TWI809761B - 機械運動現場資料之自動處理裝置 - Google Patents

機械運動現場資料之自動處理裝置 Download PDF

Info

Publication number
TWI809761B
TWI809761B TW111109385A TW111109385A TWI809761B TW I809761 B TWI809761 B TW I809761B TW 111109385 A TW111109385 A TW 111109385A TW 111109385 A TW111109385 A TW 111109385A TW I809761 B TWI809761 B TW I809761B
Authority
TW
Taiwan
Prior art keywords
physical quantity
peak
acceleration
digital
value
Prior art date
Application number
TW111109385A
Other languages
English (en)
Other versions
TW202338531A (zh
Inventor
苗新元
Original Assignee
苗新元
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苗新元 filed Critical 苗新元
Priority to TW111109385A priority Critical patent/TWI809761B/zh
Application granted granted Critical
Publication of TWI809761B publication Critical patent/TWI809761B/zh
Publication of TW202338531A publication Critical patent/TW202338531A/zh

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Control Of Position Or Direction (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一種機械運動現場資料之自動處理裝置,一資料傳輸介面係透過一工業乙太網路介面連接複數物理量傳感器並連續取樣一物理量;一邊緣運算裝置為將該物理量產生一數位物理量;一快速傅利葉轉換模組,係該物理量進行頻率轉換並提取一單位增益穩定或一單位增益提升其高階的峰值分佈的頻帶的一頻率訊號,再由一matlab模擬提供一離散分析的反傅立葉轉換來驗證頻率訊號的正確性;一均方根轉換模組係連續辨識偵測該數位物理量,並據以分別帶入平均值與臨界值計算;一峰值檢測模組係偵測每個波峰發生的時間點來計算複數個峰值型樣;一網路元件係接收均方根轉換模組的資訊、或該峰值型樣,並且根據一網際網路協定所提供的一位址來與一或多個控制構件進行通信。

Description

機械運動現場資料之自動處理裝置
本發明係關於一種機械運動現場資料之自動處理裝置,特別是指一種快速傅利葉轉換(FFT)有新模式產生則通知刀具有狀況,均方根(RMS)轉換模組與平均值(AVG)之差值超量則通知換刀具等作相對應控制的自動處理裝置。
習用智慧型振動/溫度感應裝置係如臺灣申請109146321號專利案,其主要構成特徵為:尤指利用邊緣運算而產生多種精確特徵值,據以作為偵測旋轉或移動機械之振動故障預診分析兼具溫度感應之裝置,其原理係將內含振動感應元件及溫度感應元件之振動/溫度感應器固定在待測物上並與同步信號計速器及電腦主機聯結,經由每次起點為基準並測出其旋轉一周之振動頻譜,再由同步信號計速器之時域取樣分析程式、角度取樣分析程式及頻域分析程式,將旋轉一周N筆取樣數據或移動行程之振動頻譜所產生之多種精確特徵值疊加,復由附加於中央處理器內之數位信號處理器及支援向量機之運算,據以預診出可能產生故障之元件及其角度點,提供使用者預先精確預知振動機器主軸、齒輪 或螺桿可能產生的問題,進而及早排除或更替組件。其構成上之主要缺點為:只有原理,沒有說明處理過程。
習用裝置所會面臨的邊緣運算的問題,因而衍生眾多專利,如申請TW098101087、TW107213707、TW108117986、TW108206555、TW109205998、TW109217153、TW109137058、TW110200933、CN109732405A、CN109822398A、CN110394688A、CN110687871A、CN111791090A所提到上述的處理細節問題,在本發明中可一併解決這些問題,相當實用。
本發明之目的即在於提供一種使用數位訊號運算,將原始資料轉換成快速傅利葉轉換(FFT)、均方根(RMS)、平均值(AVG)、波峰(PEAK)等數值方便後續監控與數據分析之自動處理裝置。
可達成上述發明目的之機械運動現場資料之自動處理裝置,包括有:一資料傳輸介面,係透過一工業乙太網路介面連接複數物理量傳感器,而該物理量傳感器係對應至一個別驅動單元或一待測物,使該物理量傳感器將該個別驅動單元或該待測物連續取樣後的一物理量與一加速度物理量輸出至該資料傳輸介面;一邊緣運算裝置,係以一信號轉換器耦接至該 資料傳輸介面以及耦接至一儲存裝置,為通過該信號轉換器進行連續時間的該物理量與該加速度物理量接收,並據以產生一數位物理量與一數位加速度物理量再記錄於該儲存裝置中,以執行該儲存裝置中記錄的邊緣運算子程式;一快速傅利葉轉換模組,係電性連接該邊緣運算裝置,將該數位物理量與該數位加速度物理量並由一快速傅利葉轉換的邊緣運算子進行頻率轉換並提取一單位增益穩定的該數位物理量或一單位增益提升的該數位加速度物理量其高階的峰值分佈的頻帶的一頻率訊號,並據以分別產生一轉換資訊與一加速度轉換資訊,並由一matlab模擬提供一離散分析的反傅立葉轉換來驗證該轉換資訊與該加速度轉換資訊的正確性;一均方根轉換模組,係電性連接該邊緣運算裝置,為使用具有均方根轉換運算功能的邊緣運算子來連續辨識偵測該數位物理量與該數位加速度物理量,並據以分別帶入平均值與臨界值計算,以產生包含一安全值的一均方根資訊或包含一誤差值的一均方根加速度資訊;一峰值檢測模組,係電性連接該邊緣運算裝置,為使用具有峰值因數的邊緣運算子來連續接收該數位物理量與該數位加速度物理量,透過計算該數位加速度物理量每一個時間點的斜率的方式找出波形的峰值,藉由偵測每個波峰發生的時間點來計算複數個峰值型樣; 一網路元件,係接收包含一安全值的一均方根資訊、或包含一誤差值的一均方根加速度資訊、或該峰值型樣,並且根據一網際網路協定所提供的一位址來與一或多個控制構件進行通信。
1:資料傳輸介面
11:物理量傳感器
121:物理量
122:加速度物理量
13:個別驅動單元
14:待測物
2:邊緣運算裝置
21:儲存裝置
22:信號轉換器
231:數位物理量
232:數位加速度物理量
3:快速傅利葉轉換模組
311:轉換資訊
322:加速度轉換資訊
4:matlab模擬
41:任意波形產生器
42:視覺化波形圖
5:均方根轉換模組
511:均方根資訊
512:均方根加速度資訊
6:峰值檢測模組
7:網路元件
71:網際網路協定
8:控制構件
81:指定位址空間
82:可存取位址空間
圖1為本發明機械運動現場資料之自動處理裝置的系統方塊圖;圖2為該資料傳輸介面之流程圖;圖3為該邊緣運算裝置之流程圖;圖4為該快速傅利葉轉換模組之流程圖;圖5為該均方根轉換模組之流程圖;以及圖6為該峰值檢測模組之流程圖。
請參閱圖1,本發明所提供之機械運動現場資料之自動處理裝置,主要包括有:一資料傳輸介面1、一邊緣運算裝置2、一快速傅利葉轉換模組3、一均方根轉換模組5、一峰值檢測模組6以及一網路元件7所構成;如圖2所示,該資料傳輸介面1(data transmission interface)係透過一工業乙太網路(industrial Ethernet)介面連接複數物理量傳感器11(physical quantity transducer),而該物理量傳感器11係對應至一工業自動化系統中的X、Y、Z軸 的一個別驅動單元13(individual driving unit)的一旋轉軸、或如一刀具的一待測物14,使該物理量傳感器11將該個別驅動單元13或該待測物14連續取樣(continuous sampling)後的一物理量121(physical quantity)與一加速度物理量122(acceleration physical quantity)輸出至該資料傳輸介面1;其中,該物理量121係為該物理量傳感器11連續取樣的一平均準峰值(average quasi peak value),而該加速度物理量122係為該物理量傳感器11連續取樣的一最大峰值(maximum peak)、或一瞬時峰值(instantaneous peak value)、或一峰對峰值(peak-to-peak value);如圖3所示,該邊緣運算裝置2(edge computing device)係以一信號轉換器22(signal converter)耦接至該資料傳輸介面1以及耦接至一儲存裝置21,為通過該信號轉換器22後利用該資料傳輸介面1進行連續時間(continuous time)的該物理量121與該加速度物理量122接收,藉以轉換(conversion)該工業乙太網路介面中多個資料傳輸介面1的該物理量121與該加速度物理量122,並據以產生一數位物理量231與一數位加速度物理量232再記錄於該儲存裝置21中,以執行該儲存裝置21中記錄的邊緣運算子(edge operator)程式(program);又如圖4所示,該快速傅利葉轉換模組3係電性連接該邊緣運算裝置2,將該數位物理量231與該數位加 速度物理量232並由-快速傅利葉轉換(FFT)的邊緣運算子(edge operator)進行頻率轉換並提取一單位增益穩定(unity gain stabilization)的該數位物理量231或一單位增益提升(unity gain boosting)的該數位加速度物理量232其高階(high order)的峰值分佈的頻帶(frequency band)的一頻率訊號,並據以分別產生一轉換資訊311與一加速度轉換資訊312,且依據高階的峰值分佈的加速度轉換資訊312來判斷該物理量傳感器11的振動模式(vibrational mode)是否改變,並由一matlab模擬4進一步提供一離散分析(analysis of dispersion)的反傅立葉轉換來驗證該快速傅利葉轉換模組3運算該頻率訊號其該轉換資訊311與該加速度轉換資訊312的正確性;該數位加速度物理量232之特徵點係使用該快速傅利葉轉換的邊緣運算子來偵測該物理量傳感器11的邊緣資訊(如該最大峰值、或該瞬時峰值),接著利用快速傅利葉轉換的邊緣運算子算法原理是根據某個特定的像素點為中心給予一事件遮罩(event mask),檢測通過該事件遮罩在水平變量及垂直變量上的變化程度,決定是否為角點,水平變量及垂直變量的角點偵測之,在水平變量及垂直變量兩數值均大於最小門檻值時,該角點便為強角點,本發明係以位於角落上之強角點作為該數位加速度物理量232之特徵點。
一matlab模擬4(matlab stimulation)對該轉換資訊311與該加速度轉換資訊312置入一任意波形產生器 41(arbitrary waveform generator)進行資料視覺化(data visualization)的頻率轉換成具有一視覺化波形圖42(visualization oscillogram)的一訊號波形(signal waveform),該視覺化波形圖42之該訊號波形進一步包含時域波形或頻域圖形。該matlab模擬4進一步提供一離散分析(analysis of dispersion)的反傅立葉轉換來驗證該快速傅利葉轉換模組3運算該頻率訊號其該轉換資訊311與該加速度轉換資訊312的正確性。
如圖5所示,該均方根轉換模組5係電性連接該邊緣運算裝置2,為使用具有均方根轉換運算功能的邊緣運算子來連續辨識偵測該數位物理量231與該數位加速度物理量232,並據以分別帶入平均值(average)與臨界值計算,以產生一均方根資訊511(包含一安全值的該均方根資訊511)或包含一誤差值的一均方根加速度資訊512(包含一第一誤差值的該均方根加速度資訊512、或包含一第二誤差值的該均方根加速度資訊512);在一實施例中,該均方根資訊511或該均方根加速度資訊512可為一旋轉軸或一刀具上之相關特徵的一旋轉直徑。在一實施例中,該均方根轉換模組5可輸入該均方根資訊511的平均值或該均方根加速度資訊512的臨界值。該平均值或該臨界值可為該均方根資訊511或該均方根加速度資訊512之量測值應屬於之所要值範圍; 該均方根轉換模組5包括判定該均方根資訊511的平均值或該均方根加速度資訊512的臨界值,或計算平均值與臨界值之間的距離,或在臨界值之外之該均方根資訊511或該均方根加速度資訊512的量測值之總數目。臨界值可在平均值之上。舉例而言,一第一誤差值可大於平均值,及/或一第三誤差值可小於平均值;若該均方根資訊511持續輸出平均值,則該均方根轉換模組5產生包含一安全值的該均方根資訊511輸出;若該均方根資訊511的平均值與該均方根加速度資訊512的臨界值之間的距離大於該均方根資訊511的平均值,則該均方根轉換模組5產生包含一第一誤差值的該均方根加速度資訊512輸出;另外,該均方根資訊511或該均方根加速度資訊512在臨界值之外的總數目保持相同或增加的情況下產生包含一第二誤差值的該均方根加速度資訊512輸出。
如圖6所示,該峰值檢測模組6係電性連接該邊緣運算裝置2,為使用具有峰值因數(peak factor)(最大值與有效值之比)的邊緣運算子來連續接收該數位物理量231與該數位加速度物理量232,透過計算該數位加速度物理量232每一個時間點的斜率的方式找出波形的峰值,藉由偵測每個波峰發生的時間點(一峰峰值時間差(Peak to Peak Interval))來計算複數個峰值型樣(peak pattern); 在該儲存裝置21中的該數位加速度物理量232被該峰值檢測模組6讀取,當該數位加速度物理量232中的波峰偵測時,計算該數位加速度物理量232中每個時間點的斜率,來偵測出波峰發生的時間,找出兩個波峰位置之後便能計算出一峰峰值時間差(Peak to Peak Interval),該峰峰值時間差的倒數可以計算一峰值型樣(peak pattern);其中,該數位物理量231係為一正常表面,而該數位加速度物理量232係為一表面磨損(surface wear)。該峰值檢測模組6在讀取在該時域(time domain)圖的部分,該正常表面與該表面磨損的該時域圖並無法觀察出明顯的差異,但是在該時頻域(time-frequency domain)圖的部分,該正常表面與該表面磨損的該時頻域圖就有明顯不同;該邊緣運算裝置2在該頻率訊號中進行一峰值搜尋(peak searching)或一峰值檢測(peak detection)或一峰值計數(peak counting),可以明顯發現該表面磨損的該時域圖或該時頻域圖中明顯有三個峰值(peak)(複數個峰值型樣),藉以判斷該個別驅動單元13或該待測物14是否有損傷(或有溫度變化)。
一網路元件7(network components),係接收包含一安全值的一均方根資訊511、或包含一誤差值的一均方根加速度資訊512、或該峰值型樣,並且根據一網際網路協定71(Internet protocol)所提供的一位址來與一或多個控制構件 8(controlling member)進行通信;該邊緣運算裝置2係採用一工業控制通信與網路協定。該邊緣運算裝置2包含以一網際網路協定71連接複數個該控制構件8,該控制構件8係透過該網際網路協定71來與該邊緣運算裝置2以及該網路元件7進行通信。該控制構件8係根據機械運動所處所示的一指定位址空間81(enclave)或是一可存取位址空間82(accessible address space)而被指定一網路位址(network address)。可運用一或多個網路(notwork)來介接該指定位址空間81或是該可存取位址空間82,並且根據該指定位址空間81或是該可存取位址空間82所提供的位址(addresses)來介接該控制構件8。
綜上所述,本案不但在空間型態上確屬創新,並能較習用物品增進上述多項功效,應已充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請,懇請 貴局核准本件發明專利申請案,以勵發明,至感德便。
1:資料傳輸介面
11:物理量傳感器
2:邊緣運算裝置
21:儲存裝置
3:快速傅利葉轉換模組
4:matlab模擬
5:均方根轉換模組
6:峰值檢測模組
7:網路元件
8:控制構件
81:指定位址空間
82:可存取位址空間

Claims (1)

  1. 一種機械運動現場資料之自動處理裝置,包括:
    一資料傳輸介面,係透過一工業乙太網路介面連接複數物理量傳感器,而該物理量傳感器係對應至一個別驅動單元或一待測物,使該物理量傳感器將該個別驅動單元或該待測物連續取樣後的一物理量與一加速度物理量輸出至該資料傳輸介面;
    一邊緣運算裝置,係以一信號轉換器耦接至該資料傳輸介面以及耦接至一儲存裝置,為通過該信號轉換器進行連續時間的該物理量與該加速度物理量接收,並據以產生一數位物理量與一數位加速度物理量再記錄於該儲存裝置中,以執行該儲存裝置中記錄的邊緣運算子程式;
    一快速傅利葉轉換模組,係電性連接該邊緣運算裝置,將該數位物理量與該數位加速度物理量並由一快速傅利葉轉換的邊緣運算子進行頻率轉換並提取一單位增益穩定的該數位物理量或一單位增益提升的該數位加速度物理量其高階的峰值分佈的頻帶的一頻率訊號,並據以分別產生一轉換資訊與一加速度轉換資訊,並由一matlab模擬提供一離散分析的反傅立葉轉換來驗證該轉換資訊與該加速度轉換資訊的正確性;
    一均方根轉換模組,係電性連接該邊緣運算裝置,為使用具有均方根轉換運算功能的邊緣運算子來連續辨識偵測 該數位物理量與該數位加速度物理量,並據以分別帶入平均值與臨界值計算,以產生包含一安全值的一均方根資訊或包含一誤差值的一均方根加速度資訊;
    一峰值檢測模組,係電性連接該邊緣運算裝置,為使用具有峰值因數的邊緣運算子來連續接收該數位物理量與該數位加速度物理量,透過計算該數位加速度物理量每一個時間點的斜率的方式找出波形的峰值,藉由偵測每個波峰發生的時間點來計算複數個峰值型樣;
    一網路元件,係接收包含一安全值的一均方根資訊、或包含一誤差值的一均方根加速度資訊、或該峰值型樣,並且根據一網際網路協定所提供的一位址來與一或多個控制構件進行通信。
TW111109385A 2022-03-15 2022-03-15 機械運動現場資料之自動處理裝置 TWI809761B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111109385A TWI809761B (zh) 2022-03-15 2022-03-15 機械運動現場資料之自動處理裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111109385A TWI809761B (zh) 2022-03-15 2022-03-15 機械運動現場資料之自動處理裝置

Publications (2)

Publication Number Publication Date
TWI809761B true TWI809761B (zh) 2023-07-21
TW202338531A TW202338531A (zh) 2023-10-01

Family

ID=88149599

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111109385A TWI809761B (zh) 2022-03-15 2022-03-15 機械運動現場資料之自動處理裝置

Country Status (1)

Country Link
TW (1) TWI809761B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020022939A1 (en) * 2000-08-21 2002-02-21 Yosuke Senta Control program development support apparatus
US7539549B1 (en) * 1999-09-28 2009-05-26 Rockwell Automation Technologies, Inc. Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
US20170320182A1 (en) * 2016-05-06 2017-11-09 Massachusetts Institute Of Technology Method and Apparatus for Efficient Use of CNC Machine Shaping Tool Including Cessation of Use No Later than the Onset of Tool Deterioration By Monitoring Audible Sound During Shaping
TWM575368U (zh) * 2018-10-09 2019-03-11 東台精機股份有限公司 智能化工具機雲端運算系統
CN109732405A (zh) * 2018-12-30 2019-05-10 深圳市五湖智联实业有限公司 一种数控机床刀具边元计算磨损监测控制系统及方法
US20200026262A1 (en) * 2018-07-18 2020-01-23 Hitachi, Ltd. Machine-tool-state determination system and machine-tool-state determination method
TWI747689B (zh) * 2020-12-25 2021-11-21 康信創意科技有限公司 智慧型振動/溫度感應裝置
US11215170B2 (en) * 2016-09-14 2022-01-04 Smarter Alloys Inc. Shape memory alloy actuator with strain gauge sensor and position estimation and method for manufacturing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7539549B1 (en) * 1999-09-28 2009-05-26 Rockwell Automation Technologies, Inc. Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
US20020022939A1 (en) * 2000-08-21 2002-02-21 Yosuke Senta Control program development support apparatus
US20170320182A1 (en) * 2016-05-06 2017-11-09 Massachusetts Institute Of Technology Method and Apparatus for Efficient Use of CNC Machine Shaping Tool Including Cessation of Use No Later than the Onset of Tool Deterioration By Monitoring Audible Sound During Shaping
US11215170B2 (en) * 2016-09-14 2022-01-04 Smarter Alloys Inc. Shape memory alloy actuator with strain gauge sensor and position estimation and method for manufacturing same
US20200026262A1 (en) * 2018-07-18 2020-01-23 Hitachi, Ltd. Machine-tool-state determination system and machine-tool-state determination method
TWM575368U (zh) * 2018-10-09 2019-03-11 東台精機股份有限公司 智能化工具機雲端運算系統
CN109732405A (zh) * 2018-12-30 2019-05-10 深圳市五湖智联实业有限公司 一种数控机床刀具边元计算磨损监测控制系统及方法
TWI747689B (zh) * 2020-12-25 2021-11-21 康信創意科技有限公司 智慧型振動/溫度感應裝置

Also Published As

Publication number Publication date
TW202338531A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
TWI447371B (zh) 即時檢測系統和方法
JP6849446B2 (ja) 振動監視システム
CN106441896A (zh) 滚动轴承故障模式识别及状态监测的特征向量提取方法
CN101105501A (zh) 风扇转速测试系统及方法
CN108388839A (zh) 一种基于二阶同步提取变换的强转速波动特征提取方法
Xi et al. Zoom synchrosqueezing transform-based chatter identification in the milling process
TWI809761B (zh) 機械運動現場資料之自動處理裝置
TWI586943B (zh) enhanced-FFT線上機台振動量測系統與方法
Toma Analysis of motor fan radiated sound and vibration waveform by automatic pattern recognition technique using “Mahalanobis distance”
JP2008032454A (ja) 振動位相検出装置及び方法
Cui et al. Instantaneous Frequency Estimation-Based Order Tracking for Bearing Fault Diagnosis Under Strong Noise
TWI747689B (zh) 智慧型振動/溫度感應裝置
CN108999902A (zh) 一种提高起重机制动下滑量精度的测量方法及装置
JP7230371B2 (ja) 異常検出装置、異常検出方法、異常検出プログラム及び異常検出システム
EP4266139A1 (en) Monitoring machines
CN118090175A (zh) 叶片故障检测方法、系统、装置、电子设备及存储介质
CN117390882A (zh) 一种气动噪声确定方法及装置
CN111648923B (zh) 风机塔筒动扰度的检测方法、系统、介质及电子设备
CN114137246B (zh) 应用加速度计并结合dfa法的旋转体实时转速测定方法
TWI776664B (zh) 偵測系統及方法
TWI820612B (zh) 衝壓設備的異常檢測方法、裝置、設備及存儲媒體
TWI712944B (zh) 利用聲音監控設備之方法
Alsalaet Detection of transients in vibration signals using reverse dispersion entropy
Xie et al. An experiment research on dsp technology in wind tunnel
JPH045538A (ja) ウォルシュ変換を用いた信号解析方法