TWI809461B - Motor control method and motor control system - Google Patents

Motor control method and motor control system Download PDF

Info

Publication number
TWI809461B
TWI809461B TW110127777A TW110127777A TWI809461B TW I809461 B TWI809461 B TW I809461B TW 110127777 A TW110127777 A TW 110127777A TW 110127777 A TW110127777 A TW 110127777A TW I809461 B TWI809461 B TW I809461B
Authority
TW
Taiwan
Prior art keywords
current
command
current command
battery voltage
value
Prior art date
Application number
TW110127777A
Other languages
Chinese (zh)
Other versions
TW202304736A (en
Inventor
張馬太
黃啟芳
Original Assignee
大同股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同股份有限公司 filed Critical 大同股份有限公司
Priority to TW110127777A priority Critical patent/TWI809461B/en
Publication of TW202304736A publication Critical patent/TW202304736A/en
Application granted granted Critical
Publication of TWI809461B publication Critical patent/TWI809461B/en

Links

Images

Abstract

A motor control method and a motor control system are provided. The motor control method includes: during a demarcating period, demarcating a vehicle motor by a dynamometer to obtain a first current command table and a second current command table; during a driving period, providing a rotation speed command and a torque command, generating a first current command corresponding to the rotation speed command and the torque command by the first current command table, and generating a second current command corresponding to the rotation speed command and the torque command by the second current command table; and during the driving period, generating an operating current command according to a current battery voltage value, the first current command, and the second current command.

Description

馬達控制方法以及馬達控制系統Motor control method and motor control system

本發明是有關於一種馬達控制領域,且特別是有關於一種馬達控制方法以及馬達控制系統。The present invention relates to the field of motor control, and in particular to a motor control method and a motor control system.

現行的車用馬達在使用前會利用單一標定電壓值進行標定以產生電流命令表。當標定完成後,車用馬達被搭載到車輛(如機車、汽車、電動腳踏車等)上。操作命令在車輛行駛時被提供。電流命令表會依據操作命令以及車用電池的電力來產生電流命令,使得車用馬達可依據電流命令被驅動。Existing automotive motors are calibrated with a single calibrated voltage value to generate a current command table before use. After the calibration is completed, the vehicle motor is mounted on a vehicle (such as a locomotive, a car, an electric bicycle, etc.). Operation commands are provided while the vehicle is in motion. The current command table generates a current command according to the operation command and the electric power of the vehicle battery, so that the vehicle motor can be driven according to the current command.

然而,車用電池的電壓值會變動。在車用電池的電壓值不符合或不同於標定電壓值的情況下,電流命令表會不適用,進而造成車用馬達的運行不穩定或失控。因此,如何改善車用馬達的運行穩定性,是本領域技術人員的研究方向之一。However, the voltage value of a car battery varies. When the voltage value of the vehicle battery does not conform to or is different from the calibrated voltage value, the current command meter will not be applicable, resulting in unstable or out-of-control operation of the vehicle motor. Therefore, how to improve the running stability of the vehicle motor is one of the research directions for those skilled in the art.

本發明提供一種能夠改善車用馬達的運行穩定性馬達控制方法以及馬達控制系統。The invention provides a motor control method and a motor control system capable of improving the running stability of a vehicle motor.

本發明的馬達控制方法適用於車用馬達。車用馬達在電池電壓值範圍下運行。馬達控制方法包括:在標定期間,利用動力計以對車用馬達進行標定,以獲得第一電流命令表以及第二電流命令表,其中第一電流命令表以及第二電流命令表對應於電池電壓值範圍中的不同電池電壓值;在行駛期間,提供轉速命令以及轉矩命令,利用第一電流命令表產生對應於轉速命令以及轉矩命令的第一電流命令,並利用第二電流命令表產生對應於轉速命令以及轉矩命令的第二電流命令;以及在行駛期間,接收來自於車用電池的當前電池電壓值,並依據當前電池電壓值、第一電流命令以及第二電流命令產生操作電流命令。車用馬達反應於操作電流命令來運行。The motor control method of the present invention is suitable for vehicle motors. Vehicle motors operate within the range of battery voltage values. The motor control method includes: during calibration, using a dynamometer to calibrate the vehicle motor to obtain a first current command table and a second current command table, wherein the first current command table and the second current command table correspond to the battery voltage Different battery voltage values in the value range; during driving, provide a speed command and a torque command, use the first current command table to generate a first current command corresponding to the speed command and torque command, and use the second current command table to generate A second current command corresponding to the rotational speed command and the torque command; and during driving, receiving a current battery voltage value from the vehicle battery, and generating an operating current according to the current battery voltage value, the first current command, and the second current command Order. The vehicle motor operates in response to an operating current command.

本發明的馬達控制系統適用於車用馬達。車用馬達在電池電壓值範圍下運行。馬達控制系統包括動力計、車用電池以及控制器。動力計在標定期間對車用馬達進行標定,以獲得第一電流命令表以及第二電流命令表。第一電流命令表以及第二電流命令表對應於電池電壓值範圍中的不同電池電壓值。車用電池在行駛期間提供當前電池電壓值。控制器耦接於車用馬達。控制器在標定期間接收第一電流命令表以及第二電流命令表。控制器在行駛期間提供轉速命令以及轉矩命令,利用第一電流命令表產生對應於轉速命令以及轉矩命令的第一電流命令,並利用第二電流命令表產生對應於轉速命令以及轉矩命令的第二電流命令,並依據當前電池電壓值、第一電流命令以及第二電流命令產生操作電流命令。車用馬達反應於操作電流命令來運行。The motor control system of the present invention is suitable for vehicle motors. Vehicle motors operate within the range of battery voltage values. A motor control system includes a dynamometer, a vehicle battery, and a controller. During the calibration period, the dynamometer calibrates the vehicle motor to obtain the first current command table and the second current command table. The first current command table and the second current command table correspond to different battery voltage values in the battery voltage value range. The car battery provides the current battery voltage value during driving. The controller is coupled to the vehicle motor. The controller receives the first current command table and the second current command table during calibration. The controller provides a speed command and a torque command during driving, uses a first current command table to generate a first current command corresponding to the speed command and a torque command, and uses a second current command table to generate a corresponding speed command and a torque command the second current command, and generate an operating current command according to the current battery voltage value, the first current command and the second current command. The vehicle motor operates in response to an operating current command.

基於上述,在標定期間,本發明是利用電池電壓值範圍中的不同電池電壓值來對車用馬達進行標定以產生第一電流命令表以及第二電流命令表。在行駛期間,本發明利用第一電流命令表產生第一電流命令,並利用第二電流命令表產生第二電流命令。此外,在行駛期間,本發明依據車用電池的當前電池電壓值、第一電流命令以及第二電流命令產生操作電流命令。本發明的第一電流命令以及第二電流命令是基於電池電壓值範圍被產生。因此,第一電流命令以及第二電流命令所建構的適用範圍可適用於電池電壓值範圍中的任意當前電池電壓值。如此一來,即便當前電池電壓值發生變化,車用馬達能夠依據操作電流命令而穩定運行。本發明還利用當前電池電壓值對第一電流值以及第二電流值進行運算以產生對應於操作電流命令的操作電流值。如此一來,標定期間的執行時間長度能夠大幅被縮短。此外,用以儲存第一電流命令表以及第二電流命令表的記憶體空間也能夠被降低。Based on the above, during the calibration period, the present invention uses different battery voltage values in the battery voltage range to calibrate the vehicle motor to generate the first current command table and the second current command table. During running, the present invention uses the first current command table to generate the first current command, and uses the second current command table to generate the second current command. In addition, during driving, the present invention generates an operating current command according to the current battery voltage value of the vehicle battery, the first current command, and the second current command. The first current command and the second current command of the present invention are generated based on the battery voltage range. Therefore, the applicable range established by the first current command and the second current command can be applied to any current battery voltage value in the battery voltage value range. In this way, even if the current battery voltage value changes, the vehicle motor can run stably according to the operating current command. The present invention also utilizes the current battery voltage value to perform calculations on the first current value and the second current value to generate an operating current value corresponding to the operating current command. In this way, the length of execution time during calibration can be significantly reduced. In addition, the memory space for storing the first current command table and the second current command table can also be reduced.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的範例。Parts of the embodiments of the present invention will be described in detail with reference to the accompanying drawings. For the referenced reference symbols in the following description, when the same reference symbols appear in different drawings, they will be regarded as the same or similar components. These embodiments are only a part of the present invention, and do not reveal all possible implementation modes of the present invention. Rather, these embodiments are only examples within the scope of the patent application of the present invention.

請參考圖1,圖1是依據本發明第一實施例所繪示的馬達控制方法的方法流程圖。在本實施例中,馬達控制方法適用於車用馬達。車用馬達可以被應用在車輛(如機車、汽車、電動腳踏車等)或其他電動移動載具上。車用馬達能夠在電池電壓值範圍下運行。也就是說,車用馬達被設計在電池電壓值範圍下能夠正常運行。以汽車為例,電池電壓值範圍為550~600伏特(本發明並不以此為限)。在本實施例中,馬達控制方法包括步驟S110~S130。在步驟S110中,在標定期間,利用動力計以對車用馬達進行標定,以獲得第一電流命令表以及第二電流命令表。舉例來說,第一電流命令表是基於電池電壓值範圍中的第一電池電壓值來產生。第二電流命令表是基於電池電壓值範圍中的第二電池電壓值來產生。第二電池電壓值不同於第一電池電壓值。另舉例來說,第一電流命令表是基於電池電壓值範圍中的最高電池電壓值來產生。第二電流命令表是基於電池電壓值範圍中的最低電池電壓值來產生。在本實施例中,步驟S110可以在出廠前或品保階段被執行。Please refer to FIG. 1 . FIG. 1 is a flow chart of a motor control method according to a first embodiment of the present invention. In this embodiment, the motor control method is applicable to a vehicle motor. Vehicle motors can be applied to vehicles (such as locomotives, automobiles, electric bicycles, etc.) or other electric mobile vehicles. Vehicle motors are capable of operating within a range of battery voltage values. That is to say, the vehicle motor is designed to operate normally under the battery voltage range. Taking a car as an example, the battery voltage ranges from 550 to 600 volts (the present invention is not limited thereto). In this embodiment, the motor control method includes steps S110-S130. In step S110 , during the calibration period, a dynamometer is used to calibrate the vehicle motor to obtain a first current command table and a second current command table. For example, the first current command table is generated based on the first battery voltage value in the battery voltage value range. The second current command table is generated based on a second battery voltage value in the range of battery voltage values. The second battery voltage value is different than the first battery voltage value. For another example, the first current command table is generated based on the highest battery voltage value in the battery voltage value range. The second current command table is generated based on the lowest battery voltage value in the range of battery voltage values. In this embodiment, step S110 may be performed before delivery or at the quality assurance stage.

步驟S110完成後,車用馬達會被搭載到車輛上。在步驟S120中,轉速命令以及轉矩命令在行駛期間被提供。第一電流命令表會產生對應於轉速命令以及轉矩命令的第一電流命令。第二電流命令表會產生對應於轉速命令以及轉矩命令的第二電流命令。在步驟S130中,在行駛期間,來自於車用電池的當前電池電壓值被接收。操作電流命令依據當前電池電壓、第一電流命令以及第二電流命令被產生。因此,車用馬達會反應於操作電流命令來運行。當步驟S130完成後,馬達控制方法會回到步驟S120。After step S110 is completed, the vehicle motor will be mounted on the vehicle. In step S120, a rotational speed command and a torque command are provided during driving. The first current command table generates a first current command corresponding to the rotational speed command and the torque command. The second current command table generates a second current command corresponding to the rotational speed command and the torque command. In step S130, during driving, the current battery voltage value from the vehicle battery is received. The operating current command is generated according to the current battery voltage, the first current command and the second current command. Therefore, the vehicle motor operates in response to the operating current command. After the step S130 is completed, the motor control method returns to the step S120.

在此值得一提的是,第一電流命令表以及第二電流命令表是依據電池電壓值範圍中的不同電池電壓值來對車用馬達進行標定而被產生。在行駛期間,第一電流命令表產生第一電流命令。第二電流命令表產生第二電流命令。此外,操作電流命令會在行駛期間依據車用電池的當前電池電壓值、第一電流命令以及第二電流命令產生。由此可知,第一電流命令以及第二電流命令是基於電池電壓值範圍被產生。因此,第一電流命令以及第二電流命令所建構的適用範圍可適用於電池電壓值範圍中的任意當前電池電壓值。如此一來,即便當前電池電壓值發生變化,車用馬達能夠依據操作電流命令而穩定運行。本實施例利用當前電池電壓值對第一電流值以及第二電流值進行運算以產生對應於操作電流命令的操作電流值。如此一來,標定期間的執行時間長度能夠大幅被縮短。此外,用以儲存第一電流命令表以及第二電流命令表的記憶體空間也能夠被降低。It is worth mentioning here that the first current command table and the second current command table are generated by calibrating the vehicle motor according to different battery voltage values in the battery voltage value range. During travel, the first current command table generates a first current command. The second current command table generates a second current command. In addition, the operating current command is generated according to the current battery voltage value of the vehicle battery, the first current command and the second current command during driving. It can be known that the first current command and the second current command are generated based on the battery voltage range. Therefore, the applicable range established by the first current command and the second current command can be applied to any current battery voltage value in the battery voltage value range. In this way, even if the current battery voltage value changes, the vehicle motor can run stably according to the operating current command. In this embodiment, the first current value and the second current value are calculated by using the current battery voltage value to generate an operating current value corresponding to the operating current command. In this way, the length of execution time during calibration can be significantly reduced. In addition, the memory space for storing the first current command table and the second current command table can also be reduced.

具體來說明,請同時參考圖2A以及圖2B,圖2A是依據本發明一實施例所繪示的馬達控制系統在標定期間的操作示意圖。圖2B是依據本發明一實施例所繪示的馬達控制系統在行駛期間的操作示意圖。在本實施例中,馬達控制系統包括動力計110、控制器120以及車用電池130。在標定期間(如圖1的步驟S110),車用馬達M耦接於動力計110以及控制器120。控制器120接收不同的輸入電壓值P1、P2以提供對應的操作電流命令,並利用操作電流命令來驅動車用馬達M。因此,車用馬達M基於操作電流命令而運行,以驅動動力計110中的負載L。在標定期間,動力計110對車用馬達M進行標定,以獲得第一電流命令表T1以及第二電流命令表T2。Specifically, please refer to FIG. 2A and FIG. 2B at the same time. FIG. 2A is a schematic diagram illustrating the operation of the motor control system during calibration according to an embodiment of the present invention. FIG. 2B is a schematic diagram illustrating the operation of the motor control system during driving according to an embodiment of the present invention. In this embodiment, the motor control system includes a dynamometer 110 , a controller 120 and a vehicle battery 130 . During calibration (eg step S110 of FIG. 1 ), the vehicle motor M is coupled to the dynamometer 110 and the controller 120 . The controller 120 receives different input voltage values P1 and P2 to provide corresponding operating current commands, and uses the operating current commands to drive the motor M of the vehicle. Accordingly, the vehicle motor M operates based on the operation current command to drive the load L in the dynamometer 110 . During calibration, the dynamometer 110 calibrates the vehicle motor M to obtain a first current command table T1 and a second current command table T2 .

在本實施例中,輸入電壓值P1在標定期間的一時間區間被提供。控制器120接收輸入電壓值P1以提供對應於輸入電壓值P1的多個操作電流命令。因此,車用馬達M基於對應於輸入電壓值P1的所述多個操作電流命令而運行以驅動動力計110中的負載L。In this embodiment, the input voltage value P1 is provided during a time interval during calibration. The controller 120 receives an input voltage value P1 to provide a plurality of operating current commands corresponding to the input voltage value P1. Accordingly, the vehicle motor M operates to drive the load L in the dynamometer 110 based on the plurality of operating current commands corresponding to the input voltage value P1.

在本實施例中,動力計110包括轉矩感測器111以及轉速感測器112。在標定期間,轉矩感測器111感測車用馬達M施加到負載L的轉矩值。在標定期間,轉速感測器112感測負載L被車用馬達M驅動所產生的轉速值。因此,動力計110會產生第一電流命令表T1。In this embodiment, the dynamometer 110 includes a torque sensor 111 and a rotational speed sensor 112 . During calibration, the torque sensor 111 senses the torque value applied to the load L by the motor M of the vehicle. During the calibration period, the rotational speed sensor 112 senses the rotational speed value generated by the load L being driven by the motor M of the vehicle. Therefore, the dynamometer 110 generates the first current command table T1.

輸入電壓值P2在標定期間的另一時間區間被提供。控制器120接收輸入電壓值P2以提供對應於輸入電壓值P2的多個操作電流命令。因此,車用馬達M基於對應於輸入電壓值P2的所述多個操作電流命令而運行以驅動動力計110中的負載L。在標定期間,動力計110利用轉矩感測器111來感測車用馬達M施加到負載L的轉矩值,利用轉速感測器112來在標定期間感測負載L被車用馬達M驅動所產生的轉速值。因此,動力計110會產生第二電流命令表T2。在本實施例中,輸入電壓值P1、P2可以由相同或不同的電源供應器來提供。輸入電壓值P1不同於輸入電壓值P2。The input voltage value P2 is provided at another time interval during the calibration. The controller 120 receives the input voltage value P2 to provide a plurality of operating current commands corresponding to the input voltage value P2. Accordingly, the vehicle motor M operates to drive the load L in the dynamometer 110 based on the plurality of operating current commands corresponding to the input voltage value P2. During the calibration period, the dynamometer 110 uses the torque sensor 111 to sense the torque value applied by the vehicle motor M to the load L, and uses the rotational speed sensor 112 to sense that the load L is driven by the vehicle motor M during the calibration period. The resulting speed value. Therefore, the dynamometer 110 generates the second current command table T2. In this embodiment, the input voltages P1 and P2 can be provided by the same or different power supplies. The input voltage value P1 is different from the input voltage value P2.

在本實施例中,輸入電壓值P1可以是電池電壓值範圍中的最高電池電壓值。輸入電壓值P2可以是電池電壓值範圍中的最低電池電壓值。因此,第一電流命令表T1紀錄對應於最高電池電壓值、多個轉速命令以及多個轉矩命令的多個第一電流命令。第二電流命令表T2紀錄對應於最高電池電壓值、多個轉速命令以及多個轉矩命令的多個第二電流命令。In this embodiment, the input voltage value P1 may be the highest battery voltage value in the range of battery voltage values. The input voltage value P2 may be the lowest battery voltage value in the range of battery voltage values. Therefore, the first current command table T1 records a plurality of first current commands corresponding to the highest battery voltage value, a plurality of rotational speed commands and a plurality of torque commands. The second current command table T2 records a plurality of second current commands corresponding to the highest battery voltage value, a plurality of rotational speed commands, and a plurality of torque commands.

在本實施例中,馬達控制系統還包括記憶體STR。記憶體STR耦接於控制器120。記憶體STR儲存第一電流命令表T1以及第二電流命令表T2。在本實施例中,記憶體STR可以被設置在控制器120中。In this embodiment, the motor control system further includes a memory STR. The memory STR is coupled to the controller 120 . The memory STR stores the first current command table T1 and the second current command table T2. In this embodiment, the memory STR can be set in the controller 120 .

在本實施例中,在行駛期間前,車用馬達M、控制器120以及記憶體STR設置在車輛上。車輛上的車用電池130耦接到控制器120。此外,車用馬達M耦接到車輛負載LD。車輛負載LD可以是車輛的傳動機構。在行駛期間(如圖1的步驟S120),轉速命令CMD1以及轉矩命令CMD2被提供。舉例來說,當車輛被操作以加速、減速或換檔時,轉速命令CMD1以及轉矩命令CMD2會被提供。控制器120接收轉速命令CMD1以及轉矩命令CMD2。控制器120會利用第一電流命令表T1產生對應於轉速命令CMD1以及轉矩命令CMD2的第一電流命令。控制器120會利用第二電流命令表T2產生對應於轉速命令CMD1以及轉矩命令CMD2的第二電流命令。在本實施例中,第一電流命令對應第一電流值。第二電流命令對應第二電流值。第一電流值小於第二電流值。In this embodiment, the vehicle motor M, the controller 120 and the memory STR are provided on the vehicle before the running period. A vehicle battery 130 on the vehicle is coupled to the controller 120 . Furthermore, a vehicle motor M is coupled to a vehicle load LD. The vehicle load LD may be the transmission of the vehicle. During running (as shown in step S120 of FIG. 1 ), the rotational speed command CMD1 and the torque command CMD2 are provided. For example, when the vehicle is operated to accelerate, decelerate or shift gears, the speed command CMD1 and the torque command CMD2 are provided. The controller 120 receives the rotational speed command CMD1 and the torque command CMD2. The controller 120 utilizes the first current command table T1 to generate a first current command corresponding to the rotational speed command CMD1 and the torque command CMD2 . The controller 120 uses the second current command table T2 to generate a second current command corresponding to the rotation speed command CMD1 and the torque command CMD2 . In this embodiment, the first current command corresponds to the first current value. The second current command corresponds to the second current value. The first current value is smaller than the second current value.

應注意的是,輸入電壓值P1可以是電池電壓值範圍中的最高電池電壓值。輸入電壓值P2可以是電池電壓值範圍中的最低電池電壓值。第一電流值小於第二電流值。也就是說,第一電流值以及第二電流值分別與輸入電壓值P1、P2呈現負相關。It should be noted that the input voltage value P1 may be the highest battery voltage value in the range of battery voltage values. The input voltage value P2 may be the lowest battery voltage value in the range of battery voltage values. The first current value is smaller than the second current value. That is to say, the first current value and the second current value are negatively correlated with the input voltage values P1 and P2 respectively.

在行駛期間(如圖1的步驟S130),控制器120接收來自於車用電池130的當前電池電壓值V。此外,控制器120還依據當前電池電壓值V、第一電流命令以及第二電流命令來產生操作電流命令OPCMD。車用馬達M反應於操作電流命令OPCMD來運行,從而驅動車輛負載LD。During driving (eg step S130 of FIG. 1 ), the controller 120 receives the current battery voltage V from the vehicle battery 130 . In addition, the controller 120 also generates the operating current command OPCMD according to the current battery voltage V, the first current command and the second current command. The vehicle motor M operates in response to the operation current command OPCMD, thereby driving the vehicle load LD.

進一步來說,控制器120利用當前電池電壓值V對第一電流值以及第二電流值進行運算以產生對應於操作電流命令OPCMD的操作電流值。在本實施例中,操作電流值會與當前電池電壓值V呈現負相關。也就是說,當車用電池130的當前電池電壓值V下降時,操作電流命令OPCMD的操作電流值會上升。因此,車用馬達M所提供的轉速與轉矩會上升。在另一方面,當車用電池130的當前電池電壓值V上升時,操作電流命令OPCMD的操作電流值會下降。因此,車用馬達M所提供的轉速與轉矩會下降。Further, the controller 120 uses the current battery voltage V to perform calculations on the first current value and the second current value to generate an operating current value corresponding to the operating current command OPCMD. In this embodiment, the operating current value is negatively correlated with the current battery voltage V. That is to say, when the current battery voltage V of the vehicle battery 130 drops, the operating current value of the operating current command OPCMD will increase. Therefore, the rotational speed and torque provided by the vehicle motor M will increase. On the other hand, when the current battery voltage V of the vehicle battery 130 increases, the operating current value of the operating current command OPCMD decreases. Therefore, the rotational speed and torque provided by the vehicle motor M will decrease.

基於上述,當車用電池130的當前電池電壓值V發生變動時,車用馬達M所提供的轉速與轉矩能夠反應於控制器120的控制而被補償或被修正。如此一來,即便當前電池電壓值V發生變化,車用馬達M能夠依據操作電流命令OPCMD而穩定運行。Based on the above, when the current battery voltage V of the vehicle battery 130 changes, the rotational speed and torque provided by the vehicle motor M can be compensated or corrected in response to the control of the controller 120 . In this way, even if the current battery voltage V changes, the vehicle motor M can run stably according to the operating current command OPCMD.

請同時參考圖2A、圖2B以及圖3。圖3是依據本發明第二實施例所繪示的馬達控制方法的方法流程圖。在本實施例中,馬達控制方法包括步驟S210~S240。在步驟S210中,電池電壓值範圍中的最高電池電壓值以及最低電池電壓值會被定義。舉例來說,電池電壓值範圍為550~600伏特。最高電池電壓值為600伏特。最低電池電壓值為550伏特。Please refer to FIG. 2A , FIG. 2B and FIG. 3 at the same time. FIG. 3 is a flow chart of a motor control method according to a second embodiment of the present invention. In this embodiment, the motor control method includes steps S210-S240. In step S210, the highest battery voltage value and the lowest battery voltage value in the range of battery voltage values are defined. For example, the battery voltage ranges from 550 to 600 volts. The maximum battery voltage value is 600 volts. The minimum battery voltage value is 550 volts.

在步驟S220中,在標定期間,動力計110對車用馬達M進行標定。在本實施例中,輸入電壓值P1可以是電池電壓值範圍中的最高電池電壓值。輸入電壓值P2可以是電池電壓值範圍中的最低電池電壓值。因此,動力計110會獲得對應於最高電池電壓值的第一電流命令表T1以及對應於最低電池電壓值的第二電流命令表T2。動力計110將第一電流命令表T1以及第二電流命令表T2提供到控制器120。In step S220, the dynamometer 110 calibrates the vehicle motor M during the calibration period. In this embodiment, the input voltage value P1 may be the highest battery voltage value in the range of battery voltage values. The input voltage value P2 may be the lowest battery voltage value in the range of battery voltage values. Therefore, the dynamometer 110 will obtain the first current command table T1 corresponding to the highest battery voltage value and the second current command table T2 corresponding to the lowest battery voltage value. The dynamometer 110 provides the first current command table T1 and the second current command table T2 to the controller 120 .

在步驟S230中,在行駛期間,轉速命令CMD1以及轉矩命令CMD2被提供。控制器120利用第一電流命令表T1會產生對應於轉速命令CMD1以及轉矩命令CMD2的第一電流命令。控制器120利用第二電流命令表T2會產生對應於轉速命令CMD1以及轉矩命令CMD2的第二電流命令。In step S230, during running, the rotational speed command CMD1 and the torque command CMD2 are provided. The controller 120 uses the first current command table T1 to generate a first current command corresponding to the rotation speed command CMD1 and the torque command CMD2 . The controller 120 uses the second current command table T2 to generate a second current command corresponding to the rotation speed command CMD1 and the torque command CMD2 .

在步驟S240中,同樣在行駛期間,控制器120接收來自於車用電池130的當前電池電壓值V。此外,控制器120還依據當前電池電壓值V、第一電流命令以及第二電流命令進行內插運算來產生操作電流命令OPCMD。因此車用馬達M反應於操作電流命令OPCMD來運行,從而驅動車輛負載LD。當步驟S240完成後,馬達控制方法會回到步驟S230。In step S240 , also during driving, the controller 120 receives the current battery voltage V from the vehicle battery 130 . In addition, the controller 120 also performs an interpolation operation according to the current battery voltage V, the first current command, and the second current command to generate the operating current command OPCMD. The vehicle motor M thus operates in response to the operating current command OPCMD, thereby driving the vehicle load LD. After step S240 is completed, the motor control method returns to step S230.

在本實施例中,控制器120利用當前電池電壓值V對第一電流值以及第二電流值進行內差運算以產生對應於操作電流命令OPCMD的操作電流值。In this embodiment, the controller 120 uses the current battery voltage value V to perform an interpolation operation on the first current value and the second current value to generate an operating current value corresponding to the operating current command OPCMD.

舉例來說明操作電流值的產生方式。在本實施例中,控制器120例如會基於公式(1)來產生操作電流值。 ………..…………..(1) An example is used to illustrate how the operating current value is generated. In this embodiment, the controller 120 generates the operating current value based on the formula (1), for example. ………..…………..(1)

其中,In為操作電流命令OPCMD的操作電流值,I1為第一電流命令的第一電流值,I2為第二電流命令的第一電流值,Vmax為最高電池電壓值,Vmin為最低電池電壓值。Wherein, In is the operating current value of the operating current command OPCMD, I1 is the first current value of the first current command, I2 is the first current value of the second current command, Vmax is the highest battery voltage value, and Vmin is the lowest battery voltage value .

基於公式(1),控制器120會將當前電池電壓值V減去電池電壓值範圍中的最低電池電壓值以獲得第一差值(即,V-Vmin),將第一差值除以電池電壓值範圍(即,Vmax-Vmin)以獲得商值,將第一電流值減去第二電流值以獲得第二差值(即,I1-I2),並且將第二差值乘以商值以獲得補償值。電池電壓值範圍可以是由最高電池電壓值減去最低電池電壓值所得到的差值。接下來,控制器120會依據補償值以及第二電流值以獲得操作電流值。由於第一電流值小於第二電流值,因此第二差值為負數。也就是說,如果當前電池電壓值V上升,操作電流值會下降。如果當前電池電壓值V下降,操作電流值則會上升。在本實施例中,操作電流值會與當前電池電壓值呈現負相關。車用馬達M所提供的轉速與轉矩能夠反應於控制器120的控制而被補償或被修正。如此一來,即便當前電池電壓值V發生變化,車用馬達M能夠依據操作電流命令OPCMD而穩定運行。Based on the formula (1), the controller 120 will subtract the lowest battery voltage value in the range of battery voltage values from the current battery voltage value V to obtain the first difference (ie, V−Vmin), and divide the first difference by the battery range of voltage values (i.e., Vmax-Vmin) to obtain the quotient, subtract the second current value from the first current value to obtain a second difference (i.e., I1-I2), and multiply the second difference by the quotient to get the compensation value. The battery voltage value range may be a difference obtained by subtracting the lowest battery voltage value from the highest battery voltage value. Next, the controller 120 obtains the operating current value according to the compensation value and the second current value. Since the first current value is smaller than the second current value, the second difference is a negative number. That is, if the current battery voltage value V increases, the operating current value will decrease. If the current battery voltage value V drops, the operating current value will rise. In this embodiment, the operating current value is negatively correlated with the current battery voltage value. The speed and torque provided by the vehicle motor M can be compensated or corrected in response to the control of the controller 120 . In this way, even if the current battery voltage V changes, the vehicle motor M can run stably according to the operating current command OPCMD.

順帶一提,控制器120利用當前電池電壓值V對第一電流值以及第二電流值進行內差運算以產生對應於操作電流命令OPCMD的操作電流值。因此,標定期間的執行時間長度能夠大幅被縮短。此外,用以儲存第一電流命令表T1以及第二電流命令表T2的記憶體空間也能夠被降低。Incidentally, the controller 120 uses the current battery voltage value V to perform an interpolation operation on the first current value and the second current value to generate an operating current value corresponding to the operating current command OPCMD. Therefore, the length of execution time during calibration can be significantly shortened. In addition, the memory space for storing the first current command table T1 and the second current command table T2 can also be reduced.

綜上所述,在標定期間,本發明是利用電池電壓值範圍中的不同電池電壓值來對車用馬達進行標定以產生第一電流命令表以及第二電流命令表。在行駛期間,本發明利用第一電流命令表產生第一電流命令,並利用第二電流命令表產生第二電流命令。在行駛期間,本發明依據車用電池的當前電池電壓值、第一電流命令以及第二電流命令產生操作電流命令。本發明的第一電流命令以及第二電流命令是基於電池電壓值範圍被產生。因此,第一電流命令以及第二電流命令所建構的適用範圍可適用於電池電壓值範圍中的任意當前電池電壓值。如此一來,即便當前電池電壓值發生變化,車用馬達能夠依據操作電流命令而穩定運行。除此之外,控制器利用當前電池電壓值對第一電流值以及第二電流值進行運算以產生對應於操作電流命令的操作電流值。如此一來,標定期間的執行時間長度能夠大幅被縮短。此外,用以儲存第一電流命令表以及第二電流命令表的記憶體空間也能夠被降低。To sum up, during the calibration period, the present invention uses different battery voltage values in the battery voltage range to calibrate the vehicle motor to generate the first current command table and the second current command table. During running, the present invention uses the first current command table to generate the first current command, and uses the second current command table to generate the second current command. During running, the present invention generates an operating current command according to the current battery voltage value of the vehicle battery, the first current command and the second current command. The first current command and the second current command of the present invention are generated based on the battery voltage range. Therefore, the applicable range established by the first current command and the second current command can be applied to any current battery voltage value in the battery voltage value range. In this way, even if the current battery voltage value changes, the vehicle motor can run stably according to the operating current command. In addition, the controller uses the current battery voltage value to perform calculations on the first current value and the second current value to generate an operating current value corresponding to the operating current command. In this way, the length of execution time during calibration can be significantly reduced. In addition, the memory space for storing the first current command table and the second current command table can also be reduced.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.

110:動力計 111:轉矩感測器 112:轉速感測器 120:控制器 130:車用電池 CMD1:轉速命令 CMD2:轉矩命令 L:負載 LD:車輛負載 M:車用馬達 OPCMD:操作電流命令 P1、P2:輸入電壓值 T1:第一電流命令表 T2:第二電流命令表 S110~S130:步驟 S210~S240:步驟 STR:記憶體 V:當前電池電壓值 110: Dynamometer 111: Torque sensor 112: Speed sensor 120: Controller 130: car battery CMD1: speed command CMD2: torque command L: load LD: vehicle load M: car motor OPCMD: Operating Current Command P1, P2: input voltage value T1: the first current command table T2: second current command table S110~S130: steps S210~S240: steps STR: memory V: current battery voltage value

圖1是依據本發明第一實施例所繪示的馬達控制方法的方法流程圖。 圖2A是依據本發明一實施例所繪示的馬達控制系統在標定期間的操作示意圖。 圖2B是依據本發明一實施例所繪示的馬達控制系統在行駛期間的操作示意圖。 圖3是依據本發明第二實施例所繪示的馬達控制方法的方法流程圖。 FIG. 1 is a flow chart of a motor control method according to a first embodiment of the present invention. FIG. 2A is a schematic diagram illustrating the operation of the motor control system during calibration according to an embodiment of the present invention. FIG. 2B is a schematic diagram illustrating the operation of the motor control system during driving according to an embodiment of the present invention. FIG. 3 is a flow chart of a motor control method according to a second embodiment of the present invention.

S110~S130:步驟 S110~S130: steps

Claims (8)

一種馬達控制方法,適用於一車用馬達,其中該車用馬達在一電池電壓值範圍下運行,其中該馬達控制方法包括:在一標定期間,利用一動力計以對該車用馬達進行標定,以獲得一第一電流命令表以及一第二電流命令表,其中該第一電流命令表以及該第二電流命令表對應於該電池電壓值範圍中的不同電池電壓值;在一行駛期間,提供一轉速命令以及一轉矩命令,利用該第一電流命令表產生對應於該轉速命令以及該轉矩命令的一第一電流命令,並利用該第二電流命令表產生對應於該轉速命令以及該轉矩命令的一第二電流命令;以及在該行駛期間,接收來自於一車用電池的一當前電池電壓值,並依據該當前電池電壓值、該第一電流命令以及該第二電流命令產生一操作電流命令,其中該車用馬達反應於該操作電流命令來運行並補償與修正該車用馬達所提供的轉速與轉矩;其中該第一電流命令表紀錄對應於該轉矩命令的多個第一電流命令,並且該第二電流命令表紀錄對應於該轉矩命令的多個第二電流命令;其中該第一電流命令對應一第一電流值,其中該第二電流命令對應一第二電流值,其中該第一電流值小於該第二電流值,其中依據該當前電池電壓值、該第一電流命令以及該第二電流命令產生該操作電流命令的步驟包括: 將該當前電池電壓值減去該電池電壓值範圍中的一最低電池電壓值以獲得一第一差值;將該第一差值除以該電池電壓值範圍以獲得一商值;將該第一電流值減去該第二電流值以獲得一第二差值;將該第二差值乘以該商值以獲得一補償值;並且依據該補償值以及該第二電流值以獲得該操作電流值。 A motor control method suitable for a vehicle motor, wherein the vehicle motor operates under a range of battery voltage values, wherein the motor control method includes: using a dynamometer to calibrate the vehicle motor during a calibration period , to obtain a first current command table and a second current command table, wherein the first current command table and the second current command table correspond to different battery voltage values in the battery voltage value range; during a driving period, providing a speed command and a torque command, using the first current command table to generate a first current command corresponding to the speed command and the torque command, and using the second current command table to generate a current command corresponding to the speed command and A second current command of the torque command; and during the driving, receiving a current battery voltage value from a vehicle battery, and according to the current battery voltage value, the first current command and the second current command Generate an operating current command, wherein the vehicle motor responds to the operating current command to run and compensate and correct the rotational speed and torque provided by the vehicle motor; wherein the first current command table records the torque corresponding to the torque command A plurality of first current commands, and the second current command table records a plurality of second current commands corresponding to the torque command; wherein the first current command corresponds to a first current value, wherein the second current command corresponds to a The second current value, wherein the first current value is smaller than the second current value, wherein the step of generating the operating current command according to the current battery voltage value, the first current command and the second current command includes: subtracting a minimum battery voltage value in the battery voltage range from the current battery voltage value to obtain a first difference; dividing the first difference by the battery voltage range to obtain a quotient; subtracting the second current value from a current value to obtain a second difference; multiplying the second difference by the quotient to obtain a compensation value; and obtaining the operation according to the compensation value and the second current value current value. 如請求項1所述的馬達控制方法,其中對應於該操作電流命令的一操作電流值與該當前電池電壓值呈現負相關。 The motor control method as claimed in claim 1, wherein an operating current value corresponding to the operating current command has a negative correlation with the current battery voltage value. 如請求項1所述的馬達控制方法,其中:該第一電流命令表紀錄對應於該電池電壓值範圍中的一最高電池電壓值、該轉速命令以及該轉矩命令的該些第一電流命令,並且該第二電流命令表紀錄對應於該電池電壓值範圍中的一最低電池電壓值、該轉速命令以及該轉矩命令的該些第二電流命令。 The motor control method as claimed in item 1, wherein: the first current command table records the first current commands corresponding to a highest battery voltage value in the battery voltage value range, the rotational speed command and the torque command , and the second current command table records the second current commands corresponding to a lowest battery voltage value in the battery voltage value range, the rotational speed command and the torque command. 一種馬達控制系統,適用於一車用馬達,其中該車用馬達在一電池電壓值範圍下運行,其中該馬達控制系統包括:一動力計,經配置以在一標定期間對該車用馬達進行標定,以獲得一第一電流命令表以及一第二電流命令表,其中該第一電流命令表以及該第二電流命令表對應於該電池電壓值範圍中的不同電池電壓值;一車用電池,經配置以在一行駛期間提供一當前電池電壓值;以及 一控制器,耦接於該車用馬達,經配置以:在該標定期間接收該第一電流命令表以及該第二電流命令表,並且在該行駛期間提供一轉速命令以及一轉矩命令,利用該第一電流命令表產生對應於該轉速命令以及該轉矩命令的一第一電流命令,並利用該第二電流命令表產生對應於該轉速命令以及該轉矩命令的一第二電流命令,並依據該當前電池電壓值、該第一電流命令以及該第二電流命令產生一操作電流命令,其中該車用馬達反應於該操作電流命令來運行並補償與修正該車用馬達所提供的轉速與轉矩;其中該第一電流命令表紀錄對應於該轉矩命令的多個第一電流命令,並且該第二電流命令表紀錄對應於該轉矩命令的多個第二電流命令;其中該第一電流命令對應一第一電流值,該第二電流命令對應一第二電流值,該第一電流值小於該第二電流值,其中該控制器還經配置以利用該當前電池電壓值對該第一電流值以及該第二電流值進行一內差運算以產生對應於該操作電流命令的一操作電流值;其中該控制器還經配置以:將該當前電池電壓值減去該電池電壓值範圍中的一最高電池電壓值以獲得一第一差值;將該第一差值除以該電池電壓值範圍以獲得一商值; 將該第一電流值減去該第二電流值以獲得一第二差值;將該第二差值乘以該商值以獲得一補償值;並且依據將該補償值以及該第二電流值以獲得該操作電流值。 A motor control system adapted for use with a vehicle motor, wherein the vehicle motor operates at a range of battery voltage values, wherein the motor control system includes: a dynamometer configured to monitor the vehicle motor during a calibration period calibration to obtain a first current command table and a second current command table, wherein the first current command table and the second current command table correspond to different battery voltage values in the battery voltage value range; a vehicle battery , configured to provide a current battery voltage value during a drive; and a controller, coupled to the vehicle motor, configured to: receive the first current command table and the second current command table during the calibration period, and provide a speed command and a torque command during the running period, Using the first current command table to generate a first current command corresponding to the speed command and the torque command, and using the second current command table to generate a second current command corresponding to the speed command and the torque command , and generate an operating current command according to the current battery voltage value, the first current command and the second current command, wherein the vehicle motor operates in response to the operating current command and compensates and corrects the current provided by the vehicle motor speed and torque; wherein the first current command table records a plurality of first current commands corresponding to the torque command, and the second current command table records a plurality of second current commands corresponding to the torque command; wherein The first current command corresponds to a first current value, the second current command corresponds to a second current value, the first current value is less than the second current value, wherein the controller is further configured to utilize the current battery voltage value performing an interpolation operation on the first current value and the second current value to generate an operating current value corresponding to the operating current command; wherein the controller is further configured to: subtract the current battery voltage value from the battery a highest battery voltage value in the range of voltage values to obtain a first difference; divide the first difference by the range of battery voltage values to obtain a quotient; subtracting the second current value from the first current value to obtain a second difference; multiplying the second difference by the quotient to obtain a compensation value; and according to the compensation value and the second current value to obtain the operating current value. 如請求項4所述的馬達控制系統,其中對應於該操作電流命令的一操作電流值與該當前電池電壓值呈現負相關。 The motor control system as claimed in claim 4, wherein an operating current value corresponding to the operating current command has a negative correlation with the current battery voltage value. 如請求項4所述的馬達控制系統,還包括:一記憶體,耦接於該控制器,經配置以儲存該第一電流命令表以及該第二電流命令表。 The motor control system as claimed in claim 4, further comprising: a memory, coupled to the controller, configured to store the first current command table and the second current command table. 如請求項4所述的馬達控制系統,還包括:其中該第一電流命令表紀錄對應於該電池電壓值範圍中的一最高電池電壓值、該轉速命令以及該轉矩命令的該些第一電流命令,並且該第二電流命令表紀錄對應於該電池電壓值範圍中的一最低電池電壓值、該轉速命令以及該轉矩命令的該些第二電流命令。 The motor control system as described in claim 4, further comprising: wherein the first current command table records the first values corresponding to a highest battery voltage value in the battery voltage value range, the rotational speed command and the torque command current command, and the second current command table records the second current commands corresponding to a lowest battery voltage value in the battery voltage value range, the rotational speed command and the torque command. 如請求項4所述的馬達控制系統,其中該動力計包括:一轉矩感測器,經配置以在該標定期間感測該車用馬達施加到該動力計的一負載的一轉矩值;以及一轉速感測器,經配置以在該標定期間感測該負載被該車用馬達驅動所產生的一轉速值。 The motor control system as recited in claim 4, wherein the dynamometer includes: a torque sensor configured to sense a torque value of a load applied to the dynamometer by the vehicle motor during the calibration period and a rotational speed sensor configured to sense a rotational speed value generated by the load driven by the vehicle motor during the calibration period.
TW110127777A 2021-07-28 2021-07-28 Motor control method and motor control system TWI809461B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110127777A TWI809461B (en) 2021-07-28 2021-07-28 Motor control method and motor control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110127777A TWI809461B (en) 2021-07-28 2021-07-28 Motor control method and motor control system

Publications (2)

Publication Number Publication Date
TW202304736A TW202304736A (en) 2023-02-01
TWI809461B true TWI809461B (en) 2023-07-21

Family

ID=86661283

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127777A TWI809461B (en) 2021-07-28 2021-07-28 Motor control method and motor control system

Country Status (1)

Country Link
TW (1) TWI809461B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200410850A (en) * 2002-10-15 2004-07-01 Yamaha Motor Co Ltd Motor driven vehicle and method of sampling map data of the motor driven vehicle
CN109302117A (en) * 2018-11-30 2019-02-01 上海大郡动力控制技术有限公司 Permanent magnet synchronous motor voltage utilization automatic optimizing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200410850A (en) * 2002-10-15 2004-07-01 Yamaha Motor Co Ltd Motor driven vehicle and method of sampling map data of the motor driven vehicle
CN109302117A (en) * 2018-11-30 2019-02-01 上海大郡动力控制技术有限公司 Permanent magnet synchronous motor voltage utilization automatic optimizing method

Also Published As

Publication number Publication date
TW202304736A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
JP5295376B2 (en) Method and powertrain apparatus for adjusting a disengagement clutch in a vehicle powertrain
EP1615331B1 (en) Motor controller
EP2610528B1 (en) Electric pump system
JP3519830B2 (en) Motor control device
US20060049784A1 (en) Motor controller and electric power steering apparatus
US20020064697A1 (en) Fuel cell output characteristic estimation apparatus and output characteristic estimation method, fuel cell system and vehicle having the same, and fuel cell output control method and data storage medium
US10377355B2 (en) Electric brake device
US10486737B2 (en) Steering control device
JP2005348580A (en) Vehicle using electric motor torque
JP2012130214A (en) Motor control device and motor control method
JP5187111B2 (en) Vehicle drive control device
TWI809461B (en) Motor control method and motor control system
CN109353326B (en) Engine torque control method and device
US9954467B1 (en) Motor control device controlling several motors independently
JP2014124085A (en) Device and method for driving electric vehicle
JP2007221896A (en) Controller for vehicle
JP5866982B2 (en) Transmission test equipment
JP2009254138A (en) Motor control device
US9755564B2 (en) Controller for motor generator
JP6036292B2 (en) Vehicle control device
US20150375781A1 (en) Methods and systems for providing steering compensation
JP6331351B2 (en) Control device for hybrid vehicle
JP4376759B2 (en) Electric vehicle control device and electric vehicle using the same
JP2008273263A (en) Control device of electric power steering device
US20130278184A1 (en) Ac motor control apparatus