TWI811747B - Biosensor apparatus - Google Patents

Biosensor apparatus Download PDF

Info

Publication number
TWI811747B
TWI811747B TW110127802A TW110127802A TWI811747B TW I811747 B TWI811747 B TW I811747B TW 110127802 A TW110127802 A TW 110127802A TW 110127802 A TW110127802 A TW 110127802A TW I811747 B TWI811747 B TW I811747B
Authority
TW
Taiwan
Prior art keywords
top surface
working electrode
micron
working
electrodes
Prior art date
Application number
TW110127802A
Other languages
Chinese (zh)
Other versions
TW202305356A (en
Inventor
連俊龍
Original Assignee
瑞禾生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞禾生物科技股份有限公司 filed Critical 瑞禾生物科技股份有限公司
Priority to TW110127802A priority Critical patent/TWI811747B/en
Publication of TW202305356A publication Critical patent/TW202305356A/en
Application granted granted Critical
Publication of TWI811747B publication Critical patent/TWI811747B/en

Links

Images

Abstract

A biosensor apparatus includes a substrate plate, a plurality of metal conductive layers, a plurality of working electrodes, a counter electrode and an insulating layer. Each metal conductive layer is disposed on the substrate plate and has a first upper surface. The working electrodes and the counter electrode are disposed on the first upper surface of the corresponding metal conductive layers, wherein a first top surface of each working electrode is higher than the first upper surface of the metal conductive layer, and a second top surface of the counter electrode is higher than the first top surface of each working electrode. The insulating layer covers the metal conductive layers and surrounds the working electrodes and the counter electrode, wherein a second upper surface of the insulating layer is located between the first top surface of the working electrodes and the first upper surface of the metal conductive layer such that the working electrodes and the counter electrode protrude beyond the second upper surface of the insulating layer. The above-mentioned biosensor apparatus can increase the sensing sensitivity.

Description

生物感測裝置Biosensing device

本發明是有關一種感測裝置,特別是一種用於檢測生物分子之生物感測裝置。The present invention relates to a sensing device, in particular to a biosensing device for detecting biomolecules.

近年來開發出各種不同的生物分子的檢測方法以進行診斷各種疾病、從事生理代謝相關研究或監測環境因子等等。微機電系統 (Micro-electromechanical Systems,MEMS) 的發展備受矚目,其結合半導體製程技術與精密機械技術,可製作出一半導體元件用於感測光學、化學、生物分子或其他性質的微小晶片。然而,隨著半導體產業進展到奈米技術製程節點以尋求較高裝置密度、較高表現及較低成本的關係,來自製造及設計方面的挑戰驅使著三維設計的發展。據此,發展出一種具有較高表現及低成本的生物感測晶片為當前亟欲解決的問題。In recent years, various detection methods for biomolecules have been developed to diagnose various diseases, conduct research related to physiological metabolism, or monitor environmental factors, etc. The development of Micro-electromechanical Systems (MEMS) has attracted much attention. It combines semiconductor process technology and precision mechanical technology to produce a semiconductor element for sensing optical, chemical, biological molecules or other properties on a tiny chip. However, as the semiconductor industry progresses to nanotechnology process nodes in pursuit of higher device density, higher performance and lower cost, manufacturing and design challenges drive the development of 3D design. Accordingly, developing a biosensing chip with higher performance and lower cost is an urgent problem that needs to be solved.

本發明提供一種生物感測裝置,其包含凸出之多個工作電極以及一對電極,其中對電極之第二頂面高於工作電極之第一頂面,以增強工作電極之最大電場數值,進而提升感測的靈敏度。The present invention provides a biosensing device, which includes a plurality of protruding working electrodes and a pair of electrodes, wherein the second top surface of the counter electrode is higher than the first top surface of the working electrode to enhance the maximum electric field value of the working electrode. Thereby improving the sensitivity of sensing.

本發明一實施例之生物感測裝置包含一基板、多個金屬傳導層、多個工作電極、一對電極以及一絕緣層。多個金屬傳導層配置於基板之上,且每一金屬傳導層具有一第一上表面。多個工作電極配置於相對應之金屬傳導層的第一上表面之上,其中每一工作電極包含一第一頂面,且每一第一頂面高於金屬傳導層的第一上表面。對電極配置於相對應之金屬傳導層的第一上表面之上且相鄰於多個工作電極,其中對電極包含一第二頂面,且第二頂面高於第一頂面。絕緣層覆蓋金屬傳導層並圍繞多個工作電極以及對電極,其中絕緣層之一第二上表面介於多個工作電極之多個第一頂面以及金屬傳導層之第一上表面之間,使得多個工作電極以及對電極凸出絕緣層之第二上表面。A biosensing device according to an embodiment of the present invention includes a substrate, a plurality of metal conductive layers, a plurality of working electrodes, a pair of electrodes and an insulating layer. A plurality of metal conductive layers are disposed on the substrate, and each metal conductive layer has a first upper surface. A plurality of working electrodes are disposed on the first upper surface of the corresponding metal conductive layer, wherein each working electrode includes a first top surface, and each first top surface is higher than the first upper surface of the metal conductive layer. The counter electrode is disposed on the first upper surface of the corresponding metal conductive layer and adjacent to the plurality of working electrodes, wherein the counter electrode includes a second top surface, and the second top surface is higher than the first top surface. The insulating layer covers the metal conductive layer and surrounds the plurality of working electrodes and the counter electrode, wherein a second upper surface of the insulating layer is between the plurality of first top surfaces of the plurality of working electrodes and the first upper surface of the metal conductive layer, The plurality of working electrodes and the counter electrode protrude from the second upper surface of the insulating layer.

以下藉由具體實施例配合所附的圖式詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。The purpose, technical content, characteristics and achieved effects of the present invention will be more easily understood through detailed descriptions of specific embodiments and accompanying drawings below.

本揭露接下來將會提供許多不同的實施方式或實施例以實施本揭露中不同的特徵。各特定 實施例中的組成及配置將會在以下作描述以簡化本揭露。這些為實施例僅作為示例並非用於限定本揭露。例如,一第一元件形成於一第二元件「上方」或「之上」可包含實施例中的第一元件與第二元件直接接觸,亦可包含第一元件與第二元件之間更有其他額外元件使第一元件與第二元件無直接接觸。此外,在本揭露各種不同的範例中,將重複地使用元件符號及/或字母。此重複乃為了簡化與清晰的目的,而其本身並不決定各種實施例及/或結構配置之間的關係。The disclosure will next provide many different implementations or examples to implement different features of the disclosure. The composition and configuration of each specific embodiment will be described below to simplify the present disclosure. These are examples only and are not intended to limit the disclosure. For example, a first element formed "above" or "on" a second element may include direct contact between the first element and the second element in the embodiment, or may include further contact between the first element and the second element. Other additional components prevent direct contact between the first component and the second component. In addition, reference symbols and/or letters will be used repeatedly in various examples of this disclosure. This repetition is for the purposes of simplicity and clarity and does not in itself determine the relationship between the various embodiments and/or structural configurations.

此外,像是「之下」、「下面」、「較低」、「上面」、「較高」、以及其他類似之相對空間關係的用語,可用於此處以便描述圖式中一元件或特徵與另一元件或特徵之間的關係。該等相對空間關係的用語乃為了涵蓋除了圖式所描述的方向以外,裝置於使用或操作中之各種不同的方向。上述裝置可另有其他導向方式(旋轉90度或朝其他方向),此時的空間相對關係也可依上述方式解讀。In addition, terms such as "below," "below," "lower," "above," "higher," and other similar relative spatial terms may be used herein to describe an element or feature in the drawings. A relationship to another element or feature. These relative spatial terms are intended to encompass various orientations of the device in use or operation in addition to the orientations depicted in the drawings. The above device can be oriented in other ways (rotated 90 degrees or in other directions), and the spatial relative relationship at this time can also be interpreted in the above manner.

第1圖繪示根據本發明一些實施方式之一種生物感測元件的剖面圖。如第1圖所示,生物感測元件100包含基板103、金屬傳導層106、第二絕緣層108、多個工作電極110與生物性探針112。在某些實施例中,基板103包含基材102及第一絕緣層104。基板103尚可包含但不限於其他半導體材料, 例如氮化鎵 (GaN)、碳化矽 (SiC)、矽鍺 (SiGe)、鍺或其組合。基材102可例如為矽基材。取決於技術領域中的設計需求,基材102可包含各種不同的摻雜配置。在一實施例中,基材102可為重摻雜、低電阻率的半導體基材。在另一實施例中,基板103為玻璃基板,其不具有第一絕緣層104。Figure 1 illustrates a cross-sectional view of a biosensing element according to some embodiments of the present invention. As shown in FIG. 1 , the biosensing element 100 includes a substrate 103 , a metal conductive layer 106 , a second insulating layer 108 , a plurality of working electrodes 110 and a biological probe 112 . In some embodiments, the substrate 103 includes a base material 102 and a first insulating layer 104 . The substrate 103 may also include, but is not limited to, other semiconductor materials, such as gallium nitride (GaN), silicon carbide (SiC), silicon germanium (SiGe), germanium, or combinations thereof. The substrate 102 may be, for example, a silicon substrate. Depending on the design requirements in the technical field, the substrate 102 may include a variety of different doping configurations. In one embodiment, the substrate 102 may be a heavily doped, low resistivity semiconductor substrate. In another embodiment, the substrate 103 is a glass substrate without the first insulating layer 104 .

第一絕緣層104配置於基材102之上。在一實施例中,第一絕緣層104可包含但不限於氧化物、氮化物、氮氧化物或其組合,例如氧化矽、氮化矽、氮氧化矽。第一絕緣層104選用低介電常數 (low-K) 的材料,使生物感測元件100具有良好的絕緣性質。在某些實施例中,第一絕緣層104的厚度為約0.02微米 (μm) 至約0.25微米,例如約0.10微米、約0.15微米或約0.20微米。The first insulating layer 104 is disposed on the base material 102 . In one embodiment, the first insulating layer 104 may include, but is not limited to, an oxide, a nitride, an oxynitride, or a combination thereof, such as silicon oxide, silicon nitride, silicon oxynitride. The first insulating layer 104 is made of a low dielectric constant (low-K) material so that the biosensing element 100 has good insulating properties. In some embodiments, the first insulating layer 104 has a thickness of about 0.02 microns (μm) to about 0.25 microns, such as about 0.10 microns, about 0.15 microns, or about 0.20 microns.

金屬傳導層106配置於基板103之上,並且具有側壁107及第一上表面105,其中側壁107鄰接第一上表面105,且第二絕緣層108覆蓋側壁107。在一實施例中,金屬傳導層106可包含但不限於鈦 (Ti)、鎳 (Ni)、銀 (Ag)、鋁 (Al)、銅鋁合金 (AlCu)、銅鋁矽合金 (AlSiCu) 或其組合。在一實施例中,金屬傳導層106的厚度為約0.02微米至約0.7微米,例如為約0.1微米、0.2微米、0.3微米、0.4微米、約0.5微米或約0.6微米。The metal conductive layer 106 is disposed on the substrate 103 and has sidewalls 107 and a first upper surface 105 , wherein the sidewalls 107 are adjacent to the first upper surface 105 , and the second insulating layer 108 covers the sidewalls 107 . In one embodiment, the metal conductive layer 106 may include, but is not limited to, titanium (Ti), nickel (Ni), silver (Ag), aluminum (Al), copper-aluminum alloy (AlCu), copper-aluminum-silicon alloy (AlSiCu) or its combination. In one embodiment, the thickness of the metal conductive layer 106 is about 0.02 microns to about 0.7 microns, such as about 0.1 microns, 0.2 microns, 0.3 microns, 0.4 microns, about 0.5 microns or about 0.6 microns.

各個工作電極110配置於金屬傳導層106的第一上表面105之上,並且各具有第一頂面109及側壁111。各第一頂面109高於金屬傳導層106的第一上表面105之上,各側壁111鄰接於各第一頂面109,且第二絕緣層108僅覆蓋各側壁111的一部分。各個工作電極110具有第一高度H1凸出於金屬傳導層106之上。在一些實施例中,各個工作電極110的第一高度H1為約0.05微米至約1微米,例如為約0.05微米、0.1微米、0.2微米、約0.3微米或約0.4微米。在一些實施例中,各個工作電極110的寬度為約0.08微米至約0.4微米,例如為約0.08微米、0.1微米、0.2微米或約0.3微米。在一實施例中,各個工作電極110具有高寬比 (aspect ratio) 為約0.125至約7.5之間,例如為約0.2或約0.3。Each working electrode 110 is disposed on the first upper surface 105 of the metal conductive layer 106, and each has a first top surface 109 and sidewalls 111. Each first top surface 109 is higher than the first upper surface 105 of the metal conductive layer 106 , each side wall 111 is adjacent to each first top surface 109 , and the second insulating layer 108 only covers a part of each side wall 111 . Each working electrode 110 has a first height H1 protruding above the metal conductive layer 106 . In some embodiments, the first height H1 of each working electrode 110 is about 0.05 micron to about 1 micron, such as about 0.05 micron, 0.1 micron, 0.2 micron, about 0.3 micron or about 0.4 micron. In some embodiments, each working electrode 110 has a width of about 0.08 microns to about 0.4 microns, such as about 0.08 microns, 0.1 microns, 0.2 microns, or about 0.3 microns. In one embodiment, each working electrode 110 has an aspect ratio between about 0.125 and about 7.5, such as about 0.2 or about 0.3.

在本發明部分實施例中,此些工作電極110的形狀可為圓柱體或正多邊形柱體,例如正三角柱體、正四角柱體、正五角柱體、正六角柱體或正八角柱體。在一些實施方式中,此些工作電極110可包含但不限於鉭(Ta)、氮化鉭 (TaN)、銅 (Cu)、鈦 (Ti)、氮化鈦 (TiN)、鎢 (W)、鈦 (Ti)、鎳 (Ni)、銀 (Ag)、鋁 (Al)、銅鋁合金 (AlCu)、銅鋁矽合金 (AlSiCu) 或其組合。在一些實施方式中,此些工作電極110的材料較佳為氮化鈦 (TiN)。In some embodiments of the present invention, the shape of the working electrodes 110 may be a cylinder or a regular polygonal prism, such as a regular triangular prism, a regular tetragonal prism, a regular pentagonal prism, a regular hexagonal prism or a regular octagonal prism. In some embodiments, the working electrodes 110 may include, but are not limited to, tantalum (Ta), tantalum nitride (TaN), copper (Cu), titanium (Ti), titanium nitride (TiN), tungsten (W), Titanium (Ti), nickel (Ni), silver (Ag), aluminum (Al), copper-aluminum alloy (AlCu), copper-aluminum-silicon alloy (AlSiCu) or combinations thereof. In some embodiments, the material of the working electrodes 110 is preferably titanium nitride (TiN).

生物性探針112可藉由各種習知的方法修飾連結於此些工作電極110。根據本發明各種實施方式,生物性探針112可包含但不限於核酸、細胞、抗體、酵素、多肽、胜肽、適體、醣類或其組合。應說明的是,上述的生物性探針112可辨識各種生物性分子。舉例來說,當生物性探針112為抗體時,其可結合至一樣品中的目標分子 (即抗原) 進而以各種習知技術偵測到目標分子的存在。The biological probe 112 can be modified and connected to the working electrodes 110 through various conventional methods. According to various embodiments of the present invention, the biological probe 112 may include, but is not limited to, nucleic acids, cells, antibodies, enzymes, polypeptides, peptides, aptamers, carbohydrates, or combinations thereof. It should be noted that the above-mentioned biological probe 112 can identify various biological molecules. For example, when the biological probe 112 is an antibody, it can bind to a target molecule (ie, an antigen) in a sample and detect the presence of the target molecule using various conventional techniques.

第二絕緣層108覆蓋金屬傳導層106並圍繞此些工作電極110,其中第二絕緣層108的第二上表面113介於此些工作電極110的第一頂面109及金屬傳導層106的第一上表面105之間,使得此些工作電極110凸出第二絕緣層108的第二上表面113。而上述凸出部分具有第二高度H2,為各該第一頂面109至第二絕緣層108的第二上表面113之垂直距離。在一些實施例中,第二高度H2為約0.01微米至約0.55微米,例如為約0.05微米、0.15微米、約0.3微米、約0.45微米、約0.5微米或約0.6微米。藉此,當一電壓施加於此些工作電極110時,將使得此工作電極110產生一電場圍繞在此些凸出的工作電極110。電場的包覆範圍將不限於此些工作電極110的第一頂面109,而會延伸至此些工作電極110的側壁111,使得電化學反應大幅度的增加,進而增加訊號的強度。在施加相同的電壓下,具有立體構造的工作電極110提供優於習知的平面工作電極的靈敏度。The second insulating layer 108 covers the metal conductive layer 106 and surrounds the working electrodes 110 , wherein the second upper surface 113 of the second insulating layer 108 is between the first top surface 109 of the working electrodes 110 and the third surface of the metal conductive layer 106 Between an upper surface 105 , the working electrodes 110 protrude from the second upper surface 113 of the second insulating layer 108 . The above-mentioned protruding portion has a second height H2, which is the vertical distance from each first top surface 109 to the second top surface 113 of the second insulation layer 108. In some embodiments, the second height H2 is about 0.01 micron to about 0.55 micron, such as about 0.05 micron, 0.15 micron, about 0.3 micron, about 0.45 micron, about 0.5 micron or about 0.6 micron. Therefore, when a voltage is applied to the working electrodes 110, the working electrodes 110 will generate an electric field surrounding the protruding working electrodes 110. The coverage range of the electric field will not be limited to the first top surface 109 of the working electrodes 110, but will extend to the side walls 111 of the working electrodes 110, thereby greatly increasing the electrochemical reaction and thereby increasing the intensity of the signal. Under the same applied voltage, the working electrode 110 with the three-dimensional structure provides better sensitivity than the conventional planar working electrode.

在一些實施例中,第二絕緣層108可包含但不限於氧化物、氮化物、氮氧化物或其組合或其化合物,例如氧化矽、氮化矽、氮氧化矽。在一些實施例中,第一絕緣層104的材料與第二絕緣層108的材料相同。在一些實施例中,第一絕緣層104的材料與第二絕緣層108的材料不同。In some embodiments, the second insulating layer 108 may include, but is not limited to, an oxide, a nitride, an oxynitride, a combination thereof or a compound thereof, such as silicon oxide, silicon nitride, silicon oxynitride. In some embodiments, the first insulating layer 104 is made of the same material as the second insulating layer 108 . In some embodiments, the first insulating layer 104 is made of a different material than the second insulating layer 108 .

此外,施加電壓於工作電極110時亦會產生背景雜訊而干擾偵測結果,背景雜訊的產生與電極的截面積有關。當電極的截面積越大,背景雜訊的強度越高。根據本發明一些實施方式中,施加電壓於工作電極110時,工作電極110所產生的電場包覆範圍較習知平面工作電極大。電場的包覆範圍將不限於此些工作電極110的第一頂面109,而會延伸至此些工作電極110的側壁111。故在有效電場包覆範圍相同的情況下,這些工作電極110的寬度可比習知平面工作電極的寬度小。因此,根據本發明實施方式之工作電極110的寬度可以小於習知的平面工作電極的寬度,進而具有小於習知平面工作電極的截面積,降低背景雜訊的產生。In addition, when a voltage is applied to the working electrode 110, background noise will also be generated to interfere with the detection results. The generation of background noise is related to the cross-sectional area of the electrode. When the cross-sectional area of the electrode is larger, the intensity of background noise is higher. According to some embodiments of the present invention, when a voltage is applied to the working electrode 110, the electric field coverage range generated by the working electrode 110 is larger than that of the conventional planar working electrode. The coverage range of the electric field will not be limited to the first top surfaces 109 of the working electrodes 110 , but will extend to the sidewalls 111 of the working electrodes 110 . Therefore, when the effective electric field coverage range is the same, the width of these working electrodes 110 can be smaller than the width of conventional planar working electrodes. Therefore, the width of the working electrode 110 according to the embodiment of the present invention can be smaller than the width of the conventional planar working electrode, and thus has a smaller cross-sectional area than the conventional planar working electrode, thereby reducing the generation of background noise.

如前文所述,在某些實施方式中,各個工作電極110的第一高度H1為約0.05微米至約0.6微米。當各個工作電極110之第一高度H1小於0.05微米時,將使得各個工作電極110凸出部分之第二高度H2小於0.01微米。在此情況下,當施加電壓於工作電極110時,有效電場範圍增加的程度有限,導致提高生物性探針112之電化學反應的效果不明顯。據此,可知工作電極110凸出部分越高,其有效電場的包覆範圍越廣,電化學反應亦越佳。惟須留意,工作電極110之高寬比為約0.125至約7.5。當工作電極110之高寬比大於7.5時,易使得工作電極於結構上產生缺陷,降低整體裝置的可靠度。As mentioned above, in some embodiments, the first height H1 of each working electrode 110 is about 0.05 microns to about 0.6 microns. When the first height H1 of each working electrode 110 is less than 0.05 micron, the second height H2 of the protruding portion of each working electrode 110 will be less than 0.01 micron. In this case, when a voltage is applied to the working electrode 110, the effective electric field range is increased to a limited extent, resulting in an insignificant effect of improving the electrochemical reaction of the biological probe 112. According to this, it can be seen that the higher the protruding part of the working electrode 110 is, the wider the coverage range of its effective electric field is, and the better the electrochemical reaction is. However, it should be noted that the aspect ratio of the working electrode 110 is about 0.125 to about 7.5. When the aspect ratio of the working electrode 110 is greater than 7.5, it is easy to cause structural defects in the working electrode and reduce the reliability of the overall device.

第2圖至第12圖繪示根據本發明一些實施方式之製造生物感測元件200的方法在各製程階段的剖面圖。如第2圖至第3圖所示,提供一基板203。在一些實施方式中,基板203包含基材202及第一絕緣層204,其中第一絕緣層204形成於基材202之上。第一絕緣層204可藉由原子層沉積 (ALD)、物理氣相沉積 (PVD)、化學氣相沉積 (CVD)、化學氧化 (Chemical Oxidation)、熱氧化 (Heat Oxidation) 及/或其他適合的方法來形成。在一實施例中,第一絕緣層204可包含但不限於氧化物、氮化物、氮氧化物或其組合,例如氧化矽、氮化矽、氮氧化矽。在一些實施例中,形成第一絕緣層204的厚度為約0.02微米至約0.25微米,例如為約0.10微米、約0.15微米或約0.20微米。Figures 2 to 12 illustrate cross-sectional views of various process stages of a method of manufacturing the biosensing element 200 according to some embodiments of the present invention. As shown in Figures 2 to 3, a substrate 203 is provided. In some embodiments, the substrate 203 includes a base material 202 and a first insulating layer 204, where the first insulating layer 204 is formed on the base material 202. The first insulating layer 204 can be formed by atomic layer deposition (ALD), physical vapor deposition (PVD), chemical vapor deposition (CVD), chemical oxidation (Chemical Oxidation), thermal oxidation (Heat Oxidation) and/or other suitable processes. method to form. In one embodiment, the first insulating layer 204 may include, but is not limited to, an oxide, a nitride, an oxynitride, or a combination thereof, such as silicon oxide, silicon nitride, silicon oxynitride. In some embodiments, the first insulating layer 204 is formed to a thickness of about 0.02 microns to about 0.25 microns, such as about 0.10 microns, about 0.15 microns, or about 0.20 microns.

繼續參閱第4圖,在此步驟中,形成一金屬傳導層206於第一絕緣層204之上。在一些實施方式中,金屬傳導層206可利用PVD、CVD、電子束蒸鍍 (Electron Beam Evaporation)、濺鍍、電鍍及/或其他適合的製程來形成。在一實施例中,金屬傳導層206可包含但不限於鈦 (Ti)、鎳 (Ni)、銀 (Ag)、鋁 (Al)、銅鋁合金 (AlCu)、銅鋁矽合金 (AlSiCu) 或其組合。在一實施例中,形成金屬傳導層206的厚度為約0.3微米至約0.5微米,例如為約0.3微米、約0.4微米或約0.5微米。Continuing to refer to FIG. 4 , in this step, a metal conductive layer 206 is formed on the first insulating layer 204 . In some embodiments, the metal conductive layer 206 may be formed using PVD, CVD, electron beam evaporation, sputtering, electroplating and/or other suitable processes. In one embodiment, the metal conductive layer 206 may include, but is not limited to, titanium (Ti), nickel (Ni), silver (Ag), aluminum (Al), copper-aluminum alloy (AlCu), copper-aluminum-silicon alloy (AlSiCu) or its combination. In one embodiment, the metal conductive layer 206 is formed with a thickness of about 0.3 microns to about 0.5 microns, such as about 0.3 microns, about 0.4 microns, or about 0.5 microns.

現參照第5圖,在此步驟中,沉積一導電層208於金屬傳導層206上。在一些實施方式中,導電層208可利用PVD、CVD、電子束蒸鍍 (Electron Beam Evaporation)、濺鍍、電鍍及/或其他適合的製程來形成。在一些實施方式中,導電層208可包含但不限於鉭 (Ta)、氮化鉭 (TaN)、銅 (Cu)、鈦 (Ti)、氮化鈦 (TiN)、鎢 (W) 或其組合。在一些實施例中,導電層208的厚度為約0.05微米至約0.6微米,例如為約0.1微米、約0.2微米、約0.3微米或約0.4微米。Referring now to FIG. 5 , in this step, a conductive layer 208 is deposited on the metal conductive layer 206 . In some embodiments, the conductive layer 208 may be formed using PVD, CVD, electron beam evaporation, sputtering, electroplating, and/or other suitable processes. In some embodiments, conductive layer 208 may include, but is not limited to, tantalum (Ta), tantalum nitride (TaN), copper (Cu), titanium (Ti), titanium nitride (TiN), tungsten (W), or combinations thereof . In some embodiments, conductive layer 208 has a thickness of about 0.05 microns to about 0.6 microns, such as about 0.1 microns, about 0.2 microns, about 0.3 microns, or about 0.4 microns.

現參照第6圖至第7圖,對導電層208進行圖案化製程,而形成多個工作電極212 (僅例示性顯示單個工作電極)。如第6圖所示,利用光罩210及微影製程在導電層208上方形成圖案化光阻層 (未繪示),此光阻層可例如為正型光阻或負型光阻。接著來到第7圖,利用圖案化光阻層對導電層208執行蝕刻製程,而形成多個工作電極212,並暴露出金屬傳導層206的第一上表面205。各個工作電極212具有第一高度H1。各個工作電極212具有第一頂面209及側壁211。各第一頂面209高於金屬傳導層206的第一上表面205之上。各側壁211鄰接於各第一頂面209。Referring now to FIGS. 6 to 7 , a patterning process is performed on the conductive layer 208 to form a plurality of working electrodes 212 (only a single working electrode is shown as an example). As shown in FIG. 6 , a patterned photoresist layer (not shown) is formed on the conductive layer 208 using a photomask 210 and a lithography process. This photoresist layer may be, for example, a positive photoresist or a negative photoresist. Next, coming to FIG. 7 , an etching process is performed on the conductive layer 208 using a patterned photoresist layer to form a plurality of working electrodes 212 and expose the first upper surface 205 of the metal conductive layer 206 . Each working electrode 212 has a first height H1. Each working electrode 212 has a first top surface 209 and side walls 211 . Each first top surface 209 is higher than the first top surface 205 of the metal conductive layer 206 . Each side wall 211 is adjacent to each first top surface 209 .

繼續參照第8圖至第9圖,對金屬傳導層206進行圖案化製程。如第8圖所示,利用光罩214及微影製程在工作電極212及金屬傳導層206上方形成圖案化光阻層 (未繪示),此光阻層可例如為正光阻或負光阻。接著來到第9圖,利用圖案化光阻層對金屬傳導層206執行蝕刻製程,暴露出下方第一絕緣層204之部分上表面,使得金屬傳導層206具有一側壁207鄰接第一上表面205及下方暴露的第一絕緣層204之部分上表面。Continuing to refer to Figures 8 to 9, a patterning process is performed on the metal conductive layer 206. As shown in FIG. 8 , a patterned photoresist layer (not shown) is formed on the working electrode 212 and the metal conductive layer 206 using a photomask 214 and a lithography process. This photoresist layer can be, for example, a positive photoresist or a negative photoresist. . Next, coming to Figure 9, the metal conductive layer 206 is etched using a patterned photoresist layer to expose part of the upper surface of the lower first insulating layer 204, so that the metal conductive layer 206 has a side wall 207 adjacent to the first upper surface 205. and a portion of the upper surface of the first insulating layer 204 exposed below.

參照第10圖,沉積絕緣材料層216於第一絕緣層204、金屬傳導層206以及此些工作電極212之上。在此步驟中,絕緣材料層216可例如保角地覆蓋第一絕緣層204、金屬傳導層206及此些工作電極212。在一些實施方式中,絕緣材料層216可為多層,且各層材料彼此相異。在一些實施方式中,絕緣材料層216可為多層,且各層材料彼此相同。在一些實施方式中,絕緣材料層可利用PVD、CVD、電漿增強型化學氣相沉積(Plasma enhanced CVD,PECVD)及/或其他適合的製程來形成。Referring to FIG. 10 , an insulating material layer 216 is deposited on the first insulating layer 204 , the metal conductive layer 206 and the working electrodes 212 . In this step, the insulating material layer 216 may, for example, conformally cover the first insulating layer 204, the metal conductive layer 206 and the working electrodes 212. In some embodiments, the insulating material layer 216 can be multiple layers, and the materials of each layer are different from each other. In some embodiments, the insulating material layer 216 can be multiple layers, and the materials of each layer are the same as each other. In some embodiments, the insulating material layer may be formed using PVD, CVD, plasma enhanced chemical vapor deposition (Plasma enhanced CVD, PECVD) and/or other suitable processes.

在一實施例中,絕緣材料層216可包含但不限於氧化物、氮化物、氮氧化物或其組合,例如氧化矽、氮化矽、氮氧化矽。在一實施例中,絕緣材料層216為四乙氧基矽烷。In one embodiment, the insulating material layer 216 may include, but is not limited to, oxides, nitrides, oxynitrides, or combinations thereof, such as silicon oxide, silicon nitride, silicon oxynitride. In one embodiment, the insulating material layer 216 is tetraethoxysilane.

接著參照第11圖,對絕緣材料層216進行平坦化製程以形成第二絕緣層218。在此步驟中,對上述絕緣材料層216進行平坦化製程,以得到具有實質平坦上表面的第二絕緣層218。在一實施例中,平坦化製程可以為化學機械平坦化 (CMP) 及/或其他適合的製程。在一些實施例中,絕緣材料層216為多層絕緣材料層,且各層材料彼此相異,使得平坦化製程效率較佳。Next, referring to FIG. 11 , a planarization process is performed on the insulating material layer 216 to form a second insulating layer 218 . In this step, a planarization process is performed on the insulating material layer 216 to obtain a second insulating layer 218 with a substantially flat upper surface. In one embodiment, the planarization process may be chemical mechanical planarization (CMP) and/or other suitable processes. In some embodiments, the insulating material layer 216 is a multi-layer insulating material layer, and the materials of each layer are different from each other, so that the planarization process efficiency is better.

最後參照第12圖,藉由適當的蝕刻製程移除部分第二絕緣層218,使得第二絕緣層218的第二上表面213介於金屬傳導層206的第一上表面205與此些工作電極212的第一頂面209之間。故此些工作電極212凸出第二絕緣層218的第二上表面213,而上述凸出部分具有第二高度H2,為各該第一頂面209至第二絕緣層218的第二上表面213之垂直距離。在一些實施例中,第二高度H2為約0.01微米至約0.5微米,例如為約0.05微米、0.15微米、約0.3微米或約0.45微米。在一些實施例中,可進一步將生物性探針修飾於此些工作電極212之上,使得生物性探針連結至此些工作電極212的第一頂面209。Finally, referring to FIG. 12, part of the second insulating layer 218 is removed through an appropriate etching process, so that the second upper surface 213 of the second insulating layer 218 is between the first upper surface 205 of the metal conductive layer 206 and the working electrodes. 212 between the first top surface 209 . Therefore, the working electrodes 212 protrude from the second upper surface 213 of the second insulating layer 218, and the protruding portions have a second height H2, which is from the first top surface 209 to the second upper surface 213 of the second insulating layer 218. the vertical distance. In some embodiments, the second height H2 is about 0.01 micron to about 0.5 micron, such as about 0.05 micron, 0.15 micron, about 0.3 micron or about 0.45 micron. In some embodiments, biological probes can be further modified on the working electrodes 212 so that the biological probes are connected to the first top surfaces 209 of the working electrodes 212 .

根據本發明之各種實施方式所製造的生物感測元件,可相容於各種生物感測裝置。第13圖繪示本發明某些實施方式之生物感測裝置300的上視圖,第14A圖繪示沿第13圖中AA線段的剖視圖。如第13圖及第14A圖所示,生物感測裝置300包含基板303、金屬傳導層306a、金屬傳導層306b、第二絕緣層308、多個工作電極310、對電極 (counter electrode) 312、生物性探針314、信號檢測單元316及導線318。Biosensing elements manufactured according to various embodiments of the present invention are compatible with various biosensing devices. Figure 13 shows a top view of the biosensing device 300 according to some embodiments of the present invention, and Figure 14A shows a cross-sectional view along line segment AA in Figure 13. As shown in Figures 13 and 14A, the biosensing device 300 includes a substrate 303, a metal conductive layer 306a, a metal conductive layer 306b, a second insulating layer 308, a plurality of working electrodes 310, a counter electrode 312, Biological probe 314, signal detection unit 316 and wire 318.

各個工作電極310及對電極312可藉由一或多條導線318電性連接至信號檢測單元316。據此,如第14A圖所示,當施加一電壓於此些工作電極310時,會使得此些電極310產生各自的電場E,其圍繞對應的工作電極310。此時,接著提供一待測樣品與前述生物性探針314接觸。若待測樣品中的目標分子與生物性探針314結合時,此些工作電極310會產生一信號,所產生的信號藉由導線318傳送至信號檢測單元316,進而偵測到目標分子的存在。Each working electrode 310 and counter electrode 312 can be electrically connected to the signal detection unit 316 through one or more wires 318 . Accordingly, as shown in FIG. 14A, when a voltage is applied to the working electrodes 310, the electrodes 310 will generate respective electric fields E, which surround the corresponding working electrodes 310. At this time, a sample to be tested is then provided to contact the aforementioned biological probe 314. If the target molecule in the sample to be tested binds to the biological probe 314, these working electrodes 310 will generate a signal, and the generated signal will be transmitted to the signal detection unit 316 through the wire 318, thereby detecting the presence of the target molecule. .

繼續參照第14A圖,金屬傳導層306b配置於第一絕緣層304之上。對電極312配置於金屬傳導層306b之上。多個工作電極310配置於金屬傳導層306a的第一上表面307上。在一些實施例中,金屬傳導層306b的材料與金屬傳導層306a的材料相同。在一些實施例中,金屬傳導層306b的材料與金屬傳導層306a的材料相異。至於基板303、基材302、金屬傳導層306a、第二絕緣層308、此些工作電極310、生物性探針314可與前文所述之基板103、基材102、金屬傳導層106、第二絕緣層108、多個工作電極110、生物性探針112相同,於此不再重複贅述。Continuing to refer to FIG. 14A, the metal conductive layer 306b is disposed on the first insulating layer 304. The counter electrode 312 is disposed on the metal conductive layer 306b. A plurality of working electrodes 310 are arranged on the first upper surface 307 of the metal conductive layer 306a. In some embodiments, the material of metal conductive layer 306b is the same as the material of metal conductive layer 306a. In some embodiments, the material of metal conductive layer 306b is different from the material of metal conductive layer 306a. As for the substrate 303, the base material 302, the metal conductive layer 306a, the second insulating layer 308, the working electrode 310, and the biological probe 314, they can be combined with the aforementioned substrate 103, the base material 102, the metal conductive layer 106, and the second insulating layer 308. The insulating layer 108, the plurality of working electrodes 110, and the biological probe 112 are the same and will not be repeated here.

接著參照第14B圖,係依據第14A圖繪示其局部放大示意圖。當施加電壓於此些工作電極310時,會使得此些工作電極310產生各自的電場。例示 性地,電場E75繪示空間中各點75%最大電場強度所連成的電場線。換言之,在電場E75所包覆的範圍「內」其各點電場強度皆大於75%最大電場強度。例示性地,電場E50繪示空間中各點50%最大電場強度所連成的電場線。換言之,在電場E50所包覆的範圍「內」其各點電場強度皆大於50%最大電場強度。根據一些實施方式,施加電壓於此些工作電極310時,會使得75%最大電場強度(即最大電場強度乘上0.75)出現在從第一頂面311朝下方位移約第二高度H2的27-40%之處 (即電場E75所連成的電場線與此些工作電極310交會之處);換言之,75%最大電場強度出現在第二上表面313上方約60-73%的第二高度H2之處。根據一些實施方式,施加電壓於此些工作電極310時,會使得50%最大電場強度 (即最大電場強度乘上0.5) 出現在從第一頂面311朝下方位移約第二高度H2的80-93%之處 (即電場E50所連成的電場線與此些工作電極310交會之處);換言之,50%最大電場強度出現在第二上表面313上方約7-20%的第二高度H2之處。Next, referring to Figure 14B, a partial enlarged schematic diagram is shown based on Figure 14A. When a voltage is applied to the working electrodes 310, the working electrodes 310 will generate respective electric fields. Illustratively, the electric field E75 represents the electric field lines connected by 75% of the maximum electric field intensity at each point in space. In other words, the electric field intensity at each point within the range covered by the electric field E75 is greater than 75% of the maximum electric field intensity. For example, the electric field E50 represents the electric field lines connected by 50% of the maximum electric field intensity at each point in space. In other words, the electric field intensity at each point within the range covered by the electric field E50 is greater than 50% of the maximum electric field intensity. According to some embodiments, when a voltage is applied to these working electrodes 310, 75% of the maximum electric field intensity (ie, the maximum electric field intensity multiplied by 0.75) will appear at 27-27-27°C downwardly displaced from the first top surface 311 to the second height H2. 40% (that is, where the electric field lines connected by the electric field E75 intersect with these working electrodes 310); in other words, 75% of the maximum electric field intensity appears at about 60-73% of the second height H2 above the second upper surface 313 place. According to some embodiments, when a voltage is applied to these working electrodes 310, 50% of the maximum electric field strength (ie, the maximum electric field strength multiplied by 0.5) will appear at 80- 80-200 degrees downward from the first top surface 311 to the second height H2. 93% (that is, where the electric field lines connected by the electric field E50 intersect with these working electrodes 310); in other words, 50% of the maximum electric field intensity appears at the second height H2 of about 7-20% above the second upper surface 313 place.

電場分析模擬Electric field analysis simulation

本實驗利用COMSOL Multiphysics 4.4模擬分析軟體,進行電場強度的模擬分析。如下表一所示,當工作電極為圓形時,實施例1為具有半徑0.05微米的圓形工作電極,最大電場數值為2.86 x 106 (v/m);實施例2為具有半徑0.1微米的圓形工作電極,最大電場數值為1.85 x 106 (v/m);實施例3為具有半徑0.2微米的圓形工作電極,最大電場數值為7.75 x 105 (v/m)。This experiment uses COMSOL Multiphysics 4.4 simulation analysis software to conduct simulation analysis of electric field strength. As shown in Table 1 below, when the working electrode is circular, Example 1 is a circular working electrode with a radius of 0.05 microns, and the maximum electric field value is 2.86 x 106 (v/m); Example 2 is a circular working electrode with a radius of 0.1 microns. The circular working electrode has a maximum electric field value of 1.85 x 106 (v/m); Example 3 is a circular working electrode with a radius of 0.2 microns, and the maximum electric field value is 7.75 x 105 (v/m).

表一 工作電極 電極半徑 (µm) 最大電場數值 (v/m) 實施例1 0.05 2.86 x 10 6 實施例2 0.1 1.85 x 10 6 實施例3 0.2 7.75 x 10 5 Table I working electrode Electrode radius (µm) Maximum electric field value (v/m) Example 1 0.05 2.86 x 10 6 Example 2 0.1 1.85 x 10 6 Example 3 0.2 7.75 x 10 5

由上述可知,當工作電極的半徑減少時,最大電場數值則會增加。接著,如下表二所示,模擬工作電極凸出部分之電場的包覆範圍及強度。當工作電極為傳統的平面工作電極時,高度為0微米,故無側壁,無論100%、75%或50%最大電場強度皆出現於工作電極之表面上。接著如下表二所示,當工作電極第二高度H2為0.15微米時,自工作電極頂面朝向下方絕緣層計算,75%最大電場強度出現於距離工作電極頂面0.05微米之處;而50%最大電場強度出現於距離工作電極頂面0.13微米之處。It can be seen from the above that when the radius of the working electrode decreases, the maximum electric field value will increase. Next, as shown in Table 2 below, simulate the coverage range and intensity of the electric field in the protruding part of the working electrode. When the working electrode is a traditional planar working electrode, the height is 0 microns, so there is no side wall, and no matter 100%, 75% or 50% of the maximum electric field intensity appears on the surface of the working electrode. Next, as shown in Table 2 below, when the second height H2 of the working electrode is 0.15 microns, calculated from the top surface of the working electrode toward the lower insulation layer, 75% of the maximum electric field intensity appears at a distance of 0.05 microns from the top surface of the working electrode; and 50% The maximum electric field intensity occurs at a distance of 0.13 microns from the top surface of the working electrode.

表二 工作電極高度 (µm) 100% 最大電場強度高度處 75% 最大電場強度高度處 50% 最大電場強度高度處 0 0 0 0 0.15 0 0.05 0.13 Table II Working electrode height (µm) 100% maximum electric field intensity height 75% maximum electric field intensity height 50% maximum electric field intensity height 0 0 0 0 0.15 0 0.05 0.13

綜上所述,根據本發明之各種實施方式,生物感測元件具有工作電極凸出於絕緣層。在電化學反應中,當電場越大帶電物體的移動越快。結果電流密度就越高。In summary, according to various embodiments of the present invention, the biosensing element has a working electrode protruding from the insulating layer. In electrochemical reactions, charged objects move faster when the electric field is larger. The result is a higher current density.

習知一電化學反應公式(Electrochemical Methods:Fundamentals and Applications.Allen J.Bard,Larry R.Faulkner,Wiley.ISBN:0471043729)如下: A common knowledge of the electrochemical reaction formula (Electrochemical Methods: Fundamentals and Applications. Allen J. Bard, Larry R. Faulkner, Wiley. ISBN: 0471043729) is as follows:

J A(x,t) 代表帶電物體A在位置x,時間t時的電流密度。z A代表帶電物體A的價數。D A代表帶電物體A的擴散係數。C A(x,t) 代表帶電物體A在位置x,時間t時的濃度。ε(x) 代表帶電物體A在位置x受到的電場。此凸出的工作電極使得電場包覆範圍較廣,對帶電物體的移動受到電場包覆範圍較廣的影響,有助於電化學反應效率的提升,進而增加訊號的強度。據此,本發明實施方式所製得的工作電極寬度可較習知平面電極的面積小,進而提升靈敏度。 J A (x,t) represents the current density of charged object A at position x and time t. z A represents the valence of charged object A. D A represents the diffusion coefficient of charged object A. C A (x,t) represents the concentration of charged object A at position x and time t. ε(x) represents the electric field experienced by charged object A at position x. This protruding working electrode enables the electric field to cover a wider range, and the movement of charged objects is affected by the wider electric field covering range, which helps to improve the efficiency of the electrochemical reaction and thereby increases the intensity of the signal. Accordingly, the width of the working electrode produced by the embodiment of the present invention can be smaller than the area of the conventional planar electrode, thereby improving the sensitivity.

第14A圖所示之實施例中,工作電極310以及對電極312之凸出高度相同,亦即工作電極310之第一頂面311以及對電極312之頂面位於同一平面,但不限於此。於一實施例中,請參照第15圖,第二絕緣層308覆蓋金屬傳導層306a、306b以及其側壁305,以及部分包覆工作電極310以及對電極312之側壁309,以使工作電極310以及對電極312凸出第二絕緣層308之第二上表面313。與第14A圖所示之實施例不同的是,第15圖所示之對電極312之第二頂面3121高於工作電極310之第一頂面311。舉例而言,工作電極310之第一頂面311至對電極312之第二頂面3121之高度差小於0.15微米,於一些實施例中,工作電極310之第一頂面311至對電極312之第二頂面3121之高度差小於0.12微米,或小於0.1微米,或小於0.05微米。In the embodiment shown in Figure 14A, the protruding heights of the working electrode 310 and the counter electrode 312 are the same, that is, the first top surface 311 of the working electrode 310 and the top surface of the counter electrode 312 are located on the same plane, but are not limited to this. In one embodiment, please refer to Figure 15, the second insulating layer 308 covers the metal conductive layers 306a, 306b and their sidewalls 305, and partially covers the sidewalls 309 of the working electrode 310 and the counter electrode 312, so that the working electrode 310 and The counter electrode 312 protrudes from the second upper surface 313 of the second insulating layer 308 . What is different from the embodiment shown in Figure 14A is that the second top surface 3121 of the counter electrode 312 shown in Figure 15 is higher than the first top surface 311 of the working electrode 310. For example, the height difference between the first top surface 311 of the working electrode 310 and the second top surface 3121 of the counter electrode 312 is less than 0.15 microns. In some embodiments, the height difference between the first top surface 311 of the working electrode 310 and the counter electrode 312 is less than 0.15 microns. The height difference of the second top surface 3121 is less than 0.12 microns, or less than 0.1 microns, or less than 0.05 microns.

舉例而言,對電極312凸出於金屬傳導層306b之第三高度H3,亦即對電極312之第二頂面3121至金屬傳導層306b之第一上表面之第三高度H3介於0.05微米至1微米之間。在一些實施例中,對電極312之第三高度H3可為0.1微米、0.15微米、0.2微米、0.25微米、0.3微米、0.35微米、0.4微米、0.45微米、0.5微米、0.55微米、0.6微米或0.65微米。於一實施例中,對電極312凸出於第二絕緣層308之第四高度H4,亦即對電極312之第二頂面3121至第二絕緣層308之第二上表面313之第四高度H4介於0.01微米至0.55微米之間。在一些實施例中,對電極312之第四高度H4可為0.1微米、0.15微米、0.2微米、0.25微米、0.3微米、0.35微米、0.4微米、0.45微米或0.5微米。For example, the counter electrode 312 protrudes from the third height H3 of the metal conductive layer 306b, that is, the third height H3 from the second top surface 3121 of the counter electrode 312 to the first top surface of the metal conductive layer 306b is between 0.05 microns. to 1 micron. In some embodiments, the third height H3 of the counter electrode 312 may be 0.1 micron, 0.15 micron, 0.2 micron, 0.25 micron, 0.3 micron, 0.35 micron, 0.4 micron, 0.45 micron, 0.5 micron, 0.55 micron, 0.6 micron or 0.65 micron. Micron. In one embodiment, the counter electrode 312 protrudes beyond the fourth height H4 of the second insulating layer 308 , that is, the fourth height from the second top surface 3121 of the counter electrode 312 to the second top surface 313 of the second insulating layer 308 H4 is between 0.01 micron and 0.55 micron. In some embodiments, the fourth height H4 of the counter electrode 312 may be 0.1 micron, 0.15 micron, 0.2 micron, 0.25 micron, 0.3 micron, 0.35 micron, 0.4 micron, 0.45 micron or 0.5 micron.

將工作電極之第二高度H2設定為0.05微米,利用COMSOL Multiphysics 4.4模擬分析軟體進行電場強度的模擬分析,分析結果如表三所示。相較於對電極之第四高度H4等於工作電極之第二高度H2 (比較例2),對電極之第四高度H4小於工作電極之第二高度H2 (比較例1) 時將使最大電場數值下降。當對電極之第四高度H4大於工作電極之第二高度H2 (實施例4以及實施例5) 時,則可增強最大電場數值。需注意的是,當對電極之第四高度H4以及工作電極之第二高度H2之高度差大於0.15微米 (實施例6),亦導致最大電場數值下降,因此,對電極之第四高度H4以及工作電極之第二高度H2之高度差應小於0.15微米。Set the second height H2 of the working electrode to 0.05 microns, and use COMSOL Multiphysics 4.4 simulation analysis software to conduct simulation analysis of the electric field intensity. The analysis results are shown in Table 3. Compared with the fourth height H4 of the counter electrode being equal to the second height H2 of the working electrode (Comparative Example 2), when the fourth height H4 of the counter electrode is smaller than the second height H2 of the working electrode (Comparative Example 1), the maximum electric field value will be decline. When the fourth height H4 of the counter electrode is greater than the second height H2 of the working electrode (Embodiment 4 and Embodiment 5), the maximum electric field value can be enhanced. It should be noted that when the height difference between the fourth height H4 of the counter electrode and the second height H2 of the working electrode is greater than 0.15 microns (Embodiment 6), the maximum electric field value is also reduced. Therefore, the fourth height H4 of the counter electrode and The height difference of the second height H2 of the working electrode should be less than 0.15 microns.

表三   對電極第四高度 H4 (µm) 最大電場數值 (v/m) 比較例1 0.01 9.04 x 10 5 比較例2 0.05 9.33 x 10 5 實施例4 0.1 10.00 x 10 5 實施例5 0.15 9.94 x 10 5 實施例6 0.2 8.73 x 10 5 Table 3 Counter electrode fourth height H4 (µm) Maximum electric field value (v/m) Comparative example 1 0.01 9.04 x 10 5 Comparative example 2 0.05 9.33 x 10 5 Example 4 0.1 10.00 x 10 5 Example 5 0.15 9.94 x 10 5 Example 6 0.2 8.73 x 10 5

可以理解的是,工作電極以及對電極間之距離亦將影響工作電極之最大電場數值。舉例而言,在陣列排列之多個工作電極中,遠離對電極之工作電極的最大電場數值相對較小。為了提升工作電極的最大電場數值,請參照第16圖,於一實施例中,基板可區分為多個工作電極區WEA,每一工作電極區WEA內配置多個工作電極310a、310b或310c。對電極312a、312b則包含多個指狀結構3122。對電極312a、312b之指狀結構3122延伸至多個工作電極區WEA之間,形成對電極312a、312b以U型或環型圍繞每一工作電極區WEA之結構,以使每一工作電極區WEA內之多個工作電極310a、310b或310c至對電極312a或312b之距離相近似,以增強距離對電極312a或312b較遠之工作電極310a、310b或310c的最大電場數值,進而增強訊號強度。於一實施例中,每一工作電極區WEA之長軸短軸比介於0.8至1.2。於一較佳實施例中,每一工作電極區WEA之長軸短軸比趨近於1。It can be understood that the distance between the working electrode and the counter electrode will also affect the maximum electric field value of the working electrode. For example, among multiple working electrodes arranged in an array, the maximum electric field value of the working electrode far away from the counter electrode is relatively small. In order to increase the maximum electric field value of the working electrode, please refer to Figure 16. In one embodiment, the substrate can be divided into multiple working electrode areas WEA, and multiple working electrodes 310a, 310b or 310c are arranged in each working electrode area WEA. The counter electrodes 312a and 312b include a plurality of finger structures 3122. The finger-like structures 3122 of the counter electrodes 312a and 312b extend between the plurality of working electrode areas WEA, forming a structure in which the counter electrodes 312a and 312b surround each working electrode area WEA in a U-shape or ring shape, so that each working electrode area WEA The distances between the plurality of working electrodes 310a, 310b or 310c and the counter electrode 312a or 312b are similar to enhance the maximum electric field value of the working electrode 310a, 310b or 310c that is far away from the counter electrode 312a or 312b, thereby enhancing the signal strength. In one embodiment, the major axis to minor axis ratio of each working electrode area WEA ranges from 0.8 to 1.2. In a preferred embodiment, the long axis to short axis ratio of each working electrode area WEA approaches 1.

請再參照第16圖,於一實施例中,本發明之生物感測裝置更包含參考電極319a、319b、319c,其結構與對電極相似,亦即參考電極319a、319b、319c之頂面高於工作電極310a、310b、310c之頂面,且其功能為本發明領域之技術所熟知,故在此不再贅述。工作電極310a、310b與對電極312a匹配,工作電極310c與對電極312b匹配。工作電極310a、310b可分別連接不同的生物性探針以同時偵測不同的目標分子。或者,工作電極310a、310b可連接相同的生物性探針,以增強感測訊號。於一實施例中,受限於基板面積,多個工作電極區WEA可陣列配置且彼此電性連接,工作電極310c可連接相同的生物性探針,以增強感測訊號。Please refer to Figure 16 again. In one embodiment, the biosensing device of the present invention further includes reference electrodes 319a, 319b, and 319c, whose structures are similar to those of the counter electrodes, that is, the top surfaces of the reference electrodes 319a, 319b, and 319c are high on the top surfaces of the working electrodes 310a, 310b, and 310c, and their functions are well known to those skilled in the field of the present invention, so they will not be described again here. The working electrodes 310a and 310b are matched with the counter electrode 312a, and the working electrode 310c is matched with the counter electrode 312b. The working electrodes 310a and 310b can be respectively connected to different biological probes to detect different target molecules simultaneously. Alternatively, the working electrodes 310a and 310b can be connected to the same biological probe to enhance the sensing signal. In one embodiment, limited by the substrate area, multiple working electrode areas WEA can be arranged in an array and electrically connected to each other, and the working electrode 310c can be connected to the same biological probe to enhance the sensing signal.

綜上所述,本發明之生物感測裝置之多個工作電極以及一對電極分別凸出絕緣層,且對電極之凸出高度大於工作電極之凸出高度,如此可增強工作電極之最大電場數值,以增加電化學反應並進而提升感測的靈敏度。To sum up, the plurality of working electrodes and a pair of electrodes of the biosensing device of the present invention respectively protrude from the insulating layer, and the protruding height of the counter electrode is greater than the protruding height of the working electrode. This can enhance the maximum electric field of the working electrode. value to increase the electrochemical reaction and thereby improve the sensitivity of sensing.

前文概述數個實施例之特徵以使得熟習該項技術者可更好地理解本揭示內容之態樣。熟習該項技術者應瞭解,可容易地將本揭示內容用作設計或修改用於實現相同目的及/或達成本文引入之實施例的相同優點之其他製程及結構之基礎。熟習該項技術者亦應認識到,此類等效物構造不違背本揭示內容之精神及範疇,且可在不違背本揭示內容之精神及範疇之情況下於此作出各種變化、替代以及變更。The foregoing summarizes features of several embodiments to enable those skilled in the art to better understand the aspects of the present disclosure. Those skilled in the art should appreciate that the present disclosure may readily be utilized as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not violate the spirit and scope of this disclosure, and various changes, substitutions and alterations can be made here without violating the spirit and scope of this disclosure. .

100:生物感測元件 102:基材 103:基板 104:第一絕緣層 105:第一上表面 106:金屬傳導層 107:側壁 108:第二絕緣層 109:第一頂面 110:工作電極 111:側壁 112:生物性探針 113:第二上表面 200:生物感測元件 202:基材 203:基板 204:第一絕緣層 205:第一上表面 206:金屬傳導層 207:側壁 208:導電層 209:第一頂面 210:光罩 211:側壁 212:工作電極 213:第二上表面 214:光罩 216:絕緣材料層 218:第二絕緣層 300:生物感測裝置 302:基材 303:基板 304:第一絕緣層 305:側壁 306a:金屬層 306b:金屬層 307:第一上表面 308:第二絕緣層 309:側壁 310:工作電極 310a、310b、310c:工作電極 311:第一頂面 312:對電極 3121:第二頂面 3122:指狀結構 312a、312b:對電極 313:第二上表面 314:生物性探針 316:信號檢測單元 318:導線 319a、319b、319c:參考電極 E:電場 E75:電場 E50:電場 H1:第一高度 H2:第二高度 H3:第三高度 H4:第四高度 WEA:工作電極區 100:Biosensing components 102:Substrate 103:Substrate 104: First insulation layer 105: First upper surface 106: Metal conductive layer 107:Side wall 108: Second insulation layer 109:First top surface 110: working electrode 111:Side wall 112:Biological probe 113:Second upper surface 200:Biosensing components 202:Substrate 203:Substrate 204: First insulation layer 205: First upper surface 206: Metal conductive layer 207:Side wall 208:Conductive layer 209:First top surface 210: Photomask 211:Side wall 212: Working electrode 213:Second upper surface 214: Photomask 216: Insulating material layer 218: Second insulation layer 300:Biological sensing device 302:Substrate 303:Substrate 304: First insulation layer 305:Side wall 306a: Metal layer 306b: Metal layer 307: First upper surface 308: Second insulation layer 309:Side wall 310: working electrode 310a, 310b, 310c: working electrode 311:First top surface 312:Counter electrode 3121:Second top surface 3122:Finger-like structure 312a, 312b: counter electrode 313: Second upper surface 314:Biological probe 316: Signal detection unit 318:Wire 319a, 319b, 319c: reference electrode E: Electric field E75: Electric field E50: Electric field H1: first height H2: second height H3: The third height H4: The fourth height WEA: working electrode area

本發明之實施例係依據以下詳盡的敘述搭配圖式做閱讀。 第1圖繪示根據本發明一些實施方式之一種生物感測元件的剖面圖。 第2圖至第12圖繪示根據本發明一些實施方式,生物感測元件在製程各個階段的剖面圖。 第13圖繪示根據本發明一些實施方式,一種生物感測裝置的頂視圖。 第14A圖繪示根據本發明一些實施方式,一種生物感測裝置AA線的剖視圖。 第14B圖係依據第14A圖,繪示其剖視圖的局部放大示意圖。 第15圖為繪示根據本發明一些實施方式,一種生物感測裝置的剖視圖。 第16圖為繪示根據本發明一些實施方式,一種生物感測裝置的工作電極、對電極以及參考電極的配置圖。 The embodiments of the present invention are read based on the following detailed description and drawings. Figure 1 illustrates a cross-sectional view of a biosensing element according to some embodiments of the present invention. Figures 2 to 12 illustrate cross-sectional views of biosensing elements at various stages of the manufacturing process according to some embodiments of the present invention. Figure 13 illustrates a top view of a biosensing device according to some embodiments of the present invention. Figure 14A illustrates a cross-sectional view of a biosensing device along line AA according to some embodiments of the present invention. Figure 14B is a partially enlarged schematic diagram of the cross-sectional view based on Figure 14A. Figure 15 is a cross-sectional view of a biosensing device according to some embodiments of the present invention. Figure 16 is a diagram illustrating the configuration of working electrodes, counter electrodes and reference electrodes of a biosensing device according to some embodiments of the present invention.

302:基材 302:Substrate

303:基板 303:Substrate

304:第一絕緣層 304: First insulation layer

305:側壁 305:Side wall

306a:金屬層 306a: Metal layer

306b:金屬層 306b: Metal layer

307:第一上表面 307: First upper surface

308:第二絕緣層 308: Second insulation layer

309:側壁 309:Side wall

310:工作電極 310: working electrode

311:第一頂面 311:First top surface

312:對電極 312:Counter electrode

3121:第二頂面 3121:Second top surface

313:第二上表面 313: Second upper surface

314:生物性探針 314:Biological probe

H1:第一高度 H1: first height

H2:第二高度 H2: second height

H3:第三高度 H3: The third height

H4:第四高度 H4: The fourth height

Claims (15)

一種生物感測裝置,包含:一基板;多個金屬傳導層,配置於該基板之上,且每一該金屬傳導層具有一第一上表面;多個工作電極,配置於相對應之該金屬傳導層的該第一上表面之上,其中每一該工作電極包含一第一頂面,且每一該第一頂面高於該金屬傳導層的該第一上表面;一對電極,配置於相對應之該金屬傳導層的該第一上表面之上且相鄰於該多個工作電極,其中該對電極包含一第二頂面,且該第二頂面高於該第一頂面,其中,每一該工作電極之該第一頂面至該對電極之該第二頂面之高度差小於0.15微米;以及一絕緣層,覆蓋該金屬傳導層並圍繞該多個工作電極以及該對電極,其中該絕緣層之一第二上表面介於該多個工作電極之該多個第一頂面以及該金屬傳導層之該第一上表面之間,使得該多個工作電極以及該對電極凸出該絕緣層之該第二上表面。 A biosensing device includes: a substrate; a plurality of metal conductive layers arranged on the substrate, and each metal conductive layer has a first upper surface; a plurality of working electrodes arranged on the corresponding metal above the first upper surface of the conductive layer, wherein each working electrode includes a first top surface, and each first top surface is higher than the first upper surface of the metal conductive layer; a pair of electrodes, configured On the corresponding first upper surface of the metal conductive layer and adjacent to the plurality of working electrodes, the pair of electrodes includes a second top surface, and the second top surface is higher than the first top surface , wherein the height difference between the first top surface of each working electrode and the second top surface of the counter electrode is less than 0.15 microns; and an insulating layer covers the metal conductive layer and surrounds the plurality of working electrodes and the Counter electrode, wherein a second upper surface of the insulating layer is between the first top surfaces of the working electrodes and the first upper surface of the metal conductive layer, so that the working electrodes and the The counter electrode protrudes from the second upper surface of the insulating layer. 如請求項1所述之生物感測裝置,其中每一該工作電極之該第一頂面至該對電極之該第二頂面之高度差小於0.1微米。 The biosensing device according to claim 1, wherein the height difference between the first top surface of each working electrode and the second top surface of the counter electrode is less than 0.1 micron. 如請求項1所述之生物感測裝置,其中每一該工作電極之該第一頂面至該對電極之該第二頂面之高度差小於0.05微米。 The biosensing device according to claim 1, wherein the height difference between the first top surface of each working electrode and the second top surface of the counter electrode is less than 0.05 micron. 如請求項1所述之生物感測裝置,其中每一該工作電極之高寬比介於0.125至7.5之間。 The biosensing device of claim 1, wherein the aspect ratio of each working electrode is between 0.125 and 7.5. 如請求項1所述之生物感測裝置,其中每一該工作電極之該第一頂面至該第一上表面之一第一高度介於0.05微米至1微米之間。 The biosensing device of claim 1, wherein a first height from the first top surface of each working electrode to the first upper surface is between 0.05 micron and 1 micron. 如請求項1所述之生物感測裝置,其中每一該工作電極之該第一頂面至該第二上表面之一第二高度介於0.01微米至0.55微米之間。 The biosensing device of claim 1, wherein a second height from the first top surface to the second top surface of each working electrode is between 0.01 micron and 0.55 micron. 如請求項1所述之生物感測裝置,其中該對電極之該第二頂面至該第一上表面之一第三高度介於0.05微米至1微米之間。 The biosensing device of claim 1, wherein a third height from the second top surface of the pair of electrodes to the first upper surface is between 0.05 micron and 1 micron. 如請求項1所述之生物感測裝置,其中該對電極之該第二頂面至該第二上表面之一第四高度介於0.01微米至0.55微米之間。 The biosensing device as claimed in claim 1, wherein a fourth height from the second top surface of the pair of electrodes to the second upper surface is between 0.01 micron and 0.55 micron. 如請求項1所述之生物感測裝置,其中該基板包含多個工作電極區,每一該工作電極區內配置多個該工作電極,且該對電極包含多個指狀結構,其延伸至該多個工作電極區之間。 The biosensing device according to claim 1, wherein the substrate includes a plurality of working electrode areas, a plurality of the working electrodes are arranged in each working electrode area, and the pair of electrodes includes a plurality of finger-like structures extending to between the multiple working electrode areas. 如請求項9所述之生物感測裝置,其中每一該工作電極區之長軸短軸比介於0.8至1.2。 The biosensing device according to claim 9, wherein the major axis to minor axis ratio of each working electrode region is between 0.8 and 1.2. 如請求項9所述之生物感測裝置,其中該對電極以U型或環型圍繞每一該工作電極區。 The biosensing device according to claim 9, wherein the pair of electrodes surround each of the working electrode areas in a U-shape or a ring-shape. 如請求項1所述之生物感測裝置,其中該絕緣層包覆該金屬傳導層之一側壁。 The biosensing device of claim 1, wherein the insulating layer covers a side wall of the metal conductive layer. 如請求項1所述之生物感測裝置,其中該絕緣層部分包覆每一該工作電極以及該對電極之一側壁。 The biosensing device of claim 1, wherein the insulating layer partially covers each of the working electrode and a side wall of the counter electrode. 如請求項1所述之生物感測裝置,其中每一該工作電極為圓柱體或正多邊形柱體。 The biosensing device according to claim 1, wherein each working electrode is a cylinder or a regular polygonal cylinder. 如請求項1所述之生物感測裝置,其中每一該工作電極包含至少一生物性探針,且該生物性探針為核酸、細胞、抗體、酵素、多肽、胜肽、適體、醣類或其組合。 The biosensing device of claim 1, wherein each working electrode includes at least one biological probe, and the biological probe is nucleic acid, cell, antibody, enzyme, polypeptide, peptide, aptamer, sugar class or combination thereof.
TW110127802A 2021-07-28 2021-07-28 Biosensor apparatus TWI811747B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110127802A TWI811747B (en) 2021-07-28 2021-07-28 Biosensor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110127802A TWI811747B (en) 2021-07-28 2021-07-28 Biosensor apparatus

Publications (2)

Publication Number Publication Date
TW202305356A TW202305356A (en) 2023-02-01
TWI811747B true TWI811747B (en) 2023-08-11

Family

ID=86661393

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127802A TWI811747B (en) 2021-07-28 2021-07-28 Biosensor apparatus

Country Status (1)

Country Link
TW (1) TWI811747B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020179439A1 (en) * 2001-05-31 2002-12-05 Tsu-Tseng Weng Microelectronic system and method of use and fabrication
US20100006451A1 (en) * 2008-07-11 2010-01-14 Neil Gordon Biosensing device and method for detecting target biomolecules in a solution
WO2017194746A1 (en) * 2016-05-13 2017-11-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Biosensor, method for the production thereof, and method for detecting an analyte using the biosensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020179439A1 (en) * 2001-05-31 2002-12-05 Tsu-Tseng Weng Microelectronic system and method of use and fabrication
US20100006451A1 (en) * 2008-07-11 2010-01-14 Neil Gordon Biosensing device and method for detecting target biomolecules in a solution
WO2017194746A1 (en) * 2016-05-13 2017-11-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Biosensor, method for the production thereof, and method for detecting an analyte using the biosensor

Also Published As

Publication number Publication date
TW202305356A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
JP7317855B2 (en) Fabrication of metallic optical metasurfaces
US7872324B2 (en) Suspended nanowire sensor and method for fabricating the same
JP5674466B2 (en) Nanotube device and manufacturing method
EP2762866B1 (en) CMOS gas sensor and method for manufacturing the same
US8395901B2 (en) Vertically-stacked electronic devices having conductive carbon films
JP5759115B2 (en) Manufacturing method of MEMS device having low contact resistance and device obtained thereby
TW201322448A (en) Nanogrid channel fin-fet transistor and biosensor
TW201721873A (en) Semiconductor device and method of manufacturing the same
KR102012577B1 (en) Methods and systems for fabricating nano-electro-mechanical-system probes
CN102692439A (en) Microelectrode system having double-spiral structure, electrochemical sensor and preparation method of the microelectrode system having double-spiral structure
TWI745392B (en) Biosensor device and method for manufacturing thereof and method for detecting biological molecule
JP7252656B2 (en) Biosensing device
TWI811747B (en) Biosensor apparatus
KR20230023493A (en) Biosensor apparatus
CN115684305A (en) Biological sensing device
CN103904209B (en) The preparation method of plane thermoelectric device based on nano wire
US20210349050A1 (en) Biosensor apparatus
EP4124853A1 (en) Biosensor apparatus
CN102593356B (en) Preparation method of horizontal phase change storage irrelevant to photoetching resolution ratio
CN214122090U (en) Tip structure of biosensor chip
US20240077362A1 (en) Bolometer and manufacturing method of temperature sensing unit
CN112304905B (en) High-performance waveguide sensing system and preparation method thereof
RU2806213C1 (en) Method for manufacturing surface ion trap
CN110770160B (en) Flow passage structure device and manufacturing method thereof
TWI293685B (en) Nano-biochemical sensor and fabricating method thereof