TWI808837B - Display device - Google Patents

Display device Download PDF

Info

Publication number
TWI808837B
TWI808837B TW111127118A TW111127118A TWI808837B TW I808837 B TWI808837 B TW I808837B TW 111127118 A TW111127118 A TW 111127118A TW 111127118 A TW111127118 A TW 111127118A TW I808837 B TWI808837 B TW I808837B
Authority
TW
Taiwan
Prior art keywords
light
layer
light beam
opening
display device
Prior art date
Application number
TW111127118A
Other languages
Chinese (zh)
Other versions
TW202345124A (en
Inventor
歐崇仁
陳鈺旻
陳建智
蔡明偉
Original Assignee
中強光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中強光電股份有限公司 filed Critical 中強光電股份有限公司
Application granted granted Critical
Publication of TWI808837B publication Critical patent/TWI808837B/en
Publication of TW202345124A publication Critical patent/TW202345124A/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)
  • Vehicle Body Suspensions (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

A display device having a pixel region and including a light emitting panel and a first optical layer is provided. The light emitting panel includes a micro light emitting element, and the micro light emitting element is configured to provide a first light beam. The first optical layer is disposed on a transmission path of the first light beam, and the first optical layer includes a first filter layer and a first opening. The first filter layer is configured to reflect the first light beam. The first opening is configured to cause the first light beam to penetrate therethrough. The first light beam is transmitted to the first opening and then leaves the display device through the pixel region.

Description

顯示裝置display device

本發明是有關於一種光學裝置,且特別是有關於一種顯示裝置。The present invention relates to an optical device, and in particular to a display device.

在現行的顯示裝置中,通常以各自獨立的三原色(R、G、B)子畫素(sub pixel)組成一個全彩畫素,再依照目標顏色調整各子畫素所提供的三原色光束的比例,以形成各種色光。然而,由於現有製程的限制,用於形成不同轉換光束的色轉換量子點需要間隔地設置,以避免不同色轉換量子點的材料混合。因此,各自獨立的三原色子畫素的區域無法緊密排列,且在近距離或是顯微鏡下仍可看到三原色各自獨立顯示的情況。如此一來,需在一定的顯示距離外,才可感受到明顯的光混合效果。此外,由於子畫素的區域無法緊密排列,在使用上容易有紗門效應(Door Effect),而影響顯示品質,進而讓使用者體驗不佳而產生不適感。In current display devices, a full-color pixel is usually composed of three primary colors (R, G, B) sub-pixels, and then the ratio of the three primary-color light beams provided by each sub-pixel is adjusted according to the target color to form various color lights. However, due to the limitations of existing manufacturing processes, the color conversion quantum dots used to form different converted light beams need to be arranged at intervals to avoid mixing of materials of different color conversion quantum dots. Therefore, the areas of independent three primary color sub-pixels cannot be closely arranged, and the independent display of the three primary colors can still be seen at close range or under a microscope. In this way, the obvious light mixing effect can only be felt outside a certain display distance. In addition, since the areas of the sub-pixels cannot be closely arranged, it is easy to have a door effect (Door Effect) in use, which affects the display quality, and then makes the user experience poor and uncomfortable.

“先前技術”段落只是用來幫助了解本發明內容,因此在“先前技術”段落所揭露的內容可能包含一些沒有構成所屬技術領域中具有通常知識者所知道的習知技術。在“先前技術”段落所揭露的內容,不代表該內容或者本發明一個或多個實施例所要解決的問題,在本發明申請前已被所屬技術領域中具有通常知識者所知曉或認知。The "Prior Art" paragraph is only used to help understand the content of the present invention, so the content disclosed in the "Prior Art" paragraph may contain some conventional technologies that do not constitute the knowledge of those with ordinary skill in the art. The content disclosed in the "Prior Art" paragraph does not mean that the content or the problems to be solved by one or more embodiments of the present invention have been known or recognized by those with ordinary knowledge in the technical field before the application of the present invention.

本發明提供一種顯示裝置,具有提高畫素密度、縮小全彩畫素尺寸等效果,且能實現各子畫素在一個畫素區域中混色,進而提供良好的顯示品質。The present invention provides a display device, which has the effects of increasing pixel density and reducing the size of full-color pixels, and can realize color mixing of each sub-pixel in a pixel area, thereby providing good display quality.

為達上述的一或部分或全部目的或是其他目的,本發明的一實施例提出一種顯示裝置。顯示裝置具有畫素區域,包括發光面板以及第一光學層。發光面板包括微型發光元件,微型發光元件用於提供第一光束。第一光學層設置在第一光束的傳遞路徑上,且第一光學層包括第一濾光層以及第一開口,第一濾光層用於反射第一光束,第一開口用於使第一光束穿透,第一光束被傳遞至第一開口後通過畫素區域離開顯示裝置。To achieve one or part or all of the above objectives or other objectives, an embodiment of the present invention provides a display device. The display device has a pixel area, including a light-emitting panel and a first optical layer. The light emitting panel includes micro light emitting elements, and the micro light emitting elements are used to provide the first light beam. The first optical layer is disposed on the transmission path of the first light beam, and the first optical layer includes a first filter layer and a first opening, the first filter layer is used for reflecting the first light beam, and the first opening is used for penetrating the first light beam, and the first light beam is delivered to the first opening and leaves the display device through the pixel area.

在本發明的一實施例中,上述的發光面板還包括波長轉換層,波長轉換層設置在第一光束的傳遞路徑上,配置於微型發光元件與第一光學層之間,波長轉換層包括波長轉換區與透光區,波長轉換區用於將第一光束轉換為第二光束,透光區用於使第一光束穿透,第一濾光層用於使第二光束穿透,畫素區域包括多個子畫素區域,且通過第一濾光層的第二光束通過畫素區域的其中一子畫素區域離開顯示裝置。In an embodiment of the present invention, the above-mentioned light-emitting panel further includes a wavelength conversion layer, the wavelength conversion layer is arranged on the transmission path of the first light beam, and is arranged between the micro-light-emitting element and the first optical layer. The wavelength conversion layer includes a wavelength conversion region and a light transmission region.

在本發明的一實施例中,上述的顯示裝置還包括第二光學層,設置在第一光束與第二光束的傳遞路徑上,配置於發光面板與第一光學層之間,第二光學層包括第二濾光層以及第二開口,第二濾光層用於使第二光束穿透並使第一光束反射,第二開口對應透光區設置,用於使第一光束穿透。In an embodiment of the present invention, the above-mentioned display device further includes a second optical layer disposed on the transmission path of the first light beam and the second light beam, and disposed between the light-emitting panel and the first optical layer. The second optical layer includes a second filter layer and a second opening. The second filter layer is used to allow the second light beam to pass through and reflect the first light beam. The second opening is provided corresponding to the light-transmitting area for the first light beam to pass through.

在本發明的一實施例中,上述的顯示裝置還包括光傳遞層,設置在第二光學層與第一光學層之間,其中通過第二開口的第一光束進入光傳遞層後被第一濾光層與第二濾光層反射,並被傳遞至第一開口後離開光傳遞層。In an embodiment of the present invention, the above-mentioned display device further includes a light transmission layer disposed between the second optical layer and the first optical layer, wherein the first light beam passing through the second opening enters the light transmission layer and is reflected by the first filter layer and the second filter layer, and is transmitted to the first opening and leaves the light transmission layer.

在本發明的一實施例中,上述的第一開口在發光面板的正投影的面積與透光區在發光面板中的面積至少部分不重疊。In an embodiment of the present invention, the area of the orthographic projection of the above-mentioned first opening on the light-emitting panel does not at least partially overlap with the area of the light-transmitting region in the light-emitting panel.

在本發明的一實施例中,上述的顯示裝置還包括光傳遞層,配置於發光面板與第一光學層之間,其中發光面板還包括背板,第一光束在進入光傳遞層後被第一濾光層與背板反射,並被傳遞至第一開口後離開光傳遞層。In an embodiment of the present invention, the above-mentioned display device further includes a light transmission layer disposed between the light-emitting panel and the first optical layer, wherein the light-emitting panel further includes a back plate, and the first light beam is reflected by the first filter layer and the back plate after entering the light transmission layer, and is transmitted to the first opening and leaves the light transmission layer.

在本發明的一實施例中,上述的畫素區域包括多個子畫素區域,微型發光元件為第一微型發光元件,發光面板還包括第二微型發光元件,第二微型發光元件用於提供第二光束,第一濾光層用於使第二光束穿透,通過第一濾光層的第二光束通過畫素區域的其中一子畫素區域離開顯示裝置,且每一子畫素區域分別對應第一光束與第二光束。In an embodiment of the present invention, the above-mentioned pixel area includes a plurality of sub-pixel areas, the micro light-emitting element is a first micro-light-emitting element, and the light-emitting panel further includes a second micro-light-emitting element, the second micro-light-emitting element is used to provide a second light beam, the first filter layer is used to transmit the second light beam, the second light beam passing through the first filter layer leaves the display device through one of the sub-pixel areas of the pixel area, and each sub-pixel area corresponds to the first light beam and the second light beam.

在本發明的一實施例中,上述的顯示裝置還包括第三光學層,設置在第一光束與第二光束的傳遞路徑上,配置於發光面板與第一光學層之間,第三光學層包括第三濾光層以及第三開口,且第一濾光層用於反射第一光束,並使第一光束以外的光束穿透,第三濾光層用於反射第二光束,並使第二光束以外的光束穿透。In an embodiment of the present invention, the above-mentioned display device further includes a third optical layer, disposed on the transmission path of the first light beam and the second light beam, and disposed between the light-emitting panel and the first optical layer, the third optical layer includes a third filter layer and a third opening, and the first filter layer is used to reflect the first light beam and allow light beams other than the first light beam to pass through, and the third filter layer is used to reflect the second light beam and allow light beams other than the second light beam to pass through.

在本發明的一實施例中,上述的顯示裝置還包括多個光傳遞層,其中任一光傳遞層位於第一光學層、第三光學層與發光面板的任兩者之間,且第一光束通過第一光學層的第一開口離開至少部分光傳遞層,第二光束通過第三光學層的第二開口離開至少部分光傳遞層。In an embodiment of the present invention, the above-mentioned display device further includes a plurality of light transmission layers, wherein any light transmission layer is located between any two of the first optical layer, the third optical layer, and the light emitting panel, and the first light beam leaves at least part of the light transmission layer through the first opening of the first optical layer, and the second light beam leaves at least part of the light transmission layer through the second opening of the third optical layer.

在本發明的一實施例中,上述的顯示裝置還包括多個微結構層,分別具有一微結構區域,其中各微結構層的微結構區域分別對應第一開口以及第二開口設置。In an embodiment of the present invention, the above-mentioned display device further includes a plurality of microstructure layers, each having a microstructure region, wherein the microstructure regions of each microstructure layer are respectively disposed corresponding to the first opening and the second opening.

在本發明的一實施例中,上述的第一開口在發光面板的正投影的範圍與第一微型發光元件在發光面板的範圍至少部分不重疊,且第二開口在發光面板的正投影的範圍與第二微型發光元件在發光面板的範圍的至少部分不重疊。In an embodiment of the present invention, the above-mentioned range of the orthographic projection of the first opening on the light-emitting panel does not overlap at least part of the range of the first micro-light emitting element on the light-emitting panel, and the range of the orthographic projection of the second opening on the light-emitting panel does not overlap at least part of the range of the second micro-light-emitting element on the light-emitting panel.

在本發明的一實施例中,上述的顯示裝置還包括微結構層,具有微結構區域,其中第一光學層位於微結構層與發光面板之間,且微結構區域對應第一開口設置。In an embodiment of the present invention, the above-mentioned display device further includes a microstructure layer having a microstructure area, wherein the first optical layer is located between the microstructure layer and the light emitting panel, and the microstructure area is disposed corresponding to the first opening.

在本發明的一實施例中,上述的顯示裝置還包括光學膜層,覆蓋發光面板,配置於發光面板與第一光學層之間。In an embodiment of the present invention, the above-mentioned display device further includes an optical film layer covering the light-emitting panel and disposed between the light-emitting panel and the first optical layer.

基於上述,在本發明的一實施例的顯示裝置中,通過在光學層中設置的開口來定義用於顯示部分色彩的子畫素區域,並由此可控制多個子畫素區域之間的相對位置關係。進而,可由此實現各子畫素在一個畫素區域中混色,且顯示裝置的多個畫素區域可緊密排列,使顯示裝置具有高畫素密度、小畫素尺寸以及高解析度等效果,進而提供良好的顯示品質。Based on the above, in the display device according to an embodiment of the present invention, the sub-pixel regions used for displaying partial colors are defined by the openings provided in the optical layer, and thus the relative positional relationship between the multiple sub-pixel regions can be controlled. Furthermore, color mixing of each sub-pixel in one pixel area can be achieved thereby, and multiple pixel areas of the display device can be closely arranged, so that the display device has effects such as high pixel density, small pixel size, and high resolution, thereby providing good display quality.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

有關本發明的前述及其他技術內容、特點與功效,在以下配合參考圖式的一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。The aforementioned and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of a preferred embodiment with reference to the drawings. The directional terms mentioned in the following embodiments, such as: up, down, left, right, front or back, etc., are only directions referring to the attached drawings. Accordingly, the directional terms used are for the purpose of illustration and not for the purpose of limiting the invention.

圖1是本發明的一實施例的顯示裝置的結構示意圖。請參照圖1,顯示裝置100包括發光面板110、光傳遞層120、第一光學層130以及微結構層140。光傳遞層120配置於發光面板110與第一光學層130之間,第一光學層130位於微結構層140與發光面板110之間。FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present invention. Referring to FIG. 1 , the display device 100 includes a light emitting panel 110 , a light transmission layer 120 , a first optical layer 130 and a microstructure layer 140 . The light transmission layer 120 is disposed between the light emitting panel 110 and the first optical layer 130 , and the first optical layer 130 is located between the microstructure layer 140 and the light emitting panel 110 .

具體而言,在本實施例中,發光面板110可包括一或多個微型發光元件WMD,各微型發光元件WMD分別用於提供第一光束L。微型發光元件WMD可以是用以發出各色光的發光二極體(Light-emitting Diode, LED)、雷射二極體(Laser Diode, LD)或其組合、或其他合適的光源,本發明不以此限。舉例而言,在本實施例中,微型發光元件WMD為白光微型發光元件,可包括用以發出藍光、紅光、綠光的微型發光二極體。第一光束L可為白光光束或其他由控制器(未示於圖中)調整混光比例後而形成的其他色光光束。在其他的實施例中,微型發光元件WMD可依據使用需求搭配其他光學元件以提供所需的第一光束L。需說明的是,在圖1中,僅繪示了每個微型發光元件WMD僅發出一道第一光束L,在實際的應用中,每個微型發光元件WMD都可以發出多道第一光束L。Specifically, in this embodiment, the light emitting panel 110 may include one or more micro light emitting devices WMD, and each micro light emitting device WMD is used to provide the first light beam L respectively. The micro-light emitting device WMD may be a Light-emitting Diode (LED), a Laser Diode (LD) or a combination thereof, or other suitable light sources for emitting light of various colors, and the present invention is not limited thereto. For example, in this embodiment, the micro light emitting device WMD is a white light micro light emitting device, which may include micro light emitting diodes for emitting blue light, red light, and green light. The first light beam L can be a white light beam or other colored light beams formed by adjusting the light mixing ratio by a controller (not shown in the figure). In other embodiments, the micro-light emitting device WMD can be combined with other optical components to provide the required first light beam L according to usage requirements. It should be noted that, in FIG. 1 , each micro light emitting device WMD only emits one first light beam L, but in actual application, each micro light emitting device WMD can emit multiple first light beams L.

更具體而言,如圖1所示,第一光學層130設置在第一光束L的傳遞路徑上,且第一光學層130包括第一濾光層131以及第一開口132,第一濾光層131用於反射第一光束L,第一開口132用於使第一光束L穿透。在本實施例中,第一光學層130例如為具有第一開口132的反射層。此外,發光面板110還包括背板B。更具體而言,光傳遞層120配置於背板B與第一光學層130之間。如圖1所示,第一光束L在進入光傳遞層120後可被第一濾光層131與背板B來回反射,並被傳遞至第一開口132後離開光傳遞層120。More specifically, as shown in FIG. 1 , the first optical layer 130 is disposed on the transmission path of the first light beam L, and the first optical layer 130 includes a first filter layer 131 and a first opening 132, the first filter layer 131 is used to reflect the first light beam L, and the first opening 132 is used to allow the first light beam L to pass through. In this embodiment, the first optical layer 130 is, for example, a reflective layer having a first opening 132 . In addition, the light-emitting panel 110 also includes a backplane B. As shown in FIG. More specifically, the light transmission layer 120 is disposed between the backplane B and the first optical layer 130 . As shown in FIG. 1 , the first light beam L can be reflected back and forth between the first filter layer 131 and the back plate B after entering the light transmission layer 120 , and is delivered to the first opening 132 to leave the light transmission layer 120 .

在本實施例中,微結構層140具有微結構區域MR,且微結構區域MR對應第一開口132設置。微結構區域MR中設有多個微結構(未圖示),可用以調整第一光束L的出光角度。微結構例如可為濾光片(color filter)或是微透鏡(micro lens)。如圖1所示,通過第一開口132離開光傳遞層120的第一光束L可通過微結構後正向出光,進而提升顯示裝置100的正向輝度(brightness)。在一實施例中,微結構層140與第一光學層130之間具有基板(未示於圖中),通過第一開口132的第一光束L可通過基板後進入微結構層140。In this embodiment, the microstructure layer 140 has a microstructure region MR, and the microstructure region MR is disposed corresponding to the first opening 132 . A plurality of microstructures (not shown) are disposed in the microstructure region MR, which can be used to adjust the light emitting angle of the first light beam L. As shown in FIG. The microstructure can be, for example, a color filter or a micro lens. As shown in FIG. 1 , the first light beam L exiting the light transmission layer 120 through the first opening 132 can pass through the microstructure and emit light in the forward direction, thereby improving the brightness of the display device 100 in the forward direction. In one embodiment, there is a substrate (not shown in the figure) between the microstructure layer 140 and the first optical layer 130 , and the first light beam L passing through the first opening 132 can enter the microstructure layer 140 after passing through the substrate.

在本實施例中,第一光束L為顯示裝置100的顯示光束。位於微結構層140上的畫素區域PX即為第一光束L的出光區域,而此畫素區域PX會與第一開口132以及微結構區域MR相對應。也就是說,第一光束L被傳遞至第一開口132後通過畫素區域PX離開顯示裝置100,並由此提供顯示光束。In this embodiment, the first light beam L is the display light beam of the display device 100 . The pixel area PX on the microstructure layer 140 is the light emitting area of the first light beam L, and the pixel area PX corresponds to the first opening 132 and the microstructure area MR. That is to say, the first light beam L is delivered to the first opening 132 and leaves the display device 100 through the pixel region PX, thereby providing a display light beam.

圖2是本發明的另一實施例的顯示裝置的結構示意圖。圖3A是圖2的顯示裝置的畫素區域的正視示意圖。圖3B是圖3A的顯示裝置的一個畫素區域的放大示意圖。請參照圖2,本實施例的顯示裝置200與圖1的顯示裝置100類似,而兩者的差異如下所述。在本實施例中,發光面板210的微型發光元件BD具體化為藍光微型發光元件,第一光束BL可為藍光光束,其中第一光束BL的發光波長例如介於430奈米至480奈米之間的範圍。第一光學層230例如為具有第一開口232的帶通濾光片(Bandpass Filter)。第一光學層230的第一濾光層231用以反射第一光束BL,並使第一光束BL以外的光束穿透。此外,顯示裝置200還可選擇性地設置光學膜層MS,光學膜層MS覆蓋發光面板210,即,光學膜層MS配置於發光面板210與第一光學層230之間,可做為保護層使用。FIG. 2 is a schematic structural diagram of a display device according to another embodiment of the present invention. FIG. 3A is a schematic front view of a pixel area of the display device in FIG. 2 . FIG. 3B is an enlarged schematic view of a pixel area of the display device shown in FIG. 3A . Referring to FIG. 2 , the display device 200 of this embodiment is similar to the display device 100 of FIG. 1 , and the differences between the two are as follows. In this embodiment, the miniature light emitting device BD of the light emitting panel 210 is embodied as a blue micro light emitting device, and the first light beam BL can be a blue light beam, wherein the emission wavelength of the first light beam BL ranges from 430 nm to 480 nm, for example. The first optical layer 230 is, for example, a bandpass filter having a first opening 232 . The first filter layer 231 of the first optical layer 230 is used for reflecting the first light beam BL and allowing light beams other than the first light beam BL to pass through. In addition, the display device 200 can optionally be provided with an optical film layer MS, which covers the light-emitting panel 210, that is, the optical film layer MS is disposed between the light-emitting panel 210 and the first optical layer 230, and can be used as a protective layer.

進一步而言,如圖2所示,在本實施例中,發光面板210還包括波長轉換層211,波長轉換層211設置在第一光束BL的傳遞路徑上,並配置於微型發光元件BD與第一光學層230之間。更詳細而言,在本實施例中,波長轉換層211包括波長轉換區WR與透光區TR以及多個隔絕結構BM,其中隔絕結構BM用以界定波長轉換區WR以及透光區TR的邊界。隔絕結構BM的材質可包括黑色樹脂或吸光材料,用於吸收或遮擋第一光束BL。Further, as shown in FIG. 2, in this embodiment, the light-emitting panel 210 further includes a wavelength conversion layer 211, and the wavelength conversion layer 211 is disposed on the transmission path of the first light beam BL, and is disposed between the micro light-emitting element BD and the first optical layer 230. More specifically, in this embodiment, the wavelength conversion layer 211 includes a wavelength conversion region WR, a light transmission region TR, and a plurality of isolation structures BM, wherein the isolation structures BM are used to define the boundaries of the wavelength conversion region WR and the transmission region TR. The material of the isolation structure BM may include black resin or light-absorbing material for absorbing or blocking the first light beam BL.

在本實施例中,波長轉換區WR用於將第一光束BL轉換(Convert)為第二光束RL、GL。透光區TR用於使第一光束BL穿透。舉例而言,波長轉換層211具有第一波長轉換層211R、第二波長轉換層211G與透光層211B,其中第一波長轉換層211R與第二波長轉換層211G對應波長轉換區WR設置,而透光層211B對應透光區TR設置。並且,如圖2所示,第一波長轉換層211R、第二波長轉換層211G以及透光層211B在波長轉換層211的一排列方向上間隔地排列。具體而言,多個隔絕結構BM分別設置於第一波長轉換層211R、第二波長轉換層211G以及透光層211B之間。在一實施例中,第一波長轉換層211R、第二波長轉換層211G以及透光層211B可依使用需求而設計,例如第一波長轉換層211R、第二波長轉換層211G以及透光層211B可被圖案化(patterning)。或者,在垂直於光束出射方向的波長轉換層211的平面上,第一波長轉換層211R、第二波長轉換層211G以及透光層211B可在波長轉換層211上呈矩陣排列。In this embodiment, the wavelength conversion region WR is used to convert (Convert) the first light beam BL into the second light beam RL, GL. The light transmission region TR is used to transmit the first light beam BL. For example, the wavelength conversion layer 211 has a first wavelength conversion layer 211R, a second wavelength conversion layer 211G and a transparent layer 211B, wherein the first wavelength conversion layer 211R and the second wavelength conversion layer 211G are arranged corresponding to the wavelength conversion region WR, and the transparent layer 211B is arranged corresponding to the transparent region TR. Moreover, as shown in FIG. 2 , the first wavelength conversion layer 211R, the second wavelength conversion layer 211G, and the light-transmitting layer 211B are arranged at intervals in an arrangement direction of the wavelength conversion layer 211 . Specifically, a plurality of isolation structures BM are respectively disposed between the first wavelength conversion layer 211R, the second wavelength conversion layer 211G and the transparent layer 211B. In one embodiment, the first wavelength conversion layer 211R, the second wavelength conversion layer 211G, and the transparent layer 211B can be designed according to usage requirements, for example, the first wavelength conversion layer 211R, the second wavelength conversion layer 211G, and the transparent layer 211B can be patterned. Alternatively, the first wavelength conversion layer 211R, the second wavelength conversion layer 211G, and the transparent layer 211B may be arranged in a matrix on the wavelength conversion layer 211 on the plane of the wavelength conversion layer 211 perpendicular to the light emitting direction.

在本實施例中,第一波長轉換層211R、第二波長轉換層211G的材料例如是量子點(quantum dot)材料或奈米級的螢光粉(phosphor),而用以將第一光束BL分別轉換為第二光束RL以及第二光束GL,其中第二光束RL、GL的發光波長與第一光束BL的發光波長不相同。舉例而言,在本實施例中,第二光束RL、GL的發光波長例如介於580奈米至650奈米之間的範圍或是介於490奈米至540奈米之間的範圍,而可分別形成顯示裝置200所提供的顯示光束的紅光部分或綠光部分。在本實施例中,透光層211B的材料例如是可讓第一光束BL直接通過的光學材料或光學膠材。在本實施例中,第一光束BL可直接作為顯示用的藍光。但在其他實施例中,為了提高藍光的色純度(即,縮小藍光波長的分布範圍)或者在使用其他光源的情況下為了轉換出藍光,波長轉換層211也可在透光層211B中選擇設置藍光波長轉換材料以獲得符合需求的藍光。在一實施例中,微型發光元件BD與波長轉換層211之間也可設置濾波片,用以讓特定波長的第一光束BL通過,以提高第一光束BL的色純度。In this embodiment, the materials of the first wavelength conversion layer 211R and the second wavelength conversion layer 211G are, for example, quantum dot materials or nanoscale phosphors, and are used to convert the first light beam BL into the second light beam RL and the second light beam GL respectively, wherein the emission wavelengths of the second light beams RL and GL are different from the light emission wavelengths of the first light beam BL. For example, in this embodiment, the emission wavelengths of the second light beams RL and GL are, for example, in the range of 580 nm to 650 nm or in the range of 490 nm to 540 nm, which can respectively form the red light part or the green light part of the display light beam provided by the display device 200. In this embodiment, the material of the transparent layer 211B is, for example, an optical material or an optical glue that allows the first light beam BL to pass through directly. In this embodiment, the first light beam BL can be directly used as blue light for display. However, in other embodiments, in order to improve the color purity of blue light (that is, to narrow the distribution range of blue light wavelengths) or to convert blue light in the case of using other light sources, the wavelength conversion layer 211 can also select a blue light wavelength conversion material in the light-transmitting layer 211B to obtain blue light that meets the requirements. In an embodiment, a filter may also be provided between the micro light emitting element BD and the wavelength conversion layer 211 to allow the first light beam BL of a specific wavelength to pass through, so as to improve the color purity of the first light beam BL.

此外,在本實施例中,顯示裝置200還包括第二光學層250,設置在第一光束BL與第二光束RL、GL的傳遞路徑上,配置於發光面板210與第一光學層230之間,且光傳遞層120設置在第二光學層250與第一光學層230之間。進一步而言,第二光學層250包括第二濾光層251以及第二開口252,第二濾光層251用於使第二光束RL、GL穿透並使第一光束BL反射,第二開口252對應透光區TR設置,用於使第一光束BL穿透,並且,第一光學層230的第一濾光層231可用於使第二光束RL、GL穿透。如此,如圖2所示,通過第二開口252的第一光束BL進入光傳遞層120後被第一濾光層231與第二濾光層251來回反射,並被傳遞至第一開口232後離開光傳遞層120。第二光束RL、GL不會被第一光學層230以及第二光學層250吸收或反射,第二光束RL、GL可直接穿透第二光學層250的第二濾光層251與第一光學層230的第一濾光層231後出光。也就是說,在本實施例中,第一光學層230、光傳遞層120、第二光學層250組成了層狀的波導結構,而使特定波段的光(即,第一光束BL)僅能在特定位置(即,第一開口232或第二開口252處)通過。In addition, in this embodiment, the display device 200 further includes a second optical layer 250, disposed on the transmission path of the first light beam BL and the second light beam RL, GL, disposed between the light emitting panel 210 and the first optical layer 230, and the light transmission layer 120 is disposed between the second optical layer 250 and the first optical layer 230. Further, the second optical layer 250 includes a second filter layer 251 and a second opening 252. The second filter layer 251 is used to pass through the second light beams RL and GL and reflect the first light beam BL. The second opening 252 is set corresponding to the light transmission region TR and is used to pass through the first light beam BL. Moreover, the first filter layer 231 of the first optical layer 230 can be used to pass through the second light beams RL and GL. Thus, as shown in FIG. 2 , the first light beam BL passing through the second opening 252 enters the light transmission layer 120 and is reflected back and forth by the first filter layer 231 and the second filter layer 251 , and is delivered to the first opening 232 and then leaves the light transmission layer 120 . The second light beams RL and GL will not be absorbed or reflected by the first optical layer 230 and the second optical layer 250, and the second light beams RL and GL can directly pass through the second filter layer 251 of the second optical layer 250 and the first filter layer 231 of the first optical layer 230 to emerge. That is to say, in this embodiment, the first optical layer 230, the light transmission layer 120, and the second optical layer 250 form a layered waveguide structure, so that light of a specific wavelength band (that is, the first light beam BL) can only pass through a specific position (that is, the first opening 232 or the second opening 252).

在本實施例中,由於顯示裝置200的顯示光束中的三原色光束分別由第一光束BL與第二光束RL、GL組成,因此,顯示裝置200的畫素區域PX包括多個子畫素區域PB、PG、PR,且這些子畫素區域PB、PG、PR分別對應於第一光束BL與第二光束RL、GL的出光區域。也就是說,用於顯示紅光或綠光的子畫素區域PG、PR實質上對應第二光束RL、GL的出光區域,用於顯示藍光的子畫素區域PB實質上與第一開口232相對應。In this embodiment, since the three primary color light beams in the display light beams of the display device 200 are respectively composed of the first light beam BL and the second light beams RL, GL, the pixel area PX of the display device 200 includes a plurality of sub-pixel areas PB, PG, PR, and these sub-pixel areas PB, PG, PR correspond to the light emitting areas of the first light beam BL and the second light beams RL, GL respectively. That is to say, the sub-pixel regions PG and PR for displaying red light or green light substantially correspond to the light emitting regions of the second light beams RL and GL, and the sub-pixel region PB for displaying blue light substantially corresponds to the first opening 232 .

如此,在本實施例中,由各子畫素區域PB、PG、PR對應離開顯示裝置200的第一光束BL以及第二光束RL、GL可達到混光的效果,以提供所需的顯示光束。In this way, in this embodiment, the first light beam BL and the second light beam RL, GL leaving the display device 200 corresponding to each sub-pixel region PB, PG, PR can achieve the light mixing effect, so as to provide the desired display light beam.

進一步而言,在本實施例中,由於第一光束BL需通過第一開口232才能離開光傳遞層120並出光,因此,顯示藍光的子畫素區域PB實質上會根據第一開口232的位置而定義,進一步而言,第一開口232的輪廓也可以決定顯示藍光的子畫素區域PB的形狀。在本實施例中,不對第一開口232以及第二開口252的位置、大小以及外形進行限定,而是可依據產品的實際需求對第一開口232以及第二開口252的位置、大小以及外形進行對應的設計,以使由各子畫素區域PB、PG、PR對應離開顯示裝置200的第一光束BL以及第二光束RL、GL可達到需要的混光效果,或是也可由此調整全彩畫素區域(即畫素區域PX)的邊界,進而達到控制畫素區域PX的尺寸控制或小型化的效果。如此,通過設置第一開口232的方式,可調整子畫素區域PB的位置,以實現各子畫素在一個畫素區域中混色,進而提供良好的顯示品質。Furthermore, in this embodiment, since the first light beam BL needs to pass through the first opening 232 to leave the light transmission layer 120 and emit light, the sub-pixel area PB for displaying blue light is essentially defined according to the position of the first opening 232. Furthermore, the outline of the first opening 232 can also determine the shape of the sub-pixel area PB for displaying blue light. In this embodiment, the position, size, and shape of the first opening 232 and the second opening 252 are not limited, but the position, size, and shape of the first opening 232 and the second opening 252 can be designed according to the actual needs of the product, so that the first light beam BL and the second light beam RL, GL corresponding to the sub-pixel areas PB, PG, and PR leaving the display device 200 can achieve the required light mixing effect, or the boundary of the full-color pixel area (i.e., the pixel area PX) can also be adjusted accordingly, and then control the picture. The effect of size control or miniaturization of the pixel area PX. In this way, by setting the first opening 232, the position of the sub-pixel area PB can be adjusted to achieve color mixing of each sub-pixel in one pixel area, thereby providing good display quality.

舉例而言,如圖2、圖3A與圖3B所示,第一開口232在發光面板210的正投影的範圍與透光區TR在發光面板210中的範圍至少部分不重疊,而可使顯示藍光的子畫素區域PB偏離了波長轉換層211的透光區TR的對應位置。並且,如圖3A所示,第一開口232在發光面板210的正投影的範圍與用於形成第二光束RL、GL的波長轉換區WR在發光面板210中的範圍部分重疊。舉例而言,如圖2、圖3A與圖3B所示,用於顯示綠光的子畫素區域PG實質上可與用於顯示藍光的子畫素區域PB重疊而形成青光區域PP,如此,可實現各子畫素在一個畫素區域中混色。For example, as shown in FIG. 2 , FIG. 3A and FIG. 3B , the range of the orthographic projection of the first opening 232 on the light-emitting panel 210 does not at least partially overlap the range of the light-transmitting region TR in the light-emitting panel 210 , so that the sub-pixel region PB displaying blue light deviates from the corresponding position of the light-transmitting region TR of the wavelength conversion layer 211. Moreover, as shown in FIG. 3A , the range of the orthographic projection of the first opening 232 on the light emitting panel 210 partially overlaps the range of the wavelength conversion region WR for forming the second light beams RL and GL in the light emitting panel 210 . For example, as shown in FIG. 2, FIG. 3A and FIG. 3B, the sub-pixel region PG for displaying green light can substantially overlap with the sub-pixel region PB for displaying blue light to form a blue light region PP. In this way, color mixing of each sub-pixel in one pixel region can be realized.

另一方面,通過設置第一開口232的方式亦可使顯示裝置200具有提高畫素密度、縮小全彩畫素尺寸等效果。以下,將搭配圖4至圖5進行進一步地解說。On the other hand, by providing the first opening 232 , the display device 200 can also have effects such as increasing the pixel density and reducing the full-color pixel size. Hereinafter, it will be further explained with reference to FIG. 4 to FIG. 5 .

圖4至圖5是圖2的顯示裝置的不同畫素區域的正視示意圖。如圖4至圖5所示,第一光學層230的第一開口232在發光面板210的正投影的範圍與隔絕結構BM在發光面板210的正投影的範圍至少有部分重疊。也就是說,用於顯示藍光的子畫素區域PB實質上涵蓋了對應在現行技術中無法用於發光的隔絕結構BM的部分區域。如此,可使各子畫素區域PB、PG、PR緊密排列,而可縮小畫素區域PX的尺寸,進而實現高畫素密度、小畫素尺寸以及高解析度的效果。舉例而言,如圖5所示,當第一光學層230的第一開口232在發光面板210的正投影的範圍與第一波長轉換層211R及第二波長轉換層211G的至少任一者在發光面板210中的範圍的邊界彼此相鄰時,用於顯示藍光的子畫素區域PB實質上涵蓋了對應第一波長轉換層211R及第二波長轉換層211G之間的隔絕結構BM的區域的範圍,而使用於顯示藍光的子畫素區域PB、用於顯示綠光的子畫素區域PG與用於顯示紅光的子畫素區域PR可緊密相鄰,如此,顯示裝置200可達到高子畫素密度以及高解析度的效果,進而提供良好的顯示品質。4 to 5 are schematic front views of different pixel areas of the display device shown in FIG. 2 . As shown in FIG. 4 to FIG. 5 , the range of the orthographic projection of the first opening 232 of the first optical layer 230 on the light emitting panel 210 at least partially overlaps the range of the orthographic projection of the isolation structure BM on the light emitting panel 210 . That is to say, the sub-pixel area PB for displaying blue light substantially covers a part of the area corresponding to the isolation structure BM that cannot be used for emitting light in the current technology. In this way, the sub-pixel regions PB, PG, PR can be closely arranged, and the size of the pixel region PX can be reduced, thereby realizing the effects of high pixel density, small pixel size and high resolution. For example, as shown in FIG. 5 , when the range of the orthographic projection of the first opening 232 of the first optical layer 230 on the light-emitting panel 210 and the boundary of at least any one of the first wavelength conversion layer 211R and the second wavelength conversion layer 211G in the light-emitting panel 210 are adjacent to each other, the sub-pixel area PB for displaying blue light substantially covers the range corresponding to the area of the isolation structure BM between the first wavelength conversion layer 211R and the second wavelength conversion layer 211G, and the sub-pixel area for displaying blue light The pixel area PB, the sub-pixel area PG for displaying green light, and the sub-pixel area PR for displaying red light can be closely adjacent to each other. In this way, the display device 200 can achieve high sub-pixel density and high resolution, thereby providing good display quality.

如此一來,通過在第一光學層230中設置的第一開口232來定義用於顯示部分光束的子畫素區域PB,並由第一開口232可控制多個子畫素區域PB、PG、PR之間的相對位置關係。進而,可實現各子畫素在一個畫素區域中混色,且顯示裝置的多個子畫素區域PB、PG、PR可緊密排列,使顯示裝置200具有高畫素密度、小畫素尺寸以及高解析度的效果,進而提供良好的顯示品質。In this way, the first opening 232 provided in the first optical layer 230 defines the sub-pixel region PB for displaying part of the light beam, and the first opening 232 can control the relative positional relationship between the plurality of sub-pixel regions PB, PG, PR. Furthermore, color mixing of each sub-pixel in one pixel area can be realized, and the multiple sub-pixel areas PB, PG, and PR of the display device can be closely arranged, so that the display device 200 has the effects of high pixel density, small pixel size, and high resolution, thereby providing good display quality.

圖6是本發明的另一實施例的顯示裝置的結構示意圖。請參照圖6,本實施例的顯示裝置300與圖2的顯示裝置200類似,而兩者的差異如下所述。在本實施例中,發光面板310的微型發光元件為第一微型發光元件BMD,第一微型發光元件BMD例如為藍光微型發光元件,且發光面板310還包括多個第二微型發光元件RMD、GMD,第二微型發光元件RMD、GMD例如為紅光微型發光元件或綠光微型發光元件,而可用於提供第二光束RL、GL。也就是說,發光面板310通過第一微型發光元件BMD與第二微型發光元件RMD、GMD的配置,而可省略圖2的波長轉換層211的配置。FIG. 6 is a schematic structural diagram of a display device according to another embodiment of the present invention. Please refer to FIG. 6 , the display device 300 of this embodiment is similar to the display device 200 of FIG. 2 , and the differences between the two are as follows. In this embodiment, the micro light emitting element of the light emitting panel 310 is a first micro light emitting element BMD, and the first micro light emitting element BMD is, for example, a blue light micro light emitting element, and the light emitting panel 310 further includes a plurality of second micro light emitting elements RMD, GMD. That is to say, the light emitting panel 310 can omit the arrangement of the wavelength conversion layer 211 in FIG. 2 through the arrangement of the first micro light emitting device BMD and the second micro light emitting device RMD, GMD.

另一方面,在本實施例中,顯示裝置300 還包括多個第三光學層350R、350G,且第三光學層350R、350G分別具有不同的第三開口352R、352G,且第三光學層350R、350G的第三濾光層351R、351G分別可對應不同的第二微型發光元件RMD、GMD所提供的第二光束RL、GL提供不同的光學作用,以分別定義不同的子畫素區域PG、PR。On the other hand, in this embodiment, the display device 300 further includes a plurality of third optical layers 350R, 350G, and the third optical layers 350R, 350G have different third openings 352R, 352G respectively, and the third filter layers 351R, 351G of the third optical layers 350R, 350G can respectively correspond to different second light beams RL, GL provided by different second micro light-emitting devices RMD, GMD to provide different optical functions, so as to define different sprites respectively prime area PG, PR.

舉例而言,如圖6所示,第三光學層350R 的第三濾光層351R用於反射作為紅光的第二光束RL,並使紅光以外的光束穿透,而第三光學層350G的第三濾光層351G用於反射作為綠光的第二光束GL,並使綠光以外的光束穿透。如此,作為紅光的第二光束RL僅能從第三光學層350R的第三開口352R出光,而作為綠光的第二光束GL僅能從第三光學層350G的第三開口352G出光。如此,用於顯示紅光或綠光的子畫素區域PG、PR實質上亦可被不同的第三開口352R、352G所定義。這也就是說,在本實施例中,第三光學層350R、350G的第三濾光層351R、351G可分別用於反射第二光束RL、GL,並分別使第二光束RL、GL以外的光束穿透。如此,可形成有多個用於傳遞第二光束RL的光傳遞層320R、用於傳遞第二光束GL的光傳遞層320G、用於傳遞第二光束BL的光傳遞層320B。For example, as shown in FIG. 6 , the third filter layer 351R of the third optical layer 350R is used to reflect the second light beam RL which is red light and transmit light beams other than red light, while the third filter layer 351G of the third optical layer 350G is used to reflect the second light beam GL which is green light and to allow light beams other than green light to pass through. In this way, the second light beam RL as red light can only emit light from the third opening 352R of the third optical layer 350R, and the second light beam GL as green light can only emit light from the third opening 352G of the third optical layer 350G. In this way, the sub-pixel regions PG, PR for displaying red light or green light can also be substantially defined by different third openings 352R, 352G. That is to say, in this embodiment, the third filter layers 351R, 351G of the third optical layers 350R, 350G can respectively reflect the second light beams RL, GL, and respectively transmit light beams other than the second light beams RL, GL. In this way, a plurality of light transmission layers 320R for transmitting the second light beam RL, light transmission layers 320G for transmitting the second light beam GL, and light transmission layers 320B for transmitting the second light beam BL may be formed.

舉例而言,光傳遞層320R可為配置於發光面板310的背板B與第三光學層350R之間的各光學層(即,位於第二微型發光元件RMD與第三光學層350R之間的光傳遞層120以及光學膜層MS)所形成的多層結構,使來自第二微型發光元件RMD的第二光束RL在第三濾光層351R與背板B之間來回反射傳遞,並由第三光學層350R的第三開口352R離開後,再通過其他光學層(即,位於第三光學層350R與最上方的微結構層140之間的光傳遞層120與微結構層140、第三光學層350G、第一光學層230)並由子畫素區域PR出光。For example, the light transmission layer 320R may be a multi-layer structure formed by optical layers disposed between the backplane B of the light emitting panel 310 and the third optical layer 350R (that is, the light transmission layer 120 and the optical film layer MS between the second micro light emitting device RMD and the third optical layer 350R), so that the second light beam RL from the second micro light emitting device RMD is reflected back and forth between the third filter layer 351R and the backplane B, and passes through the third opening 352R of the third optical layer 350R After leaving, it passes through other optical layers (ie, the light transmission layer 120 and the microstructure layer 140 between the third optical layer 350R and the uppermost microstructure layer 140, the third optical layer 350G, and the first optical layer 230) and emits light from the sub-pixel region PR.

類似地,光傳遞層320G可為配置於發光面板310的背板B與第三光學層350G之間的各光學層(即,位於第二微型發光元件GMD與第三光學層350G之間的光傳遞層120與微結構層140、光學膜層MS以及第三光學層350R) 所形成的多層結構,使來自第二微型發光元件GMD的第二光束GL在第三濾光層351G與背板B之間來回反射傳遞,由第三光學層350G 的第三開口352G離開後,再通過其他光學層(即,位於第三光學層350G與最上方的微結構層140之間的光傳遞層120與微結構層140、第一光學層230) 並由子畫素區域PG出光。Similarly, the light transmission layer 320G may be a multi-layer structure formed by the optical layers disposed between the backplane B of the light emitting panel 310 and the third optical layer 350G (that is, the light transmission layer 120 and the microstructure layer 140, the optical film layer MS, and the third optical layer 350R between the second micro light emitting device GMD and the third optical layer 350G), so that the second light beam GL from the second micro light emitting device GMD is reflected and transmitted back and forth between the third filter layer 351G and the backplane B. After the third opening 352G of the third optical layer 350G leaves, it passes through other optical layers (ie, the light transmission layer 120 and the microstructure layer 140 located between the third optical layer 350G and the uppermost microstructure layer 140, and the first optical layer 230) and emits light from the sub-pixel region PG.

類似地,光傳遞層320B可為配置於發光面板310的背板B與第一光學層230之間的各光學層(即,位於第一微型發光元件BMD與第一光學層230之間的光傳遞層120與微結構層140、光學膜層MS、第三光學層350R以及第三光學層350G)所形成的多層結構,使來自第一微型發光元件BMD的第一光束BL在第一濾光層231與背板B之間來回反射傳遞,由第一光學層230的第一開口232離開通過其他光學層(即,位於最上方的微結構層140與光傳遞層120) 並由子畫素區域PB出光。Similarly, the light transmission layer 320B can be a multilayer structure formed by the optical layers disposed between the backplane B of the light emitting panel 310 and the first optical layer 230 (that is, the light transmission layer 120 and the microstructure layer 140 between the first micro light emitting device BMD and the first optical layer 230, the optical film layer MS, the third optical layer 350R, and the third optical layer 350G), so that the first light beam BL from the first micro light emitting device BMD travels back and forth between the first filter layer 231 and the backplane B Reflective transmission, the first opening 232 of the first optical layer 230 passes through other optical layers (ie, the uppermost microstructure layer 140 and the light transmission layer 120 ) and emits light from the sub-pixel region PB.

此外,在本實施例中,不對第一開口232、第三開口352R、352G進行限定,舉例而言,如圖6所示,第三開口352R、352G、第一開口232可依實際需求設有一或多個,本發明皆不以此為限。另一方面,在本實施例中,也不對第一光學層230與第三光學層350R、350G在發光面板310的上方的疊置順序進行限定。第一光學層230與第三光學層350R、350G可以任意順序進行疊置,使第一光學層230與第三光學層350R、350G能夠分別與背板B之間的各光學層形成光傳遞層320R、320G、320B。In addition, in this embodiment, the first opening 232 and the third opening 352R, 352G are not limited. For example, as shown in FIG. 6 , one or more third openings 352R, 352G, and the first opening 232 can be provided according to actual needs, and the present invention is not limited thereto. On the other hand, in this embodiment, the stacking order of the first optical layer 230 and the third optical layers 350R, 350G on the light emitting panel 310 is not limited either. The first optical layer 230 and the third optical layer 350R, 350G can be stacked in any order, so that the first optical layer 230 and the third optical layer 350R, 350G can respectively form light transmission layers 320R, 320G, 320B with the optical layers between the backplane B.

此外,在本實施例中,顯示裝置300的微結構層140亦設置為多個,且各微結構層140分別具有設有多個微結構的微結構區域MR。各微結構層140的微結構區域MR分別對應第一開口232以及第三開口352R、352G設置。如此,如圖6所示,通過第一開口232離開光傳遞層320B的第一光束BL可通過對應的微結構後正向出光,而通過第三開口352R、352G離開光傳遞層320R、320G的第二光束RL、GL亦可通過對應的微結構區域MR的微結構後正向出光,進而提升顯示裝置300的正向輝度。In addition, in this embodiment, the display device 300 also has a plurality of microstructure layers 140 , and each microstructure layer 140 has a microstructure region MR provided with a plurality of microstructures. The microstructure regions MR of each microstructure layer 140 are respectively disposed corresponding to the first opening 232 and the third openings 352R, 352G. In this way, as shown in FIG. 6 , the first light beam BL exiting the light transmission layer 320B through the first opening 232 can pass through the corresponding microstructure and emit light in the forward direction, while the second light beams RL and GL leaving the light transmission layer 320R and 320G through the third openings 352R and 352G can also pass through the microstructure of the corresponding microstructure region MR and then emit light in the forward direction, thereby increasing the forward luminance of the display device 300 .

並且,如圖6所示,在本實施例中,顯示藍光的子畫素區域PB實質上會被第一開口232所定義,而用於顯示紅光或綠光的子畫素區域PR、PG實質上會被不同的第三開口352R、352G所定義,如此,通過配置第一開口232與第三開口352R、352G的位置,亦可控制多個子畫素區域PB、PG、PR之間的相對位置關係,並由此實現各子畫素在一個畫素區域中混色,或是,使顯示裝置的多個畫素區域PB、PG、PR緊密排列,而使顯示裝置300具有高畫素密度、小畫素尺寸以及高解析度的效果,進而提供良好的顯示品質。舉例而言,將第一開口232與第三開口352R、352G於在發光面板310的正投影的相對位置保持緊密排列,這麼一來可以讓顯示裝置300的畫素尺寸縮小,且使顯示裝置300的不同子畫素區域PB、PG、PR緊密排列。或是,可依據產品的實際需求對第一開口232以及第三開口352R、352G的位置、大小以及外形進行對應的設計,以使由各子畫素區域PB、PG、PR對應離開顯示裝置300的第一光束BL以及第二光束RL、GL可達到需要的混光效果,或是也可由此調整全彩畫素區域(即畫素區域PX)的邊界,進而達到控制畫素區域PX的尺寸控制或小型化的效果。如此,顯示裝置300亦可達到與前述顯示裝置200類似的效果與優點,在此就不再贅述。Moreover, as shown in FIG. 6, in this embodiment, the sub-pixel region PB for displaying blue light is substantially defined by the first opening 232, and the sub-pixel regions PR and PG for displaying red light or green light are substantially defined by different third openings 352R and 352G. In this way, by arranging the positions of the first opening 232 and the third opening 352R and 352G, the relative positional relationship between the multiple sub-pixel regions PB, PG, and PR can also be controlled, thereby realizing the realization of each sub-pixel Mixing colors in one pixel area, or making the multiple pixel areas PB, PG, PR of the display device closely arranged, so that the display device 300 has the effect of high pixel density, small pixel size and high resolution, thereby providing good display quality. For example, the first opening 232 and the third openings 352R, 352G are closely arranged at the relative positions of the orthographic projection of the light-emitting panel 310, so that the pixel size of the display device 300 can be reduced, and different sub-pixel regions PB, PG, PR of the display device 300 can be closely arranged. Alternatively, the position, size and shape of the first opening 232 and the third opening 352R, 352G can be designed according to the actual needs of the product, so that the first light beam BL and the second light beam RL, GL corresponding to the sub-pixel areas PB, PG, PR leaving the display device 300 can achieve the required light mixing effect, or the boundary of the full-color pixel area (i.e., the pixel area PX) can be adjusted to achieve the effect of controlling the size of the pixel area PX or miniaturization. In this way, the display device 300 can also achieve effects and advantages similar to those of the aforementioned display device 200 , which will not be repeated here.

此外,請同時參考圖2及圖6,在一實施例中,亦可於如圖6所示的第三光學層350G與第一光學層230之間增設如圖2所示的第二光學層250的結構,而使光傳遞層320B為由第一光學層230、第二光學層250及其之間的其他光學層所組成的層狀的波導結構,並由此使特定波段的光(即,第一光束BL)僅能在特定位置(即,第一開口232或第二開口252處)通過。具體而言,來自第一微型發光元件BMD的第一光束BL通過第二開口252後,會在第一濾光層231與第二濾光層251之間來回反射傳遞,並由第一開口232離開光傳遞層320B。類似地,亦可針對第三光學層350R(350G)設置對應的光學層的結構,而使光傳遞層320R(320G)分別為由第三光學層350R(350G)與其對應的光學層及其之間的其他光學層所組成的層狀的波導結構,使特定波段的光(即,第二光束RL、GL)僅能通過特定位置進入或離開光傳遞層320R(320G)。具體而言,與第三光學層350R對應的光學層例如位於發光面板310與第三光學層350R之間,來自第二微型發光元件RMD的第二光束RL通過與第三光學層350R對應的光學層的開口後,會在與第三光學層350R對應的光學層的濾光層與第三濾光層351R之間來回反射傳遞,並由第三開口352R離開光傳遞層320R。與第三光學層350G對應的光學層例如位於第三光學層350R與第三光學層350G之間,來自第二微型發光元件GMD的第二光束GL通過與第三光學層350G對應的光學層的開口後,會在與第三光學層350G對應的光學層的濾光層與第三濾光層351G之間來回反射傳遞,並由第三開口352G離開光傳遞層320G。上述仍可達到前述的效果與優點,在此就不再贅述。In addition, please refer to FIG. 2 and FIG. 6 at the same time. In one embodiment, the structure of the second optical layer 250 as shown in FIG. 2 can also be added between the third optical layer 350G shown in FIG. or the second opening 252) through. Specifically, after the first light beam BL from the first micro light emitting device BMD passes through the second opening 252 , it will reflect back and forth between the first filter layer 231 and the second filter layer 251 , and leave the light transmission layer 320B through the first opening 232 . Similarly, a corresponding optical layer structure can also be provided for the third optical layer 350R ( 350G ), so that the light transmission layer 320R ( 320G) is a layered waveguide structure composed of the third optical layer 350R ( 350G ) and its corresponding optical layer and other optical layers in between, so that light of a specific wavelength band (that is, the second light beam RL, GL ) can only enter or leave the light transmission layer 320R ( 320G) through a specific position. Specifically, the optical layer corresponding to the third optical layer 350R is, for example, located between the light-emitting panel 310 and the third optical layer 350R. After the second light beam RL from the second micro light-emitting device RMD passes through the opening of the optical layer corresponding to the third optical layer 350R, it will reflect back and forth between the filter layer of the optical layer corresponding to the third optical layer 350R and the third filter layer 351R, and leave the light transmission layer 320R through the third opening 352R. The optical layer corresponding to the third optical layer 350G is, for example, located between the third optical layer 350R and the third optical layer 350G. After passing through the opening of the optical layer corresponding to the third optical layer 350G, the second light beam GL from the second micro light-emitting device GMD will be reflected back and forth between the filter layer of the optical layer corresponding to the third optical layer 350G and the third filter layer 351G, and leave the light transmission layer 320G through the third opening 352G. The aforementioned effects and advantages can still be achieved, so details will not be repeated here.

綜上所述,在本發明的一實施例的顯示裝置,通過在光學層中設置的開口來定義用於顯示部分色彩的子畫素區域,並由開口控制多個子畫素區域之間的相對位置關係。進而,可實現各子畫素在一個畫素區域中混色,且顯示裝置的多個畫素區域可緊密排列,使顯示裝置具有高畫素密度、小畫素尺寸以及高解析度,進而提供良好的顯示品質。To sum up, in the display device according to an embodiment of the present invention, the sub-pixel regions for displaying partial colors are defined by the openings provided in the optical layer, and the relative positional relationship among the multiple sub-pixel regions is controlled by the openings. Furthermore, color mixing of each sub-pixel in one pixel area can be realized, and multiple pixel areas of the display device can be closely arranged, so that the display device has high pixel density, small pixel size and high resolution, thereby providing good display quality.

惟以上所述者,僅為本發明的較佳實施例而已,當不能以此限定本發明實施的範圍,即大凡依本發明申請專利範圍及發明說明內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露的全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明的權利範圍。此外,本說明書或申請專利範圍中提及的“第一”、“第二”等用語僅用以命名元件(element)的名稱或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限。But those described above are only preferred embodiments of the present invention, and should not limit the scope of the present invention with this, that is, all simple equivalent changes and modifications made according to the scope of the patent application for the present invention and the contents of the description of the invention still belong to the scope covered by the patent of the present invention. In addition, any embodiment or scope of claims of the present invention does not need to achieve all the objectives or advantages or features disclosed in the present invention. In addition, the abstract and the title are only used to assist in the search of patent documents, and are not used to limit the scope of rights of the present invention. In addition, terms such as "first" and "second" mentioned in this specification or the patent application are only used to name elements or to distinguish different embodiments or ranges, and are not used to limit the upper limit or lower limit of the number of elements.

100、200、300:顯示裝置 110、210、310:發光面板 120、320B、320G、320R:光傳遞層 130、230:第一光學層 131、231:第一濾光層 132、232:第一開口 140:微結構層 211:波長轉換層 211R:第一波長轉換層 211G:第二波長轉換層 211B:透光層 250:第二光學層 251:第二濾光層 252:第二開口 350R、350G:第三光學層 351R、351G:第三濾光層 352R、352G:第三開口 B:背板 BD、WMD:微型發光元件 BL、L:第一光束 BM:隔絕結構 BMD:第一微型發光元件 GMD、RMD:第二微型發光元件 GL、RL:第二光束 MR:微結構區域 MS:光學膜層 PB、PG、PR:子畫素區域 PX:畫素區域 TR:透光區 WR:波長轉換區100, 200, 300: display device 110, 210, 310: light-emitting panels 120, 320B, 320G, 320R: optical transmission layer 130, 230: the first optical layer 131, 231: the first filter layer 132, 232: the first opening 140: microstructure layer 211: wavelength conversion layer 211R: the first wavelength conversion layer 211G: second wavelength conversion layer 211B: Transparent layer 250: second optical layer 251: Second filter layer 252: second opening 350R, 350G: the third optical layer 351R, 351G: the third filter layer 352R, 352G: the third opening B: Backplane BD, WMD: miniature light-emitting components BL, L: first beam BM: isolation structure BMD: the first miniature light-emitting device GMD, RMD: the second miniature light-emitting device GL, RL: second beam MR: Microstructure Region MS: Optical film layer PB, PG, PR: sub-pixel area PX: pixel area TR: Translucent area WR: wavelength conversion region

圖1是本發明的一實施例的顯示裝置的結構示意圖。 圖2是本發明的另一實施例的顯示裝置的結構示意圖。 圖3A是圖2的顯示裝置的畫素區域的正視示意圖。 圖3B是圖3A的顯示裝置的一個畫素區域的放大示意圖。 圖4至圖5是圖2的顯示裝置的不同畫素區域的正視示意圖。 圖6是本發明的另一實施例的顯示裝置的結構示意圖。 FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present invention. FIG. 2 is a schematic structural diagram of a display device according to another embodiment of the present invention. FIG. 3A is a schematic front view of a pixel area of the display device in FIG. 2 . FIG. 3B is an enlarged schematic view of a pixel area of the display device shown in FIG. 3A . 4 to 5 are schematic front views of different pixel areas of the display device shown in FIG. 2 . FIG. 6 is a schematic structural diagram of a display device according to another embodiment of the present invention.

200:顯示裝置 200: display device

120:光傳遞層 120: light transmission layer

140:微結構層 140: microstructure layer

210:發光面板 210: Luminous panel

211:波長轉換層 211: wavelength conversion layer

211R:第一波長轉換層 211R: the first wavelength conversion layer

211G:第二波長轉換層 211G: second wavelength conversion layer

211B:透光層 211B: Transparent layer

230:第一光學層 230: the first optical layer

231:第一濾光層 231: the first filter layer

232:第一開口 232: first opening

250:第二光學層 250: second optical layer

251:第二濾光層 251: Second filter layer

252:第二開口 252: second opening

BD:微型發光元件 BD: Miniature Light-Emitting Components

BL:第一光束 BL: First Beam

BM:隔絕結構 BM: isolation structure

GL、RL:第二光束 GL, RL: second beam

MR:微結構區域 MR: Microstructure Region

MS:光學膜層 MS: Optical film layer

PB、PG、PR:子畫素區域 PB, PG, PR: sub-pixel area

PX:畫素區域 PX: pixel area

TR:透光區 TR: Translucent area

WR:波長轉換區 WR: wavelength conversion region

Claims (13)

一種顯示裝置,具有畫素區域,包括: 一發光面板,包括一微型發光元件,該微型發光元件用於提供一第一光束;以及 一第一光學層,設置在該第一光束的傳遞路徑上,且該第一光學層包括一第一濾光層以及一第一開口,該第一濾光層用於反射該第一光束,該第一開口用於使該第一光束穿透,該第一光束被傳遞至該第一開口後通過該畫素區域離開該顯示裝置。 A display device has a pixel area, including: A light-emitting panel, including a micro-light-emitting element for providing a first light beam; and A first optical layer is arranged on the transmission path of the first light beam, and the first optical layer includes a first filter layer and a first opening, the first filter layer is used to reflect the first light beam, the first opening is used to make the first light beam pass through, the first light beam is delivered to the first opening and leaves the display device through the pixel area. 如請求項1所述的顯示裝置,其中該發光面板還包括一波長轉換層,該波長轉換層設置在該第一光束的傳遞路徑上,配置於該微型發光元件與該第一光學層之間,該波長轉換層包括一波長轉換區與一透光區,該波長轉換區用於將該第一光束轉換為一第二光束,該透光區用於使該第一光束穿透,該第一濾光層用於使該第二光束穿透,該畫素區域包括多個子畫素區域,且通過該第一濾光層的該第二光束通過該畫素區域的其中一該子畫素區域離開該顯示裝置。The display device according to claim 1, wherein the light-emitting panel further includes a wavelength conversion layer, the wavelength conversion layer is arranged on the transmission path of the first light beam, and is arranged between the micro light-emitting element and the first optical layer, the wavelength conversion layer includes a wavelength conversion region and a light transmission region, the wavelength conversion region is used to convert the first light beam into a second light beam, the light transmission region is used to make the first light beam pass through, the first filter layer is used to make the second light beam pass through, the pixel area includes a plurality of sub-pixel areas, and the second light passing through the first filter layer The light beam leaves the display device through one of the sub-pixel regions of the pixel region. 如請求項2所述的顯示裝置,還包括: 一第二光學層,設置在該第一光束與該第二光束的傳遞路徑上,配置於該發光面板與該第一光學層之間,該第二光學層包括一第二濾光層以及一第二開口,該第二濾光層用於使該第二光束穿透並使該第一光束反射,該第二開口對應該透光區設置,用於使該第一光束穿透。 The display device as described in claim 2, further comprising: A second optical layer is arranged on the transmission path of the first light beam and the second light beam, and is arranged between the light-emitting panel and the first optical layer. The second optical layer includes a second filter layer and a second opening. The second filter layer is used to transmit the second light beam and reflect the first light beam. The second opening is arranged corresponding to the light-transmitting area for the first light beam to pass through. 如請求項3所述的顯示裝置,還包括: 一光傳遞層,設置在該第二光學層與該第一光學層之間,其中通過該第二開口的該第一光束進入該光傳遞層後被該第一濾光層與該第二濾光層反射,並被傳遞至該第一開口後離開該光傳遞層。 The display device as described in claim 3, further comprising: A light transmission layer is disposed between the second optical layer and the first optical layer, wherein the first light beam passing through the second opening enters the light transmission layer and is reflected by the first filter layer and the second filter layer, and is transmitted to the first opening and leaves the light transmission layer. 如請求項2所述的顯示裝置,其中該第一開口在該發光面板的正投影的範圍與該透光區在該發光面板中的範圍至少部分不重疊。The display device according to claim 2, wherein the range of the orthographic projection of the first opening on the light-emitting panel does not at least partially overlap with the range of the light-transmitting region in the light-emitting panel. 如請求項1所述的顯示裝置,還包括: 一光傳遞層,配置於該發光面板與該第一光學層之間,其中該發光面板還包括一背板,該第一光束在進入該光傳遞層後被該第一濾光層與該背板反射,並被傳遞至該第一開口後離開該光傳遞層。 The display device as described in claim 1, further comprising: A light transmission layer is disposed between the light emitting panel and the first optical layer, wherein the light emitting panel further includes a back plate, the first light beam is reflected by the first filter layer and the back plate after entering the light transmission layer, and is transmitted to the first opening and leaves the light transmission layer. 如請求項1所述的顯示裝置,其中該畫素區域包括多個子畫素區域,該微型發光元件為第一微型發光元件,該發光面板還包括一第二微型發光元件,該第二微型發光元件用於提供一第二光束,該第一濾光層用於使該第二光束穿透,通過該第一濾光層的該第二光束通過該畫素區域的其中一該子畫素區域離開該顯示裝置,且每一該些子畫素區域分別對應該第一光束與該第二光束。The display device according to claim 1, wherein the pixel area includes a plurality of sub-pixel areas, the micro light emitting element is a first micro light emitting element, and the light emitting panel further includes a second micro light emitting element, the second micro light emitting element is used to provide a second light beam, the first filter layer is used to pass the second light beam, the second light beam passing through the first filter layer leaves the display device through one of the sub pixel areas of the pixel area, and each of the sub pixel areas corresponds to the first light beam and the second light beam. 如請求項7所述的顯示裝置,還包括: 一第三光學層,設置在該第一光束與該第二光束的傳遞路徑上,配置於該發光面板與該第一光學層之間,該第三光學層包括一第三濾光層以及一第三開口,且該第一濾光層用於反射該第一光束,並使該第一光束以外的光束穿透,該第三濾光層用於反射該第二光束,並使該第二光束以外的色光穿透。 The display device as described in claim 7, further comprising: A third optical layer is arranged on the transmission path of the first light beam and the second light beam, and is arranged between the light-emitting panel and the first optical layer. The third optical layer includes a third filter layer and a third opening. The first filter layer is used to reflect the first light beam and allow light beams other than the first light beam to pass through. The third filter layer is used to reflect the second light beam and allow colored light other than the second light beam to pass through. 如請求項8所述的顯示裝置,還包括: 多個光傳遞層,其中任一該光傳遞層位於該第一光學層、該第三光學層與該發光面板的任兩者之間,且該第一光束通過該第一光學層的該第一開口離開至少部分該些光傳遞層,該第二光束通過該第三光學層的該第三開口離開至少部分該些光傳遞層。 The display device as described in claim 8, further comprising: A plurality of light-transmitting layers, wherein any one of the light-transmitting layers is located between any two of the first optical layer, the third optical layer, and the light-emitting panel, and the first light beam leaves at least part of the light-transmitting layers through the first opening of the first optical layer, and the second light beam leaves at least part of the light-transmitting layers through the third opening of the third optical layer. 如請求項8所述的顯示裝置,還包括: 多個微結構層,分別具有一微結構區域,其中各該微結構層的該微結構區域分別對應該第一開口以及該第三開口設置。 The display device as described in claim 8, further comprising: A plurality of microstructure layers each have a microstructure area, wherein the microstructure area of each of the microstructure layers is respectively set corresponding to the first opening and the third opening. 如請求項8所述的顯示裝置,其中該第一開口在該發光面板的正投影的範圍與該第一微型發光元件在該發光面板的範圍至少部分不重疊,且該第三開口在該發光面板的正投影的範圍與該第二微型發光元件在該發光面板的範圍的至少部分不重疊。The display device according to claim 8, wherein the range of the orthographic projection of the first opening on the light emitting panel does not overlap at least part of the range of the first micro light emitting element on the light emitting panel, and the range of the orthographic projection of the third opening on the light emitting panel does not overlap at least part of the range of the second micro light emitting element on the light emitting panel. 如請求項1所述的顯示裝置,還包括: 一微結構層,具有一微結構區域,其中該第一光學層位於該微結構層與該發光面板之間,且該微結構區域對應該第一開口設置。 The display device as described in claim 1, further comprising: A microstructure layer has a microstructure area, wherein the first optical layer is located between the microstructure layer and the light-emitting panel, and the microstructure area is arranged corresponding to the first opening. 如請求項1所述的顯示裝置,還包括: 一光學膜層,覆蓋該發光面板,配置於該發光面板與該第一光學層之間。 The display device as described in claim 1, further comprising: An optical film layer covers the luminous panel and is arranged between the luminous panel and the first optical layer.
TW111127118A 2022-05-12 2022-07-20 Display device TWI808837B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263340949P 2022-05-12 2022-05-12
US63/340,949 2022-05-12

Publications (2)

Publication Number Publication Date
TWI808837B true TWI808837B (en) 2023-07-11
TW202345124A TW202345124A (en) 2023-11-16

Family

ID=85786896

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111205684U TWM634809U (en) 2022-05-12 2022-05-31 Display device and display apparatus
TW111127118A TWI808837B (en) 2022-05-12 2022-07-20 Display device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111205684U TWM634809U (en) 2022-05-12 2022-05-31 Display device and display apparatus

Country Status (2)

Country Link
CN (2) CN117095619A (en)
TW (2) TWM634809U (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661371A (en) * 1990-12-31 1997-08-26 Kopin Corporation Color filter system for light emitting display panels
US8421323B2 (en) * 2005-12-30 2013-04-16 Samsung Corning Precision Materials Co., Ltd. Light blocking layer, display filter having the light blocking layer, and display apparatus having the display filter
WO2018199901A1 (en) * 2017-04-24 2018-11-01 Hewlett-Packard Development Company, L.P. Micro light-emitting diode display with 3d orifice plating and light filtering
TW201940658A (en) * 2018-01-23 2019-10-16 日商東麗股份有限公司 Light-emitting element, display, and color conversion substrate
US20210376205A1 (en) * 2018-05-13 2021-12-02 Optovate Limited Colour micro-LED display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661371A (en) * 1990-12-31 1997-08-26 Kopin Corporation Color filter system for light emitting display panels
US8421323B2 (en) * 2005-12-30 2013-04-16 Samsung Corning Precision Materials Co., Ltd. Light blocking layer, display filter having the light blocking layer, and display apparatus having the display filter
WO2018199901A1 (en) * 2017-04-24 2018-11-01 Hewlett-Packard Development Company, L.P. Micro light-emitting diode display with 3d orifice plating and light filtering
TW201940658A (en) * 2018-01-23 2019-10-16 日商東麗股份有限公司 Light-emitting element, display, and color conversion substrate
US20210376205A1 (en) * 2018-05-13 2021-12-02 Optovate Limited Colour micro-LED display apparatus

Also Published As

Publication number Publication date
CN117096170A (en) 2023-11-21
CN117095619A (en) 2023-11-21
TW202345124A (en) 2023-11-16
TWM634809U (en) 2022-12-01

Similar Documents

Publication Publication Date Title
KR101317577B1 (en) Organic electroluminescent display device
JP5054231B2 (en) Organic electroluminescence display device
KR20150026928A (en) Display device
US8040043B2 (en) Display device and luminous panel
US5594591A (en) Prism system and a liquid crystal projection device
JP2020106692A (en) projector
CN109031736A (en) Collimated backlight, display device and its driving method
KR20120054041A (en) Organic electroluminescent display device
CN110061045B (en) White light organic light emitting diode display panel
CN110379934B (en) Display panel and display device
CN109378404A (en) A kind of 3D display panel and preparation method thereof and display device
US20240047626A1 (en) Color film substrate, method for preparing color film substrate, and display panel
TWI808837B (en) Display device
CN1922535A (en) Method to optimize the color point in transflective color liquid crystal displays
WO2018173931A1 (en) Optical sheet and backlight
CN113629122A (en) Display panel and display device
CN110473892B (en) Display device
JP2008052067A (en) Light source device, display device and light emitting diode chip
CN109599037B (en) Display panel and preparation method thereof
WO2017166427A1 (en) Grating assembly, light source device, and driving method therefor
CN114527622B (en) Light-splitting element and projection device
JP3540534B2 (en) Color video display
WO2023195239A1 (en) Display device
TWI770968B (en) Backlight module and display device
US20230369299A1 (en) Display device and display apparatus