壁120b上以及第二閘極220的第二側壁220b上。也就是說,虛設電荷儲存結構140可包括虛設穿隧介電層142和形成於虛設穿隧介電層142上的虛設電荷儲存層144,其中虛設穿隧介電層142可設置在第一閘極120和虛設電荷儲存層144之間以及第二閘極220和虛設電荷儲存層144之間。In some embodiments, in the case where the second spacer 430 is formed through the steps of forming the first spacer 330 as described above, the semiconductor device 40 may further include a second spacer formed on the second sidewall 120b of the first gate 120 and a second spacer 430 formed on the second sidewall 120b of the first gate 120 . The dummy charge storage structure 140 on the second sidewall 220b of the gate 220. The dummy charge storage structure 140 may be, for example, formed on the second sidewall 120b of the first gate 120 and the second sidewall of the second gate 220 after performing the above steps of removing the charge storage material layer and the dielectric material layer. on the side wall 220b. That is to say, the dummy charge storage structure 140 may include a dummy tunneling dielectric layer 142 and a dummy charge storage layer 144 formed on the dummy tunneling dielectric layer 142, wherein the dummy tunneling dielectric layer 142 may be disposed on the first gate. between the electrode 120 and the dummy charge storage layer 144 and between the second gate 220 and the dummy charge storage layer 144 .

圖6是本發明第五實施例的半導體裝置的剖面示意圖。6 is a schematic cross-sectional view of a semiconductor device according to a fifth embodiment of the present invention.

圖6中所示出之半導體裝置50與圖5所示出之半導體裝置40相似,其差異在於半導體裝置50以導電插塞570替換導電插塞370。其他相同或相似構件採用相同或相似元件標號,下文中不再作進一步的贅述。The semiconductor device 50 shown in FIG. 6 is similar to the semiconductor device 40 shown in FIG. 5 , except that the semiconductor device 50 replaces the conductive plug 370 with a conductive plug 570 . Other identical or similar components use the same or similar element numbers and will not be described further below.

導電插塞570設置在隔離結構STI1上,且介電層160形成於導電插塞570和第一間隔件330之間以及導電插塞570和第二間隔件430之間。也就是說,介電層160可作為MONOS記憶體的阻擋介電層。在一些實施例中,導電插塞570可與導電插塞170於相同製程中同時形成。在一些實施例中,導電插塞570可延伸至隔離結構STI1中。在一些實施例中,導電插塞570的頂表面可高於第一閘極120和/或第二閘極220的頂表面。The conductive plug 570 is disposed on the isolation structure STI1, and the dielectric layer 160 is formed between the conductive plug 570 and the first spacer 330 and between the conductive plug 570 and the second spacer 430. In other words, the dielectric layer 160 can serve as a blocking dielectric layer of the MONOS memory. In some embodiments, the conductive plug 570 may be formed simultaneously with the conductive plug 170 in the same process. In some embodiments, conductive plug 570 may extend into isolation structure STI1. In some embodiments, the top surface of the conductive plug 570 may be higher than the top surface of the first gate 120 and/or the second gate 220 .

綜上所述,在上述實施例的半導體裝置中,由於控制閘極是設計在隔離結構上且第一電荷儲存結構是設計在控制閘極的第一側壁上、第一閘極的第一側壁上以及基底的位在控制閘極和第一閘極之間且包含有第一界面的區域上,如此可使得上述實施例的半導體裝置能夠易於整合至CMOS邏輯製程中。To sum up, in the semiconductor device of the above embodiment, since the control gate is designed on the isolation structure and the first charge storage structure is designed on the first side wall of the control gate, the first side wall of the first gate The semiconductor device of the above embodiment can be easily integrated into a CMOS logic process.

在上述另一實施例的半導體裝置中,由於導電插塞是設計在隔離結構上且包括第一穿隧介電層和第一電荷儲存層的第一間隔件是設計在第一閘極的第一側壁上,如此可使得另一實施例的半導體裝置能夠易於整合至CMOS邏輯製程中。In the semiconductor device of another embodiment described above, since the conductive plug is designed on the isolation structure and the first spacer including the first tunneling dielectric layer and the first charge storage layer is designed on the first gate electrode, On one side wall, this allows the semiconductor device of another embodiment to be easily integrated into a CMOS logic process.

10、20、30、40、50:半導體裝置 100、200:基底 101:深井區 103:第一井區 103a:第一界面 103b:第二界面 104:第二井區 105:摻雜區 110:控制閘極 110a、120a、220a:第一側壁 110b、120b、220b:第二側壁 120:第一閘極 122:第一閘介電層 130:第一電荷儲存結構 132:第一介電層 134:第一電荷儲存層 140:虛設電荷儲存結構 142:介電層 144:電荷儲存層 150:矽化物層 160:介電層 170、370、570:導電插塞 204:第三井區 220:第二閘極 222:第二閘介電層 230:第二電荷儲存結構 232:第二介電層 234:第二電荷儲存層 330:第一間隔件 332:第一穿隧介電層 334:第一電荷儲存層 372:介電襯層 430:第二間隔件 432:第二穿隧介電層 434:第二電荷儲存層 CG:控制訊號線 d1:第一距離 d2:第二距離 D1:第一方向 D2:第二方向 M1、M2:記憶體單元 STI1、STI2:隔離結構 ST1、ST2:選擇電晶體 SD1、SD2:源極/汲極區 WL1、WL2:字元線 BL:位元線 SL:源極線 10, 20, 30, 40, 50: Semiconductor devices 100, 200: Base 101:Sham Tseng District 103:First well area 103a: First interface 103b: Second interface 104:Second well area 105: Doped area 110: Control gate 110a, 120a, 220a: first side wall 110b, 120b, 220b: second side wall 120: first gate 122: First gate dielectric layer 130: First charge storage structure 132: First dielectric layer 134: First charge storage layer 140: Dummy charge storage structure 142:Dielectric layer 144: Charge storage layer 150: Silicone layer 160: Dielectric layer 170, 370, 570: Conductive plug 204:Third well area 220: Second gate 222: Second gate dielectric layer 230: Second charge storage structure 232: Second dielectric layer 234: Second charge storage layer 330: first spacer 332: First tunneling dielectric layer 334: First charge storage layer 372:Dielectric lining 430: Second spacer 432: Second tunneling dielectric layer 434: Second charge storage layer CG: control signal line d1: first distance d2: second distance D1: first direction D2: second direction M1, M2: memory unit STI1, STI2: isolation structure ST1, ST2: select transistor SD1, SD2: source/drain area WL1, WL2: character lines BL: bit line SL: source line

圖1是本發明第一實施例的半導體裝置的剖面示意圖。 圖2是本發明第二實施例的半導體裝置的剖面示意圖。 圖3是本發明第二實施例的半導體裝置的等效電路圖。 圖4是本發明第三實施例的半導體裝置的剖面示意圖。 圖5是本發明第四實施例的半導體裝置的剖面示意圖。 圖6是本發明第五實施例的半導體裝置的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a semiconductor device according to a first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a semiconductor device according to a second embodiment of the present invention. 3 is an equivalent circuit diagram of the semiconductor device according to the second embodiment of the present invention. 4 is a schematic cross-sectional view of a semiconductor device according to a third embodiment of the present invention. FIG. 5 is a schematic cross-sectional view of a semiconductor device according to a fourth embodiment of the present invention. 6 is a schematic cross-sectional view of a semiconductor device according to a fifth embodiment of the present invention.

10:半導體裝置 100:基底 101:深井區 103:第一井區 103a:第一界面 104:第二井區 105:摻雜區 110:控制閘極 110a、120a:第一側壁 110b、120b:第二側壁 120:第一閘極 122:第一閘介電層 130:第一電荷儲存結構 132:第一介電層 134:第一電荷儲存層 140:虛設電荷儲存結構 142:介電層 144:電荷儲存層 150:矽化物層 160:介電層 170:導電插塞 d1:第一距離 D1:第一方向 D2:第二方向 STI1、STI2:隔離結構 SD1、SD2:源極/汲極區 10:Semiconductor device 100:Base 101:Sham Tseng District 103:First well area 103a: First interface 104:Second well area 105: Doped area 110: Control gate 110a, 120a: first side wall 110b, 120b: second side wall 120: first gate 122: First gate dielectric layer 130: First charge storage structure 132: First dielectric layer 134: First charge storage layer 140: Dummy charge storage structure 142:Dielectric layer 144: Charge storage layer 150: Silicone layer 160: Dielectric layer 170: Conductive plug d1: first distance D1: first direction D2: second direction STI1, STI2: isolation structure SD1, SD2: source/drain area

Claims (9)

一種半導體裝置,包括:基底,包括第一井區和第二井區,所述第一井區具有第一導電型,所述第二井區具有不同於所述第一導電型的第二導電型,所述第一井區和所述第二井區之間具有彼此接觸的第一界面;隔離結構,設置在所述基底的所述第一井區中且與所述第一界面間隔開第一距離;第一導電插塞,設置在所述隔離結構上;第一閘極,設置在所述基底的所述第二井區上且包括面對所述導電插塞的第一側壁以及與所述第一側壁相對的第二側壁;第一間隔件,設置在所述第一閘極的所述第一側壁上且包括第一穿隧介電層和設置在所述第一穿隧介電層上的第一電荷儲存層,所述第一穿隧介電層設置在所述第一閘極的所述第一側壁上和所述基底的位在所述導電插塞和所述第一閘極之間且包含有所述第一界面的區域上;介電襯層,設置在所述導電插塞和所述第一間隔件之間,以使所述第一電荷儲存層與所述導電插塞間隔開來;多個源極/汲極區,分別設置在所述基底中,從俯視的角度來看,所述隔離結構在所述多個源極/汲極區之間,且所述第一閘極設置在所述隔離結構與所述多個源極/汲極區中的一者之間;以及第二導電插塞,設置在所述多個源極/汲極區上,其中所述第一導電插塞與所述第二導電插塞是在相同製程中同時形成。 A semiconductor device includes: a substrate including a first well region and a second well region, the first well region has a first conductivity type, and the second well region has a second conductivity different from the first conductivity type. Type, the first well region and the second well region have a first interface in contact with each other; an isolation structure is disposed in the first well region of the substrate and spaced apart from the first interface a first distance; a first conductive plug disposed on the isolation structure; a first gate disposed on the second well region of the substrate and including a first sidewall facing the conductive plug; a second sidewall opposite to the first sidewall; a first spacer disposed on the first sidewall of the first gate and including a first tunnel dielectric layer and a first spacer disposed on the first tunnel a first charge storage layer on a dielectric layer, the first tunneling dielectric layer is disposed on the first sidewall of the first gate and on the substrate between the conductive plug and the On the area between the first gates and including the first interface; a dielectric liner disposed between the conductive plug and the first spacer, so that the first charge storage layer and The conductive plugs are spaced apart; a plurality of source/drain regions are respectively provided in the substrate. From a top view, the isolation structure is between the plurality of source/drain regions. , and the first gate is disposed between the isolation structure and one of the plurality of source/drain regions; and a second conductive plug is disposed between the plurality of source/drain regions. area, wherein the first conductive plug and the second conductive plug are formed simultaneously in the same process. 如請求項1所述的半導體裝置,其中所述第一穿隧介電層的頂端高於所述第一電荷儲存層的頂端。 The semiconductor device of claim 1, wherein a top of the first tunneling dielectric layer is higher than a top of the first charge storage layer. 如請求項1所述的半導體裝置,其中所述基底包括具有所述第一導電型的摻雜區,所述摻雜區與所述第一間隔件、所述第一井區和所述第二井區接觸。 The semiconductor device of claim 1, wherein the substrate includes a doped region having the first conductivity type, the doped region being connected to the first spacer, the first well region and the third Erjing District Contact. 如請求項1所述的半導體裝置,其中所述基底包括具有所述第二導電型的第三井區,所述第一井區在所述第二井區和所述第三井區之間,所述第一井區和所述第三井區之間具有彼此接觸的第二界面,所述隔離結構與所述第二界面間隔開第二距離,且所述半導體裝置更包括:第二閘極,設置在所述基底的所述第三井區上且包括面對所述導電插塞的第一側壁以及與所述第一側壁相對的第二側壁;以及第二間隔件,設置在所述第二閘極的所述第一側壁上且包括第二穿隧介電層和設置在所述第二穿隧介電層上的第二電荷儲存層,所述第二穿隧介電層設置在所述第二閘極的所述第一側壁上和所述基底的位在所述導電插塞和所述第二閘極之間且包含有所述第二界面的區域上。 The semiconductor device of claim 1, wherein the substrate includes a third well region having the second conductivity type, the first well region being between the second well region and the third well region , the first well region and the third well region have a second interface in contact with each other, the isolation structure is spaced apart from the second interface by a second distance, and the semiconductor device further includes: a second a gate disposed on the third well region of the substrate and including a first sidewall facing the conductive plug and a second sidewall opposite to the first sidewall; and a second spacer disposed on The first sidewall of the second gate electrode includes a second tunnel dielectric layer and a second charge storage layer disposed on the second tunnel dielectric layer. The second tunnel dielectric layer A layer is disposed on the first sidewall of the second gate and on a region of the substrate between the conductive plug and the second gate and including the second interface. 如請求項4所述的半導體裝置,其中從俯視的角度來看,所述第二閘極設置在所述隔離結構與所述多個源極/汲極區中的另一者之間。 The semiconductor device of claim 4, wherein the second gate is disposed between the isolation structure and another one of the plurality of source/drain regions from a top view. 如請求項4所述的半導體裝置,其中所述第二閘極和所述第二間隔件在以穿過所述基底的所述第一井區、所述隔離結構和所述導電插塞的軸線上與所述第一閘極和所述第一間隔件呈鏡像對稱。 The semiconductor device of claim 4, wherein the second gate and the second spacer are in a position passing through the first well region of the substrate, the isolation structure and the conductive plug. The axis is mirror symmetrical to the first gate and the first spacer. 如請求項4所述的半導體裝置,其中所述基底包括具有所述第一導電型的多個摻雜區,所述多個摻雜區中的一者與所述第一間隔件、所述第一井區和所述第二井區接觸,所述多個摻雜區中的另一者與所述第二間隔件、所述第一井區和所述第三井區接觸。 The semiconductor device of claim 4, wherein the substrate includes a plurality of doped regions having the first conductivity type, and one of the plurality of doped regions is connected to the first spacer, the The first well region and the second well region are in contact, and another one of the plurality of doped regions is in contact with the second spacer, the first well region, and the third well region. 如請求項4所述的半導體裝置,其中所述導電插塞的頂表面高於所述第一閘極的頂表面或所述第二閘極的頂表面。 The semiconductor device of claim 4, wherein a top surface of the conductive plug is higher than a top surface of the first gate or a top surface of the second gate. 如請求項4所述的半導體裝置,更包括:第三間隔件,設置在所述第一閘極的所述第二側壁上或所述第二閘極的所述第二側壁上,所述第三間隔件包括虛設電荷儲存層和虛設穿隧介電層,所述虛設穿隧介電層設置在所述第一閘極和所述虛設電荷儲存層之間或是所述第二閘極和所述虛設電荷儲存層之間。 The semiconductor device according to claim 4, further comprising: a third spacer disposed on the second side wall of the first gate or on the second side wall of the second gate, the The third spacer includes a dummy charge storage layer and a dummy tunneling dielectric layer. The dummy tunneling dielectric layer is disposed between the first gate and the dummy charge storage layer or is the second gate. and between the dummy charge storage layer.
TW112102172A 2021-07-20 2021-07-20 Semiconductor device TWI812572B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112102172A TWI812572B (en) 2021-07-20 2021-07-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112102172A TWI812572B (en) 2021-07-20 2021-07-20 Semiconductor device

Publications (2)

Publication Number Publication Date
TW202322371A TW202322371A (en) 2023-06-01
TWI812572B true TWI812572B (en) 2023-08-11

Family

ID=87803843

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112102172A TWI812572B (en) 2021-07-20 2021-07-20 Semiconductor device

Country Status (1)

Country Link
TW (1) TWI812572B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201535612A (en) * 2014-03-05 2015-09-16 Xinova Technology Ltd Non-volatile memory unit under the condition that low electric field source is erased and the manufacturing method thereof
TW201635558A (en) * 2015-03-19 2016-10-01 物聯記憶體科技股份有限公司 Non-volatile memory
US20180166323A1 (en) * 2013-10-08 2018-06-14 Cypress Semiconductor Corporation Self-aligned trench isolation in integrated circuits
TW201947744A (en) * 2018-05-08 2019-12-16 日商瑞薩電子股份有限公司 Semiconductor device and method of manufacturing the same
TW202046485A (en) * 2019-05-31 2020-12-16 台灣積體電路製造股份有限公司 Integrated circuit and method of forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180166323A1 (en) * 2013-10-08 2018-06-14 Cypress Semiconductor Corporation Self-aligned trench isolation in integrated circuits
TW201535612A (en) * 2014-03-05 2015-09-16 Xinova Technology Ltd Non-volatile memory unit under the condition that low electric field source is erased and the manufacturing method thereof
TW201635558A (en) * 2015-03-19 2016-10-01 物聯記憶體科技股份有限公司 Non-volatile memory
TW201947744A (en) * 2018-05-08 2019-12-16 日商瑞薩電子股份有限公司 Semiconductor device and method of manufacturing the same
TW202046485A (en) * 2019-05-31 2020-12-16 台灣積體電路製造股份有限公司 Integrated circuit and method of forming the same

Also Published As

Publication number Publication date
TW202322371A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US11393838B2 (en) Semiconductor device and manufacturing method thereof
US10644011B1 (en) Non-volatile memory
US6794249B2 (en) Method for fabricating a memory cell
JP5554973B2 (en) Manufacturing method of semiconductor integrated circuit device
JP5878797B2 (en) Semiconductor device and manufacturing method thereof
US9171855B2 (en) Three-dimensional non-volatile memory
US9583502B2 (en) Method of manufacturing a semiconductor device
CN109473438B (en) Semiconductor device and method for manufacturing the same
US20180061964A1 (en) Semiconductor device and a manufacturing method thereof
JP2016039329A (en) Semiconductor device manufacturing method
JP2018107176A (en) Manufacturing method for semiconductor device and semiconductor device
US6943404B2 (en) Sonos multi-level memory cell
US20180374924A1 (en) Semiconductor device and method of manufacturing same
CN106024792B (en) Semiconductor device and method for manufacturing the same
JP6787798B2 (en) Manufacturing method of semiconductor devices
TWI759769B (en) Semiconductor structure for memory device and method for forming the same
US9831258B2 (en) Semiconductor device and manufacturing method thereof
JP2005536039A (en) Manufacturing method of NROM memory cell array
TWI812572B (en) Semiconductor device
TWI795847B (en) Semiconductor device
JP2016034045A (en) Semiconductor device
US9269828B2 (en) Lateral charge storage region formation for semiconductor wordline
CN108074932B (en) Semiconductor device, manufacturing method thereof and electronic device
JP6501588B2 (en) Semiconductor device manufacturing method
KR20240130790A (en) Method for forming a device having a planar split-gate nonvolatile memory cell, a planar HV device and a FinFET logic device on a substrate