TWI812086B - Method for generating optical proximity correction model - Google Patents

Method for generating optical proximity correction model Download PDF

Info

Publication number
TWI812086B
TWI812086B TW111110219A TW111110219A TWI812086B TW I812086 B TWI812086 B TW I812086B TW 111110219 A TW111110219 A TW 111110219A TW 111110219 A TW111110219 A TW 111110219A TW I812086 B TWI812086 B TW I812086B
Authority
TW
Taiwan
Prior art keywords
data
generate
mask pattern
proximity correction
optical proximity
Prior art date
Application number
TW111110219A
Other languages
Chinese (zh)
Other versions
TW202338488A (en
Inventor
黃羿豪
麥永慶
葉信杏
林嘉祺
賴俊丞
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW111110219A priority Critical patent/TWI812086B/en
Application granted granted Critical
Publication of TWI812086B publication Critical patent/TWI812086B/en
Publication of TW202338488A publication Critical patent/TW202338488A/en

Links

Images

Abstract

A method for generating an optical proximity correction model is provided. The method includes: receiving optical proximity correction data; adding adjustment terms including a weight operation and a penalty operation into a cost function to generate an adjusted cost function; performing a regression operation on the optical proximity correction data to generate an optical proximity correction model according to the adjusted cost function.

Description

光學鄰近修正模型的產生方法Method for generating optical proximity correction model

本發明是有關於一種光刻修正方法,且特別是有關於類神經網路的一種光學鄰近修正模型的產生方法。 The present invention relates to a photolithography correction method, and in particular to a method for generating an optical proximity correction model of a neural network.

傳統上,光學鄰近修正(optical proximity correction,OPC)使用微影增強技術(lithography enhancement technique)來補償例如可能因繞射(diffraction)、干涉、其他製程效應等因鄰近效應引起的影像誤差(image error)所導致的關鍵尺寸偏差現象。 Traditionally, optical proximity correction (OPC) uses lithography enhancement technique to compensate for image errors that may be caused by proximity effects such as diffraction, interference, and other process effects. ) caused by critical dimension deviation.

然而,為了以類神經網路((Artificial Neural Network,ANN)提高OPC模型的準確性,通常需要收集更多掃描電子顯微鏡(Scanning Electron Microscope,SEM)資料並在類神經網路的OPC模型中使用更多的經驗項(empirical term),從而導致較長的資料收集時間與OPC模型產生時間。並且,藉由成本函數來進行回歸(regression)運算時,經驗項容易使晶圓資料與OPC模型過擬合(over-fitted),從而降低OPC模型的穩定性。 However, in order to improve the accuracy of the OPC model using Artificial Neural Network (ANN), it is usually necessary to collect more Scanning Electron Microscope (SEM) data and use it in the neural network-like OPC model. More empirical terms lead to longer data collection time and OPC model generation time. Moreover, when performing regression calculations through cost functions, the empirical terms easily cause the wafer data to differ from the OPC model. Fitted (over-fitted), thereby reducing the stability of the OPC model.

本發明提供一種光學鄰近修正模型的產生方法,用以運用權重運算與懲罰運算來調整成本函數,從而產生OPC模型。 The present invention provides a method for generating an optical proximity correction model, which is used to adjust the cost function using weight operations and penalty operations, thereby generating an OPC model.

本發明的實施例提供一種光學鄰近修正模型的產生方法。光學鄰近修正模型的產生方法包括:接收光學鄰近修正資料;將包括權重運算與懲罰運算的調整項加入成本函數以產生經調整成本函數;依據經調整成本函數對光學鄰近修正資料進行回歸運算以產生光學鄰近修正模型。 Embodiments of the present invention provide a method for generating an optical proximity correction model. The generation method of the optical proximity correction model includes: receiving optical proximity correction data; adding adjustment terms including weight operation and penalty operation to the cost function to generate an adjusted cost function; performing a regression operation on the optical proximity correction data according to the adjusted cost function to generate Optical proximity correction model.

基於上述,在本發明一些實施例中,藉由將具有權重運算與懲罰運算的調整項加入成本函數以產生OPC模型,可增加OPC模型的精確度與提升OPC模型的產生速度,並進一步降低過擬合效應。 Based on the above, in some embodiments of the present invention, by adding adjustment terms with weight operations and penalty operations to the cost function to generate the OPC model, the accuracy of the OPC model can be increased and the generation speed of the OPC model can be increased, and the process can be further reduced. fitting effect.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, embodiments are given below and described in detail with reference to the accompanying drawings.

10:OPC模型產生系統 10:OPC model generation system

110:計算裝置 110:Computing device

120:量測裝置 120: Measuring device

130:測試光罩 130: Test mask

S210、S220、S230、S240、S250、S260、S270、S280、 S285、S290、S295、S310、S320、S330、S340、S350、S360、S370、S410、S420、S430:步驟 S210, S220, S230, S240, S250, S260, S270, S280, S285, S290, S295, S310, S320, S330, S340, S350, S360, S370, S410, S420, S430: Steps

圖1是依據本發明一實施例所繪示的OPC模型產生系統的方塊圖。 FIG. 1 is a block diagram of an OPC model generation system according to an embodiment of the present invention.

圖2是依據本發明一實施例所繪示的OPC模型產生方法的示意圖。 FIG. 2 is a schematic diagram of an OPC model generation method according to an embodiment of the present invention.

圖3是依據本發明一實施例所繪示的機器學習操作的流程圖。 FIG. 3 is a flowchart of machine learning operations according to an embodiment of the present invention.

圖4是依據本發明一實施例所繪示的OPC模型產生方法的流程圖。 FIG. 4 is a flow chart of an OPC model generation method according to an embodiment of the present invention.

在本案說明書全文(包括申請專利範圍)中所使用的「耦接(或連接)」一詞可指任何直接或間接的連接手段。舉例而言,若文中描述第一裝置耦接(或連接)於第二裝置,則應該被解釋成該第一裝置可以直接連接於該第二裝置,或者該第一裝置可以透過其他裝置或某種連接手段而間接地連接至該第二裝置。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟代表相同或類似部分。不同實施例中使用相同標號或使用相同用語的元件/構件/步驟可以相互參照相關說明。 The term "coupling (or connection)" used throughout the specification of this case (including the scope of the patent application) can refer to any direct or indirect connection means. For example, if a first device is coupled (or connected) to a second device, it should be understood that the first device can be directly connected to the second device, or the first device can be connected through other devices or other devices. A connection means is indirectly connected to the second device. In addition, wherever possible, elements/components/steps with the same reference numbers are used in the drawings and embodiments to represent the same or similar parts. Elements/components/steps using the same numbers or using the same terms in different embodiments can refer to the relevant descriptions of each other.

圖1是依據本發明一實施例所繪示的OPC模型產生系統的方塊圖。請參照圖1,OPC模型產生系統10包括但不限於計算裝置110、量測裝置120與測試光罩130。量測裝置120用以對測試光罩130中測試光罩圖樣(Test Pattern,未繪示)的多個測試點進行量測,以產生多個量測資料並輸出至計算裝置110。測試光罩圖樣用以在微影(lithography)製程中將電路圖樣投影到晶圓上,且本發明未限制測試光罩圖樣的類型與尺寸。計算裝置110可運用機器學習操作對測試光罩圖樣在設計時預設的多個預設資料進行取樣以產生多個取樣資料,並依據多個取樣資料與多個量測資料計算出光學鄰近修正(OPC)資料。計算裝置110可將調整項加入 成本函數以對OPC資料進行回歸運算,從而產生OPC模型。具體於後文詳述。 FIG. 1 is a block diagram of an OPC model generation system according to an embodiment of the present invention. Referring to FIG. 1 , the OPC model generation system 10 includes but is not limited to a computing device 110 , a measuring device 120 and a test mask 130 . The measurement device 120 is used to measure a plurality of test points of a test mask pattern (Test Pattern, not shown) in the test mask 130 to generate a plurality of measurement data and output them to the computing device 110 . The test mask pattern is used to project the circuit pattern onto the wafer during the lithography process, and the present invention does not limit the type and size of the test mask pattern. The computing device 110 can use machine learning operations to sample a plurality of preset data preset during design of the test mask pattern to generate a plurality of sampling data, and calculate the optical proximity correction based on the plurality of sampling data and the plurality of measurement data. (OPC) data. Computing device 110 may add adjustments to The cost function performs regression operations on the OPC data to generate the OPC model. Details will be given later.

在此實施例中,計算裝置110例如是桌上型電腦(Desktop Computer)、個人電腦(Personal Computer,PC)、攜帶式終端產品(Portable Terminal Product)、個人數位化助理(Personal Digital Assistor,PDA)、平板電腦(Tablet PC)或伺服器等。計算裝置110可以安裝電子設計自動化(Electronic Design Automation,EDA)相關輔助工具以便進行OPC模型的資料取樣與計算。量測裝置120例如是關鍵尺寸量測掃描式電子顯微鏡(Critical Dimension Scanning Electron Microscope,CD-SEM)或其他掃描電子顯微鏡(Scanning Electron Microscope,SEM)。 In this embodiment, the computing device 110 is, for example, a desktop computer (Desktop Computer), a personal computer (Personal Computer, PC), a portable terminal product (Portable Terminal Product), or a personal digital assistant (Personal Digital Assistant, PDA). , Tablet PC or server, etc. The computing device 110 can be installed with electronic design automation (Electronic Design Automation, EDA) related auxiliary tools to perform data sampling and calculation of the OPC model. The measuring device 120 is, for example, a critical dimension scanning electron microscope (Critical Dimension Scanning Electron Microscope, CD-SEM) or other scanning electron microscope (Scanning Electron Microscope, SEM).

圖2是依據本發明一實施例所繪示的OPC模型產生方法的示意圖。請參照圖2,於步驟S210,計算裝置110接收測試光罩圖樣中多個測試點的多個預設資料。具體而言,每個測試光罩圖樣例如長條型圖樣可具有多個測試點,且每個測試點在設計測試光罩圖樣時具有相應的預設資料(佈局設計資料),預設資料例如是測試光罩圖樣的尺寸、距離等。 FIG. 2 is a schematic diagram of an OPC model generation method according to an embodiment of the present invention. Referring to FIG. 2 , in step S210 , the computing device 110 receives a plurality of preset data of a plurality of test points in the test mask pattern. Specifically, each test mask pattern, such as a strip pattern, can have multiple test points, and each test point has corresponding preset data (layout design data) when designing the test mask pattern. The default data is, for example, It is to test the size, distance, etc. of the mask pattern.

接著,於步驟S220,計算裝置110運用機器學習操作對多個預設資料進行取樣以產生多個取樣資料。在此實施例中,機器學習操作可對資料進行分群以減少取樣數量,從而降低取樣時間,關於機器學習操作的細節,將於圖3詳述。 Next, in step S220, the computing device 110 uses machine learning operations to sample a plurality of preset data to generate a plurality of sampled data. In this embodiment, the machine learning operation can group the data to reduce the number of samples, thereby reducing the sampling time. Details of the machine learning operation will be described in detail in Figure 3 .

於步驟S230,量測裝置120例如是CD-SEM,CD-SEM 對測試光罩圖樣中的多個測試點進行量測,以產生多個量測資料。量測資料例如是測試光罩圖樣的尺寸與距離等相關參數。接著,於步驟S240,計算裝置110計算多個取樣資料與量測資料的差值以產生OPC資料。具體而言,取樣資料相當於測試光罩圖樣關於尺寸與距離的設計數值,而量測資料相當於測試光罩圖樣關於尺寸與距離的實際數值。因此計算裝置110計算多個取樣資料與多個量測資料的多個差值即可產生OPC資料,OPC資料用以補償因鄰近效應引起的影像誤差。 In step S230, the measuring device 120 is, for example, a CD-SEM. The CD-SEM Measure multiple test points in the test mask pattern to generate multiple measurement data. The measurement data is, for example, related parameters such as the size and distance of the test mask pattern. Next, in step S240, the computing device 110 calculates differences between a plurality of sampling data and measurement data to generate OPC data. Specifically, the sampling data is equivalent to the design values of the test mask pattern with respect to size and distance, while the measurement data is equivalent to the actual values of the test mask pattern with respect to size and distance. Therefore, the computing device 110 calculates a plurality of differences between a plurality of sampling data and a plurality of measurement data to generate OPC data. The OPC data is used to compensate for image errors caused by proximity effects.

請同時參照步驟S250、步驟S260與步驟S270。於步驟S250,計算裝置110對OPC資料進行回歸(regression)運算,以產生OPC模型。在此實施例中,回歸運算有關於類神經網路,通常會藉由建立OPC資料的成本函數(cost function),並以疊代方式計算OPC資料的最小成本函數以對OPC資料進行訓練(train)。成本函數例如是方均根(root mean square,RMS)。 Please refer to step S250, step S260 and step S270 at the same time. In step S250, the computing device 110 performs a regression operation on the OPC data to generate an OPC model. In this embodiment, the regression operation is related to the neural network, usually by establishing a cost function of the OPC data and calculating the minimum cost function of the OPC data in an iterative manner to train the OPC data. ). The cost function is, for example, root mean square (RMS).

於步驟S260中,計算裝置110可將成本權重項與規格懲罰項加入至成本函數。於步驟S270中,計算裝置110將正規化懲罰項加入至成本函數。在一實施例中,計算裝置110可加入調整項至成本函數,以提高OPC模型的精準度並減少過擬合。具體而言,計算裝置110可將包括權重運算與懲罰運算的調整項加入至成本函數,調整項可包括成本權重項Wi、規格懲罰項αμ(f)與正規化懲罰項λΩ(Wi)。權重運算包括所述成本權重項Wi,且懲罰運算包括所述規格懲罰項αμ(f)與所述正規化懲罰項λΩ(Wi)。 In step S260, the computing device 110 may add the cost weight term and the specification penalty term to the cost function. In step S270, the computing device 110 adds the normalized penalty term to the cost function. In one embodiment, the computing device 110 can add an adjustment term to the cost function to improve the accuracy of the OPC model and reduce overfitting. Specifically, the computing device 110 may add an adjustment term including a weight operation and a penalty operation to the cost function. The adjustment term may include a cost weight term Wi , a specification penalty term αμ(f) and a normalization penalty term λΩ ( Wi ). . The weight operation includes the cost weight term Wi , and the penalty operation includes the specification penalty term αμ(f) and the regularization penalty term λΩ ( Wi ).

關於成本權重項Wi,計算裝置110可依據不同測試光罩圖樣類型所具有的數量以及校正規格來提供相應的權重,從而使各測試光罩圖樣類型依據數量與校正規格而具有不同的成本權重(cost weighting)。不同類型的測試光罩圖樣例如是長條型、L型、三角型等。舉例來說,計算裝置110可針對規格容許度較小的資料點提升其成本權重,而對規格容許度較大的資料點降低其成本權重,以提升回歸運算的精確性與收斂速度。具體如公式(1)所示:

Figure 111110219-A0305-02-0007-1
其中i為光罩圖樣類型,Si為每種光罩圖樣類型的校正規格,Qi為每種光罩圖樣類型的資料數量,m為光罩圖樣類型的數量。 Regarding the cost weight item Wi , the computing device 110 can provide corresponding weights according to the quantity and correction specifications of different test mask pattern types, so that each test mask pattern type has different cost weights according to the quantity and correction specifications. (cost weighting). Different types of test mask patterns include strip type, L type, triangle type, etc. For example, the computing device 110 can increase the cost weight of data points with a smaller specification tolerance, and reduce the cost weight of data points with a larger specification tolerance, so as to improve the accuracy and convergence speed of the regression operation. Specifically as shown in formula (1):
Figure 111110219-A0305-02-0007-1
Where i is the mask pattern type, Si is the calibration specification of each mask pattern type, Qi is the number of data for each mask pattern type, and m is the number of mask pattern types.

關於規格懲罰項αμ(f),計算裝置110可將超出預設規格的測試點的規格懲罰項αμ(f)添加到成本函數。具體而言,將回歸運算中超出預設規格的測試點資料與預設規格之間的差值取平方做為規格懲罰項αμ(f),以將每個測試點資料都被校正進預設規格內,從而提升回歸運算的精確性與收斂速度。具體如公式(2)所示:

Figure 111110219-A0305-02-0007-2
其中α為懲罰係數,m為光罩類型的數量,n為超出預設規格的測試點的數量,i為光罩圖樣類型,j為每種光罩圖樣類型中超出預設規格的測試點,fi,j為超出預設規格的測試點的擬合誤差(fiterror),Si為每種光罩圖樣類型的校正規格。 Regarding the specification penalty term αμ(f), the computing device 110 may add the specification penalty term αμ(f) for test points exceeding the preset specification to the cost function. Specifically, the difference between the test point data exceeding the preset specification in the regression operation and the preset specification is squared as the specification penalty term αμ(f), so that each test point data is corrected into the preset specification. Within specifications, thereby improving the accuracy and convergence speed of regression operations. Specifically as shown in formula (2):
Figure 111110219-A0305-02-0007-2
where α is the penalty coefficient, m is the number of mask types, n is the number of test points that exceed the preset specifications, i is the mask pattern type, and j is the test points that exceed the preset specifications in each mask pattern type. fi,j is the fitting error (fiterror) of test points that exceed the preset specifications, and Si is the correction specification for each mask pattern type.

關於正規化懲罰項λΩ(Wi),在此實施例中,正規化懲罰 項λΩ(Wi)有關於機器學習中的L2正規化(L2 Regulation)。具體而言,計算裝置110可賦予較低的權重至價值較低的特徵,以在最小化成本函數的過程中限制無用特徵的影響,從而降低過擬合效應。具體如公式(3)所示:

Figure 111110219-A0305-02-0008-3
其中λ為正規化係數,i為光罩圖樣類型,m為光罩圖樣類型的數量,Wi為權重。 Regarding the regularization penalty term λ Ω ( Wi ), in this embodiment, the regularization penalty term λ Ω ( Wi ) is related to L2 regularization (L2 Regulation) in machine learning. Specifically, the computing device 110 may assign lower weights to features with lower values to limit the influence of useless features in the process of minimizing the cost function, thereby reducing the overfitting effect. Specifically, it is shown in formula (3):
Figure 111110219-A0305-02-0008-3
Where λ is the normalization coefficient, i is the mask pattern type, m is the number of mask pattern types, and Wi is the weight.

接著,於步驟S280,計算裝置110判斷回歸運算所產生的OPC模型是否符合預設規格。具體而言,請同時參照圖3,計算裝置110可將步驟S310所劃分出的多個訓練資料輸入經回歸運算所產生的OPC模型以產生多個校正結果,並藉由判斷多個校正結果是否在預設規格內來得知OPC模型是否符合預設規格。預設規格可以是一組預設數值範圍,視實際設計需求而訂,不限於此。若OPC模型符合預設規格,則進入步驟S290。若OPC模型不符合預設規格,則進入步驟S285。於步驟S285,當OPC模型不符合預設規格時,計算裝置110可調整OPC模型。在一實施例中,計算裝置110可對前述調整項進行調整,並回到步驟S250。詳細來說,計算裝置110可調整成本權重項Wi、規格懲罰項αμ(f)與正規化懲罰項λΩ(Wi)中的參數,並重新進行回歸(regression)運算。接著,於步驟S290,計算裝置110可輸出OPC模型。於步驟S295,可運用圖3中步驟S310所劃分的測試資料對OPC模型進行驗證。 Next, in step S280, the computing device 110 determines whether the OPC model generated by the regression operation meets the preset specifications. Specifically, please refer to FIG. 3 at the same time. The computing device 110 can input the multiple training data divided in step S310 into the OPC model generated by the regression operation to generate multiple correction results, and determine whether the multiple correction results are correct. Find out whether the OPC model meets the preset specifications within the preset specifications. The preset specifications can be a set of preset numerical ranges, which are determined based on actual design requirements, but are not limited to this. If the OPC model meets the preset specifications, step S290 is entered. If the OPC model does not meet the preset specifications, step S285 is entered. In step S285, when the OPC model does not meet the preset specifications, the computing device 110 may adjust the OPC model. In an embodiment, the computing device 110 may adjust the aforementioned adjustment items and return to step S250. Specifically, the computing device 110 may adjust the parameters in the cost weight term Wi , the specification penalty term αμ(f), and the normalization penalty term λΩ ( Wi ), and re-perform the regression operation. Next, in step S290, the computing device 110 may output the OPC model. In step S295, the test data divided in step S310 in Figure 3 can be used to verify the OPC model.

圖3是依據本發明一實施例所繪示的機器學習操作的流 程圖。具體而言,圖3有關圖2的步驟S220中機器學習操作的具體流程。請參照圖3,於步驟S310,計算裝置110將對應測試光罩圖樣中多個測試點的多個預設資料劃分為多個訓練資料與多個測試資料。舉例而言,計算裝置110可將100個預設資料劃分80個訓練資料與20個測試資料,80個訓練資料用以進行機器學習操作的後續流程,而20個測試資料用以在圖2中步驟S295中對OPC模型進行驗證。 Figure 3 is a flowchart of machine learning operations according to an embodiment of the present invention. Process map. Specifically, FIG. 3 relates to the specific flow of the machine learning operation in step S220 of FIG. 2 . Referring to FIG. 3 , in step S310 , the computing device 110 divides a plurality of preset data corresponding to a plurality of test points in the test mask pattern into a plurality of training data and a plurality of test data. For example, the computing device 110 can divide 100 preset data into 80 training data and 20 test data. The 80 training data are used to perform the subsequent process of the machine learning operation, and the 20 test data are used in FIG. 2 In step S295, the OPC model is verified.

接著,於步驟S320,計算裝置110依據曝光條件對多個訓練資料進行光學運算以產生多個光學參數。曝光條件可包括但不限於光強度、投影鏡片的數值孔徑(NA)等。舉例來說,計算裝置110例如可依據光強度、投影鏡片的數值孔徑(NA)等曝光條件對80個訓練資料使用Vector Hopkins model進行運算,以產生多個光學參數例如是最大光強度Imax、最小光強度Imin、光強度對數斜率NILS、光罩錯誤增強因子MEEF。 Next, in step S320, the computing device 110 performs optical operations on the plurality of training data according to the exposure conditions to generate a plurality of optical parameters. Exposure conditions may include but are not limited to light intensity, numerical aperture (NA) of the projection lens, etc. For example, the computing device 110 may use the Vector Hopkins model to calculate 80 training data based on exposure conditions such as light intensity and the numerical aperture (NA) of the projection lens to generate multiple optical parameters such as the maximum light intensity Imax, the minimum light intensity Imax, and the minimum light intensity Imax. Light intensity Imin, light intensity logarithmic slope NILS, mask error enhancement factor MEEF.

於步驟S330,計算裝置110對多個光學參數進行預處理以產生多個第一暫態參數。在一實施例中,計算裝置110可對上述多個光學參數進行特徵縮放(Feature Scaling)操作與異常值檢測(Outlier Detection)操作中的至少一者來產生多個第一暫態參數。在較佳實施例中,計算裝置110可對多個光學參數先進行特徵縮放操作,再進行異常值檢測操作以產生多個第一暫態參數。具體而言,特徵縮放操作例如是對多個光學資料取對數(log),異常值檢測例如是四分位數法(Quartile)、盒鬚法(Bot Plot)等,用以降低變異 值,並增加資料代表性。 In step S330, the computing device 110 pre-processes a plurality of optical parameters to generate a plurality of first transient parameters. In an embodiment, the computing device 110 may perform at least one of a feature scaling operation and an outlier detection operation on the plurality of optical parameters to generate a plurality of first transient parameters. In a preferred embodiment, the computing device 110 may first perform a feature scaling operation on the plurality of optical parameters, and then perform an outlier detection operation to generate a plurality of first transient parameters. Specifically, the feature scaling operation is, for example, taking the logarithm (log) of multiple optical data, and the outlier detection is, for example, the quartile method (Quartile), the box-and-whisker method (Bot Plot), etc., to reduce variation. value and increase data representativeness.

於步驟S340,計算裝置110可對多個光學參數進行特徵轉換以產生多個特徵參數。在一實施例中,計算裝置110可對步驟S330所產生的多個第一暫態參數進行主成份分析(Principal Component Analysis,PCA),以產生多個特徵參數。舉例來說,計算裝置110可運用PCA將上述具四維光學參數(例如是Imax,Imin,NILS,MEEF)降維為二維特徵參數(例如是第一統計參數與第二統計參數),以簡化資料並使後續的分群操作容易被進行。 In step S340, the computing device 110 may perform feature transformation on multiple optical parameters to generate multiple feature parameters. In one embodiment, the computing device 110 may perform principal component analysis (PCA) on the plurality of first transient parameters generated in step S330 to generate a plurality of characteristic parameters. For example, the computing device 110 can use PCA to reduce the dimensionality of the four-dimensional optical parameters (such as Imax, Imin, NILS, MEEF) into two-dimensional characteristic parameters (such as the first statistical parameter and the second statistical parameter) to simplify data and make subsequent grouping operations easier to perform.

接著,於步驟S350與步驟S360,計算裝置110對多個特徵資料進行分群操作以產生經分群特徵資料。在一實施例中,計算裝置110可對多個特徵資料進行步驟S350與步驟S360等兩次分群。詳細來說,於步驟S350中,計算裝置110可先運用高斯混合模型(Gaussian mixture model,GMM)與平均演算法(K-means)的其中一者對多個特徵資料進行第一次分群以產生暫時群組。接著,於步驟S360,計算裝置110再運用GMM與K-means的其中一者對暫時群組進行第二次分群以產生多個經分群特徵資料。於步驟S370,計算裝置110可對多個經分群特徵資料進行取樣以產生多個取樣資料。由於步驟S350與步驟S360已進行兩次分群,因此經分群特徵資料的總群數將大於暫時群組的總群數。並且,當分群越細,將有利於步驟S370取樣操作的資料代表性,從而可減少取樣數目,例如每一群取具代表性的資料數目,進而降低取樣時間。 Next, in steps S350 and S360, the computing device 110 performs a grouping operation on a plurality of feature data to generate grouped feature data. In one embodiment, the computing device 110 may perform step S350 and step S360 on multiple feature data into groups twice. Specifically, in step S350, the computing device 110 may first use one of Gaussian mixture model (Gaussian mixture model, GMM) and averaging algorithm (K-means) to perform the first grouping of multiple feature data to generate Temporary group. Next, in step S360, the computing device 110 uses one of GMM and K-means to perform a second grouping on the temporary group to generate a plurality of grouped feature data. In step S370, the computing device 110 may sample a plurality of grouped feature data to generate a plurality of sampled data. Since step S350 and step S360 have performed two groupings, the total number of groups of the grouped characteristic data will be greater than the total number of temporary groups. Moreover, when the grouping is finer, it will be beneficial to the data representativeness of the sampling operation in step S370, thereby reducing the number of samples. For example, each group can collect a representative number of data, thereby reducing the sampling time.

圖4是依據本發明一實施例所繪示的OPC模型產生方法 的流程圖。請參照圖4,於步驟S410,計算裝置110可接收OPC資料。接著,於步驟S420,計算裝置110可將包括權重運算與懲罰運算的調整項加入成本函數以產生經調整成本函數。於步驟S430,計算裝置110可依據經調整成本函數對OPC資料進行回歸運算以產生OPC模型。 Figure 4 illustrates an OPC model generation method according to an embodiment of the present invention. flow chart. Referring to FIG. 4, in step S410, the computing device 110 may receive OPC data. Next, in step S420, the computing device 110 may add the adjustment terms including the weight operation and the penalty operation to the cost function to generate an adjusted cost function. In step S430, the computing device 110 may perform a regression operation on the OPC data according to the adjusted cost function to generate an OPC model.

綜上所述,本發明藉由將具有權重運算與懲罰運算的調整項加入成本函數以產生OPC模型,可增加OPC模型的精確度與提升OPC模型的產生速度,並進一步降低過擬合效應。另一方面,藉由機器學習操作對資料分群,可減少OPC模型所需要的取樣資料並提升取樣速度。 To sum up, the present invention can increase the accuracy of the OPC model and improve the generation speed of the OPC model by adding adjustment terms with weight operation and penalty operation to the cost function to generate the OPC model, and further reduce the over-fitting effect. On the other hand, grouping data through machine learning operations can reduce the sampling data required by the OPC model and increase the sampling speed.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.

S410-S430:步驟 S410-S430: Steps

Claims (12)

一種光學鄰近修正模型的產生方法,包括:經由機器學習操作來產生光學鄰近修正資料;將調整項加入成本函數以產生經調整成本函數,其中所述調整項包括成本權重項、規格懲罰項與正規化懲罰項,其中所述成本權重項用於執行權重運算,所述規格懲罰項與所述正規化懲罰項用於執行懲罰運算;依據所述經調整成本函數對所述光學鄰近修正資料進行回歸運算以產生光學鄰近修正模型,其中所述機器學習操作包括:對多個四維光學參數進行特徵轉換,以使所述多個四維光學參數降維形成多個二維特徵參數。 A method for generating an optical proximity correction model, including: generating optical proximity correction data through machine learning operations; adding an adjustment term to a cost function to generate an adjusted cost function, wherein the adjustment term includes a cost weight term, a specification penalty term and a normal normalization penalty term, wherein the cost weight term is used to perform a weighting operation, the specification penalty term and the normalization penalty term are used to perform a penalty operation; the optical proximity correction data is regressed according to the adjusted cost function Operation is performed to generate an optical proximity correction model, wherein the machine learning operation includes: performing feature transformation on a plurality of four-dimensional optical parameters, so that the plurality of four-dimensional optical parameters are dimensionally reduced to form a plurality of two-dimensional feature parameters. 如請求項1所述的產生方法,其中經由所述機器學習操作來產生所述光學鄰近修正資料包括:接收對應測試光罩圖樣中多個測試點的多個預設資料;以所述機器學習操作對所述多個預設資料進行取樣以產生多個取樣資料;量測多個測試點以產生多個量測資料;以及計算所述多個取樣資料與所述多個量測資料的差值以產生所述光學鄰近修正資料。 The generation method according to claim 1, wherein generating the optical proximity correction data through the machine learning operation includes: receiving a plurality of preset data corresponding to a plurality of test points in the test mask pattern; using the machine learning Operations include sampling the plurality of preset data to generate a plurality of sampling data; measuring a plurality of test points to generate a plurality of measurement data; and calculating differences between the plurality of sampling data and the plurality of measurement data. values to generate the optical proximity correction data. 如請求項2所述的產生方法,其中產生所述多個量測資料包括: 以關鍵尺寸量測掃描式電子顯微鏡(CD-SEM)量測所述測試光罩圖樣以產生所述多個量測資料。 The generation method as described in claim 2, wherein generating the plurality of measurement data includes: The test mask pattern is measured using a critical dimension measurement scanning electron microscope (CD-SEM) to generate the plurality of measurement data. 如請求項2所述的產生方法,其中所述機器學習操作包括:將所述多個預設資料劃分為多個訓練資料與多個測試資料;依據曝光條件對所述多個訓練資料進行光學運算以產生多個光學參數;對所述多個光學參數進行預處理以產生多個特徵資料;對所述多個特徵資料進行分群操作以產生多個經分群特徵資料;以及對所述多個經分群特徵資料進行取樣以產生所述多個取樣資料。 The generation method as described in claim 2, wherein the machine learning operation includes: dividing the plurality of preset data into a plurality of training data and a plurality of test data; optically performing optical processing on the plurality of training data according to exposure conditions. operating to generate a plurality of optical parameters; preprocessing the plurality of optical parameters to generate a plurality of feature data; performing a grouping operation on the plurality of feature data to generate a plurality of grouped feature data; and performing a grouping operation on the plurality of grouped feature data; Sampling is performed through the clustered characteristic data to generate the plurality of sampling data. 如請求項4所述的產生方法,其中對所述多個光學參數進行所述預處理包括:對所述多個光學參數進行特徵縮放操作與異常值檢測操作中的至少一者以產生多個第一暫態參數。 The generation method according to claim 4, wherein the preprocessing of the plurality of optical parameters includes: performing at least one of a feature scaling operation and an outlier detection operation on the plurality of optical parameters to generate a plurality of The first transient parameter. 如請求項1所述的產生方法,其中對所述多個四維光學參數進行所述特徵轉換的步驟包括:對多個第一暫態參數進行主成份分析(Principal Component Analysis),以產生所述多個二維特徵參數。 The generation method as described in claim 1, wherein the step of performing feature transformation on the plurality of four-dimensional optical parameters includes: performing principal component analysis (Principal Component Analysis) on a plurality of first transient parameters to generate the Multiple two-dimensional feature parameters. 如請求項4所述的產生方法,其中所述分群操作包括: 執行第一次分群,所述第一次分群是使用高斯混合模型與平均演算法的其中一者對所述多個特徵資料進行分群以產生暫時群組;以及執行第二次分群,所述第二次分群是使用所述高斯混合模型與所述平均演算法的其中一者對所述第一次分群產生的所述暫時群組進行分群以產生所述多個經分群特徵資料。 The production method as described in claim 4, wherein the grouping operation includes: Performing a first grouping, the first grouping is to use one of a Gaussian mixture model and an average algorithm to group the plurality of feature data to generate a temporary group; and performing a second grouping, the third grouping is performed. The secondary grouping is to use one of the Gaussian mixture model and the averaging algorithm to group the temporary groups generated by the first grouping to generate the plurality of grouped feature data. 如請求項1所述的產生方法,其中所述成本權重項Wi為:
Figure 111110219-A0305-02-0015-4
其中i為光罩圖樣類型,Si為每種光罩圖樣類型的校正規格,Qi為每種光罩圖樣類型的資料數量,m為光罩圖樣類型的數量。
The production method as described in claim 1, wherein the cost weight item Wi is:
Figure 111110219-A0305-02-0015-4
Where i is the mask pattern type, Si is the calibration specification of each mask pattern type, Qi is the number of data for each mask pattern type, and m is the number of mask pattern types.
如請求項1所述的產生方法,其中所述規格懲罰項αμ(f)為:
Figure 111110219-A0305-02-0015-5
其中α為懲罰係數,m為光罩類型的數量,n為超出預設規格的測試點的數量,i為光罩圖樣類型,j為每種光罩圖樣類型中超出預設規格的測試點,fi,j為超出預設規格的測試點的擬合誤差,Si為每種光罩圖樣類型的校正規格。
The production method as described in claim 1, wherein the specification penalty term αμ(f) is:
Figure 111110219-A0305-02-0015-5
where α is the penalty coefficient, m is the number of mask types, n is the number of test points that exceed the preset specifications, i is the mask pattern type, and j is the test points that exceed the preset specifications in each mask pattern type. fi,j is the fitting error of test points that exceed the preset specifications, and Si is the correction specification for each mask pattern type.
如請求項1所述的產生方法,其中所述正規化懲罰項λΩ(Wi)為:
Figure 111110219-A0305-02-0015-6
其中λ為正規化係數,i為光罩圖樣類型,m為光罩圖樣類型的數量,Wi為權重。
The generation method as described in claim 1, wherein the regularization penalty term λ Ω ( Wi ) is:
Figure 111110219-A0305-02-0015-6
Where λ is the normalization coefficient, i is the mask pattern type, m is the number of mask pattern types, and Wi is the weight.
如請求項1所述的產生方法,更包括:在產生所述光學鄰近修正模型後,判斷所述光學鄰近修正模型是否符合預設規格。 The generation method of claim 1 further includes: after generating the optical proximity correction model, determining whether the optical proximity correction model meets preset specifications. 如請求項11所述的產生方法,其中當所述光學鄰近修正模型符合所述預設規格時,輸出所述光學鄰近修正模型並以供多個測試資料進行驗證,當所述光學鄰近修正模型不符合所述預設規格時,調整所述調整項。 The generation method of claim 11, wherein when the optical proximity correction model meets the preset specifications, the optical proximity correction model is output and used for verification by multiple test data. When the optical proximity correction model Adjust the adjustment items when they do not meet the preset specifications.
TW111110219A 2022-03-18 2022-03-18 Method for generating optical proximity correction model TWI812086B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111110219A TWI812086B (en) 2022-03-18 2022-03-18 Method for generating optical proximity correction model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111110219A TWI812086B (en) 2022-03-18 2022-03-18 Method for generating optical proximity correction model

Publications (2)

Publication Number Publication Date
TWI812086B true TWI812086B (en) 2023-08-11
TW202338488A TW202338488A (en) 2023-10-01

Family

ID=88585545

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111110219A TWI812086B (en) 2022-03-18 2022-03-18 Method for generating optical proximity correction model

Country Status (1)

Country Link
TW (1) TWI812086B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180314163A1 (en) * 2014-12-15 2018-11-01 Asml Netherlands B.V. Optimization based on machine learning
CN111051993A (en) * 2017-09-08 2020-04-21 Asml荷兰有限公司 Training method for machine learning assisted optical proximity error correction
CN111788589A (en) * 2018-02-23 2020-10-16 Asml荷兰有限公司 Method of training a machine learning model for computational lithography
TW202201944A (en) * 2020-05-20 2022-01-01 美商高通公司 Maintaining fixed sizes for target objects in frames

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180314163A1 (en) * 2014-12-15 2018-11-01 Asml Netherlands B.V. Optimization based on machine learning
CN111051993A (en) * 2017-09-08 2020-04-21 Asml荷兰有限公司 Training method for machine learning assisted optical proximity error correction
TW202046026A (en) * 2017-09-08 2020-12-16 荷蘭商Asml荷蘭公司 Training methods for machine learning assisted optical proximity error correction
CN111788589A (en) * 2018-02-23 2020-10-16 Asml荷兰有限公司 Method of training a machine learning model for computational lithography
TW202201944A (en) * 2020-05-20 2022-01-01 美商高通公司 Maintaining fixed sizes for target objects in frames

Also Published As

Publication number Publication date
TW202338488A (en) 2023-10-01

Similar Documents

Publication Publication Date Title
CN105830069B (en) On-demand target and process sensitivity analysis
US8065636B2 (en) System and method for creating a focus-exposure model of a lithography process
US6768958B2 (en) Automatic calibration of a masking process simulator
US8818072B2 (en) Rendered database image-to-inspection image optimization for inspection
US7213226B2 (en) Pattern dimension correction method and verification method using OPC, mask and semiconductor device fabricated by using the correction method, and system and software product for executing the correction method
US11460785B2 (en) Method for the qualification of a mask for microlithography
CN105573048B (en) Optimization method of optical proximity correction model
CN115993754B (en) Model calibration method and device, electronic equipment and computer storage medium
TW202211075A (en) Calibrating stochastic signals in compact modeling
US7093226B2 (en) Method and apparatus of wafer print simulation using hybrid model with mask optical images
TWI812086B (en) Method for generating optical proximity correction model
CN112015046B (en) Method for detecting pattern development condition
JP2001351859A (en) Exposure time adjusting system
CN108053397B (en) Method for detecting photoetching weak point by adopting support vector machine
CN111443567B (en) Optical proximity correction model and optical proximity correction method
CN1845009A (en) System and method for photolithography in semiconductor manufacturing
KR20200096992A (en) Semiconductor measurement and defect classification using electron microscope
US11487929B2 (en) Target design process for overlay targets intended for multi-signal measurements
CN101419411B (en) System and method for lithography simulation
CN110688736A (en) OPC optical model screening method and system
CN105717740A (en) OPC (Optical Proximity Correction) verification method based on MEEF
US20100081295A1 (en) Process model evaluation method, process model generation method and process model evaluation program
CN112556653B (en) Pattern measuring method in semiconductor manufacturing process, electronic device, and storage medium
CN106353964B (en) Method for evaluating accuracy of optical proximity correction model
Potzick Photomask feature metrology