TWI809742B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI809742B
TWI809742B TW111107762A TW111107762A TWI809742B TW I809742 B TWI809742 B TW I809742B TW 111107762 A TW111107762 A TW 111107762A TW 111107762 A TW111107762 A TW 111107762A TW I809742 B TWI809742 B TW I809742B
Authority
TW
Taiwan
Prior art keywords
substrate
layer
gate conductive
conductive layer
semiconductor device
Prior art date
Application number
TW111107762A
Other languages
Chinese (zh)
Other versions
TW202324694A (en
Inventor
蔡鎮宇
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/541,845 external-priority patent/US12009424B2/en
Priority claimed from US17/543,914 external-priority patent/US11894427B2/en
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Publication of TW202324694A publication Critical patent/TW202324694A/en
Application granted granted Critical
Publication of TWI809742B publication Critical patent/TWI809742B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Non-Volatile Memory (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Bipolar Transistors (AREA)
  • Noodles (AREA)

Abstract

A semiconductor device and a method of manufacturing a semiconductor device are provided. The semiconductor device includes a substrate having a surface. The surface has a first portion and a second portion protruding from the first portion. The semiconductor device also includes a dielectric layer disposed on the second portion and a gate conductive layer disposed on the dielectric layer.

Description

半導體元件 semiconductor element

本申請案主張美國第17/541,845號及第17/543,914號專利申請案之優先權(即優先權日為「2021年12月3日」及「2021年12月7日」),其內容以全文引用之方式併入本文中。 This application claims priority from U.S. Patent Application Nos. 17/541,845 and 17/543,914 (i.e., with priority dates of "December 3, 2021" and "December 7, 2021"), the content of which is It is incorporated herein by reference in its entirety.

本揭露關於一種半導體元件及該半導體元件的製備方法。特別是有關於一種具有一低閘極高度的半導體元件。 The disclosure relates to a semiconductor device and a method for preparing the semiconductor device. In particular it relates to a semiconductor device with a low gate height.

金屬氧化物半導體場效電晶體(MOSFETs)通常使用在記憶體元件中,包括動態隨機存取記憶體(DRAM)元件。一MOSFET的製作技術通常包含提供一閘極結構在一半導體基底上以界定一通道區;以及形成源極及汲極區在該通道區的相對兩側上。 Metal oxide semiconductor field effect transistors (MOSFETs) are commonly used in memory devices, including dynamic random access memory (DRAM) devices. Fabrication techniques for a MOSFET generally include providing a gate structure on a semiconductor substrate to define a channel region; and forming source and drain regions on opposite sides of the channel region.

當DRAM元件尺寸縮減時,寄生電容(例如外緣電容、閘極到栓塞電容、栓塞到栓塞電容)以及寄生電阻變得顯著,因此降低元件效能。 As DRAM device dimensions shrink, parasitic capacitances (eg, peripheral capacitance, gate-to-plug capacitance, plug-to-plug capacitance) and parasitic resistance become significant, thereby reducing device performance.

此外,當縮減通道長度時,可能發生短通道效應(例如一衝穿現象(punch through phenomenon))。由於短通道效應,所以一DRAM元件可能會遇到關於閘極無法充分控制通道區的開啟與關閉狀態的問題,並且可能會出現電子特性的變異。 In addition, short channel effects (such as a punch through phenomenon) may occur when the channel length is reduced. Due to the short channel effect, a DRAM device may experience problems with the gate not being able to adequately control the on and off states of the channel region, and variations in electrical characteristics may occur.

上文之「先前技術」說明僅提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。 The above "prior art" description only provides background technology, and does not acknowledge that the above "prior art" description discloses the subject of this disclosure, and does not constitute the prior art of this disclosure, and any description of the above "prior art" is It should not be part of this case.

本揭露之一實施例提供一種半導體元建。該半導體元件包括一基底,具有一表面。該表面具有一第一部分以及一第二部分,該第二部分從該第一部分突伸。該半導體元件亦包括一介電層,設置在該第二部分上;以及一閘極導電層,設置在該介電層上。 An embodiment of the present disclosure provides a semiconductor device. The semiconductor element includes a base with a surface. The surface has a first portion and a second portion protruding from the first portion. The semiconductor element also includes a dielectric layer disposed on the second portion; and a gate conductive layer disposed on the dielectric layer.

本揭露之另一實施例提供一種半導體元件。該半導體元件包括一基底,具有一第一表面以及一第二表面,該第二表面從該基底的該基底的該第一表面突伸。該半導體元件亦包括一閘極氧化物層,設置在該基底的該第二表面上;以及一第一間隙子,設置在該基底的該第一表面上。該第一間隙子接觸該基底與該閘極氧化物層。 Another embodiment of the disclosure provides a semiconductor device. The semiconductor element includes a base with a first surface and a second surface, and the second surface protrudes from the first surface of the base. The semiconductor device also includes a gate oxide layer disposed on the second surface of the substrate; and a first spacer disposed on the first surface of the substrate. The first spacer contacts the substrate and the gate oxide layer.

本揭露之再另一實施例提供一種半導體元件的製備方法。該方法包括設置一介電層在一基底上;設置一閘極導電層在該介電層上;以及形成該基底的一表面以與該介電層的一側表面以及該閘極導電層的一側表面大致呈共面。 Yet another embodiment of the present disclosure provides a method for manufacturing a semiconductor device. The method includes arranging a dielectric layer on a substrate; arranging a gate conductive layer on the dielectric layer; The surfaces on one side are approximately coplanar.

藉由形成一閘極結構(包括一閘極導電層以及一介電層)在一基底的一升高部分(elevated portion)上,則升起該閘極導電層,可縮減該閘極導電層的高度,同時該閘極結構的高度大致上維持不變。相較於一習知結構(例如該閘極結構並未升起且該閘極導電層的高度較大),該閘極導電層的縮減高度可避免或降低不必要的寄生電容。此外,由於該基底具有一升起部分且並升起該閘極導電層,所以增加有效的通道長度並可減少 短通道效應。 The gate conductive layer can be reduced by forming a gate structure (comprising a gate conductive layer and a dielectric layer) on an elevated portion of a substrate, then raising the gate conductive layer The height of the gate structure remains substantially constant. The reduced height of the gate conductive layer can avoid or reduce unnecessary parasitic capacitance compared to a conventional structure (eg, the gate structure is not raised and the height of the gate conductive layer is larger). In addition, since the substrate has a raised portion and raises the gate conductive layer, the effective channel length is increased and can reduce short channel effect.

上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。 The technical features and advantages of the present disclosure have been broadly summarized above, so that the following detailed description of the present disclosure can be better understood. Other technical features and advantages constituting the subject matter of the claims of the present disclosure will be described below. Those skilled in the art of the present disclosure should understand that the concepts and specific embodiments disclosed below can be easily used to modify or design other structures or processes to achieve the same purpose as the present disclosure. Those with ordinary knowledge in the technical field to which the disclosure belongs should also understand that such equivalent constructions cannot depart from the spirit and scope of the disclosure defined by the appended claims.

1:半導體元件 1: Semiconductor components

1':半導體元件 1': semiconductor element

1":半導體元件 1": semiconductor components

10:基底 10: Base

10a:摻雜區 10a: Doped area

10b:摻雜區 10b: Doped area

10c:升起部分 10c: Lifting part

11:介電層 11: Dielectric layer

11':介電層 11': dielectric layer

12:閘極導電層 12: Gate conductive layer

12':閘極導電層 12': gate conductive layer

12a:子層 12a: Sublayer

12b:子層 12b: sublayer

13:罩蓋層 13: cover layer

14':介電層 14': dielectric layer

14:間隙子 14: spacer

15:間隙子 15: spacer

20':硬遮罩 20': Hard mask

20:硬遮罩圖案 20: Hard mask pattern

30:製備方法 30: Preparation method

101:表面 101: surface

101a:部分 101a: part

101b:部分 101b: part

101c:部分 101c: part

102:表面 102: surface

111:表面 111: surface

121:表面 121: surface

131:表面 131: surface

H1:高度 H1: height

H2:高度 H2: height

S31:步驟 S31: step

S32:步驟 S32: step

S33:步驟 S33: step

S34:步驟 S34: step

S35:步驟 S35: step

S36:步驟 S36: step

S37:步驟 S37: step

參閱實施方式與申請專利範圍合併考量圖式時,可得以更全面了解本申請案之揭示內容,圖式中相同的元件符號指相同的元件。 The disclosure content of the present application can be understood more fully when the drawings are considered together with the embodiments and the patent scope of the application. The same reference numerals in the drawings refer to the same components.

圖1A是剖視示意圖,例示本揭露一些實施例的半導體元件。 FIG. 1A is a schematic cross-sectional view illustrating a semiconductor device according to some embodiments of the present disclosure.

圖1B是剖視示意圖,例示本揭露一些實施例的半導體元件。 FIG. 1B is a schematic cross-sectional view illustrating a semiconductor device according to some embodiments of the present disclosure.

圖1C是剖視示意圖,例示本揭露一些實施例的半導體元件。 FIG. 1C is a schematic cross-sectional view illustrating a semiconductor device according to some embodiments of the present disclosure.

圖2A是剖視示意圖,例示本揭露一些實施例的半導體元件之製備方法中的一或多個階段。 FIG. 2A is a schematic cross-sectional view illustrating one or more stages in the method for fabricating a semiconductor device according to some embodiments of the present disclosure.

圖2B是剖視示意圖,例示本揭露一些實施例的半導體元件之製備方法中的一或多個階段。 FIG. 2B is a schematic cross-sectional view illustrating one or more stages in the method of fabricating a semiconductor device according to some embodiments of the present disclosure.

圖2C是剖視示意圖,例示本揭露一些實施例的半導體元件之製備方法中的一或多個階段。 2C is a schematic cross-sectional view illustrating one or more stages in the method of fabricating a semiconductor device according to some embodiments of the present disclosure.

圖2D是剖視示意圖,例示本揭露一些實施例的半導體元件之製備方法中的一或多個階段。 FIG. 2D is a schematic cross-sectional view illustrating one or more stages in the method for fabricating a semiconductor device according to some embodiments of the present disclosure.

圖2E是剖視示意圖,例示本揭露一些實施例的半導體元件之製備方 法中的一或多個階段。 FIG. 2E is a schematic cross-sectional view illustrating the fabrication method of semiconductor devices according to some embodiments of the present disclosure. one or more stages in the law.

圖2F是剖視示意圖,例示本揭露一些實施例的半導體元件之製備方法中的一或多個階段。 FIG. 2F is a schematic cross-sectional view illustrating one or more stages in the method for fabricating a semiconductor device according to some embodiments of the present disclosure.

圖2G是剖視示意圖,例示本揭露一些實施例的半導體元件之製備方法中的一或多個階段。 FIG. 2G is a schematic cross-sectional view illustrating one or more stages in the method of manufacturing a semiconductor device according to some embodiments of the present disclosure.

圖2H是剖視示意圖,例示本揭露一些實施例的半導體元件之製備方法中的一或多個階段。 FIG. 2H is a schematic cross-sectional view illustrating one or more stages in the method for fabricating a semiconductor device according to some embodiments of the present disclosure.

圖2I是剖視示意圖,例示本揭露一些實施例的半導體元件之製備方法中的一或多個階段。 FIG. 2I is a schematic cross-sectional view illustrating one or more stages in the method of fabricating a semiconductor device according to some embodiments of the present disclosure.

圖2J是剖視示意圖,例示本揭露一些實施例的半導體元件之製備方法中的一或多個階段。 FIG. 2J is a schematic cross-sectional view illustrating one or more stages in the method of fabricating a semiconductor device according to some embodiments of the present disclosure.

圖3是流程示意圖,例示本揭露一些實施例的半導體元件之製備方法。 FIG. 3 is a schematic flowchart illustrating a method for fabricating a semiconductor device according to some embodiments of the present disclosure.

現在使用特定語言描述圖式中所描述之本揭露的多個實施例(或例子)。應當理解,在此並未意味限制本揭露的範圍。所描述之該等實施例的任何改變或修改,以及本文件中所描述之原理的任何進一步應用,都被認為是本揭露內容所屬技術領域中具有通常知識者通常會發生的。元件編號可以在整個實施例中重複,但這並不一定意味著一個實施例的特徵適用於另一實施例,即使它們共用相同的元件編號。 The various embodiments (or examples) of the disclosure depicted in the drawings are now described using specific language. It should be understood that no limitation of the scope of the present disclosure is meant here. Any changes or modifications of the described embodiments, and any further application of the principles described in this document, are considered to be within the ordinary skill of the art to which this disclosure pertains. Element numbers may be repeated throughout the embodiments, but this does not necessarily mean that features of one embodiment apply to another, even if they share the same element number.

應當理解,儘管這裡可以使用術語第一,第二,第三等來描述各種元件、部件、區域、層或區段(sections),但是這些元件、部件、區域、層或區段不受這些術語的限制。相反,這些術語僅用於將一個 元件、組件、區域、層或區段與另一個區域、層或區段所區分開。因此,在不脫離本發明進步性構思的教導的情況下,下列所討論的第一元件、組件、區域、層或區段可以被稱為第二元件、組件、區域、層或區段。 It will be understood that although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers or sections, these elements, components, regions, layers or sections are not constrained by these terms. limits. Instead, these terms are used only to refer to a An element, component, region, layer or section is distinguished from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the presently advanced concepts.

本文中使用之術語僅是為了實現描述特定實施例之目的,而非意欲限制本發明。如本文中所使用,單數形式「一(a)」、「一(an)」,及「該(the)」意欲亦包括複數形式,除非上下文中另作明確指示。將進一步理解,當術語「包括(comprises)」及/或「包括(comprising)」用於本說明書中時,該等術語規定所陳述之特徵、整數、步驟、操作、元件,及/或組件之存在,但不排除存在或增添一或更多個其他特徵、整數、步驟、操作、元件、組件,及/或上述各者之群組。 The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an", and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will be further understood that when the terms "comprises" and/or "comprising" are used in this specification, these terms specify the stated features, integers, steps, operations, elements, and/or components. Presence, but not excluding the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups of the above.

圖1是剖視示意圖,例示本揭露一些實施例的半導體元件1。在一些實施例中,半導體元件1可包括一電路,例如一記憶體胞。在一些實施例中,該記憶體胞可包括一動態隨機存取記憶體胞(DRAM cell)。 FIG. 1 is a schematic cross-sectional view illustrating a semiconductor device 1 according to some embodiments of the present disclosure. In some embodiments, the semiconductor device 1 may include a circuit, such as a memory cell. In some embodiments, the memory cell may include a dynamic random access memory cell (DRAM cell).

在一些實施例中,半導體元件1可為或包括一積體電路(IC)晶片的一部分,其包括不同的被動或主動微電子元件,例如電阻器、電容器、電感器、二極體、p型場效電晶體(pFETs)、n型場效電晶體(nFETs)、金屬氧化物半導體場效電晶體(MOSFETs)、互補金屬氧化物半導體(complementary metal-oxide semiconductor,CMOS)電晶體、雙極接面電晶體(bipolar junction transistors、BJTs)、側向擴散MOS(LDMOS)電晶體、高壓電晶體、高頻電晶體、鰭式場效電晶體(FinFETs)、其他適合的IC元件或其組合。 In some embodiments, the semiconductor element 1 can be or comprise part of an integrated circuit (IC) wafer comprising various passive or active microelectronic elements such as resistors, capacitors, inductors, diodes, p-type Field effect transistors (pFETs), n-type field effect transistors (nFETs), metal oxide semiconductor field effect transistors (MOSFETs), complementary metal oxide semiconductor (complementary metal-oxide semiconductor, CMOS) transistors, bipolar junction Bipolar junction transistors (BJTs), laterally diffused MOS (LDMOS) transistors, high voltage transistors, high frequency transistors, fin field effect transistors (FinFETs), other suitable IC components or combinations thereof.

當兩個MOSFETs如圖中所繪示時,應當理解,半導體元件1可為或包括所描述之任何適合數量的被動及主動微電子元件。 While two MOSFETs are shown in the figures, it should be understood that the semiconductor element 1 can be or include any suitable number of passive and active microelectronic elements as described.

如圖1所示,在一些實施例中,半導體元件1可包括一基底10、一介電層11、一閘極導電層12、一罩蓋層13以及間隙子14、15。 As shown in FIG. 1 , in some embodiments, a semiconductor device 1 may include a substrate 10 , a dielectric layer 11 , a gate conductive layer 12 , a capping layer 13 and spacers 14 , 15 .

在一些實施例中,舉例來說,基底10可包括矽(Si)、鍺(Ge)、矽鍺(SiGe)、碳化矽(SiC)、碳化矽鍺(SiGeC)、鎵(Ga)、砷化鎵(GaAs)、銦(In)、砷化銦(InAs)、磷化銦(InP)或其他IV-IV族、III-V族或II-VI族半導體材料。在一些其他實施例中,基底10可包括一絕緣體上覆半導體(semiconductor-on-insulator)基底,例如一絕緣體上覆矽(SOI)基底、一絕緣體上覆矽鍺(SGOI)基底或是一絕緣體上覆鍺(DOI)基底。 In some embodiments, for example, substrate 10 may include silicon (Si), germanium (Ge), silicon germanium (SiGe), silicon carbide (SiC), silicon germanium carbide (SiGeC), gallium (Ga), arsenide Gallium (GaAs), Indium (In), Indium Arsenide (InAs), Indium Phosphide (InP) or other Group IV-IV, III-V or II-VI semiconductor materials. In some other embodiments, the substrate 10 may include a semiconductor-on-insulator substrate, such as a silicon-on-insulator (SOI) substrate, a silicon-germanium-on-insulator (SGOI) substrate, or a silicon-on-insulator substrate. An overlying germanium (DOI) substrate.

取決於IC製造階段,基底10可包括不同材料層(例如多個介電層、多個半導體層及/或多個導電層),經配置以形成IC特徵(例如多個摻雜區、多個絕緣特徵、多個閘極特徵、多個源極/汲極特徵、多個互連特徵、多個其他特徵或其組合)。 Depending on the stage of IC fabrication, substrate 10 may include layers of different materials (eg, multiple dielectric layers, multiple semiconductor layers, and/or multiple conductive layers) configured to form IC features (eg, multiple doped regions, multiple isolation features, gate features, source/drain features, interconnect features, other features, or combinations thereof).

為了清楚起見,已經簡化圖1A的基底10。應當理解,額外的特徵可增加在基底10中,且在其他實施例中,可取代、改良或剔除下列所述的一些特徵。 The substrate 10 of FIG. 1A has been simplified for clarity. It should be understood that additional features may be added to substrate 10, and in other embodiments, some of the features described below may be substituted, modified, or eliminated.

在所述的實施例中,基底10可包括一表面101以及一表面102,而表面102與表面101相對設置。在一些實施例中,表面101可為一主動表面(active surface),且表面101可為基底10的一後側表面。 In the illustrated embodiment, the substrate 10 may include a surface 101 and a surface 102 , and the surface 102 is disposed opposite to the surface 101 . In some embodiments, the surface 101 can be an active surface, and the surface 101 can be a rear surface of the substrate 10 .

在一些實施例中,表面101可包括一部分101a、一部分101b以及一部分101c。在一些實施例中,部分101a與部分101c可能不是共面。在一些實施例中,部分101a可從部分101c突伸。在一些實施例中,部分101c可從部分101a凹陷。在一些實施例中,部分101a與部分101c可大致呈平行。在一些實施例中,部分101b可延伸在部分101a與部 分101c之間。在一些實施例中,部分101b可連接在部分101a與部分101c之間。在一些實施例中,部分101b可相對於部分101a及/或部分101c而呈角度設置。在一些實施例中,部分101b可大致垂直於部分101a及/或101c。 In some embodiments, surface 101 may include a portion 101a, a portion 101b, and a portion 101c. In some embodiments, portion 101a may not be coplanar with portion 101c. In some embodiments, portion 101a may protrude from portion 101c. In some embodiments, portion 101c may be recessed from portion 101a. In some embodiments, the portion 101a and the portion 101c may be substantially parallel. In some embodiments, portion 101b may extend between portion 101a and portion between 101c and 101c. In some embodiments, portion 101b may be connected between portion 101a and portion 101c. In some embodiments, portion 101b may be disposed at an angle relative to portion 101a and/or portion 101c. In some embodiments, portion 101b may be substantially perpendicular to portions 101a and/or 101c.

在一些實施例中,表面101可界定一階梯結構(stepped structure)。舉例來說,部分101a、部分101b以及部分101c可界定基底10的一階梯結構。 In some embodiments, the surface 101 may define a stepped structure. For example, the portion 101 a , the portion 101 b , and the portion 101 c may define a stepped structure of the substrate 10 .

在一些實施例中,部分101a、部分101b以及部分101c可界定基底10的一升起或上升部分10c。在一些實施例中,升起部分10c可經配置以升起或上升閘極結構(包括介電層11、閘極導電層12以及罩蓋層13)。舉例來說,閘極結構(包括介電層11、閘極導電層12以及罩蓋層13)可藉由升起部分10c而與表面101的部分101c分隔開。 In some embodiments, portion 101a , portion 101b , and portion 101c may define a raised or raised portion 10c of base 10 . In some embodiments, the raised portion 10c may be configured to lift or raise the gate structure (including the dielectric layer 11 , the gate conductive layer 12 and the capping layer 13 ). For example, the gate structure (including the dielectric layer 11 , the gate conductive layer 12 and the capping layer 13 ) can be separated from the portion 101c of the surface 101 by the raised portion 10c.

在一些實施例中,一通道區(圖未示)可形成在介電層11下方的基底10中,例如形成在升起部分10c中。在一些實施例中,可摻雜在基底10中的通道區。在一些實施例中,閘極導電層12可經配置以影響或控制在通道區中的多個電荷載子。 In some embodiments, a channel region (not shown) may be formed in the substrate 10 below the dielectric layer 11 , such as formed in the raised portion 10c. In some embodiments, the channel region in substrate 10 may be doped. In some embodiments, the gate conductive layer 12 can be configured to affect or control the number of charge carriers in the channel region.

在一些實施例中,基底10可具有一摻雜區10a以及一摻雜區10b,其設置在基底10上或是基底10中。在一些實施例中,摻雜區10a與摻雜區10b可設置在基底10的表面101上或是接近基底10的表面101處。 In some embodiments, the substrate 10 may have a doped region 10 a and a doped region 10 b disposed on or in the substrate 10 . In some embodiments, the doped region 10 a and the doped region 10 b may be disposed on or close to the surface 101 of the substrate 10 .

在一些實施例中,摻雜區10a可包括一輕度摻雜區,例如一輕度摻雜汲極(LDD)區。摻雜區10a可鄰近在介電層11下方的通道區處,並側向遠離通道區延伸。在一些實施例中,對於一NMOS元件而言,摻雜區10a摻雜有N型摻雜物(例如磷(P)、砷(As)或銻(Sb)),且通道區可 摻雜有P型摻雜物。在一些其他實施例中,對於一PMOS元件而言,摻雜區10a摻雜有P型摻雜物(例如硼(B)或銦(In)),且通道區可摻雜有N型摻雜物。 In some embodiments, the doped region 10a may include a lightly doped region, such as a lightly doped drain (LDD) region. The doped region 10a may be adjacent to the channel region under the dielectric layer 11 and extend laterally away from the channel region. In some embodiments, for an NMOS device, the doped region 10a is doped with N-type dopants (such as phosphorus (P), arsenic (As) or antimony (Sb)), and the channel region can be Doped with P-type dopants. In some other embodiments, for a PMOS device, the doped region 10a is doped with a P-type dopant (such as boron (B) or indium (In)), and the channel region may be doped with an N-type dopant. thing.

在一些實施例中,摻雜區10a可具有一摻雜濃度,其低於摻雜區10b的一摻雜濃度。在一些實施例中,摻雜區10a可較寬闊於在介電層11下方的通道區。在一些實施例中,摻雜區10a可減少摻雜區10b與通道區之間的電場,並幫助最小化熱載子效應。 In some embodiments, the doped region 10a may have a doping concentration which is lower than a doping concentration of the doped region 10b. In some embodiments, the doped region 10 a may be wider than the channel region under the dielectric layer 11 . In some embodiments, the doped region 10a can reduce the electric field between the doped region 10b and the channel region and help minimize hot carrier effects.

在一些實施例中,摻雜區10a可從基底10的升起部分10c至少部分暴露。舉例來說,摻雜區10a可從基底10之表面101的部分101a、部分101b及/或部分101c至少部分暴露。 In some embodiments, the doped region 10 a may be at least partially exposed from the raised portion 10 c of the substrate 10 . For example, doped region 10 a may be at least partially exposed from portion 101 a , portion 101 b and/or portion 101 c of surface 101 of substrate 10 .

在一些實施例中,摻雜區10b包括一重度摻雜區。在一些實施例中,摻雜區10b可包括一源極區及/或一汲極區。在一些實施例中,摻雜區10b可設置在摻雜區10a中。在一些實施例中,摻雜區10b可被摻雜區10a所圍繞。在一些實施例中,摻雜區10b可鄰近摻雜區10a。在一些實施例中,摻雜區10b的製作技術可包含藉由以顯著高於用於形成摻雜區10a的離子注入劑量的摻雜程度而向基底10中植入N型(對於NMOS元件而言)或P型摻雜物(對於PMOS元件而言)。摻雜區10a與摻雜區10b可具有相同摻雜類型。在摻雜區10b與摻雜區10a重疊的多個區域中,摻雜區10b的較重摻雜程度可以克服摻雜區10a的較輕摻雜程度。因此,一源極區及/或一汲極區可形成在重疊的該等區域中。 In some embodiments, the doped region 10b includes a heavily doped region. In some embodiments, the doped region 10b may include a source region and/or a drain region. In some embodiments, the doped region 10b may be disposed in the doped region 10a. In some embodiments, the doped region 10b may be surrounded by the doped region 10a. In some embodiments, the doped region 10b may be adjacent to the doped region 10a. In some embodiments, the fabrication technique of the doped region 10b may include implanting N-type (for NMOS devices) into the substrate 10 at a doping level significantly higher than the ion implantation dose used to form the doped region 10a. words) or P-type dopants (for PMOS devices). The doped region 10 a and the doped region 10 b may have the same doping type. In regions where doped region 10b overlaps with doped region 10a, the more heavily doped level of doped region 10b can overcome the lighter doped level of doped region 10a. Therefore, a source region and/or a drain region may be formed in overlapping these regions.

在一些實施例中,摻雜區10b可能不會從基底10的升起部分10c暴露,如圖1A所示。然而,在一些其他實施例中,摻雜區10b可從基底10的升起部分10c至少部分暴露。舉例來說,摻雜區10b可從基底10 之表面101的部分101a、部分101b及/或部分101c至少部分暴露。 In some embodiments, the doped region 10b may not be exposed from the raised portion 10c of the substrate 10, as shown in FIG. 1A. However, in some other embodiments, the doped region 10b may be at least partially exposed from the raised portion 10c of the substrate 10 . For example, the doped region 10b can be formed from the substrate 10 Portions 101a, 101b and/or 101c of the surface 101 are at least partially exposed.

在一些實施例中,介電層11可設置在基底10之表面101的部分101a上。舉例來說,介電層11可接觸基底10之表面101的部分101a。舉例來說,介電層11可與基底10之表面101的部分101a重疊。在一些實施例中,介電層11可與基底10之表面101的部分101c分隔開。舉例來說,介電層11可能不會與基底10之表面101的部分101c接觸。 In some embodiments, the dielectric layer 11 may be disposed on the portion 101 a of the surface 101 of the substrate 10 . For example, the dielectric layer 11 may contact a portion 101 a of the surface 101 of the substrate 10 . For example, the dielectric layer 11 may overlap a portion 101 a of the surface 101 of the substrate 10 . In some embodiments, the dielectric layer 11 may be separated from the portion 101c of the surface 101 of the substrate 10 . For example, the dielectric layer 11 may not be in contact with the portion 101c of the surface 101 of the substrate 10 .

在一些實施例中,介電層11可具有一表面(或一側表面),大致與基底10之表面101的部分101b呈共面。 In some embodiments, the dielectric layer 11 may have a surface (or a side surface) substantially coplanar with the portion 101b of the surface 101 of the substrate 10 .

在一些實施例中,介電層11可包括一閘極氧化物層。在一些實施例中,舉例來說,介電層11可包括矽酸鉿(hafnium silicate,HfSiOx)、氧化鉿(hafnium oxide,HfO2)、矽酸鋯(zirconium silicate,ZrSiOx)、氧化鋯(zirconium oxide,ZrO2)、氮化矽(silicon nitride,Si3N4)、氮氧化矽(silicon oxynitride,SiON),或氧化矽(silicon oxide,SiO2)。在一些實施例中,介電層11可具有一單層結構。在一些實施例中,介電層11可具有相互在其上堆疊的複數個層。 In some embodiments, the dielectric layer 11 may include a gate oxide layer. In some embodiments, for example, the dielectric layer 11 may include hafnium silicate (HfSiO x ), hafnium oxide (HfO 2 ), zirconium silicate (ZrSiO x ), zirconium oxide (zirconium oxide, ZrO 2 ), silicon nitride (Si 3 N 4 ), silicon oxynitride (SiON), or silicon oxide (SiO 2 ). In some embodiments, the dielectric layer 11 may have a single-layer structure. In some embodiments, the dielectric layer 11 may have a plurality of layers stacked on top of each other.

在一些實施例中,閘極導電層12可設置在介電層11上。舉例來說,閘極導電層12可接觸介電層11。在一些實施例中,閘極導電層12、介電層11以及基底10之表面101的部分101a可重疊。在一些實施例中,介電層11可設置在閘極導電層12與基底10之表面101的部分101a之間。在一些實施例中,閘極導電層12可與基底10之表面101的部分101c分隔開。舉例來說,閘極導電層12可能不會接觸基底10之表面101的部分101c。 In some embodiments, the gate conductive layer 12 may be disposed on the dielectric layer 11 . For example, the gate conductive layer 12 can contact the dielectric layer 11 . In some embodiments, the gate conductive layer 12 , the dielectric layer 11 and the portion 101a of the surface 101 of the substrate 10 may overlap. In some embodiments, the dielectric layer 11 may be disposed between the gate conductive layer 12 and the portion 101 a of the surface 101 of the substrate 10 . In some embodiments, the gate conductive layer 12 may be separated from the portion 101c of the surface 101 of the substrate 10 . For example, the gate conductive layer 12 may not contact the portion 101 c of the surface 101 of the substrate 10 .

在一些實施例中,閘極導電層12可具有一表面(或是一側 表面)121,大致與基底10之表面101的部分101b及/或介電層11的表面111呈共面。 In some embodiments, the gate conductive layer 12 may have a surface (or one side The surface 121 is substantially coplanar with the portion 101b of the surface 101 of the substrate 10 and/or the surface 111 of the dielectric layer 11 .

在一些實施例中,閘極導電層12可包括一閘極電極、一閘極金屬或一閘極導體。在一些實施例中,舉例來說,閘極導電層12可包括多晶矽(poly-Si)、金屬(例如鋁(Al)、鎂(Mg)、鎢(W)、鑭(La)等等)或金屬合金。在一些實施例中,舉例來說,閘極導電層12可包括鈦基材料(例如氮化鈦(TiN)或氮化鈦鋁(TiAlN))、鉭基材料(例如氮化鉭(TaN)、氮化鉭鋁(TaAlN)或碳化鉭(Ta2C))或矽化物(例如PtSi、TiSi2、CoSi、NiSi、MoSi2、TaSi、WSi2等等)。在一些實施例中,閘極導電層12可包括如圖1A所示的一單層結構或是一多層結構(其將於下面相對於圖1B進行描述)。 In some embodiments, the gate conductive layer 12 may include a gate electrode, a gate metal or a gate conductor. In some embodiments, for example, the gate conductive layer 12 may include polysilicon (poly-Si), metal (such as aluminum (Al), magnesium (Mg), tungsten (W), lanthanum (La), etc.) or metal alloy. In some embodiments, for example, the gate conductive layer 12 may include titanium-based materials (such as titanium nitride (TiN) or titanium aluminum nitride (TiAlN)), tantalum-based materials (such as tantalum nitride (TaN), tantalum aluminum nitride (TaAlN) or tantalum carbide (Ta 2 C)) or silicides (such as PtSi, TiSi 2 , CoSi, NiSi, MoSi 2 , TaSi, WSi 2 , etc.). In some embodiments, the gate conductive layer 12 may include a single-layer structure as shown in FIG. 1A or a multi-layer structure (which will be described below with respect to FIG. 1B ).

在一些實施例中,罩蓋層13可設置在閘極導電層12上。舉例來說,罩蓋層13可接觸閘極導電層12。在一些實施例中,罩蓋層12、介電層11以及基底10之表面101的部分101a可重疊。在一些實施例中,閘極導電層12可設置在介電層11與罩蓋層13之間。在一些實例中,罩蓋層13可與基底10之表面101的部分101c分隔開。舉例來說,罩蓋層13可能不會接觸基底10之表面101的部分101c。 In some embodiments, the cap layer 13 may be disposed on the gate conductive layer 12 . For example, the cap layer 13 can contact the gate conductive layer 12 . In some embodiments, the capping layer 12 , the dielectric layer 11 , and the portion 101 a of the surface 101 of the substrate 10 may overlap. In some embodiments, the gate conductive layer 12 may be disposed between the dielectric layer 11 and the capping layer 13 . In some examples, the capping layer 13 may be separated from the portion 101c of the surface 101 of the substrate 10 . For example, the capping layer 13 may not contact the portion 101 c of the surface 101 of the substrate 10 .

在一些實施例中,罩蓋層13可具有一表面(或是一側表面)131,大致與基底10之表面101的部分101b、介電層11的表面111及/或閘極導電層12的表面121呈共面。 In some embodiments, the cover layer 13 may have a surface (or one side surface) 131 substantially in line with the portion 101b of the surface 101 of the substrate 10, the surface 111 of the dielectric layer 11 and/or the surface of the gate conductive layer 12. The surfaces 121 are coplanar.

在一些實施例中,罩蓋層13可包括一閘極上絕緣體。在一些實施例中,舉例來說,罩蓋層13可包括Si3N4、SiON或SiO2。在一些實施例中,舉例來說,罩蓋層13可包括鈦基材料(例如氮化鈦(TiN)或氮化鈦 鋁(TiAlN))、鉭基材料(例如氮化鉭(TaN)、氮化鉭鋁(TaAlN)或碳化鉭(Ta2C))或矽化物(例如PtSi、TiSi2、CoSi、NiSi、MoSi2、TaSi、WSi2等等)。 In some embodiments, the capping layer 13 may include an insulator-on-gate. In some embodiments, for example, the capping layer 13 may include Si 3 N 4 , SiON or SiO 2 . In some embodiments, for example, the capping layer 13 may include titanium-based materials such as titanium nitride (TiN) or titanium aluminum nitride (TiAlN), tantalum-based materials such as tantalum nitride (TaN), nitrogen tantalum aluminum (TaAlN) or tantalum carbide (Ta 2 C)) or silicides (such as PtSi, TiSi 2 , CoSi, NiSi, MoSi 2 , TaSi, WSi 2 , etc.).

在一些實施例中,間隙子14可設置在基底10之表面101的部分101c上。在一些實施例中,間隙子14可接觸基底10之表面101的部分101c、基底10之表面101的部分101b、介電層11的表面111、閘極導電層12的表面121及/或罩蓋層13的表面131。在一些實施例中,間隙子14可能不會接觸基底10之表面101的部分101a。 In some embodiments, the spacer 14 may be disposed on the portion 101 c of the surface 101 of the substrate 10 . In some embodiments, the spacer 14 may contact the portion 101c of the surface 101 of the substrate 10, the portion 101b of the surface 101 of the substrate 10, the surface 111 of the dielectric layer 11, the surface 121 of the gate conductive layer 12, and/or the cover. surface 131 of layer 13 . In some embodiments, the spacers 14 may not contact the portion 101 a of the surface 101 of the substrate 10 .

在一些實施例中,間隙子14可覆蓋、密封或囊封在基底10上的閘極結構(包括介電層11、閘極導電層12以及罩蓋層13)。在一些實施例中,間隙子14可延伸在罩蓋層13與基底10之表面101的部分101c之間。 In some embodiments, the spacer 14 can cover, seal or encapsulate the gate structure (including the dielectric layer 11 , the gate conductive layer 12 and the capping layer 13 ) on the substrate 10 . In some embodiments, the spacer 14 may extend between the cap layer 13 and the portion 101 c of the surface 101 of the substrate 10 .

在一些實施例中,間隙子15可設置在基底10之表面101的部分101c上。在一些實施例中,間隙子15可接觸基底10之表面101的部分101c。在一些實施例中,間隙子15可接觸間隙子14。 In some embodiments, the spacer 15 may be disposed on the portion 101 c of the surface 101 of the substrate 10 . In some embodiments, the spacer 15 may contact a portion 101 c of the surface 101 of the substrate 10 . In some embodiments, spacer 15 may contact spacer 14 .

在一些實施例中,間隙子14可設置在間隙子15與基底10之表面101的部分101b之間。在一些實施例中,間隙子14可設置在間隙子15與基底10之表面101的部分101a之間。在一些實施例中,間隙子14可設置在間隙子15與介電層11的表面111之間。在一些實施例中,間隙子14可設置在間隙子15與閘極導電層12的表面121之間。在一些實施例中,間隙子14可設置在間隙子15與罩蓋層13的表面131之間。 In some embodiments, the spacer 14 may be disposed between the spacer 15 and the portion 101 b of the surface 101 of the substrate 10 . In some embodiments, the spacer 14 may be disposed between the spacer 15 and the portion 101 a of the surface 101 of the substrate 10 . In some embodiments, the spacer 14 may be disposed between the spacer 15 and the surface 111 of the dielectric layer 11 . In some embodiments, the spacer 14 may be disposed between the spacer 15 and the surface 121 of the gate conductive layer 12 . In some embodiments, the spacer 14 may be disposed between the spacer 15 and the surface 131 of the cover layer 13 .

在一些實施例中,舉例來說,間隙子14與間隙子15可包括氮化物、氧化物或氮氧化物。例示的間隙子材料可包括氮化矽(Si3N4)、氮氧化矽(SiON)、氧化矽(SiO2)、正矽酸四乙酯(tetraethylorthosilicate, TEOS)、摻碳氮化物或是摻碳氮化物而沒有氧化物的元件,但並不以此為限。 In some embodiments, for example, the spacers 14 and 15 may include nitride, oxide or oxynitride. Exemplary interstitial materials may include silicon nitride (Si 3 N 4 ), silicon oxynitride (SiON), silicon oxide (SiO 2 ), tetraethylorthosilicate (TEOS), carbon-doped nitride, or doped A carbonitride element without an oxide, but not limited thereto.

在一些實施例中,閘極導電層12可具有一高度H1。高度H1可在一方向測量,其大致垂直於基底10之表面101的部分101a。高度H1可界定在閘極導電層12的一上表面(接觸罩蓋層13)與閘極導電層12的一下表面(接觸介電層11)之間。高度H1可由閘極導電層12的表面12所界定。 In some embodiments, the gate conductive layer 12 may have a height H1. The height H1 can be measured in a direction that is substantially perpendicular to the portion 101 a of the surface 101 of the substrate 10 . The height H1 can be defined between an upper surface of the gate conductive layer 12 (contacting the capping layer 13 ) and a lower surface of the gate conductive layer 12 (contacting the dielectric layer 11 ). The height H1 may be defined by the surface 12 of the gate conductive layer 12 .

在一些實施例中,基底10的升起部分10c可具有一高度H2。高度H2可在一方向測量,其大致垂直於基底10之表面101的部分101a。高度H2可界定在基底10之表面101的部分101a與基底10之表面101的部分101c之間。高度H2可由基底10之表面101的部分101b所界定。 In some embodiments, the raised portion 10c of the base 10 may have a height H2. The height H2 can be measured in a direction that is substantially perpendicular to the portion 101 a of the surface 101 of the substrate 10 . Height H2 may be defined between portion 101 a of surface 101 of substrate 10 and portion 101 c of surface 101 of substrate 10 . The height H2 may be defined by the portion 101b of the surface 101 of the substrate 10 .

在一些實施例中,閘極導電層12的高度H1可不同於基底10的升起部分10c的高度H2。在一些實施例中,閘極導電層12的高度H1可大於基底10之升起部分10c的高度H2。在一些實施例中,閘極導電層12的高度H1可小於基底10之升起部分10c的高度H2。在一些實施例中,高度H1對高度H2的一比率可介於大約3:2與大約9:1之間。 In some embodiments, the height H1 of the gate conductive layer 12 may be different from the height H2 of the raised portion 10 c of the substrate 10 . In some embodiments, the height H1 of the gate conductive layer 12 may be greater than the height H2 of the raised portion 10 c of the substrate 10 . In some embodiments, the height H1 of the gate conductive layer 12 may be smaller than the height H2 of the raised portion 10 c of the substrate 10 . In some embodiments, a ratio of height H1 to height H2 may be between about 3:2 and about 9:1.

當DRAM元件(例如半導體元件1)尺寸縮減,且寄生電容(例如外緣電容、閘極到栓塞電容、栓塞到栓塞電容)以及寄生電阻變得顯著時,因此降低元件效能。此外,當縮減通道長度時,可能發生短通道效應(例如一衝穿現象(punch through phenomenon))。由於短通道效應,所以一DRAM元件(例如DRAM元件)可能會遇到關於閘極(例如閘極導電層12)無法充分控制通道區的開啟與關閉狀態的問題,並且可能會出現電子特性的變異。 As the size of DRAM devices (such as the semiconductor device 1 ) shrinks, parasitic capacitances (such as fringe capacitance, gate-to-plug capacitance, plug-to-plug capacitance) and parasitic resistance become significant, thereby reducing device performance. In addition, short channel effects (such as a punch through phenomenon) may occur when the channel length is reduced. Due to the short channel effect, a DRAM device (such as a DRAM device) may encounter a problem that the gate (such as the gate conductive layer 12) cannot sufficiently control the on and off states of the channel region, and variations in electronic characteristics may occur .

依據本揭露的一些實施例,閘極結構(包括介電層11、閘極導電層12以及罩蓋層13)設置在基底10的升起部分10c上。因此,閘極導電層12升起,且閘極導電層12的高度H1可縮減,同時閘極結構的總高度(例如從表面101的部分101c測量到閘極結構的最上面表面的總高度)大致維持不變。 According to some embodiments of the present disclosure, the gate structure (including the dielectric layer 11 , the gate conductive layer 12 and the cover layer 13 ) is disposed on the raised portion 10 c of the substrate 10 . Therefore, the gate conductive layer 12 is raised, and the height H1 of the gate conductive layer 12 can be reduced, while the overall height of the gate structure (eg, the total height measured from the portion 101c of the surface 101 to the uppermost surface of the gate structure) remain largely unchanged.

相較於一習知結構(例如閘極導電層並未升起且閘極導電層的高度較大),閘極導電層12的縮減高度可避免或減少不必要的寄生電容。 Compared with a conventional structure (eg, the gate conductive layer is not raised and the height of the gate conductive layer is larger), the reduced height of the gate conductive layer 12 can avoid or reduce unnecessary parasitic capacitance.

此外,由於基底10具有升起部分10c且閘極導電層12升起,所以增加在介電層11下方之通道區中之有效通道長度,並可消除短通道效應。 In addition, since the substrate 10 has the raised portion 10c and the gate conductive layer 12 is raised, the effective channel length in the channel region under the dielectric layer 11 is increased and the short channel effect can be eliminated.

圖1B是剖視示意圖,例示本揭露一些實施例的半導體元件1'。圖1B的半導體元件1'類似於圖1A的半導體元件1,除了下列所述的差異之外。 FIG. 1B is a schematic cross-sectional view illustrating a semiconductor device 1 ′ according to some embodiments of the present disclosure. The semiconductor component 1' of FIG. 1B is similar to the semiconductor component 1 of FIG. 1A except for the differences described below.

在圖1B中,半導體元件1'的閘極導電層12可包括一多層結構。舉例來說,半導體元件1'的閘極導電層12可包括一子層12a以及一子層12b。 In FIG. 1B , the gate conductive layer 12 of the semiconductor device 1 ′ may include a multi-layer structure. For example, the gate conductive layer 12 of the semiconductor device 1' may include a sub-layer 12a and a sub-layer 12b.

在一些實施例中,子層12a可設置在子層12b上。舉例來說,子層12a可接觸子層12b。在一些實施例中,子層12a可設置在子層12b與罩蓋層13之間。在一些實施例中,舉例來說,子層12a可包括多晶矽。 In some embodiments, sub-layer 12a may be disposed on sub-layer 12b. For example, sub-layer 12a may contact sub-layer 12b. In some embodiments, sub-layer 12a may be disposed between sub-layer 12b and cover layer 13 . In some embodiments, sub-layer 12a may include polysilicon, for example.

在一些實施例中,子層12b可設置在介電層11上。在一些實施例中,子層12b可接觸介電層11。在一些實施例中,子層12b可設置 在介電層11與子層12a之間。在一些實施例中,舉例來說,子層12b可包括金屬(例如Al、Mg、W、La等等)或金屬合金。 In some embodiments, sub-layer 12b may be disposed on dielectric layer 11 . In some embodiments, the sub-layer 12b may contact the dielectric layer 11 . In some embodiments, sub-layer 12b can be provided Between the dielectric layer 11 and the sublayer 12a. In some embodiments, for example, sub-layer 12b may include a metal (eg, Al, Mg, W, La, etc.) or a metal alloy.

在一些實施例中,閘極導電層12的高度H1(包括子層12a與12b)可不同於基底10之升起部分10c的高度H2。在一些實施例中,閘極導電層12的高度H1(包括子層12a與12b)可大於基底10之升起部分10c的高度H2。在一些實施例中,閘極導電層12的高度H1(包括子層12a與12b)可小於基底10之升起部分10c的高度H2。在一些實施例中,高度H1對高度H2的比率可介於大約3:2與大約9:1之間。 In some embodiments, the height H1 of the gate conductive layer 12 (including the sub-layers 12 a and 12 b ) may be different from the height H2 of the raised portion 10 c of the substrate 10 . In some embodiments, the height H1 of the gate conductive layer 12 (including the sub-layers 12 a and 12 b ) may be greater than the height H2 of the raised portion 10 c of the substrate 10 . In some embodiments, the height H1 of the gate conductive layer 12 (including the sub-layers 12 a and 12 b ) may be smaller than the height H2 of the raised portion 10 c of the substrate 10 . In some embodiments, the ratio of height H1 to height H2 may be between about 3:2 and about 9:1.

圖1C是剖視示意圖,例示本揭露一些實施例的半導體元件1"。圖1C的半導體元件1"類似於圖1A的半導體元件1,除了下列所述的差異之外。 FIG. 1C is a schematic cross-sectional view illustrating a semiconductor device 1 ″ of some embodiments of the present disclosure. The semiconductor device 1 ″ of FIG. 1C is similar to the semiconductor device 1 of FIG. 1A except for the differences described below.

在圖1C中,半導體元件1"的摻雜區10a與基底10的升起部分10c分隔開。舉例來說,半導體元件1"的摻雜區10a並未從基底10之表面101的部分101a及/或部分101b而暴露。 In FIG. 1C, the doped region 10a of the semiconductor element 1" is separated from the raised portion 10c of the substrate 10. For example, the doped region 10a of the semiconductor element 1" is not separated from the portion 101a of the surface 101 of the substrate 10 And/or part 101b is exposed.

圖2A、圖2B、圖2C、圖2D、圖2E、圖2F、圖2G、圖2H、圖2I、圖2J是剖視示意圖,例示本揭露一些實施例的半導體元件之製備方法中的各階段。至少這些的一些圖式已經簡化以更好瞭解本揭露的目的。在一些實施例中,在圖1A中的半導體元件1、在圖1B中的半導體元件1'以及在圖1C中的半導體元件1"可藉由相對應下列所述的圖2A、圖2B、圖2C、圖2D、圖2E、圖2F、圖2G、圖2H、圖2I、圖2J所製造。 Figure 2A, Figure 2B, Figure 2C, Figure 2D, Figure 2E, Figure 2F, Figure 2G, Figure 2H, Figure 2I, and Figure 2J are schematic cross-sectional views illustrating various stages in the manufacturing method of semiconductor devices according to some embodiments of the present disclosure . At least some of these diagrams have been simplified to better understand the purpose of this disclosure. In some embodiments, the semiconductor device 1 in FIG. 1A, the semiconductor device 1' in FIG. 1B and the semiconductor device 1" in FIG. 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J.

請參考圖2A,提供基底10。在一些實施例中,多個淺溝隔離(STI)區(圖未示)可形成在基底10中,舉例來說,其使用微影、蝕刻、沉積以及化學機械平坦化(CMP)製程所形成,以與接下來所形成的 MOSFET電性絕緣。 Referring to FIG. 2A , a substrate 10 is provided. In some embodiments, a plurality of shallow trench isolation (STI) regions (not shown) may be formed in substrate 10, for example, using lithography, etching, deposition, and chemical mechanical planarization (CMP) processes. , with the next formed MOSFETs are electrically isolated.

在一些實施例中,一介電層11'可設置在基底10的表面101上。在一些實施例中,介電層11'的製作技術可包含一熱氧化操作。在一些其他實施例中,舉例來說,介電層11'可經由化學氣相沉積(CVD)、低壓化學氣相沉積(LPCVD)、電漿加強化學氣相沉積(PECVD)、其他可行的操作或其組合。 In some embodiments, a dielectric layer 11 ′ can be disposed on the surface 101 of the substrate 10 . In some embodiments, the fabrication technique of the dielectric layer 11' may include a thermal oxidation operation. In some other embodiments, for example, the dielectric layer 11' can be deposited by chemical vapor deposition (CVD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), or other possible operations. or a combination thereof.

在一些實施例中,一閘極導電層12'可設置在介電層11'上。在一些實施例中,閘極導電層12'可為一多晶矽層,其製作技術包含沉積未摻雜多晶矽且接著藉由離子植入而摻雜雜質。在一些其他實施例中,閘極導電層12'可包括一多層結構。舉例來說,閘極導電層12'的製作技術可包含原子層沉積(ALD)、物理氣相沉積(PVD)、CVD、一矽化製程、其他可行的操作或其組合。 In some embodiments, a gate conductive layer 12' can be disposed on the dielectric layer 11'. In some embodiments, the gate conductive layer 12' may be a polysilicon layer, and its fabrication technique includes depositing undoped polysilicon and then doping impurities by ion implantation. In some other embodiments, the gate conductive layer 12' may include a multi-layer structure. For example, the fabrication technique of the gate conductive layer 12 ′ may include atomic layer deposition (ALD), physical vapor deposition (PVD), CVD, a silicidation process, other feasible operations or combinations thereof.

在一些實施例中,一硬遮罩20'可沉積在閘極導電層12'上。在一些實施例中,舉理來說,硬遮罩20'可包括Si3N4、SiON、SiO2或是TiN。在一些實施例中,舉例來說,硬遮罩20'可經由CVD、LPCVD、PECVD、其他可行的操作或其組合所形成。 In some embodiments, a hard mask 20' may be deposited on the gate conductive layer 12'. In some embodiments, hard mask 20 ′ may include Si3N4, SiON, SiO2, or TiN, for example. In some embodiments, for example, the hard mask 20' may be formed by CVD, LPCVD, PECVD, other possible operations, or combinations thereof.

請參考圖2B,硬遮罩20'可使用微影及蝕刻製程進行圖案化,以形成一硬遮罩圖案20。介電層11'與閘極導電層12'可使用硬遮罩圖案20當作一蝕刻遮罩藉由蝕刻而依序進行圖案化。因此,可形成介電層11以及閘極導電層12。 Referring to FIG. 2B , the hard mask 20 ′ can be patterned using lithography and etching processes to form a hard mask pattern 20 . The dielectric layer 11' and the gate conductive layer 12' can be sequentially patterned by etching using the hard mask pattern 20 as an etch mask. Therefore, the dielectric layer 11 and the gate conductive layer 12 can be formed.

在一些實施例中,介電層11'與閘極導電層12'可進行非等向性蝕刻。在一些實施例中,介電層11'與閘極導電層12'可以相同操作進行蝕刻。在一些實施例中,介電層11'與閘極導電層12'可以不同操作進行 蝕刻。舉例來說,介電層11'與閘極導電層12'可藉由使用例如具有不同化學性之反應性離子蝕刻(RIE)進行蝕刻。 In some embodiments, the dielectric layer 11' and the gate conductive layer 12' can be etched anisotropically. In some embodiments, the dielectric layer 11 ′ and the gate conductive layer 12 ′ can be etched in the same operation. In some embodiments, the dielectric layer 11' and the gate conductive layer 12' may be performed differently. etch. For example, the dielectric layer 11' and the gate conductive layer 12' can be etched by using, for example, reactive ion etching (RIE) with different chemistries.

在一些實施例中,在介電層11與閘極導電層12形成之後,介電層11的表面(或是一側表面)111可依序與閘極導電層12的表面(或是一側表面)121而呈共面。 In some embodiments, after the dielectric layer 11 and the gate conductive layer 12 are formed, the surface (or one side surface) 111 of the dielectric layer 11 can be sequentially connected with the gate conductive layer 12 surface (or one side surface). surface) 121 and are coplanar.

請參考圖2C,基底10可使用硬遮罩圖案20當作一蝕刻遮罩藉由蝕刻進行圖案化。因此,可形成升起部分10c。 Referring to FIG. 2C , the substrate 10 can be patterned by etching using the hard mask pattern 20 as an etching mask. Accordingly, the raised portion 10c can be formed.

在一些實施例中,基底10可進行非等向性蝕刻。在一些實施例中,基底10可以不同於圖2A中之介電層11'與閘極導電層12'的一操作進行蝕刻。舉例來說,基底10可使用例如具有不同於介電層11'與閘極導電層12'之化學性的RIE進行蝕刻。 In some embodiments, substrate 10 may be anisotropically etched. In some embodiments, the substrate 10 may be etched in a different operation than the dielectric layer 11' and the gate conductive layer 12' in FIG. 2A. For example, the substrate 10 may be etched using, for example, RIE having a different chemistry than the dielectric layer 11' and the gate conductive layer 12'.

在一些實施例中,在升起部分10c形成之後,基底10之表面101的部分101a可從基底10之表面101的部分101c突伸。 In some embodiments, the portion 101a of the surface 101 of the substrate 10 may protrude from the portion 101c of the surface 101 of the substrate 10 after the raised portion 10c is formed.

在一些實施例中,基底10之表面101的部分101b可大致與介電層11的表面111及/或閘極導電層12的表面121呈共面。 In some embodiments, the portion 101 b of the surface 101 of the substrate 10 may be substantially coplanar with the surface 111 of the dielectric layer 11 and/or the surface 121 of the gate conductive layer 12 .

請參考圖2D,舉例來說,硬遮罩圖案20可藉由一蝕刻製程而移除。 Referring to FIG. 2D, for example, the hard mask pattern 20 can be removed by an etching process.

請參考圖2E,罩蓋層13可沉積在閘極導電層12上。在一些其他實施例中,罩蓋層13的製作技術可包含ALD、PVD、CVD、一矽化製程、其他可行的操作或其組合。在一些實施例中,舉例來說,罩蓋層12可藉由一蝕刻製程而部分移除。 Referring to FIG. 2E , a cap layer 13 may be deposited on the gate conductive layer 12 . In some other embodiments, the manufacturing technique of the capping layer 13 may include ALD, PVD, CVD, a siliconization process, other feasible operations or combinations thereof. In some embodiments, for example, the capping layer 12 may be partially removed by an etching process.

在一些實施例中,罩蓋層13的表面(或是一側表面)131可大致與基底10之表面101的部分101b、介電層11的表面111及/或閘極導電 層12的表面121呈共面。 In some embodiments, the surface (or one side surface) 131 of the cover layer 13 may be substantially conductive to the portion 101b of the surface 101 of the substrate 10, the surface 111 of the dielectric layer 11, and/or the gate. Surfaces 121 of layer 12 are coplanar.

請參考圖2F,一介電層14'可設置在基底10上的閘極結構(包括介電層11、閘極導電層12以及罩蓋層13)上。在一些實施例中,舉例來說,介電層14,可經由CVD、LPCVD、PECVD、其他可行的操作或其組合所形成。在一些實施例中,介電層14'可覆蓋基底10之表面101的部分101b與部分101c。在一些實施例中,介電層14'可覆蓋介電層11的表面111、閘極導電層12的表面121以及罩蓋層13的表面131。 Referring to FIG. 2F , a dielectric layer 14 ′ can be disposed on the gate structure (including the dielectric layer 11 , the gate conductive layer 12 and the capping layer 13 ) on the substrate 10 . In some embodiments, for example, the dielectric layer 14 may be formed by CVD, LPCVD, PECVD, other possible operations, or combinations thereof. In some embodiments, the dielectric layer 14 ′ may cover the portion 101 b and the portion 101 c of the surface 101 of the substrate 10 . In some embodiments, the dielectric layer 14 ′ can cover the surface 111 of the dielectric layer 11 , the surface 121 of the gate conductive layer 12 , and the surface 131 of the capping layer 13 .

請參考圖2G,摻雜區10a可形成在基底10中。在一些實施例中,舉例來說,摻雜區10a的製作技術可包含一離子植入操作,例如電漿浸沒離子植入(plasma-immersion ion implantation)、固態擴散等等。在一些實施例中,可執行一退火製程以移除植入所造成的損傷及/或晶格缺陷。在些實施例中,介電層14'可阻止多個摻雜物滲透進入基底10。因此,摻雜區10a可具有一摻雜濃度,其低於接下來所形成之摻雜區10b的一摻雜濃度。 Referring to FIG. 2G , a doped region 10 a may be formed in the substrate 10 . In some embodiments, for example, the fabrication technique of the doped region 10 a may include an ion implantation operation, such as plasma-immersion ion implantation, solid-state diffusion, and the like. In some embodiments, an annealing process may be performed to remove implant-induced damage and/or lattice defects. In some embodiments, the dielectric layer 14 ′ prevents a plurality of dopants from penetrating into the substrate 10 . Therefore, the doped region 10a may have a doping concentration lower than a doping concentration of the subsequently formed doped region 10b.

在一些其他實施例中,在介電層14'形成之前,可進行一毯覆光離子植入(blanket light ion implantation)操作以形成摻雜區10a。 In some other embodiments, before the dielectric layer 14' is formed, a blanket light ion implantation operation may be performed to form the doped region 10a.

請參考圖2H,介電層14'可進行非等向性蝕刻,以形成間隙子14。在蝕刻操作之後,可暴露罩蓋層13與基底10之表面101的部分101c。 Referring to FIG. 2H , the dielectric layer 14 ′ can be anisotropically etched to form spacers 14 . After the etching operation, the cap layer 13 and a portion 101c of the surface 101 of the substrate 10 may be exposed.

請參考圖2I,間隙子15可設置在基底10之表面101的部分101c上。在一些實施例中,舉例來說,間隙子15的製作技術可包含CVD、LPCVD、PECVD、其他可行的操作或其組合。然後,可進行一蝕刻操作(例如RIE)以移除間隙子15的一部分並暴露基底10之表面101的部 分101c的一部分。 Referring to FIG. 2I , the spacer 15 may be disposed on the portion 101c of the surface 101 of the substrate 10 . In some embodiments, for example, the fabrication techniques of the spacers 15 may include CVD, LPCVD, PECVD, other possible operations or combinations thereof. An etching operation (such as RIE) may then be performed to remove a portion of the spacer 15 and expose a portion of the surface 101 of the substrate 10. Part of MIN 101c.

請參考圖2J,摻雜區10b可形成在基底10中。在一些實施例中,舉例來說,摻雜區10b的製作技術可包含一離子植入操作,例如電漿浸沒離子植入(plasma-immersion ion implantation)、固態擴散等等。在一些實施例中,摻雜區10b可使用間隙子15當作一離子植入遮罩藉由蝕刻所形成。 Referring to FIG. 2J , a doped region 10 b may be formed in the substrate 10 . In some embodiments, for example, the fabrication technique of the doped region 10b may include an ion implantation operation, such as plasma-immersion ion implantation, solid-state diffusion, and the like. In some embodiments, the doped region 10b can be formed by etching using the spacer 15 as an ion implantation mask.

在一些實施例中,摻雜區10b的製作技術可包含藉由以顯著高於用於形成摻雜區10a的離子注入劑量的摻雜程度而向基底10中植入N型(對於NMOS元件而言)或P型摻雜物(對於PMOS元件而言)。在摻雜區10b與摻雜區10a重疊的多個區域中,摻雜區10b的較重摻雜程度可以克服摻雜區10a的較輕摻雜程度。因此,一源極區及/或一汲極區可形成在重疊的該等區域中。 In some embodiments, the fabrication technique of the doped region 10b may include implanting N-type (for NMOS devices) into the substrate 10 at a doping level significantly higher than the ion implantation dose used to form the doped region 10a. words) or P-type dopants (for PMOS devices). In regions where doped region 10b overlaps with doped region 10a, the more heavily doped level of doped region 10b can overcome the lighter doped level of doped region 10a. Therefore, a source region and/or a drain region may be formed in overlapping these regions.

圖3是流程示意圖,例示本揭露一些實施例的半導體元件之製備方法30。 FIG. 3 is a schematic flow diagram illustrating a method 30 for fabricating a semiconductor device according to some embodiments of the present disclosure.

在一些實施例中,製備方法30可包括一步驟S31,設置一介電層在一基底上。舉例來說,如圖2A所示,介電層11'可設置在基底10的表面101上。 In some embodiments, the manufacturing method 30 may include a step S31 of disposing a dielectric layer on a substrate. For example, as shown in FIG. 2A , a dielectric layer 11 ′ can be disposed on the surface 101 of the substrate 10 .

在一些實施例中,製備方法30可包括一步驟S32,設置一閘極導電層在該介電層上。舉例來說,如圖2A所示,閘極導電層12'可設置在介電層11'上。 In some embodiments, the manufacturing method 30 may include a step S32 of disposing a gate conductive layer on the dielectric layer. For example, as shown in FIG. 2A , the gate conductive layer 12 ′ can be disposed on the dielectric layer 11 ′.

在一些實施例中,製備方法30可包括一步驟S33,形成該基底的一表面以與該介電層的一側表面以及該閘極導電層的一側表面呈共面。舉例來說,如圖2C所示,基底10之表面101的部分101b可大致與介電 層11的表面111及/或閘極導電層12的表面121呈共面。 In some embodiments, the manufacturing method 30 may include a step S33 of forming a surface of the substrate to be coplanar with one side surface of the dielectric layer and one side surface of the gate conductive layer. For example, as shown in FIG. 2C, a portion 101b of the surface 101 of the substrate 10 may be approximately the same as the dielectric Surface 111 of layer 11 and/or surface 121 of gate conductive layer 12 are coplanar.

在一些實施例中,製備方法30可包括一步驟S34,設置一第一間隙子在該基底的該表面、該介電層的該側表面以及該閘極導電層的該側表面上。舉例來說,如圖2H所示,間隙子14可設置在介電層11的表面111、閘極導電層12的表面121以及罩蓋層13的表面131上。 In some embodiments, the manufacturing method 30 may include a step S34 of disposing a first spacer on the surface of the substrate, the side surface of the dielectric layer, and the side surface of the gate conductive layer. For example, as shown in FIG. 2H , the spacers 14 may be disposed on the surface 111 of the dielectric layer 11 , the surface 121 of the gate conductive layer 12 , and the surface 131 of the capping layer 13 .

在一些實施例中,製備方法30可包括一步驟S35,形成一輕度摻雜區在該基底中。舉例來說,如圖2G所示,摻雜區10a可形成在基底10中。 In some embodiments, the manufacturing method 30 may include a step S35 of forming a lightly doped region in the substrate. For example, as shown in FIG. 2G , a doped region 10 a may be formed in the substrate 10 .

在一些實施例中,製備方法30可包括一步驟S36,設置一第二間隙子在該基底的該表面上。舉例來說,如圖2I所示,間隙子15可設置在基底10之表面101的部分101c上。 In some embodiments, the manufacturing method 30 may include a step S36 of disposing a second spacer on the surface of the substrate. For example, as shown in FIG. 2I , the spacer 15 may be disposed on the portion 101 c of the surface 101 of the substrate 10 .

在一些實施例中,製備方法30可包括一步驟S37,形成一重度摻雜區在該基底中。舉例來說,如圖2J所示,摻雜區10b可形成在基底10中。 In some embodiments, the manufacturing method 30 may include a step S37 of forming a heavily doped region in the substrate. For example, as shown in FIG. 2J , a doped region 10 b may be formed in the substrate 10 .

本揭露之一實施例提供一種半導體元建。該半導體元件包括一基底,具有一表面。該表面具有一第一部分以及一第二部分,該第二部分從該第一部分突伸。該半導體元件亦包括一介電層,設置在該第二部分上;以及一閘極導電層,設置在該介電層上。 An embodiment of the present disclosure provides a semiconductor device. The semiconductor element includes a base with a surface. The surface has a first portion and a second portion protruding from the first portion. The semiconductor element also includes a dielectric layer disposed on the second portion; and a gate conductive layer disposed on the dielectric layer.

本揭露之另一實施例提供一種半導體元件。該半導體元件包括一基底,具有一第一表面以及一第二表面,該第二表面從該基底的該基底的該第一表面突伸。該半導體元件亦包括一閘極氧化物層,設置在該基底的該第二表面上;以及一第一間隙子,設置在該基底的該第一表面上。該第一間隙子接觸該基底與該閘極氧化物層。 Another embodiment of the disclosure provides a semiconductor device. The semiconductor element includes a base with a first surface and a second surface, and the second surface protrudes from the first surface of the base. The semiconductor device also includes a gate oxide layer disposed on the second surface of the substrate; and a first spacer disposed on the first surface of the substrate. The first spacer contacts the substrate and the gate oxide layer.

本揭露之再另一實施例提供一種半導體元件的製備方法。該方法包括設置一介電層在一基底上;設置一閘極導電層在該介電層上;以及形成該基底的一表面以與該介電層的一側表面以及該閘極導電層的一側表面大致呈共面。 Yet another embodiment of the present disclosure provides a method for manufacturing a semiconductor device. The method includes arranging a dielectric layer on a substrate; arranging a gate conductive layer on the dielectric layer; The surfaces on one side are approximately coplanar.

藉由形成一閘極結構(包括一閘極導電層以及一介電層)在一基底的一升高部分(elevated portion)上,則升起該閘極導電層,可縮減該閘極導電層的高度,同時該閘極結構的高度大致上維持不變。相較於一習知結構(例如該閘極結構並未升起且該閘極導電層的高度較大),該閘極導電層的縮減高度可避免或降低不必要的寄生電容。此外,由於該基底具有一升起部分且並升起該閘極導電層,所以增加有效的通道長度並可減少短通道效應。 The gate conductive layer can be reduced by forming a gate structure (comprising a gate conductive layer and a dielectric layer) on an elevated portion of a substrate, then raising the gate conductive layer The height of the gate structure remains substantially constant. The reduced height of the gate conductive layer can avoid or reduce unnecessary parasitic capacitance compared to a conventional structure (eg, the gate structure is not raised and the height of the gate conductive layer is larger). In addition, since the substrate has a raised portion and raises the gate conductive layer, the effective channel length is increased and short channel effects can be reduced.

雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所定義之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。 Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and substitutions can be made without departing from the spirit and scope of the present disclosure as defined by the claims. For example, many of the processes described above can be performed in different ways and replaced by other processes or combinations thereof.

再者,本申請案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟包含於本申請案之申請專利範圍內。 Furthermore, the scope of the present application is not limited to the specific embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. Those skilled in the art can understand from the disclosure content of this disclosure that existing or future developed processes, machinery, manufacturing, A composition of matter, means, method, or step. Accordingly, such process, machinery, manufacture, material composition, means, method, or steps are included in the patent scope of this application.

1:半導體元件 1: Semiconductor components

10:基底 10: Base

10a:摻雜區 10a: Doped area

10b:摻雜區 10b: Doped area

10c:升起部分 10c: Lifting part

11:介電層 11: Dielectric layer

12:閘極導電層 12: Gate conductive layer

13:罩蓋層 13: cover layer

14:間隙子 14: spacer

15:間隙子 15: spacer

101:表面 101: surface

101a:部分 101a: part

101b:部分 101b: part

101c:部分 101c: part

102:表面 102: surface

111:表面 111: surface

121:表面 121: surface

131:表面 131: surface

H1:高度 H1: height

H2:高度 H2: height

Claims (13)

一種半導體元件,包括:一基底,具有一表面,其中該表面具有一第一部分、一第二部分以及一第三部分,該第二部分從該第一部分突伸,該第三部分延伸在該第一部分與該第二部分之間;一介電層,設置在該第二部分上;以及一閘極導電層,設置在該介電層上;一第一間隙子,接觸該基底之該表面的該第三部分。 A semiconductor element, comprising: a base with a surface, wherein the surface has a first portion, a second portion and a third portion, the second portion protrudes from the first portion, the third portion extends over the first portion between a part and the second part; a dielectric layer disposed on the second part; and a gate conductive layer disposed on the dielectric layer; a first spacer contacting the surface of the substrate The third part. 如請求項1所述的半導體元件,其中該第一部分與該第二部分大致呈平行。 The semiconductor device as claimed in claim 1, wherein the first portion is substantially parallel to the second portion. 如請求項1所述的半導體元件,其中該介電層的一側表面大致與該閘極導電層的一側表面大致呈共面。 The semiconductor device as claimed in claim 1, wherein one side surface of the dielectric layer is substantially coplanar with one side surface of the gate conductive layer. 如請求項3所述的半導體元件,其中該第三部分大致與該介電層的該側表面以及該閘極導電層的該側表面呈共面。 The semiconductor device as claimed in claim 3, wherein the third portion is substantially coplanar with the side surface of the dielectric layer and the side surface of the gate conductive layer. 如請求項1所述的半導體元件,其中該第一間隙子還接觸該介電層的該側表面以及該閘極導電層的該側表面。 The semiconductor device as claimed in claim 1, wherein the first spacer also contacts the side surface of the dielectric layer and the side surface of the gate conductive layer. 如請求項1所述的半導體元件,其中該第一間隙子還接觸該基底之該 表面的該第一部分。 The semiconductor device as claimed in claim 1, wherein the first spacer also contacts the substrate of the the first part of the surface. 如請求項1所述的半導體元件,還包括一第二間隙子,接觸該第一間隙子。 The semiconductor device according to claim 1, further comprising a second spacer contacting the first spacer. 如請求項7所述的半導體元件,其中該第二間隙子還接觸該基底之該表面的該第一部分。 The semiconductor device as claimed in claim 7, wherein the second spacer also contacts the first portion of the surface of the substrate. 如請求項7所述的半導體元件,其中該第一間隙子設置在該基底之該表面的該第三部分與該第二間隙子之間。 The semiconductor device as claimed in claim 7, wherein the first spacer is disposed between the third portion of the surface of the substrate and the second spacer. 如請求項1所述的半導體元件,還包括一罩蓋層,設置在該閘極導電層上。 The semiconductor device as claimed in claim 1, further comprising a cover layer disposed on the gate conductive layer. 如請求項10所述的半導體元件,其中該第一間隙子延伸在該罩蓋層與該基底之該表面的該第一部分之間。 The semiconductor device of claim 10, wherein the first spacer extends between the cap layer and the first portion of the surface of the substrate. 如請求項1所述的半導體元件,還包括一輕度摻雜區,從該基底之該表面的該第一部分部分暴露。 The semiconductor device as claimed in claim 1, further comprising a lightly doped region partially exposed from the first portion of the surface of the substrate. 如請求項12所述的半導體元件,還包括一重度摻雜區,設置在該輕度摻雜區中,且從該基底之該表面的該第一部分部分暴露。 The semiconductor device as claimed in claim 12, further comprising a heavily doped region disposed in the lightly doped region and partially exposed from the first portion of the surface of the substrate.
TW111107762A 2021-12-03 2022-03-03 Semiconductor device TWI809742B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/541,845 US12009424B2 (en) 2021-12-03 2021-12-03 Semiconductor device, and method for manufacturing the same
US17/541,845 2021-12-03
US17/543,914 2021-12-07
US17/543,914 US11894427B2 (en) 2021-12-07 2021-12-07 Semiconductor device, and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW202324694A TW202324694A (en) 2023-06-16
TWI809742B true TWI809742B (en) 2023-07-21

Family

ID=86623001

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111107762A TWI809742B (en) 2021-12-03 2022-03-03 Semiconductor device

Country Status (2)

Country Link
CN (1) CN116247085A (en)
TW (1) TWI809742B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200411846A (en) * 2002-12-24 2004-07-01 Winbond Electronics Corp Flash memory device having high coupling ratio and its manufacturing method
TW200426999A (en) * 2003-05-30 2004-12-01 Nanya Technology Corp Memory cell with partly vertical channel and the manufacturing method thereof
US20170110559A1 (en) * 2013-01-18 2017-04-20 Taiwan Semiconductor Manufacturing Co., Ltd. Vertical tunneling field-effect transistor cell and fabricating the same
US20190081180A1 (en) * 2017-09-13 2019-03-14 Samsung Electronics Co., Ltd. Semiconductor device having vertical channel and method of manufacturing the same
TW201913969A (en) * 2017-08-31 2019-04-01 大陸商長江存儲科技有限責任公司 Three-dimensional memory device and method of manufacturing same
TW201931607A (en) * 2017-11-28 2019-08-01 台灣積體電路製造股份有限公司 Semiconductor device and method of forming FinFET
TW202022949A (en) * 2018-07-26 2020-06-16 台灣積體電路製造股份有限公司 Semiconductor device with reduced flicker noise
US20200251566A1 (en) * 2019-02-01 2020-08-06 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structure in high-k metal gate technology
TW202119478A (en) * 2019-10-31 2021-05-16 台灣積體電路製造股份有限公司 Integrated circuit structure and method for forming same
US20210358934A1 (en) * 2020-05-15 2021-11-18 Powerchip Semiconductor Manufacturing Corporation Non-volatile memory structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200411846A (en) * 2002-12-24 2004-07-01 Winbond Electronics Corp Flash memory device having high coupling ratio and its manufacturing method
TW200426999A (en) * 2003-05-30 2004-12-01 Nanya Technology Corp Memory cell with partly vertical channel and the manufacturing method thereof
US20170110559A1 (en) * 2013-01-18 2017-04-20 Taiwan Semiconductor Manufacturing Co., Ltd. Vertical tunneling field-effect transistor cell and fabricating the same
TW201913969A (en) * 2017-08-31 2019-04-01 大陸商長江存儲科技有限責任公司 Three-dimensional memory device and method of manufacturing same
US20190081180A1 (en) * 2017-09-13 2019-03-14 Samsung Electronics Co., Ltd. Semiconductor device having vertical channel and method of manufacturing the same
TW201931607A (en) * 2017-11-28 2019-08-01 台灣積體電路製造股份有限公司 Semiconductor device and method of forming FinFET
TW202022949A (en) * 2018-07-26 2020-06-16 台灣積體電路製造股份有限公司 Semiconductor device with reduced flicker noise
US20200251566A1 (en) * 2019-02-01 2020-08-06 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structure in high-k metal gate technology
TW202119478A (en) * 2019-10-31 2021-05-16 台灣積體電路製造股份有限公司 Integrated circuit structure and method for forming same
US20210358934A1 (en) * 2020-05-15 2021-11-18 Powerchip Semiconductor Manufacturing Corporation Non-volatile memory structure

Also Published As

Publication number Publication date
CN116247085A (en) 2023-06-09
TW202324694A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
KR101785864B1 (en) Structure and method for nfet with high k metal gate
TWI509670B (en) Metal gate semiconductor device
US9543426B2 (en) Semiconductor devices with self-aligned contacts and low-k spacers
KR101218479B1 (en) A metal gate structure of a field effect transistor
US7947588B2 (en) Structure and method for a CMOS device with doped conducting metal oxide as the gate electrode
JP5222520B2 (en) Manufacturing method of semiconductor device
KR101185685B1 (en) Metal gate transistor for cmos process and method for making
US9209090B2 (en) Method of forming a semiconductor die
US8609484B2 (en) Method for forming high-K metal gate device
US8586428B2 (en) Interconnection structure for N/P metal gates
US20140124863A1 (en) Method and structure for forming a localized soi finfet
CN111566820A (en) Replacement metal gate process for vertical pass field effect transistors
US8742510B2 (en) Semiconductor devices with replacement gate structures having conductive contacts positioned therebetween
US7790622B2 (en) Methods for removing gate sidewall spacers in CMOS semiconductor fabrication processes
CN102104041A (en) Integrated circuit with dummy structure for isolating devices
KR20090019693A (en) Strained semiconductor device and method of making same
US9219124B2 (en) Metal gate semiconductor device
CN103165466A (en) Semiconductor device including polysilicon resistor and metal gate resistor and methods of fabricating thereof
CN101728273A (en) Semiconductor device and method of fabricating the same
US7919379B2 (en) Dielectric spacer removal
US9871032B2 (en) Gate-grounded metal oxide semiconductor device
US11894427B2 (en) Semiconductor device, and method for manufacturing the same
KR20160029776A (en) Metal gate structure with device gain and yield improvement
US9893145B1 (en) On chip MIM capacitor
TWI484592B (en) Metal gate transistor and resistor and method for fabricating the same