TWI812493B - Ranging device and ranging method thereof - Google Patents
Ranging device and ranging method thereof Download PDFInfo
- Publication number
- TWI812493B TWI812493B TW111136701A TW111136701A TWI812493B TW I812493 B TWI812493 B TW I812493B TW 111136701 A TW111136701 A TW 111136701A TW 111136701 A TW111136701 A TW 111136701A TW I812493 B TWI812493 B TW I812493B
- Authority
- TW
- Taiwan
- Prior art keywords
- distance
- value
- unit
- parameter
- feature
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 9
- 238000003384 imaging method Methods 0.000 claims abstract description 75
- 238000001514 detection method Methods 0.000 claims abstract description 20
- 238000012937 correction Methods 0.000 claims abstract description 10
- 230000001629 suppression Effects 0.000 claims description 29
- 238000005259 measurement Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 11
- 238000002310 reflectometry Methods 0.000 description 11
- 102100024452 DNA-directed RNA polymerase III subunit RPC1 Human genes 0.000 description 3
- 101000689002 Homo sapiens DNA-directed RNA polymerase III subunit RPC1 Proteins 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Radar Systems Or Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
本發明係指一種測距裝置及其測距方法,尤指一種可提高測距精確度的測距裝置及其測距方法。 The present invention refers to a distance measuring device and a distance measuring method thereof, in particular to a distance measuring device and a distance measuring method that can improve the accuracy of distance measurement.
測距裝置向待測物件發射光,接收其反射光,並利用反射光的成像結果來推算待測物件與測距裝置之間的距離。 The distance measuring device emits light to the object to be measured, receives the reflected light, and uses the imaging result of the reflected light to calculate the distance between the object to be measured and the distance measuring device.
第1A圖至第1D圖是成像的局部示意圖,其中,橫軸代表測距裝置的感光陣列中編號第120號至第170號的感光元件,縱軸代表感光元件對應到的亮度值。曲線C100代表某一種反射率的物件的成像,曲線C120代表這種物件受到環境光干擾的成像,曲線C140代表反射率較高的物件的成像,曲線C160代表反射率較高的物件受到環境光干擾的成像。成像中亮度值較高的部分(例如曲線C100對應在編號第140號至第150號的感光元件的區域)可構成成像的光斑。由第1A圖至第1D圖可知,物件反射率較高(即光源發射器的發射光投射至反射點附近後形成的反射光可能干擾成像點)或環境光會使成像點(例如編號第144號的感光元件的位置)附近過度感光,導致成像擾動,從而影響測距精確度。 Figures 1A to 1D are partial schematic diagrams of imaging, in which the horizontal axis represents the photosensitive elements numbered 120 to 170 in the photosensitive array of the distance measuring device, and the vertical axis represents the brightness value corresponding to the photosensitive element. Curve C100 represents the imaging of an object with a certain reflectivity, curve C120 represents the imaging of such an object that is interfered by ambient light, curve C140 represents the imaging of an object with a higher reflectivity, and curve C160 represents the imaging of an object with a higher reflectivity that is interfered by ambient light. imaging. The part with a higher brightness value in the image (for example, the curve C100 corresponding to the area of the photosensitive element numbered 140 to 150) can constitute the light spot of the image. It can be seen from Figures 1A to 1D that the reflectivity of the object is high (that is, the reflected light formed after the light source emitter is projected near the reflection point may interfere with the imaging point) or the ambient light may cause the imaging point (such as No. 144 The position of the photosensitive element of the sensor is overly sensitive, causing imaging disturbance and thus affecting the accuracy of ranging.
此外,即使測距裝置與待測物件之間的距離不變,光或電雜訊的干擾可能使測距裝置量測的距離值飄動,導致距離擾動,從而影響測距精確度。 In addition, even if the distance between the ranging device and the object to be measured remains unchanged, interference from optical or electrical noise may cause the distance value measured by the ranging device to fluctuate, causing distance disturbance and thus affecting the accuracy of ranging.
據此,現有測距裝置有改進的必要。 Accordingly, there is a need to improve existing distance measuring devices.
因此,本發明主要提供一種測距裝置及其測距方法,以提高測距精確度。 Therefore, the present invention mainly provides a ranging device and a ranging method to improve the ranging accuracy.
本發明揭露一種測距裝置,包含有一光源發射器,用以發射一偵測光,該偵測光在一物件反射而形成一反射光;一感測器,用以感測該反射光而產生一成像;以及一校正單元,耦接至該光源發射器及該感測器,用以根據至少一特徵查找表進行校正而根據該成像輸出一距離值,其中,該至少一特徵查找表是根據一特定物件而預先建立。 The invention discloses a distance measuring device, which includes a light source emitter for emitting a detection light, the detection light is reflected by an object to form a reflected light; a sensor for sensing the reflected light to generate an imaging; and a correction unit, coupled to the light source emitter and the sensor, for performing correction according to at least one feature lookup table and outputting a distance value according to the imaging, wherein the at least one feature lookup table is based on Pre-created for a specific object.
本發明揭露一種測距方法,包含有發射一偵測光,該偵測光在一物件反射而形成一反射光;感測該反射光而產生一成像;以及根據至少一特徵查找表進行校正而根據該成像輸出一距離值,其中,該至少一特徵查找表是根據一特定物件而預先建立。 The invention discloses a distance measurement method, which includes emitting a detection light, the detection light is reflected by an object to form a reflected light; sensing the reflected light to generate an image; and performing correction according to at least one feature lookup table. A distance value is output according to the imaging, wherein the at least one feature lookup table is pre-established according to a specific object.
C100~C160:曲線 C100~C160: Curve
20,50,60:測距裝置 20,50,60:Ranging device
210:光源發射器 210:Light source emitter
230:感測器 230: Sensor
250:成像比對單元 250: Imaging comparison unit
270:控制單元 270:Control unit
290,490:距離擾動抑制單元 290,490: Distance disturbance suppression unit
491:減法單元 491:Subtraction unit
492:切換單元 492:Switch unit
493,494:參數單元 493,494: Parameter unit
495:加法單元 495: Addition unit
496:狀態單元 496:State unit
620:旋轉機構 620: Rotating mechanism
640:轉動角度偵測器 640:Rotation angle detector
660:儲存單元 660:Storage unit
BJ,BJ1~BJj:物件 BJ,BJ1~BJj: objects
D1,D4,D5:距離 D1, D4, D5: distance
dk,i:擾動程度 d k,i : degree of disturbance
G1~G8:特徵群組 G1~G8: Feature group
L300~L330:折線 L300~L330: polyline
Ld:偵測光 Ld: detection light
Lr:反射光 Lr: reflected light
ri、1-ri:參數值 r i , 1-r i : parameter value
Sct,Sctk,i:控制參數 Sct,Sct k,i : control parameters
Sd,Sdk,i:估計距離值 Sd,Sd k,i : estimated distance value
Sf,Sfk,i:距離值 Sf,Sf k,i : distance value
Sfk-1,i:前一次輸出的距離值 Sf k-1,i : The distance value of the previous output
Smg,Smgk,i:成像 Smg,Smg k,i : imaging
thi:角度 th i : angle
W1,W4,W5:光斑寬度 W1, W4, W5: spot width
第1A圖至第1D圖是成像的局部示意圖。 Figures 1A to 1D are partial schematic diagrams of imaging.
第2圖是本發明實施例一測距裝置的示意圖。 Figure 2 is a schematic diagram of a distance measuring device according to an embodiment of the present invention.
第3圖是本發明實施例的光斑寬度與距離之間的關係的示意圖。 Figure 3 is a schematic diagram of the relationship between spot width and distance according to the embodiment of the present invention.
第4圖是本發明實施例一距離擾動抑制單元的示意圖。 Figure 4 is a schematic diagram of a distance disturbance suppression unit according to an embodiment of the present invention.
第5圖至第6圖分別是本發明實施例測距裝置的示意圖。 Figures 5 to 6 are respectively schematic diagrams of the distance measuring device according to the embodiment of the present invention.
第2圖是本發明實施例一測距裝置20的示意圖。測距裝置20可包括一光源發射器210、一感測器230及一校正單元。校正單元可包括一成像比對單元250、一控制單元270及一距離擾動抑制單元290。
Figure 2 is a schematic diagram of a distance measuring
光源發射器210可發射一偵測光Ld,偵測光Ld可在一物件BJ的表面(的某個點)反射而形成一反射光Lr。
The
感測器230可為多個感光元件構成的感光陣列,用以感測反射光Lr而產生一成像Smg。也就是說,光源發射器210可向物件BJ投射光斑,感測器230
可擷取反射光Lr的強度分佈,從而輸出一成像Smg。成像Smg可為一維或二維的影像。
The
成像比對單元250可接收成像Smg,並可根據強度分佈計算成像Smg的光斑的幾何特徵(例如寬度、面積、或質心位置),且可比對成像Smg的光斑的幾何特徵與一特徵查找表(可稱作第一特徵查找表)。
The
第一特徵查找表可利用一特定物件(例如一白板)進行量測而建立。第一特徵查找表可包括特定物件與測距裝置20之間的距離、偵測光Ld投射至特定物件後所反射出的光斑寬度、偵測光Ld投射至特定物件後所反射出的光斑面積、偵測光Ld投射至特定物件後所反射出的光斑質心位置(或幾何中心)、或特徵群組等資訊。
The first feature lookup table can be created by measuring a specific object (such as a whiteboard). The first feature lookup table may include the distance between the specific object and the
例如,表1列出第一特徵查找表的一實施例。成像比對單元250可利用成像Smg的光斑的光斑質心位置(例如位在某兩個編號的感光元件之間)來查詢其對應第一特徵查找表的哪個特徵群組。例如,當成像Smg的光斑的質心位置Mq介在光斑質心位置M1(即特徵群組G1的一邊界)與光斑質心位置M4(即特徵群組G1的另一邊界)之間(例如M1<Mq<M4),因此成像Smg的光斑對應特徵群組G1。質心位置Mq可為非整數或整數。
For example, Table 1 lists an embodiment of the first feature lookup table. The
接著,成像比對單元250可根據特徵群組的邊界值,利用內插法計算光斑質心位置對應的對應特徵值,再利用比例關係計算特徵上限及特徵下限。例如,特徵群組G1的邊界值是光斑寬度W1、W4,成像比對單元250可利用內插法計算光斑質心位置Mq對應的特徵值Wref(例如Wref=W1+(Mq-M1)/(M4-M1)×(W4-W1)),再利用比例關係計算特徵上限UBw(例如UBw=Wref+Δw)及特徵下限LBw(例如LBw=Wref-Δw),其中Δw例如滿足Δw=ct×Wref,ct可小於5%(例如ct=1%或ct=2%),ct可為距離的函數,或者Δw可為固定倍率值的感光元件的尺寸/寬度(例如Δw=y個感光元件的寬度,y小於3)。例如,特徵群組G1的邊界值是光斑面積A1、A4,成像比對單元250可利用內插法計算對應特徵值Aref(例如Aref=A1+(Mq-M1)/(M4-M1)×(A4-A1)),再利用比例關係計算特徵上限UBa(例如UBa=Aref+ΔA)及特徵下限LBa(例如LBa=Aref-ΔA),其中ΔA例如滿足ΔA=CT×Aref,CT可小於5%(例如CT=1%或CT=2%),CT可為距離的函數。
Then, the
接著,成像比對單元250可將成像Smg的光斑的幾何特徵與對應特徵值、特徵上限、或特徵下限進行比對,而輸出一控制參數Sct。例如,當成像Smg的光斑的幾何特徵(例如寬度或面積)大於特徵上限(例如UBw或UBa)(或特徵值Wref或Aref),則輸出控制參數Sct以降低感測器230下一次的曝光時間、調
整感測器230下一次的感測模式至較低敏感度、或降低光源發射器210下一次的發射強度。當成像Smg的光斑的幾何特徵(例如寬度或面積)小於特徵下限(例如LBw或LBa)(或特徵值Wref或Aref),則輸出控制參數Sct以增加感測器230下一次的曝光時間、調整感測器230下一次的感測模式至較高敏感度、或增加光源發射器210下一次的發射強度。
Then, the
在一實施例,控制單元270可根據控制參數Sct調整感測器230下一次的曝光時間(例如增加/減少固定的一個時間長度、或增加/減少與幾何特徵相較特徵值的差值相關的一個時間長度)。在另一實施例,控制單元270可根據控制參數Sct調整感測器230下一次的感測模式或輸出增益,或調整光源發射器210下一次的發射強度。
In one embodiment, the
在另一實施例,成像比對單元250可利用成像Smg的光斑的光斑質心位置來判斷其對應該第一特徵查找表的哪兩個邊界值(例如光斑寬度W1、W2),根據這兩個邊界值利用內插法計算光斑質心位置Mq對應的特徵值(例如Wref=W1+(Mq-M1)/(M2-M1)×(W2-W1)或Aref=A1+(Mq-M1)/(M2-M1)×(A2-A1)),並將該光斑的幾何特徵與特徵值進行比對而輸出控制參數Sct。當成像Smg的光斑的幾何特徵(例如寬度或面積)大於特徵值(例如Wref或Aref),則輸出控制參數Sct以降低感測器230下一次的曝光時間;當成像Smg的光斑的幾何特徵小於特徵值,則輸出控制參數Sct以增加感測器230下一次的曝光時間。
In another embodiment, the
由上述可知,成像比對單元250可依據物件BJ的成像光斑特徵與特定物件的成像光斑特徵的比例關係,輸出控制參數Sct,從而使得感測器230的曝光時間、感測模式或輸出增益、或光源發射器210的發射強度受調整,以抑制成像擾動。
As can be seen from the above, the
特徵群組的分群方式可利用寬度(或面積)對距離(或質心位置)的一階導數進行。第3圖是本發明實施例的光斑寬度與距離之間的關係的示意 圖,其中,折線L300代表特定物件對應的光斑寬度與距離之間的關係(其可用作第一特徵查找表),折線L310代表高反射率物件對應的光斑寬度與距離之間的關係,折線L330代表低反射率物件對應的光斑寬度與距離之間的關係。以折線L300為例,可利用折線L300的轉折點(例如光斑寬度對距離的一階導數不連續的位置)作為特徵群組的邊界,或利用折線L300的轉折點附近的點作為特徵群組的邊界。也就是說,同一特徵群組的特徵關係是可預測的(例如線性)。利用區分特徵群組可減少搜尋成像Smg的光斑對應的特徵值的時間及次數(例如成像Smg的光斑的質心位置Mq不論介在光斑質心位置M1與光斑質心位置M4之間(例如M1<Mq<M4)或介在光斑質心位置M1與光斑質心位置M2之間(例如M1<Mq<M2),都可利用作為特徵群組G1邊界值的光斑寬度W1、W4來計算光斑質心位置Mq對應的特徵值、特徵上限及特徵下限)。 Feature groups can be grouped by using the first derivative of width (or area) with respect to distance (or centroid position). Figure 3 is a schematic diagram of the relationship between spot width and distance according to the embodiment of the present invention. Figure, where polyline L300 represents the relationship between the spot width and distance corresponding to a specific object (which can be used as the first feature lookup table), polyline L310 represents the relationship between the spot width and distance corresponding to a high reflectivity object, and the polyline L310 represents the relationship between the spot width and distance corresponding to a high reflectivity object. L330 represents the relationship between the spot width and distance corresponding to a low-reflectivity object. Taking polyline L300 as an example, the turning point of polyline L300 (for example, the position where the first derivative of the spot width versus distance is discontinuous) can be used as the boundary of the feature group, or the points near the turning point of polyline L300 can be used as the boundary of the feature group. That is, feature relationships within the same feature group are predictable (e.g. linear). The use of distinguishing feature groups can reduce the time and number of searches for feature values corresponding to the light spot imaging Smg (for example, the center of mass position Mq of the light spot imaging Smg is between the spot center of mass position M1 and the spot center of mass position M4 (for example, M1 < Mq<M4) or between the spot centroid position M1 and the spot centroid position M2 (for example, M1<Mq<M2), the spot widths W1 and W4, which are the boundary values of the feature group G1, can be used to calculate the spot centroid position. Mq corresponding eigenvalue, upper characteristic limit and lower characteristic limit).
如第3圖所示,當高反射率物件與測距裝置20之間相距某一距離(例如1000mm)時,降低感測器230的曝光時間可使成像Smg的光斑的寬度縮減(例如從第1C圖的曲線C140調整成第1A圖的曲線C100)(例如循著第3圖的箭頭自折線L310的點下降至折線L300的點)。當低反射率物件與測距裝置20之間相距某一距離(例如1000mm)時,增加感測器230的曝光時間可使成像Smg的光斑的寬度增加(例如循著第3圖的箭頭自折線L330的點上升至折線L300的點)。據此,測距裝置20可抑制反射率不同時導致感測器230的成像Smg的成像擾動。當環境中存在強光干擾時,物件BJ的成像Smg的光斑的寬度或面積可能因強光干擾而變寬,測距裝置20可監測當下物件BJ與特定物件的光斑的寬度或面積比例,並據以控制感測器230的曝光時間,使成像Smg的光斑的寬度縮減(例如從第1B圖的曲線C120調整成第1A圖的曲線C100),以抑制成像擾動。也就是說,藉由曝光時間與成像Smg的光斑的寬度或面積成正比,可利用曝光時間調整成像Smg的光斑的寬度或面積。當物件BJ與特定物件的光斑的寬度或面積趨近時(例如從第
1D圖的曲線C160調整成第1A圖的曲線C100),測距裝置20能更正確地判斷成像Smg的光斑的質心位置,而可提升對應的測距準確度。
As shown in FIG. 3 , when the high reflectivity object is at a certain distance (for example, 1000 mm) from the
此外,成像比對單元250可根據成像Smg的光斑的質心,估計物件BJ與測距裝置20之間的一估計距離值Sd(可稱作原始距離值)。具體地,感測器230可在光源發射器210開啟時,感測一第一影像;感測器230可在光源發射器210關閉時,感測一第二影像。藉由比對第一影像和第二影像,可辨識由物件BJ表面反射至感測器230的反射光的強度分布。根據反射光在感測器230的成像Smg的光斑的質心的位置,可利用三角測量原理計算出物件BJ與測距裝置20之間的距離(即估計距離值Sd)。
In addition, the
距離擾動抑制單元290可將估計距離值Sd調整至一距離值Sf(可稱作修正距離值)來抑制當下的測距擾動,且距離擾動抑制單元290可輸出距離值Sf以作為測距裝置20的測距輸出。據此,可確保測距裝置20每個時間當下的測距輸出是穩定的,以避免浮動(fluctuate)。
The distance
第4圖是本發明實施例一距離擾動抑制單元490的示意圖。距離擾動抑制單元490可接收估計距離值Sdk,i並對應輸出距離值Sfk,i。距離擾動抑制單元490、估計距離值Sdk,i、距離值Sfk,i可分別用以實現距離擾動抑制單元290、估計距離值Sd、距離值Sf。距離擾動抑制單元490可包括一減法單元491、一切換單元492、參數單元493、494、一加法單元495及一狀態單元496。
Figure 4 is a schematic diagram of a distance
減法單元491可判斷擾動程度dk,i,擾動程度dk,i可滿足dk,i=|Sdk,i-Sfk-1,i|,其中Sfk-1,i是前一次輸出的距離值(可稱作先前距離值),k代表時間編號。也就是說,減法單元491可判斷估計距離值Sdk,i與前一次輸出的距離值Sfk-1,i之間的差值,從而判定距離值飄動的程度。
The
切換單元492可根據擾動程度dk,i來適應性調整參數單元493、494的參數值ri、1-ri。參數值ri的範圍可介在0至1之間。若擾動程度dk,i越小,切換單元492
可減低參數值ri而將其調整至較小的值。切換單元492可比對擾動程度dk,i與一特徵查找表(可稱作第二特徵查找表)來決定如何調整參數單元493、494的參數值ri、1-ri。
The
第二特徵查找表可利用前述的特定物件進行量測而建立。也就是說,特定物件不限於白板,只要第一特徵查找表及第二特徵查找表都利用同一物件來製作即可。第二特徵查找表可包括特定物件與測距裝置20之間的距離(平均值)及距離的標準差等等資訊。
The second feature lookup table can be established by measuring the aforementioned specific object. That is to say, the specific object is not limited to the whiteboard, as long as both the first feature lookup table and the second feature lookup table are made using the same object. The second feature lookup table may include information such as the distance (average) and the standard deviation of the distance between the specific object and the
例如,表2列出的第二特徵查找表的一實施例。距離(平均值)Dx(即D1至Dn中的一者)可為當特定物件與測距裝置20之間相隔某一距離下,測距裝置20所測量特定物件與測距裝置20之間的距離(平均值)。距離標準差STDx(即STD1至STDn中的一者)可為當特定物件與測距裝置20之間相隔此距離下,測距裝置20所測量特定物件與測距裝置20之間的距離的標準差。
For example, Table 2 lists an embodiment of the second feature lookup table. The distance (average value) Dx (ie, one of D1 to Dn) can be the distance between the specific object and the
切換單元492可根據STDx=argmin(Sdk,i-Dx)找到估計距離值Sdk,i對應
的距離標準差STDx。也就是說,切換單元492可判斷估計距離值Sdk,i最接近第二特徵查找表中的哪一個距離(平均值)Dx,再根據找到的距離(平均值)Dx查出對應的距離標準差STDx。例如,當切換單元492判斷估計距離值Sdk,i接近距離(平均值)D3時,切換單元492判斷擾動程度dk,i對應距離標準差STD3,且切換單元492可根據距離標準差STD3判斷參數單元493、494的參數值ri、1-ri。
The
例如,切換單元492可比較物件BJ的擾動程度dk,i及查詢第二特徵查找表得到的距離標準差STDx來判斷參數單元493、494的參數值ri、1-ri。例如,當擾動程度dk,i小於等於距離標準差STDx(即dk,i STDx)時,參數值ri可接近0,例如可等於0.125,而進行距離擾動抑制。但在易受初始的估計距離值Sd0,i擾動的情境下(可稱作欲弱化抑制的擾動區間),當擾動程度d0,i小於等於距離標準差STDx(即d0,i STDx)時,參數值ri可接近1,例如可等於0.7,以避免不佳的初始的估計距離值Sd0,i影響距離擾動抑制功能,據此,能減低初始的估計距離值Sd0,i對後續產生的距離值Sfk,i的影響。換言之,在欲強化抑制的擾動區間,參數值ri越小;在欲弱化抑制的擾動區間,參數值ri越大。當擾動程度dk,i大於距離標準差STDx且小於等於2倍的距離標準差STDx(即STDx<dk,i 2×STDx)時,參數值ri相對接近0,例如可等於0.25,而進行距離擾動抑制。當擾動程度dk,i大於2倍的距離標準差STDx且小於等於3倍的距離標準差STDx(即2×STDx<dk,i 3×STDx)時,可視作物件BJ處在相對移動與最大擾動的過渡,參數值ri相對接近1,例如可等於0.7,而進行輕微地距離擾動抑制。當擾動程度dk,i大於某一倍數(例如3倍)的距離標準差STDx(即dk,i>3×STDx)時,物件BJ很可能相對測距裝置20正在移動,參數值ri可等於1,而不進行距離擾動抑制。
For example, the
參數單元493、494可分別對估計距離值Sdk,i、前一次輸出的距離值Sfk-1,i進行對應參數值ri、1-ri的乘法計算,而輸出Sdk,i×ri及Sfk-1,i×(1-ri)。參數單元493、494的參數值ri、1-ri的和是1。
The
加法單元495可將接收到的Sdk,i×ri及Sfk-1,i×(1-ri)加總,並將Sdk,i×ri+Sfk-1,i×(1-ri)輸出成距離值Sfk,i。也就是說,本次輸出的距離值Sfk,i是根據適應性擾動抑制切換準則(Adaptive Switch Rule)由估計距離值Sdk,i與前一次輸出的距離值Sfk-1,i以參數值ri比例混和而成。據此,即使光或電雜訊的干擾使測距裝置20量測的估計距離值Sdk,i飄動而導致距離擾動(但測距裝置20與物件BJ之間的距離可能沒有改變),測距裝置20輸出的距離值Sfk,i可以是相對穩定的,不會隨著估計距離值Sdk,i做大幅度的變化。當物件BJ與測距裝置20之間發生相對移動時,距離值Sfk,i可如實反映物件BJ與測距裝置20之間距離的變化。
The adding
狀態單元496可用以保存前一次輸出的距離值Sfk-1,i(或本次輸出的距離值Sfk,i),並在本次將前一次輸出的距離值Sfk-1,i(或在下一次將距離值Sfk,i)傳遞至減法單元491、參數單元494。也就是說,狀態單元496可延遲進行輸出。狀態單元496可利用儲存電路或寄存器來實現。
The
第5圖是本發明實施例一測距裝置50的示意圖。測距裝置50可用以實現測距裝置20。測距裝置50能移動(例如第5圖的(a)與第5圖的(b)之間的移動),移動時可偵測周圍的物件(例如BJ1~BJj)並量測距離。測距裝置50可包括一旋轉機構,使測距裝置50可轉動(例如第5圖的(b)與第5圖的(c)之間的轉動),轉動時可偵測周圍的物件並量測距離。測距裝置50的轉動角度範圍可介在0至360度之間。
Figure 5 is a schematic diagram of a
第6圖是本發明實施例一測距裝置60的示意圖。測距裝置60可用以實現測距裝置50。相較測距裝置20,測距裝置60可另包括一旋轉機構620、一轉動角度偵測器640及一儲存單元660。測距裝置60可透過分時多工方式,以測距裝置60為中心,穩定地偵測周圍的物件並量測距離。
Figure 6 is a schematic diagram of a
轉動角度偵測器640可用以偵測測距裝置60轉動的角度。
The
儲存單元660可用以針對不同角度獨立地儲存對應的資訊(例如某個
角度對應的先前距離值、光源發射器210的發射強度、感測器230的曝光時間、感測模式或輸出增益)。在另一實施例,測距裝置60的轉動角度範圍(例如360度)可分成多個角度偵測點(例如將360度分成0度、120度及240度),旋轉機構620可用以使得測距裝置60依序轉至每個角度偵測點,儲存單元660可用以針對每個角度偵測點獨立地儲存對應的資訊。
The
儲存單元660可包括多個狀態單元496,每個狀態單元496儲存一個角度(例如角度thi)(或角度偵測點)對應的先前距離值(例如前一次輸出的距離值Sfk-1,i),其中i代表角度編號。距離擾動抑制單元290可根據轉動角度偵測器640偵測的角度(例如thi),自儲存單元660提取對應的先前距離值(例如前一次輸出的距離值Sfk-1,i),並且,根據估計距離值Sdk,i與前一次輸出的距離值Sfk-1,i之間的擾動程度dk,i,由估計距離值Sdk,i與前一次輸出的距離值Sfk-1,i以參數值ri比例混和而成本次輸出的距離值Sfk,i,且將距離值Sfk,i儲存至儲存單元660以供下一次轉到角度thi時使用。
The
當測距裝置60轉動至某個角度時,測距裝置60(的控制單元270)可根據轉動角度偵測器640偵測的角度(例如thi),自儲存單元660提取對應的發射強度、曝光時間、感測模式或輸出增益,以調整光源發射器210的發射強度、感測器230的曝光時間、感測模式或輸出增益。據此,感測器230可產生具有光斑的成像Smgk,i,成像比對單元250可輸出控制參數Sctk,i,且控制單元270可自儲存單元660提取對應的曝光時間(或發射強度、感測模式、或輸出增益),並增加/減少提取到的曝光時間(或發射強度、感測模式、或輸出增益),以調整感測器230或光源發射器210,且將增加/減少後的曝光時間(或發射強度、感測模式、或輸出增益)儲存至儲存單元660以供下一次轉到角度thi時使用。成像Smgk,i、控制參數Sctk,i可分別用以實現成像Smg、控制參數Sct。
When the
測距裝置20、50、60、可為二維光學雷達(light detection and ranging,
LiDAR)。測距裝置20、50、60、可為定點光學測距裝置、移動/轉動式測距裝置、同步定位與地圖繪製裝置。
The ranging
在一實施例,成像比對單元250、控制單元270、距離擾動抑制單元290、減法單元491、切換單元492、參數單元493、494、加法單元495、狀態單元496、轉動角度偵測器640、或儲存單元660可利用電路來實現,或者,可利用硬體、軟體、韌體(其為硬體裝置與電腦指令與資料的結合,且電腦指令與資料屬於硬體裝置上的唯讀軟體)、或上述的組合來實現。
In one embodiment, the
綜上所述,本發明依據待測的物件與特定物件的成像光斑特徵的比例關係,調整感測曝光時間,以抑制由光源發射器所導致的成像擾動或不是由光源發射器所導致的成像擾動。並且,本發明依據估計距離值的擾動程度,動態調整估計距離值對修正後距離值的參考比例,以抑制當下的測距擾動。據此,本發明可針對不同反射率的待測物件、不同待測距離、或不同環境光強弱,改善測距精確度。 To sum up, the present invention adjusts the sensing exposure time based on the proportional relationship between the object to be measured and the imaging spot characteristics of the specific object to suppress imaging disturbance caused by the light source emitter or imaging not caused by the light source emitter. disturbance. Moreover, the present invention dynamically adjusts the reference ratio of the estimated distance value to the corrected distance value based on the degree of disturbance of the estimated distance value, so as to suppress the current ranging disturbance. Accordingly, the present invention can improve ranging accuracy for objects to be measured with different reflectivities, different distances to be measured, or different ambient light intensities.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the patentable scope of the present invention shall fall within the scope of the present invention.
20:測距裝置 20: Distance measuring device
210:光源發射器 210:Light source emitter
230:感測器 230: Sensor
250:成像比對單元 250: Imaging comparison unit
270:控制單元 270:Control unit
290:距離擾動抑制單元 290: Distance disturbance suppression unit
BJ:物件 BJ:object
Ld:偵測光 Ld: detection light
Lr:反射光 Lr: reflected light
Sct:控制參數 Sct: control parameters
Sd:估計距離值 Sd: estimated distance value
Sf:距離值 Sf: distance value
Smg:成像 Smg:Imaging
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111136701A TWI812493B (en) | 2022-09-28 | 2022-09-28 | Ranging device and ranging method thereof |
CN202211349913.5A CN117826127A (en) | 2022-09-28 | 2022-10-31 | Distance measuring device and distance measuring method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111136701A TWI812493B (en) | 2022-09-28 | 2022-09-28 | Ranging device and ranging method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI812493B true TWI812493B (en) | 2023-08-11 |
TW202413990A TW202413990A (en) | 2024-04-01 |
Family
ID=88586003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111136701A TWI812493B (en) | 2022-09-28 | 2022-09-28 | Ranging device and ranging method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117826127A (en) |
TW (1) | TWI812493B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1037069A2 (en) * | 1999-03-17 | 2000-09-20 | Matsushita Electric Industrial Co., Ltd. | Rangefinder |
CN109521434A (en) * | 2018-12-27 | 2019-03-26 | 合肥泰禾光电科技股份有限公司 | A kind of laser measurement method and control processor |
US20190113606A1 (en) * | 2017-10-15 | 2019-04-18 | Analog Devices, Inc. | Time-of-flight depth image processing systems and methods |
CN112114323A (en) * | 2019-06-21 | 2020-12-22 | 广州印芯半导体技术有限公司 | Time-of-flight distance measuring device and time-of-flight distance measuring method |
-
2022
- 2022-09-28 TW TW111136701A patent/TWI812493B/en active
- 2022-10-31 CN CN202211349913.5A patent/CN117826127A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1037069A2 (en) * | 1999-03-17 | 2000-09-20 | Matsushita Electric Industrial Co., Ltd. | Rangefinder |
US20190113606A1 (en) * | 2017-10-15 | 2019-04-18 | Analog Devices, Inc. | Time-of-flight depth image processing systems and methods |
CN109521434A (en) * | 2018-12-27 | 2019-03-26 | 合肥泰禾光电科技股份有限公司 | A kind of laser measurement method and control processor |
CN112114323A (en) * | 2019-06-21 | 2020-12-22 | 广州印芯半导体技术有限公司 | Time-of-flight distance measuring device and time-of-flight distance measuring method |
Also Published As
Publication number | Publication date |
---|---|
TW202413990A (en) | 2024-04-01 |
CN117826127A (en) | 2024-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109729721B (en) | Optical distance measuring method and optical distance measuring device | |
CA3171089A1 (en) | Method and apparatus for calibrating parameter of laser radar | |
JP2013534639A (en) | Method and system for multiphase phase dynamic calibration of three-dimensional (3D) sensors in a time-of-flight system | |
WO2018163530A1 (en) | Three-dimensional shape measurement device, three-dimensional shape measurement method, and program | |
TWI499941B (en) | Optical mouse apparatus and method used in optical mouse apparatus | |
JP2014089081A (en) | Measurement apparatus and control method thereof, and program | |
WO2024031809A1 (en) | Calibration method, calibration system, depth camera and readable storage medium | |
TWI835760B (en) | Distance time-of-flight modules | |
JP7321956B2 (en) | Method of correcting measurement value of rangefinder | |
TWI812493B (en) | Ranging device and ranging method thereof | |
JP7388064B2 (en) | Distance measuring device and method | |
TWI835520B (en) | Measurement device and measurement method | |
US10976418B2 (en) | Method for identifying noise data of laser ranging device | |
JP2020041822A (en) | Three-dimensional measurement system, three-dimensional measurement camera, three-dimensional measurement method and program | |
CN110161484B (en) | Distance compensation lookup table establishing method and device and distance compensation method and device | |
US9274614B2 (en) | Optical mouse apparatus based on image variation and related method thereof | |
US20210231783A1 (en) | Measurement-distance correction method, distance measuring device, and distance measuring system | |
TW202022403A (en) | Method and device for detecting spot position | |
JP2023068814A (en) | Ranging device and ranging program | |
US11971480B2 (en) | Optical sensing system | |
US20240159902A1 (en) | Distance measurement device, distance correction method, and non-transitory computer-readable storage medium | |
US20240168160A1 (en) | Angle sensing device and angle sensing system | |
JP2007310059A (en) | Projector and focus adjustment method | |
JP2022166693A (en) | Optical sensor, electronic apparatus, distance calculation method, and program recording medium | |
JP2019045224A (en) | Detection device |