TWI810656B - Eflornithine and sulindac, fixed dose combination formulation - Google Patents

Eflornithine and sulindac, fixed dose combination formulation Download PDF

Info

Publication number
TWI810656B
TWI810656B TW110134644A TW110134644A TWI810656B TW I810656 B TWI810656 B TW I810656B TW 110134644 A TW110134644 A TW 110134644A TW 110134644 A TW110134644 A TW 110134644A TW I810656 B TWI810656 B TW I810656B
Authority
TW
Taiwan
Prior art keywords
difluoromethylornithine
sulindac
weight
composition
cancer
Prior art date
Application number
TW110134644A
Other languages
Chinese (zh)
Other versions
TW202200122A (en
Inventor
派脆克 雪南
甘薩萊斯 羅伯特歐 卡羅斯 布拉弗歐
吉恩 杜卡薩屋
Original Assignee
美商癌症預防製藥股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商癌症預防製藥股份有限公司 filed Critical 美商癌症預防製藥股份有限公司
Publication of TW202200122A publication Critical patent/TW202200122A/en
Application granted granted Critical
Publication of TWI810656B publication Critical patent/TWI810656B/en

Links

Abstract

Provided herein are fixed-dose combination formulations of a pharmaceutically effective amount of eflornithine together with a pharmaceutically effective amount of sulindac. Also provided are methods of use and of methods of manufacture of these formulations.

Description

二氟甲基鳥氨酸及舒林酸(SULINDAC),固定劑量組合調配物Difluoromethylornithine and sulindac (SULINDAC), fixed-dose combination formulation

本發明大體上係關於癌症生物學及藥品領域。更特定言之,其關於用於預防及治療癌瘤之組合物。The present invention relates generally to the fields of cancer biology and medicine. More specifically, it relates to compositions for the prevention and treatment of cancer.

癌細胞具有徵用多重路徑之能力以滿足其增加對特定代謝物之需要(Vander Heiden, 2011)。非類固醇抗炎藥(NSAID),包括阿司匹林(aspirin)、布洛芬(ibuprofen)、吡羅昔康(piroxicam) (Reddy等人,1990;Singh等人,1994)、吲哚美辛(indomethacin) (Narisawa,1981)及舒林酸(sulindac) (Piazza等人,1997;Rao等人,1995)在AOM處理之大鼠模型中有效地抑制結腸癌發生。 NSAID舒林酸之代謝物舒林酸碸缺乏COX抑制活性,又在腫瘤細胞中誘導細胞凋亡(Piazza等人,1995;Piazza等人,1997b),且在癌發生之數個嚙齒動物模型中抑制腫瘤發育(Thompson等人,1995;Piazza等人,1995,1997a)。 α-二氟甲基鳥氨酸(DFMO)為鳥氨酸去羧酶(ODC)之酶活化、不可逆的抑制劑,且導致腐胺及其衍生物、亞精胺之胞內濃度損耗(Pegg,1988)。在實驗動物模型中,DFMO為癌發生之強力抑制劑,其在防止諸多器官之致癌物誘導之上皮癌症(包括結腸之彼等癌症)中為尤其活性的(Weeks等人,1982;Thompson等人,1985;Nowels等人,1986;Nigro等人,1987)。 將癌症化學預防研究轉入臨床實踐的主要障礙為超過益處的微小藥劑功效及毒性(Psaty及Potter, 2006;Lippman, 2006)。舉例而言,已展現長期每天口服D,L -α-二氟甲基鳥氨酸(DFMO,二氟甲基鳥氨酸)及舒林酸之聚胺抑制性組合在結腸直腸腺瘤(CRA)患者中的顯著功效(Meyskens等人,2008),然而,治療係與適度的亞臨床耳毒性(McLaren等人,2008)及在具有高基線心臟血管風險之患者中較大數目之心臟血管事件(Zell等人,2009)相關。 已在醫藥領域中認識到且在美國專利第6,428,809號及第6,702,683號中描述與以規律時間間隔投與多個各別劑量之兩種或更多種醫藥相反,以單位劑型共投與兩種或更多種活性醫藥成分的便利性。對患者及臨床醫生的潛在優點包括(1)最小化或消除局部及/或全身性副效應;(2)對併發症的更有效治療;(3)經改良之多重用藥;及(4)與總體疾病管理之更好的患者順應性,其由於對醫師造訪較少、住院減少及患者健康改善,繼而可使得費用降低。以單一劑型合併或共調配之兩種或更多種調配物的固定劑量組合產物可適用於需要改良臨床有效性、增強患者順適性及簡化給藥的多重藥物方案。然而,固體口服劑型之醫藥藥品研發甚至對於單一活性醫藥成分(API)調配物在研究及發展水準及市售製造水準上仍為複雜的。對於多於一種API,預期額外的併發因素,包括(1)藥物-藥物相互作用、(2)藥物-賦形劑相互作用、(3)同時釋放曲線、(4)差異性釋放曲線及(5)各藥物組分之摻合均勻性。鑒於此等障礙,研發具有相同或類似釋放曲線之固定劑量組合作為單一實體藥品通常代表了相當大的挑戰。克服一些或全部此等挑戰的二氟甲基鳥氨酸及舒林酸之固定劑量組合將對有效治療及/或預防大範圍疾病或病症(包括家族性腺瘤息肉病(FAP))具有相當大的潛在影響。Cancer cells have the ability to recruit multiple pathways to meet their increased need for specific metabolites (Vander Heiden, 2011). Nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin, ibuprofen, piroxicam (Reddy et al., 1990; Singh et al., 1994), indomethacin (Narisawa, 1981) and sulindac (Piazza et al., 1997; Rao et al., 1995) effectively inhibited colon carcinogenesis in AOM-treated rat models. Sulindac, a metabolite of the NSAID sulindac, lacks COX-inhibitory activity, induces apoptosis in tumor cells (Piazza et al., 1995; Piazza et al., 1997b), and is active in several rodent models of carcinogenesis. Inhibition of tumor development (Thompson et al., 1995; Piazza et al., 1995, 1997a). α-Difluoromethylornithine (DFMO) is an enzyme-activating, irreversible inhibitor of ornithine decarboxylase (ODC) and causes depletion of intracellular concentrations of putrescine and its derivatives, spermidine (Pegg , 1988). In experimental animal models, DFMO is a potent inhibitor of carcinogenesis, and it is particularly active in preventing carcinogen-induced epithelial cancers of many organs, including those of the colon (Weeks et al., 1982; Thompson et al. , 1985; Nowels et al., 1986; Nigro et al., 1987). The major barriers to translating cancer chemoprevention research into clinical practice are marginal agent efficacy and toxicity that outweigh the benefits (Psaty and Potter, 2006; Lippman, 2006). For example, long-term daily oral administration of D,L -α-difluoromethylornithine (DFMO, difluoromethylornithine) and a polyamine-inhibiting combination of sulindac has been shown to be effective in colorectal adenomas (CRA). ) in patients with significant efficacy (Meyskens et al., 2008), however, treatment was associated with modest subclinical ototoxicity (McLaren et al., 2008) and a greater number of cardiovascular events in patients with high baseline cardiovascular risk (Zell et al., 2009) are related. It is recognized in the field of medicine and described in U.S. Pat. Nos. 6,428,809 and 6,702,683 that co-administering two or more drugs in unit dosage form, as opposed to administering multiple separate doses at regular intervals, or the convenience of more active pharmaceutical ingredients. Potential advantages to patients and clinicians include (1) minimization or elimination of local and/or systemic side effects; (2) more effective treatment of complications; (3) improved polypharmacy; Better patient compliance for overall disease management, which in turn can lead to lower costs due to fewer visits to physicians, fewer hospitalizations, and improved patient health. Fixed dose combinations of two or more formulations combined or co-formulated in a single dosage form may be suitable for use in multiple drug regimens where improved clinical effectiveness, enhanced patient comfort, and simplified dosing are desired. However, drug product development for solid oral dosage forms remains complex at the level of research and development and commercial manufacturing even for single active pharmaceutical ingredient (API) formulations. For more than one API, additional concomitant factors are expected, including (1) drug-drug interactions, (2) drug-excipient interactions, (3) simultaneous release profiles, (4) differential release profiles, and (5) ) Blending uniformity of each drug component. Given these hurdles, developing fixed-dose combinations with identical or similar release profiles as single-entity drug products often represents a considerable challenge. A fixed dose combination of difluoromethylornithine and sulindac that overcomes some or all of these challenges would have considerable potential for the effective treatment and/or prevention of a wide range of diseases or disorders, including familial adenomatous polyposis (FAP). potential impact.

在一個態樣中,本發明提供含有藥學上有效量之二氟甲基鳥氨酸及醫藥學上有效量之非類固醇消炎藥(NSAID)或其代謝物之固定劑量組合的組合物。在一些實施例中,固定劑量組合為醫藥學上有效量之二氟甲基鳥氨酸及醫藥學上有效量之舒林酸。 在一些實施例中,二氟甲基鳥氨酸為二氟甲基鳥氨酸鹽酸鹽單水合物。在一些實施例中,二氟甲基鳥氨酸為二氟甲基鳥氨酸鹽酸鹽單水合物外消旋體。在一些實施例中,二氟甲基鳥氨酸鹽酸鹽單水合物為其兩種對映異構體之外消旋混合物。在一些實施例中,二氟甲基鳥氨酸鹽酸鹽單水合物為實質上光學上純的製劑。在一些實施例中,二氟甲基鳥氨酸鹽酸鹽單水合物為L-二氟甲基鳥氨酸鹽酸鹽單水合物或D-二氟甲基鳥氨酸鹽酸鹽單水合物。在一些實施例中,二氟甲基鳥氨酸為無水游離鹼二氟甲基鳥氨酸。 在一些實施例中,二氟甲基鳥氨酸以約10 mg至約1000 mg之量存在。在一些實施例中,二氟甲基鳥氨酸以約250 mg至約500 mg之量存在。在一些實施例中,二氟甲基鳥氨酸以約300 mg至約450 mg之量存在。在一些實施例中,二氟甲基鳥氨酸以約350 mg至約400 mg之量存在。在一些實施例中,二氟甲基鳥氨酸以約35重量%至約60重量%之量存在。在一些實施例中,二氟甲基鳥氨酸以約40重量%至約55重量%之量存在。在一些實施例中,二氟甲基鳥氨酸以約50重量%至約55重量%之量存在。在一些實施例中,二氟甲基鳥氨酸以約52重量%至約54重量%之量存在。在一些實施例中,二氟甲基鳥氨酸鹽酸鹽單水合物外消旋體之量為52重量%至54重量%。在一些實施例中,二氟甲基鳥氨酸以約375 mg之量存在。在一些實施例中,二氟甲基鳥氨酸鹽酸鹽單水合物外消旋體之量為375 mg。 在一些實施例中,舒林酸以約10 mg至約1500 mg之量存在。在一些實施例中,舒林酸以約50 mg至約100 mg之量存在。在一些實施例中,舒林酸以約70 mg至約80 mg之量存在。在一些實施例中,舒林酸以約75 mg之量存在。在一些實施例中,舒林酸之量為75 mg。在一些實施例中,舒林酸以約5重量%至約20重量%之量存在。在一些實施例中,舒林酸以約8重量%至約15重量%之量存在。在一些實施例中,舒林酸以約10重量%至約12重量%之量存在。在一些實施例中,舒林酸之量為10重量%至11重量%。 在一些實施例中,二氟甲基鳥氨酸以約375 mg之量存在,且舒林酸以約75 mg之量存在。 在一些實施例中,調配物進一步包含賦形劑。在一些實施例中,賦形劑為澱粉、膠態二氧化矽或矽化微晶纖維素。在一些實施例中,賦形劑為膠態二氧化矽。在一些實施例中,調配物進一步包含第二賦形劑。在一些實施例中,第二賦形劑為矽化微晶纖維素。 在一些實施例中,調配物進一步包含潤滑劑。在一些實施例中,潤滑劑為硬脂酸鎂、硬脂酸鈣、硬脂酸鈉、單硬脂酸甘油酯、硬脂酸鋁、聚乙二醇、硼酸或苯甲酸鈉。在一些實施例中,潤滑劑為硬脂酸鎂。在一些實施例中,硬脂酸鎂以約0.25重量%至約2重量%之量存在。在一些實施例中,硬脂酸鎂之量為約0.75重量%至約2重量%。在一些實施例中,硬脂酸鎂之量為約1重量%至約1.5重量%。在一些實施例中,硬脂酸鎂之量為約1.1重量%。在一些實施例中,硬脂酸鎂以約1.5重量%之量存在。 在一些實施例中,組合物係呈膠囊、錠劑、微型錠劑、顆粒、丸粒、溶液、凝膠、乳膏、泡沫或貼片形式。在一些實施例中,組成物係呈錠劑,例如單層錠劑形式。 在一些實施例中,錠劑之重量為約10 mg至約2,500 mg。在一些實施例中,錠劑之重量為約250 mg至約1,500 mg。在一些實施例中,錠劑之重量為約650 mg至約1,000 mg。在一些實施例中,錠劑之重量為約675 mg至約725 mg。在一些實施例中,錠劑之重量為約700 mg。 在一些實施例中,膠囊、微型錠劑、顆粒或丸粒之重量為約10 mg至約2,500 mg。在一些實施例中,膠囊、微型錠劑、顆粒或丸粒之重量為約250 mg至約1,500 mg。在一些實施例中,膠囊、微型錠劑、顆粒或丸粒之重量為約650 mg至約1,000 mg。在一些實施例中,膠囊、微型錠劑、顆粒或丸粒之重量為約675 mg至約725 mg。在一些實施例中,膠囊、微型錠劑、顆粒或丸粒之重量為約700 mg。 在一些實施例中,錠劑進一步包含包衣。在一些實施例中,包衣為調節釋放包衣或腸溶包衣。在一些實施例中,包衣為pH反應性包衣。在一些實施例中,包衣包含鄰苯二甲酸乙酸纖維素(CAP)、苯偏三酸乙酸纖維素(CAT)、聚(乙酸乙烯酯)鄰苯二甲酸酯(PVAP)、鄰苯二甲酸羥基丙基甲基纖維素(HP)、聚(甲基丙烯酸酯丙烯酸乙酯)(1:1)共聚物(MA-EA)、聚(甲基丙烯酸酯甲基丙烯酸甲酯)(1:1)共聚物(MA MMA)、聚(甲基丙烯酸酯甲基丙烯酸甲酯)(1:2)共聚物或丁二酸乙酸羥基丙基甲基纖維素(HPMCAS)。在一些實施例中,包衣掩蓋二氟甲基鳥氨酸之味道。在一些實施例中,包衣包含羥丙基甲基纖維素、二氧化鈦、聚乙二醇及氧化鐵黃。 在一些實施例中,包衣之量為約1重量%至約5重量%。在一些實施例中,包衣之量為約2重量%至約4重量%。在一些實施例中,包衣之量為約3重量%。在一些實施例中,包衣之量為約5 mg至約30 mg。在一些實施例中,包衣之量為約15 mg至約25 mg。在一些實施例中,包衣之量為約21 mg。 在一些實施例中,包含包衣之錠劑的重量為約675 mg至約750 mg。在一些實施例中,包含包衣之錠劑的重量為約700 mg至約725 mg。在一些實施例中,包含包衣之錠劑的重量為約721 mg。 在一個態樣中,提供一種預防及/或治療有需要患者之疾病或病狀的方法,其包含向患者投與本文所提供之醫藥學上有效量之二氟甲基鳥氨酸及醫藥學上有效量之舒林酸的固定劑量組合。 在一些實施例中,該方法進一步包含向患者投與包含本文所提供之醫藥學上有效量之二氟甲基鳥氨酸及醫藥學上有效量之舒林酸的固定劑量組合的第二組合物。在一些實施例中,第一及第二組合物包含相同的固定劑量組合。在一些實施例中,第一及第二投與同時進行。在一些實施例中,第二投與以1秒至1小時之間隔接著第一投與。在一些實施例中,第一及第二組合物均調配為錠劑且含有相同量之二氟甲基鳥氨酸及舒林酸。 在一些實施例中,該疾病為癌症。在一些實施例中,癌症為結腸癌、乳癌、胰臟癌、腦癌、肺癌、胃癌、血液癌、皮膚癌、睪丸癌、前列腺癌、卵巢癌、肝癌或食道癌。在一些實施例中,結腸癌為家族性腺瘤性息肉病。在一些實施例中,癌症為神經內分泌腫瘤。在一些實施例中,神經內分泌腫瘤為神經母細胞瘤。 在一些實施例中,病狀為皮膚病狀。在一些實施例中,皮膚病狀為面部多毛症。 在一些實施例中,組合物經口、動脈內、靜脈內或局部投與。在一些實施例中,組合物經口投與。 在一些實施例中,組合物經口投與。在一些實施例中,組合物每12小時投與。在一些實施例中,組合物每24小時投與。在一些實施例中,至少第二次投與組合物。 在另一態樣中,提供一種製備包含約375 mg二氟甲基鳥氨酸鹽酸鹽及約75 mg舒林酸之錠劑的方法,其包含:(a)預混合舒林酸及賦形劑以形成第一混合物;(b)將第一混合物與包含二氟甲基鳥氨酸及賦形劑之第二混合物混合以形成摻合物;(c)篩分摻合物以形成顆粒狀摻合物;(d)添加潤滑劑至顆粒狀摻合物以獲得最終摻合物;及(e)施加壓縮力至最終摻合物以形成錠劑。在一些實施例中,該方法進一步包含在步驟(d)之前混合顆粒狀摻合物且在步驟(e)之前混合最終摻合物。 在一些實施例中,在第一混合物中存在兩種賦形劑,其中第一賦形劑為膠態二氧化矽,且第二賦形劑為矽化微晶纖維素。在一些實施例中,第二混合物之賦形劑為矽化微晶纖維素。 在一些實施例中,預混合在聚乙烯塗佈之容器中進行。在一些實施例中,混合在擴散摻合器中進行。 在一些實施例中,潤滑劑為硬脂酸鎂。在一些實施例中,在步驟(d)之前,硬脂酸鎂經由篩網進行篩分。在一些實施例中,篩網為500 µm篩網。 在一些實施例中,篩分包含將摻合物施加於旋轉校正器。在一些實施例中,旋轉校正器包含1.0 mm篩網。 在一些實施例中,該方法進一步包含在步驟(d)之後及在步驟(e)之前的預壓縮步驟,其中摻合物用低於步驟(e)之力的力壓縮以預壓縮摻合物,另外其中步驟(e)之壓縮力接著作用於預壓縮摻合物以形成錠劑。在一些實施例中,預壓縮步驟防止錠劑頂裂(tablet capping)。在一些實施例中,預壓縮步驟之壓縮力以步驟(e)中所施加之壓縮力的約5%至約15%來施加。在一些實施例中,預壓縮步驟之壓縮力為2.5 kN至3.5 kN。在一些實施例中,預壓縮步驟之壓縮力為約3 kN。在一些實施例中,步驟(e)之壓縮力為20 kN至35 kN。在一些實施例中,步驟(e)之壓縮力為約25 kN。 在一些實施例中,該方法進一步包含對錠劑進行包覆。在一些實施例中,包衣包含羥丙基甲基纖維素、二氧化鈦、聚乙二醇及氧化鐵黃。 本發明之其他目標、特徵及優點將自以下實施方式而變得顯而易知。應理解,然而,由於在本發明之精神及範疇內的各種改變及修改將自此實施方式對一般熟習此項技術者變得顯而易見,所以指示本發明之較佳實施例的實施方式及特定實例僅以說明方式給與。In one aspect, the present invention provides a composition comprising a fixed dose combination of a pharmaceutically effective amount of difluoromethylornithine and a pharmaceutically effective amount of a non-steroidal anti-inflammatory drug (NSAID) or a metabolite thereof. In some embodiments, the fixed dose combination is a pharmaceutically effective amount of difluoromethylornithine and a pharmaceutically effective amount of sulindac. In some embodiments, the difluoromethylornithine is difluoromethylornithine hydrochloride monohydrate. In some embodiments, difluoromethylornithine is difluoromethylornithine hydrochloride monohydrate racemate. In some embodiments, difluoromethylornithine hydrochloride monohydrate is a racemic mixture of its two enantiomers. In some embodiments, difluoromethylornithine hydrochloride monohydrate is a substantially optically pure preparation. In some embodiments, difluoromethylornithine hydrochloride monohydrate is L-difluoromethylornithine hydrochloride monohydrate or D-difluoromethylornithine hydrochloride monohydrate things. In some embodiments, the difluoromethylornithine is the anhydrous free base difluoromethylornithine. In some embodiments, difluoromethylornithine is present in an amount from about 10 mg to about 1000 mg. In some embodiments, difluoromethylornithine is present in an amount from about 250 mg to about 500 mg. In some embodiments, difluoromethylornithine is present in an amount from about 300 mg to about 450 mg. In some embodiments, difluoromethylornithine is present in an amount from about 350 mg to about 400 mg. In some embodiments, difluoromethylornithine is present in an amount from about 35% to about 60% by weight. In some embodiments, difluoromethylornithine is present in an amount from about 40% to about 55% by weight. In some embodiments, difluoromethylornithine is present in an amount from about 50% to about 55% by weight. In some embodiments, difluoromethylornithine is present in an amount of about 52% to about 54% by weight. In some embodiments, the amount of difluoromethylornithine hydrochloride monohydrate racemate is 52% to 54% by weight. In some embodiments, difluoromethylornithine is present in an amount of about 375 mg. In some embodiments, the amount of difluoromethylornithine hydrochloride monohydrate racemate is 375 mg. In some embodiments, the sulindac is present in an amount from about 10 mg to about 1500 mg. In some embodiments, the sulindac is present in an amount from about 50 mg to about 100 mg. In some embodiments, the sulindac is present in an amount from about 70 mg to about 80 mg. In some embodiments, the sulindac is present in an amount of about 75 mg. In some embodiments, the amount of sulindac is 75 mg. In some embodiments, sulindac is present in an amount from about 5% to about 20% by weight. In some embodiments, sulindac is present in an amount from about 8% to about 15% by weight. In some embodiments, sulindac is present in an amount from about 10% to about 12% by weight. In some embodiments, the amount of sulindac is 10% to 11% by weight. In some embodiments, difluoromethylornithine is present in an amount of about 375 mg and sulindac is present in an amount of about 75 mg. In some embodiments, the formulations further comprise excipients. In some embodiments, the excipient is starch, colloidal silicon dioxide, or silicified microcrystalline cellulose. In some embodiments, the excipient is colloidal silicon dioxide. In some embodiments, the formulation further comprises a second excipient. In some embodiments, the second excipient is silicified microcrystalline cellulose. In some embodiments, the formulation further comprises a lubricant. In some embodiments, the lubricant is magnesium stearate, calcium stearate, sodium stearate, glyceryl monostearate, aluminum stearate, polyethylene glycol, boric acid, or sodium benzoate. In some embodiments, the lubricant is magnesium stearate. In some embodiments, magnesium stearate is present in an amount from about 0.25% to about 2% by weight. In some embodiments, the amount of magnesium stearate is from about 0.75% to about 2% by weight. In some embodiments, the amount of magnesium stearate is from about 1% to about 1.5% by weight. In some embodiments, the amount of magnesium stearate is about 1.1% by weight. In some embodiments, magnesium stearate is present in an amount of about 1.5% by weight. In some embodiments, the compositions are in the form of capsules, lozenges, mini-tablets, granules, pellets, solutions, gels, creams, foams or patches. In some embodiments, the composition is in the form of a lozenge, such as a single-layer lozenge. In some embodiments, the lozenge weighs from about 10 mg to about 2,500 mg. In some embodiments, the lozenge weighs from about 250 mg to about 1,500 mg. In some embodiments, the lozenge weighs from about 650 mg to about 1,000 mg. In some embodiments, the lozenge weighs from about 675 mg to about 725 mg. In some embodiments, the lozenge weighs about 700 mg. In some embodiments, the capsules, mini-tablets, granules or pellets weigh from about 10 mg to about 2,500 mg. In some embodiments, the capsules, mini-tablets, granules or pellets weigh from about 250 mg to about 1,500 mg. In some embodiments, the capsules, mini-tablets, granules or pellets weigh from about 650 mg to about 1,000 mg. In some embodiments, the capsules, mini-tablets, granules or pellets weigh from about 675 mg to about 725 mg. In some embodiments, the weight of the capsule, mini-tablet, granule or pellet is about 700 mg. In some embodiments, the lozenge further comprises a coating. In some embodiments, the coating is a modified release coating or an enteric coating. In some embodiments, the coating is a pH responsive coating. In some embodiments, the coating comprises cellulose acetate phthalate (CAP), cellulose acetate trimellitate (CAT), poly(vinyl acetate) phthalate (PVAP), phthalate Hydroxypropyl methylcellulose formate (HP), poly(methacrylate ethyl acrylate) (1:1) copolymer (MA-EA), poly(methacrylate methyl methacrylate) (1:1) 1) Copolymer (MA MMA), poly(methacrylate methyl methacrylate) (1:2) copolymer or hydroxypropyl methylcellulose acetate succinate (HPMCAS). In some embodiments, the coating masks the taste of difluoromethylornithine. In some embodiments, the coating comprises hydroxypropylmethylcellulose, titanium dioxide, polyethylene glycol, and yellow iron oxide. In some embodiments, the amount of coating is from about 1% to about 5% by weight. In some embodiments, the amount of coating is about 2% to about 4% by weight. In some embodiments, the amount of coating is about 3% by weight. In some embodiments, the amount of coating is from about 5 mg to about 30 mg. In some embodiments, the amount of coating is from about 15 mg to about 25 mg. In some embodiments, the coating amount is about 21 mg. In some embodiments, the weight of the tablet comprising the coating is from about 675 mg to about 750 mg. In some embodiments, the weight of the tablet comprising the coating is from about 700 mg to about 725 mg. In some embodiments, the weight of the tablet comprising the coating is about 721 mg. In one aspect, there is provided a method of preventing and/or treating a disease or condition in a patient in need thereof, comprising administering to the patient a pharmaceutically effective amount of difluoromethylornithine provided herein and a pharmaceutical A fixed dose combination of an effective amount of sulindac. In some embodiments, the method further comprises administering to the patient a second combination comprising a fixed dose combination of a pharmaceutically effective amount of difluoromethylornithine and a pharmaceutically effective amount of sulindac provided herein things. In some embodiments, the first and second compositions comprise the same fixed dose combination. In some embodiments, the first and second administrations are performed simultaneously. In some embodiments, the second administration follows the first administration at an interval of between 1 second and 1 hour. In some embodiments, both the first and second compositions are formulated as lozenges and contain the same amount of difluoromethylornithine and sulindac. In some embodiments, the disease is cancer. In some embodiments, the cancer is colon cancer, breast cancer, pancreatic cancer, brain cancer, lung cancer, stomach cancer, blood cancer, skin cancer, testicular cancer, prostate cancer, ovarian cancer, liver cancer, or esophageal cancer. In some embodiments, the colon cancer is familial adenomatous polyposis. In some embodiments, the cancer is a neuroendocrine tumor. In some embodiments, the neuroendocrine tumor is neuroblastoma. In some embodiments, the condition is a skin condition. In some embodiments, the skin condition is facial hirsutism. In some embodiments, the composition is administered orally, intraarterially, intravenously or topically. In some embodiments, the compositions are administered orally. In some embodiments, the compositions are administered orally. In some embodiments, the composition is administered every 12 hours. In some embodiments, the composition is administered every 24 hours. In some embodiments, the composition is administered at least a second time. In another aspect, there is provided a method of preparing a lozenge comprising about 375 mg difluoromethylornithine hydrochloride and about 75 mg sulindac, comprising: (a) premixing sulindac and excipients excipient to form a first mixture; (b) mixing the first mixture with a second mixture comprising difluoromethylornithine and excipients to form a blend; (c) sieving the blend to form granules (d) adding a lubricant to the granular blend to obtain the final blend; and (e) applying a compressive force to the final blend to form lozenges. In some embodiments, the method further comprises mixing the granular blend prior to step (d) and mixing the final blend prior to step (e). In some embodiments, two excipients are present in the first mixture, wherein the first excipient is colloidal silicon dioxide and the second excipient is silicified microcrystalline cellulose. In some embodiments, the excipient of the second mixture is silicified microcrystalline cellulose. In some embodiments, premixing is performed in polyethylene coated containers. In some embodiments, mixing is performed in a diffusion blender. In some embodiments, the lubricant is magnesium stearate. In some embodiments, prior to step (d), the magnesium stearate is sieved through a screen. In some embodiments, the screen is a 500 µm screen. In some embodiments, sieving comprises applying the blend to a rotation corrector. In some embodiments, the rotation corrector comprises a 1.0 mm screen. In some embodiments, the method further comprises a pre-compression step after step (d) and before step (e), wherein the blend is compressed with a force lower than that of step (e) to pre-compress the blend , further wherein the compressive force of step (e) is subsequently applied to pre-compress the blend to form a lozenge. In some embodiments, the pre-compression step prevents tablet capping. In some embodiments, the compressive force of the pre-compressing step is applied at about 5% to about 15% of the compressive force applied in step (e). In some embodiments, the compression force of the pre-compression step is 2.5 kN to 3.5 kN. In some embodiments, the compression force of the pre-compression step is about 3 kN. In some embodiments, the compressive force of step (e) is 20 kN to 35 kN. In some embodiments, the compressive force of step (e) is about 25 kN. In some embodiments, the method further comprises coating the lozenge. In some embodiments, the coating comprises hydroxypropylmethylcellulose, titanium dioxide, polyethylene glycol, and yellow iron oxide. Other objects, features and advantages of the present invention will become apparent from the following embodiments. It should be understood, however, that the embodiments and specific examples which are preferred embodiments of the invention will become apparent to those of ordinary skill in the art from this description, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art. Given by way of illustration only.

本申請案主張2015年10月30日申請之美國臨時申請案第62/248,810號及2016年7月6日申請之美國臨時申請案第62/358,698號之權利,該等案件之全部內容以引用的方式併入本文中。 在數個態樣中,提供組合物用於二氟甲基鳥氨酸及舒林酸之固定劑量組合(FDC)。亦提供製造本發明之固定劑量組合的方法,其克服與當前方法相關的問題。已經設計製造方法以解決包括藥物-藥物相互作用、藥物-賦形劑相互作用及各藥物組分之摻合均勻性的問題。因此,本發明之固定劑量組合可用於最小化局部及/或全身性副效應、提供更加有效的治療、改良多重用藥且提供更好的患者順應性。I. 家族性腺瘤性息肉病 過量聚胺形成一直涉及上皮癌發生,尤其結直腸癌發生。多胺為較小的普遍存在分子,其涉及各種過程,包括(例如)轉錄、RNA穩定及離子通道選通(Wallace,2000)。在聚胺合成中之第一酶鳥氨酸去羧酶(ODC)對哺乳動物中之正常發育及組織修復為至關重要的,但在大部分成體組織中下調(Gerner及Meyskens,2004)。控制聚胺代謝及輸送中的多種異常導致聚胺水準增加,其可在數種組織中促進腫瘤發生(Thomas及Thomas,2003)。 家族性腺瘤性息肉病(FAP)為與結腸及其他癌症高危相關的症候群。 FAP係由結腸腺瘤息肉病(APC )腫瘤抑制基因的突變導致,且APC信號傳遞展示調節人類細胞(Fultz及Gerner,2002)及FAP之小鼠模型(Erdman等人,1999)中的ODC表現。聚胺代謝在患有FAP之人類的腸道上皮組織中上調(Giardiello等人,1997)。 野生型APC 表現導致ODC表現減少,同時突變APC導致ODC表現增加。 ODC之APC依賴性調節機制涉及E框轉錄因子,包括轉錄活化因子c-MYC 及轉錄抑制因子MAD1 (Fultz及Gerner,2002;Martinez等人,2003)。c-MYC 係藉由其他展示調節ODC轉錄(Bellofernandez等人,1993)。涉及聚胺代謝之數個基因在大部分生物體中為進行最佳生長的必不可少基因,且在非增殖及/或成體細胞及組織中下調(Gerner及Meyskens,2004)。如其他處所回顧,多胺藉由部分影響基因表現之模式來影響特定細胞表現型(Childs等人,2003)。 作為遺傳性息肉病症候群的家族性腺瘤性息肉病(FAP)為結腸腺瘤息肉病(APC)腫瘤抑制基因之生殖系突變的結果(Su等人,1992)。此具有可變表現之常染色體顯性病狀係與數百個結腸腺瘤發育相關,其在四十歲時均發展為腺癌,比偶發性結腸癌的平均診斷年齡早二十年(Bussey,1990)。在對患有FAP之症狀前個人的先前研究中,當與正常的家族成員對照相比時,在看起來正常的結腸直腸生檢中偵測到多胺亞精胺及精胺以及其二胺前驅體腐胺之水準增加(Giardiello等人,1997)。在哺乳動物聚胺合成中的第一及限速酶鳥氨酸去羧酶(ODC)之活性在來自FAP患者之表面上正常的結腸黏膜生檢中亦升高(Giardiello等人,1997;Luk及Baylin,1984)。隨著多胺為最佳細胞增殖所必要,此等研究結果受到關注(Pegg,1986)。另外,使用酶活化不可逆抑制劑DFMO遏制ODC活性在經致癌物處理之嚙齒動物中抑制結腸癌發生(Kingsnorth等人,1983;Tempero等人,1989)。 共有患有FAP之突變型APC /apc 基因型的Min (多個腸道瘤形成)小鼠充當用於人類FAP患者的適用實驗動物模型(Lipkin,1997)。 Min小鼠在整個胃腸道中在120天壽命時可發育大於100個腸胃腺瘤/腺癌,由此導致GI出血、阻塞及死亡。 DFMO與舒林酸之組合療法在此等小鼠中展示有效減少腺瘤。參看美國專利第6,258,845號以及Gerner及Meyskens,2004,其以引用之方式併入本文中。II. 二氟甲基鳥氨酸 當自身供使用且沒有上下文時,術語「二氟甲基鳥氨酸」係指以其任何形式之2,5-二胺-2-(二氟甲基)戊酸,包括非鹽及鹽形式(例如二氟甲基鳥氨酸HCl)、非鹽及鹽形式之無水及水合物形式(例如二氟甲基鳥氨酸鹽酸鹽單水合物)、非鹽及鹽形式之溶劑合物、其對映異構體(RS 形式,其亦可鑑別為dl 形式)及此等對映異構體之混合物(例如外消旋混合物)。「實質上光學上純的製劑」意謂含有約5重量%或更少相反對映異構體之第一對映異構體的製劑。二氟甲基鳥氨酸之特定形式包括二氟甲基鳥氨酸鹽酸鹽單水合物(亦即CAS ID: 96020-91-6;MW: 236.65)、二氟甲基鳥氨酸鹽酸鹽(亦即CAS ID: 68278-23-9;MW: 218.63)及無水游離鹼二氟甲基鳥氨酸(亦即CAS ID: 70052-12-9;MW: 182.17)。若必需,進一步指定二氟甲基鳥氨酸之特定形式。在一些實施例中,本發明之二氟甲基鳥氨酸為二氟甲基鳥氨酸鹽酸鹽單水合物(亦即CAS ID: 96020-91-6)。術語「二氟甲基鳥氨酸」及「DFMO」在本文中可互換地使用。 DFMO為二氟甲基鳥氨酸之縮寫。二氟甲基鳥氨酸及DFMO之其他同義語包括:α-二氟甲基鳥氨酸、2-(二氟甲基)-DL-鳥氨酸、2-(二氟甲基)-dl -鳥氨酸、2-(二氟甲基)鳥氨酸、DL-α-二氟甲基鳥氨酸、N- 二氟甲基鳥氨酸、αδ-二胺-α-(二氟甲基)戊酸及2,5-二胺-2-(二氟甲基)戊酸。 二氟甲基鳥氨酸為鳥氨酸去羧酶(ODC) (聚胺生物合成路徑之限速酶)之酶活化不可逆抑制劑。由於此聚胺合成抑制,化合物有效在諸多器官系統中預防癌症形成、抑制癌症生長且減小腫瘤大小。其亦與其他抗腫瘤劑具有協同作用。 二氟甲基鳥氨酸展示減少小鼠中APC依賴性腸道腫瘤發生(Erdman等人,1999)。每天向人類經口投與二氟甲基鳥氨酸抑制多個上皮組織中之ODC酶活性及聚胺含量(Love等人,1993;Gerner等人,1994;Meyskens等人,1994;Meyskens等人,1998;Simoneau等人,2001;Simoneau等人,2008)。二氟甲基鳥氨酸以及非類固醇消炎藥(NSAID)舒林酸據報導當與隨機臨床試驗中的安慰劑相比時,明顯降低患有結腸腺瘤之個人中的腺瘤復發率(Meyskens等人,2008)。 二氟甲基鳥氨酸藉由Centre de Recherche Merrell,Strasbourg初始合成。目前美國食品藥物管理局(U.S. Food and Drug Administration;FDA)批准包括: ˙  非洲睡眠疾病。高劑量全身性IV劑型,不出售(Sanofi/WHO) ˙  多毛症(男性荷爾蒙誘導之過度毛髮生長)局部劑型 儘管FDA未批准二氟甲基鳥氨酸之口服調配物,但已經批准局部及可注射形式。 Vaniqa®為乳膏,其含有15% w/w二氟甲基鳥氨酸鹽酸鹽單水合物,分別對應於用於局部投與之乳膏中11.5% w/w無水二氟甲基鳥氨酸(EU)、13.9% w/w無水二氟甲基鳥氨酸鹽酸鹽(U.S.)。 Ornidyl®為適用於注射或輸注之二氟甲基鳥氨酸HCl溶液。其以每毫升200 mg二氟甲基鳥氨酸鹽酸鹽單水合物(20 g/100 mL)之強度供應。 二氟甲基鳥氨酸及其在治療良性前列腺肥大中的用途描述於美國專利4,413,141及4,330,559中。'141專利描述二氟甲基鳥氨酸作為試管內及活體內對ODC之強力抑制劑。投與二氟甲基鳥氨酸據報導使得此等多胺通常主動產生之細胞中的腐胺及亞精胺濃度減小。另外,當在標準腫瘤模型中測試時,二氟甲基鳥氨酸展示能夠減緩贅生性細胞增殖。'559專利描述二氟甲基鳥氨酸及二氟甲基鳥氨酸衍生物用於治療良性前列腺肥大。良性前列腺肥大,如特徵為快速細胞增殖之諸多疾病狀態伴隨聚胺濃度異常升高。 二氟甲基鳥氨酸可潛在地連續給與而伴隨顯著的抗腫瘤效應。此藥物以每天0.4 g/m2 之低劑量對人類相對無毒,同時產生抑制腫瘤中之腐胺合成。大鼠腫瘤模型之研究展現二氟甲基鳥氨酸輸注可產生腫瘤腐胺水準降低90%而不遏制周邊血小板數。 以二氟甲基鳥氨酸觀測到之副效應包括以每天4 g/m2 之高劑量對聽覺的效應,當中斷二氟甲基鳥氨酸時即消失。當投與至多一年時,以每天0.4 g/m2 之較低劑量未觀測到對聽覺之此等效應(Meyskens等人,1994)。另外,發現當停止藥物時,幾個眩暈/頭暈情況消失。血小板減少症在使用高「治療性」劑量之二氟甲基鳥氨酸(每天>1.0 g/m2 )的研究中主要報導且在先前進行化學療法之癌症患者或患有骨髓受損之患者中初次報導。儘管與二氟甲基鳥氨酸療法相關之毒性一般而言不與其他類型之化學療法一樣嚴重,但在有限的臨床試驗中發現其促進劑量相關之血小板減少症。此外,大鼠中之研究展示與對照相比,連續輸注二氟甲基鳥氨酸12天顯著減少血小板數。其他研究獲得類似觀測,其中血小板減少症為連續靜脈內二氟甲基鳥氨酸療法之主要毒性。此等研究結果表明二氟甲基鳥氨酸可顯著抑制巨核細胞之骨髓前驅體之ODC活性。二氟甲基鳥氨酸可抑制增殖性修復方法,諸如上皮創傷癒合。 階段III臨床試驗評定用DFMO加上舒林酸或相配安慰劑治療36個月之後的腺瘤息肉復發。暫時性的聽覺喪失為用DFMO治療的已知毒性,因此研發全面的方法來分析連續空氣傳導聲波圖。通用估算等式方法評估在治療組之間關於空氣傳導純音臨限值之改變的平均差,同時計算由於在頻率下重複量測的個體內相關性。基於290名個體,調節基線值、年齡及頻率,與用安慰劑治療之個體相比(95%信賴區間,-0.64至1.63 dB;P=0.39),在用DFMO加上舒林酸治療之個體之間存在0.50 dB之平均差與用安慰劑治療之患者相比,用DFMO加上舒林酸治療之患者的平均臨限值存在<2 dB的差值。此研究之結果更詳細地論述於McLaren等人,2008中,其以全文引用之方式併入本文中。III.   NSAID NSAID為非類固醇的抗發炎劑。除了抗發炎效應以外,據報導其亦具有鎮痛、解熱及抑制血小板效應。其用於例如治療慢性關節炎病狀及與疼痛及發炎相關的某些軟組織病症。據報導其藉由抑制將二十碳四烯酸轉化成環狀內過氧化物(前列腺素之前驅體)的環加氧酶而阻斷前列腺素合成來起作用。抑制前列腺素合成解釋其鎮痛、解熱及抑制血小板作用;其他機制可有助於其抗發炎效應。某些NSAID亦可抑制脂肪加氧酶或磷脂酶C,或可調整T細胞功能。參看AMA Drug Evaluations Annual,1814-5,1994。 非類固醇抗炎藥(NSAID),包括阿司匹林、布洛芬、吡羅昔康(Reddy等人,1990;Singh等人,1994)、吲哚美辛(Narisawa,1981)及舒林酸(Piazza等人,1997;Rao等人,1995)有效地抑制AOM處理之大鼠模型中的結腸癌發生。NSAID亦抑制具有活化Ki-ras之腫瘤發育(Singh及Reddy,1995)。 NSAID似乎經由在腫瘤細胞中誘導細胞凋亡來抑制癌發生(Bedi等人,1995;Lupulescu,1996;Piazza等人,1995;Piazza等人,1997b)。多個研究表明NSAID之化學預防特性(包括誘導細胞凋亡)為其抑制前列腺素合成能力的功能(在DuBois等人,1996;Lupulescu,1996;Vane及Botting,1997中回顧)。然而,研究指示NSAID可經由前列腺素依賴性及非依賴性機制起作用(Alberts等人,1995;Piazza等人,1997a;Thompson等人,1995;Hanif,1996)。 NSAID舒林酸之代謝物舒林酸碸缺乏COX抑制活性,又在腫瘤細胞中誘導細胞凋亡(Piazza等人,1995;Piazza等人,1997b),且在癌發生之數個嚙齒動物模型中抑制腫瘤發育(Thompson等人,1995;Piazza等人,1995,1997a)。 已經檢測數種NSAID在人類臨床試驗中的效應。完成布洛芬之階段IIa試驗(一個月),且發現甚至在300毫克/天之劑量下,在平坦黏膜中之前列腺素E2 (PGE2 )水準顯著降低。 300 mg布洛芬之劑量極低(治療性劑量範圍介於1200-3000毫克/天或更大),且甚至歷經長期仍不大可能發現毒性。然而,在動物化學預防模型中,布洛芬與其他NSAID相比較不有效。A. 阿司匹林 亦稱為乙醯水楊酸之阿司匹林為水楊酸酯藥物,常常用作鎮痛劑以減輕少量疼痛及痛苦,用作解熱劑以減少發熱且用作抗發炎藥物療法。阿司匹林在1897年首次由德國公司Bayer的化學工作者Felix Hoffmann分離出。阿司匹林之主要代謝物柳酸為人類及動物代謝之整體部分。儘管人類中許多可歸因於膳食,但相當大部分經內源性合成。當今,阿司匹林為全球使用最廣泛藥劑之一,估計每年消耗40,000噸。在阿司匹林為由Bayer擁有之註冊商標的國家中,通用術語為乙醯水楊酸(ASA)。 阿司匹林藉由抑制血栓素產生亦具有抗血小板效應,血栓素在正常情況下將血小板分子結合在一起以在血管之受損壁上產生補片。因為血小板補片可在局部及下游變得過大且亦阻斷血流,所以阿司匹林亦以低劑量長期使用以在罹患血液凝塊高危的人類中幫助防止心臟病發作、中風及血液凝塊形成。其亦確立緊接在心臟病發作之後可給與低劑量之阿司匹林以降低再次心臟病發作或心臟組織死亡的風險。阿司匹林可有效預防某些類型之癌症,尤其結腸直腸癌。 經口服用阿司匹林的不良副效應包括腸胃潰瘍、胃出血及耳鳴,尤其以較高劑量時。在兒童及青少年中,由於雷伊氏症候群(Reye's syndrome)風險,不再指定阿司匹林以控制流感類症狀或水痘或其他病毒性疾病之症狀。 阿司匹林為稱作非類固醇抗炎藥(NSAID)之一組藥劑的一部分,但在作用機制上不同於大部分其他NSAID。雖然阿司匹林及在其群組中稱作水楊酸酯之其他藥物具有與其他NSAID類似的效應(解熱、抗發炎、鎮痛),且抑制相同的酶環加氧酶,但阿司匹林(但不為其他水楊酸酯)的確以不可逆方式如此,且不同於其他藥物,影響酶之COX-1變異體而非COX-2變異體。B. 舒林酸及其主要代謝物 舒林酸碸及舒林酸硫化物 舒林酸為具有以下化學名稱之非類固醇、抗發炎劑茚衍生物:(Z)-5-氟-2-甲基-1-((4-(甲亞磺醯基)苯基)亞甲基)-1H-茚-3-乙酸(Physician's Desk Reference,1999)。在不受理論束縛的情況下,亞碸基部分藉由可逆的還原成硫化物代謝物且藉由不可逆的氧化成碸代謝物(依昔舒林(exisulind))在活體內轉化。參看美國專利6,258,845,其以引用之方式併入本文中。亦抑制Ki-ras活化之舒林酸代謝成兩種不同分子,其抑制COX之能力不同,但均能夠經由誘導細胞凋亡來施加化學預防效應。舒林酸碸缺乏COX抑制活性,且最可能以與前列腺素合成無關的方式促進誘導細胞凋亡。可獲得的跡象指示硫化物衍生物為生物學活性化合物中之至少一者。基於此,舒林酸可視為前藥。 舒林酸(Clinoril®)可呈例如150 mg及200 mg錠劑形式獲得。成年人之最常見劑量為150至200 mg一日兩次,最大日劑量為400 mg。在經口投與之後,吸收約90%藥物。峰值血漿水準在空腹患者中在約2小時內達到,且當與食品一起投與時3至4小時達到。舒林酸之平均半衰期為7.8小時:硫化物代謝物之平均半衰期為16.4小時。美國專利第3,647,858號及第3,654,349號涵蓋舒林酸之製劑;兩個專利均以全文引用之方式併入本文中。 指示舒林酸用於急性及長期緩解骨關節炎、類風濕性關節炎、僵直性脊椎炎、急性痛風及急性疼痛肩部之病徵及症狀。藉由舒林酸(每天400 mg)施加之鎮痛及抗發炎效應與藉由阿司匹林(每天4 g)、布洛芬(每天1200 mg)、吲哚美辛(indometacin)(每天125 mg)及苯基丁氮酮(每天400至600 mg)達到的效應相當。舒林酸之副效應包括在幾乎20%患者中的輕度腸胃效應,腹痛及噁心為最頻繁的不適。在至多10%患者中發現CNS副效應,最常報導嗜眠、頭痛及緊張。皮疹及搔癢病在5%患者中發生。用舒林酸之慢性治療可導致嚴重的腸胃毒性,諸如出血、潰瘍及穿孔。 已很好地研究用於化學預防癌症且尤其結腸直腸息肉的舒林酸之潛在用途。舉例而言,均以引用之方式併入本文中的美國專利5,814,625及5,843,929報導舒林酸在人類中的潛在化學預防用途。儘管偶發性腺瘤中的至少一個研究展示無此類效應(Ladenheim等人,1995),但舒林酸展示在家族性腺瘤性息肉病(FAP)患者中產生腺瘤消退(Muscat等人,1994)。舒林酸及其碸代謝物依昔舒林經測試,且繼續針對預防及治療數個癌症類型進行臨床上測試。C. 吡羅昔康 吡羅昔康為非類固醇消炎劑,其用以下化學名稱在治療類風濕性關節炎及骨關節炎中良好確立:1,1-二氧化4-羥基-2-甲基-N -2-吡啶基-2H -1,2-苯并噻嗪-3-甲醯胺。在治療肌肉骨胳病症、痛經及手術後疼痛中亦展現其有用性。其較長半衰期使得其能夠每天投與一次。若經直腸投與,則藥物展示為有效的。腸胃不適為最常報導之副效應。 儘管吡羅昔康在最近的IIb試驗中展現副效應,但吡羅昔康在動物模型(Pollard及Luckert,1989;Reddy等人,1987)中展示為有效的化學預防劑。對NSAID之副效應的大型綜合分析亦指示吡羅昔康比其他NSAID具有更多的副效應(Lanza等人,1995)。 儘管當各藥劑分別投與時,與吡羅昔康相比,DFMO對Ki-ras突變及腫瘤發生施加更大的抑止效應(Reddy等人,1990),但DFMO與吡羅昔康之組合在結腸癌發生之AOM處理之大鼠模型中展示具有協同性化學預防效應(Reddy等人,1990)。在一個研究中,向AOM處理之大鼠投與DFMO或吡羅昔康將具有Ki-ras突變之腫瘤數目自90%分別降低至36%及25% (Singh等人,1994)。藥劑亦降低現有腫瘤中生物化學活性p21 ras之量。D. 塞內昔布 (Celecoxib) 塞內昔布為非類固醇消炎劑,其用以下化學名稱在治療骨關節炎、類風濕性關節炎、急性疼痛、僵直性脊椎炎且減少患有FAP之患者中結腸及直腸息肉數目中良好確立:4-[5-(4-甲基苯基)-3-(三氟甲基)吡唑-1-基]苯磺醯胺。塞內昔布以品牌名稱Celebrex、Celebra及Onsenal由Pfizer出售。塞內昔布為選擇性COX-2抑制劑。塞內昔布之副效應包括心臟及血管疾病率增加30%。另外,腸胃副效應之風險大於80%。E. NSAID 之組合 在一些實施例中,亦可使用各種NSAID之組合。藉由使用較低劑量之兩種或更多種NSAID,在一些實施例中有可能減少與較高劑量之個別NSAID相關的副效應或毒性。舉例而言,在一些實施例中,舒林酸可與塞內昔布一起使用。可彼此組合使用之NSAID的實例包括(但不限於):布洛芬、萘普生(naproxen)、非諾洛芬(fenoprofen)、酮基布洛芬(ketoprofen)、氟比洛芬(flurbiprofen)、奧沙普嗪(oxaprozin)、吲哚美辛(indomethacin)、舒林酸、依託度酸(etodolac)、雙氯芬酸(diclofenac)、吡羅昔康(piroxicam)、美洛昔康(meloxicam)、替諾昔康(tenoxicam)、屈噁昔康(droxicam)、氯諾昔康(lornoxicam)、伊索昔康(isoxicam)、甲芬那酸(mefenamic)、甲氯芬那酸(meclofenamic)、氟芬那酸(flufenamic)、托芬那酸(tolfenamic)、塞內昔布(rofecoxib)、羅非考昔(rofecoxib)、伐地考昔(valdecoxib)、帕瑞考昔(parecoxib)、盧米羅可(lumiracoxib)及依他昔布(etoricoxib)。IV. 二氟甲基鳥氨酸 / 舒林酸組合療法 在一些實施例中,可使用本文所提供之組合物減少患者中癌細胞數目、抑制患者中癌細胞生長及/或預防患者中癌細胞發生。目標癌細胞包括肺癌、腦癌、前列腺癌、腎臟癌、肝癌、卵巢癌、乳房癌、皮膚癌、胃癌、食道癌、頭頸癌、睾丸癌、結腸癌、子宮頸癌、淋巴系統癌及血液癌。在一些實施例中,組合物可用於治療及/或預防結腸癌、家族性腺瘤性息肉病(FAP)、胰臟癌及/或神經母細胞瘤。 在一些實施例中,本文所提供之組合物可用於治療展現癌前症狀之患者,且因此預防癌症發作。關於此類防治性治療的目標細胞及組織包括息肉及其他癌前病變、惡性疾病前、瘤前或指示可能進展為癌症狀態的其他異常表現型。舉例而言,本文所提供之組合物可用於預防具有極少額外毒性的腺瘤。共有患有FAP之突變型APC/apc 基因型的Min (多個腸道瘤形成)小鼠充當用於人類FAP患者的適用實驗動物模型(Lipkin,1997)。 Min小鼠在整個胃腸道中在120天壽命時可發育大於100個腸胃腺瘤/腺癌,由此導致GI出血、阻塞及死亡。 DFMO與舒林酸之組合療法在此等小鼠中展示有效減小腺瘤。參看美國專利6,258,845,其以全文引用之方式併入本文中。V. 固定劑量組合及投與途徑 在一個態樣中,本發明提供包含醫藥學上有效量之二氟甲基鳥氨酸及醫藥學上有效量之非類固醇消炎藥(NSAID)或其代謝物之固定劑量組合的組合物。在一些實施例中,固定劑量組合為醫藥學上有效量之二氟甲基鳥氨酸及醫藥學上有效量之舒林酸。 在一些實施例中,二氟甲基鳥氨酸為二氟甲基鳥氨酸鹽酸鹽單水合物。在一些實施例中,二氟甲基鳥氨酸為二氟甲基鳥氨酸鹽酸鹽單水合物外消旋體。在一些實施例中,二氟甲基鳥氨酸鹽酸鹽單水合物為其兩種對映異構體之外消旋混合物。 在一些實施例中,二氟甲基鳥氨酸以約10 mg至約1000 mg之量存在。在一些實施例中,二氟甲基鳥氨酸以約250 mg至約500 mg之量存在。在一些實施例中,二氟甲基鳥氨酸以約300 mg至約450 mg之量存在。在一些實施例中,二氟甲基鳥氨酸以約350 mg至約400 mg之量存在。在一些實施例中,二氟甲基鳥氨酸以約35重量%至約60重量%之量存在。在一些實施例中,二氟甲基鳥氨酸以約40重量%至約55重量%之量存在。在一些實施例中,二氟甲基鳥氨酸以約50重量%至約55重量%之量存在。在一些實施例中,二氟甲基鳥氨酸以約52重量%至約54重量%之量存在。在一些實施例中,二氟甲基鳥氨酸鹽酸鹽單水合物外消旋體之量為52重量%至54重量%。在一些實施例中,二氟甲基鳥氨酸以約375 mg之量存在。在一些實施例中,二氟甲基鳥氨酸鹽酸鹽單水合物外消旋體之量為375 mg。 在一些實施例中,舒林酸以約10 mg至約1500 mg之量存在。在一些實施例中,舒林酸以約50 mg至約100 mg之量存在。在一些實施例中,舒林酸以約70 mg至約80 mg之量存在。在一些實施例中,舒林酸以約75 mg之量存在。在一些實施例中,舒林酸之量為75 mg。在一些實施例中,舒林酸以約5重量%至約20重量%之量存在。在一些實施例中,舒林酸以約8重量%至約15重量%之量存在。在一些實施例中,舒林酸以約10重量%至約12重量%之量存在。在一些實施例中,舒林酸之量為10重量%至11重量%。 在一些實施例中,二氟甲基鳥氨酸以約375 mg之量存在,且舒林酸以約75 mg之量存在。 在一些實施例中,調配物進一步包含賦形劑。在一些實施例中,賦形劑為澱粉、膠態二氧化矽或矽化微晶纖維素。在一些實施例中,賦形劑為膠態二氧化矽。在一些實施例中,調配物進一步包含第二賦形劑。在一些實施例中,第二賦形劑為矽化微晶纖維素。 在一些實施例中,調配物進一步包含潤滑劑。在一些實施例中,潤滑劑為硬脂酸鎂、硬脂酸鈣、硬脂酸鈉、單硬脂酸甘油酯、硬脂酸鋁、聚乙二醇、硼酸或苯甲酸鈉。在一些實施例中,潤滑劑為硬脂酸鎂。在一些實施例中,硬脂酸鎂以約0.25重量%至約2重量%之量存在。在一些實施例中,硬脂酸鎂之量為約0.75重量%至約2重量%。在一些實施例中,硬脂酸鎂之量為約1重量%至約1.5重量%。在一些實施例中,硬脂酸鎂之量為約1.1重量%。在一些實施例中,硬脂酸鎂以約1.5重量%之量存在。 在一些實施例中,組合物係呈膠囊、錠劑、微型錠劑、顆粒、丸粒、溶液、凝膠、乳膏、泡沫或貼片形式。在一些實施例中,組成物係呈錠劑,例如單層錠劑形式。 在一些實施例中,錠劑之重量為約650 mg至約1,000 mg。在一些實施例中,錠劑之重量為約675 mg至約725 mg。在一些實施例中,錠劑之重量為約700 mg。 在一些實施例中,錠劑進一步包含包衣。在一些實施例中,包衣為調節釋放包衣或腸溶包衣。在一些實施例中,包衣為pH反應性包衣。在一些實施例中,包衣包含鄰苯二甲酸乙酸纖維素(CAP)、苯偏三酸乙酸纖維素(CAT)、聚(乙酸乙烯酯)鄰苯二甲酸酯(PVAP)、鄰苯二甲酸羥基丙基甲基纖維素(HP)、聚(甲基丙烯酸酯丙烯酸乙酯)(1:1)共聚物(MA-EA)、聚(甲基丙烯酸酯甲基丙烯酸甲酯)(1:1)共聚物(MA MMA)、聚(甲基丙烯酸酯甲基丙烯酸甲酯)(1:2)共聚物或丁二酸乙酸羥基丙基甲基纖維素(HPMCAS)。在一些實施例中,包衣掩蓋二氟甲基鳥氨酸之味道。在一些實施例中,包衣包含羥丙基甲基纖維素、二氧化鈦、聚乙二醇及氧化鐵黃。 在一些實施例中,包衣之量為約1重量%至約5重量%。在一些實施例中,包衣之量為約2重量%至約4重量%。在一些實施例中,包衣之量為約3重量%。在一些實施例中,包衣之量為約5 mg至約30 mg。在一些實施例中,包衣之量為約15 mg至約25 mg。在一些實施例中,包衣之量為約21 mg。 在一些實施例中,包含包衣之錠劑的重量為約675 mg至約750 mg。在一些實施例中,包含包衣之錠劑的重量為約700 mg至約725 mg。在一些實施例中,包含包衣之錠劑的重量為約721 mg。 在一個態樣中,本發明提供包含醫藥學上有效量之二氟甲基鳥氨酸及醫藥學上有效量之舒林酸之固定劑量組合的組合物。在一些實施例中,組合物係呈膠囊、錠劑、微型錠劑、顆粒、丸粒、溶液、凝膠、乳膏、泡沫或貼片形式。在一些實施例中,組合物為固體且採取錠劑,例如單層錠劑形式。在一些實施例中,錠劑經膜包覆。 在一些態樣中,本發明提供二氟甲基鳥氨酸及NSAID之口服固定劑量組合調配物。在一些實施例中,提供包含醫藥學上有效量之二氟甲基鳥氨酸及醫藥學上有效量之NSAID的醫藥組合物。在一些實施例中,NSAID為舒林酸、阿司匹林、吡羅昔康或塞內昔布。在一些較佳實施例中,NSAID為舒林酸。 在一些實施例中,本發明之醫藥組合物及調配物用於腸內,諸如口服,且亦用於經直腸或非經腸,其中組合物包含單獨或與醫藥輔助物質(賦形劑)一起之藥學上活性化合物。用於腸內或非經腸投與之醫藥製劑呈例如單位劑型形式,諸如包衣錠劑、錠劑、膠囊或栓劑以及安瓿。其以本身已知的方式,例如使用習知混合、粒化、包覆、溶解或凍乾方法製備。因此,口服使用之醫藥製劑可藉由將活性化合物與固體賦形劑組合,若需要粒化所獲得之混合物,且在需要或必需時,在添加適合輔助物質之後,將混合物或顆粒加工成錠劑或包衣錠劑核來獲得。在一個較佳實施例中,活性成分及賦形劑之混合物調配成錠劑形式。可塗覆適當包衣以增加可口性或延遲吸收。舉例而言,包衣可塗覆於錠劑以掩蓋活性化合物(諸如DFMO)為人厭惡的味道,或維持及/或延遲活性分子在胃腸道中釋放至特定區域。 治療性化合物可例如與惰性稀釋劑或可吸收可食載劑一起經口投與。治療性化合物及其他成分亦可圍封於硬或軟外殼明膠膠囊中、壓縮成錠劑或直接併入個體膳食中。對於經口治療性投與,治療性化合物可與賦形劑組合且以可攝取錠劑、經頰錠劑、糖衣錠、膠囊、酏劑、懸浮液、糖漿或粉片形式使用。 在某些實施例中,本文所提供之錠劑及/或膠囊包含活性成分及粉狀載劑,諸如乳糖、澱粉、纖維素衍生物、硬脂酸鎂及硬脂酸。類似稀釋劑可用於製備壓縮錠劑。在其他實施例中,可製造錠劑及膠囊以用於立即或調節釋放。在一些實施例中,錠劑及/或膠囊製造為持續釋放產物以經數小時時段提供持續釋放之藥物。在一些實施例中,壓縮錠劑經糖包覆及/或經膜包覆以掩蓋令人不愉快的味道及/或防止錠劑與大氣接觸。在一些實施例中,錠劑包覆腸溶包衣以用於在胃腸道中選擇性崩解。 在一些實施例中,錠劑或膠囊能夠崩解或溶解以釋放包含不同數量之第一組分及第二組分的粒子的多顆粒,例如包覆調節釋放包衣之多粒子。在一些此等實施例中,錠劑或膠囊可崩解或溶解於口腔、胃、小腸、末端迴腸或結腸中。在一些此等實施例中,錠劑或膠囊可釋放具有經調節釋放特性之多顆粒。 在一些實施例中,本發明提供一種呈多層錠劑形式之醫藥口服固定劑量組合。多層錠劑具有至少兩個層(雙層錠劑)或可具有三個、四個、五個或更多個層。在一些實施例中,層中之每一者含有不超過一種活性醫藥成分(API)。舉例而言,在一些實施例中,錠劑具有兩個層,其中API中之一者在兩個層中之每一者中。在一些實施例中,除了此兩個層以外,錠劑亦含有其他僅含有載劑之層,且其可例如作為分離層或外部包衣層起作用。在一些實施例中,若存在多於兩個層,則組分可存在於超過一個層中,只要其不在同一層中一起存在。在某些實施例中,單層錠劑為較佳的,但以下詳述的所有資訊同樣適用於多層錠劑。 在一些實施例中,可調配固定劑量組合以提供在約0.1 μM至約1000 μM範圍內且較佳在約1 μM至100 μM範圍內且更佳在約1 μM至約50 μM範圍內的總體二氟甲基鳥氨酸及/或舒林酸之平均穩定狀態血漿濃度水準。A. 醫藥學上可接受之賦形劑 在一些實施例中,組合物進一步包含醫藥學上可接受之賦形劑。在一些此等實施例中,醫藥學上可接受之賦形劑可包括醫藥學上可接受之稀釋劑、醫藥學上可接受之崩解劑、醫藥學上可接受之黏合劑、醫藥學上可接受之穩定劑、醫藥學上可接受之潤滑劑、醫藥學上可接受之顏料或醫藥學上可接受之助滑劑。在本發明之固定劑量組合調配物中,活性成分可與醫藥學上可接受之賦形劑以1:0.25至1:20之重量比混合。 可用於本發明之醫藥調配物的稀釋劑包括(但不限於)微晶纖維素(「MCC」)、矽化MCC (例如PROSOLV™ HD 90)、微細纖維素、乳糖、澱粉、預糊化澱粉、糖、甘露糖醇、山梨糖醇、葡萄糖結合劑、糊精、麥芽糊精、右旋糖、碳酸鈣、硫酸鈣、二水合磷酸氫鈣、磷酸三鈣、碳酸鎂、氧化鎂及其任何混合物。較佳地,稀釋劑為矽化MCC。稀釋劑以調配物之總重量計以約5重量%至約95重量%之量使用,且較佳以約25重量%至約40重量%之量,諸如以約30重量%至約35重量%之量使用。在某些態樣中,稀釋劑可為可溶稀釋劑。當使用稀釋劑時,在各離散層中其與活性成分之比率極其重要。術語「可溶稀釋劑」係指溶解於以下中之稀釋劑:水、類乳糖、Ludipress (BASF,乳糖、交聯聚維酮(crospovidone)及聚維酮(povidone) (93:3.5:3.5,w/w(%))之混合物)、甘露糖醇及山梨糖醇。 崩解劑用於促進錠劑在口腔及/或胃腸道中暴露於流體之後膨脹且崩解。適用於本發明之固定劑量組合調配物的崩解劑之實例包括交聯聚維酮、羥基乙酸澱粉鈉、交聯羧甲纖維素鈉、經低取代之羥基丙基纖維素、澱粉、海藻酸或其鈉鹽及其混合物。可用於本發明之醫藥調配物的其他崩解劑包括(但不限於)甲基纖維素、微晶纖維素、羧基甲基纖維素鈣、羧基甲基纖維素鈉(例如AC-DI-SOL™、PRIMELLOSE™)、聚維酮、瓜爾豆膠、矽酸鎂鋁、膠態二氧化矽(例如AEROSIL™、CARBOSILTM )、波拉克林鉀(polacrilin potassium)、澱粉、預糊化澱粉、羥基乙酸澱粉鈉、(例如EXPLOTAB™)、海藻酸鈉及其任何混合物。較佳地,崩解劑為膠態二氧化矽。崩解劑可以調配物之總重量計以約0.1重量%至約30重量%之量使用,且較佳以約0.2重量%至約5重量%之量使用。 本發明之組合物可包含潤滑劑。當顆粒自身附著至壓錠機衝頭面時,可發生黏附。潤滑劑用於促進粉末流動,且減少錠劑衝頭面與錠劑衝頭之間及錠劑表面與模具壁之間的摩擦。舉例而言,潤滑劑包括硬脂酸鎂、硬脂酸鈣、硬脂酸鋅、硬脂酸、硬脂醯反丁烯二酸鈉、聚乙二醇、硫酸月桂酯鈉、硫酸月桂酯鎂及苯甲酸鈉。較佳地,潤滑劑為硬脂酸鎂。在本發明中,潤滑劑較佳包含固體劑型之0.25重量%至2重量%,且較佳約1.5重量%之量。在例示性調配物中,潤滑劑為以約1.5重量%之量存在之硬脂酸鎂以預防黏附。 黏合劑可用於本發明之醫藥組合物中以幫助壓縮後將錠劑固持在一起。適用於本發明之黏合劑之實例為阿拉伯膠、瓜爾豆膠、海藻酸、卡波姆(carbomers)(例如Carbopol™產品)、糊精、麥芽糊精、甲基纖維素、乙基纖維素、羥基乙基纖維素、羥基丙基纖維素(例如KLUCEL™)、羥基丙基甲基纖維素(例如METHOCEL™)、羧基甲基纖維素鈉、液體葡萄糖、矽酸鎂鋁、聚甲基丙烯酸酯、聚乙烯吡咯啶酮(例如聚維酮K-90 D,KOLLIDON™)、共聚維酮(copovidone)(PLASDONE™)、明膠、澱粉及其任何混合物。較佳地,黏合劑為澱粉。在本發明中,黏合劑較佳包含固體劑型之約1重量%至約15重量%。在其他實施例中,固體劑型不包含黏合劑。 在某些實施例中,可用於本發明之固定劑量組合調配物的穩定劑可為抗氧化劑。使用抗氧化劑促進活性成分之穩定性以抵抗與其他醫藥學上可接受之添加劑產生不良反應且抵抗隨著時間由熱量或濕氣引起之改變。舉例而言,抗氧化劑為抗壞血酸及其酯、丁基化羥基甲苯(BHT)、丁基化羥基大茴香醚(BHA)、α-生育酚、半胱胺酸、檸檬酸、沒食子酸丙酯、硫酸氫鈉、焦亞硫酸鈉、乙二胺四乙酸(EDTA)及其任何混合物。B. 錠劑製造方法 本發明之另一態樣為提供製造本文揭示之錠劑,包括包含二氟甲基鳥氨酸及舒林酸之錠劑的方法。在一些實施例中,活性劑藉由以下步驟製備:經由所需網目大小篩網篩分至少一種活性劑及一或多種賦形劑,且隨後使用快速混合器粒化機、行星混合器、質量混合器、條帶混合器、流化床處理器或任何其他適合裝置混合。摻合物可諸如藉由添加具有或不具有黏合劑之醇或水醇或水性的溶液或懸浮液在低或高剪切混合器、流體化床粒化機以及其類似裝置中進行粒化或藉由乾式粒化進行粒化。顆粒可使用盤式乾燥器、流化床乾燥器、旋轉錐形真空乾燥器以及其類似裝置進行乾燥。顆粒可使用振盪粒化機或粉碎研磨機或裝備有適合篩網之任何其他習知設備設定大小。替代地,顆粒藉由擠製且滾圓或碾壓製備。另外,製造含有活性劑之顆粒可包括與可直接壓縮賦形劑混合或碾壓。 在本發明之其他實施例中,小錠劑(微錠劑)可藉由使用各種尺寸及形狀(按需要)之模具及衝頭壓縮顆粒來製造。視情況,若需要可利用熟習此項技術者已知的技術,諸如噴塗、浸塗、流體化床包衣及其類似技術將包衣應用於錠劑。在本發明之某些實施例中,可使用適合的溶劑系統,諸如醇、水醇、水性或有機溶劑系統以促進處理。1. 粒化 粒化為其中製造彼此黏附之粉末粒子,由此產生較大、多粒子實體或顆粒的方法。在本發明之實施例中,藉由乾式或濕式技術所獲得之顆粒可與一或多種潤滑劑及/或抗黏附劑一起摻合,且隨後填充入單一膠囊中或填充入不同尺寸之不同膠囊中,以使得較小膠囊可填充入另一較大膠囊中。 在某一實施例中,藉由壓製進行之乾式粒化係用於製備固體劑量組合物。在乾式粒化中,粉末摻合物藉由將常用力施加至粉末上壓製,由此導致相當大的尺寸增大。在一些態樣中,壓錠用於乾式粒化方法,其中壓錠機用於壓製方法。在其他態樣中,輥壓機用於包括進料系統、壓製單元及尺寸縮小單元之乾式粒化。在此方法中,粉末在兩個輥之間藉由施加力來壓製,該力為乾式粒化方法中最重要的參數。施加力以kN/cm為單位表示,其為每公分輥寬度的力。按壓力偶爾亦以巴為單位指示。然而,此僅代表液壓系統中之壓力,且實際上不為施加至粉末上之力的合適量測單位。在視傳送至輥之粉末量而定的所給與力下,粉末將壓製到預定義的條帶厚度。 在其他實施例中,濕式粒化用於製備固體劑量組合物。濕式粒化粉末改良壓縮混合物之流動性及壓塑性。在濕式粒化中,顆粒係由將粒化液體添加至粉末床上形成,該粉末床受葉輪(在高剪切製粒機中)、螺桿(在雙螺桿製粒機中)或空氣(在流體化床製粒機中)影響。在系統中產生攪動以及潤濕調配物內之組分使得初步的粉末粒子凝集以產生濕顆粒。粒化液體(流體)含有必須為揮發性以使得其可藉由乾燥移除,且無毒之溶劑。典型液體包括單獨或以組合形式之水、乙醇及異丙醇。液體溶液可為水性類或溶劑類。水溶液具有比有機溶劑處理更安全的優勢。 錠劑亦可由基本上如Maejima等人,1997 (其以引用之方式併入本文中)中所描述翻滾熔融粒化(TMG)形成。翻滾熔融粒化可用於製備熔融顆粒。其可在翻滾混合器中完成。將熔融低熔點化合物噴灑至摻合器中之結晶醣及粉末醣上,且混合直至顆粒形成。在此情況下,低熔點成分為黏合劑且結晶醣為晶種。替代方法為在翻滾混合器中合併未熔融低熔點成分、結晶糖(例如蔗糖或麥芽糖)及呈粉末形式之水溶性成分(例如甘露糖醇或乳糖),且混合,同時加熱至低熔點黏合劑之熔點或更高熔點。晶種應為結晶或粒狀水溶性成分(醣),例如粒狀甘露糖醇、結晶麥芽糖、結晶蔗糖或任何其他糖。翻滾混合器之實例為雙殼摻合器(V形摻合器)或任何其他形狀之翻滾混合器。可經由粒化機腔室循環熱空氣且藉由加熱腔室之底部表面達成加熱。當晶種材料及粉末錠劑成分在經加熱腔室中循環時,低熔點化合物熔融且黏附至晶種。未熔融粉末材料黏附至晶種黏合、熔融低熔點材料。接著冷卻由此方法形成之球狀珠粒,且將其經篩網篩分以移除未黏附粉末。 噴霧凝結或造粒亦可用於形成本發明之錠劑組合物。噴霧凝結包括霧化組合物之熔融液滴,其包括表面上之低熔點化合物或較佳為其他錠劑成分。可用於噴霧凝結之設備包括噴霧乾燥器(例如Nero噴霧乾燥器)及具有頂部噴霧之流化床塗佈機/粒化(例如Glatt流化床塗佈機/粒化機)。在較佳實施例中,較佳水溶性賦形劑,更佳醣懸浮於熔融低熔點成分中且噴霧凝結形成速溶顆粒。在噴霧凝結之後,使所得組合物冷卻且凝結。凝結混合物之後,其經篩檢或篩分且與其餘錠劑成分混合。使包含低熔點化合物及其他錠劑成分之任何組合的速溶顆粒熔融且噴霧凝結至其他錠劑成分上的噴霧凝結方法在本發明之範疇內。混合包括低熔點化合物之所有錠劑成分,熔融低熔點化合物且將混合物噴霧凝結至表面上的噴霧凝結方法亦在本發明之範疇內。2. 摻合 在某些實施例中,混合物在粒化之後摻合。在固體劑量製造中之摻合達成摻合均勻性且分配潤滑劑。在某些態樣中,摻合步驟經設計以在潤滑劑之最終摻合物之前達成所有組分之均質性。然而,摻合粉末由於粒徑、水分含量、結構、容積密度及流動特性而成為難題。成功配方的關鍵為添加次序。通常組分及醫藥學上可接受之添加劑分配至適合容器,諸如擴散摻合器或擴散混合器中。翻滾混合器之實例為雙殼摻合器(V形摻合器)或任何其他形狀之翻滾混合器。3. 壓縮 當製備錠劑組合物時,其可形成各種形狀。在較佳實施例中,錠劑組合物壓成形狀。此方法可包含將錠劑組合物放入形式中,且施加壓力至組合物以使組合物呈現組合物接觸之形式的表面形狀。壓縮成錠劑形式可藉由壓錠機完成。壓錠機包括適合底部模具的下衝頭及在製錠材料落入模具空腔之後進入頂部模具空腔的具有對應形狀及尺寸之上衝頭。錠劑由施加在下衝頭及上衝頭上的壓力而形成。本發明之錠劑一般具有約20 kP或更少之硬度;較佳地錠劑具有約15 kP或更少之硬度。典型壓縮壓力為約5 kN至約40 kN,且將基於所需尺寸及錠劑硬度改變。在一些態樣中,壓縮壓力為約25 kN至約35 kN。在特定態樣中,壓縮壓力小於約37 kN,諸如小於約30 kN,諸如小於約25 kN。液壓機(諸如Carver Press)或旋轉錠劑壓力機(諸如Stokes Versa Press)為壓縮本發明之錠劑組合物的適合方式。例示性壓縮力參數展示於表3中。 在某些實施例中,潤滑摻合物可使用適合裝置(諸如旋轉機器)壓縮以形成錠塊,其通過裝備有適合篩網之研磨機或流體能研磨機或球磨機或膠體研磨機或輥研磨機或錘研磨機及其類似裝置,獲得經研磨之活性劑錠塊。 可使用預壓縮步驟以便預防錠劑頂裂。頂裂係指來自錠劑主體之錠劑之頂蓋或頂部的裂口或裂縫。頂裂可由在壓縮期間推出空氣時遷移的不可壓縮精細粒子導致。舉例而言,預壓縮可以約5%、10%或15%之主壓縮力。在較佳實施例中,錠劑以不超過約10 kN、較佳小於5 kN之壓力預壓縮成形式。舉例而言,以小於1 kN、1.5 kN、2 kN、2.1 kN、2.2 kN、2.5 kN、3 kN、3.5 kN、4 kN、4.5 kN、5 kN、6 kN、7 kN、8 kN、9 kN或10 kN按壓錠劑在本發明之範疇內。在特定態樣中,預壓縮力為約2.5 kN至約3.5 kN。例示性預壓縮力參數展示於表3中。4. 膜衣 根據本發明之組合物或固體劑型亦可包覆有膜衣、腸溶包衣、調節釋放包衣、保護性包衣或抗黏附包衣。 本發明之組合物可經包覆腸溶包衣。藉由包覆腸溶包衣或包衣意謂預防活性劑在胃中釋放且允許在腸道上部釋放的醫藥學上可接受之包衣。在其他實施例中,應用腸溶包衣以延遲活性劑釋放至末端迴腸或釋放至結腸。腸溶包衣可作為外塗層在調節釋放包衣時添加。腸溶包衣聚合物可在腸溶包衣調配物中單獨或以組合形式使用。腸溶包衣可設計為單層或設計為多層包衣實施例。用於本發明之組合物的較佳腸溶包衣包含選自以下之成膜劑:鄰苯二甲酸乙酸纖維素;苯偏三酸乙酸纖維素;甲基丙烯酸共聚物、衍生自甲基丙烯酸及其酯之共聚物,含有至少40%甲基丙烯酸;鄰苯二甲酸羥丙基甲基纖維素;丁二酸乙酸羥基丙基甲基纖維素或聚乙酸乙烯酯鄰苯二甲酸酯。適用於腸溶包衣之聚合物之實例包括例如鄰苯二甲酸乙酸纖維素(CAP)、苯偏三酸乙酸纖維素(CAT)、聚(乙酸乙烯酯)鄰苯二甲酸酯(PVAP)、鄰苯二甲酸羥基丙基甲基纖維素(HP)、聚(甲基丙烯酸酯丙烯酸乙酯)(1:1)共聚物(MA-EA)、聚(甲基丙烯酸酯甲基丙烯酸甲酯)(1:1)共聚物(MA MMA)、聚(甲基丙烯酸酯甲基丙烯酸甲酯)(1:2)共聚物、EUDRAGIT™ L 30D (MA-EA,1:1)、EUDRAGIT™ 100 55 (MA-EA,3:1)、丁二酸乙酸羥基丙基甲基纖維素(HPMCAS)、SURETERIC (PVAP)、AQUATERIC™ (CAP)、蟲膠或AQOAT™ (HPMCAS)。可與本發明一起使用之靶向結腸遞送系統為吾人所知且使用諸如以下材料:羥基丙基纖維素;微晶纖維素(MCE,來自FMC Corp.之AVICEL™);聚(乙烯-乙酸乙烯酯)(60:40)共聚物(來自Aldrich Chemical Co.之EVAC);甲基丙烯酸2-羥基乙酯(HEMA);MMA;在N,N'-雙(甲基丙烯醯基氧基乙基氧基羰基胺基)-偶氮苯存在下合成之HEMA:MMA:MA三元共聚物;偶氮聚合物;包覆腸溶包衣定時釋放系統(來自Pharmaceutical Profiles, Ltd., UK之TIME CLOCK®)及果膠酯酸鈣及滲透小型泵系統(ALZA corp.)。 在一些實施例中,膜衣包含諸如以下聚合物:羥基丙基纖維素(HPC)、乙基纖維素(EC)、羥基丙基甲基纖維素(HMPC)、羥基乙基纖維素(HEC)、鈉羧基甲基纖維素(CMC)、聚(乙烯基吡咯烷酮)(PVP)、聚(乙二醇)(PEG)、甲基丙烯酸二甲基胺基乙酯-甲基丙烯酸酯共聚物或丙烯酸乙酯-甲基丙烯酸甲酯共聚物(EA-MMA)。 在一些實施例中,組合物具有調節釋放包衣。調節釋放包衣可為pH反應性包衣,其當曝露於特定pH時,將遞送活性劑(例如遞送至結腸直腸道)。在一些實施例中,pH反應性包衣為pH反應性聚合物,其當曝露於大於或等於約6之pH時將溶解;儘管pH反應性聚合物可在大於或等於約5之pH下溶解。 pH反應性聚合物可為例如聚合化合物,諸如EUDRAGIT™ RS及EUDRAGIT™ RL。 EUDRAGIT™產品形成約30D重量之乳膠分散液。由於EUDRAGIT™ RS 30D作為包衣透水性不佳,所以其經設計用於緩慢釋放,由於EUDRAGIT™ RS 30D作為包衣透水性相對較佳,所以其經設計用於快速釋放。此等兩種聚合物一般組合使用。如本文中所涵蓋,EUDRAGIT™ RS 30D/EUDRAGIT™ RL 30D之容許比率為約10:0至約8:2。經設計用於腸或結腸直腸釋放之乙基纖維素或S100或其他等效聚合物亦可取代以上EUDRAGIT™ RS/EUDRAGIT™ RL組合使用。 視情況,方法包含對錠劑進行膜包覆之步驟。可使用任何適合之方式完成膜衣。適合膜衣為吾人所知且可商購或可根據已知方法製造。通常膜衣材料為包含諸如聚乙二醇、滑石及著色劑之材料的聚合膜包衣材料。適合包衣材料為甲基纖維素、羥丙基甲基纖維素、羥基丙基纖維素、丙烯酸聚合物、乙基纖維素、鄰苯二甲酸乙酸纖維素、聚乙酸乙烯酯鄰苯二甲酸酯、鄰苯二甲酸羥丙基甲基纖維素、聚乙烯醇、鈉羧基甲基纖維素、乙酸纖維素、鄰苯二甲酸乙酸纖維素、明膠、甲基丙烯酸共聚物、聚乙二醇、蟲膠、蔗糖、二氧化鈦、巴西棕櫚蠟(camauba wax)、微晶蠟及玉米蛋白。在一些態樣中,膜衣為羥丙基甲基纖維素、二氧化鈦、聚乙二醇及氧化鐵黃。舉例而言,膜衣為OPADRY® Yellow (Colorcon)。通常,膜衣材料以該量施加以便提供在1重量%至6重量%之包覆膜衣錠劑範圍內,諸如2重量%至4重量%,諸如約3重量%的膜衣。可將塑化劑及其他成分添加於包衣材料中。相同或不同活性物質亦可添加於包衣材料中。 在一些實施例中,錠劑之包衣可改良可口性以掩蓋諸如DFMO之活性成分令人不喜的味道。舉例而言,錠劑包衣組合物可包括纖維素聚合物、塑化劑、甜味劑或粉末香料組合物,粉末香料組合物包括與固體載劑相關的調味劑。C. 投與時程及方案 在一些實施例中,藥劑可按常規時程投與。如本文所用,常規時程係指預定的指定時間段。只要時程經預定,常規時程可涵蓋時長相同或不同的時段。舉例而言,常規時程可涉及一日投與兩次、每日投與、每兩天投與、每三天投與、每四天投與、每五天投與、每六天投與、每週投與、每月投與或任何設定數目之天或週之間投與。替代地,預定常規時程可涉及每天兩次投與持續第一週,接著每天投與持續數月等。在其他實施例中,本發明提供可經口服用之藥劑及依賴或不依賴於食物攝入的時序。因此,例如,藥劑可每天早晨及/或每天晚上服用,與個體吃飯與否無關。VI. 對患者之診斷及治療 在一些實施例中,治療方法可補充有診斷性方法以改良功效及/或最小化抗癌療法毒性,包含投與本文所提供之組合物。此類方法描述於例如美國專利8,329,636及9,121,852、美國專利公開案US2013/0217743及US2015/0301060以及PCT專利公開案WO2014/070767及WO2015/195120中,其均以引用之方式併入本文中。 在一些實施例中,本發明之組合物及調配物可向個體投與,其中在ODC1基因啟動子之至少一個對偶基因之位置+316處的基因型為G。在一些實施例中,患者之ODC1基因啟動子之兩個對偶基因之位置+316處的基因型可為GG。在一些實施例中,患者之ODC1基因啟動子之兩個對偶基因之位置+316處的基因型可為GA。在關於腺瘤復發之完整模型中偵測到關於ODC1 基因型及治療的統計顯著相互作用,使得安慰劑患者中腺瘤復發模式為:GG 50%、GA 35%、AA 29%相對於二氟甲基鳥氨酸/舒林酸患者:GG 11%、GA 14%、AA 57%。與先前報導展示接受阿司匹林帶有至少一個A對偶基因之CRA患者中的復發性腺瘤風險減小相比,二氟甲基鳥氨酸及舒林酸之腺瘤抑制性效應在具有主要G同型接合ODC1 基因型之彼等患者中較大(Martinez等人,2003;Barry等人,2006;Hubner等人,2008)。此等結果展現與GG基因型患者相比,位置+316處的ODC1 A對偶基因載體在回應長期暴露於二氟甲基鳥氨酸及舒林酸時不同,其中A對偶基因載體在腺瘤復發方面具有較少有益效果,且尤其在AA同型接合子中,有可能罹患耳毒性的風險升高。 在一些實施例中,本發明提供用於預防性或治癒性治療患者中結腸直腸癌的方法,其包含:(a)自測試獲得結果,該測試測定至少一個ODC1 啟動子基因對偶基因之位置+316處的患者基因型;及(b)若結果指示ODC1 啟動子基因之至少一個對偶基因之位置+316處的患者基因型為G,則向患者投與本文所提供之組合物。在一些實施例中,本發明提供用於治療患者中結腸直腸癌風險因素的方法,其包含:(a)自測試獲得結果,該測試測定至少一個ODC1 啟動子基因對偶基因之位置+316處的患者基因型;及(b)若結果指示ODC1 啟動子基因之至少一個對偶基因之位置+316處的患者基因型為G,則向患者投與本文所提供之組合物,其中該等方法預防患者中形成新的異常腺管病灶、新的腺瘤息肉或新的發育不良腺瘤。參看美國專利8,329,636,以引用之方式併入本文中。 在一些實施例中,本發明提供用於預防性或治癒性治療患者中家族性腺瘤性息肉病(FAP)或神經母細胞瘤的方法,其包含:(a)自測試獲得結果,該測試測定至少一個ODC1 啟動子基因對偶基因之位置+316處的患者基因型;及(b)若結果指示ODC1 啟動子基因之至少一個對偶基因之位置+316處的患者基因型為G,則向患者投與本文所提供之組合物。在一些實施例中,本發明提供用於治療患者中家族性腺瘤性息肉病或神經母細胞瘤風險因素的方法,其包含:(a)自測試獲得結果,該測試測定至少一個ODC1 啟動子基因對偶基因之位置+316處的患者基因型;及(b)若結果指示ODC1 啟動子基因之至少一個對偶基因之位置+316處的患者基因型為G,則向患者投與本文所提供之組合物,其中該等方法預防患者中形成新的異常腺管病灶、新的腺瘤息肉或新的發育不良腺瘤。參看美國專利9,121,852,其以引用之方式併入本文中。 在一些實施例中,本發明提供用於治療患有癌瘤之患者的方法,其包含向患者投與本文所提供之組合物,其中已經測定患者具有不高的膳食聚胺攝入及/或組織聚胺水準及/或組織聚胺通量。在一些此等實施例中,不高的膳食聚胺攝入為每天300 μM聚胺或更低。在一些此等實施例中癌瘤為結腸直腸癌。參看美國專利公開案US2013/0217743,其以引用之方式併入本文中。 在一些實施例中,本發明提供用於預防性或治癒性治療患者中癌症的方法,其包含:(a)自測試獲得結果,該測試測定來自患者之癌細胞中let-7 非編碼RNA、HMGA2蛋白質及/或LIN28蛋白質之表現水準;及(b)若結果指示患者癌症展現與參考let-7 非編碼RNA表現水準相比let-7 非編碼RNA表現水準降低,與參考HMGA2蛋白質表現水準相比HMGA2蛋白質表現水準升高及/或與參考LIN28蛋白質表現水準相比LIN28蛋白質表現水準升高,則向患者投與本文所提供之組合物。在一些此等實施例中,參考含量為非患病個體中觀測到的水準或來自患者之非癌細胞中觀測到的水準。在一些此等實施例中,「獲得」包含提供來自患者的癌症樣品且評定來自樣品之癌細胞中let-7 非編碼RNA、HMGA2蛋白質或LIN28蛋白質的表現水準。在一些此等實施例中,「評定let -7非編碼RNA之表現水準」包含定量PCR或諾瑟墨點法(Northern blotting)。在一些此等實施例中,「評定HMGA2蛋白質或LIN28蛋白質之表現水準」包含免疫組織化學或ELISA。在一些此等實施例中,樣品為血液或組織,諸如腫瘤組織。在一些此等實施例中,患者為人類。在一些此等實施例中,癌症為結腸直腸癌、神經母細胞瘤、乳癌、胰臟癌、腦癌、肺癌、胃癌、血液癌、皮膚癌、睪丸癌、前列腺癌、卵巢癌、肝癌、食道癌、子宮頸癌、頭頸癌、非黑素瘤皮膚癌或神經膠母細胞瘤。在一些此等實施例中,方法進一步包含(c)自測試獲得結果,該測試測定來自該患者之第二癌細胞中在第二時間點時的let-7 非編碼RNA之表現,接著投與至少一個劑量之ODC抑制劑。在一些此等實施例中,方法進一步包含若觀測到let-7 非編碼RNA無增加或增加較少,則增加向患者投與的ODC抑制劑之量。在一些此等實施例中,方法進一步包含自測試獲得結果,該測試測定來自該患者之第二癌細胞中在第二時間點時HMGA2蛋白質或LIN28蛋白質之表現,接著投與至少一個劑量之ODC抑制劑。在一些此等實施例中,方法進一步包含若觀測到HMGA2蛋白質或LIN28蛋白質無下降或下降較少,則增加向患者投與的ODC抑制劑之量。在一些此等實施例中,方法進一步包含(i)自測試獲得結果,該測試測定ODC1 基因啟動子之至少一個對偶基因之位置+316處的患者基因型;及(ii)若結果指示ODC1 基因啟動子之至少一個對偶基因之位置+316處的患者基因型為G,則向患者投與本文所提供之組合物。在一些實施例中,方法包含診斷患者中癌症或癌前病狀,其包含獲得來自患者之樣品及(b)測定選自由樣品中let-7 非編碼RNA、LIN28蛋白質及HMGA2蛋白質組成之群的至少兩個標記物之表現水準,其中若相對於參照水準,樣品中let-7 非編碼RNA之表現水準下降或LIN28蛋白質或HMGA2蛋白質增加,則患者診斷為具有癌症或癌前病狀。在一些實施例中,本發明之固定劑量組合向具有低細胞或組織let-7 水準之患者投與。在其他態樣中,本發明組合物向具有高細胞或組織HMGA2水準之患者投與。在其他態樣中,本發明之組合物向具有高細胞或組織LIN28水準之患者投與。參看美國專利公開案US2015/0301060,其以引用之方式併入本文中。 在一些實施例中,提供用於預防性或治癒性治療患者中癌瘤的方法,其包含:(a)自測試獲得結果,該測試測定至少一個ODC1 對偶基因之位置+263處的患者基因型;及(b)若結果指示ODC1 基因之至少一個對偶基因之位置+263處的患者基因型為T,則向患者投與本文所提供之組合物。在一些此等實施例中,測試可測定患者中ODC1 基因之一個對偶基因之位置+263處的核苷酸鹼基。在一些實施例中,測試可測定患者中ODC1 基因之兩個對偶基因之位置+263處的核苷酸鹼基。在一些實施例中,結果可指示ODC1 基因之兩個對偶基因之位置+263處的患者基因型為TT。在一些實施例中,結果可指示ODC1 基因之兩個對偶基因之位置+263處的患者基因型為TG。在一些此等實施例中,方法可進一步包含自測試獲得結果,該測試測定至少一個ODC1 對偶基因之位置+316處的患者基因型,且若結果指示ODC1 基因之至少一個對偶基因之位置+316處的患者基因型為G,則僅向患者投與本文所提供之組合物。在另一態樣中,提供用於治療患者中結腸直腸癌風險因素的方法,其包含:(a)自測試獲得結果,該測試測定至少一個ODC1 對偶基因之位置+263處的患者基因型;及(b)若結果指示ODC1 基因之至少一個對偶基因之位置+263處的患者基因型為T,則向患者投與本文所提供之組合物,其中該方法防止患者中形成新的異常腺管病灶、新的腺瘤息肉或新的發育不良腺瘤。在另一態樣中,提供用於預防有其對應風險之患者中癌瘤發育或復發的方法,其包含:(a)自測試獲得結果,該測試測定至少一個ODC1 對偶基因之位置+263處的患者基因型;及(b)若結果指示ODC1 基因之至少一個對偶基因之位置+263處的患者基因型為T,則向患者投與本文所提供之組合物。參看PCT專利公開案WO2015/195120,其以引用之方式併入本文中。 在任一以上實施例之變化形式中,癌瘤可為結腸直腸癌、神經母細胞瘤、乳癌、胰臟癌、腦癌、肺癌、胃癌、血液癌、皮膚癌、睪丸癌、前列腺癌、卵巢癌、肝癌、食道癌、子宮頸癌、頭頸癌、非黑素瘤皮膚癌或神經膠母細胞瘤。在一些實施例中,癌瘤可為結腸直腸癌。在一些實施例中,結腸直腸癌可為I期。在一些實施例中,結腸直腸癌症可為II期。在一些實施例中,結腸直腸癌可為III期。在一些實施例中,結腸直腸癌可為IV期。在任一以上實施例之變化形式中,方法可預防患者內形成新的晚期結腸直腸贅瘤。在一些實施例中,方法可預防形成新的右側晚期結腸直腸贅瘤。在一些實施例中,方法可預防形成新的左側晚期結腸直腸贅瘤。 在任一以上實施例之變化形式中,患者可鑑別為在結腸、直腸或闌尾中具有一或多個腺瘤息肉。在一些實施例中,患者可鑑別為具有一或多個晚期結腸直腸贅瘤。在一些實施例中,患者可鑑別為具有一或多個左側晚期結腸直腸贅瘤。在一些實施例中,患者可鑑別為具有一或多個右側晚期結腸直腸贅瘤。在一些實施例中,患者可診斷患有家族性腺瘤性息肉病。在一些實施例中,患者可診斷患有林赤症候群(Lynch syndrome)。在一些實施例中,患者可診斷患有家族性結腸直腸癌類型X。在一些實施例中,患者可滿足阿姆斯特丹準則(Amsterdam Criteria)或阿姆斯特丹準則II。在一些實施例中,患者可具有切除一或多個結腸直腸腺瘤之病史。在一些實施例中,患者可具有上皮內瘤形成或癌前病變相關ODC機能亢進。在一些實施例中,患者可具有上皮內瘤形成或癌前病變及升高的細胞聚胺水準。 在任一以上實施例之變化形式中,患者為人類。VII. 定義 如本說明書中所用,「一(a/an)」可意謂一或多個。如本文申請專利範圍中所用,當與詞語「包含」結合使用時,詞語「一(a/an)」可意謂一個或多於一個。 在本申請案通篇,術語「約」用於指示值包括裝置、用以測定該值之方法之誤差的固有變化或研究個體當中存在的變化。 如本文所使用,術語「生物可用性」表示藥物或其他物質在投與之後對目標組織可用的程度。在本上下文中,術語「適合的生物可用性」欲意謂投與根據本發明之組合物將導致與在投與普通錠劑中活性物質之後所獲得的生物可用性相比,生物可用性得以改良;或與在投與含有以相同量之相同活性物質的市售產品之後所獲得的生物可用性相比,生物可用性至少相同或得以改良。特定言之,需要獲得更快速且更大及/或更加澈底的捕捉活性化合物,且由此提供投與劑量減少或每天投與次數減少。 術語「組合物」、「醫藥組合物」、「調配物」及「製劑」在本文中同義及互換地使用。 術語「包含」、「具有」及「包括」為開放式連系動詞。此等動詞中之一或多者之任何形式或時態,諸如「包含(comprises)」、「包含(comprising)」、「具有(has)」、「具有(having)」、「包括(includes)」及「包括(including)」亦為開放式的。舉例而言,「包含」、「具有」或「包括」一或多個步驟之任何方法不限於僅擁有彼等一或多個步驟且亦涵蓋其他未列舉步驟。 術語「其衍生物」係指任何化學改性多醣,其中單體醣單元中之至少一者藉由取代原子或分子基團或鍵而改性。在一個實施例中,其衍生物為其鹽。鹽為例如與適合無機酸(諸如氫鹵酸、硫酸或磷酸)之鹽,例如氫氯酸鹽、氫溴酸鹽、硫酸鹽、硫酸氫鹽或磷酸氫鹽;與以下適合羧酸之鹽,諸如視情況羥基化之低級烷酸,例如乙酸、乙醇酸、丙酸、乳酸或特戊酸,視情況羥基化及/或側氧基經取代之低級烷二羧酸,例如草酸、丁二酸、反丁烯二酸、順丁烯二酸、酒石酸、檸檬酸、丙酮酸、蘋果酸、抗壞血酸,以及與以下芳族、雜芳族或芳脂族羧酸之鹽,諸如苯甲酸、菸鹼酸或杏仁酸;及與適合脂族或芳族磺酸或N取代之胺磺酸之鹽,例如甲磺酸鹽、苯磺酸鹽、對甲苯磺酸鹽或N- 環己基胺磺酸鹽(賽克拉美(cyclamate))。 如本文所用術語「崩解」係指醫藥口服固定劑量組合通常藉助於流體散落成各別粒子且經分散的過程。當固體口服劑型處於以下狀態,其中除了測試設備篩網上殘留的不可溶包衣或膠囊外殼碎片(若存在)以外的任何固體口服劑型殘餘物根據USP<701>均為無可感覺硬心的軟塊時,則達到崩解。用於測定崩解特性之流體為水,諸如自來水或去離子水。崩解時間利用熟習此項技術者已知的標準方法量測,參看藥典USP <701>及EP 2.9.1及JP中所闡述的協調程序。 如本文所用術語「溶解」係指固體物質,此處為活性成分在介質中呈分子形式分散的方法。本發明之醫藥口服固定劑量組合之活性成分之溶解速率由在液體/固體界面、溫度及溶劑組合物之標準化條件下原料藥每單位時間進入溶液中的量定義。溶解速率利用熟習此項技術者已知的標準方法量測,參看藥典USP <711>及EP 2.9.3及JP中所闡述的協調程序。出於本發明之目的,用於量測個別活性成分之溶解的測試按照藥典USP <711>在如本文針對不同實施例所闡述之pH下進行。特定言之,測試使用以75 rpm(旋轉/分鐘)之槳葉攪拌元件進行。溶解介質較佳為緩衝液,通常為磷酸鹽緩衝液(例如在pH 7.2下)。緩衝液之莫耳濃度較佳為0.1 M。 「活性成分」(Al)(亦稱為活性化合物、活性物質、活性劑、醫藥劑、藥劑、生物學活性分子或治療性化合物)為生物學活性藥物或殺蟲劑中的成分。類似術語活性醫藥成分(API)及散裝活性亦用於藥品,且術語活性物質可用於殺蟲劑調配物。 「藥物(pharmaceutical drug)」(亦稱為醫藥、醫藥製劑、醫藥組合物、醫藥調配物、醫藥產品、藥品(medicinal product)、藥品(medicine)、藥物(medication)、藥劑或簡單地藥物(drug))為用於診斷、治癒、治療或預防疾病之藥物。活性成分(Al)(如上文所定義)為生物學活性藥物或殺蟲劑中的成分。類似術語活性醫藥成分(API)及散裝活性亦用於藥品,且術語活性物質可用於殺蟲劑調配物。某些藥劑及殺蟲劑產品可含有超過一種活性成分。相比於活性成分,惰性成分通常在醫藥情境中稱作賦形劑。 如在本說明書及/或申請專利範圍中所使用,術語「有效」意謂足以實現所要的、期待的或預期的結果。當用於用化合物治療患者或個體之上下文中時,「有效量」、「治療有效量」或「醫藥學上有效量」意謂當向個體或患者投與以治療或預防疾病時,足以影響疾病之此類治療或預防的化合物量。 「預防(Prevention/preventing)」包括:(1)抑制個體或患者中之疾病發作,該個體或患者可有風險及/或易患該疾病但又尚未經歷或顯示該疾病之任何或所有病理學或症候學,及/或(2)減緩個體或患者中之疾病的病理學或症候學發作,該個體或患者可有風險及/或易患該疾病但又尚未經歷或顯示該疾病之任何或所有病理學或症候學。 「治療(Treatment/treating)」包括(1)抑制經歷或顯示疾病之病理學或症候學之個體或患者中的疾病(例如遏制病理學及/或症候學進一步發育),(2)改善經歷或顯示疾病之病理學或症候學之個體或患者中的疾病(例如逆轉病理學及/或症候學)及/或(3)使得經歷或顯示疾病之病理學或症候學之個體或患者中的疾病出現任何可量測的減弱。 「前藥」意謂活體內以代謝方式可轉化成根據本發明之抑制劑的化合物。前藥本身可亦具有或可不具有相對於所給與目標蛋白之活性。舉例而言,包含羥基之化合物可作為藉由活體內水解轉化成羥基化合物的酯來投與。可在活體內轉化成羥基化合物的適合酯包括乙酸酯、檸檬酸酯、乳酸酯、磷酸酯、酒石酸酯、丙二酸酯、草酸酯、水楊酸酯、丙酸酯、丁二酸酯、反丁烯二酸酯、順丁烯二酸酯、亞甲基-雙-β-羥基萘甲酸酯、龍膽酸酯(gentisate)、羥乙基磺酸酯、二對甲苯甲醯基酒石酸酯、甲磺酸酯、乙烷磺酸酯、苯磺酸酯、對甲苯磺酸酯、環己基胺磺酸酯、奎尼酸酯(quinate)、胺基酸之酯及其類似酯。類似地,包含胺基之化合物可作為藉由活體內水解轉化成胺化合物的醯胺投與。 「賦形劑」為與藥物之活性成分、醫藥組合物、調配物或藥物遞送系統一起調配的醫藥學上可接受之物質。可使用賦形劑例如以使組合物穩定、使組合物膨脹(因此當用於此目的時常常稱為「膨化劑」、「填充劑」或「稀釋劑」)或使最終劑型中之活性成分療效增強,諸如促進藥物吸收、減小黏度或增強溶解度。賦形劑包括抗黏劑、黏合劑、包衣、顏色、崩解劑、調味劑、助滑劑、潤滑劑、防腐劑、吸附劑、甜味劑及媒劑之醫藥學上可接受版本。充當傳達活性成分之介質的主要賦形劑通常稱作媒劑。賦形劑亦可用於製造方法中例如除了輔助活體外穩定性,諸如預防超過預期存放期後變性或凝集以外,亦可諸如藉由促進粉末流動性或非黏附性而輔助活性物質操作。賦形劑之適合性將通常取決於投藥途徑、劑型、活性成分以及其他因素而變化。 術語「水合物」當用作對化合物之修飾語時意謂化合物具有小於一個(例如半水合物)、一個(例如單水合物)或大於一個(例如二水合物)與各化合物分子相關之諸如呈化合物之固體形式的水分子。 術語「二氟甲基鳥氨酸」當本身供使用時係指2,5-二胺-2-(二氟甲基)戊酸為其形式中之任一者,包括非鹽及鹽形式(例如二氟甲基鳥氨酸HCl)、非鹽及鹽形式之無水及水合物形式(例如二氟甲基鳥氨酸鹽酸鹽單水合物)、非鹽及鹽形式之溶劑合物、其對映異構體(RS 形式,其亦可鑑別為dl 形式)及此等對映異構體之混合物(例如外消旋混合物或對映異構體中之一者相對於另一者增濃之混合物)。二氟甲基鳥氨酸之特定形式包括二氟甲基鳥氨酸鹽酸鹽單水合物(亦即CAS ID: 96020-91-6;MW: 236.65)、二氟甲基鳥氨酸鹽酸鹽(亦即CAS ID: 68278-23-9;MW: 218.63)及游離二氟甲基鳥氨酸(亦即CAS ID: 70052-12-9;MW: 182.17)。若必需,已進一步指定二氟甲基鳥氨酸之形式。在一些實施例中,本發明之二氟甲基鳥氨酸為二氟甲基鳥氨酸鹽酸鹽單水合物(亦即CAS ID: 96020-91-6)。術語「二氟甲基鳥氨酸」及「DFMO」在本文中可互換地使用。二氟甲基鳥氨酸及DFMO之其他同義語包括:α-二氟甲基鳥氨酸、2-(二氟甲基)-DL-鳥氨酸、2-(二氟甲基)鳥氨酸、DL-α-二氟甲基鳥氨酸、N- 二氟甲基鳥氨酸、奧尼迪(ornidyl)、αδ-二胺-α-(二氟甲基)戊酸及2,5-二胺-2(二氟)戊酸。 如本文所用,關於指定組分「基本上游離」在本文中用於意謂指定組分中無一者有目的地調配入組合物中及/或僅作為污染物或以痕量存在。由組合物之任何非預期污染產生的指定組分總量因此遠低於0.05%,較佳低於0.01%。最佳為用標準分析方法未偵測到指定組分之量的組合物。 術語「固定劑量組合」或「FDC」係指以單一劑量單元(例如錠劑或膠囊)形式呈現且因此投與之經界定劑量之兩種藥物或活性成分組合;進一步如本文所用,「游離劑量組合」係指同時投與但呈兩種不同劑量單元形式之兩種藥物或活性成分組合。 「粒化」係指將粉末粒子聚結成含有活性醫藥成分之較大顆粒的方法。「乾式粒化」係指包含不將液體添加至粉末起始材料、攪動且乾燥以得到固體劑型之步驟的任何方法。所得粒化藥品可進一步處理成各種最終劑型,例如膠囊、錠劑、粉片、凝膠、口含錠等。 儘管本發明支持指僅替代及「及/或」之定義,但除非明確指示為指僅替代或替代相互排斥,否則術語「或」在申請專利範圍中用於意謂「及/或」。如本文所用,「另一」可意謂至少第二個或更多個。 如本文所使用,術語「患者」或「個體」係指活的哺乳動物生物體,諸如人類、猴、母牛、綿羊、山羊、狗、貓、小鼠、大鼠、天竺鼠或其轉殖基因種類。在某些實施例中,患者或個體為靈長類。人類患者之非限制性實例為成年人、青少年、嬰兒及胎兒。 如本文一般所使用,「醫藥學上可接受」係指在合理的醫學判斷範疇內,適合與人類及動物之組織、器官及/或體液接觸而無過度毒性、刺激、過敏性反應或其他問題或併發症,與合理益處/風險比相稱的彼等化合物、材料、組合物及/或劑型。 「藥學上可接受之載劑」、「藥物載劑」或僅「載劑」為與涉及運載、遞送及/或傳輸化學劑之活性成分藥物一起調配的醫藥學上可接受之物質。藥物載劑可用於改良藥物之遞送及有效性,包括例如控制釋放技術以調整藥物生物可用性、減少藥物代謝及/或降低藥物毒性。某些藥物載劑可增加藥物遞送至特定目標位點之有效性。載劑之實例包括:脂質體、微粒(例如由聚(乳酸-共-乙醇酸)酸製成)、白蛋白微粒、合成聚合物、奈米纖維、奈米管、蛋白質-DNA複合物、蛋白質共軛物、紅血球、病毒顆粒及樹枝狀聚合物。 如本文所定義,術語「物理上分離」係指含有經調配使得彼此不在同一載劑中混合但分離之組分a)及b)的醫藥口服固定劑量組合。此分離有助於最小化兩種組分之間尤其在其釋放時的相互作用。通常物理分離意謂兩種組分a)及b)存在於不同區室,諸如層中,或呈調配物之不同實體形式呈現,諸如顆粒或細粒。兩種組分a)及b)不必要進一步由額外層或包衣分離,儘管此視情況可為合適的。在一個劑型中兩種組分a)及b)之此物理分離可藉由此項技術中已知的各種方式達到。在一個實施例中,此藉由將各別組分a)及b)調配入分離層,例如多層或雙層調配物中達到。本文描述此類調配技術之特定實例。 術語「黏附」係指顆粒黏附至包括在衝頭面上之字母、標識或設計內的壓錠機衝頭面。 術語「頂裂」係指來自錠劑主體之錠劑之頂蓋或頂部的裂口或裂縫。頂裂可由在壓縮期間推出空氣時遷移的不可壓縮精細粒子導致。 術語「易脆性」在本文中係指壓縮之後錠劑碎裂、破碎或斷裂的趨勢。其可由多個因素導致,包括不良的錠劑設計(過於銳利的邊緣)、低水分含量、不充足的黏合劑等。在一些態樣中,錠劑樣品之易脆性根據重量損失%給與(亦即表示為初始樣品重量之百分比的重量喪失)。一般而言,不超過1%之最大重量損失對於大部分錠劑而言視為可接受的。 如本文所用,術語「釋放」係指使醫藥口服固定劑量組合與流體接觸且該流體將藥物傳輸到劑型外而進入包圍該劑型之流體中的方法。患者中藉由給與劑型展現的遞送速率及遞送持續時間之組合可描述為其活體內釋放曲線。劑型之釋放曲線可展現釋放之不同速率及持續時間且可為連續的。連續釋放曲線包括一或多種活性成分以恆定或可變速率連續釋放的釋放曲線。當具有不同釋放曲線之兩種或更多種組分合併於一個劑型中時,兩種組分之所得個別釋放曲線與僅具有該等組分中之一者的劑型相比可相同或不同。因此,兩種組分可影響彼此的釋放曲線,由此導致各個別組分的釋放曲線不同。 二組分劑型可展現彼此相同或不同的兩種組分之釋放曲線。各組分具有不同釋放曲線之二組分劑型之釋放曲線可描述為「異步」。此類釋放曲線涵蓋(1)不同的連續釋放,其中較佳地組分b)以比組分a)更慢的速率釋放,及(2)曲線,其中組分a)及b)中之一者,較佳為組分b)連續釋放,且組分a)及b)中之另一者,較佳為組分a)經調節以伴隨時間延遲連續釋放。一種藥物之兩種釋放曲線組合亦為可能的(例如50%藥物連續釋放且50%相同藥物伴隨時間延遲連續釋放)。 立即釋放:出於本申請案之目的,立即釋放調配物為展示活性物質之釋放的調配物,其不藉由特定調配物設計或製造方法而經有意地調節。 調節釋放:出於本申請案之目的,調節釋放調配物為展示活性物質之釋放的調配物,其藉由特定調配物設計或製造方法而經有意地調節。此調節釋放可通常藉由延遲組分中之一者或兩者(較佳為組分a))之釋放時間獲得。通常出於本發明之目的,調節釋放係指釋放超過5 h,諸如釋放超過3 h或甚至更短。如本文所用,調節釋放意謂涵蓋兩種組分隨時間推移之不同的連續釋放,或延遲釋放,其中該等組分中之一者,較佳為組分a)僅在滯後時間之後釋放。此類調節釋放形式可藉由向原料藥或含有原料藥之核心施加釋放調節包衣,例如擴散包衣,或藉由形成包埋原料藥之釋放調節基質來製備。 術語「錠劑」係指呈任何形狀之小型基本上固體丸粒形式的藥理學組合物。錠劑形狀可為圓柱形、球形、長方形、囊狀或不規則的。術語「錠劑組合物」係指包括於錠劑中之物質。「錠劑組合物成分」或「錠劑成分」係指包括於錠劑組合物中的化合物或物質。此等可包括(但不限於)活性劑及任何賦形劑以及低熔點化合物及水溶性賦形劑。 以上定義替代以引用之方式併入本文中的參考中任一者中之任何有衝突的定義。然而,事實上界定某些術語不應視為表明未經界定之任何術語為不確定的。確切而言,所使用之所有術語咸信描述本發明使得一般熟習此項技術者可理解範疇且實踐本發明。 本文中所用之單位縮寫包括結果平均值(ar)、千克力(kp)、千牛頓(kN)、百分比重量/重量(%w/w)、磅每平方吋(psi)、相對濕度(RH)、色差δE (dE)及旋轉每分鐘(rpm)。VIII. 實例 包括以下實例以展示本發明之較佳實施例。熟習此項技術者應瞭解,以下實例中所揭示之技術代表本發明人發現在本發明實施中起良好作用之技術,且因此可視為構成其較佳實施方式。然而,根據本發明,熟習此項技術者應瞭解,在不背離本發明之精神及範疇的情況下可對所揭示之特定實施例作出許多改變且仍獲得相同或類似結果。實例 1- 研發二氟甲基鳥氨酸 HCl 舒林酸組合表 在包含二氟甲基鳥氨酸HCl及舒林酸之固定劑量組合(FDC)錠劑的研發方法中,測試數種調配物(表1)。測試之參數包括錠劑崩解時間、錠劑硬度及錠劑易脆性百分比。 調配物I藉由將1/3之矽化MCC (PROSOLV®)與二氟甲基鳥氨酸HCl在1夸脫v形摻合器中首次混合而製造成900 mg錠劑。隨後,舒林酸及1/3之矽化MCC (PROSOLV®)在聚乙烯(PE)袋中進行預混合且與膠態二氧化矽(CARBOSIL®)及預膠凝玉米澱粉(STARCH 1500®)一起添加至摻合器中。 PE袋用剩餘的1/3之矽化MCC (PROSOLV®)沖洗且添加至摻合器中。在添加手工篩檢之硬脂酸鎂之前,混合物以約25 rpm摻合10分鐘且隨後再次摻合3分鐘。發現此調配物有一些黏附在衝頭表面上且導致粗糙的錠劑表面。因此,對於調配物II,硬脂酸鎂自0.5%增加至1%且矽化MCC自38.57%減少至38.07%。 調配物II係藉由在PE袋中預混合CARBOSIL®、STARCH 1500®及舒林酸而製造成900 mg錠劑。隨後,½之PROSOLV®及二氟甲基鳥氨酸HCl與預混物一起添加至8夸脫v形摻合器中。剩餘的½之PROSOLV®用於沖洗PE袋且添加至摻合器中。混合物以約25 rpm摻合10分鐘。接著混合物自摻合器移出,且經由Comill 039R篩網除塊(delumped),接著返回至v形摻合器中再摻合10分鐘。隨後,經由30個網目(亦即590 µm)篩網手工篩檢之硬脂酸鎂藉由手動混合添加至v形摻合器中且以約25 rpm摻合混合物3分鐘。將混合物在Key Model BBTS 10工作台上壓縮成錠劑。測定所得錠劑具有約29-32秒之崩解時間、在4分鐘時0.077%易脆性及在8分鐘時0.17392%易脆性以及約28 kp之硬度(表1)。錠劑接著使用O'Hara Labcoat,12''盤經膜包覆2.913重量%的OPADRY® Yellow (Colorcon),產生927 mg錠劑。膜包覆錠劑具有約36.0-42.1 kp之硬度及1分27秒至1分53秒之崩解時間。 調配物III係藉由在PE袋中預混合CARBOSIL®、PROSOLV®之部分2及舒林酸而製造成650 mg錠劑。隨後,½之PROSOLV®部分1及二氟甲基鳥氨酸與預混物一起添加至8夸脫v形摻合器中。剩餘的½之PROSOLV®部分1用於沖洗PE袋且添加至v形摻合器中。混合物以約25 rpm摻合10分鐘。接著混合物自摻合器移出,且經由Comill 039R篩網除塊,接著返回至v形摻合器中再摻合10分鐘。隨後,經由30個網目(亦即590 µm)篩網手工篩檢之硬脂酸鎂藉由手動混合添加至v形摻合器中且以約25 rpm摻合混合物3分鐘。將混合物在Key Model BBTS 10工作台上壓縮成錠劑。測定所得錠劑具有約51-57秒之崩解時間、在4分鐘時0.2607%-0.3373%易脆性及在8分鐘時0.8988%-1.008%易脆性以及約13 kp之硬度。錠劑接著使用O'Hara Labcoat,12''盤經膜包覆2.913重量%的OPADRY® Yellow (Colorcon),產生669.5 mg錠劑。膜包覆錠劑具有約36.0-42.1 kp之硬度及1分27秒至1分53秒之崩解時間。此調配物之重量自900 mg降低至650 mg且STARCH 1500®替換為PROSOLV®以增加錠劑強度。然而,在易脆性測試期間以及在膜包覆過程期間觀測到頂裂。 調配物IV使用與調配物III相同的方法製造成700 mg錠劑。測定所得錠劑具有1分10秒至約1分34秒之崩解時間、在4分鐘時0.1424%-0.1567%易脆性及在8分鐘時0.3186%-0.5166%易脆性以及約20 kp硬度。錠劑接著使用O'Hara Labcoat,12''盤經膜包覆有2.913重量%的OPADRY® Yellow (Colorcon),產生721 mg錠劑。膜包覆錠劑具有1分43秒至2分7秒之崩解時間。在此調配物中,增加PROSOLV®之量且表格重量自650 mg增加至700 mg。儘管在易脆性測試期間未觀測到頂裂,但三個錠劑在膜包覆期間確實具有頂裂。 1 二氟甲基鳥氨酸 HCL 舒林酸固定劑量組合錠劑之調配物 I-IV 調配物 I 調配物 II 調配物 III 調配物 IV 組分 單位重量(mg) % W/W 單位重量(mg) % W/W 單位重量(mg) % W/W 單位重量(mg) % W/W 二氟甲基鳥氨酸HCl單水合物外消旋體 375 41.67 375 41.67 375 57.69 375 53.571 舒林酸 75 8.33 75 8.33 75 11.54 75 10.714 矽化MCC (部分1) 347.13 38.57 342.63 38.07 149.5 23.0 199.6 28.514 矽化MCC (部分2) 0 0 0 0 41.075 6.32 41.075 5.868 預凝膠玉米澱粉 96.12 10.68 96.12 10.68 0 0 0 0 膠態二氧化矽 2.25 0.25 2.25 0.25 1.625 1.625 1.625 0.232 硬脂酸鎂 4.5 0.5 9 1 7.8 7.8 7.7 1.1 未包衣錠劑重量 900 100 900 100 650 100 700 100 OPADRY® Yellow 03B92557 27.0    19.5    21.0 包衣錠劑重量 927.0 669.5 721.0 錠劑特性 調配物 II 調配物 IV 壓縮力 NR 85psi 硬度(kp) ar 28 ar 20 崩解時間 ar30秒 ar 1分30秒 易脆性(4分鐘) (%) 0.08 0.16 易脆性(8分鐘) (%) 0.17 0.52 (一個頂裂錠劑) 2 :二氟甲基鳥氨酸 HCL 舒林酸固定劑量組合錠劑之例示性調配物。 組分 單位重量 (mg) % (w/w) 二氟甲基鳥氨酸HCl單水合物外消旋體 375.00 52.011 舒林酸 75.00 10.402 矽化微晶纖維素 237.87 32.992 膠態二氧化矽 1.63 0.226 硬脂酸鎂 10.50 1.456 核心錠劑重量 700.00    OPADRY® Yellow 21.00 2.913 經膜包覆之錠劑重量 721.00 100 3 :例示性錠劑製造參數。 變量 7107/2 R3bis 7107/2 R4 7107/3 7107/5 R2 7107/5 R3 混合器 Turbula Turbula Turbula Turbula Turbula 混合時間 70個循環 70個循環 70個循環 70個循環 70個循環 硬脂酸鎂 1.50% 1.50% 1.50% 1.50% 1.50% 壓力機 Korsch Korsch Korsch Ronchi Ronchi 工具尺寸 工具包覆 雕刻頂部 雕刻底部 評分 17.5x8 鉻/RC02 414C 波紋標識 無 17.5x8 鉻/RC02 414C 波紋標識 無 17x9 R6 鉻 中性 中性 可斷裂 16.5x7 鉻 4141 標識 可斷裂 16.5x7 鉻 4141 標識 可斷裂 壓縮力 37或30 kN 37 kN 30 kN 37 kN 25 kN 預壓縮力 2.1 kN 2.5 kN 2.0 kN 3.7 kN 2.5 kN 測試結果 斷裂 黏附 頂部雕刻密度 合格 合格 合格 合格 合格 底部雕刻密度 合格 合格 合格 合格 合格 硬度 NA 12.80 kp 8.14 kp 18.46 kp 16.62 kp 斷裂能力 NA 崩解時間 NA 1分15"至 1分25" 40秒至 45秒 2分15"至 2分32" 1分39"至 1分53" 在4分鐘時之易脆性 NA 0.08% 0.17% 0.21% 0.37% 在30分鐘時之易脆性 NA 1.15% 1.19% 1.80% 2.85% 錠劑破裂/斷裂 NA 4 :用於實例 1 中所描述之調配物的材料。 材料 供應商 二氟甲基鳥氨酸HCl單水合物 Scino Pharm 舒林酸 ZACH 矽化微晶纖維素(MCC) (PROSOLV®) NF EP  Starch 1500 (部分預糊化玉米澱粉) Colorcon Limited 膠態二氧化矽(CARBOSIL®) IMCD France SAS 硬脂酸鎂 Mallinkroot-Tyco OPADRY® Yellow Colorcon Limited 設備  PK摻合主控裝置V形摻合器(1夸脫及8夸脫) 具有0.039''篩網之Quadro Comill模型197S  Key Model BBTS 10工作台製錠壓力機 O'Hara Labcoat 12''盤,0.8 mm噴嘴 實例 2- 研發調配物 IV 自實例1進一步測試調配物IV以測定參數可變化以預防頂裂及黏附。所測試之第一參數為壓縮力及以約5-15%之壓縮力添加預壓縮力(表5)。為了評價達到約20 kp硬度而用於調配物IV 700 mg錠劑之壓縮力及預壓力,進行數個試驗。在第一個試驗中,使用設備C製造調配物IV 700 mg錠劑之最終摻合物(表9)。製造方法涉及在PE袋中預混合CARBOSIL®、PROSOLV®之部分2及舒林酸。隨後,½之PROSOLV®部分1及二氟甲基鳥氨酸與預混物一起添加至10夸脫v形摻合器。剩餘的½之PROSOLV®部分1用於沖洗PE袋且添加至v形摻合器。混合物以約7 rpm摻合35分鐘。接著自摻合器移除混合物,且將其經由Frewitt TC150 1.0 mm篩網進行粉碎,接著返回至v形摻合器再次摻合35分鐘。隨後,硬脂酸鎂經由500 µm篩網進行手工篩檢,且添加至v形摻合器藉由以7 rpm手動混合10分鐘以獲得最終摻合物。壓縮步驟在裝備有五個17.5x8 mm雕刻及鍍鉻之衝頭的Courtoy Modul P製錠壓力機上進行。設定參數以便獲得在17.0 kp與22.5 kp之間的硬度。發現在無預壓力的情況下,觀測到頂裂。然而,使用預壓力增加硬度且避免頂裂(表10)。另外,由預壓力形成之錠劑更加抗磨損(亦即較低易脆性)。另外,用於實例1中之Key BBTS 10工作台製錠壓力機之16.5x8 mm衝頭似乎更加易於磨損。 5 :測試調配物 IV 壓縮參數。    初始設定 7107/01 設定3 7107/01 設定2 衝頭形狀 16.5x8 mm平滑 17.5x8 mm雕刻 17.5x8 mm雕刻 壓縮力 85 psi 34 kN 35 kN 預壓力 是(3 kN) 硬度(kp) ar 20 ar 13 (*) ar 17 崩解時間 ar 1分30秒 ar 1分20秒 ar 2分鐘 易脆性(4 min) (%) 0.16 0.07 0.03 易脆性(8 min) (%) 0.52 (1個頂裂錠劑) NA NA 易脆性(10 min) (%) NA 0.27 0.13 易脆性(30 min) (%) NA 1.79 (1個頂裂錠劑) 0.54 (無頂裂錠劑) 厚度(mm) ar 6.1 ar 5.5 ar 5.4 NA:未施加 (*)在無預壓縮的情況下可達到的最大硬度 在第二個試驗中,改變衝頭表面以測定其對調配物IV錠劑之影響(表11)。在此試驗中使用設備B製造調配物IV 700 mg錠劑之最終摻合物。製造方法涉及在PE袋中預混合CARBOSIL®、PROSOLV®之部分2及舒林酸。隨後,½之PROSOLV®部分1及二氟甲基鳥氨酸與預混物一起添加至10夸脫v形摻合器。剩餘的½之PROSOLV®部分1用於沖洗PE袋且添加至v形摻合器。以每分鐘約30個循環摻合混合物8分30秒。接著自摻合器移除混合物,且將其經由CMA 1.0 mm篩網進行粉碎,接著返回至v形摻合器再次摻合8.5分鐘。隨後,經由500µm篩網手工篩檢硬脂酸鎂,且將其添加至v形摻合器藉由以每分鐘30個循環手動混合2分20秒以獲得最終摻合物。壓縮步驟在裝備有兩個17.5x8 mm雕刻及抗黏附鍍鉻之衝頭的Korsch XL100製錠壓力機上進行。預壓力設定為5-10%之約30 kN主壓縮力。亦測試數個不同衝頭表面,包括鉻、碳、鎢及鐵氟龍(Teflon)相對於不鏽鋼。在一些實施例中,鐵氟龍可用於減少黏附。 為了避免黏附,測試數個額外變量,且在壓縮剛開始時施加高約束。既不用1.1%硬脂酸鎂潤滑亦不將70次旋轉增加至140次旋轉的潤滑次數以防止黏附(表11及表12)。然而,將硬脂酸鎂之比率增加至1.5%確實預防黏附(表12)以及錠劑硬度稍微下降約20%,但在4分鐘之後易脆性小於0.1%仍極低。在用兩種類型之裝備有不同種類斷裂線(17×9 mm及16.5×7 mm)的衝頭時,可斷裂性結果順應所測試之衝頭。因此,將硬脂酸鎂增加至1.5%防止黏附且預壓縮防止調配物IV頂裂。 6 :試驗 1 試驗 2 調配物 IV 之批次重量。 組分 單位重量(mg) 實驗1重量(g) 實驗2重量(g) 二氟甲基鳥氨酸HCl 375 1339.500 1340.000 舒林酸 75 268.100 268.027 矽化MCC (部分1) 199.6 712.800 712.000 矽化MCC (部分2) 41.075 146.700 146.648 膠態二氧化矽 1.625 5.796 5.8043 硬脂酸鎂 7.7 27.515 27.504 錠劑重量 700.0 2500.411 2499.983 7 :調配物 IV 硬脂酸鎂之變化量。   1.1%硬脂酸鎂配方 1.3%硬脂酸鎂配方(*) 1.5%硬脂酸鎂配方(*) 組分 單位重量(mg) w/w (%) 單位重量(mg) w/w (%) 單位重量(mg) w/w (%) 二氟甲基鳥氨酸HCl 375.000 53.571 374.227 53.461 373.457 53.351 舒林酸 75.000 10.714 74.851 10.693 74.704 10.672 矽化MCC (部分1) 199.598 28.514 199.192 28.456 198.793 28.399 矽化MCC (部分2) 41.075 5.868 40.992 5.856 40.908 5.844 膠態二氧化矽 1.625 0.232 1.624 0.232 1.617 0.231 硬脂酸鎂 7.700 1.100 9.100 1.300 10.500 1.500 錠劑重量 700.0 100.00 700.0 100.00 700.0 100.00 (*)在稀釋以增加硬脂酸鎂百分比之後所獲得的配方。API濃度因此稍微低於目標。 8 調配物 IV 之包衣。 組分 單位重量(mg) 批次重量(g) 未包衣錠劑 700.00 600.00       OPADRY® Yellow 03B92557 21.00 53.995 純化水 154.00 395.99 包衣錠劑重量 721.00 653.995 9 :用於研發調配物 IV 設備。 設備A 設備B 設備C PK摻合主控裝置V形摻合器 1夸脫及8夸脫 Turbula T10A摻和器 10L容器 Servolift摻和器 10L容器 Quadro Comill 197S 0.039''篩網 CMA T1錐形研磨機 1.00mm篩網 Frewitt TC150錐形研磨機1.00mm篩網    0.500mm濾網 0.500mm濾網 Key BBTS 10工作台製錠壓力機 Korsch XL100製錠壓力機 Courtoy Modul P製錠壓力機 O'Hara Labcoat 12''盤 Mini Glatt塗佈機    10 :測試預壓縮力對調配物 IV 之影響的第一次試驗參數及結果。 壓縮參數    7107/01 設定 3 7107/01 設定 5 7107/01 設定 2 7107/01 設定 4 速度(tpm) 50 50 50 50 預壓力(kN) /主壓力% 0.11 / 0% 1.43 / 5% 3.25 / 10% 4.68 / 15% 壓縮力(kN) 33.58 32.23 34.07 33.03 衝頭(數量) 5 5 5 5 衝頭形狀 17.5x8 mm 雕刻 17.5x8 mm 雕刻 17.5x8 mm 雕刻 17.5x8 mm 雕刻 衝頭表面處理 抗黏附鍍鉻 抗黏附鍍鉻 抗黏附鍍鉻 抗黏附鍍鉻 結果 測試 採樣 7107/01 設定 3 7107/01 設定 5 7107/01 設定 2 7107/01 設定 4 重量(mg) RSD (%) 20個錠劑 702.28 1.18 699.14 1.00 703.5 1.06 701.17 0.73 硬度(kp) 10個錠劑 11.5至14.4 (平均值:13.2) 15.2至17.9 (平均值:16.6) 15.8至18.4 (平均值:17.3) 17.0至18.7 (平均值:17.9) 易脆性(%) 4分鐘 10分鐘 30分鐘 根據藥典    0.07/無頂裂 0.27/無頂裂 1.79/ 1 個頂裂    0.07/無頂裂 0.20/無頂裂 0.67/無頂裂    0.03/無頂裂 0.13/無頂裂 0.54/無頂裂    0.08/無頂裂 0.19/無頂裂 0.59/無頂裂 崩解時間(分鐘) 3個錠劑 1分08秒 至 1分40秒 1分39秒 至 2分17秒 1分51秒 至 2分11秒 1分41秒 至 1分57秒 厚度(mm) 10個錠劑 5.4至5.6 5.4至5.5 5.4至5.5 5.4至5.5 黏附    部分黏附 部分黏附 部分黏附 部分黏附 11 測試衝頭表面對調配物 IV 之影響的第二次試驗參數及結果。 最終摻和物       7107/02設定2 7107/02設定5 7107/02設定6 7107/02設定7 7107/02設定8 硬脂酸鎂之比率(%)    1.1 1.1 1.1 1.1 1.1 最終摻合物(旋轉)    140 140 140 140 140 壓縮參數 速度(tpm)    40 40 40 40 40 預壓力(kN)    2.5 2.2 2.2 2.1 2.1 壓縮力(kN)    30 30 30 30 30 衝頭(數量)    2 2 2 2 2 衝頭形狀    17.5x8 mm雕刻 17.5x8 mm雕刻 17.5x8 mm雕刻 17.5x8 mm雕刻 17.5x8 mm雕刻 衝頭表面處理    抗黏附鉻RC-02 用碳RB-01抗黏附 用鎢RD-03抗黏附 用鐵氟龍RF-03抗黏附 鋼(無抗黏附鍍層) 結果 測試 採樣 7107/02設定2 7107/02設定5 7107/02設定6 7107/02設定7 7107/02設定8 重量(mg) / RSD (%) 20個錠劑 697.12 / 0.38 NA NA NA NA 硬度(kp) 5個錠劑 15.4至16.3 NA NA NA NA 易脆性(%) 4分鐘 10分鐘 30分鐘 根據藥典    0.02/無頂裂 0.04/無頂裂 0.69/無頂裂    NA    NA    NA    NA 崩解時間(分鐘) 3個錠劑 0分58秒 至 1分00秒    NA    NA    NA    NA 厚度(mm) 10個錠劑 5.5至5.5 NA NA NA NA 黏附 10個錠劑 部分黏附 部分黏附 部分黏附 極稍微黏附 部分黏附 12 測試最終混合持續時間及硬脂酸鎂對調配物 IV 之影響的第二次試驗參數及結果。 7107/02 設定 1 7107/02 設定 2 7107/02 設定 3 7107/02 設定 4 7107/02 設定 10 最終摻和物 硬脂酸鎂之比率(%)    1.1 1.1 1.5 1.5 1.3 最終混合持續時間(旋轉)    70 140 70 70 140 壓縮參數 速度(tpm)    40 40 40 40 40 預壓力(kN)    3.5 2.5 2.1 2.5 2.2 壓縮力(kN)    >>30 30 30 37 37 衝頭(數量)    2 2 2 2 2 衝頭形狀    17.5x8 mm雕刻 17.5x8 mm雕刻 17.5x8 mm雕刻 17.5x8 mm雕刻 17.5x8 mm雕刻 衝頭表面處理    抗黏附鍍鉻 抗黏附鍍鉻 抗黏附鍍鉻 抗黏附鍍鉻 抗黏附鍍鉻 結果 測試 採樣                重量(mg) / RSD (%) 20個錠劑 704.01 (*) / 0.23 697.12 / 0.38 695.19 / 0.38 702.61 / 0.39 703.24 / 0.29 硬度(kp) 5個錠劑 17.3至17.9 15.4至16.3 12.4至13.4 11.9至14.1 13.4至14.7 易脆性(%) 4分鐘 10分鐘 30分鐘 根據藥典    NA NA NA    0.02/無頂裂 0.04/無頂裂 0.69/無頂裂    0.03/無頂裂 0.15/無頂裂 1.01/無頂裂    0.08/無頂裂 0.11/無頂裂 1.15/無頂裂    0.05/無頂裂 0.19/無頂裂 1.02/無頂裂 崩解時間(分鐘) 3個錠劑 1分15秒 至 1分20秒 0分58秒 至 1分00秒 1分00秒 至 1分10秒 1分15秒 至 1分25秒 1分30秒 至 1分45秒 厚度(mm) 10個錠劑 5.3至5.4 5.5至5.5 5.5至5.5 5.5至5.5 5.5至5.6 黏附 10個錠劑 黏附減少,清潔一些下衝頭 黏附減少 極稍微黏附於上衝頭上。未黏附於下衝頭上 未黏附但趨向於在硬度測試期間分裂 稍微黏附於上衝頭上 (*)在10個錠劑上 13 測試壓縮參數對調配物 IV 之影響的試驗參數及結果。 7107/03 設定 1 7107/05 設定 1 7107/05 設定 2 7107/05 設定 3 最終摻和物 硬脂酸鎂之比率(%)    1.5 1.5 1.5 1.5 壓縮參數 速度(tpm)    40 40 40 40 預壓力(kN)    2.0 5.0 3.7 2.5 壓縮力(kN)    30 24 37 25 衝頭(數量)    2 2 2 2 衝頭形狀    17x9R6mm可斷裂 16.5x7mm可斷裂 16.5x7mm可斷裂 16.5x7mm可斷裂 衝頭表面處理    抗黏附鉻 抗黏附鉻 抗黏附鉻 抗黏附鉻 結果 測試 採樣 7107/03 設定 1 7107/05 設定 1 7107/05 設定 2 7107/05 設定 3 重量(mg) / RSD (%) 20個錠劑 700.20 (*) / 0.49 705.29 / 0.59 709.62 / 0.64 700.08 / 0.54 在二分之一上之破裂測試RSD (%) 30個錠劑 0.97 NA 3.19 2.91 硬度(kp) 5個錠劑 7.6至8.8 (**) 18.6至19.7 17.3至19.3 16.1至16.9 易脆性(%) 4分鐘 10分鐘 30分鐘 根據藥典    0.17/無頂裂 0.32/無頂裂 1.19/無頂裂    0.12/無頂裂 0.47/無頂裂 1.52/無頂裂    0.21/無頂裂 0.51/無頂裂 1.80/無頂裂    0.37/無頂裂 1.04/無頂裂 2.85/無頂裂 崩解時間(分鐘) 3個錠劑 0分40秒 至 0分45秒 1分38秒 至 1分43秒 2分15秒 至 2分32秒 1分39秒 至 1分53秒 厚度(mm) 10個錠劑 5.3至5.3 6.6至6.7 6.5至6.7 6.6至6.7 黏附 10個錠劑 無黏附 無黏附 無黏附 無黏附 (*)在30個錠劑上          (**)在10個錠劑上     NA:未施加 測試調配物IV組合錠劑、二氟甲基鳥氨酸單一錠劑及舒林酸單一錠劑之穩定性。對調配物IV錠劑之穩定性分析在6個月時使用卡爾費歇爾滴定法(Karl Fischer titration method)測定含水量進行(圖1)。圖1中,展示調配物IV之組合錠劑與二氟甲基鳥氨酸單一錠劑相比歷經六個月後具有更低的吸水量。水可影響藥物效能及藥物溶解;例如水可藉由水解增加藥物降解速率(Gerhardt,2009)。因此,在一些實施例中,本文提供之組合錠劑比單一活性劑錠劑中之一者或兩者更加穩定。 最終,亦測試調配物IV之溶解曲線。溶解研究在50 mM磷酸鈉緩衝液介質中以7.2 pH使用槳葉攪拌元件以75 rpm (USP <711>溶解設備II (槳葉))進行(圖2A至圖2B)。驗證方法關於溶解二氟甲基鳥氨酸及舒林酸之水準II。在活性醫藥成分二氟甲基鳥氨酸及舒林酸自身與溶解介質、磷酸鹽緩衝溶液或賦形劑之間未觀測到相互干擾。出人意料地,觀測到與單一藥劑錠劑相比,調配物IV之固定劑量組合具有重疊的活體外溶解曲線。實例 3- 藥物賦形劑及包衣相容性 進行關於二氟甲基鳥氨酸HCl/舒林酸組合錠劑之非cGMP藥物賦形劑相容性研究。使用一系列樣品評價外形、HPLC分析及XRPD特性。測試包括PVP、HPMC、乳糖、EXPLOTABTM 、Ac-Di-Sol®、PROSOLV®、STARCH 1500®及OPADRY® Yellow之賦形劑。用於賦形劑相容性製備的樣品除了二氟甲基鳥氨酸HCl:舒林酸製劑為5:1且二氟甲基鳥氨酸HCl:舒林酸:H2 O製劑為約6:1:0.3以外,均為API與賦形劑之1:1物理混合物。大部分樣品之總質量為約750 mg。製備涉及將組分稱重入20cc閃爍小瓶中,封閉且渦旋約30秒。樣品接著儲存於40℃/75% RH穩定性腔室中四週。鬆散地緊固小瓶上之蓋,且將小瓶儲存於腔室中避光。 外形觀測藉由視覺檢查用於HPLC分析而製備之小瓶進行。用含50%乙腈之緩衝液(50 mM磷酸鹽緩衝液pH 2.55)萃取賦形劑相容性樣品。僅含有舒林酸之樣品藉由稱重出樣品部分(約150 mg)且以預定體積進行萃取使得二氟甲基鳥氨酸及舒林酸之最終濃度分別為9.5 mg/mL及0.1 mg/mL來製備。相容性樣品之其餘部分藉由使用預定體積之萃取溶劑使得二氟甲基鳥氨酸及舒林酸之最終濃度與以上大約相同進行定量轉移製備。使用能夠偵測活性劑、二氟甲基鳥氨酸及舒林酸之方法分析賦形劑相容性樣品(圖4A)。該方法採用具有195 nm紫外線(UV)偵測之梯度逆相HPLC。 XRPD分析在具有布拉格-布倫塔諾組態(Bragg-Brentano configuration)之Bruker AXS D8 Advance系統上使用CuKα輻射進行。在室溫下使用以下參數分析樣品:40 kV;40 mA;1°發散度;及防散射狹縫;以連續模式進行量測方法,2 - 40°2Θ,0.05°梯度及1秒/步驟時間。使用九個位置自動取樣器配件中之旋轉、頂部填充鋼鐵樣品固持器分析3 mg與25 mg之間樣品。使用可追蹤的標準物校準系統。結果展示於圖4B至圖4C中。 具有PVP K30之二氟甲基鳥氨酸HCl在2週樣品中開始展示潮濕,且在4週後變成液體。具有PVPK30之舒林酸在2週後展示樣品黏附且在4週後繼續。 PVPK30賦形劑僅在2週樣品中開始展示濕氣且在4週後變成液體。觀測到二氟甲基鳥氨酸HCl樣品具有相同現象,但未觀測到舒林酸樣品具有相同現象。所測試之大部分樣品的HPLC分析結果歷經不同的時間點未展示獨特的趨勢(增加或減少)。儘管多個樣品具有異常較低的分析值,但分析水準歷經4週時段展示更多增加趨勢或保持相對恆定。觀測到舒林酸/二氟甲基鳥氨酸ProSolv SMCC90樣品在分析結果中具有最高變化。在4週時間點處之分析值比初始分析結果高10.0%。此變化可歸因於在不同時間點下方法(未驗證)及樣品一致性。儘管驗證方法之可接受的隨機分析誤差為2%,但此方法之變化性為未知的。除一些樣品以外,歷經不同時間點測試之樣品中之每一者的分析值在分析方法之正常可接受的2%隨機誤差內。在所測試之受應力條件下API、二氟甲基鳥氨酸及舒林酸不存在獨特的趨勢。此研究結果表明API (二氟甲基鳥氨酸HCl/舒林酸)均與潛在的賦形劑相容。 藥物賦形劑相容性研究藉由XRPD分析進行以測定針對二氟甲基鳥氨酸HCl/舒林酸組合產物之具有潛在調配物賦形劑的API之結晶度。 XRPD結果展示在40℃/75% RH下在四週之後API與賦形劑之間無相互作用。此指示API (二氟甲基鳥氨酸HCl/舒林酸)均與潛在賦形劑相容。 包衣試驗在錠劑上進行以測定在1個月及3個月時在25℃/60% RH或40℃/75% RH之水分含量下對穩定性的影響。包衣包括以3%或4%重量增加的OPADRY® Yellow (Colorcon,03B92557)、OPADRY® White (Colorcon Y-1-7000)、OPADRY® II White (Colorcon 85F18422)及OPADRY® Clear (Colorcon YS-3-7413)。採取顏色目測以評價在穩定錠劑與初始包衣錠劑之間的總體色差或DE。 使用Datacolor Spectraflash 600系列分光光度計測試錠劑顏色。使用Commission Internationale de l'Eclairage (CIE) L* a* b*系統分析資料。在L* a* b*系統中,顏色表示為三維空間中之座標。亮度及暗度繪製在L*軸上,其中L=100代表純白色且L=0表示純黑色。 a*及b*軸分別代表紅色/綠色及藍色/黃色之兩種互補顏色對。藉由以幾何形狀繪製顏色,在兩種顏色之間的差值(總體色差=E*)可藉由使用以下等式計算兩個點之間的距離來測定。 DE* = [(L*1 - L*2)2 + (a*1 - a*2)2 + (b*1 - b*2)2]1/2 使用Datacolor,分析在各種包衣調配物之各重量增加下的各錠劑。 DE值愈接近零,則所測試錠劑顏色愈接近顏色標準物(初始樣品)。白色包衣(通過QC測試)之Colorcon標準物光譜將為小於1.5之DE值。所有具有白色膜衣之穩定性樣品超過1.5 DE,且因此將不能通過Colorcon標準QC測試(表14)。透明包衣錠劑亦遠高於值1.5。 14 :處於穩定性之包衣錠劑之 DE 值。    3% wg Y-1-7000 (白色) 4% wg Y-1-7000 (白色) 3% wg 85F18422 (白色) 4% wg 85F18422 (白色) 3% wg 03B92557 (黃色) 4% wg 03B92557 (黃色) 3% wg YS-3-7413 (透明) 1 mo 25/60 1.81 1.64 2.56 2.8 0.27 0.32 1.15 3 mo 25/60 1.97 1.94 2.96 2.31 0.35 0.22 1.1 1 mo 40/75 1.91 2.47 3.58 2.39 0.3 0.29 4.29 3 mo 40/75 2.71 2.66 2.72 3.31 0.64 0.58 7.6 最佳DE結果發現為包覆有黃色調配物之錠劑。 DE值遠低於1.5。 1或低於1之DE值(總體色差)視為人眼不可感知的。黃色包衣之Colorcon典型內部規格傾向於為2.5-3之DE值。因此,OPADRY® Yellow用於包覆組合錠劑。實例 4- 固定共調配二氟甲基鳥氨酸 / 舒林酸之生物等效性研究 進行預備試驗以比較在經口投與含有二氟甲基鳥氨酸/舒林酸之共調配錠劑之後,與在空腹條件下正常健康個體中單獨服用或共投與之含有二氟甲基鳥氨酸或舒林酸之個別錠劑相比,血漿中二氟甲基鳥氨酸、舒林酸舒林酸硫化物及舒林酸碸之藥物動力學參數。此研究之第二目標為測定與在正常健康個體中單獨服用或共投與個別調配物相比,二氟甲基鳥氨酸/舒林酸共調配錠劑之安全性及耐受性。 研究包含十二個個體,雄性或雌性,至少18歲但不大於60歲。主要包括準則為:輕度吸菸者、不吸菸者或前吸菸者;身體質量指數(BMI) ≥18.50 kg/m2 且<30.00 kg/m2 ;所進行之12導聯ECG (在ECG之前個體必須處於仰臥位置10分鐘,且在所有所請求血液抽取之前進行ECG)中未發現臨床上顯著異常;雌性個體懷孕測試陰性;及根據病史、全面身體檢查(包括生命體征)及實驗室測試(一般生物化學、血液學及驗尿)為健康的。 個體在包含以下之四個處理組中經處理: •  處理1:共調配二氟甲基鳥氨酸375 mg/舒林酸75 mg錠劑(2 x 375/75 mg錠劑)之單一750/150 mg劑量 •  處理2:二氟甲基鳥氨酸250 mg錠劑(3 x 250 mg錠劑)之單一750 mg劑量 •  處理3:單一150 mg劑量舒林酸150 mg錠劑(1 x 150 mg錠劑) •  處理4:同時投與舒林酸150 mg錠劑(1 x 150 mg錠劑)之單一150 mg劑量及二氟甲基鳥氨酸250 mg錠劑(3 x 250 mg錠劑)之單一750 mg劑量 指派各個體歷經28天時段接受4種不同的處理。指派處理之單一口服劑量在各研究時段中在空腹條件下投與。處理投與由7個曆日之清除期(wash-out)間隔開。各個體在80個時刻收集總計120個血液樣本。第一次血液樣本在藥物投與之前收集,同時其他血液樣本在藥物投與0.25、0.5、0.75、1、1.5、2、2.5、3、3.5、4、5、6、8、10、12、16、24、36及48小時之後收集。分析物藉由具有MS/MS偵測之HPLC量測。分析範圍為二氟甲基鳥氨酸35.0 ng/mL至35000.0 ng/mL、舒林酸30.0 ng/mL至15000.0 ng/mL以及舒林酸碸及舒林酸硫化物10.0 ng/mL至8000.0 ng/mL。經由評定不良事件(AE)、標準實驗室評價、生命體征及ECG評價安全性。藥物動力學參數之數學模型及統計方法 :主要吸收及分佈參數使用非室方法以對數線性末期假設計算。梯形規則用於評估曲線下面積。末期評估基於最大化確定係數。此試驗之藥物動力學參數為Cmax 、Tmax 、AUC0-T 、AUC0-∞ 、AUC0-T/∞ 、λZ 及Thalf 。統計分析基於藥物動力學參數之參數ANOVA模型;用於Cmax 、AUC0-T 及AUC0-∞ 之幾何方法比率之兩側90%信賴區間基於ln轉換資料;Tmax 經排序轉換。 ANOVA模型使用順序、時段及處理之固定因素;隨機因素為順序內嵌套之個體。 藥物動力學參數包括Cmax (最大觀測血漿濃度);Tmax (最大觀測血漿濃度之時間,若其在超過一個時間點出現,則Tmax 定義為具有此值之第一時間點);TLQC (最後觀測到之可定量血漿濃度之時間);AUC0-T (使用線性梯形方法自0至TLQC 計算之血漿濃度時間曲線下累計面積);AUC0-∞ (血漿濃度時間曲線趨近無限下面積,計算為AUC0-T + CLQC /λz,其中CLQC 為時間TLQC 下之估計濃度);AUC0-T/∞ (AUC0-T 相對於AUC0-∞ 之相對百分比);TLIN (對數線性消除期開始時的時間點);λz (明顯的消除速率常數,藉由對數濃度對時間曲線之末端線性部分之線性回歸估計);及Thalf (最終消除半衰期,計算為ln(2)/ λz)。 15 :二氟甲基鳥氨酸之藥物動力學參數 參數 處理 -1 (n=12) 處理 -2 (n=12) 處理 -4 (n=12) 平均值 C.V. (%) 平均值 C.V. (%) 平均值 C.V. (%) Cmax (ng/mL) 10643.8 (21.6) 10234.6 (19.9) 10012.8 (25.5) ln (Cmax ) 9.2525 (2.2) 9.2134 (2.3) 9.1822 (2.8) Tmax ( 小時 )* 3.25 (2.00-6.00) 3.50 (2.00-5.00) 4.50 (2.50-5.00) AUC0-T (ng·h/mL) 71459.8 (20.4) 68962.3 (20.2) 69914.9 (18.3) ln (AUC0-T ) 11.1562 (1.9) 11.1229 (1.8) 11.1407 (1.6) AUC0-∞ (ng·h/mL) 71839.3 (20.3) 69301.2 (20.0) 70326.0 (18.1) ln (AUC0-∞ ) 11.1619 (1.9) 11.1281 (1.8) 11.1468 (1.6) AUC0-T/∞ (%) 99.44 (0.3) 99.48 (0.2) 99.39 (0.3) λZ ( 小時 -1 ) 0.1453 (25.0) 0.1642 (21.5) 0.1630 (26.3) Thalf ( 小時 ) 5.07 (27.3) 4.43 (24.9) 4.65 (39.0) *中值(範圍) 16 :舒林酸之藥物動力學參數 參數 處理 -1 (n=12)** 處理 -3 (n=12)** 處理 -4 (n=12)*** 平均值 C.V. (%) 平均值 C.V. (%) 平均值 C.V. (%) Cmax (ng/mL) 4553.4 (31.6) 5236.1 (39.2) 5188.5 (42.9) ln (Cmax ) 8.3788 (3.7) 8.4946 (4.7) 8.4562 (5.7) Tmax (小時)* 1.54 (0.75-5.00) 1.50 (1.00-2.50) 1.50 (0.75-5.00) AUC0-T (ng·h/mL) 11268.3 (32.2) 11569.7 (31.4) 11340.8 (43.9) ln (AUC0-T ) 9.2823 (3.5) 9.3114 (3.4) 9.2621 (4.2) AUC0-∞ (ng·h/mL) 11579.4 (39.9) 12687.8 (34.9) 12023.7 (49.3) ln (AUC0-∞ ) 9.2896 (4.2) 9.3924 (3.9) 9.3019 (4.8) AUC0-T/∞ (%) 96.73 (4.9) 98.14 (1.2) 97.58 (1.6) λZ (小時-1 ) 0.2810 (48.0) 0.3408 (45.9) 0.2034 (58.0) Thalf (小時) 4.97 (142.9) 2.88 (83.5) 4.61 (55.3) *中值(範圍) **用於AUC0-∞ 、λZ 及Thalf 之n=7 ***用於AUC0-∞ 、λZ 及Thalf 之n=8用於生物等效性之準則 :二氟甲基鳥氨酸之統計推斷基於生物等效性方法,使用幾何LSmeans之比率,其中自針對ln轉換參數Cmax 、AUC0-T 及AUC0-∞ 之處理1相對於處理2、處理2相對於處理4及處理1相對於處理4之間的差值指數計算之對應90%信賴區間均與80.00%至125.00%範圍進行比較。舒林酸之統計推斷基於生物等效性方法,使用幾何LSmeans之比率,其中針對ln轉換參數Cmax 、AUC0-T 及AUC0-∞ 之處理1相對於處理3、處理3相對於處理4及處理1相對於處理4之間的差值指數計算之對應90%信賴區間均與80.00%至125.00%範圍進行比較。相同準則應用於舒林酸硫化物及舒林酸碸,且結果呈現為相當治療性結果之支持性證據。安全性結果 :總計12名個體進入研究,且所有個體接受研究下的4個處理。參與此研究的任何個體未報導嚴重不良事件(SAE)及死亡。無個體出於安全原因由研究者撤出。參與此研究的12名個體中4名(33%)個體報導總計4個處理引發不良事件(TEAE)。此等事件中,在投與處理1之後出現2個,在處理3投與之後出現1個且在處理4投與之後出現剩餘的一個。以處理2給藥之個體確實未報導任何TEAE。在研究期間所經歷之一半TEAE視為與藥物投與有關。 此研究中之TEAE具有低發生率;每處理組1名個體(8%)經歷TEAE。在處理4投與後報導口乾,在處理3投與後報導上呼吸道感染且在處理1投與後各報導血管穿刺位點擦傷及頭痛。 TEAE發生率對於用處理3及處理4 (8%)給藥之個體相同,且稍微低於用處理1 (17%)給藥之個體報導的TEAE發生率。報導藥物相關TEAE具有與用處理1及處理4 (8%)給藥之個體相同的發生率,然而用處理3給藥之個體未經歷藥物相關TEAE。在研究期間經歷之TEAE認為在強度上為輕度(3/4,75%)及中等(1/4,25%)。個體中無一者在研究期間經歷嚴重的TEAE。 所有異常臨床實驗室值或多或少地高於或低於其參考範圍,且無一者由研究者視為臨床上顯著的。另外,在此研究中個體之生命體征及ECG中無臨床上顯著異常。所有體檢判定為正常。總體而言,所測試藥物為總體上安全的且此研究中所包括個體對所測試藥物具有良好耐受性。在處理 1 與處理 2 之間的二氟甲基鳥氨酸比較 :藥物動力學結果展現二氟甲基鳥氨酸之Cmax 、AUC0-T 及AUC0-∞ 之幾何LSmean比率及對應90%信賴區間均包括在80.00%至125.00%範圍內。此比較結果指示當處理1及處理2在空腹條件下投與時,滿足生物等效性準則,且展現二氟甲基鳥氨酸生物可用性在含有二氟甲基鳥氨酸/舒林酸之共調配錠劑與僅含有二氟甲基鳥氨酸之錠劑之間相當。 17 :在處理 1 相對於處理 2 中二氟甲基鳥氨酸之統計分析概述 參數 個體內C.V. (%) 幾何LSMEANS* 比率 (%) 90% 信賴限度(%) 處理 -1 (n=12) 處理 -2 (n=12) 下限 上限 Cmax 16.8 10430.9 10030.8 103.99 92.42 117.01 AUC0-T 13.5 69998.7 67701.4 103.39 94.03 113.69 AUC0-∞ 13.4 70395.4 68056.2 103.44 94.17 113.61 * Cmax 單位為ng/mL且AUC0-T 及AUC0-∞ 單位為ng·h/mL在處理 2 與處理 4 之間的二氟甲基鳥氨酸比較 :藥物動力學結果展現二氟甲基鳥氨酸之Cmax 、AUC0-T 及AUC0-∞ 之幾何LSmean比率及對應90%信賴區間均包括在80.00%至125.00%範圍內。此比較結果指示當處理2及處理4在空腹條件下投與時,滿足生物等效性準則,且展現共投與舒林酸與二氟甲基鳥氨酸之個別錠劑不影響單獨投與時之二氟甲基鳥氨酸的生物可用性。 18 :在處理 2 相對於處理 4 中二氟甲基鳥氨酸之統計分析概述 參數 個體內C.V. (%) 幾何LSMEANS * 比率(%) 90% 信賴限度(%) 處理 -2 (n=12) 處理 -4 (n=12) 下限 上限 Cmax 16.8 10030.8 9722.7 103.17 91.69 116.09 AUC0-T 13.5 67701.4 68916.4 98.24 89.34 108.02 AUC0-∞ 13.4 68056.2 69338.0 98.15 89.36 107.81 * Cmax 單位為ng/mL且AUC0-T 及AUC0-∞ 單位為ng·h/mL在處理 1 與處理 4 之間的二氟甲基鳥氨酸比較 :藥物動力學結果展現二氟甲基鳥氨酸之Cmax 、AUC0-T 及AUC0-∞ 之幾何LSmean比率及對應90%信賴區間均包括在80.00%至125.00%範圍內。此比較結果指示當處理1及處理4在空腹條件下投與時滿足生物等效性準則,且展現用於含有二氟甲基鳥氨酸/舒林酸之共調配錠劑與共投與含有各二氟甲基鳥氨酸或舒林酸之個別錠劑的二氟甲基鳥氨酸之生物可用性類似。 19 :在處理 1 相對於處理 4 中二氟甲基鳥氨酸之統計分析概述 參數 個體內C.V. (%) 幾何LSMEANS * 比率(%) 90% 信賴限度(%) 處理 -1 (n=12) 處理 -4 (n=12) 下限 上限 Cmax 16.8 10030.8 9722.7 107.28 95.35 120.72 AUC0-T 13.5 67701.4 68916.4 101.57 92.37 111.68 AUC0-∞ 13.4 68056.2 69338.0 101.53 92.43 111.51 * Cmax 單位為ng/mL且AUC0-T 及AUC0-∞ 單位為ng·h/mL在處理 1 與處理 3 之間的舒林酸比較 :藥物動力學結果展現舒林酸之Cmax 、AUC0-T 及AUC0-∞ 之幾何LSmean比率及對應90%信賴區間(90CI)並非均包括在80.00%至125.00%範圍內。Cmax 之90CI之下限低於80.00%限度。由於比率在所有PK參數之80.00%至125.00%範圍內,所以個體內變化性可說明Cmax 之下限超出BE範圍之情況。關於此比較所獲得之結果展現用於此預備試驗中之樣品大小不足以展現共調配錠劑及單獨舒林酸的舒林酸生物可用性之等效性。 20 :在處理 1 相對於處理 3 中舒林酸之統計分析概述 參數 個體內 C.V. (%) 幾何 LSMEANS * 比率 (%) 90% 信賴限度 (%) 處理 -1 (n=12)** 處理 -3 (n=12)** 下限 上限 Cmax 24.6 4353.6 4888.5 89.06 75.04 105.69 AUC0-T 11.9 10746.4 11063.6 97.13 89.34 105.60 AUC0-∞ 13.6 12029.4 12743.6 94.40 82.27 108.30 * Cmax 單位為ng/mL且AUC0-T 及AUC0-∞ 單位為ng·h/mL **對於AUC0-∞ ,n=7 基於該等資料,併入所有比較之間變化性的個體內改變,Cmax 為約24.6%,且AUC0-T 為約12%。統計上,鑒於幾何LSmeans之預期處理1與處理3比率感覺應在90%及110%內,估計滿足80.00%至125.00%生物等效性範圍(統計先驗功效為至少80%)之個體數目對於未來關鍵研究將為約54。包括60名個體應足以說明關於所估計個體內CV的漏失及變化的可能性。在處理 3 與處理 4 之間的舒林酸比較 :藥物動力學結果展現舒林酸之Cmax 、AUC0-T 及AUC0-∞ 之幾何LSmean比率及對應90%信賴區間均包括在80.00%至125.00%範圍內。此比較結果指示當處理3及處理4在空腹條件下投與時,滿足生物等效性準則,且展現共投與含有二氟甲基鳥氨酸或舒林酸之個別錠劑不影響單獨投與時的舒林酸生物可用性。 21 :在處理 3 相對於處理 4 中舒林酸之統計分析概述 參數 個體內 C.V. (%) 幾何 LSMEANS * 比率 (%) 90% 信賴限度 (%) 處理 -3 (n=12)** 處理 -4 (n=12)** 下限 上限 Cmax 24.6 4888.5 4704.2 103.92 87.56 123.32 AUC0-T 11.9 11063.6 10530.9 105.06 96.63 114.22 AUC0-∞ 13.6 12743.6 11834.3 107.68 93.31 124.27 * Cmax 單位為ng/mL且AUC0-T 及AUC0-∞ 單位為ng·h/mL **對於AUC0-∞ ,n=7在處理 1 與處理 4 之間的舒林酸比較 :藥物動力學結果展現舒林酸之Cmax 、AUC0-T 及AUC0-∞ 之幾何LSmean比率及對應90%信賴區間(90CI)並非均包括在80.00%至125.00%範圍內。 Cmax 之90CI之下限低於80.00%限度。由於比率在所有PK參數之80.00%至125.00%範圍內,所以個體內變化性可說明Cmax 之下限超出BE範圍之情況。關於此比較所獲得之結果展現用於此預備試驗中之樣品大小不足以展現共調配錠劑及共投與含有二氟甲基鳥氨酸或舒林酸之個別錠劑的舒林酸生物可用性之生物等效性。 22 :在處理 1 相對於處理 4 中舒林酸之統計分析概述 參數 個體內 C.V. (%) 幾何 LSMEANS * 比率 (%) 90% 信賴限度 (%) 處理 -1 (n=12)** 處理 -4 (n=12)** 下限 上限 Cmax 24.6 4353.6 4704.2 92.55 77.98 109.83 AUC0-T 11.9 10746.4 10530.9 102.05 93.86 110.94 AUC0-∞ 13.6 12029.4 11834.3 101.65 88.09 117.30 * Cmax 單位為ng/mL且AUC0-T 及AUC0-∞ 單位為ng·h/mL **對於AUC0-∞ ,n=8 基於該等資料,併入所有比較之間變化性的個體內改變,Cmax 為約24.6%,且AUC0-T 為約12%。統計上,鑒於幾何LSmeans之預期處理1與處理4比率感覺應在92.5%及107.5%內,估計滿足80.00%至125.00%生物等效性範圍(統計先驗功效為至少80%)之個體數目對於未來關鍵研究將為約36。包括40名個體應足以說明關於所估計個體內CV的漏失及變化的可能性。*  *  * 本文中所揭示及主張之所有組合物及/或方法均可根據本發明製備及執行,無需過多實驗。雖然已根據較佳實施例描述本發明之組合物及方法,但熟習此項技術者應清楚變化可在不背離本發明之概念、精神及範疇的情況下應用於本文所述之方法中及方法之步驟或步驟順序中。更特定言之,顯而易知在化學上及生理上相關之某些藥劑可取代本文所描述之藥劑,同時獲得相同或類似結果。對熟習此項技術者顯而易見的所有該等類似取代及修改視為在由隨附申請專利範圍所定義之本發明之精神、範疇及概念內。參考文獻 以下參考文獻特定地以引用的方式併入本文中,以致其對本文所闡述之彼等提供例示性程序或其他細節補充。 U.S. Patent 3,647,858 U.S. Patent 3,654,349 U.S. Patent 4,330,559 U.S. Patent 4,413,141 U.S. Patent 5,814,625 U.S. Patent 5,843,929 U.S. Patent 6,258,845 U.S. Patent 6,428,809 U.S. Patent 6,702,683 U.S. Patent 8,329,636 U.S. Patent 9,121,852 U.S. Patent Publication US2013/0217743 U.S. Patent Publication US2015/0301060 PCT Patent Publication WO2014/070767 PCT Patent Publication WO2015/195120 Albertset al. ,J. Cell. Biochem. Supp ., (22):18-23, 1995. AMA Drug Evaluations Annual, 1814-1815, 1994. Baileyet al. ,Cancer Prev Res (Phila) 3 , 35-47, 2010. Barryet al. ,J. Natl. Cancer Inst ., 98(20):1494-500, 2006. Bediet al., Cancer Res ., 55(9):1811-1816, 1995. Bellofernandezet al., Proc. Natl. Acad. Sci. USA, 90:7804-8, 1993. Childset al. ,Cell. Molec. Life Sci ., 60:1394-1406, 2003. DuBoiset al., Cancer Res. , 56:733-737, 1996. Erdmanet al., Carcinogenesis , 20:1709-13, 1999. European Pharmacopoeia, Strasbourg: Council of Europe, 8th Ed., 2014. Fultz and Gerner,Mol. Carcinog ., 34:10-8, 2002. Gerhardt,Pharmaceutical Processes, 13(1), 2009. Gerneret al. ,Cancer Epidemoil. Biomarkers Prev ., 3:325-330, 1994. Gerner, E.W. & Meyskens, F.L., Jr.,Nat Rev Cancer 4 , 781-92, 2004. Giardielloet al. ,Cancer Res ., (57):199-201, 1997. Hanifet al. ,Biochemical Pharmacology , (52):237-245, 1996. Hubneret al., Clin. Cancer Res ., 14(8):2303-9, 2008. Ignatenkoet al. ,Cancer Biol. Ther ., 5(12):1658-64, 2006. Japanese Pharmacopoeia, Tokyp: Society of Japanese Pharmacopoeia, 16th Ed., 2011. Kingsnorthet al. ,Cancer Res., 43(9):4035-8, 1983. Ladenheimet al. ,Gastroenterology , 108:1083-1087, 1995. Lanzaet al. ,Arch. Intern. Med. , 155:1371-1377, 1995. Lee, Y.S. & Dutta, A.,Genes Dev 21, 1025-30, 2007. Lipkin,J. Cell Biochem. Suppl. , 28-29:144-7, 1997. Lippman,Nat. Clin. Pract. Oncol., 3(10):523, 2006. Loveet al., J. Natl. Cancer Inst ., 85:732-7, 1993. Luk and Baylin,N. Engl. J. Med ., 311(2):80-83, 1984. Lupulescu,Cancer Detect. Prev ., 20(6):634-637, 1996. Maejimaet al ,Chemical Pharmacology Bulletin , 45(3): 518-524, 1997. Martinezet al., Proc. Natl. Acad. Sci. USA, 100:7859-64, 2003. McLarenet al. ,Cancer Prev. Res ., 1(7):514-21, 2008. Meyskenset al. ,Cancer Prev Res (Phila) 1 , 32-8, 2008. Meyskenset al. ,J. Natl. Cancer Inst ., 86(15):1122-1130, 1994. Meyskenset al., J. Natl. Cancer Inst ., 90(16):1212-8, 1998. Muscatet al., Cancer , 74:1847-1854, 1994. Narisawaet al. ,Cancer Res ., 41(5):1954-1957, 1981. Nigroet al., Cancer Lett., (35):183-8, 1987. Nowelset al., Cancer. Biochem. Biophys. ,(8):257-63, 1986. Pegg,Biochem ., 234(2):249-262, 1986. Physician's Desk Reference, Medical Economics Data, Montville, N.J., 1745-1747, 1999 Piazzaet al. ,Cancer Res ., (55):311 3116, 1995. Piazzaet al. ,Cancer Res ., (57):2452-2459, 1997a. Piazzaet al., Cancer Res ., (57):2909-2915, 1997b. Pollard and Luckert,Cancer Res ., 49:6471-6473, 1989. Psaty and Potter,N. Engl. J. Med., 355(9):950-2, 2006. Raoet al. ,Cancer Res ., (55):1464-1472, 1995. Reddyet al. ,Cancer Res ., (50):2562-2568, 1990. Reddyet al. ,Cancer Res. , 47:5340-5346, 1987. Simoneauet al. ,Cancer Epidemiol Biomarkers Prev 17 , 292-9, 2008. Simoneauet al., J. Natl. Cancer Inst ., 93:57-9, 2001. Singh and Reddy,Annals. NY Acad.  Sci. , (768):205-209, 1995. Singhet al. ,Carcinogenesis , (15):1317-1323, 1994. Strejanet al., Cell Immunol ., 84(1):171-184, 1984. Suet al. ,Science , (256):668-670, 1992. Temperoet al. ,Cancer Res ., 49(21):5793-7, 1989. Thomas and Thomas,J. Cell Mol. Med ., 7:113-26, 2003. Thompsonet al., Cancer Res, ( 45):1170-3, 1985. Thompsonet al., J. Natl. Cancer Inst ., (87):125-1260, 1995. United States Pharmacopeia and National Formulary (USP 39-NF 34). Rockville, MD; 2015. Vander Heiden, M.G.Nat Rev Drug Discov 10 , 671-84, 2011. Vane and Botting,Adv Exp Med Biol ., 433:131-8, 1997. Wallace,Eur. J. Clin. Invest ., 30:1-3, 2000. Wanget al. ,Clin Cancer Res 17 , 2570-80, 2011. Weekset al., Proc. Nat'l Acad. Sci. U.S.A., (79):6028-32, 1982. Zellet al., Cancer Prev. Res ., 2(3):209-12, 2009. Zhanget al. ,Genes Dev 26 , 461-73, 2012.This application claims the rights of U.S. Provisional Application No. 62/248,810, filed October 30, 2015, and U.S. Provisional Application No. 62/358,698, filed July 6, 2016, the entire contents of which are incorporated by reference way incorporated into this article. In several aspects, compositions are provided for a fixed dose combination (FDC) of difluoromethylornithine and sulindac. Also provided are methods of making the fixed dose combinations of the invention that overcome problems associated with current methods. Manufacturing methods have been designed to address issues including drug-drug interactions, drug-excipient interactions, and uniformity of blending of individual drug components. Thus, the fixed dose combinations of the present invention can be used to minimize local and/or systemic side effects, provide more effective therapy, improve polypharmacy and provide better patient compliance.I. familial adenomatous polyposis Excessive polyamine formation has been implicated in epithelial carcinogenesis, especially colorectal carcinogenesis. Polyamines are small ubiquitous molecules involved in a variety of processes including, for example, transcription, RNA stabilization, and ion channel gating (Wallace, 2000). Ornithine decarboxylase (ODC), the first enzyme in polyamine synthesis, is critical for normal development and tissue repair in mammals, but is downregulated in most adult tissues (Gerner and Meyskens, 2004) . Multiple abnormalities in the control of polyamine metabolism and transport lead to increased polyamine levels, which can promote tumorigenesis in several tissues (Thomas and Thomas, 2003). Familial adenomatous polyposis (FAP) is a syndrome associated with a high risk of colon and other cancers. FAP is caused by adenomatous polyposis of the colon (APCs ) tumor suppressor gene and APC signaling has been shown to regulate ODC expression in human cells (Fultz and Gerner, 2002) and in a mouse model of FAP (Erdman et al., 1999). Polyamine metabolism is upregulated in the intestinal epithelium of humans with FAP (Giardiello et al., 1997). Wild typeAPCs expression results in a decrease in ODC expression, while mutant APC results in an increase in ODC expression. The mechanism of APC-dependent regulation of ODC involves E-box transcription factors, including transcriptional activatorsc-MYC and transcription repressorMAD1 (Fultz and Gerner, 2002; Martinez et al., 2003).c-MYC ODC transcription is regulated by other displays (Bellofernandez et al., 1993). Several genes involved in polyamine metabolism are essential for optimal growth in most organisms and are downregulated in non-proliferating and/or adult cells and tissues (Gerner and Meyskens, 2004). As reviewed elsewhere, polyamines affect specific cellular phenotypes by, in part, affecting patterns of gene expression (Childs et al., 2003). Familial adenomatous polyposis (FAP), an inherited polyposis syndrome, is the result of germline mutations in the adenomatous polyposis of the colon (APC) tumor suppressor gene (Su et al., 1992). This autosomal dominant condition with variable presentation is associated with the development of hundreds of colonic adenomas, all of which developed into adenocarcinomas by age forty, twenty years earlier than the mean age of diagnosis for sporadic colon cancer (Bussey, 1990). In a previous study of presymptomatic individuals with FAP, the polyamines spermidine and spermine and their diamines were detected in normal-appearing colorectal biopsies when compared to normal family member controls Levels of the precursor putrescine increased (Giardiello et al., 1997). The activity of ornithine decarboxylase (ODC), the first and rate-limiting enzyme in mammalian polyamine synthesis, was also elevated in apparently normal colonic mucosal biopsies from FAP patients (Giardiello et al., 1997; Luk and Baylin, 1984). These findings were highlighted as polyamines are essential for optimal cell proliferation (Pegg, 1986). In addition, suppression of ODC activity using the enzyme-activating irreversible inhibitor DFMO inhibited colon carcinogenesis in carcinogen-treated rodents (Kingsnorth et al., 1983; Tempero et al., 1989). Shared mutants with FAPAPCs /apc The genotyped Min (multiple intestinal neoplasia) mouse serves as a useful experimental animal model for human FAP patients (Lipkin, 1997). Min mice can develop >100 gastrointestinal adenomas/adenocarcinomas throughout the GI tract at 120 days of life, resulting in GI bleeding, obstruction and death. Combination therapy of DFMO and sulindac was shown to effectively reduce adenomas in these mice. See US Patent No. 6,258,845 and Gerner and Meyskens, 2004, which are incorporated herein by reference.II. Difluoromethylornithine When used by itself and without context, the term "difluoromethylornithine" refers to 2,5-diamino-2-(difluoromethyl)pentanoic acid in any of its forms, including non-salt and salt forms (such as difluoromethylornithine HCl), non-salt and salt forms of anhydrous and hydrated forms (such as difluoromethylornithine hydrochloride monohydrate), non-salt and salt forms of solvates, Its enantiomers (R andS form, which can also be identified asd andl form) and mixtures of such enantiomers (eg racemic mixtures). "Essentially optically pure preparation" means a preparation that contains about 5% by weight or less of the first enantiomer of the opposite enantiomer. Specific forms of difluoromethylornithine include difluoromethylornithine hydrochloride monohydrate (aka CAS ID: 96020-91-6; MW: 236.65), difluoromethylornithine hydrochloride salt (ie CAS ID: 68278-23-9; MW: 218.63) and the anhydrous free base difluoromethylornithine (ie CAS ID: 70052-12-9; MW: 182.17). Specific forms of difluoromethylornithine are further specified if necessary. In some embodiments, the difluoromethylornithine of the present invention is difluoromethylornithine hydrochloride monohydrate (ie CAS ID: 96020-91-6). The terms "difluoromethylornithine" and "DFMO" are used interchangeably herein. DFMO is an abbreviation for difluoromethylornithine. Other synonyms for difluoromethylornithine and DFMO include: α-Difluoromethylornithine, 2-(difluoromethyl)-DL-ornithine, 2-(difluoromethyl)-dl -ornithine, 2-(difluoromethyl)ornithine, DL-α-difluoromethylornithine,N- Difluoromethylornithine, αδ-diamine-α-(difluoromethyl)valeric acid and 2,5-diamino-2-(difluoromethyl)valeric acid. Difluoromethylornithine is an irreversible inhibitor of the enzymatic activation of ornithine decarboxylase (ODC), the rate-limiting enzyme of the polyamine biosynthetic pathway. Due to this polyamine synthesis inhibition, the compounds are effective in preventing cancer formation, inhibiting cancer growth and reducing tumor size in many organ systems. It also has a synergistic effect with other antineoplastic agents. Difluoromethylornithine was shown to reduce APC-dependent intestinal tumorigenesis in mice (Erdman et al., 1999). Daily oral administration of difluoromethylornithine to humans inhibits ODC enzyme activity and polyamine content in multiple epithelial tissues (Love et al., 1993; Gerner et al., 1994; Meyskens et al., 1994; Meyskens et al. , 1998; Simoneau et al., 2001; Simoneau et al., 2008). Difluoromethylornithine and the nonsteroidal anti-inflammatory drug (NSAID) sulindac were reported to significantly reduce the rate of adenoma recurrence in individuals with colon adenomas when compared to placebo in a randomized clinical trial (Meyskens et al., 2008). Difluoromethylornithine was initially synthesized by the Center de Recherche Merrell, Strasbourg. Current U.S. Food and Drug Administration (FDA) approvals include: ˙African sleep disorders. High-dose systemic IV dosage form, not for sale (Sanofi/WHO) ˙ Hirsutism (androgen-induced excessive hair growth) topical formulations Although the FDA has not approved oral formulations of difluoromethylornithine, topical and injectable forms have been approved. Vaniqa® is a cream containing 15% w/w difluoromethylornithine hydrochloride monohydrate, corresponding to 11.5% w/w anhydrous difluoromethylornithine in cream for topical administration Ornithine (EU), 13.9% w/w Anhydrous Difluoromethylornithine Hydrochloride (U.S.). Ornidyl® is a solution of difluoromethylornithine HCl suitable for injection or infusion. It is supplied in a strength of 200 mg per mL of difluoromethylornithine hydrochloride monohydrate (20 g/100 mL). Difluoromethylornithine and its use in the treatment of benign prostatic hypertrophy are described in US Patents 4,413,141 and 4,330,559. The '141 patent describes difluoromethylornithine as a potent inhibitor of ODC in vitro and in vivo. Administration of difluoromethylornithine was reported to reduce putrescine and spermidine concentrations in cells where these polyamines are normally actively produced. In addition, difluoromethylornithine was shown to slow neoplastic cell proliferation when tested in standard tumor models. The '559 patent describes difluoromethylornithine and difluoromethylornithine derivatives for the treatment of benign prostatic hypertrophy. Benign prostatic hypertrophy, like many disease states characterized by rapid cell proliferation, is accompanied by abnormally elevated concentrations of polyamines. Difluoromethylornithine can potentially be administered continuously with significant antitumor effects. This drug is given at 0.4 g/m per day2 The low dose is relatively non-toxic to humans, and at the same time inhibits the synthesis of putrescine in tumors. Studies in a rat tumor model have shown that difluoromethylornithine infusion can produce a 90% reduction in tumor putrescine levels without suppressing peripheral platelet counts. Adverse effects observed with difluoromethylornithine include2 The effect of high doses on hearing disappeared when difluoromethylornithine was interrupted. At 0.4 g/m per day when administered for up to one year2 Such effects on hearing were not observed at lower doses of β-(Meyskens et al., 1994). Additionally, several instances of vertigo/dizziness were found to disappear when the drug was stopped. Thrombocytopenia was treated with high "therapeutic" doses of difluoromethylornithine (>1.0 g/m2 ) and was reported for the first time in cancer patients who had previously undergone chemotherapy or in patients with impaired bone marrow. Although the toxicity associated with difluoromethylornithine therapy is generally not as severe as with other types of chemotherapy, it was found to promote dose-related thrombocytopenia in limited clinical trials. In addition, studies in rats demonstrated that continuous infusion of difluoromethylornithine for 12 days significantly reduced platelet counts compared to controls. Similar observations were made by other studies in which thrombocytopenia was the main toxicity of continuous intravenous difluoromethylornithine therapy. The results of these studies indicated that difluoromethylornithine can significantly inhibit the ODC activity of the bone marrow precursors of megakaryocytes. Difluoromethylornithine inhibits proliferative repair processes such as epithelial wound healing. The phase III clinical trial assessed adenomatous polyp recurrence after 36 months of treatment with DFMO plus sulindac or matching placebo. Transient hearing loss is a known toxicity of treatment with DFMO, so a comprehensive approach was developed to analyze continuous airborne sonograms. The general estimating equation approach assessed the mean difference between treatment groups for change in air-conducted pure tone threshold, while calculating intrasubject correlations due to repeated measurements at frequency. Based on 290 individuals, adjusted for baseline, age, and frequency, compared with individuals treated with placebo (95% confidence interval, -0.64 to 1.63 dB; P=0.39), in individuals treated with DFMO plus sulindac There was a mean cut-off value of <2 dB in patients treated with DFMO plus sulindac compared to patients treated with placebo, with a mean difference of 0.50 dB. The results of this study are discussed in more detail in McLaren et al., 2008, which is incorporated herein by reference in its entirety.III.NSAIDs NSAIDs are non-steroidal anti-inflammatory agents. In addition to anti-inflammatory effects, it is also reported to have analgesic, antipyretic and platelet inhibitory effects. It is used, for example, to treat chronic arthritic conditions and certain soft tissue disorders associated with pain and inflammation. It is reported to act by blocking prostaglandin synthesis by inhibiting the cyclooxygenase enzyme that converts eicosadonic acid to cyclic endoperoxide, a prostaglandin precursor. Inhibition of prostaglandin synthesis explains its analgesic, antipyretic, and platelet inhibitory effects; other mechanisms may contribute to its anti-inflammatory effects. Certain NSAIDs can also inhibit lipoxygenase or phospholipase C, or modulate T cell function. See AMA Drug Evaluations Annual, 1814-5, 1994. Nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin, ibuprofen, piroxicam (Reddy et al., 1990; Singh et al., 1994), indomethacin (Narisawa, 1981), and sulindac (Piazza et al. People, 1997; Rao et al., 1995) effectively inhibited colon carcinogenesis in AOM-treated rat models. NSAIDs also inhibit tumor development with activated Ki-ras (Singh and Reddy, 1995). NSAIDs appear to inhibit carcinogenesis by inducing apoptosis in tumor cells (Bedi et al., 1995; Lupulescu, 1996; Piazza et al., 1995; Piazza et al., 1997b). Several studies suggest that the chemopreventive properties of NSAIDs, including induction of apoptosis, are a function of their ability to inhibit prostaglandin synthesis (reviewed in DuBois et al., 1996; Lupulescu, 1996; Vane and Botting, 1997). However, studies indicate that NSAIDs can act through prostaglandin-dependent and -independent mechanisms (Alberts et al., 1995; Piazza et al., 1997a; Thompson et al., 1995; Hanif, 1996). Sulindac, a metabolite of the NSAID sulindac, lacks COX-inhibitory activity, induces apoptosis in tumor cells (Piazza et al., 1995; Piazza et al., 1997b), and is active in several rodent models of carcinogenesis. Inhibition of tumor development (Thompson et al., 1995; Piazza et al., 1995, 1997a). The effects of several NSAIDs have been tested in human clinical trials. Completed a Phase IIa trial (one month) of ibuprofen and found that even at a dose of 300 mg/day, prostaglandin E2 (PGE2 ) levels were significantly lowered. The dose of 300 mg ibuprofen is extremely low (therapeutic doses range from 1200-3000 mg/day or more) and toxicity is unlikely to be observed even over the long term. However, ibuprofen was less effective than other NSAIDs in animal chemoprevention models.a. aspirin Aspirin, also known as acetylsalicylic acid, is a salicylate drug that is often used as an analgesic to relieve minor pain and suffering, as an antipyretic to reduce fever, and as an anti-inflammatory drug therapy. Aspirin was first isolated in 1897 by Felix Hoffmann, a chemist at the German company Bayer. Salicylic acid, the major metabolite of aspirin, is an integral part of human and animal metabolism. Although much is attributable to diet in humans, a substantial portion is synthesized endogenously. Today, aspirin is one of the most widely used pharmaceuticals worldwide, with an estimated 40,000 tons consumed annually. In countries where aspirin is a registered trademark owned by Bayer, the generic term is acetylsalicylic acid (ASA). Aspirin also has antiplatelet effects by inhibiting the production of thromboxane, which normally binds platelet molecules together to create patches on damaged walls of blood vessels. Because platelet patches can become oversized locally and downstream and also block blood flow, aspirin is also used chronically in low doses to help prevent heart attack, stroke, and blood clot formation in humans at high risk of developing blood clots. It also established that low-dose aspirin can be given immediately after a heart attack to reduce the risk of another heart attack or death of heart tissue. Aspirin is effective in preventing certain types of cancer, especially colorectal cancer. Adverse side effects of oral aspirin include gastrointestinal ulcers, stomach bleeding, and tinnitus, especially at higher doses. In children and adolescents, aspirin is no longer prescribed to control flu-like symptoms or symptoms of chickenpox or other viral diseases because of the risk of Reye's syndrome. Aspirin is part of a group of agents known as nonsteroidal anti-inflammatory drugs (NSAIDs), but differs from most other NSAIDs in its mechanism of action. Although aspirin and other drugs in its group called salicylates have similar effects (antipyretic, anti-inflammatory, analgesic) to other NSAIDs and inhibit the same enzyme cyclooxygenase, aspirin (but not other Salicylates) do so in an irreversible manner, and unlike other drugs, affect the COX-1 variant of the enzyme but not the COX-2 variant.b. Sulindac and its major metabolites , Sulindac and Sulindac Sulphide Sulindac is a nonsteroidal, anti-inflammatory derivative of indene with the following chemical name: (Z)-5-fluoro-2-methyl-1-((4-(methylsulfinyl)phenyl)methylene yl)-1H-indene-3-acetic acid (Physician's Desk Reference, 1999). Without being bound by theory, the sulfide moiety is converted in vivo by reversible reduction to the sulfide metabolite and by irreversible oxidation to the sulfide metabolite (exisulind). See US Patent 6,258,845, which is incorporated herein by reference. Sulindac, which also inhibits Ki-ras activation, is metabolized into two different molecules that differ in their ability to inhibit COX, but both are capable of exerting a chemopreventive effect by inducing apoptosis. Sulindac lacks COX inhibitory activity and most likely contributes to the induction of apoptosis in a manner independent of prostaglandin synthesis. Available indications indicate that the sulfide derivative is at least one of the biologically active compounds. Based on this, sulindac can be regarded as a prodrug. Sulindac (Clinoril®) is available, for example, in the form of 150 mg and 200 mg lozenges. The most common dose for adults is 150 to 200 mg twice daily, with a maximum daily dose of 400 mg. Following oral administration, about 90% of the drug is absorbed. Peak plasma levels are reached within about 2 hours in fasted patients and 3 to 4 hours when administered with food. The average half-life of sulindac was 7.8 hours: the average half-life of the sulfide metabolite was 16.4 hours. US Patent Nos. 3,647,858 and 3,654,349 cover formulations of sulindac; both patents are incorporated herein by reference in their entirety. Sulindac is indicated for the acute and long-term relief of signs and symptoms of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, acute gout, and acute painful shoulder. The analgesic and anti-inflammatory effects exerted by sulindac (400 mg per day) were comparable to those exerted by aspirin (4 g per day), ibuprofen (1200 mg per day), indomethacin (125 mg per day) and benzene Similar effects were achieved with methazone (400 to 600 mg per day). Side effects of sulindac include mild gastrointestinal effects in almost 20% of patients, with abdominal pain and nausea being the most frequent complaints. CNS side effects were found in up to 10% of patients, with somnolence, headache, and nervousness most commonly reported. Rash and scrapie occurred in 5% of patients. Chronic treatment with sulindac can lead to severe gastrointestinal toxicities such as bleeding, ulceration and perforation. The potential use of sulindac for chemoprevention of cancer and especially colorectal polyps has been well studied. For example, US Patent Nos. 5,814,625 and 5,843,929, both incorporated herein by reference, report on the potential chemopreventive use of sulindac in humans. Although at least one study in incidental adenomas showed no such effect (Ladenheim et al., 1995), sulindac was shown to produce adenoma regression in patients with familial adenomatous polyposis (FAP) (Muscat et al., 1994) . Sulindac and its metabolite exixulin were tested and continue to be tested clinically for the prevention and treatment of several cancer types.c. piroxicam Piroxicam is a non-steroidal anti-inflammatory agent well established in the treatment of rheumatoid arthritis and osteoarthritis under the following chemical name: 1,1-dioxide 4-hydroxy-2-methyl-N -2-pyridyl-2h -1,2-Benzothiazine-3-carboxamide. It has also demonstrated usefulness in the treatment of musculoskeletal disorders, dysmenorrhea, and post-surgical pain. Its long half-life enables it to be administered once daily. Drugs were shown to be effective if administered rectally. Gastrointestinal upset was the most commonly reported side effect. Although piroxicam exhibited side effects in recent lib trials, piroxicam was shown to be an effective chemopreventive agent in animal models (Pollard and Luckert, 1989; Reddy et al., 1987). A large meta-analysis of side effects of NSAIDs also indicated that piroxicam has more side effects than other NSAIDs (Lanza et al., 1995). Although DFMO exerted a greater inhibitory effect on Ki-ras mutation and tumorigenesis than piroxicam when the agents were administered separately (Reddy et al., 1990), the combination of DFMO and piroxicam was A synergistic chemopreventive effect was demonstrated in an AOM-treated rat model of carcinogenesis (Reddy et al., 1990). In one study, administration of DFMO or piroxicam to AOM-treated rats reduced the number of tumors with Ki-ras mutations from 90% to 36% and 25%, respectively (Singh et al., 1994). The agent also reduces the amount of biochemically active p21 ras in existing tumors.d. celecoxib (Celecoxib) Celecoxib is a non-steroidal anti-inflammatory agent which is well established under the following chemical name in the treatment of osteoarthritis, rheumatoid arthritis, acute pain, ankylosing spondylitis and in reducing the number of colon and rectal polyps in patients with FAP : 4-[5-(4-methylphenyl)-3-(trifluoromethyl)pyrazol-1-yl]benzenesulfonamide. Celecoxib is sold by Pfizer under the brand names Celebrex, Celebra and Onsenal. Celecoxib is a selective COX-2 inhibitor. Side effects of celecoxib include a 30% increase in heart and vascular disease rates. In addition, the risk of gastrointestinal side effects was greater than 80%.E. NSAIDs combination of In some embodiments, combinations of various NSAIDs may also be used. By using lower doses of two or more NSAIDs, it is possible in some embodiments to reduce side effects or toxicity associated with higher doses of individual NSAIDs. For example, in some embodiments, sulindac may be used with celecoxib. Examples of NSAIDs that may be used in combination with each other include, but are not limited to: ibuprofen, naproxen, fenoprofen, ketoprofen, flurbiprofen , oxaprozin, indomethacin, sulindac, etodolac, diclofenac, piroxicam, meloxicam, for Tenoxicam, droxicam, lornoxicam, isoxicam, mefenamic, meclofenamic, flufen Flufenamic, tolfenamic, rofecoxib, rofecoxib, valdecoxib, parecoxib, lumiracoxib and etoricoxib.IV. Difluoromethylornithine / Sulindac combination therapy In some embodiments, the compositions provided herein can be used to reduce the number of cancer cells in a patient, inhibit the growth of cancer cells in a patient, and/or prevent the development of cancer cells in a patient. Target cancer cells include lung cancer, brain cancer, prostate cancer, kidney cancer, liver cancer, ovarian cancer, breast cancer, skin cancer, stomach cancer, esophagus cancer, head and neck cancer, testicular cancer, colon cancer, cervical cancer, lymphatic system cancer and blood cancer . In some embodiments, the compositions are useful for treating and/or preventing colon cancer, familial adenomatous polyposis (FAP), pancreatic cancer, and/or neuroblastoma. In some embodiments, the compositions provided herein can be used to treat patients exhibiting precancerous symptoms, and thus prevent the onset of cancer. Target cells and tissues for such prophylactic treatment include polyps and other premalignant, premalignant, preneoplastic or other abnormal phenotypes indicative of a state likely to progress to cancer. For example, the compositions provided herein can be used to prevent adenomas with little additional toxicity. Shared mutants with FAPAPC/apc The genotyped Min (multiple intestinal neoplasia) mouse serves as a useful experimental animal model for human FAP patients (Lipkin, 1997). Min mice can develop >100 gastrointestinal adenomas/adenocarcinomas throughout the GI tract at 120 days of life, resulting in GI bleeding, obstruction and death. Combination therapy of DFMO and sulindac was shown to effectively reduce adenomas in these mice. See US Patent 6,258,845, which is incorporated herein by reference in its entirety.V. Fixed Dose Combinations and Routes of Administration In one aspect, the invention provides a composition comprising a fixed dose combination of a pharmaceutically effective amount of difluoromethylornithine and a pharmaceutically effective amount of a non-steroidal anti-inflammatory drug (NSAID) or a metabolite thereof. In some embodiments, the fixed dose combination is a pharmaceutically effective amount of difluoromethylornithine and a pharmaceutically effective amount of sulindac. In some embodiments, the difluoromethylornithine is difluoromethylornithine hydrochloride monohydrate. In some embodiments, difluoromethylornithine is difluoromethylornithine hydrochloride monohydrate racemate. In some embodiments, difluoromethylornithine hydrochloride monohydrate is a racemic mixture of its two enantiomers. In some embodiments, difluoromethylornithine is present in an amount from about 10 mg to about 1000 mg. In some embodiments, difluoromethylornithine is present in an amount from about 250 mg to about 500 mg. In some embodiments, difluoromethylornithine is present in an amount from about 300 mg to about 450 mg. In some embodiments, difluoromethylornithine is present in an amount from about 350 mg to about 400 mg. In some embodiments, difluoromethylornithine is present in an amount from about 35% to about 60% by weight. In some embodiments, difluoromethylornithine is present in an amount from about 40% to about 55% by weight. In some embodiments, difluoromethylornithine is present in an amount from about 50% to about 55% by weight. In some embodiments, difluoromethylornithine is present in an amount of about 52% to about 54% by weight. In some embodiments, the amount of difluoromethylornithine hydrochloride monohydrate racemate is 52% to 54% by weight. In some embodiments, difluoromethylornithine is present in an amount of about 375 mg. In some embodiments, the amount of difluoromethylornithine hydrochloride monohydrate racemate is 375 mg. In some embodiments, the sulindac is present in an amount from about 10 mg to about 1500 mg. In some embodiments, the sulindac is present in an amount from about 50 mg to about 100 mg. In some embodiments, the sulindac is present in an amount from about 70 mg to about 80 mg. In some embodiments, the sulindac is present in an amount of about 75 mg. In some embodiments, the amount of sulindac is 75 mg. In some embodiments, sulindac is present in an amount from about 5% to about 20% by weight. In some embodiments, sulindac is present in an amount from about 8% to about 15% by weight. In some embodiments, sulindac is present in an amount from about 10% to about 12% by weight. In some embodiments, the amount of sulindac is 10% to 11% by weight. In some embodiments, difluoromethylornithine is present in an amount of about 375 mg and sulindac is present in an amount of about 75 mg. In some embodiments, the formulations further comprise excipients. In some embodiments, the excipient is starch, colloidal silicon dioxide, or silicified microcrystalline cellulose. In some embodiments, the excipient is colloidal silicon dioxide. In some embodiments, the formulation further comprises a second excipient. In some embodiments, the second excipient is silicified microcrystalline cellulose. In some embodiments, the formulation further comprises a lubricant. In some embodiments, the lubricant is magnesium stearate, calcium stearate, sodium stearate, glyceryl monostearate, aluminum stearate, polyethylene glycol, boric acid, or sodium benzoate. In some embodiments, the lubricant is magnesium stearate. In some embodiments, magnesium stearate is present in an amount from about 0.25% to about 2% by weight. In some embodiments, the amount of magnesium stearate is from about 0.75% to about 2% by weight. In some embodiments, the amount of magnesium stearate is from about 1% to about 1.5% by weight. In some embodiments, the amount of magnesium stearate is about 1.1% by weight. In some embodiments, magnesium stearate is present in an amount of about 1.5% by weight. In some embodiments, the compositions are in the form of capsules, lozenges, mini-tablets, granules, pellets, solutions, gels, creams, foams or patches. In some embodiments, the composition is in the form of a lozenge, such as a single-layer lozenge. In some embodiments, the lozenge weighs from about 650 mg to about 1,000 mg. In some embodiments, the lozenge weighs from about 675 mg to about 725 mg. In some embodiments, the lozenge weighs about 700 mg. In some embodiments, the lozenge further comprises a coating. In some embodiments, the coating is a modified release coating or an enteric coating. In some embodiments, the coating is a pH responsive coating. In some embodiments, the coating comprises cellulose acetate phthalate (CAP), cellulose acetate trimellitate (CAT), poly(vinyl acetate) phthalate (PVAP), phthalate Hydroxypropyl methylcellulose formate (HP), poly(methacrylate ethyl acrylate) (1:1) copolymer (MA-EA), poly(methacrylate methyl methacrylate) (1:1) 1) Copolymer (MA MMA), poly(methacrylate methyl methacrylate) (1:2) copolymer or hydroxypropyl methylcellulose acetate succinate (HPMCAS). In some embodiments, the coating masks the taste of difluoromethylornithine. In some embodiments, the coating comprises hydroxypropylmethylcellulose, titanium dioxide, polyethylene glycol, and yellow iron oxide. In some embodiments, the amount of coating is from about 1% to about 5% by weight. In some embodiments, the amount of coating is about 2% to about 4% by weight. In some embodiments, the amount of coating is about 3% by weight. In some embodiments, the amount of coating is from about 5 mg to about 30 mg. In some embodiments, the amount of coating is from about 15 mg to about 25 mg. In some embodiments, the coating amount is about 21 mg. In some embodiments, the weight of the tablet comprising the coating is from about 675 mg to about 750 mg. In some embodiments, the weight of the tablet comprising the coating is from about 700 mg to about 725 mg. In some embodiments, the weight of the tablet comprising the coating is about 721 mg. In one aspect, the invention provides a composition comprising a fixed dose combination of a pharmaceutically effective amount of difluoromethylornithine and a pharmaceutically effective amount of sulindac. In some embodiments, the compositions are in the form of capsules, lozenges, mini-tablets, granules, pellets, solutions, gels, creams, foams or patches. In some embodiments, the composition is a solid and takes the form of a lozenge, eg, a single-layer lozenge. In some embodiments, the lozenge is film coated. In some aspects, the invention provides oral fixed dose combination formulations of difluoromethylornithine and an NSAID. In some embodiments, a pharmaceutical composition comprising a pharmaceutically effective amount of difluoromethylornithine and a pharmaceutically effective amount of an NSAID is provided. In some embodiments, the NSAID is sulindac, aspirin, piroxicam, or celecoxib. In some preferred embodiments, the NSAID is sulindac. In some embodiments, the pharmaceutical compositions and formulations of the invention are used enterally, such as orally, and also rectally or parenterally, wherein the compositions comprise pharmaceutically active compounds. Pharmaceutical preparations for enteral or parenteral administration are, for example, in unit dosage forms such as coated tablets, lozenges, capsules or suppositories, and ampoules. They are prepared in a manner known per se, for example using customary mixing, granulating, coating, dissolving or lyophilization methods. Thus, pharmaceutical preparations for oral use can be prepared by combining the active compound with a solid excipient, granulating the resulting mixture, if desired, and processing the mixture or granules, after adding suitable auxiliary substances, if desired or necessary, into tablets. Available as tablets or coated lozenge cores. In a preferred embodiment, the mixture of active ingredients and excipients is formulated in the form of lozenges. Appropriate coatings may be applied to enhance palatability or delay absorption. For example, coatings can be applied to lozenges to mask the objectionable taste of active compounds such as DFMO, or to maintain and/or delay the release of active molecules to specific regions in the gastrointestinal tract. Therapeutic compounds can be administered orally, for example, with an inert diluent or an assimilable edible carrier. Therapeutic compounds and other ingredients may also be enclosed in hard or soft shell gelatin capsules, compressed into lozenges, or incorporated directly into the individual's diet. For oral therapeutic administration, the therapeutic compounds can be combined with excipients and used in the form of ingestible lozenges, buccal lozenges, dragees, capsules, elixirs, suspensions, syrups, or powdered tablets. In certain embodiments, tablets and/or capsules provided herein comprise the active ingredient and powdered carriers such as lactose, starch, cellulose derivatives, magnesium stearate, and stearic acid. Similar diluents can be used in the preparation of compressed lozenges. In other embodiments, tablets and capsules can be manufactured for immediate or modified release. In some embodiments, tablets and/or capsules are manufactured as sustained release products to provide sustained release of the drug over a period of hours. In some embodiments, compressed lozenges are sugar coated and/or film coated to mask an unpleasant taste and/or protect the lozenge from exposure to the atmosphere. In some embodiments, lozenges are provided with an enteric coating for selective disintegration in the gastrointestinal tract. In some embodiments, the tablet or capsule is capable of disintegrating or dissolving to release a multiparticulate comprising varying amounts of particles of the first component and the second component, eg, coated with a release-modifying coating. In some of these embodiments, the lozenge or capsule may disintegrate or dissolve in the mouth, stomach, small intestine, terminal ileum, or colon. In some of these embodiments, the tablet or capsule may release multiparticulates with a modified release profile. In some embodiments, the present invention provides a pharmaceutical oral fixed dose combination in the form of a multi-layer lozenge. Multilayer tablets have at least two layers (bilayer tablets) or may have three, four, five or more layers. In some embodiments, each of the layers contains no more than one active pharmaceutical ingredient (API). For example, in some embodiments, the tablet has two layers, with one of the APIs in each of the two layers. In some embodiments, besides these two layers, the tablet also contains other layers containing only the carrier, and which can function, for example, as a separating layer or as an outer coating layer. In some embodiments, if more than two layers are present, components may be present in more than one layer, as long as they are not present together in the same layer. In certain embodiments, single-layer lozenges are preferred, but all information detailed below applies equally to multi-layer lozenges. In some embodiments, the fixed dose combination may be formulated to provide an overall dose in the range of about 0.1 μM to about 1000 μM, preferably in the range of about 1 μM to 100 μM, and more preferably in the range of about 1 μM to about 50 μM. Mean steady-state plasma concentrations of difluoromethylornithine and/or sulindac.a. Pharmaceutically acceptable excipients In some embodiments, the composition further comprises a pharmaceutically acceptable excipient. In some of these embodiments, a pharmaceutically acceptable excipient may include a pharmaceutically acceptable diluent, a pharmaceutically acceptable disintegrant, a pharmaceutically acceptable binder, a pharmaceutically acceptable An acceptable stabilizer, a pharmaceutically acceptable lubricant, a pharmaceutically acceptable pigment, or a pharmaceutically acceptable slip agent. In the fixed dose combination formulation of the present invention, the active ingredient can be mixed with a pharmaceutically acceptable excipient in a weight ratio of 1:0.25 to 1:20. Diluents that can be used in the pharmaceutical formulations of the invention include, but are not limited to, microcrystalline cellulose ("MCC"), siliconized MCC (e.g., PROSOLV™ HD 90), microfine cellulose, lactose, starch, pregelatinized starch, Sugar, mannitol, sorbitol, dextrose, dextrin, maltodextrin, dextrose, calcium carbonate, calcium sulfate, calcium hydrogen phosphate dihydrate, tricalcium phosphate, magnesium carbonate, magnesium oxide, and any mixture. Preferably, the diluent is siliconized MCC. The diluent is used in an amount of about 5% to about 95% by weight, and preferably in an amount of about 25% to about 40% by weight, such as about 30% to about 35% by weight, based on the total weight of the formulation The amount used. In certain aspects, the diluent can be a soluble diluent. When a diluent is used, its ratio to the active ingredient in each discrete layer is of utmost importance. The term "soluble diluent" means a diluent dissolved in: water, lactose, Ludipress (BASF, lactose, crospovidone, and povidone (93:3.5:3.5, a mixture of w/w (%)), mannitol and sorbitol. Disintegrants are used to facilitate swelling and disintegration of the lozenge after exposure to fluids in the oral cavity and/or gastrointestinal tract. Examples of disintegrants suitable for use in fixed dose combination formulations of the invention include crospovidone, sodium starch glycolate, croscarmellose sodium, low-substituted hydroxypropyl cellulose, starch, alginic acid or its sodium salt and mixtures thereof. Other disintegrants that may be used in the pharmaceutical formulations of the invention include, but are not limited to, methylcellulose, microcrystalline cellulose, carboxymethylcellulose calcium, carboxymethylcellulose sodium (e.g. AC-DI-SOL™ , PRIMELLOSE™), povidone, guar gum, magnesium aluminum silicate, colloidal silicon dioxide (such as AEROSIL™, CARBOSILtm ), polacrilin potassium (polacrilin potassium), starch, pregelatinized starch, sodium starch glycolate, (such as EXPLOTAB™), sodium alginate, and any mixture thereof. Preferably, the disintegrant is colloidal silicon dioxide. Disintegrants may be used in an amount of about 0.1% to about 30% by weight, and preferably in an amount of about 0.2% to about 5% by weight, based on the total weight of the formulation. The compositions of the present invention may contain lubricants. Sticking can occur when the pellets attach themselves to the pellet press punch face. Lubricants are used to facilitate powder flow and reduce friction between the tablet punch face and the tablet punch and between the tablet surface and the die wall. Lubricants include, for example, magnesium stearate, calcium stearate, zinc stearate, stearic acid, sodium stearyl fumarate, polyethylene glycol, sodium lauryl sulfate, magnesium lauryl sulfate and sodium benzoate. Preferably, the lubricant is magnesium stearate. In the present invention, the lubricant is preferably contained in an amount of 0.25% to 2% by weight of the solid dosage form, and preferably about 1.5% by weight. In an exemplary formulation, the lubricant is magnesium stearate present in an amount of about 1.5% by weight to prevent sticking. Binders may be used in the pharmaceutical compositions of the present invention to help hold tablets together after compression. Examples of binders suitable for use in the present invention are gum arabic, guar gum, alginic acid, carbomers (such as Carbopol™ products), dextrin, maltodextrin, methylcellulose, ethylcellulose Hydroxyethyl Cellulose, Hydroxypropyl Cellulose (e.g. KLUCEL™), Hydroxypropyl Methyl Cellulose (e.g. METHOCEL™), Sodium Carboxymethyl Cellulose, Liquid Dextrose, Magnesium Aluminum Silicate, Polymethyl Acrylates, polyvinylpyrrolidone (eg povidone K-90 D, KOLLIDON™), copovidone (PLASDONE™), gelatin, starch and any mixture thereof. Preferably, the binder is starch. In the present invention, the binder preferably comprises about 1% to about 15% by weight of the solid dosage form. In other embodiments, the solid dosage form does not contain a binder. In certain embodiments, stabilizers useful in the fixed dose combination formulations of the invention may be antioxidants. The use of antioxidants promotes the stability of active ingredients against adverse reactions with other pharmaceutically acceptable additives and against changes over time caused by heat or moisture. Antioxidants are, for example, ascorbic acid and its esters, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), alpha-tocopherol, cysteine, citric acid, propyl gallate esters, sodium bisulfate, sodium metabisulfite, ethylenediaminetetraacetic acid (EDTA) and any mixture thereof.b. Tablet manufacturing method Another aspect of the present invention is to provide methods of making the lozenges disclosed herein, including lozenges comprising difluoromethylornithine and sulindac. In some embodiments, the active agent is prepared by sieving at least one active agent and one or more excipients through a sieve of desired mesh size, and then using a rapid mixer granulator, planetary mixer, mass mixer, ribbon mixer, fluid bed processor or any other suitable device for mixing. The blend can be granulated or granulated such as by adding an alcoholic or hydroalcoholic or aqueous solution or suspension with or without a binder in a low or high shear mixer, fluidized bed granulator, and the like. Granulation was performed by dry granulation. Granules can be dried using tray dryers, fluid bed dryers, rotary cone vacuum dryers, and the like. The granules can be sized using an oscillating granulator or pulverizer mill or any other known device equipped with a suitable screen. Alternatively, granules are prepared by extrusion and spheronization or rolling. Alternatively, manufacturing granules containing the active agent may involve mixing or rolling with directly compressible excipients. In other embodiments of the invention, small tablets (microtablets) can be made by compressing the granules using dies and punches of various sizes and shapes (as desired). Coatings may, if desired, be applied to the tablets by techniques known to those skilled in the art, such as spray coating, dip coating, fluidized bed coating, and the like. In certain embodiments of the invention, suitable solvent systems, such as alcoholic, hydroalcoholic, aqueous or organic solvent systems, may be used to facilitate processing.1. granulation Granulation is a process in which powder particles are produced that adhere to each other, thereby producing larger, multi-particle entities or granules. In an embodiment of the invention, granules obtained by dry or wet techniques can be blended with one or more lubricants and/or anti-adhesive agents and then filled into a single capsule or into different capsules of different sizes. capsules so that a smaller capsule can be filled into another larger capsule. In a certain embodiment, dry granulation by compression is used to prepare solid dosage compositions. In dry granulation, powder blends are compacted by applying conventional forces to the powders, thereby resulting in considerable size increase. In some aspects, pellets are used in the dry granulation process, where a pelletizer is used in the compression process. In other aspects, a roller compactor is used for dry granulation including a feed system, a compression unit, and a size reduction unit. In this method, the powder is compacted between two rollers by applying a force, which is the most important parameter in the dry granulation method. The applied force is expressed in kN/cm, which is force per centimeter of roll width. Compression pressure is also occasionally indicated in bar. However, this only represents the pressure in the hydraulic system and is not actually a suitable measure of the force applied to the powder. With an imparted force that depends on the amount of powder delivered to the rollers, the powder will be compressed to a predefined strip thickness. In other embodiments, wet granulation is used to prepare solid dosage compositions. Wet granulated powders improve the flowability and compression plasticity of compressed mixtures. In wet granulation, granules are formed by adding the granulation liquid to a powder bed which is controlled by an impeller (in a high shear granulator), a screw (in a twin-screw granulator), or air (in a twin-screw granulator). in a fluidized bed granulator). Creating agitation in the system and wetting the components within the formulation causes primary powder particles to agglomerate to produce wet granules. The granulation liquid (fluid) contains solvents which must be volatile so that they can be removed by drying, and non-toxic. Typical liquids include water, ethanol and isopropanol alone or in combination. Liquid solutions can be aqueous or solvent based. Aqueous solutions have the advantage of being safer to handle than organic solvents. Tablets can also be formed by tumbling melt granulation (TMG) essentially as described in Maejima et al., 1997 (which is incorporated herein by reference). Tumbling melt granulation can be used to prepare fused granules. It can be done in a tumbling mixer. The molten low melting point compound is sprayed onto the crystallized and powdered sugar in the blender and mixed until granules form. In this case, the low melting point component is the binder and the crystalline sugar is the seed. An alternative is to combine the unmelted low melting point ingredients, crystalline sugar such as sucrose or maltose, and water soluble ingredients in powder form such as mannitol or lactose in a tumbling mixer and mix while heating to the low melting point binder melting point or higher. The seeds should be crystalline or granular water-soluble ingredients (sugars), such as granulated mannitol, crystalline maltose, crystalline sucrose, or any other sugar. Examples of tumbling mixers are double shell blenders (V-blenders) or any other shape of tumbling mixers. Hot air can be circulated through the granulator chamber and heating is achieved by heating the bottom surface of the chamber. As the seed material and powder pastille ingredients circulate in the heated chamber, the low melting point compound melts and adheres to the seed crystals. The unmelted powder material adheres to the seed-bonded, molten low-melting material. The spherical beads formed by this method were then cooled and sieved through a screen to remove non-adhered powder. Spray coagulation or granulation can also be used to form the tablet compositions of the present invention. Spray condensation involves atomizing molten droplets of a composition including low melting compounds or preferably other tablet ingredients on the surface. Equipment that can be used for spray condensation includes spray dryers (eg Nero spray dryers) and fluid bed coaters/granulators with top spray (eg Glatt fluid bed coaters/granulators). In a preferred embodiment, the preferably water soluble excipient, more preferably sugar, is suspended in the molten low melting point ingredient and spray condensed to form instant granules. After spray condensation, the resulting composition is allowed to cool and condense. After coagulating the mixture, it is screened or sifted and mixed with the remaining lozenge ingredients. It is within the scope of the invention to melt and spray-condense instant granules comprising any combination of low-melting compounds and other tablet ingredients and spray congeal them onto the other tablet ingredients. It is also within the scope of the present invention to mix all the tablet ingredients including the low melting compound, melt the low melting compound and spray congeal the mixture onto a surface.2. blend In certain embodiments, the mixture is blended after granulation. Blending in solid dose manufacturing achieves blend uniformity and distributes lubricants. In certain aspects, the blending step is designed to achieve homogeneity of all components prior to the final blend of the lubricant. However, blending powders presents challenges due to particle size, moisture content, structure, bulk density, and flow characteristics. The key to a successful recipe is the order of addition. Typically the components and pharmaceutically acceptable additives are dispensed into suitable containers such as diffusion blenders or diffusion mixers. Examples of tumbling mixers are double shell blenders (V-blenders) or any other shape of tumbling mixers.3. compression When preparing lozenge compositions, they can be formed into a variety of shapes. In preferred embodiments, the lozenge composition is compressed into shapes. The method may comprise placing the lozenge composition into the form, and applying pressure to the composition so that the composition assumes the shape of the surface of the form that the composition contacts. Compression into tablet form can be accomplished by a tablet press. The ingot press consists of a lower punch that fits into the bottom die and an upper punch of corresponding shape and size that enters the top die cavity after the ingot material falls into the die cavity. Tablets are formed by the pressure applied to the lower and upper punches. The lozenges of the present invention generally have a hardness of about 20 kP or less; preferably the lozenges have a hardness of about 15 kP or less. Typical compression pressures are from about 5 kN to about 40 kN and will vary based on desired size and tablet hardness. In some aspects, the compression pressure is from about 25 kN to about 35 kN. In certain aspects, the compression pressure is less than about 37 kN, such as less than about 30 kN, such as less than about 25 kN. A hydraulic press (such as a Carver Press) or a rotary tablet press (such as a Stokes Versa Press) are suitable means of compressing the tablet compositions of the present invention. Exemplary compressive force parameters are shown in Table 3. In certain embodiments, the lubricating blend can be compressed using a suitable device, such as a rotary machine, to form ingots, which are passed through a mill equipped with a suitable screen, or a fluid energy mill, or a ball mill, or a colloid mill, or roller mill. mill or hammer mill and similar devices to obtain ground active agent ingots. A pre-compression step may be used in order to prevent tablet capping. Capping means a break or fissure in the cap or top of the tablet from the main body of the tablet. Capping can be caused by incompressible fine particles migrating as the air is pushed out during compression. For example, the pre-compression can be about 5%, 10% or 15% of the main compression force. In a preferred embodiment, the lozenge is pre-compressed into form with a compression force of no more than about 10 kN, preferably less than 5 kN. For example, at less than 1 kN, 1.5 kN, 2 kN, 2.1 kN, 2.2 kN, 2.5 kN, 3 kN, 3.5 kN, 4 kN, 4.5 kN, 5 kN, 6 kN, 7 kN, 8 kN, 9 kN or 10 kN compressed lozenges are within the scope of the present invention. In certain aspects, the pre-compression force is from about 2.5 kN to about 3.5 kN. Exemplary pre-compression force parameters are shown in Table 3.4. Film coating The compositions or solid dosage forms according to the invention may also be coated with film coatings, enteric coatings, release-modifying coatings, protective coatings or anti-adhesive coatings. The composition of the present invention may be coated with an enteric coating. By enteric coating or coating is meant a pharmaceutically acceptable coating that prevents the release of the active agent in the stomach and allows release in the upper intestinal tract. In other embodiments, an enteric coating is applied to delay the release of the active agent to the terminal ileum or to the colon. Enteric coatings can be added as topcoats when modifying release coatings. Enteric coating polymers may be used alone or in combination in the enteric coating formulation. The enteric coating can be designed as a single layer or as a multi-layer coating embodiment. Preferred enteric coatings for use in the compositions of the present invention comprise a film former selected from the group consisting of: cellulose acetate phthalate; cellulose acetate trimellitate; methacrylic acid copolymers, methacrylic acid-derived Copolymers of their esters containing at least 40% methacrylic acid; hydroxypropylmethylcellulose phthalate; hydroxypropylmethylcellulose acetate succinate or polyvinyl acetate phthalate. Examples of polymers suitable for enteric coatings include, for example, cellulose acetate phthalate (CAP), cellulose acetate trimellitate (CAT), poly(vinyl acetate) phthalate (PVAP) , hydroxypropylmethylcellulose phthalate (HP), poly(methacrylate ethyl acrylate) (1:1) copolymer (MA-EA), poly(methacrylate methyl methacrylate ) (1:1) copolymer (MA MMA), poly(methacrylate methyl methacrylate) (1:2) copolymer, EUDRAGIT™ L 30D (MA-EA, 1:1), EUDRAGIT™ 100 55 (MA-EA, 3:1), Hydroxypropylmethylcellulose Acetate Succinate (HPMCAS), SURETERIC (PVAP), AQUATERIC™ (CAP), Shellac or AQOAT™ (HPMCAS). Colon-targeted delivery systems that can be used with the present invention are known and use materials such as: hydroxypropyl cellulose; microcrystalline cellulose (MCE, AVICEL™ from FMC Corp.); poly(ethylene-vinyl acetate ester) (60:40) copolymer (EVAC from Aldrich Chemical Co.); 2-hydroxyethyl methacrylate (HEMA); MMA; in N,N'-bis(methacryloxyethyl HEMA:MMA:MA terpolymer synthesized in the presence of oxycarbonylamino)-azobenzene; azo polymer; coated enteric coating time release system (TIME CLOCK from Pharmaceutical Profiles, Ltd., UK ®) and calcium pectinate and osmotic mini pump system (ALZA corp.). In some embodiments, the film coat comprises polymers such as: Hydroxypropylcellulose (HPC), Ethylcellulose (EC), Hydroxypropylmethylcellulose (HMPC), Hydroxyethylcellulose (HEC) , sodium carboxymethylcellulose (CMC), poly(vinylpyrrolidone) (PVP), poly(ethylene glycol) (PEG), dimethylaminoethyl methacrylate-methacrylate copolymer, or acrylic acid Ethyl ester-methyl methacrylate copolymer (EA-MMA). In some embodiments, the composition has a release modifying coating. The modified release coating may be a pH responsive coating that will deliver the active agent (eg, to the colorectal tract) when exposed to a specific pH. In some embodiments, the pH-responsive coating is a pH-responsive polymer that dissolves when exposed to a pH of greater than or equal to about 6; although a pH-responsive polymer may dissolve at a pH of greater than or equal to about 5 . The pH-responsive polymers can be, for example, polymeric compounds such as EUDRAGIT™ RS and EUDRAGIT™ RL. EUDRAGIT™ products form latex dispersions with a weight of about 30D. EUDRAGIT™ RS 30D is designed for slow release as it is not very water permeable as a coating and it is designed for rapid release as it is relatively water permeable as a coating. These two polymers are generally used in combination. As contemplated herein, the allowable ratio of EUDRAGIT™ RS 30D/EUDRAGIT™ RL 30D is from about 10:0 to about 8:2. Ethylcellulose or S100 or other equivalent polymers designed for enteric or colorectal release can also be used in place of the above EUDRAGIT™ RS/EUDRAGIT™ RL combinations. Optionally, the method comprises the step of film coating the tablet. Film coating can be accomplished using any suitable means. Suitable film coatings are known and are commercially available or can be produced according to known methods. Typically film coating materials are polymeric film coating materials comprising materials such as polyethylene glycol, talc and colorants. Suitable coating materials are methylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, acrylic polymers, ethylcellulose, cellulose acetate phthalate, polyvinyl acetate phthalate Esters, hydroxypropylmethylcellulose phthalate, polyvinyl alcohol, sodium carboxymethylcellulose, cellulose acetate, cellulose acetate phthalate, gelatin, methacrylic acid copolymer, polyethylene glycol, Shellac, sucrose, titanium dioxide, camauba wax, microcrystalline wax and zein. In some aspects, the film coating is hydroxypropyl methylcellulose, titanium dioxide, polyethylene glycol, and yellow iron oxide. An example of a film coat is OPADRY® Yellow (Colorcon). Typically, the film coating material is applied in such an amount as to provide a film coating in the range of 1% to 6% by weight of the coated film-coated tablet, such as 2% to 4% by weight, such as about 3% by weight. Plasticizers and other ingredients can be added to the coating material. The same or different active substances can also be added to the coating material. In some embodiments, the coating of the tablet can improve palatability to mask the unpleasant taste of active ingredients such as DFMO. For example, tablet coating compositions may include cellulosic polymers, plasticizers, sweeteners, or powder flavor compositions including flavoring agents in association with a solid carrier.c. Investment schedule and plan In some embodiments, agents can be administered on a regular schedule. As used herein, regular schedule refers to a predetermined specified time period. Regular schedules may cover periods of equal or different duration, as long as the schedule is scheduled. For example, a regular schedule may involve dosing twice a day, dosing daily, dosing every two days, dosing every three days, dosing every four days, dosing every five days, dosing every six days , weekly delivery, monthly delivery or any set number of days or weeks between delivery. Alternatively, a predetermined routine schedule may involve twice daily administration for a first week, followed by daily administration for several months, and so on. In other embodiments, the present invention provides orally administrable agents with or without timing of food intake. Thus, for example, the medicament can be taken every morning and/or every evening, regardless of whether the individual has eaten or not.VI. Diagnosis and treatment of patients In some embodiments, methods of treatment can be supplemented with diagnostic methods to improve efficacy and/or minimize toxicity of anticancer therapies, including administration of compositions provided herein. Such methods are described, for example, in US Patents 8,329,636 and 9,121,852, US Patent Publications US2013/0217743 and US2015/0301060, and PCT Patent Publications WO2014/070767 and WO2015/195120, all of which are incorporated herein by reference. In some embodiments, the compositions and formulations of the invention can be administered to an individual wherein the genotype at position +316 of at least one allele of the ODCl gene promoter is G. In some embodiments, the patient's genotype at position +316 of the two alleles of the ODCl gene promoter can be GG. In some embodiments, the patient's genotype at position +316 of the two alleles of the ODCl gene promoter can be GA. In the complete model for adenoma recurrence detected aboutODC1 Statistically significant interaction of genotype and treatment resulted in adenoma recurrence pattern in placebo patients: GG 50%, GA 35%, AA 29% vs. difluoromethylornithine/sulindac patients: GG 11% , GA 14%, AA 57%. In contrast to a previous report showing a reduced risk of recurrent adenomas receiving aspirin in CRA patients with at least one A allele, the adenoma-suppressive effect of difluoromethylornithine and sulindac in patients with predominantly G homozygousODC1 The genotype was greater in these patients (Martinez et al., 2003; Barry et al., 2006; Hubner et al., 2008). These results show that compared with GG genotype patients, theODC1 A allele carriers differ in response to chronic exposure to difluoromethylornithine and sulindac, with A allele carriers having less beneficial effects on adenoma recurrence, and especially in AA homozygotes, likely Increased risk of ototoxicity. In some embodiments, the invention provides a method for the prophylactic or curative treatment of colorectal cancer in a patient comprising: (a) obtaining a result from a test that determines at least oneODC1 Patient genotype at position +316 of the promoter gene allele; and (b) if the results indicateODC1 If the genotype of the patient at position +316 of at least one allele of the promoter gene is G, the composition provided herein is administered to the patient. In some embodiments, the invention provides methods for treating colorectal cancer risk factors in a patient comprising: (a) obtaining a result from a test that determines at least oneODC1 Patient genotype at position +316 of the promoter gene allele; and (b) if the results indicateODC1 If the genotype of the patient at position +316 of at least one allele of the promoter gene is G, the composition provided herein is administered to the patient, wherein the methods prevent the formation of new abnormal glandular lesions, new glandular foci, in the patient. Neoplastic polyps or new dysplastic adenomas. See US Patent 8,329,636, incorporated herein by reference. In some embodiments, the invention provides a method for the prophylactic or curative treatment of familial adenomatous polyposis (FAP) or neuroblastoma in a patient, comprising: (a) obtaining a result from a test that determines at least oneODC1 Patient genotype at position +316 of the promoter gene allele; and (b) if the results indicateODC1 If the genotype of the patient at position +316 of at least one allele of the promoter gene is G, the composition provided herein is administered to the patient. In some embodiments, the invention provides methods for treating familial adenomatous polyposis or neuroblastoma risk factors in a patient comprising: (a) obtaining a result from a test that determines at least oneODC1 Patient genotype at position +316 of the promoter gene allele; and (b) if the results indicateODC1 If the genotype of the patient at position +316 of at least one allele of the promoter gene is G, the composition provided herein is administered to the patient, wherein the methods prevent the formation of new abnormal glandular lesions, new glandular foci, in the patient. Neoplastic polyps or new dysplastic adenomas. See US Patent 9,121,852, which is incorporated herein by reference. In some embodiments, the present invention provides methods for treating a patient with cancer comprising administering to the patient a composition provided herein, wherein the patient has been determined to have a low dietary polyamine intake and/or Tissue polyamine level and/or tissue polyamine flux. In some of these embodiments, the low dietary polyamine intake is 300 μM polyamine per day or less. In some of these embodiments the cancer is colorectal cancer. See US Patent Publication US2013/0217743, which is incorporated herein by reference. In some embodiments, the present invention provides methods for the prophylactic or curative treatment of cancer in a patient comprising: (a) obtaining a result from a test that determineslet-7 Expression levels of non-coding RNA, HMGA2 protein, and/or LIN28 protein; and (b) if the results indicate that the patient's cancer presents with referencelet-7 Non-coding RNA performance levels compared tolet-7 Decreased expression levels of non-coding RNA, increased HMGA2 protein expression levels compared to reference HMGA2 protein expression levels, and/or increased LIN28 protein expression levels compared to reference LIN28 protein expression levels, then administering a composition provided herein to the patient . In some of these embodiments, the reference level is the level observed in a non-diseased individual or the level observed in a non-cancerous cell from a patient. In some of these embodiments, "obtaining" comprises providing a cancer sample from a patient and assessing the presence of cancer cells in the samplelet-7 Expression levels of noncoding RNA, HMGA2 protein, or LIN28 protein. In some of these embodiments, "Assessinglet -7 Expression level of non-coding RNA" includes quantitative PCR or Northern blotting. In some of these embodiments, "assessing the expression level of HMGA2 protein or LIN28 protein" comprises immunohistochemistry or ELISA. In some of these embodiments, the sample is blood or tissue, such as tumor tissue. In some of these embodiments, the patient is human. In some of these embodiments, the cancer is colorectal cancer, neuroblastoma, breast cancer, pancreatic cancer, brain cancer, lung cancer, stomach cancer, blood cancer, skin cancer, testicular cancer, prostate cancer, ovarian cancer, liver cancer, esophageal cancer cancer, cervical cancer, head and neck cancer, non-melanoma skin cancer, or glioblastoma. In some of these embodiments, the method further comprises (c) obtaining a result from a test that measures, at a second time point, in a second cancer cell from the patientlet-7 Expression of non-coding RNA followed by administration of at least one dose of an ODC inhibitor. In some of these embodiments, the method further comprises if it is observed thatlet-7 With no or less increase in non-coding RNA, the amount of ODC inhibitor administered to the patient is increased. In some of these embodiments, the method further comprises obtaining results from a test measuring expression of HMGA2 protein or LIN28 protein at a second time point in a second cancer cell from the patient, followed by administering at least one dose of ODC Inhibitors. In some of these embodiments, the method further comprises increasing the amount of the ODC inhibitor administered to the patient if no or less decrease in HMGA2 protein or LIN28 protein is observed. In some such embodiments, the method further comprises (i) obtaining a result from a test that determinesODC1 Patient genotype at position +316 of at least one allele of the gene promoter; and (ii) if the results indicateODC1 If the genotype of the patient at position +316 of at least one allele of the gene promoter is G, the composition provided herein is administered to the patient. In some embodiments, the method comprises diagnosing a cancer or precancerous condition in a patient comprising obtaining a sample from the patient and (b) determining a value selected from the samplelet-7 The expression level of at least two markers of the group consisting of non-coding RNA, LIN28 protein and HMGA2 protein, wherein if relative to the reference level, in the samplelet-7 A decrease in the expression level of non-coding RNA or an increase in LIN28 protein or HMGA2 protein is diagnosed as having cancer or a precancerous condition. In some embodiments, the fixed dose combinations of the invention are directed toward having low cellular or tissuelet-7 level of patient input. In other aspects, compositions of the invention are administered to patients with high cellular or tissue HMGA2 levels. In other aspects, compositions of the invention are administered to patients with high cellular or tissue LIN28 levels. See US Patent Publication US2015/0301060, which is incorporated herein by reference. In some embodiments, there is provided a method for prophylactically or curatively treating a cancer in a patient comprising: (a) obtaining a result from a test that determines at least oneODC1 the patient's genotype at the position of the allele + 263; and (b) if the results indicateODC1 A patient whose genotype is T at position +263 of at least one allele of the gene is administered a composition provided herein. In some of these embodiments, the test can determine in patientsODC1 The nucleotide base at position +263 of an allele of the gene. In some embodiments, the test can determine theODC1 The nucleotide base at position +263 of the two alleles of the gene. In some embodiments, the results may indicateODC1 The patient's genotype at position +263 of the two alleles of the gene is TT. In some embodiments, the results may indicateODC1 The genotype of the patient at position +263 of the two alleles of the gene is TG. In some such embodiments, the method may further comprise obtaining a result from a test that determines at least oneODC1 Patient genotype at position +316 of the allele, and if the result indicatesODC1 For patients whose genotype is G at position +316 of at least one allele of the gene, only a composition provided herein is administered to the patient. In another aspect, there is provided a method for treating a risk factor for colorectal cancer in a patient comprising: (a) obtaining a result from a test that determines at least oneODC1 the patient's genotype at the position of the allele + 263; and (b) if the results indicateODC1 If the patient's genotype at position +263 of at least one allele of the gene is T, a composition provided herein is administered to the patient, wherein the method prevents the formation of new abnormal glandular lesions, new adenomatous polyps, or New dysplastic adenoma. In another aspect, there is provided a method for preventing the development or recurrence of cancer in a patient at risk thereof comprising: (a) obtaining a result from a test that determines at least oneODC1 the patient's genotype at the position of the allele + 263; and (b) if the results indicateODC1 A patient whose genotype is T at position +263 of at least one allele of the gene is administered a composition provided herein. See PCT Patent Publication WO2015/195120, which is incorporated herein by reference. In variations of any of the above embodiments, the cancer may be colorectal cancer, neuroblastoma, breast cancer, pancreatic cancer, brain cancer, lung cancer, stomach cancer, blood cancer, skin cancer, testicular cancer, prostate cancer, ovarian cancer , liver, esophagus, cervix, head and neck, non-melanoma skin cancer, or glioblastoma. In some embodiments, the cancer may be colorectal cancer. In some embodiments, colorectal cancer may be stage I. In some embodiments, the colorectal cancer may be stage II. In some embodiments, colorectal cancer may be stage III. In some embodiments, the colorectal cancer may be stage IV. In variations of any of the above embodiments, the method prevents the formation of new advanced colorectal neoplasia in the patient. In some embodiments, the method prevents the formation of new right-sided advanced colorectal neoplasia. In some embodiments, the method prevents the formation of new left advanced colorectal neoplasia. In variations of any of the above embodiments, a patient may be identified as having one or more adenomatous polyps in the colon, rectum, or appendix. In some embodiments, a patient can be identified as having one or more advanced colorectal neoplasms. In some embodiments, a patient can be identified as having one or more left-sided advanced colorectal neoplasms. In some embodiments, a patient can be identified as having one or more right-sided advanced colorectal neoplasms. In some embodiments, the patient is diagnosed with familial adenomatous polyposis. In some embodiments, the patient is diagnosed with Lynch syndrome. In some embodiments, the patient is diagnosed with familial type X colorectal cancer. In some embodiments, the patient may meet the Amsterdam Criteria or Amsterdam Criteria II. In some embodiments, the patient may have a history of resection of one or more colorectal adenomas. In some embodiments, the patient may have ODC hyperactivity associated with intraepithelial neoplasia or precancerous lesions. In some embodiments, the patient may have intraepithelial neoplasia or precancerous lesions and elevated cellular polyamine levels. In variations of any of the above embodiments, the patient is a human.VII. definition As used in this specification, "a (a/an)" may mean one or more. As used in this patent claim, the word "a/an" when used in conjunction with the word "comprises" can mean one or more than one. Throughout this application, the term "about" is used to indicate that a value includes the inherent variation in error of the device, the method used to determine the value, or the variation that exists among individuals studied. As used herein, the term "bioavailability" means the degree to which a drug or other substance is available to a target tissue after administration. In this context, the term "suitable bioavailability" is intended to mean that the administration of the composition according to the invention will result in an improved bioavailability compared to that obtained after administration of the active substance in conventional lozenges; or The bioavailability is at least the same or improved compared to the bioavailability obtained after administration of a commercially available product containing the same active substance in the same amount. In particular, there is a need to obtain faster and greater and/or more thorough capture of active compounds, and thereby provide for a reduced dose of administration or a reduction in the number of administrations per day. The terms "composition", "pharmaceutical composition", "formulation" and "preparation" are used synonymously and interchangeably herein. The terms "comprises", "has" and "includes" are open linking verbs. Any form or tense of one or more of these verbs, such as "comprises", "comprising", "has", "having", "includes" " and "including" are also open-ended. For example, any method that "comprises," "has" or "includes" one or more steps is not limited to having only those one or more steps and also encompasses other unlisted steps. The term "derivatives thereof" refers to any chemically modified polysaccharide in which at least one of the monomeric sugar units is modified by substituting atoms or molecular groups or bonds. In one embodiment, derivatives thereof are salts thereof. Salts are, for example, salts with suitable inorganic acids such as hydrohalic acids, sulfuric acid or phosphoric acid, for example hydrochloride, hydrobromide, sulfate, hydrogensulfate or hydrogenphosphate; salts with suitable carboxylic acids, Such as optionally hydroxylated lower alkanoic acids such as acetic acid, glycolic acid, propionic acid, lactic acid or pivalic acid, optionally hydroxylated and/or pendant substituted lower alkane dicarboxylic acids such as oxalic acid, succinic acid , fumaric acid, maleic acid, tartaric acid, citric acid, pyruvic acid, malic acid, ascorbic acid, and salts with the following aromatic, heteroaromatic or araliphatic carboxylic acids, such as benzoic acid, nicotine acid or mandelic acid; and salts with suitable aliphatic or aromatic sulfonic acids or N-substituted sulfamic acids, such as methanesulfonate, benzenesulfonate, p-toluenesulfonate orN- Cyclamate (cyclamate). The term "disintegration" as used herein refers to the process by which a pharmaceutical oral fixed dose combination is broken down into individual particles and dispersed, usually by means of a fluid. When the solid oral dosage form is in a state in which any solid oral dosage form residue other than insoluble coating or capsule shell fragments (if present) remaining on the test equipment sieve is free of perceivable hard cores according to USP <701> Disintegration is achieved when there is a soft block. The fluid used to determine the disintegration properties is water, such as tap water or deionized water. Disintegration times are measured using standard methods known to those skilled in the art, see Pharmacopoeia USP <701> and harmonized procedures set forth in EP 2.9.1 and JP. The term "dissolved" as used herein refers to a solid substance, here the means by which the active ingredient is dispersed in molecular form in a medium. The dissolution rate of the active ingredients of the pharmaceutical oral fixed dose combination of the present invention is defined by the amount of the drug substance going into solution per unit time under standardized conditions of liquid/solid interface, temperature and solvent composition. Dissolution rates are measured using standard methods known to those skilled in the art, see Pharmacopeia USP <711> and harmonized procedures set forth in EP 2.9.3 and JP. For the purposes of the present invention, the tests used to measure the dissolution of the individual active ingredients are carried out according to the Pharmacopoeia USP <711> at the pH as described herein for the different examples. Specifically, the test was performed using a paddle stirring element at 75 rpm (rotations per minute). The dissolution medium is preferably a buffer, usually a phosphate buffer (eg at pH 7.2). The molar concentration of the buffer is preferably 0.1 M. An "active ingredient" (Al) (also known as an active compound, active substance, active agent, pharmaceutical agent, medicament, biologically active molecule or therapeutic compound) is an ingredient in a biologically active drug or pesticide. The similar terms active pharmaceutical ingredient (API) and bulk active are also used for pharmaceutical products, and the term active substance can be used for pesticide formulations. "Pharmaceutical drug" (also known as medicine, pharmaceutical preparation, pharmaceutical composition, pharmaceutical formulation, medicinal product, medicinal product, medicine, medication, medicament or simply drug )) are drugs used to diagnose, cure, treat or prevent disease. An active ingredient (Al) (as defined above) is an ingredient in a biologically active drug or pesticide. The similar terms active pharmaceutical ingredient (API) and bulk active are also used for pharmaceutical products, and the term active substance can be used for pesticide formulations. Certain pharmaceutical and insecticide products may contain more than one active ingredient. Compared to active ingredients, inert ingredients are often referred to as excipients in a pharmaceutical context. As used in this specification and/or claims, the term "effective" means sufficient to achieve a desired, desired or anticipated result. "Effective amount", "therapeutically effective amount" or "pharmaceutically effective amount" when used in the context of treating a patient or subject with a compound means sufficient to affect the Amount of compound for such treatment or prevention of disease. "Prevention/preventing" includes: (1) inhibiting the onset of a disease in an individual or patient who may be at risk and/or susceptible to the disease but has not experienced or exhibited any or all of the pathology of the disease or symptomology, and/or (2) slow down the onset of pathology or symptoms of a disease in an individual or patient who may be at risk and/or susceptible to the disease but has not experienced or demonstrated any or All pathologies or syndromes. "Treatment/treating" includes (1) inhibiting the disease in an individual or patient experiencing or exhibiting the pathology or symptoms of the disease (e.g. arresting further development of the pathology and/or symptoms), (2) ameliorating the experience or symptoms of the disease Disease in an individual or patient exhibiting the pathology or symptoms of the disease (e.g. reversing the pathology and/or symptoms) and/or (3) causing disease in an individual or patient experiencing or exhibiting the pathology or symptoms of the disease Any measurable weakening occurs. "Prodrug" means a compound which is metabolically convertible in vivo into an inhibitor according to the invention. Prodrugs themselves may or may not also have activity relative to the protein of interest to which they are administered. For example, a compound containing a hydroxy group can be administered as an ester that is converted to the hydroxy compound by in vivo hydrolysis. Suitable esters that can be converted to hydroxy compounds in vivo include acetates, citrates, lactates, phosphates, tartrates, malonates, oxalates, salicylates, propionates, butanes Ester, fumarate, maleate, methylene-bis-β-hydroxynaphthoate, gentisate, isethionate, di-p-toluene Acyl tartrate, mesylate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, cyclamate, quinate, esters of amino acids and the like ester. Similarly, compounds containing amine groups can be administered as amides that are converted to amine compounds by in vivo hydrolysis. An "excipient" is a pharmaceutically acceptable substance formulated with an active ingredient of a drug, a pharmaceutical composition, formulation or drug delivery system. Excipients may be used, for example, to stabilize the composition, to swell the composition (thus often referred to as "bulking agents", "fillers" or "diluents" when used for this purpose), or to allow the active ingredient in the final dosage form. Efficacy enhancement, such as enhancing drug absorption, reducing viscosity, or enhancing solubility. Excipients include pharmaceutically acceptable versions of antiadherents, binders, coatings, colors, disintegrants, flavoring agents, slip agents, lubricants, preservatives, adsorbents, sweeteners, and vehicles. The primary excipient, which serves as a medium for the delivery of the active ingredient, is commonly referred to as a vehicle. Excipients may also be used in the manufacturing process eg to aid active substance handling such as by promoting powder flowability or non-adherence, in addition to aiding in vitro stability, such as preventing denaturation or aggregation beyond expected shelf life. The suitability of an excipient will generally vary depending on the route of administration, dosage form, active ingredient, and other factors. The term "hydrate" when used as a modifier of a compound means that the compound has less than one (eg hemihydrate), one (eg monohydrate) or more than one (eg dihydrate) A water molecule in the solid form of a compound. The term "difluoromethylornithine" when used per se refers to 2,5-diamino-2-(difluoromethyl)pentanoic acid in any of its forms, including non-salt and salt forms ( For example, difluoromethylornithine HCl), non-salt and salt forms of anhydrous and hydrated forms (such as difluoromethylornithine hydrochloride monohydrate), non-salt and salt forms of solvates, etc. Enantiomers (R andS form, which can also be identified asd andl form) and mixtures of such enantiomers (for example a racemic mixture or a mixture in which one of the enantiomers is enriched relative to the other). Specific forms of difluoromethylornithine include difluoromethylornithine hydrochloride monohydrate (aka CAS ID: 96020-91-6; MW: 236.65), difluoromethylornithine hydrochloride Salt (ie CAS ID: 68278-23-9; MW: 218.63) and free difluoromethylornithine (ie CAS ID: 70052-12-9; MW: 182.17). If necessary, the form of difluoromethylornithine has been further specified. In some embodiments, the difluoromethylornithine of the present invention is difluoromethylornithine hydrochloride monohydrate (ie CAS ID: 96020-91-6). The terms "difluoromethylornithine" and "DFMO" are used interchangeably herein. Other synonyms for difluoromethylornithine and DFMO include: α-Difluoromethylornithine, 2-(difluoromethyl)-DL-ornithine, 2-(difluoromethyl)ornithine acid, DL-α-difluoromethylornithine,N- Difluoromethylornithine, ornidyl, αδ-diamine-α-(difluoromethyl)valeric acid and 2,5-diamine-2(difluoro)valeric acid. As used herein, "substantially free" with respect to specified components is used herein to mean that none of the specified components are purposefully formulated into the composition and/or are present only as contaminants or in trace amounts. The total amount of a given component resulting from any unintended contamination of the composition is thus well below 0.05%, preferably below 0.01%. Optimally is a composition in which the specified component is not detectable in an amount by standard analytical methods. The term "fixed dose combination" or "FDC" refers to a combination of two drugs or active ingredients presented in a single dosage unit (such as a tablet or capsule) and thus administered with a defined dose; further as used herein, a "free dose "Combination" refers to the combination of two drugs or active ingredients administered simultaneously but in two different dosage unit forms. "Granulation" means the process of agglomerating powder particles into larger particles containing active pharmaceutical ingredients. "Dry granulation" refers to any process involving the steps of adding no liquid to a powdered starting material, agitating and drying to obtain a solid dosage form. The resulting granulated medicines can be further processed into various final dosage forms, such as capsules, lozenges, powder tablets, gels, buccal tablets, etc. Although the present invention supports the definitions of referring to alternatives only and "and/or", the term "or" is used in the claims to mean "and/or" unless expressly indicated to refer to alternatives only or the alternatives are mutually exclusive. As used herein, "another" may mean at least a second or more. As used herein, the term "patient" or "individual" refers to a living mammalian organism, such as a human, monkey, cow, sheep, goat, dog, cat, mouse, rat, guinea pig, or a transgene thereof type. In certain embodiments, the patient or individual is a primate. Non-limiting examples of human patients are adults, adolescents, infants and fetuses. As generally used herein, "pharmaceutically acceptable" means, within the scope of sound medical judgment, suitable for contact with tissues, organs and/or body fluids of humans and animals without undue toxicity, irritation, allergic response or other problems or complications, those compounds, materials, compositions and/or dosage forms commensurate with a reasonable benefit/risk ratio. A "pharmaceutically acceptable carrier", "pharmaceutical carrier" or simply "carrier" is a pharmaceutically acceptable substance formulated with an active ingredient drug involved in carrying, delivering and/or transporting a chemical agent. Drug carriers can be used to improve the delivery and effectiveness of drugs, including, for example, controlled release techniques to adjust drug bioavailability, reduce drug metabolism, and/or reduce drug toxicity. Certain drug carriers can increase the effectiveness of drug delivery to specific target sites. Examples of carriers include: liposomes, microparticles (eg, made of poly(lactic-co-glycolic acid) acid), albumin microparticles, synthetic polymers, nanofibers, nanotubes, protein-DNA complexes, protein Conjugates, red blood cells, virus particles and dendrimers. As defined herein, the term "physically separate" refers to a pharmaceutical oral fixed dose combination comprising components a) and b) formulated so that they are not mixed with each other in the same carrier, but separated. This separation helps to minimize the interaction between the two components especially when they are released. Usually physical separation means that the two components a) and b) are present in different compartments, such as layers, or in different physical forms of the formulation, such as granules or granules. It is not necessary that the two components a) and b) be further separated by an additional layer or coating, although this may optionally be appropriate. This physical separation of the two components a) and b) in one dosage form can be achieved by various means known in the art. In one embodiment, this is achieved by formulating the respective components a) and b) into separate layers, such as a multilayer or bilayer formulation. Specific examples of such deployment techniques are described herein. The term "adhesion" refers to the adherence of particles to the face of a compactor punch that includes letters, logos or designs on the face of the punch. The term "capping" refers to a break or crack in the cap or top of a tablet from the main body of the tablet. Capping can be caused by incompressible fine particles migrating as the air is pushed out during compression. The term "brittleness" refers herein to the tendency of a tablet to crumble, crumble or break after compression. It can be caused by several factors including poor tablet design (edges that are too sharp), low moisture content, insufficient binder, etc. In some aspects, the friability of a tablet sample is given in terms of % weight loss (ie, weight loss expressed as a percentage of the initial sample weight). In general, a maximum weight loss of no more than 1% is considered acceptable for most lozenges. As used herein, the term "release" refers to the method by which the pharmaceutical oral fixed dose combination is contacted with a fluid and the fluid transports the drug out of the dosage form into the fluid surrounding the dosage form. The combination of rate of delivery and duration of delivery exhibited by administration of a dosage form in a patient can be described as its in vivo release profile. The release profile of the dosage form can exhibit different rates and durations of release and can be continuous. Continuous release profiles include release profiles in which one or more active ingredients are released continuously at a constant or variable rate. When two or more components with different release profiles are combined in one dosage form, the resulting individual release profiles of the two components may be the same or different compared to a dosage form with only one of the components. Thus, the two components may influence each other's release profile, thereby resulting in a different release profile for each individual component. Two-component dosage forms may exhibit release profiles of the two components that are the same or different from each other. The release profile of a two-component dosage form in which each component has a different release profile can be described as "asynchronous". Such release profiles encompass (1) different sequential releases, wherein preferably component b) is released at a slower rate than component a), and (2) profiles wherein one of components a) and b) Alternatively, preferably component b) is continuously released, and the other of components a) and b), preferably component a), is adjusted for continuous release with a time delay. Combinations of two release profiles of one drug are also possible (eg 50% continuous release of drug and 50% continuous release of the same drug with a time delay). Immediate Release: For the purposes of this application, an immediate release formulation is a formulation that exhibits release of the active substance that is not intentionally modulated by a particular formulation design or method of manufacture. Modified release: For the purposes of this application, a modified release formulation is a formulation that exhibits the release of an active substance that has been intentionally modulated by a particular formulation design or manufacturing method. This modified release can generally be obtained by delaying the release time of one or both of the components (preferably component a)). Typically for the purposes of the present invention, modified release refers to release over 5 h, such as release over 3 h or even less. As used herein, modified release is meant to encompass a differential continuous release of the two components over time, or a delayed release, wherein one of these components, preferably component a), is released only after a lag time. Such modified release forms can be prepared by applying a release-modifying coating, such as a diffusion coat, to the drug substance or a core containing the drug substance, or by forming a release-modifying matrix in which the drug substance is embedded. The term "tablet" refers to a pharmacological composition in the form of small substantially solid pellets of any shape. Tablets may be cylindrical, spherical, oblong, capsule or irregular in shape. The term "tablet composition" refers to a substance included in a tablet. "Tablet composition ingredient" or "tablet ingredient" refers to a compound or substance included in a tablet composition. These may include, but are not limited to, the active agent and any excipients as well as low melting compounds and water soluble excipients. The above definitions supersede any conflicting definitions in any of the references incorporated herein by reference. However, the fact that certain terms are defined should not be taken as indicating that any term that is not defined is indeterminate. Rather, all terms used are believed to describe the invention in such a way that one of ordinary skill in the art can understand and practice the invention. Unit abbreviations used herein include result average (ar), kilogram force (kp), kilonewton (kN), percent weight/weight (%w/w), pounds per square inch (psi), relative humidity (RH) , color difference δE (dE) and rotations per minute (rpm).VIII. example The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of ordinary skill in the art should, in light of the present invention, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or a similar result without departing from the spirit and scope of the invention.example 1- Research and development of difluoromethylornithine HCl and Sulindac Combination Table In the development process of fixed dose combination (FDC) lozenges comprising difluoromethylornithine HCl and sulindac, several formulations were tested (Table 1). Parameters tested included tablet disintegration time, tablet hardness and tablet friability percentage. Formulation I was made into 900 mg lozenges by first mixing 1/3 of siliconized MCC (PROSOLV®) with difluoromethylornithine HCl in a 1 quart v-blender. Subsequently, sulindac and 1/3 of siliconized MCC (PROSOLV®) were premixed in polyethylene (PE) bags together with colloidal silicon dioxide (CARBOSIL®) and pregelatinized cornstarch (STARCH 1500®) Add to blender. The PE bag was rinsed with the remaining 1/3 of siliconized MCC (PROSOLV®) and added to the blender. The mixture was blended at about 25 rpm for 10 minutes and then blended again for 3 minutes before adding the hand screened magnesium stearate. This formulation was found to have some sticking to the punch surface and resulted in a rough tablet surface. Thus, for Formulation II, magnesium stearate increased from 0.5% to 1% and siliconized MCC decreased from 38.57% to 38.07%. Formulation II was manufactured as 900 mg lozenges by premixing CARBOSIL®, STARCH 1500® and sulindac in PE bags. Then, ½ of PROSOLV® and difluoromethylornithine HCl was added to an 8 quart v-blender along with the premix. The remaining ½ of PROSOLV® is used to rinse the PE bag and add to the blender. The mixture was blended for 10 minutes at about 25 rpm. The mixture was then removed from the blender and delumped through a Comill 039R screen, then returned to the v-blender for an additional 10 minutes of blending. Magnesium stearate, manually sieved through a 30 mesh (ie, 590 μm) screen, was then added to the v-blender by hand mixing and the mixture was blended for 3 minutes at approximately 25 rpm. The mixture was compressed into lozenges on a Key Model BBTS 10 bench. The resulting tablets were determined to have a disintegration time of about 29-32 seconds, a friability of 0.077% at 4 minutes and a friability of 0.17392% at 8 minutes, and a hardness of about 28 kp (Table 1). The lozenges were then film coated with 2.913% by weight OPADRY® Yellow (Colorcon) using an O'Hara Labcoat, 12'' disc, yielding 927 mg lozenges. The film-coated lozenges had a hardness of about 36.0-42.1 kp and a disintegration time of 1 minute 27 seconds to 1 minute 53 seconds. Formulation III was manufactured as 650 mg lozenges by premixing CARBOSIL®, part 2 of PROSOLV® and sulindac in PE bags. Then, ½ of PROSOLV® Part 1 and difluoromethylornithine were added to the 8 quart v-blender along with the premix. The remaining ½ of PROSOLV® part 1 is used to rinse the PE bag and add to the v-blender. The mixture was blended for 10 minutes at about 25 rpm. The mixture was then removed from the blender and delumped through a Comill 039R screen, then returned to the v-blender for an additional 10 minutes of blending. Magnesium stearate, manually sieved through a 30 mesh (ie, 590 μm) screen, was then added to the v-blender by hand mixing and the mixture was blended for 3 minutes at approximately 25 rpm. The mixture was compressed into lozenges on a Key Model BBTS 10 bench. The resulting tablets were determined to have a disintegration time of about 51-57 seconds, a friability of 0.2607%-0.3373% at 4 minutes and a friability of 0.8988%-1.008% at 8 minutes, and a hardness of about 13 kp. The lozenges were then film coated with 2.913 wt% OPADRY® Yellow (Colorcon) using an O'Hara Labcoat, 12'' disc, yielding 669.5 mg lozenges. The film-coated lozenges had a hardness of about 36.0-42.1 kp and a disintegration time of 1 minute 27 seconds to 1 minute 53 seconds. The weight of this formulation was reduced from 900 mg to 650 mg and STARCH 1500® was replaced with PROSOLV® to increase tablet strength. However, capping was observed during the brittleness test as well as during the film encapsulation process. Formulation IV was manufactured as 700 mg lozenges using the same method as Formulation III. The resulting lozenges were determined to have a disintegration time of 1 minute 10 seconds to about 1 minute 34 seconds, a friability of 0.1424%-0.1567% at 4 minutes and a friability of 0.3186%-0.5166% at 8 minutes, and a hardness of about 20 kp. The lozenges were then film coated with 2.913% by weight of OPADRY® Yellow (Colorcon) using O'Hara Labcoat, 12" discs, yielding 721 mg lozenges. The film-coated lozenges had a disintegration time of 1 minute 43 seconds to 2 minutes 7 seconds. In this formulation, the amount of PROSOLV® was increased and the tabular weight was increased from 650 mg to 700 mg. Although no capping was observed during friability testing, three tablets did have capping during film coating.surface 1 : Difluoromethylornithine HCL and Formulations of Sulindac Fixed-Dose Combination Tablets I-IV . Formulation I Formulation II Formulation III Formulation IV components Unit weight (mg) % W/W Unit weight (mg) % W/W Unit weight (mg) % W/W Unit weight (mg) % W/W Difluoromethylornithine HCl monohydrate racemate 375 41.67 375 41.67 375 57.69 375 53.571 Sulindac 75 8.33 75 8.33 75 11.54 75 10.714 Silicified MCC (Part 1) 347.13 38.57 342.63 38.07 149.5 23.0 199.6 28.514 Silicified MCC (Part 2) 0 0 0 0 41.075 6.32 41.075 5.868 pregelatinized cornstarch 96.12 10.68 96.12 10.68 0 0 0 0 colloidal silica 2.25 0.25 2.25 0.25 1.625 1.625 1.625 0.232 Magnesium stearate 4.5 0.5 9 1 7.8 7.8 7.7 1.1 Uncoated Tablet Weight 900 100 900 100 650 100 700 100 OPADRY® Yellow 03B92557 27.0 19.5 21.0 Coated Tablet Weight 927.0 669.5 721.0 Tablet properties Formulation II Formulation IV compression force NR 85psi Hardness (kp) ar 28 ar 20 disintegration time ar30 seconds ar 1 minute 30 seconds Brittleness (4 minutes) (%) 0.08 0.16 Brittleness (8 minutes) (%) 0.17 0.52 (one capping tablet) surface 2 : Difluoromethylornithine HCL and Exemplary formulations of sulindac fixed dose combination lozenges. components Unit weight (mg) % (w/w) Difluoromethylornithine HCl monohydrate racemate 375.00 52.011 Sulindac 75.00 10.402 Silicified Microcrystalline Cellulose 237.87 32.992 colloidal silica 1.63 0.226 Magnesium stearate 10.50 1.456 Core Tablet Weight 700.00 OPADRY® Yellow 21.00 2.913 Weight of film-coated tablets 721.00 100 surface 3 : Exemplary tablet manufacturing parameters. variable 7107/2 R3bis 7107/2 R4 7107/3 7107/5 R2 7107/5 R3 mixer Turbula Turbula Turbula Turbula Turbula mixing time 70 cycles 70 cycles 70 cycles 70 cycles 70 cycles Magnesium stearate 1.50% 1.50% 1.50% 1.50% 1.50% press machine Korsch Korsch Korsch Ronchi Ronchi Tool Size Tool Cover Engraving Top Engraving Bottom Scoring 17.5x8 Chrome/RC02 414C Ripple Logo No 17.5x8 Chrome/RC02 414C Ripple Logo No 17x9 R6 Chrome Neutral Neutral Breakable 16.5x7 Chrome 4141 Logo breakable 16.5x7 Chrome 4141 Logo breakable compression force 37 or 30 kN 37 kN 30 kN 37 kN 25kN pre-compression force 2.1kN 2.5 kN 2.0kN 3.7 kN 2.5 kN Test Results fracture none none none none none to stick none none none none none Top Engraving Density qualified qualified qualified qualified qualified Bottom Engraving Density qualified qualified qualified qualified qualified hardness NA 12.80 kp 8.14 kp 18.46 kp 16.62 kp breaking capacity NA yes yes none none disintegration time NA 1 min 15" to 1 min 25" 40 seconds to 45 seconds 2'15" to 2'32" 1'39" to 1'53" Brittleness at 4 minutes NA 0.08% 0.17% 0.21% 0.37% Friability at 30 minutes NA 1.15% 1.19% 1.80% 2.85% Tablet cracked/broken NA none none none none surface 4 : for instance 1 Materials for the formulations described in . Material supplier Difluoromethylornithine HCl monohydrate Scino Pharm Sulindac ZACH Silicified Microcrystalline Cellulose (MCC) (PROSOLV®) NF EP Starch 1500 (partially pregelatinized cornstarch) Colorcon Limited Colloidal Silica (CARBOSIL®) IMCD France SAS Magnesium stearate Mallinkroot—Tyco OPADRY® Yellow Colorcon Limited equipment PK blending master V-shaped blender (1 quart and 8 quart) Quadro Comill Model 197S with 0.039'' Screen Key Model BBTS 10 Table Ingot Press O'Hara Labcoat 12'' disc, 0.8 mm nozzle example 2- R&D formulations IV Formulation IV was further tested from Example 1 to determine that parameters could be varied to prevent capping and sticking. The first parameters tested were compression force and pre-compression force was added at about 5-15% of compression force (Table 5). In order to evaluate the compression force and pre-compression for formulation IV 700 mg lozenges to achieve a hardness of about 20 kp, several tests were performed. In the first trial, Equipment C was used to manufacture the final blend of Formulation IV 700 mg lozenges (Table 9). The manufacturing method involves premixing CARBOSIL®, part 2 of PROSOLV®, and sulindac in PE bags. Then, ½ of PROSOLV® Part 1 and difluoromethylornithine were added to a 10 quart v-blender along with the premix. The remaining ½ of PROSOLV® part 1 was used to rinse the PE bag and add to the v-blender. The mixture was blended at about 7 rpm for 35 minutes. The mixture was then removed from the blender and ground through a Frewitt TC150 1.0 mm screen, then returned to the v-blender for another 35 minutes of blending. Magnesium stearate was then manually screened through a 500 µm sieve and added to a v-blender to obtain the final blend by hand mixing at 7 rpm for 10 minutes. The compression step was carried out on a Courtoy Modul P ingot press equipped with five 17.5x8 mm engraved and chromed punches. The parameters were set so as to obtain a hardness between 17.0 kp and 22.5 kp. It was found that in the absence of preload, capping was observed. However, using pre-compression increases stiffness and avoids capping (Table 10). In addition, tablets formed by pre-compression are more resistant to abrasion (ie, less brittle). Also, the 16.5x8 mm punch used in the Key BBTS 10 table ingot press in Example 1 seems to be more prone to wear.surface 5 : test recipe IV Of Compression parameters. initial setting 7107/01 set 3 7107/01 set 2 Punch shape 16.5x8 mm smooth 17.5x8 mm engraving 17.5x8 mm engraving compression force 85 psi 34kN 35 kN Preload none none Yes (3 kN) Hardness (kp) ar 20 ar 13 (*) ar 17 disintegration time ar 1 minute 30 seconds ar 1 minute 20 seconds ar 2 minutes Brittleness (4 min) (%) 0.16 0.07 0.03 Brittleness (8 min) (%) 0.52 (1 capping tablet) NA NA Brittleness (10 min) (%) NA 0.27 0.13 Brittleness (30 min) (%) NA 1.79 (1 capping lozenge) 0.54 (without capping tablets) Thickness (mm) ar 6.1 ar 5.5 ar 5.4 NA: not applied (*) maximum hardness achievable without pre-compression In a second experiment, the punch surface was varied to determine its effect on formulation IV lozenges (Table 11). Equipment B was used in this trial to make the final blend of Formulation IV 700 mg lozenges. The manufacturing method involves premixing CARBOSIL®, part 2 of PROSOLV®, and sulindac in PE bags. Then, ½ of PROSOLV® Part 1 and difluoromethylornithine were added to a 10 quart v-blender along with the premix. The remaining ½ of PROSOLV® part 1 was used to rinse the PE bag and add to the v-blender. The mixture was blended at about 30 cycles per minute for 8 minutes and 30 seconds. The mixture was then removed from the blender and crushed through a CMA 1.0 mm screen, then returned to the v-blender for another 8.5 minutes of blending. Magnesium stearate was then manually screened through a 500 μm sieve and added to a v-blender by hand mixing at 30 cycles per minute for 2 minutes and 20 seconds to obtain the final blend. The compression step was carried out on a Korsch XL100 ingot press equipped with two 17.5x8 mm engraved and anti-stick chromed punches. The preload is set at 5-10% of the main compression force of approximately 30 kN. Several different punch surfaces were also tested, including chrome, carbon, tungsten, and Teflon versus stainless steel. In some embodiments, Teflon can be used to reduce sticking. To avoid sticking, several additional variables were tested, and high constraints were imposed at the beginning of compression. Neither lubricated with 1.1% magnesium stearate nor increased the number of lubrications from 70 rotations to 140 rotations to prevent sticking (Table 11 and Table 12). However, increasing the ratio of magnesium stearate to 1.5% did prevent sticking (Table 12) and a slight drop in tablet hardness of about 20%, but still very low brittleness of less than 0.1% after 4 minutes. When using two types of punches equipped with different types of breakage lines (17×9 mm and 16.5×7 mm), the breakability results correspond to the punches tested. Therefore, magnesium stearate was increased to 1.5% to prevent sticking and pre-compression prevented formulation IV capping.surface 6 :test 1 and test 2 middle formulation IV The batch weight. components Unit weight (mg) Experiment 1 Weight (g) Experiment 2 Weight (g) Difluoromethylornithine HCl 375 1339.500 1340.000 Sulindac 75 268.100 268.027 Silicified MCC (Part 1) 199.6 712.800 712.000 Silicified MCC (Part 2) 41.075 146.700 146.648 colloidal silica 1.625 5.796 5.8043 Magnesium stearate 7.7 27.515 27.504 Tablet weight 700.0 2500.411 2499.983 surface 7 : preparation IV Of Changes in magnesium stearate. 1.1% Magnesium Stearate Formula 1.3% magnesium stearate formulation (*) 1.5% magnesium stearate formulation (*) components Unit weight (mg) w/w (%) Unit weight (mg) w/w (%) Unit weight (mg) w/w (%) Difluoromethylornithine HCl 375.000 53.571 374.227 53.461 373.457 53.351 Sulindac 75.000 10.714 74.851 10.693 74.704 10.672 Silicified MCC (Part 1) 199.598 28.514 199.192 28.456 198.793 28.399 Silicified MCC (Part 2) 41.075 5.868 40.992 5.856 40.908 5.844 colloidal silica 1.625 0.232 1.624 0.232 1.617 0.231 Magnesium stearate 7.700 1.100 9.100 1.300 10.500 1.500 Tablet weight 700.0 100.00 700.0 100.00 700.0 100.00 (*) Formulation obtained after dilution to increase the percentage of magnesium stearate. The API concentration was therefore slightly below target.surface 8 : formulation IV The coating. components Unit weight (mg) Batch weight (g) uncoated lozenges 700.00 600.00 OPADRY® Yellow 03B92557 21.00 53.995 purified water 154.00 395.99 Coated Tablet Weight 721.00 653.995 surface 9 : For R&D formulations IV Of equipment. Device A device B device C PK Blend Master V-Blender 1 Qt & 8 Qt Turbula T10A Blender 10L Container Servolift Blender 10L Container Quadro Comill 197S 0.039'' Screen CMA T1 Conical Mill 1.00mm Screen Frewitt TC150 Conical Grinder 1.00mm Screen 0.500mm filter screen 0.500mm filter screen Key BBTS 10 Table Ingot Press Korsch XL100 Ingot Press Courtoy Modul P Ingot Presses O'Hara Labcoat 12'' pan Mini Glatt coater surface 10 : Test pre-compression force vs formulation IV The impact of the first test parameters and results. compression parameters 7107/01 set 3 7107/01 set 5 7107/01 set 2 7107/01 set 4 speed (tpm) 50 50 50 50 Pre-pressure (kN) / main pressure% 0.11 / 0% 1.43 / 5% 3.25 / 10% 4.68 / 15% Compression force(kN) 33.58 32.23 34.07 33.03 Punch (quantity) 5 5 5 5 Punch shape 17.5x8 mm Engraving 17.5x8 mm Engraving 17.5x8 mm Engraving 17.5x8 mm Engraving Punch surface treatment Anti-stick chrome plating Anti-stick chrome plating Anti-stick chrome plating Anti-stick chrome plating result test sampling 7107/01 set 3 7107/01 set 5 7107/01 set 2 7107/01 set 4 Weight (mg) RSD (%) 20 lozenges 702.28 1.18 699.14 1.00 703.5 1.06 701.17 0.73 Hardness (kp) 10 lozenges 11.5 to 14.4 (average: 13.2) 15.2 to 17.9 (average: 16.6) 15.8 to 18.4 (average: 17.3) 17.0 to 18.7 (average: 17.9) Brittleness (%) 4 minutes 10 minutes 30 minutes According to Pharmacopoeia 0.07/no capping 0.27/no capping 1.79/ 1 capping 0.07/without top crack 0.20/without top crack 0.67/without top crack 0.03/without capping 0.13/without capping 0.54/without capping 0.08/without capping 0.19/without capping 0.59/without capping Disintegration time (minutes) 3 lozenges 1 minute 08 seconds to 1 minute 40 seconds 1 minute 39 seconds to 2 minutes 17 seconds 1 minute 51 seconds to 2 minutes 11 seconds 1 minute 41 seconds to 1 minute 57 seconds Thickness (mm) 10 lozenges 5.4 to 5.6 5.4 to 5.5 5.4 to 5.5 5.4 to 5.5 to stick partial adhesion partial adhesion partial adhesion partial adhesion surface 11 : Test punch surface against formulation IV The influence of the second test parameters and results. final blend 7107/02 set 2 7107/02 set 5 7107/02 set 6 7107/02 set 7 7107/02 set 8 Ratio of magnesium stearate (%) 1.1 1.1 1.1 1.1 1.1 Final Blend (Spin) 140 140 140 140 140 compression parameters speed (tpm) 40 40 40 40 40 Preload(kN) 2.5 2.2 2.2 2.1 2.1 Compression force(kN) 30 30 30 30 30 Punch (quantity) 2 2 2 2 2 Punch shape 17.5x8 mm engraving 17.5x8 mm engraving 17.5x8 mm engraving 17.5x8 mm engraving 17.5x8 mm engraving Punch surface treatment Anti-adhesion chrome RC-02 Anti-adhesion with Carbon RB-01 Anti-sticking with Tungsten RD-03 Anti-sticking with Teflon RF-03 Steel (without anti-stick coating) result test sampling 7107/02 set 2 7107/02 set 5 7107/02 set 6 7107/02 set 7 7107/02 set 8 Weight (mg) / RSD (%) 20 lozenges 697.12 / 0.38 NA NA NA NA Hardness (kp) 5 lozenges 15.4 to 16.3 NA NA NA NA Brittleness (%) 4 minutes 10 minutes 30 minutes According to Pharmacopoeia 0.02/without capping 0.04/without capping 0.69/without capping NA NA NA NA Disintegration time (minutes) 3 lozenges 0 minute 58 seconds to 1 minute 00 seconds NA NA NA NA Thickness (mm) 10 lozenges 5.5 to 5.5 NA NA NA NA to stick 10 lozenges partial adhesion partial adhesion partial adhesion very slightly sticky partial adhesion surface 12 : Test final blend duration and magnesium stearate for formulation IV The influence of the second test parameters and results. 7107/02 set 1 7107/02 set 2 7107/02 set 3 7107/02 set 4 7107/02 set 10 final blend Ratio of magnesium stearate (%) 1.1 1.1 1.5 1.5 1.3 Final mixing duration (rotation) 70 140 70 70 140 compression parameters speed (tpm) 40 40 40 40 40 Preload(kN) 3.5 2.5 2.1 2.5 2.2 Compression force(kN) >>30 30 30 37 37 Punch (quantity) 2 2 2 2 2 Punch shape 17.5x8 mm engraving 17.5x8 mm engraving 17.5x8 mm engraving 17.5x8 mm engraving 17.5x8 mm engraving Punch surface treatment Anti-stick chrome plating Anti-stick chrome plating Anti-stick chrome plating Anti-stick chrome plating Anti-stick chrome plating result test sampling Weight (mg) / RSD (%) 20 lozenges 704.01 (*) / 0.23 697.12 / 0.38 695.19 / 0.38 702.61 / 0.39 703.24 / 0.29 Hardness (kp) 5 lozenges 17.3 to 17.9 15.4 to 16.3 12.4 to 13.4 11.9 to 14.1 13.4 to 14.7 Brittleness (%) 4 minutes 10 minutes 30 minutes According to Pharmacopoeia NA NA NA 0.02/without capping 0.04/without capping 0.69/without capping 0.03/without top crack 0.15/without top crack 1.01/without top crack 0.08/without top crack 0.11/without top crack 1.15/without top crack 0.05/without capping 0.19/without capping 1.02/without capping Disintegration time (minutes) 3 lozenges 1 minute 15 seconds to 1 minute 20 seconds 0 minute 58 seconds to 1 minute 00 seconds 1 minute 00 seconds to 1 minute 10 seconds 1 minute 15 seconds to 1 minute 25 seconds 1 minute 30 seconds to 1 minute 45 seconds Thickness (mm) 10 lozenges 5.3 to 5.4 5.5 to 5.5 5.5 to 5.5 5.5 to 5.5 5.5 to 5.6 to stick 10 lozenges Less sticking, clean some lower punches Adhesion reduction The pole sticks slightly to the upper punch. Not sticking to the lower punch Not adhered but tends to split during hardness testing Slightly sticks to the upper punch (*) on 10 lozengessurface 13 : Test compression parameters against formulations IV The impact of the test parameters and results. 7107/03 set 1 7107/05 set 1 7107/05 set 2 7107/05 set 3 final blend Ratio of magnesium stearate (%) 1.5 1.5 1.5 1.5 compression parameters speed (tpm) 40 40 40 40 Preload(kN) 2.0 5.0 3.7 2.5 Compression force(kN) 30 twenty four 37 25 Punch (quantity) 2 2 2 2 Punch shape 17x9R6mm breakable 16.5x7mm breakable 16.5x7mm breakable 16.5x7mm breakable Punch surface treatment Anti-stick chrome Anti-stick chrome Anti-stick chrome Anti-stick chrome result test sampling 7107/03 set 1 7107/05 set 1 7107/05 set 2 7107/05 set 3 Weight (mg) / RSD (%) 20 lozenges 700.20 (*) / 0.49 705.29 / 0.59 709.62 / 0.64 700.08 / 0.54 Rupture test RSD (%) above 1/2 30 lozenges 0.97 NA 3.19 2.91 Hardness (kp) 5 lozenges 7.6 to 8.8 (**) 18.6 to 19.7 17.3 to 19.3 16.1 to 16.9 Brittleness (%) 4 minutes 10 minutes 30 minutes According to Pharmacopoeia 0.17/without capping 0.32/without capping 1.19/without capping 0.12/without top crack 0.47/without top crack 1.52/without top crack 0.21/without top crack 0.51/without top crack 1.80/without top crack 0.37/without top crack 1.04/without top crack 2.85/without top crack Disintegration time (minutes) 3 lozenges 0 minutes 40 seconds to 0 minutes 45 seconds 1 minute 38 seconds to 1 minute 43 seconds 2 minutes 15 seconds to 2 minutes 32 seconds 1 minute 39 seconds to 1 minute 53 seconds Thickness (mm) 10 lozenges 5.3 to 5.3 6.6 to 6.7 6.5 to 6.7 6.6 to 6.7 to stick 10 lozenges no adhesion no adhesion no adhesion no adhesion (*) on 30 lozenges (**) on 10 lozenges NA: Not applied The stability of Formulation IV combination lozenges, difluoromethylornithine single lozenges and sulindac single lozenges was tested. Stability analysis of formulation IV lozenges was performed at 6 months using the Karl Fischer titration method to determine the water content (Figure 1). In Figure 1 , it is shown that combination tablets of Formulation IV have lower water absorption over six months compared to difluoromethylornithine single tablets. Water can affect drug potency and drug dissolution; for example water can increase drug degradation rate by hydrolysis (Gerhardt, 2009). Thus, in some embodiments, the combination lozenges provided herein are more stable than either or both of the single active agent lozenges. Finally, the dissolution profile of Formulation IV was also tested. Dissolution studies were performed in 50 mM sodium phosphate buffer medium at 7.2 pH using a paddle stirring element at 75 rpm (USP <711> Dissolution Apparatus II (Paddles)) (Figure 2A-2B). Validation method for level II of dissolved difluoromethylornithine and sulindac. No mutual interference was observed between the active pharmaceutical ingredients difluoromethylornithine and sulindac themselves and the dissolution medium, phosphate buffer solution or excipients. Surprisingly, it was observed that fixed dose combinations of Formulation IV had overlapping in vitro dissolution profiles compared to single agent lozenges.example 3- Pharmaceutical Excipients and Coating Compatibility A non-cGMP pharmaceutical excipient compatibility study was performed on difluoromethylornithine HCl/sulindac combination lozenges. A series of samples were used to evaluate appearance, HPLC analysis and XRPD properties. Tests include PVP, HPMC, lactose, EXPLOTABtm , Ac-Di-Sol®, PROSOLV®, STARCH 1500® and OPADRY® Yellow excipients. Samples prepared for excipient compatibility except difluoromethylornithine HCl:sulindac formulation was 5:1 and difluoromethylornithine HCl:sulindac:H2 Formulation O is about 6:1:0.3, which is a 1:1 physical mixture of API and excipients. The total mass of most samples was about 750 mg. Preparation involved weighing components into 20cc scintillation vials, sealing and vortexing for approximately 30 seconds. Samples were then stored in a 40°C/75% RH stability chamber for four weeks. The caps on the vials were tightened loosely, and the vials were stored in a chamber protected from light. Shape observations were made by visual inspection of vials prepared for HPLC analysis. Excipient compatibility samples were extracted with buffer containing 50% acetonitrile (50 mM phosphate buffer pH 2.55). Samples containing only sulindac were extracted by weighing out the sample portion (approximately 150 mg) and pre-determined volumes so that the final concentrations of difluoromethylornithine and sulindac were 9.5 mg/mL and 0.1 mg/mL, respectively to prepare. The remainder of the compatibility samples were prepared by quantitative transfer using predetermined volumes of extraction solvent such that the final concentrations of difluoromethylornithine and sulindac were about the same as above. Excipient compatibility samples were analyzed using a method capable of detecting the active agent, difluoromethylornithine and sulindac (Figure 4A). The method employs gradient reversed-phase HPLC with ultraviolet (UV) detection at 195 nm. XRPD analysis was performed on a Bruker AXS D8 Advance system with Bragg-Brentano configuration using CuKα radiation. Samples were analyzed at room temperature using the following parameters: 40 kV; 40 mA; 1° divergence; and anti-scatter slit; measurement method in continuous mode, 2 - 40° 2Θ, 0.05° gradient, and 1 sec/step time . Samples between 3 mg and 25 mg were analyzed using the rotating, top-filled steel sample holder in the nine-position autosampler accessory. Calibrate the system using traceable standards. The results are shown in Figures 4B-4C. Difluoromethylornithine HCl with PVP K30 started to exhibit wetness in the 2 week sample and became liquid after 4 weeks. Sulindac with PVPK30 showed sample adhesion after 2 weeks and continued after 4 weeks. The PVPK30 vehicle only started to exhibit moisture in the 2 week sample and became liquid after 4 weeks. The same phenomenon was observed for the difluoromethylornithine HCl sample but not for the sulindac sample. The HPLC analysis results for most of the samples tested did not show a unique trend (increase or decrease) over the different time points. Although several samples had unusually low analytical values, analytical levels showed more increasing trends or remained relatively constant over the 4 week period. The sulindac/difluoromethylornithine ProSolv SMCC90 sample was observed to have the highest variation in analytical results. The analytical value at the 4 week time point was 10.0% higher than the initial analytical result. This variation can be attributed to method (not validated) and sample consistency at different time points. Although the acceptable random analytical error for the validation method is 2%, the variability of this method is unknown. With the exception of some samples, the analytical values for each of the samples tested over the different time points were within the normally acceptable 2% random error of the analytical method. There were no unique trends for API, difluoromethylornithine and sulindac under the stress conditions tested. The results of this study indicated that the API (difluoromethylornithine HCl/sulindac) were both compatible with the potential excipients. Pharmaceutical excipient compatibility studies were performed by XRPD analysis to determine the crystallinity of the API with potential formulation excipients for the difluoromethylornithine HCl/sulindac combination product. XRPD results showed no interaction between API and excipients after four weeks at 40°C/75% RH. The indicated APIs (difluoromethylornithine HCl/sulindac) were all compatible with the potential excipients. Coating tests were performed on tablets to determine the effect on stability at 1 and 3 months of moisture content at 25°C/60% RH or 40°C/75% RH. Coatings include OPADRY® Yellow (Colorcon, 03B92557), OPADRY® White (Colorcon Y-1-7000), OPADRY® II White (Colorcon 85F18422) and OPADRY® Clear (Colorcon YS-3 -7413). Color visual inspection was taken to assess the overall color difference or DE between the stabilized lozenges and the original coated lozenges. Tablet color was tested using a Datacolor Spectraflash 600 Series Spectrophotometer. Data were analyzed using the Commission Internationale de l'Eclairage (CIE) L* a* b* system. In the L* a* b* system, colors are expressed as coordinates in three-dimensional space. Lightness and darkness are plotted on the L* axis, where L=100 represents pure white and L=0 represents pure black. The a* and b* axes represent two complementary color pairs of red/green and blue/yellow, respectively. By drawing colors in geometric shapes, the difference between two colors (total color difference = E*) can be determined by calculating the distance between two points using the following equation. DE* = [(L*1 - L*2)2 + (a*1 - a*2)2 + (b*1 - b*2)2]1/2 Each tablet was analyzed at each weight gain of each coating formulation using Datacolor. The closer the DE value is to zero, the closer the tested tablet color is to the color standard (initial sample). The Colorcon standard spectrum for the white coating (passed QC test) will have a DE value of less than 1.5. All stability samples with white film coats exceeded 1.5 DE and therefore would fail the Colorcon standard QC test (Table 14). Clear coated lozenges were also well above the value of 1.5.surface 14 : In stable coated tablets DE value. 3% wg Y-1-7000 (white) 4% wg Y-1-7000 (white) 3% wg 85F18422 (white) 4% wg 85F18422 (white) 3% wg 03B92557 (yellow) 4% wg 03B92557 (yellow) 3% wg YS-3-7413 (clear) 1 month 25/60 1.81 1.64 2.56 2.8 0.27 0.32 1.15 3 months 25/60 1.97 1.94 2.96 2.31 0.35 0.22 1.1 1 mo 40/75 1.91 2.47 3.58 2.39 0.3 0.29 4.29 3 months 40/75 2.71 2.66 2.72 3.31 0.64 0.58 7.6 The best DE results were found for the tablets coated with the yellow formulation. The DE value is much lower than 1.5. A DE value (total color difference) of 1 or lower is considered imperceptible to the human eye. Typical internal specifications for Colorcon for yellow coating tend to be a DE value of 2.5-3. Therefore, OPADRY® Yellow is used to coat combination lozenges.example 4- Fixed co-formulation of difluoromethylornithine / Bioequivalence Study of Sulindac A pilot study was performed to compare co-formulated lozenges containing difluoromethylornithine/sulindac after oral administration with those administered alone or co-administered with difluoromethylornithine/sulindac in normal healthy individuals under fasting conditions. Pharmacokinetic parameters of difluoromethylornithine, sulindac sulindac sulfide, and sulindac sulfide in plasma compared to individual lozenges of ornithine or sulindac. The secondary objective of this study was to determine the safety and tolerability of the difluoromethylornithine/sulindac co-formulated lozenges compared to administration of the individual formulations alone or co-administered in normal healthy individuals. The study included twelve individuals, male or female, at least 18 years of age but no older than 60 years of age. The main inclusion criteria are: light smoker, never smoker or former smoker; body mass index (BMI) ≥18.50 kg/m2 And <30.00 kg/m2 ; no clinically significant abnormalities were found in the 12-lead ECG performed (the subject must be in the supine position for 10 minutes prior to the ECG, and the ECG was taken before all requested blood draws); the female subject tested negative for pregnancy; and based on medical history, comprehensive Physical examination (including vital signs) and laboratory tests (general biochemistry, hematology and urinalysis) were healthy. Individuals were treated in four treatment groups consisting of: • Treatment 1: Co-formulate a single 750/150 mg dose of difluoromethylornithine 375 mg/sulindac 75 mg lozenges (2 x 375/75 mg lozenges) • Treatment 2: Single 750 mg dose of difluoromethylornithine 250 mg lozenges (3 x 250 mg lozenges) • Treatment 3: Single 150 mg dose of sulindac 150 mg lozenge (1 x 150 mg lozenge) • Treatment 4: Concomitant administration of a single 150 mg dose of sulindac 150 mg lozenges (1 x 150 mg lozenges) and a single 750 mg dose of difluoromethylornithine 250 mg lozenges (3 x 250 mg lozenges) mg dose Individuals were assigned to 4 different treatments over a 28-day period. A single oral dose to the assigned treatment was administered under fasted conditions during each study period. Treatment doses were separated by a wash-out of 7 calendar days. A total of 120 blood samples were collected for each individual at 80 time instants. The first blood sample was collected before drug administration, while other blood samples were collected after drug administration 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, Collect after 16, 24, 36 and 48 hours. Analytes were measured by HPLC with MS/MS detection. The analytical range is 35.0 ng/mL to 35000.0 ng/mL for difluoromethylornithine, 30.0 ng/mL to 15000.0 ng/mL for sulindac, and 10.0 ng/mL to 8000.0 ng for sulindac and sulindac sulfide /mL. Safety was assessed by assessing adverse events (AEs), standard laboratory evaluations, vital signs, and ECG.Mathematical Model and Statistical Method of Pharmacokinetic Parameters : The main absorption and distribution parameters were calculated using non-compartmental methods with log-linear terminal assumptions. The trapezoidal rule was used to estimate the area under the curve. The final assessment is based on maximizing the coefficient of determination. The pharmacokinetic parameter of this test is Cmax , Tmax 、AUC0-T 、AUC0-∞ 、AUC0-T/∞ , lambdaZ and Thalf . Statistical analysis is based on a parametric ANOVA model of pharmacokinetic parameters; for Cmax 、AUC0-T and AUC0-∞ The 90% confidence interval on both sides of the ratio of the geometric method is based on the ln transformation data; Tmax Converted by sort. The ANOVA model used fixed factors of order, period, and treatment; random factors were individuals nested within order. Pharmacokinetic parameters include Cmax (maximum observed plasma concentration); Tmax (time of maximum observed plasma concentration, if it occurs at more than one time point, then Tmax defined as the first time point with this value); TLQC (time to last observed quantifiable plasma concentration); AUC0-T (from 0 to T using the linear trapezoidal methodLQC Calculated cumulative area under the plasma concentration-time curve); AUC0-∞ (The area under the plasma concentration-time curve approaches infinite, calculated as AUC0-T + CLQC /λz, where CLQC for time TLQC Estimated concentration below); AUC0-T/∞ (AUC0-T Relative to AUC0-∞ relative percentage); TLIN (the time point at the beginning of the log-linear elimination phase); λz (the apparent elimination rate constant, estimated by linear regression of the terminal linear portion of the log-concentration versus time curve); and Thalf (Final elimination half-life, calculated as ln(2)/λz).surface 15 : Pharmacokinetic parameters of difluoromethylornithine parameter Treatment -1 (n=12) Treatment -2 (n=12) Treatment -4 (n=12) average value CV (%) average value CV (%) average value CV (%) C max (ng/mL) 10643.8 (21.6) 10234.6 (19.9) 10012.8 (25.5) ln (C max ) 9.2525 (2.2) 9.2134 (2.3) 9.1822 (2.8) T max ( hours )* 3.25 (2.00-6.00) 3.50 (2.00-5.00) 4.50 (2.50-5.00) AUC 0-T (ng h/mL) 71459.8 (20.4) 68962.3 (20.2) 69914.9 (18.3) ln (AUC 0-T ) 11.1562 (1.9) 11.1229 (1.8) 11.1407 (1.6) AUC 0-∞ (ng h/mL) 71839.3 (20.3) 69301.2 (20.0) 70326.0 (18.1) ln (AUC 0-∞ ) 11.1619 (1.9) 11.1281 (1.8) 11.1468 (1.6) AUC 0-T/∞ (%) 99.44 (0.3) 99.48 (0.2) 99.39 (0.3) λ Z ( hour -1 ) 0.1453 (25.0) 0.1642 (21.5) 0.1630 (26.3) T half ( hour ) 5.07 (27.3) 4.43 (24.9) 4.65 (39.0) * Median (range)surface 16 : Pharmacokinetic parameters of sulindac parameter Treatment -1 (n=12)** Treatment -3 (n=12)** Treatment - 4 (n=12)*** average value CV (%) average value CV (%) average value CV (%) C max (ng/mL) 4553.4 (31.6) 5236.1 (39.2) 5188.5 (42.9) ln (C max ) 8.3788 (3.7) 8.4946 (4.7) 8.4562 (5.7) T max (hours)* 1.54 (0.75-5.00) 1.50 (1.00-2.50) 1.50 (0.75-5.00) AUC 0-T (ng h/mL) 11268.3 (32.2) 11569.7 (31.4) 11340.8 (43.9) ln (AUC 0-T ) 9.2823 (3.5) 9.3114 (3.4) 9.2621 (4.2) AUC 0-∞ (ng h/mL) 11579.4 (39.9) 12687.8 (34.9) 12023.7 (49.3) ln (AUC 0-∞ ) 9.2896 (4.2) 9.3924 (3.9) 9.3019 (4.8) AUC 0-T/∞ (%) 96.73 (4.9) 98.14 (1.2) 97.58 (1.6) λ Z (hour -1 ) 0.2810 (48.0) 0.3408 (45.9) 0.2034 (58.0) T half (hour) 4.97 (142.9) 2.88 (83.5) 4.61 (55.3) * Median (range) ** for AUC0-∞ , lambdaZ and Thalf n=7 *** for AUC0-∞ , lambdaZ and Thalf n=8Guidelines for Bioequivalence : Statistical inference of difluoromethylornithine based on the bioequivalence approach, using the ratio of geometric LSmeans, where the parameter C is transformed for lnmax 、AUC0-T and AUC0-∞ The corresponding 90% confidence intervals for the index calculations of the differences between Treatment 1 vs. Treatment 2, Treatment 2 vs. Treatment 4, and Treatment 1 vs. Treatment 4 were compared with the 80.00% to 125.00% range. Statistical inference of sulindac was based on the bioequivalence method using ratios of geometric LSmeans where the parameter C was transformed for lnmax 、AUC0-T and AUC0-∞ The corresponding 90% confidence intervals calculated for the difference indices between Treatment 1 versus Treatment 3, Treatment 3 versus Treatment 4, and Treatment 1 versus Treatment 4 were compared with the range 80.00% to 125.00%. The same criteria were applied for sulindac sulfide and sulindac sulfide, and the results presented supportive evidence for comparable therapeutic results.safety results : A total of 12 subjects entered the study, and all subjects received 4 treatments under the study. No serious adverse events (SAEs) and deaths were reported by any individual participating in this study. No subjects were withdrawn by investigators for safety reasons. A total of 4 treatment-emergent adverse events (TEAEs) were reported by 4 (33%) of the 12 individuals participating in the study. Of these events, 2 occurred after treatment 1 dosing, 1 occurred after treatment 3 dosing and the remaining one occurred after treatment 4 dosing. Subjects dosed with Treatment 2 did not report any TEAEs. Half of the TEAEs experienced during the study were considered related to drug administration. TEAEs in this study had a low incidence; 1 subject (8%) per treatment group experienced a TEAE. Dry mouth was reported after Treatment 4 administration, upper respiratory tract infection was reported after Treatment 3 administration and vascular puncture site abrasions and headache were each reported after Treatment 1 administration. The incidence of TEAEs was the same for subjects dosed with Treatment 3 and Treatment 4 (8%), and slightly lower than the incidence of TEAEs reported for subjects dosed with Treatment 1 (17%). Drug-related TEAEs were reported to have the same incidence as subjects dosed with Treatment 1 and Treatment 4 (8%), whereas subjects dosed with Treatment 3 experienced no drug-related TEAEs. TEAEs experienced during the study were considered mild (3/4, 75%) and moderate (1/4, 25%) in intensity. None of the subjects experienced serious TEAEs during the study. All abnormal clinical laboratory values were more or less above or below their reference ranges, and none were considered clinically significant by the investigator. In addition, there were no clinically significant abnormalities in the vital signs and ECG of the subjects in this study. All physical examinations were judged to be normal. Overall, the drugs tested were generally safe and were well tolerated by the individuals included in this study.processing 1 with processing 2 Comparison between difluoromethylornithine : Pharmacokinetic results show the C of difluoromethylornithinemax 、AUC0-T and AUC0-∞ The geometric LSmean ratios and corresponding 90% confidence intervals are included in the range of 80.00% to 125.00%. The results of this comparison indicate that Treatment 1 and Treatment 2 met the bioequivalence criteria when administered under fasting conditions, and exhibited DFM bioavailability in the DFM/Sulindac-containing regimen. Comparability between co-formulated lozenges and lozenges containing only difluoromethylornithine.surface 17 : processing 1 relative to processing 2 Summary of statistical analysis of difluoromethylornithine in parameter Intra-individual CV (%) Geometry LSMEANS* Ratio (%) 90% Confidence Limit (%) Treatment -1 (n=12) Treatment -2 (n=12) lower limit upper limit Cmax 16.8 10430.9 10030.8 103.99 92.42 117.01 AUC0 -T 13.5 69998.7 67701.4 103.39 94.03 113.69 AUC 0-∞ 13.4 70395.4 68056.2 103.44 94.17 113.61 *Cmax The unit is ng/mL and AUC0-T and AUC0-∞ The unit is ng h/mLprocessing 2 with processing 4 Comparison between difluoromethylornithine : Pharmacokinetic results show the C of difluoromethylornithinemax 、AUC0-T and AUC0-∞ The geometric LSmean ratios and corresponding 90% confidence intervals are included in the range of 80.00% to 125.00%. The results of this comparison indicate that when administered under fasted conditions, Treatment 2 and Treatment 4 met the bioequivalence criteria and demonstrated that individual lozenges co-administered sulindac and difluoromethylornithine did not affect individual administration Bioavailability of difluoromethylornithine.surface 18 : processing 2 relative to processing 4 Summary of statistical analysis of difluoromethylornithine in parameter Intra-individual CV (%) Geometry LSMEANS* ratio(%) 90% Confidence Limit (%) Treatment -2 (n=12) Treatment -4 (n=12) lower limit upper limit Cmax 16.8 10030.8 9722.7 103.17 91.69 116.09 AUC0 -T 13.5 67701.4 68916.4 98.24 89.34 108.02 AUC 0-∞ 13.4 68056.2 69338.0 98.15 89.36 107.81 *Cmax The unit is ng/mL and AUC0-T and AUC0-∞ The unit is ng h/mLprocessing 1 with processing 4 Comparison between difluoromethylornithine : Pharmacokinetic results show the C of difluoromethylornithinemax 、AUC0-T and AUC0-∞ The geometric LSmean ratios and corresponding 90% confidence intervals are included in the range of 80.00% to 125.00%. The results of this comparison indicate that Treatment 1 and Treatment 4 meet the bioequivalence criteria when administered under fasting conditions, and demonstrate the same effect for co-formulated lozenges containing difluoromethylornithine/sulindac as for co-administration containing The bioavailability of difluoromethylornithine was similar for individual lozenges of either difluoromethylornithine or sulindac.surface 19 : processing 1 relative to processing 4 Summary of statistical analysis of difluoromethylornithine in parameter Intra-individual CV (%) Geometry LSMEANS* ratio(%) 90% Confidence Limit (%) Treatment -1 (n=12) Treatment -4 (n=12) lower limit upper limit Cmax 16.8 10030.8 9722.7 107.28 95.35 120.72 AUC0 -T 13.5 67701.4 68916.4 101.57 92.37 111.68 AUC 0-∞ 13.4 68056.2 69338.0 101.53 92.43 111.51 *Cmax The unit is ng/mL and AUC0-T and AUC0-∞ The unit is ng h/mLprocessing 1 with processing 3 Comparison Between Sulindac : Pharmacokinetic results show that the C of sulindacmax 、AUC0-T and AUC0-∞ The geometric LSmean ratio and the corresponding 90% confidence interval (90CI) are not all included in the range of 80.00% to 125.00%. Cmax The lower limit of the 90CI is lower than the 80.00% limit. Since the ratios ranged from 80.00% to 125.00% of all PK parameters, intra-individual variability could account for Cmax The case where the lower limit exceeds the range of BE. The results obtained for this comparison demonstrate that the sample size used in this pilot test was insufficient to demonstrate equivalence of sulindac bioavailability for co-formulated lozenges and sulindac alone.surface 20 : processing 1 relative to processing 3 Summary of Statistical Analysis of Sulindac parameter Intra-individual CV (%) Geometry LSMEANS* Ratio (%) 90% Confidence Limit (%) Treatment -1 (n=12)** Treatment -3 (n=12)** lower limit upper limit Cmax 24.6 4353.6 4888.5 89.06 75.04 105.69 AUC0 -T 11.9 10746.4 11063.6 97.13 89.34 105.60 AUC 0-∞ 13.6 12029.4 12743.6 94.40 82.27 108.30 *Cmax The unit is ng/mL and AUC0-T and AUC0-∞ The unit is ng h/mL **for AUC0-∞ , n=7 Based on these data, the within-individual change incorporating variability between all comparisons, Cmax is about 24.6%, and AUC0-T is about 12%. Statistically, the estimated number of individuals meeting the 80.00% to 125.00% bioequivalence range (statistical prior power of at least 80%) for Future pivotal studies will be approximately 54. The inclusion of 60 individuals should be sufficient to account for the possibility of under- and variation in estimated CV within individuals.processing 3 with processing 4 Comparison Between Sulindac : Pharmacokinetic results show that the C of sulindacmax 、AUC0-T and AUC0-∞ The geometric LSmean ratios and corresponding 90% confidence intervals are included in the range of 80.00% to 125.00%. The results of this comparison indicate that Treatment 3 and Treatment 4 meet the bioequivalence criteria when administered under fasted conditions and demonstrate that co-administration of individual lozenges containing difluoromethylornithine or sulindac does not affect individual administration Bioavailability of sulindac over time.surface twenty one : processing 3 relative to processing 4 Summary of Statistical Analysis of Sulindac parameter Intra-individual CV (%) Geometry LSMEANS* Ratio (%) 90% Confidence Limit (%) Treatment -3 (n=12)** Treatment -4 (n=12)** lower limit upper limit Cmax 24.6 4888.5 4704.2 103.92 87.56 123.32 AUC0 -T 11.9 11063.6 10530.9 105.06 96.63 114.22 AUC 0-∞ 13.6 12743.6 11834.3 107.68 93.31 124.27 *Cmax The unit is ng/mL and AUC0-T and AUC0-∞ The unit is ng h/mL **for AUC0-∞ , n=7processing 1 with processing 4 Comparison Between Sulindac : Pharmacokinetic results show that the C of sulindacmax 、AUC0-T and AUC0-∞ The geometric LSmean ratio and the corresponding 90% confidence interval (90CI) are not all included in the range of 80.00% to 125.00%. Cmax The lower limit of the 90CI is lower than the 80.00% limit. Since the ratios ranged from 80.00% to 125.00% of all PK parameters, intra-individual variability could account for Cmax The case where the lower limit exceeds the range of BE. The results obtained for this comparison demonstrated that the sample size used in this pilot study was insufficient to demonstrate the bioavailability of sulindac for co-formulated tablets and co-administered individual tablets containing difluoromethylornithine or sulindac bioequivalence.surface twenty two : processing 1 relative to processing 4 Summary of Statistical Analysis of Sulindac parameter Intra-individual CV (%) Geometry LSMEANS* Ratio (%) 90% Confidence Limit (%) Treatment -1 (n=12)** Treatment -4 (n=12)** lower limit upper limit Cmax 24.6 4353.6 4704.2 92.55 77.98 109.83 AUC0 -T 11.9 10746.4 10530.9 102.05 93.86 110.94 AUC 0-∞ 13.6 12029.4 11834.3 101.65 88.09 117.30 *Cmax The unit is ng/mL and AUC0-T and AUC0-∞ The unit is ng h/mL **for AUC0-∞ , n=8 Based on these data, the within-individual change incorporating variability between all comparisons, Cmax is about 24.6%, and AUC0-T is about 12%. Statistically, the number of individuals estimated to meet the 80.00% to 125.00% bioequivalence range (statistical prior power of at least 80%) for Future pivotal studies will be approximately 36. The inclusion of 40 individuals should be sufficient to account for the possibility of under- and variation in estimated CV within individuals.* * * All compositions and/or methods disclosed and claimed herein can be made and performed in accordance with the present invention without undue experimentation. While the compositions and methods of the present invention have been described in terms of preferred embodiments, it will be clear to those skilled in the art that changes may be made in the methods and methods described herein without departing from the concept, spirit and scope of the invention in the step or sequence of steps. More specifically, it will be apparent that certain agents that are chemically and physiologically related may be substituted for those described herein while obtaining the same or similar results. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.references The following references are specifically incorporated herein by reference to the extent that they provide exemplary procedures or other details supplementary to those set forth herein. U.S. Patent 3,647,858 U.S. Patent 3,654,349 U.S. Patent 4,330,559 U.S. Patent 4,413,141 U.S. Patent 5,814,625 U.S. Patent 5,843,929 U.S. Patent 6,258,845 U.S. Patent 6,428,809 U.S. Patent 6,702,683 U.S. Patent 8,329,636 U.S. Patent 9,121,852 U.S. Patent Publication US2013/0217743 U.S. Patent Publication US2015/0301060 PCT Patent Publication WO2014/070767 PCT Patent Publication WO2015/195120 Albertset al. ,J. Cell. Biochem. Supp ., (22):18-23, 1995. AMA Drug Evaluations Annual, 1814-1815, 1994. Baileyet al. ,Cancer Prev Res (Phila) 3 , 35-47, 2010. Barryet al. ,J. Natl. Cancer Inst ., 98(20):1494-500, 2006. Bediet al., Cancer Res ., 55(9):1811-1816, 1995. Bellofernandezet al., Proc. Natl. Acad. Sci. USA, 90:7804-8, 1993. Childset al. ,Cell. Molec. Life Sci ., 60:1394-1406, 2003. Du Boiset al., Cancer Res. , 56:733-737, 1996. Erdmanet al., Carcinogenesis , 20:1709-13, 1999. European Pharmacopoeia, Strasbourg: Council of Europe, 8the th Ed., 2014. Fultz and Gerner,Mol. Carcinog ., 34:10-8, 2002. Gerhardt,Pharmaceutical Processes, 13(1), 2009. Gerneret al. ,Cancer Epidemiol. Biomarkers Prev ., 3:325-330, 1994. Gerner, E.W. & Meyskens, F.L., Jr.,Nat Rev Cancer 4 , 781-92, 2004. Giardielloet al. ,Cancer Res ., (57):199-201, 1997. Hanifet al. ,Biochemical Pharmacology , (52):237-245, 1996. Hubneret al., Clin. Cancer Res ., 14(8):2303-9, 2008. Ignatenkoet al. ,Cancer Biol. ., 5(12):1658-64, 2006. Japanese Pharmacopoeia, Tokyo: Society of Japanese Pharmacopoeia, 16the th Ed., 2011. Kingsnorthet al. ,Cancer Res., 43(9):4035-8, 1983. Ladenheimet al. ,Gastroenterology , 108:1083-1087, 1995. Lanzaet al. ,Arch. Intern. Med. , 155:1371-1377, 1995. Lee, Y.S. & Dutta, A.,Genes Dev 21, 1025-30, 2007. Lipkin,J. Cell Biochem. Suppl. , 28-29:144-7, 1997. Lippman,Nat. Clin. Pract. Oncol., 3(10):523, 2006. loveet al., J. Natl. Cancer Inst. ., 85:732-7, 1993. Luk and Baylin,N. Engl. J. Med ., 311(2):80-83, 1984. Lupulescu,Cancer Detect. ., 20(6):634-637, 1996. Maejimaet al ,Chemical Pharmacology Bulletin , 45(3): 518-524, 1997. Martinezet al., Proc. Natl. Acad. Sci. USA, 100:7859-64, 2003. McLarenet al. ,Cancer Prev. Res ., 1(7):514-21, 2008. Meyskenset al. ,Cancer Prev Res (Phila) 1 , 32-8, 2008. Meyskenset al. ,J. Natl. Cancer Inst ., 86(15):1122-1130, 1994. Meyskenset al., J. Natl. Cancer Inst. ., 90(16):1212-8, 1998. Muscatet al., Cancer , 74:1847-1854, 1994. Narisawaet al. ,Cancer Res ., 41(5):1954-1957, 1981. Nigroet al., Cancer Lett., (35):183-8, 1987. Nowelset al., Cancer. Biochem. Biophys. ,(8):257-63, 1986. Pegg,Biochem ., 234(2):249-262, 1986. Physician's Desk Reference, Medical Economics Data, Montville, N.J., 1745-1747, 1999 Piazzaet al. ,Cancer Res ., (55):311 3116, 1995. Piazzaet al. ,Cancer Res ., (57):2452-2459, 1997a. Piazzaet al., Cancer Res ., (57):2909-2915, 1997b. Pollard and Luckert,Cancer Res ., 49:6471-6473, 1989. Psaty and Potter,N. Engl. J. Med., 355(9):950-2, 2006. Raoet al. ,Cancer Res ., (55):1464-1472, 1995. Reddyet al. ,Cancer Res ., (50):2562-2568, 1990. Reddyet al. ,Cancer Res. , 47:5340-5346, 1987. Simoneauet al. ,Cancer Epidemiol Biomarkers Prev 17 , 292-9, 2008. Simoneauet al., J. Natl. Cancer Inst ., 93:57-9, 2001. Singh and Reddy,Annals. NY Acad. Sci. , (768):205-209, 1995. Singhet al. ,Carcinogenesis , (15):1317-1323, 1994. Strejanet al., Cell Immunol ., 84(1):171-184, 1984. Suet al. ,science , (256):668-670, 1992. Temperoet al. ,Cancer Res ., 49(21):5793-7, 1989. Thomas and Thomas,J. Cell Mol. Med ., 7:113-26, 2003. Thompsonet al., Cancer Res, ( 45):1170-3, 1985. Thompsonet al., J. Natl. Cancer Inst ., (87):125-1260, 1995. United States Pharmacopeia and National Formulary (USP 39-NF 34). Rockville, MD; 2015. Vander Heiden, M.G.Nat Rev Drug Discov 10 , 671-84, 2011. Vane and Botting,Adv Exp Med Biol ., 433:131-8, 1997. Wallace,Eur. J. Clin. Invest ., 30:1-3, 2000. Wanget al. ,Clin Cancer Res 17 , 2570-80, 2011. Weekset al., Proc. Nat'l Acad. Sci. USA, (79):6028-32, 1982. Zellet al., Cancer Prev. Res ., 2(3):209-12, 2009. Zhanget al. ,Genes Dev 26 , 461-73, 2012.

以下圖式形成本說明書之一部分且經包括以進一步展示本發明之某些態樣。參照此等圖式中之一或多者,結合本文中呈現之特定實施例之詳細描述,可更好地理解本發明。 1 二氟甲基鳥氨酸HCl單水合物(375 mg)及舒林酸(75mg)之700 mg錠劑之原型批次7107/04的穩定性分析。錠劑具有3% w/w包衣。樣品以時間零(T0)及以6個月(T6)使用測定含水量的經驗證之卡爾費歇爾滴定法(validated Karl Fischer titration method)進行分析。樣品儲存於經驗證穩定性腔室中的有或無蓋子之HDPE瓶子中。值代表各錠劑在指定條件下的水百分比。 2A 2B 包衣錠劑批次7107/04及6A001之溶解分析的結果。包括250 mg二氟甲基鳥氨酸HCl單水合物及市售150 mg舒林酸之參考錠劑用於比較。共調配錠劑含有具有3% w/w包衣之375 mg二氟甲基鳥氨酸HCl單水合物及75 mg舒林酸。 3 描繪含有二氟甲基鳥氨酸HCl單水合物及舒林酸之錠劑之製造方法的簡化流程。 4A 4C (A) 展現量測所選擇雜質之能力的二氟甲基鳥氨酸HCl單水合物及舒林酸共調配錠劑之典型HPLC層析。(B-C) 二氟甲基鳥氨酸HCl單水合物及舒林酸活性成分與錠劑賦形劑在時間零、2週及4週時混合的X射線粉末繞射(XRPD)圖案。缺乏改變支持賦形劑相容性及多晶型物穩定性。The following drawings form a part of this specification and are included to further illustrate certain aspects of the invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein. Figure 1 : Stability analysis of prototype batch 7107/04 of 700 mg lozenges of difluoromethylornithine HCl monohydrate (375 mg) and sulindac (75 mg). The lozenges have a 3% w/w coating. Samples were analyzed at time zero (T0) and at 6 months (T6) using the validated Karl Fischer titration method for determination of water content. Samples were stored in HDPE bottles with or without caps in proven stability chambers. Values represent the percentage of water for each tablet under the indicated conditions. Figures 2A - 2B : Results of dissolution analysis of coated tablet batches 7107/04 and 6A001 . Reference lozenges containing 250 mg difluoromethylornithine HCl monohydrate and commercially available 150 mg sulindac were used for comparison. Co-formulated lozenges contained 375 mg difluoromethylornithine HCl monohydrate with a 3% w/w coating and 75 mg sulindac. Figure 3 : A simplified flow chart depicting the manufacturing process of a lozenge containing difluoromethylornithine HCl monohydrate and sulindac. Figures 4A - 4C : (A) Representative HPLC chromatography of difluoromethylornithine HCl monohydrate and sulindac co-formulated tablets demonstrating the ability to measure selected impurities . (BC) X-ray powder diffraction (XRPD) patterns of difluoromethylornithine HCl monohydrate and sulindac active ingredients mixed with lozenge excipients at time zero, 2 weeks and 4 weeks. Lack of changes supports excipient compatibility and polymorph stability.

Claims (20)

一種組合物,其包含具以下之呈單一劑量單元之固定劑量組合:(a)約375mg之二氟甲基鳥氨酸(eflornithine)鹽酸鹽單水合物,及(b)約75mg之舒林酸(sulindac),其中該組合物進一步包含用量為約1重量%至約1.5重量%之硬脂酸鎂。 A composition comprising a fixed dose combination in a single dosage unit of (a) about 375 mg of eflornithine hydrochloride monohydrate, and (b) about 75 mg of sulindac Acid (sulindac), wherein the composition further comprises magnesium stearate in an amount of about 1% by weight to about 1.5% by weight. 如請求項1之組合物,其中該二氟甲基鳥氨酸鹽酸鹽單水合物為其兩種對映異構體之外消旋混合物。 The composition according to claim 1, wherein the difluoromethylornithine hydrochloride monohydrate is a racemic mixture of two enantiomers. 如請求項2之組合物,其中二氟甲基鳥氨酸鹽酸鹽單水合物外消旋體之量為375mg。 The composition as claimed in item 2, wherein the amount of difluoromethylornithine hydrochloride monohydrate racemate is 375mg. 如請求項1之組合物,其中舒林酸之量為75mg。 The composition as claimed in item 1, wherein the amount of sulindac is 75mg. 如請求項1之組合物,其進一步包含賦形劑。 The composition according to claim 1, further comprising an excipient. 如請求項5之組合物,其中該賦形劑為澱粉、膠態二氧化矽或矽化微晶纖維素。 The composition according to claim 5, wherein the excipient is starch, colloidal silicon dioxide or silicified microcrystalline cellulose. 如請求項5之組合物,其中該賦形劑為膠態二氧化矽。 The composition according to claim 5, wherein the excipient is colloidal silicon dioxide. 如請求項7之組合物,其中該組合物進一步包含第二賦形劑。 The composition according to claim 7, wherein the composition further comprises a second excipient. 如請求項8之組合物,其中該第二賦形劑為矽化微晶纖維素。 The composition according to claim 8, wherein the second excipient is silicified microcrystalline cellulose. 如請求項1之組合物,其中硬脂酸鎂之量為約1.5重量%。 The composition as claimed in item 1, wherein the amount of magnesium stearate is about 1.5% by weight. 如請求項1之組合物,其中該組合物係呈膠囊、錠劑、微型錠劑、顆粒、丸粒、溶液、凝膠、乳膏、泡沫或貼片形式。 The composition according to claim 1, wherein the composition is in the form of capsules, lozenges, mini-tablets, granules, pellets, solutions, gels, creams, foams or patches. 如請求項11之組合物,其中該組合物係呈錠劑形式。 The composition according to claim 11, wherein the composition is in the form of lozenges. 如請求項12之組合物,其中該錠劑之重量為約675mg至約725mg。 The composition according to claim 12, wherein the weight of the lozenge is about 675 mg to about 725 mg. 如請求項13之組合物,其中該錠劑之重量為約700mg。 The composition as claimed in item 13, wherein the weight of the tablet is about 700 mg. 如請求項12之組合物,其中該錠劑進一步包含包衣。 The composition according to claim 12, wherein the tablet further comprises a coating. 如請求項15之組合物,其中該包衣包含羥丙基甲基纖維素、二氧化鈦、聚乙二醇及氧化鐵黃。 The composition according to claim 15, wherein the coating comprises hydroxypropylmethylcellulose, titanium dioxide, polyethylene glycol and yellow iron oxide. 如請求項15之組合物,其中包衣之量為約2重量%至約4重量%。 The composition as claimed in item 15, wherein the coating amount is about 2% by weight to about 4% by weight. 如請求項15之組合物,其中該錠劑的重量為約700mg至約725mg。 The composition as claimed in item 15, wherein the weight of the lozenge is about 700 mg to about 725 mg. 如請求項18之組合物,其中該錠劑的重量為約721mg。 The composition as claimed in item 18, wherein the weight of the lozenge is about 721 mg. 一種如請求項1至19中任一項之組合物的用途,其係用以製備預防及/或治療有需要患者之家族性腺瘤性息肉病(FAP)的藥物。A use of the composition according to any one of claims 1 to 19, which is used to prepare a medicament for preventing and/or treating familial adenomatous polyposis (FAP) in patients in need.
TW110134644A 2015-10-30 2016-10-28 Eflornithine and sulindac, fixed dose combination formulation TWI810656B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562248810P 2015-10-30 2015-10-30
US62/248,810 2015-10-30
US201662358698P 2016-07-06 2016-07-06
US62/358,698 2016-07-06

Publications (2)

Publication Number Publication Date
TW202200122A TW202200122A (en) 2022-01-01
TWI810656B true TWI810656B (en) 2023-08-01

Family

ID=60186542

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110134644A TWI810656B (en) 2015-10-30 2016-10-28 Eflornithine and sulindac, fixed dose combination formulation
TW105135187A TWI743059B (en) 2015-10-30 2016-10-28 Eflornithine and sulindac, fixed dose combination formulation

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105135187A TWI743059B (en) 2015-10-30 2016-10-28 Eflornithine and sulindac, fixed dose combination formulation

Country Status (1)

Country Link
TW (2) TWI810656B (en)

Also Published As

Publication number Publication date
TW202200122A (en) 2022-01-01
TW201726124A (en) 2017-08-01
TWI743059B (en) 2021-10-21

Similar Documents

Publication Publication Date Title
US11925613B2 (en) Eflornithine and sulindac, fixed dose combination formulation
BR112012028035B1 (en) immediate release formulation
WO2017075576A1 (en) Eflornithine and sulindac, fixed dose combination formulation
PL200957B1 (en) Celecoxib compositions and the use thereof
CA2615496A1 (en) Medicaments containing famotidine and ibuprofen and administration of same
JPWO2006070845A1 (en) Quick disintegrating tablet and method for producing the same
WO2011102506A1 (en) Sustained-release solid preparation for oral use
JP5749247B2 (en) Oral sustained-release solid preparation
KR20200088382A (en) Controlled release formulations
JP2015091830A (en) Galenical formulations of organic compounds
TWI810656B (en) Eflornithine and sulindac, fixed dose combination formulation
US11260055B2 (en) Oral pharmaceutical composition of lurasidone and preparation thereof
JP2010001242A (en) Rebamipide solid preparation, and method for producing the same
US20150224056A1 (en) Pharmaceutical compositions of ibuprofen and famotidine
RU2669920C2 (en) Controlled release pharmaceutical composition based on propionic acid
SHANNON et al. Patent 3003149 Summary
JP6735007B2 (en) Pharmaceutical composition containing entacapone
JP6858873B2 (en) Tablets containing celecoxib
US20130064890A1 (en) Pharmaceutical formulation based on ibuprofen and codeine having improved stability
EP3251669B1 (en) Solid composition of pyrrole carboxamide
WO2022138717A1 (en) Oral solid preparation
WO2023085300A1 (en) Pharmaceutical composition having excellent elution property
BR112015018952B1 (en) PHARMACEUTICAL COMPOSITIONS CONTAINING DEXKETOPROFENE AND TRAMADOL, THEIR MANUFACTURING METHOD AND THEIR USE
US20130236538A1 (en) Pharmaceutical compositions of ibuprofen and famotidine
GB2491205A (en) Composition comprising bosentan and diluents