TWI812493B - Ranging device and ranging method thereof - Google Patents

Ranging device and ranging method thereof Download PDF

Info

Publication number
TWI812493B
TWI812493B TW111136701A TW111136701A TWI812493B TW I812493 B TWI812493 B TW I812493B TW 111136701 A TW111136701 A TW 111136701A TW 111136701 A TW111136701 A TW 111136701A TW I812493 B TWI812493 B TW I812493B
Authority
TW
Taiwan
Prior art keywords
distance
value
unit
parameter
feature
Prior art date
Application number
TW111136701A
Other languages
Chinese (zh)
Other versions
TW202413990A (en
Inventor
張晏嘉
陳建霖
杜彥頤
Original Assignee
勝薪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勝薪科技股份有限公司 filed Critical 勝薪科技股份有限公司
Priority to TW111136701A priority Critical patent/TWI812493B/en
Priority to CN202211349913.5A priority patent/CN117826127A/en
Application granted granted Critical
Publication of TWI812493B publication Critical patent/TWI812493B/en
Publication of TW202413990A publication Critical patent/TW202413990A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

A ranging device includes a light emitter for emitting detection light, a sensor for sensing reflected light to generate an image, and a calibration unit for performing correction according to at least one feature lookup table and outputting a distance value according to the image. The detection light is reflected from an object to form the reflected light. The at least one feature lookup table is pre-established according to a specific object. The ranging device is able to suppress imaging disturbance and distance disturbance, thereby improving ranging accuracy.

Description

測距裝置及其測距方法 Distance measuring device and distance measuring method

本發明係指一種測距裝置及其測距方法,尤指一種可提高測距精確度的測距裝置及其測距方法。 The present invention refers to a distance measuring device and a distance measuring method thereof, in particular to a distance measuring device and a distance measuring method that can improve the accuracy of distance measurement.

測距裝置向待測物件發射光,接收其反射光,並利用反射光的成像結果來推算待測物件與測距裝置之間的距離。 The distance measuring device emits light to the object to be measured, receives the reflected light, and uses the imaging result of the reflected light to calculate the distance between the object to be measured and the distance measuring device.

第1A圖至第1D圖是成像的局部示意圖,其中,橫軸代表測距裝置的感光陣列中編號第120號至第170號的感光元件,縱軸代表感光元件對應到的亮度值。曲線C100代表某一種反射率的物件的成像,曲線C120代表這種物件受到環境光干擾的成像,曲線C140代表反射率較高的物件的成像,曲線C160代表反射率較高的物件受到環境光干擾的成像。成像中亮度值較高的部分(例如曲線C100對應在編號第140號至第150號的感光元件的區域)可構成成像的光斑。由第1A圖至第1D圖可知,物件反射率較高(即光源發射器的發射光投射至反射點附近後形成的反射光可能干擾成像點)或環境光會使成像點(例如編號第144號的感光元件的位置)附近過度感光,導致成像擾動,從而影響測距精確度。 Figures 1A to 1D are partial schematic diagrams of imaging, in which the horizontal axis represents the photosensitive elements numbered 120 to 170 in the photosensitive array of the distance measuring device, and the vertical axis represents the brightness value corresponding to the photosensitive element. Curve C100 represents the imaging of an object with a certain reflectivity, curve C120 represents the imaging of such an object that is interfered by ambient light, curve C140 represents the imaging of an object with a higher reflectivity, and curve C160 represents the imaging of an object with a higher reflectivity that is interfered by ambient light. imaging. The part with a higher brightness value in the image (for example, the curve C100 corresponding to the area of the photosensitive element numbered 140 to 150) can constitute the light spot of the image. It can be seen from Figures 1A to 1D that the reflectivity of the object is high (that is, the reflected light formed after the light source emitter is projected near the reflection point may interfere with the imaging point) or the ambient light may cause the imaging point (such as No. 144 The position of the photosensitive element of the sensor is overly sensitive, causing imaging disturbance and thus affecting the accuracy of ranging.

此外,即使測距裝置與待測物件之間的距離不變,光或電雜訊的干擾可能使測距裝置量測的距離值飄動,導致距離擾動,從而影響測距精確度。 In addition, even if the distance between the ranging device and the object to be measured remains unchanged, interference from optical or electrical noise may cause the distance value measured by the ranging device to fluctuate, causing distance disturbance and thus affecting the accuracy of ranging.

據此,現有測距裝置有改進的必要。 Accordingly, there is a need to improve existing distance measuring devices.

因此,本發明主要提供一種測距裝置及其測距方法,以提高測距精確度。 Therefore, the present invention mainly provides a ranging device and a ranging method to improve the ranging accuracy.

本發明揭露一種測距裝置,包含有一光源發射器,用以發射一偵測光,該偵測光在一物件反射而形成一反射光;一感測器,用以感測該反射光而產生一成像;以及一校正單元,耦接至該光源發射器及該感測器,用以根據至少一特徵查找表進行校正而根據該成像輸出一距離值,其中,該至少一特徵查找表是根據一特定物件而預先建立。 The invention discloses a distance measuring device, which includes a light source emitter for emitting a detection light, the detection light is reflected by an object to form a reflected light; a sensor for sensing the reflected light to generate an imaging; and a correction unit, coupled to the light source emitter and the sensor, for performing correction according to at least one feature lookup table and outputting a distance value according to the imaging, wherein the at least one feature lookup table is based on Pre-created for a specific object.

本發明揭露一種測距方法,包含有發射一偵測光,該偵測光在一物件反射而形成一反射光;感測該反射光而產生一成像;以及根據至少一特徵查找表進行校正而根據該成像輸出一距離值,其中,該至少一特徵查找表是根據一特定物件而預先建立。 The invention discloses a distance measurement method, which includes emitting a detection light, the detection light is reflected by an object to form a reflected light; sensing the reflected light to generate an image; and performing correction according to at least one feature lookup table. A distance value is output according to the imaging, wherein the at least one feature lookup table is pre-established according to a specific object.

C100~C160:曲線 C100~C160: Curve

20,50,60:測距裝置 20,50,60:Ranging device

210:光源發射器 210:Light source emitter

230:感測器 230: Sensor

250:成像比對單元 250: Imaging comparison unit

270:控制單元 270:Control unit

290,490:距離擾動抑制單元 290,490: Distance disturbance suppression unit

491:減法單元 491:Subtraction unit

492:切換單元 492:Switch unit

493,494:參數單元 493,494: Parameter unit

495:加法單元 495: Addition unit

496:狀態單元 496:State unit

620:旋轉機構 620: Rotating mechanism

640:轉動角度偵測器 640:Rotation angle detector

660:儲存單元 660:Storage unit

BJ,BJ1~BJj:物件 BJ,BJ1~BJj: objects

D1,D4,D5:距離 D1, D4, D5: distance

dk,i:擾動程度 d k,i : degree of disturbance

G1~G8:特徵群組 G1~G8: Feature group

L300~L330:折線 L300~L330: polyline

Ld:偵測光 Ld: detection light

Lr:反射光 Lr: reflected light

ri、1-ri:參數值 r i , 1-r i : parameter value

Sct,Sctk,i:控制參數 Sct,Sct k,i : control parameters

Sd,Sdk,i:估計距離值 Sd,Sd k,i : estimated distance value

Sf,Sfk,i:距離值 Sf,Sf k,i : distance value

Sfk-1,i:前一次輸出的距離值 Sf k-1,i : The distance value of the previous output

Smg,Smgk,i:成像 Smg,Smg k,i : imaging

thi:角度 th i : angle

W1,W4,W5:光斑寬度 W1, W4, W5: spot width

第1A圖至第1D圖是成像的局部示意圖。 Figures 1A to 1D are partial schematic diagrams of imaging.

第2圖是本發明實施例一測距裝置的示意圖。 Figure 2 is a schematic diagram of a distance measuring device according to an embodiment of the present invention.

第3圖是本發明實施例的光斑寬度與距離之間的關係的示意圖。 Figure 3 is a schematic diagram of the relationship between spot width and distance according to the embodiment of the present invention.

第4圖是本發明實施例一距離擾動抑制單元的示意圖。 Figure 4 is a schematic diagram of a distance disturbance suppression unit according to an embodiment of the present invention.

第5圖至第6圖分別是本發明實施例測距裝置的示意圖。 Figures 5 to 6 are respectively schematic diagrams of the distance measuring device according to the embodiment of the present invention.

第2圖是本發明實施例一測距裝置20的示意圖。測距裝置20可包括一光源發射器210、一感測器230及一校正單元。校正單元可包括一成像比對單元250、一控制單元270及一距離擾動抑制單元290。 Figure 2 is a schematic diagram of a distance measuring device 20 according to an embodiment of the present invention. The distance measuring device 20 may include a light source emitter 210, a sensor 230 and a correction unit. The correction unit may include an imaging comparison unit 250, a control unit 270 and a range disturbance suppression unit 290.

光源發射器210可發射一偵測光Ld,偵測光Ld可在一物件BJ的表面(的某個點)反射而形成一反射光Lr。 The light source emitter 210 can emit a detection light Ld, and the detection light Ld can be reflected on (a certain point on) the surface of an object BJ to form a reflected light Lr.

感測器230可為多個感光元件構成的感光陣列,用以感測反射光Lr而產生一成像Smg。也就是說,光源發射器210可向物件BJ投射光斑,感測器230 可擷取反射光Lr的強度分佈,從而輸出一成像Smg。成像Smg可為一維或二維的影像。 The sensor 230 may be a photosensitive array composed of a plurality of photosensitive elements for sensing the reflected light Lr to generate an image Smg. That is to say, the light source emitter 210 can project a light spot to the object BJ, and the sensor 230 The intensity distribution of the reflected light Lr can be captured to output an image Smg. The imaging Smg can be a one-dimensional or two-dimensional image.

成像比對單元250可接收成像Smg,並可根據強度分佈計算成像Smg的光斑的幾何特徵(例如寬度、面積、或質心位置),且可比對成像Smg的光斑的幾何特徵與一特徵查找表(可稱作第一特徵查找表)。 The imaging comparison unit 250 can receive the imaging Smg, and can calculate the geometric characteristics (such as width, area, or centroid position) of the light spot imaging Smg according to the intensity distribution, and can compare the geometric characteristics of the light spot imaging Smg with a feature lookup table. (Can be called the first feature lookup table).

第一特徵查找表可利用一特定物件(例如一白板)進行量測而建立。第一特徵查找表可包括特定物件與測距裝置20之間的距離、偵測光Ld投射至特定物件後所反射出的光斑寬度、偵測光Ld投射至特定物件後所反射出的光斑面積、偵測光Ld投射至特定物件後所反射出的光斑質心位置(或幾何中心)、或特徵群組等資訊。 The first feature lookup table can be created by measuring a specific object (such as a whiteboard). The first feature lookup table may include the distance between the specific object and the distance measuring device 20 , the width of the light spot reflected after the detection light Ld is projected onto the specific object, and the area of the light spot reflected after the detection light Ld is projected onto the specific object. , information such as the centroid position (or geometric center) of the light spot reflected after the detection light Ld is projected onto a specific object, or feature groups.

例如,表1列出第一特徵查找表的一實施例。成像比對單元250可利用成像Smg的光斑的光斑質心位置(例如位在某兩個編號的感光元件之間)來查詢其對應第一特徵查找表的哪個特徵群組。例如,當成像Smg的光斑的質心位置Mq介在光斑質心位置M1(即特徵群組G1的一邊界)與光斑質心位置M4(即特徵群組G1的另一邊界)之間(例如M1<Mq<M4),因此成像Smg的光斑對應特徵群組G1。質心位置Mq可為非整數或整數。 For example, Table 1 lists an embodiment of the first feature lookup table. The imaging comparison unit 250 may use the centroid position of the light spot imaging Smg (for example, located between two photosensitive elements with a certain number) to query which feature group of the first feature lookup table it corresponds to. For example, when the centroid position Mq of the spot imaging Smg is between the spot centroid position M1 (i.e., one boundary of the feature group G1) and the spot centroid position M4 (i.e., the other boundary of the feature group G1) (for example, M1 <Mq<M4), therefore the light spot imaging Smg corresponds to the feature group G1. The center of mass position Mq can be a non-integer or an integer.

Figure 111136701-A0305-02-0005-1
Figure 111136701-A0305-02-0005-1
Figure 111136701-A0305-02-0006-2
Figure 111136701-A0305-02-0006-2

接著,成像比對單元250可根據特徵群組的邊界值,利用內插法計算光斑質心位置對應的對應特徵值,再利用比例關係計算特徵上限及特徵下限。例如,特徵群組G1的邊界值是光斑寬度W1、W4,成像比對單元250可利用內插法計算光斑質心位置Mq對應的特徵值Wref(例如Wref=W1+(Mq-M1)/(M4-M1)×(W4-W1)),再利用比例關係計算特徵上限UBw(例如UBw=Wref+Δw)及特徵下限LBw(例如LBw=Wref-Δw),其中Δw例如滿足Δw=ct×Wref,ct可小於5%(例如ct=1%或ct=2%),ct可為距離的函數,或者Δw可為固定倍率值的感光元件的尺寸/寬度(例如Δw=y個感光元件的寬度,y小於3)。例如,特徵群組G1的邊界值是光斑面積A1、A4,成像比對單元250可利用內插法計算對應特徵值Aref(例如Aref=A1+(Mq-M1)/(M4-M1)×(A4-A1)),再利用比例關係計算特徵上限UBa(例如UBa=Aref+ΔA)及特徵下限LBa(例如LBa=Aref-ΔA),其中ΔA例如滿足ΔA=CT×Aref,CT可小於5%(例如CT=1%或CT=2%),CT可為距離的函數。 Then, the imaging comparison unit 250 can use the interpolation method to calculate the corresponding feature value corresponding to the spot centroid position according to the boundary value of the feature group, and then use the proportional relationship to calculate the upper limit and lower limit of the feature. For example, the boundary values of the feature group G1 are the spot widths W1 and W4, and the imaging comparison unit 250 can use the interpolation method to calculate the feature value Wref corresponding to the spot centroid position Mq (for example, Wref=W1+(Mq-M1)/(M4 -M1)×(W4-W1)), and then use the proportional relationship to calculate the characteristic upper limit UBw (for example, UBw=Wref+Δw) and the characteristic lower limit LBw (for example, LBw=Wref-Δw), where Δw satisfies Δw=ct×Wref, for example, ct can be less than 5% (for example, ct=1% or ct=2%), ct can be a function of distance, or Δw can be the size/width of the photosensitive element with a fixed magnification value (for example, Δw=width of y photosensitive elements, y is less than 3). For example, the boundary values of the feature group G1 are the spot areas A1 and A4, and the imaging comparison unit 250 can use the interpolation method to calculate the corresponding feature value Aref (for example, Aref=A1+(Mq-M1)/(M4-M1)×(A4 -A1)), and then use the proportional relationship to calculate the upper characteristic limit UBa (for example, UBa=Aref+ΔA) and the lower characteristic limit LBa (for example, LBa=Aref-ΔA), where ΔA satisfies ΔA=CT×Aref, and CT can be less than 5% ( For example, CT=1% or CT=2%), CT can be a function of distance.

接著,成像比對單元250可將成像Smg的光斑的幾何特徵與對應特徵值、特徵上限、或特徵下限進行比對,而輸出一控制參數Sct。例如,當成像Smg的光斑的幾何特徵(例如寬度或面積)大於特徵上限(例如UBw或UBa)(或特徵值Wref或Aref),則輸出控制參數Sct以降低感測器230下一次的曝光時間、調 整感測器230下一次的感測模式至較低敏感度、或降低光源發射器210下一次的發射強度。當成像Smg的光斑的幾何特徵(例如寬度或面積)小於特徵下限(例如LBw或LBa)(或特徵值Wref或Aref),則輸出控制參數Sct以增加感測器230下一次的曝光時間、調整感測器230下一次的感測模式至較高敏感度、或增加光源發射器210下一次的發射強度。 Then, the imaging comparison unit 250 can compare the geometric characteristics of the light spot imaging Smg with the corresponding characteristic value, the upper characteristic limit, or the lower characteristic limit, and output a control parameter Sct. For example, when the geometric characteristics (such as width or area) of the light spot imaging Smg are greater than the upper characteristic limit (such as UBw or UBa) (or the characteristic value Wref or Aref), the control parameter Sct is output to reduce the next exposure time of the sensor 230 , adjust Adjust the next sensing mode of the sensor 230 to a lower sensitivity, or reduce the next emission intensity of the light source emitter 210 . When the geometric characteristics (such as width or area) of the light spot imaging Smg are less than the characteristic lower limit (such as LBw or LBa) (or the characteristic value Wref or Aref), the control parameter Sct is output to increase the next exposure time and adjustment of the sensor 230 The next sensing mode of the sensor 230 is set to a higher sensitivity, or the next emission intensity of the light source emitter 210 is increased.

在一實施例,控制單元270可根據控制參數Sct調整感測器230下一次的曝光時間(例如增加/減少固定的一個時間長度、或增加/減少與幾何特徵相較特徵值的差值相關的一個時間長度)。在另一實施例,控制單元270可根據控制參數Sct調整感測器230下一次的感測模式或輸出增益,或調整光源發射器210下一次的發射強度。 In one embodiment, the control unit 270 can adjust the next exposure time of the sensor 230 according to the control parameter Sct (for example, increase/decrease a fixed length of time, or increase/decrease the difference related to the geometric feature compared to the feature value. a length of time). In another embodiment, the control unit 270 can adjust the next sensing mode or output gain of the sensor 230 according to the control parameter Sct, or adjust the next emission intensity of the light source emitter 210 .

在另一實施例,成像比對單元250可利用成像Smg的光斑的光斑質心位置來判斷其對應該第一特徵查找表的哪兩個邊界值(例如光斑寬度W1、W2),根據這兩個邊界值利用內插法計算光斑質心位置Mq對應的特徵值(例如Wref=W1+(Mq-M1)/(M2-M1)×(W2-W1)或Aref=A1+(Mq-M1)/(M2-M1)×(A2-A1)),並將該光斑的幾何特徵與特徵值進行比對而輸出控制參數Sct。當成像Smg的光斑的幾何特徵(例如寬度或面積)大於特徵值(例如Wref或Aref),則輸出控制參數Sct以降低感測器230下一次的曝光時間;當成像Smg的光斑的幾何特徵小於特徵值,則輸出控制參數Sct以增加感測器230下一次的曝光時間。 In another embodiment, the imaging comparison unit 250 can use the spot centroid position of the spot imaging Smg to determine which two boundary values (for example, spot widths W1, W2) of the first feature lookup table it corresponds to. According to these two The boundary values are interpolated to calculate the characteristic value corresponding to the spot centroid position Mq (for example, Wref=W1+(Mq-M1)/(M2-M1)×(W2-W1) or Aref=A1+(Mq-M1)/( M2-M1)×(A2-A1)), and compare the geometric characteristics of the light spot with the characteristic value to output the control parameter Sct. When the geometric characteristics (such as width or area) of the light spot imaging Smg are greater than the characteristic value (such as Wref or Aref), the control parameter Sct is output to reduce the next exposure time of the sensor 230; when the geometric characteristics of the light spot imaging Smg are smaller than characteristic value, the control parameter Sct is output to increase the next exposure time of the sensor 230 .

由上述可知,成像比對單元250可依據物件BJ的成像光斑特徵與特定物件的成像光斑特徵的比例關係,輸出控制參數Sct,從而使得感測器230的曝光時間、感測模式或輸出增益、或光源發射器210的發射強度受調整,以抑制成像擾動。 As can be seen from the above, the imaging comparison unit 250 can output the control parameter Sct according to the proportional relationship between the imaging spot characteristics of the object BJ and the imaging spot characteristics of the specific object, so that the exposure time, sensing mode or output gain of the sensor 230, Or the emission intensity of the light source emitter 210 is adjusted to suppress imaging disturbance.

特徵群組的分群方式可利用寬度(或面積)對距離(或質心位置)的一階導數進行。第3圖是本發明實施例的光斑寬度與距離之間的關係的示意 圖,其中,折線L300代表特定物件對應的光斑寬度與距離之間的關係(其可用作第一特徵查找表),折線L310代表高反射率物件對應的光斑寬度與距離之間的關係,折線L330代表低反射率物件對應的光斑寬度與距離之間的關係。以折線L300為例,可利用折線L300的轉折點(例如光斑寬度對距離的一階導數不連續的位置)作為特徵群組的邊界,或利用折線L300的轉折點附近的點作為特徵群組的邊界。也就是說,同一特徵群組的特徵關係是可預測的(例如線性)。利用區分特徵群組可減少搜尋成像Smg的光斑對應的特徵值的時間及次數(例如成像Smg的光斑的質心位置Mq不論介在光斑質心位置M1與光斑質心位置M4之間(例如M1<Mq<M4)或介在光斑質心位置M1與光斑質心位置M2之間(例如M1<Mq<M2),都可利用作為特徵群組G1邊界值的光斑寬度W1、W4來計算光斑質心位置Mq對應的特徵值、特徵上限及特徵下限)。 Feature groups can be grouped by using the first derivative of width (or area) with respect to distance (or centroid position). Figure 3 is a schematic diagram of the relationship between spot width and distance according to the embodiment of the present invention. Figure, where polyline L300 represents the relationship between the spot width and distance corresponding to a specific object (which can be used as the first feature lookup table), polyline L310 represents the relationship between the spot width and distance corresponding to a high reflectivity object, and the polyline L310 represents the relationship between the spot width and distance corresponding to a high reflectivity object. L330 represents the relationship between the spot width and distance corresponding to a low-reflectivity object. Taking polyline L300 as an example, the turning point of polyline L300 (for example, the position where the first derivative of the spot width versus distance is discontinuous) can be used as the boundary of the feature group, or the points near the turning point of polyline L300 can be used as the boundary of the feature group. That is, feature relationships within the same feature group are predictable (e.g. linear). The use of distinguishing feature groups can reduce the time and number of searches for feature values corresponding to the light spot imaging Smg (for example, the center of mass position Mq of the light spot imaging Smg is between the spot center of mass position M1 and the spot center of mass position M4 (for example, M1 < Mq<M4) or between the spot centroid position M1 and the spot centroid position M2 (for example, M1<Mq<M2), the spot widths W1 and W4, which are the boundary values of the feature group G1, can be used to calculate the spot centroid position. Mq corresponding eigenvalue, upper characteristic limit and lower characteristic limit).

如第3圖所示,當高反射率物件與測距裝置20之間相距某一距離(例如1000mm)時,降低感測器230的曝光時間可使成像Smg的光斑的寬度縮減(例如從第1C圖的曲線C140調整成第1A圖的曲線C100)(例如循著第3圖的箭頭自折線L310的點下降至折線L300的點)。當低反射率物件與測距裝置20之間相距某一距離(例如1000mm)時,增加感測器230的曝光時間可使成像Smg的光斑的寬度增加(例如循著第3圖的箭頭自折線L330的點上升至折線L300的點)。據此,測距裝置20可抑制反射率不同時導致感測器230的成像Smg的成像擾動。當環境中存在強光干擾時,物件BJ的成像Smg的光斑的寬度或面積可能因強光干擾而變寬,測距裝置20可監測當下物件BJ與特定物件的光斑的寬度或面積比例,並據以控制感測器230的曝光時間,使成像Smg的光斑的寬度縮減(例如從第1B圖的曲線C120調整成第1A圖的曲線C100),以抑制成像擾動。也就是說,藉由曝光時間與成像Smg的光斑的寬度或面積成正比,可利用曝光時間調整成像Smg的光斑的寬度或面積。當物件BJ與特定物件的光斑的寬度或面積趨近時(例如從第 1D圖的曲線C160調整成第1A圖的曲線C100),測距裝置20能更正確地判斷成像Smg的光斑的質心位置,而可提升對應的測距準確度。 As shown in FIG. 3 , when the high reflectivity object is at a certain distance (for example, 1000 mm) from the distance measuring device 20 , reducing the exposure time of the sensor 230 can reduce the width of the light spot imaging Smg (for example, from the first Curve C140 in Figure 1C is adjusted to curve C100 in Figure 1A) (for example, follow the arrow in Figure 3 from the point of polyline L310 to the point of polyline L300). When there is a certain distance (for example, 1000 mm) between the low-reflectivity object and the distance measuring device 20, increasing the exposure time of the sensor 230 can increase the width of the light spot imaging Smg (for example, following the arrow in Figure 3 from the broken line The point of L330 rises to the point of polyline L300). Accordingly, the ranging device 20 can suppress imaging disturbance caused by different reflectivities in the imaging Smg of the sensor 230 . When there is strong light interference in the environment, the width or area of the light spot of the image Smg of the object BJ may become wider due to the strong light interference. The distance measuring device 20 can monitor the width or area ratio of the light spot of the current object BJ and the specific object, and Accordingly, the exposure time of the sensor 230 is controlled to reduce the width of the light spot imaging Smg (for example, adjust from the curve C120 in Figure 1B to the curve C100 in Figure 1A) to suppress imaging disturbance. That is to say, since the exposure time is proportional to the width or area of the light spot imaging Smg, the exposure time can be used to adjust the width or area of the light spot imaging Smg. When the object BJ is close to the width or area of the light spot of a specific object (for example, from the Curve C160 in Figure 1D is adjusted to curve C100 in Figure 1A), and the ranging device 20 can more accurately determine the centroid position of the light spot imaging Smg, thereby improving the corresponding ranging accuracy.

此外,成像比對單元250可根據成像Smg的光斑的質心,估計物件BJ與測距裝置20之間的一估計距離值Sd(可稱作原始距離值)。具體地,感測器230可在光源發射器210開啟時,感測一第一影像;感測器230可在光源發射器210關閉時,感測一第二影像。藉由比對第一影像和第二影像,可辨識由物件BJ表面反射至感測器230的反射光的強度分布。根據反射光在感測器230的成像Smg的光斑的質心的位置,可利用三角測量原理計算出物件BJ與測距裝置20之間的距離(即估計距離值Sd)。 In addition, the imaging comparison unit 250 can estimate an estimated distance value Sd (which can be called an original distance value) between the object BJ and the ranging device 20 based on the center of mass of the light spot imaging Smg. Specifically, the sensor 230 can sense a first image when the light source emitter 210 is turned on; the sensor 230 can sense a second image when the light source emitter 210 is turned off. By comparing the first image and the second image, the intensity distribution of the reflected light reflected from the surface of the object BJ to the sensor 230 can be identified. According to the position of the centroid of the reflected light spot of the sensor 230 imaging Smg, the distance between the object BJ and the distance measuring device 20 (ie, the estimated distance value Sd) can be calculated using the triangulation principle.

距離擾動抑制單元290可將估計距離值Sd調整至一距離值Sf(可稱作修正距離值)來抑制當下的測距擾動,且距離擾動抑制單元290可輸出距離值Sf以作為測距裝置20的測距輸出。據此,可確保測距裝置20每個時間當下的測距輸出是穩定的,以避免浮動(fluctuate)。 The distance disturbance suppression unit 290 can adjust the estimated distance value Sd to a distance value Sf (which can be called a corrected distance value) to suppress the current ranging disturbance, and the distance disturbance suppression unit 290 can output the distance value Sf as the distance measurement device 20 ranging output. Accordingly, it is ensured that the ranging output of the ranging device 20 at each time is stable to avoid fluctuate.

第4圖是本發明實施例一距離擾動抑制單元490的示意圖。距離擾動抑制單元490可接收估計距離值Sdk,i並對應輸出距離值Sfk,i。距離擾動抑制單元490、估計距離值Sdk,i、距離值Sfk,i可分別用以實現距離擾動抑制單元290、估計距離值Sd、距離值Sf。距離擾動抑制單元490可包括一減法單元491、一切換單元492、參數單元493、494、一加法單元495及一狀態單元496。 Figure 4 is a schematic diagram of a distance disturbance suppression unit 490 according to an embodiment of the present invention. The distance disturbance suppression unit 490 may receive the estimated distance value Sd k,i and output the distance value Sf k,i correspondingly. The distance disturbance suppression unit 490, the estimated distance value Sd k,i , and the distance value Sf k,i can be used to implement the distance disturbance suppression unit 290, the estimated distance value Sd, and the distance value Sf respectively. The distance disturbance suppression unit 490 may include a subtraction unit 491, a switching unit 492, parameter units 493, 494, an addition unit 495 and a status unit 496.

減法單元491可判斷擾動程度dk,i,擾動程度dk,i可滿足dk,i=|Sdk,i-Sfk-1,i|,其中Sfk-1,i是前一次輸出的距離值(可稱作先前距離值),k代表時間編號。也就是說,減法單元491可判斷估計距離值Sdk,i與前一次輸出的距離值Sfk-1,i之間的差值,從而判定距離值飄動的程度。 The subtraction unit 491 can determine the degree of disturbance d k,i , and the degree of disturbance d k,i can satisfy d k,i =|Sd k,i -Sf k-1,i |, where Sf k-1,i is the previous output The distance value (can be called the previous distance value), k represents the time number. That is to say, the subtraction unit 491 can determine the difference between the estimated distance value Sd k,i and the previously output distance value Sf k-1,i , thereby determining the degree of fluctuation of the distance value.

切換單元492可根據擾動程度dk,i來適應性調整參數單元493、494的參數值ri、1-ri。參數值ri的範圍可介在0至1之間。若擾動程度dk,i越小,切換單元492 可減低參數值ri而將其調整至較小的值。切換單元492可比對擾動程度dk,i與一特徵查找表(可稱作第二特徵查找表)來決定如何調整參數單元493、494的參數值ri、1-riThe switching unit 492 can adaptively adjust the parameter values ri and 1- ri of the parameter units 493 and 494 according to the degree of disturbance d k,i . The parameter value r i can range between 0 and 1. If the degree of disturbance d k,i is smaller, the switching unit 492 can reduce the parameter value r i and adjust it to a smaller value. The switching unit 492 can compare the disturbance degree d k,i with a feature lookup table (which can be called a second feature lookup table) to determine how to adjust the parameter values ri and 1- ri of the parameter units 493 and 494.

第二特徵查找表可利用前述的特定物件進行量測而建立。也就是說,特定物件不限於白板,只要第一特徵查找表及第二特徵查找表都利用同一物件來製作即可。第二特徵查找表可包括特定物件與測距裝置20之間的距離(平均值)及距離的標準差等等資訊。 The second feature lookup table can be established by measuring the aforementioned specific object. That is to say, the specific object is not limited to the whiteboard, as long as both the first feature lookup table and the second feature lookup table are made using the same object. The second feature lookup table may include information such as the distance (average) and the standard deviation of the distance between the specific object and the distance measuring device 20 .

例如,表2列出的第二特徵查找表的一實施例。距離(平均值)Dx(即D1至Dn中的一者)可為當特定物件與測距裝置20之間相隔某一距離下,測距裝置20所測量特定物件與測距裝置20之間的距離(平均值)。距離標準差STDx(即STD1至STDn中的一者)可為當特定物件與測距裝置20之間相隔此距離下,測距裝置20所測量特定物件與測距裝置20之間的距離的標準差。 For example, Table 2 lists an embodiment of the second feature lookup table. The distance (average value) Dx (ie, one of D1 to Dn) can be the distance between the specific object and the distance measuring device 20 measured by the distance measuring device 20 when the specific object and the distance measuring device 20 are separated by a certain distance. distance (average). The distance standard deviation STDx (ie, one of STD1 to STDn) can be the standard of the distance between the specific object and the distance measuring device 20 measured by the distance measuring device 20 when the specific object and the distance measuring device 20 are separated by this distance. Difference.

Figure 111136701-A0305-02-0010-3
Figure 111136701-A0305-02-0010-3

切換單元492可根據STDx=argmin(Sdk,i-Dx)找到估計距離值Sdk,i對應 的距離標準差STDx。也就是說,切換單元492可判斷估計距離值Sdk,i最接近第二特徵查找表中的哪一個距離(平均值)Dx,再根據找到的距離(平均值)Dx查出對應的距離標準差STDx。例如,當切換單元492判斷估計距離值Sdk,i接近距離(平均值)D3時,切換單元492判斷擾動程度dk,i對應距離標準差STD3,且切換單元492可根據距離標準差STD3判斷參數單元493、494的參數值ri、1-riThe switching unit 492 can find the distance standard deviation STDx corresponding to the estimated distance value Sd k ,i according to STDx=argmin(Sd k,i -Dx). That is to say, the switching unit 492 can determine which distance (average value) Dx in the second feature lookup table the estimated distance value Sd k,i is closest to, and then find out the corresponding distance standard based on the found distance (average value) Dx Bad STDx. For example, when the switching unit 492 determines that the estimated distance value Sd k,i is close to the distance (average value) D3, the switching unit 492 determines that the degree of disturbance d k,i corresponds to the distance standard deviation STD3, and the switching unit 492 can determine based on the distance standard deviation STD3 Parameter values ri , 1- ri of parameter units 493, 494.

例如,切換單元492可比較物件BJ的擾動程度dk,i及查詢第二特徵查找表得到的距離標準差STDx來判斷參數單元493、494的參數值ri、1-ri。例如,當擾動程度dk,i小於等於距離標準差STDx(即dk,i

Figure 111136701-A0305-02-0011-13
STDx)時,參數值ri可接近0,例如可等於0.125,而進行距離擾動抑制。但在易受初始的估計距離值Sd0,i擾動的情境下(可稱作欲弱化抑制的擾動區間),當擾動程度d0,i小於等於距離標準差STDx(即d0,i
Figure 111136701-A0305-02-0011-14
STDx)時,參數值ri可接近1,例如可等於0.7,以避免不佳的初始的估計距離值Sd0,i影響距離擾動抑制功能,據此,能減低初始的估計距離值Sd0,i對後續產生的距離值Sfk,i的影響。換言之,在欲強化抑制的擾動區間,參數值ri越小;在欲弱化抑制的擾動區間,參數值ri越大。當擾動程度dk,i大於距離標準差STDx且小於等於2倍的距離標準差STDx(即STDx<dk,i
Figure 111136701-A0305-02-0011-15
2×STDx)時,參數值ri相對接近0,例如可等於0.25,而進行距離擾動抑制。當擾動程度dk,i大於2倍的距離標準差STDx且小於等於3倍的距離標準差STDx(即2×STDx<dk,i
Figure 111136701-A0305-02-0011-16
3×STDx)時,可視作物件BJ處在相對移動與最大擾動的過渡,參數值ri相對接近1,例如可等於0.7,而進行輕微地距離擾動抑制。當擾動程度dk,i大於某一倍數(例如3倍)的距離標準差STDx(即dk,i>3×STDx)時,物件BJ很可能相對測距裝置20正在移動,參數值ri可等於1,而不進行距離擾動抑制。 For example, the switching unit 492 can compare the disturbance degree d k,i of the object BJ and the distance standard deviation STDx obtained by querying the second feature lookup table to determine the parameter values ri and 1- ri of the parameter units 493 and 494. For example, when the degree of disturbance d k,i is less than or equal to the distance standard deviation STDx (that is, d k,i
Figure 111136701-A0305-02-0011-13
STDx), the parameter value r i can be close to 0, for example, equal to 0.125, to perform distance disturbance suppression. However, in a situation that is easily disturbed by the initial estimated distance value Sd 0,i (which can be called the disturbance interval where suppression is to be weakened), when the degree of disturbance d 0,i is less than or equal to the distance standard deviation STDx (that is, d 0,i
Figure 111136701-A0305-02-0011-14
STDx), the parameter value r i can be close to 1, for example, it can be equal to 0.7 to avoid the poor initial estimated distance value Sd 0,i from affecting the distance disturbance suppression function. Accordingly, the initial estimated distance value Sd 0,i can be reduced. The influence of i on the subsequent distance value Sf k,i . In other words, in the disturbance interval where the suppression is to be strengthened, the parameter value r i is smaller; in the disturbance interval where the suppression is to be weakened, the parameter value r i is larger. When the degree of disturbance d k,i is greater than the distance standard deviation STDx and less than or equal to 2 times the distance standard deviation STDx (that is, STDx<d k,i
Figure 111136701-A0305-02-0011-15
2×STDx), the parameter value r i is relatively close to 0, for example, it can be equal to 0.25, and distance disturbance suppression is performed. When the degree of disturbance d k,i is greater than 2 times the distance standard deviation STDx and less than or equal to 3 times the distance standard deviation STDx (i.e. 2×STDx<d k,i
Figure 111136701-A0305-02-0011-16
3×STDx), it can be seen that the object BJ is in the transition between relative movement and maximum disturbance. The parameter value r i is relatively close to 1, for example, it can be equal to 0.7, and slight distance disturbance suppression is performed. When the degree of disturbance d k,i is greater than a certain multiple (for example, 3 times) of the distance standard deviation STDx (that is, d k,i >3×STDx), the object BJ is likely to be moving relative to the distance measuring device 20, and the parameter value r i Can be equal to 1 without distance disturbance suppression.

參數單元493、494可分別對估計距離值Sdk,i、前一次輸出的距離值Sfk-1,i進行對應參數值ri、1-ri的乘法計算,而輸出Sdk,i×ri及Sfk-1,i×(1-ri)。參數單元493、494的參數值ri、1-ri的和是1。 The parameter units 493 and 494 can respectively perform multiplication calculations on the estimated distance value Sd k,i and the previously output distance value Sf k-1,i corresponding to the parameter values ri and 1- ri , and output Sd k,i × r i and Sf k-1,i ×(1-r i ). The sum of parameter values ri and 1- ri of parameter units 493 and 494 is 1.

加法單元495可將接收到的Sdk,i×ri及Sfk-1,i×(1-ri)加總,並將Sdk,i×ri+Sfk-1,i×(1-ri)輸出成距離值Sfk,i。也就是說,本次輸出的距離值Sfk,i是根據適應性擾動抑制切換準則(Adaptive Switch Rule)由估計距離值Sdk,i與前一次輸出的距離值Sfk-1,i以參數值ri比例混和而成。據此,即使光或電雜訊的干擾使測距裝置20量測的估計距離值Sdk,i飄動而導致距離擾動(但測距裝置20與物件BJ之間的距離可能沒有改變),測距裝置20輸出的距離值Sfk,i可以是相對穩定的,不會隨著估計距離值Sdk,i做大幅度的變化。當物件BJ與測距裝置20之間發生相對移動時,距離值Sfk,i可如實反映物件BJ與測距裝置20之間距離的變化。 The adding unit 495 can add the received Sd k,i × ri and Sf k-1,i ×(1-ri ) , and add Sd k,i × ri +Sf k-1,i ×( 1-r i ) is output as a distance value Sf k,i . That is to say, the distance value Sf k,i output this time is determined by the estimated distance value Sd k,i according to the adaptive disturbance suppression switching rule (Adaptive Switch Rule) and the distance value Sf k-1,i output last time. The values r i are mixed in proportion. According to this, even if the interference of light or electrical noise causes the estimated distance value Sd k,i measured by the distance measuring device 20 to fluctuate and cause distance disturbance (but the distance between the distance measuring device 20 and the object BJ may not change), the measured distance value Sd k,i may not change. The distance value Sf k,i output from the device 20 may be relatively stable and will not change significantly with the estimated distance value Sd k,i . When relative movement occurs between the object BJ and the distance measuring device 20, the distance value Sf k,i can truly reflect the change in the distance between the object BJ and the distance measuring device 20.

狀態單元496可用以保存前一次輸出的距離值Sfk-1,i(或本次輸出的距離值Sfk,i),並在本次將前一次輸出的距離值Sfk-1,i(或在下一次將距離值Sfk,i)傳遞至減法單元491、參數單元494。也就是說,狀態單元496可延遲進行輸出。狀態單元496可利用儲存電路或寄存器來實現。 The state unit 496 can be used to save the distance value Sf k-1,i that was output last time (or the distance value Sf k,i that was output this time), and convert the distance value Sf k-1,i that was output last time this time ( Or the distance value Sf k,i ) is transferred to the subtraction unit 491 and the parameter unit 494 next time. That is, state unit 496 may delay outputting. Status unit 496 may be implemented using storage circuits or registers.

第5圖是本發明實施例一測距裝置50的示意圖。測距裝置50可用以實現測距裝置20。測距裝置50能移動(例如第5圖的(a)與第5圖的(b)之間的移動),移動時可偵測周圍的物件(例如BJ1~BJj)並量測距離。測距裝置50可包括一旋轉機構,使測距裝置50可轉動(例如第5圖的(b)與第5圖的(c)之間的轉動),轉動時可偵測周圍的物件並量測距離。測距裝置50的轉動角度範圍可介在0至360度之間。 Figure 5 is a schematic diagram of a distance measuring device 50 according to an embodiment of the present invention. The distance measuring device 50 can be used to implement the distance measuring device 20 . The distance measuring device 50 can move (such as the movement between (a) in Figure 5 and (b) in Figure 5), and can detect surrounding objects (such as BJ1~BJj) and measure distances when moving. The distance measuring device 50 may include a rotating mechanism so that the distance measuring device 50 can rotate (such as the rotation between (b) in Figure 5 and (c) in Figure 5), and can detect and measure surrounding objects when rotating. Measure distance. The rotation angle range of the distance measuring device 50 may be between 0 and 360 degrees.

第6圖是本發明實施例一測距裝置60的示意圖。測距裝置60可用以實現測距裝置50。相較測距裝置20,測距裝置60可另包括一旋轉機構620、一轉動角度偵測器640及一儲存單元660。測距裝置60可透過分時多工方式,以測距裝置60為中心,穩定地偵測周圍的物件並量測距離。 Figure 6 is a schematic diagram of a distance measuring device 60 according to an embodiment of the present invention. The distance measuring device 60 can be used to implement the distance measuring device 50 . Compared with the distance measuring device 20 , the distance measuring device 60 may further include a rotation mechanism 620 , a rotation angle detector 640 and a storage unit 660 . The distance measuring device 60 can stably detect surrounding objects and measure distances with the distance measuring device 60 as the center through a time-division multiplexing method.

轉動角度偵測器640可用以偵測測距裝置60轉動的角度。 The rotation angle detector 640 can be used to detect the rotation angle of the distance measuring device 60 .

儲存單元660可用以針對不同角度獨立地儲存對應的資訊(例如某個 角度對應的先前距離值、光源發射器210的發射強度、感測器230的曝光時間、感測模式或輸出增益)。在另一實施例,測距裝置60的轉動角度範圍(例如360度)可分成多個角度偵測點(例如將360度分成0度、120度及240度),旋轉機構620可用以使得測距裝置60依序轉至每個角度偵測點,儲存單元660可用以針對每個角度偵測點獨立地儲存對應的資訊。 The storage unit 660 can be used to independently store corresponding information (such as a certain The previous distance value corresponding to the angle, the emission intensity of the light source emitter 210, the exposure time of the sensor 230, the sensing mode or the output gain). In another embodiment, the rotation angle range of the distance measuring device 60 (for example, 360 degrees) can be divided into multiple angle detection points (for example, 360 degrees is divided into 0 degrees, 120 degrees, and 240 degrees), and the rotation mechanism 620 can be used to detect From the device 60 to each angle detection point in sequence, the storage unit 660 can be used to independently store corresponding information for each angle detection point.

儲存單元660可包括多個狀態單元496,每個狀態單元496儲存一個角度(例如角度thi)(或角度偵測點)對應的先前距離值(例如前一次輸出的距離值Sfk-1,i),其中i代表角度編號。距離擾動抑制單元290可根據轉動角度偵測器640偵測的角度(例如thi),自儲存單元660提取對應的先前距離值(例如前一次輸出的距離值Sfk-1,i),並且,根據估計距離值Sdk,i與前一次輸出的距離值Sfk-1,i之間的擾動程度dk,i,由估計距離值Sdk,i與前一次輸出的距離值Sfk-1,i以參數值ri比例混和而成本次輸出的距離值Sfk,i,且將距離值Sfk,i儲存至儲存單元660以供下一次轉到角度thi時使用。 The storage unit 660 may include a plurality of state units 496. Each state unit 496 stores a previous distance value corresponding to an angle (such as an angle th i ) (or an angle detection point) (such as the previous output distance value Sf k-1, i ), where i represents the angle number. The distance disturbance suppression unit 290 can extract the corresponding previous distance value (such as the previous output distance value Sf k-1,i ) from the storage unit 660 according to the angle detected by the rotation angle detector 640 (such as th i ), and , according to the degree of disturbance d k,i between the estimated distance value Sd k,i and the previous output distance value Sf k-1, i , the estimated distance value Sd k,i and the previous output distance value Sf k- 1,i is mixed in proportion to the parameter value r i to form the distance value Sf k,i output this time, and the distance value Sf k,i is stored in the storage unit 660 for use when turning to angle thi next time.

當測距裝置60轉動至某個角度時,測距裝置60(的控制單元270)可根據轉動角度偵測器640偵測的角度(例如thi),自儲存單元660提取對應的發射強度、曝光時間、感測模式或輸出增益,以調整光源發射器210的發射強度、感測器230的曝光時間、感測模式或輸出增益。據此,感測器230可產生具有光斑的成像Smgk,i,成像比對單元250可輸出控制參數Sctk,i,且控制單元270可自儲存單元660提取對應的曝光時間(或發射強度、感測模式、或輸出增益),並增加/減少提取到的曝光時間(或發射強度、感測模式、或輸出增益),以調整感測器230或光源發射器210,且將增加/減少後的曝光時間(或發射強度、感測模式、或輸出增益)儲存至儲存單元660以供下一次轉到角度thi時使用。成像Smgk,i、控制參數Sctk,i可分別用以實現成像Smg、控制參數Sct。 When the distance measuring device 60 rotates to a certain angle, the distance measuring device 60 (the control unit 270 thereof) can extract the corresponding emission intensity from the storage unit 660 according to the angle (for example, th i ) detected by the rotation angle detector 640 . exposure time, sensing mode or output gain to adjust the emission intensity of the light source emitter 210, the exposure time, sensing mode or output gain of the sensor 230. Accordingly, the sensor 230 can generate an image Smg k,i with a light spot, the imaging comparison unit 250 can output the control parameter Sct k,i , and the control unit 270 can extract the corresponding exposure time (or emission intensity) from the storage unit 660 , sensing mode, or output gain), and increase/decrease the extracted exposure time (or emission intensity, sensing mode, or output gain) to adjust the sensor 230 or light source emitter 210, and increase/decrease The final exposure time (or emission intensity, sensing mode, or output gain) is stored in the storage unit 660 for use when turning to angle thi next time. The imaging Smg k,i and the control parameter Sct k,i can be used to realize the imaging Smg and the control parameter Sct respectively.

測距裝置20、50、60、可為二維光學雷達(light detection and ranging, LiDAR)。測距裝置20、50、60、可為定點光學測距裝置、移動/轉動式測距裝置、同步定位與地圖繪製裝置。 The ranging devices 20, 50, and 60 may be two-dimensional optical radar (light detection and ranging, LiDAR). The distance measuring devices 20, 50, 60 can be fixed-point optical distance measuring devices, mobile/rotary distance measuring devices, or synchronous positioning and mapping devices.

在一實施例,成像比對單元250、控制單元270、距離擾動抑制單元290、減法單元491、切換單元492、參數單元493、494、加法單元495、狀態單元496、轉動角度偵測器640、或儲存單元660可利用電路來實現,或者,可利用硬體、軟體、韌體(其為硬體裝置與電腦指令與資料的結合,且電腦指令與資料屬於硬體裝置上的唯讀軟體)、或上述的組合來實現。 In one embodiment, the imaging comparison unit 250, the control unit 270, the distance disturbance suppression unit 290, the subtraction unit 491, the switching unit 492, the parameter units 493, 494, the addition unit 495, the status unit 496, the rotation angle detector 640, Or the storage unit 660 can be implemented using circuits, or can use hardware, software, or firmware (which is a combination of hardware devices and computer instructions and data, and computer instructions and data belong to read-only software on the hardware device) , or a combination of the above.

綜上所述,本發明依據待測的物件與特定物件的成像光斑特徵的比例關係,調整感測曝光時間,以抑制由光源發射器所導致的成像擾動或不是由光源發射器所導致的成像擾動。並且,本發明依據估計距離值的擾動程度,動態調整估計距離值對修正後距離值的參考比例,以抑制當下的測距擾動。據此,本發明可針對不同反射率的待測物件、不同待測距離、或不同環境光強弱,改善測距精確度。 To sum up, the present invention adjusts the sensing exposure time based on the proportional relationship between the object to be measured and the imaging spot characteristics of the specific object to suppress imaging disturbance caused by the light source emitter or imaging not caused by the light source emitter. disturbance. Moreover, the present invention dynamically adjusts the reference ratio of the estimated distance value to the corrected distance value based on the degree of disturbance of the estimated distance value, so as to suppress the current ranging disturbance. Accordingly, the present invention can improve ranging accuracy for objects to be measured with different reflectivities, different distances to be measured, or different ambient light intensities.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the patentable scope of the present invention shall fall within the scope of the present invention.

20:測距裝置 20: Distance measuring device

210:光源發射器 210:Light source emitter

230:感測器 230: Sensor

250:成像比對單元 250: Imaging comparison unit

270:控制單元 270:Control unit

290:距離擾動抑制單元 290: Distance disturbance suppression unit

BJ:物件 BJ:object

Ld:偵測光 Ld: detection light

Lr:反射光 Lr: reflected light

Sct:控制參數 Sct: control parameters

Sd:估計距離值 Sd: estimated distance value

Sf:距離值 Sf: distance value

Smg:成像 Smg:Imaging

Claims (9)

一種測距裝置,包含有:一光源發射器,用以發射一偵測光,該偵測光在一物件反射而形成一反射光;一感測器,用以感測該反射光而產生一成像;以及一校正單元,耦接至該光源發射器及該感測器,用以根據至少一特徵查找表進行校正而根據該成像輸出一距離值,其中,該至少一特徵查找表是根據一特定物件而預先建立,其中該校正單元包含有:一成像比對單元,耦接至該感測器,用以比對該成像的一光斑的一幾何特徵與該至少一特徵查找表的一第一特徵查找表而輸出一控制參數,其中,該控制參數是用以調整該感測器的曝光時間、該感測器的感測模式、該感測器的輸出增益、或該光源發射器的發射強度;以及一控制單元,耦接至該成像比對單元,用以根據該控制參數調整該感測器的曝光時間、該感測器的感測模式、該感測器的輸出增益、或該光源發射器的發射強度。 A distance measuring device includes: a light source emitter, used to emit a detection light, the detection light is reflected by an object to form a reflected light; a sensor, used to sense the reflected light to generate a Imaging; and a correction unit coupled to the light source emitter and the sensor for performing correction according to at least one feature lookup table and outputting a distance value according to the imaging, wherein the at least one feature lookup table is based on a Pre-established for a specific object, wherein the correction unit includes: an imaging comparison unit coupled to the sensor for comparing a geometric feature of a light spot of the image with a first element of the at least one feature lookup table A feature lookup table outputs a control parameter, wherein the control parameter is used to adjust the exposure time of the sensor, the sensing mode of the sensor, the output gain of the sensor, or the light source emitter Emission intensity; and a control unit coupled to the imaging comparison unit for adjusting the exposure time of the sensor, the sensing mode of the sensor, the output gain of the sensor, or The emission intensity of this light source emitter. 如請求項1所述之測距裝置,其中,該幾何特徵是該光斑的寬度或面積,該第一特徵查找表包含有多個光斑質心位置與多個特徵值之間對應的關係,該多個特徵值分別是光斑寬度或光斑面積。 The distance measuring device as claimed in claim 1, wherein the geometric feature is the width or area of the light spot, the first feature lookup table includes corresponding relationships between multiple light spot centroid positions and multiple feature values, the Multiple eigenvalues are spot width or spot area respectively. 如請求項1所述之測距裝置,其中,該成像比對單元用以利用該成像的一光斑的一光斑質心位置來判斷該光斑對應該第一特徵查找表的哪個特徵群組,根據該特徵群組的兩個邊界值利用內插法計算該光斑質心位置對應的一特徵值,利用比例關係而根據該特徵值計算一特徵上限及一特徵下限,並將該光斑的該幾何特徵與該特徵值、該特徵上限、或該特徵下限進行比對而輸出該控制參數。 The distance measuring device according to claim 1, wherein the imaging comparison unit is used to determine which feature group of the first feature lookup table the light spot corresponds to by using a centroid position of a light spot of the image, according to The two boundary values of the feature group use the interpolation method to calculate a feature value corresponding to the centroid position of the light spot, use the proportional relationship to calculate an upper feature limit and a lower feature limit based on the feature value, and add the geometric feature of the light spot The control parameter is compared with the characteristic value, the upper limit of the characteristic, or the lower limit of the characteristic to output the control parameter. 如請求項1所述之測距裝置,其中該成像比對單元,另用以根據該成像估計該物件與該測距裝置之間的一估計距離值,且該校正單元另包含有:一距離擾動抑制單元,耦接至該成像比對單元,用以根據該至少一特徵查找表的一第二特徵查找表將該估計距離值調整至該距離值。 The distance measuring device as claimed in claim 1, wherein the imaging comparison unit is further used to estimate an estimated distance value between the object and the distance measuring device based on the imaging, and the correction unit further includes: a distance The disturbance suppression unit is coupled to the imaging comparison unit and used to adjust the estimated distance value to the distance value according to a second feature lookup table of the at least one feature lookup table. 如請求項4所述之測距裝置,其中該距離擾動抑制單元用以根據一擾動程度及該第二特徵查找表來調整該估計距離值及該測距裝置前一次輸出的一先前距離值,且根據調整後的該估計距離值及該先前距離值而產生該距離值。 The distance measurement device of claim 4, wherein the distance disturbance suppression unit is used to adjust the estimated distance value and a previous distance value output by the distance measurement device according to a disturbance degree and the second feature lookup table, And the distance value is generated according to the adjusted estimated distance value and the previous distance value. 如請求項4所述之測距裝置,其中該距離擾動抑制單元包含有:一第一參數單元,耦接至該成像比對單元,用以將該估計距離值乘以一第一參數值而產生一比例化估計距離值;一第二參數單元,用以將該測距裝置前一次輸出的一先前距離值乘以一第二參數值而產生一比例化先前距離值;一切換單元,耦接至該第一參數單元及該第二參數單元,用以根據一擾動程度及該第二特徵查找表來調整該第一參數單元的該第一參數值及該第二參數單元的該第二參數值,該第一參數值或該第二參數值的範圍介在0至1之間,該第一參數值與該第二參數值的總和等於1,該第二特徵查找表包含有多個距離標準差與多個距離之間對應的關係;以及一加法單元,耦接至該第一參數單元及該第二參數單元,用以加總該比例化估計距離值及該比例化先前距離值而產生該距離值。 The ranging device of claim 4, wherein the range disturbance suppression unit includes: a first parameter unit coupled to the imaging comparison unit for multiplying the estimated distance value by a first parameter value. Generate a scaled estimated distance value; a second parameter unit for multiplying a previous distance value previously output by the distance measuring device by a second parameter value to generate a scaled previous distance value; a switching unit, coupled Connected to the first parameter unit and the second parameter unit, used to adjust the first parameter value of the first parameter unit and the second parameter value of the second parameter unit according to a disturbance degree and the second feature lookup table. Parameter value, the range of the first parameter value or the second parameter value is between 0 and 1, the sum of the first parameter value and the second parameter value is equal to 1, the second feature lookup table includes multiple distances a corresponding relationship between standard deviation and a plurality of distances; and an adder unit, coupled to the first parameter unit and the second parameter unit, for summing the scaled estimated distance value and the scaled previous distance value. Produces this distance value. 如請求項6所述之測距裝置,其中該距離擾動抑制單元另包含有:一減法單元,耦接至該成像比對單元,用以判斷該估計距離值與該先前距離值之間的一差值而產生該擾動程度,其中,該第一參數值根據該擾動 程度決定。 The distance measurement device of claim 6, wherein the distance disturbance suppression unit further includes: a subtraction unit coupled to the imaging comparison unit for determining a difference between the estimated distance value and the previous distance value. The degree of disturbance is generated by the difference, wherein the first parameter value is based on the disturbance Determined by degree. 如請求項6所述之測距裝置,其中,該距離擾動抑制單元根據該估計距離值自該第二特徵查找表判斷出對應的一距離標準差,當該距離擾動抑制單元判斷該擾動程度大於某一倍數的該距離標準差時,該第一參數值等於1,該第二參數值等於0,當該距離擾動抑制單元判斷該擾動程度小於某一倍數的該距離標準差時,該第一參數值小於1,該第二參數值大於0。 The ranging device of claim 6, wherein the distance disturbance suppression unit determines a corresponding distance standard deviation from the second feature lookup table based on the estimated distance value. When the distance disturbance suppression unit determines that the disturbance degree is greater than When the distance standard deviation is a certain multiple, the first parameter value is equal to 1, and the second parameter value is equal to 0. When the distance disturbance suppression unit determines that the degree of disturbance is less than a certain multiple of the distance standard deviation, the first parameter value is equal to 0. The parameter value is less than 1, and the second parameter value is greater than 0. 如請求項1所述之測距裝置,其中該測距裝置對應多個角度分別輸出多個距離值,且該測距裝置對應該多個角度分別儲存多個先前距離值、多個曝光時間、多個感測模式、多個輸出增益、或多個發射強度。 The distance measuring device as described in claim 1, wherein the distance measuring device outputs multiple distance values corresponding to multiple angles, and the distance measuring device stores multiple previous distance values, multiple exposure times, respectively, corresponding to the multiple angles. Multiple sensing modes, multiple output gains, or multiple emission intensities.
TW111136701A 2022-09-28 2022-09-28 Ranging device and ranging method thereof TWI812493B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111136701A TWI812493B (en) 2022-09-28 2022-09-28 Ranging device and ranging method thereof
CN202211349913.5A CN117826127A (en) 2022-09-28 2022-10-31 Distance measuring device and distance measuring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111136701A TWI812493B (en) 2022-09-28 2022-09-28 Ranging device and ranging method thereof

Publications (2)

Publication Number Publication Date
TWI812493B true TWI812493B (en) 2023-08-11
TW202413990A TW202413990A (en) 2024-04-01

Family

ID=88586003

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111136701A TWI812493B (en) 2022-09-28 2022-09-28 Ranging device and ranging method thereof

Country Status (2)

Country Link
CN (1) CN117826127A (en)
TW (1) TWI812493B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1037069A2 (en) * 1999-03-17 2000-09-20 Matsushita Electric Industrial Co., Ltd. Rangefinder
CN109521434A (en) * 2018-12-27 2019-03-26 合肥泰禾光电科技股份有限公司 A kind of laser measurement method and control processor
US20190113606A1 (en) * 2017-10-15 2019-04-18 Analog Devices, Inc. Time-of-flight depth image processing systems and methods
CN112114323A (en) * 2019-06-21 2020-12-22 广州印芯半导体技术有限公司 Time-of-flight distance measuring device and time-of-flight distance measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1037069A2 (en) * 1999-03-17 2000-09-20 Matsushita Electric Industrial Co., Ltd. Rangefinder
US20190113606A1 (en) * 2017-10-15 2019-04-18 Analog Devices, Inc. Time-of-flight depth image processing systems and methods
CN109521434A (en) * 2018-12-27 2019-03-26 合肥泰禾光电科技股份有限公司 A kind of laser measurement method and control processor
CN112114323A (en) * 2019-06-21 2020-12-22 广州印芯半导体技术有限公司 Time-of-flight distance measuring device and time-of-flight distance measuring method

Also Published As

Publication number Publication date
TW202413990A (en) 2024-04-01
CN117826127A (en) 2024-04-05

Similar Documents

Publication Publication Date Title
CN109729721B (en) Optical distance measuring method and optical distance measuring device
CA3171089A1 (en) Method and apparatus for calibrating parameter of laser radar
JP2013534639A (en) Method and system for multiphase phase dynamic calibration of three-dimensional (3D) sensors in a time-of-flight system
WO2018163530A1 (en) Three-dimensional shape measurement device, three-dimensional shape measurement method, and program
TWI499941B (en) Optical mouse apparatus and method used in optical mouse apparatus
JP2014089081A (en) Measurement apparatus and control method thereof, and program
WO2024031809A1 (en) Calibration method, calibration system, depth camera and readable storage medium
TWI835760B (en) Distance time-of-flight modules
JP7321956B2 (en) Method of correcting measurement value of rangefinder
TWI812493B (en) Ranging device and ranging method thereof
JP7388064B2 (en) Distance measuring device and method
TWI835520B (en) Measurement device and measurement method
US10976418B2 (en) Method for identifying noise data of laser ranging device
JP2020041822A (en) Three-dimensional measurement system, three-dimensional measurement camera, three-dimensional measurement method and program
CN110161484B (en) Distance compensation lookup table establishing method and device and distance compensation method and device
US9274614B2 (en) Optical mouse apparatus based on image variation and related method thereof
US20210231783A1 (en) Measurement-distance correction method, distance measuring device, and distance measuring system
TW202022403A (en) Method and device for detecting spot position
JP2023068814A (en) Ranging device and ranging program
US11971480B2 (en) Optical sensing system
US20240159902A1 (en) Distance measurement device, distance correction method, and non-transitory computer-readable storage medium
US20240168160A1 (en) Angle sensing device and angle sensing system
JP2007310059A (en) Projector and focus adjustment method
JP2022166693A (en) Optical sensor, electronic apparatus, distance calculation method, and program recording medium
JP2019045224A (en) Detection device