TWI808435B - Multi-view analysis in automated testing apparatus - Google Patents

Multi-view analysis in automated testing apparatus Download PDF

Info

Publication number
TWI808435B
TWI808435B TW110122043A TW110122043A TWI808435B TW I808435 B TWI808435 B TW I808435B TW 110122043 A TW110122043 A TW 110122043A TW 110122043 A TW110122043 A TW 110122043A TW I808435 B TWI808435 B TW I808435B
Authority
TW
Taiwan
Prior art keywords
image
carrier
camera module
sample
holding area
Prior art date
Application number
TW110122043A
Other languages
Chinese (zh)
Other versions
TW202136849A (en
Inventor
徐振騰
張志賓
黃光立
戚玉橋
張家偉
王炯翰
Original Assignee
邦睿生技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/443,699 external-priority patent/US10852290B2/en
Application filed by 邦睿生技股份有限公司 filed Critical 邦睿生技股份有限公司
Publication of TW202136849A publication Critical patent/TW202136849A/en
Application granted granted Critical
Publication of TWI808435B publication Critical patent/TWI808435B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Abstract

Provided is a multi-view analysis in automated testing apparatus. The device can include a receiving mechanism to receive a carrier. The carrier may include a holding area. The device may include a camera module arranged to capture a plurality of images, including a first image and a second image, of the holding area. The device may include a positioning mechanism operable to adjust a relative location of the carrier to the camera. A processor in the device may utilize the camera module to: identify an edge of the first image; cause the positioning mechanism to adjust the relative location of the carrier to the camera in a manner such that, when the camera takes the second image, an edge of the second image aligns with the identified edge of the first image; and perform a set of analytic processes on a combined image from the first and second images.

Description

複數視角分析的自動測試裝置 Automatic test device for analysis of complex viewing angles

本發明係關於一種複數視角分析的自動測試裝置,其可用於測試生物樣本;且尤其係關於具有放大功能或分析物量化功能之測試裝置。 The present invention relates to an automatic test device for analysis of multiple viewing angles, which can be used for testing biological samples; more particularly, it relates to a test device with amplifying function or analyte quantification function.

目前,液體內含物的測試通常會委託給專業測試機構,利用具有高放大比率之昂貴顯微鏡設備來執行測試。由於一般人不具有顯微鏡裝置,故無法由一般人執行測試活動。 Currently, the testing of liquid inclusions is usually entrusted to professional testing institutes using expensive microscope equipment with high magnification ratios to perform the tests. Since ordinary people do not have a microscope device, testing activities cannot be performed by ordinary people.

然而,在一些當今測試類別中是需要執行定期測試;因此對於需要頻繁測試之需求而言,在時間及費用方面造成負擔過重。舉例而言,長期測試的類別包括不孕的患者精液測試。該精液測試主要係針對精子數目、其活動力及形態執行觀測。 However, in some of today's testing categories there is a need to perform periodic testing; thus creating an excessive burden in terms of time and expense for requirements that require frequent testing. For example, the category of long-term testing includes semen testing of infertile patients. The semen test mainly performs observations on the number of sperm, their motility and morphology.

精液測試方法包含:將男性受試者的精液在室溫下靜置一段時間,取得一滴所述樣本,將所述樣本滴注於載玻片上,以及在顯微鏡下觀測所述樣本。該等觀測不僅包括對個別精子執行高放大之觀測以識別個別精子之外部形貌,而且包括對大量的全部精子、其活動力、形態及每單位面積的數量執行觀測。然而,個人不能自己執行精液測試,此係由於業界尚未研發出允許個人經由簡單輔助裝置執行測試的技術。 The semen test method comprises: standing the semen of a male subject at room temperature for a period of time, obtaining a drop of the sample, instilling the sample on a glass slide, and observing the sample under a microscope. These observations include not only high-magnification observations of individual spermatozoa to identify the external appearance of individual spermatozoa, but also observations of a large number of total spermatozoa, their motility, morphology, and number per unit area. However, individuals cannot perform semen tests themselves because the industry has not yet developed technology that allows individuals to perform tests via simple assistive devices.

本發明所揭露的包括用於測試生物樣本方法、器件及系統。在一實例方面,揭露一用於測試生物樣本之複數視角分析的自動測試裝置。所述裝置包括一接收機構以接收包括一經配置以攜載生物樣本的固持區域的載體。 The present invention discloses methods, devices and systems for testing biological samples. In an example aspect, an automated testing device for testing multiple view angle analysis of a biological sample is disclosed. The device includes a receiving mechanism to receive a carrier including a holding area configured to carry a biological sample.

器件包括一經配置以擷取固持區域的集合圖像(imagery)的相機模組及一處理器,所述處理器經配置以利用相機模組從固持區域的經擷取集合圖像識別一載體上之視覺提示,並基於視覺提示的識別結果對經擷取集合圖像執行一組分析處理程序。前述視覺提示的識別進一步包括基於視覺提示於經擷取集合圖像中顯示的方式驗證是否固持區域攜載生物樣本,並選擇性地使處理器對經擷取集合圖像根據所述驗證的結果執行所述分析處理程序。在另一實例方面,一用於測試生物樣本之複數視角分析的自動測試裝置包括一接收機構,以接收包括經配置以攜載或已暴露於生物樣本的固持區域的載體。所述裝置包括一相機模組,其經配置以擷取固持區域的複數圖像,及一處理器,其經配置以利用相機模組基於固持區域的複數圖像適應性地選擇一適於被測生物樣本的移動特性的分析演算法並執行一組分析處理程序,所述分析處理程序對應於經擷取複數圖像而被選擇的分析演算法,以產生關於生物樣本的分析結果。 The device includes a camera module configured to capture an imagery of the holding area and a processor configured to identify visual cues on a carrier from the captured imagery of the holding area using the camera module and to execute a set of analytical processing procedures on the captured imagery based on the identification of the visual cues. The identifying of the aforementioned visual cue further includes verifying whether the holding region carries the biological sample based on the manner in which the visual cue is displayed in the captured set of images, and selectively causing the processor to execute the analysis process on the captured set of images according to the result of the verification. In another example aspect, an automated test device for testing multiple view angle analysis of a biological sample includes a receiving mechanism to receive a carrier including a holding area configured to carry or have been exposed to a biological sample. The device includes a camera module configured to capture multiple images of the holding area, and a processor configured to use the camera module to adaptively select an analysis algorithm suitable for movement characteristics of the biological sample to be measured based on the multiple images of the holding area and execute a set of analysis processing programs corresponding to the selected analysis algorithm through the captured multiple images to generate an analysis result about the biological sample.

在另一實例方面,用於測試生物樣本之複數視角分析的自動測試裝置包括一接收機構,以接收一載體,所述載體包括一經配置以攜載或已暴露於生物樣本的固持區域。所述裝置包括一相機,其經配置以擷取固持區域的包括第一圖像、第二圖像的複數圖像。所述裝置亦包括一定位機構,所述定位機構可操作以調整載體對於相機的相對位置及一處理器,其經配置以利用相機模組識別第一圖像的邊緣,使定位機構調整載體對於相機的相對位置使得當相機獲取第二圖像時,第二圖像的邊緣與第一圖像的經識別邊緣對齊,並對由第一及第二圖像所組合的圖像執行一組分析處理程序以判定生物樣本的一或多個特性。 In another example aspect, an automated test device for testing multiple view angle analysis of a biological sample includes a receiving mechanism to receive a carrier including a holding area configured to carry or have been exposed to the biological sample. The device includes a camera configured to capture a plurality of images of the holding area including a first image, a second image. The device also includes a positioning mechanism operable to adjust the relative position of the carrier to the camera and a processor configured to identify, with the camera module, edges of the first image, the positioning mechanism to adjust the relative position of the carrier to the camera such that when the camera acquires a second image, the edges of the second image align with the identified edges of the first image, and to perform a set of analytical processing procedures on the image combined from the first and second images to determine one or more characteristics of the biological sample.

在另一個實例方面,用於測試生物樣本之複數視角分析的自動測試裝置包括一接收機構,以接收一載體,所述載體包括一固持區域,其中所述固持區域攜載所述生物樣本或已暴露於所述生物樣本。所述裝置包含一相機模組,所述相機模組經配置以擷取固持區域的集合圖像。所述相機模組進一步包括一聚焦馬達,其可操作以調整相機的焦點。所述裝置更包括一處理器,其經配置以利用相機模組基於聚焦馬達的操作以判定固持區域的體積特性,並對固持區域的經擷取集合圖像的至少一部份執行一組分析處理程序以判定生物樣本的一或多個特性。所述生物樣本的一或多個特性接收處理器基於經判定的固持區域體積特性的調整。 In another example aspect, an automated test device for testing multiple view angle analysis of a biological sample includes a receiving mechanism to receive a carrier including a holding area, wherein the holding area carries the biological sample or has been exposed to the biological sample. The device includes a camera module configured to capture a collective image of the holding area. The camera module further includes a focus motor operable to adjust the focus of the camera. The device further includes a processor configured to utilize the camera module to determine volumetric properties of the holding region based on operation of the focus motor, and to execute a set of analytical processing procedures on at least a portion of the captured set of images of the holding region to determine one or more properties of the biological sample. One or more properties of the biological sample receive processor adjustments based on the determined holding region volume properties.

將於本文件中描述本技術的這些及其他特徵。 These and other features of the technology will be described in this document.

5:測試條帶 5: Test strip

10:載體 10: carrier

11:樣本固持區域 11: Sample holding area

12:樣本接收埠 12: Sample receiving port

13:空氣通道 13: Air channel

14:突起部件 14: Protruding parts

15:可撓性透明薄膜 15: Flexible transparent film

16:光束輔助導引結構 16: Beam auxiliary guiding structure

20:外罩 20: outer cover

21:凹槽 21: Groove

30:放大部件 30: Enlarge parts

30B:放大部件 30B: Enlarge parts

30C:放大部件 30C: Enlarging Parts

31:放大部件 31: Enlarge parts

40:樣本 40: sample

42:樣本收集片 42: Sample collection sheet

42A:樣本收集區域 42A: Sample collection area

50:側向照明器件 50: side lighting device

60:智慧通信裝置 60:Smart communication device

61:相機 61: camera

70:儀表裝置 70:Instrument device

71:下部機筒基座 71: Lower barrel base

72:上部機筒主體 72: Upper barrel main body

73:插入埠 73:Insert port

74:放大透鏡 74: magnifying lens

75:組裝框架 75: Assembling the frame

76:相機對準孔 76:Camera Alignment Hole

80:光源 80: light source

92:防滑薄膜 92: Anti-slip film

94:pH試紙 94: pH test paper

96:離型紙 96: Release paper

98:隔離組件 98: Isolation components

1505:步驟 1505: step

1510:步驟 1510: step

1515:步驟 1515: step

1520:步驟 1520: step

1525:步驟 1525: step

1530:步驟 1530: step

1540:步驟 1540: step

1545:步驟 1545: step

1550:步驟 1550: step

1555:步驟 1555: step

1605:步驟 1605: step

1610:步驟 1610: step

1615:步驟 1615: step

1620:步驟 1620: step

1625:步驟 1625: step

1630:步驟 1630: step

1705:精子 1705: sperm

1710:軌跡 1710: track

1720:軌跡 1720: track

1805:軌跡 1805: track

1810:曲線速度 1810: Curve speed

1815:直線速度 1815: Linear speed

1820:橫向頭部位移幅度 1820: Amplitude of lateral head displacement

1825:平均路徑 1825: Average path

1900:測試設備 1900: Test equipment

1905:測試條帶裝置 1905: Test strip device

1910:收集瓶 1910: Collection bottle

1920:螢幕 1920: screen

2000:測試裝置 2000: Test device

2005:測試條帶裝置 2005: Test strip device

2105:測試條帶裝置 2105: Test strip device

2110:放大組件 2110: Magnification components

2115:樣本固持區域 2115: Sample holding area

2130:相機模組 2130: Camera module

2135:透鏡 2135: lens

2140:光源 2140: light source

2205:測試條帶裝置 2205: Test strip device

2210A:外罩 2210A: outer cover

2210B:放大組件 2210B: Magnification component

2215A:第一固持區域 2215A: The first holding area

2215B:第二固持區域 2215B: Second holding area

2230A:第一相機模組 2230A: The first camera module

2230B:第二相機模組 2230B: Second camera module

2240A:光源 2240A: light source

2240B:光源 2240B: light source

2510:收集瓶 2510: Collection bottle

2550:開關 2550: switch

2560:馬達 2560: motor

2570:相機 2570: camera

2610:收集瓶 2610: Collection bottle

2660:馬達 2660: motor

2680:移動元件 2680: Move components

2690:光感測器 2690: Light Sensor

2905(1):載體 2905(1): Carriers

2905(2):載體 2905(2): Carrier

2905(3):載體 2905(3): Carriers

2905(4):載體 2905(4): Carriers

2915A:第一固持區域 2915A: The first holding area

2915B:第二固持區域 2915B: Second holding area

3000:處理程序 3000: handler

3002:步驟 3002: step

3004:步驟 3004: step

3006:步驟 3006: step

3008:步驟 3008: step

3010:步驟 3010: step

3012:步驟 3012: Step

3014:步驟 3014: Step

3105:載體 3105: carrier

3117(1):視覺標誌 3117(1): Visual signs

3117(2):視覺標誌 3117(2): Visual signs

3117(3):視覺標誌 3117(3): Visual signs

3117(4):視覺標誌 3117(4): Visual signs

3117(5):視覺標誌 3117(5): Visual signs

3115B:固持區域 3115B: holding area

3200:處理程序 3200: Handler

3202:步驟 3202:step

3204:步驟 3204:step

3206:步驟 3206:step

3208:步驟 3208:step

3210:步驟 3210:step

3212:步驟 3212:step

3300:處理程序 3300: handler

3310:步驟 3310:step

3320:步驟 3320:step

3330:步驟 3330:step

3340:步驟 3340:step

3342:步驟 3342:step

3344:步驟 3344:step

3346:步驟 3346:step

3350:步驟 3350:step

3402:區塊 3402: block

3510:候選區塊 3510: Candidate block

3700:校正處理程序 3700: Calibration handler

3710:步驟 3710:step

3720:步驟 3720:step

3730:步驟 3730:step

3740:步驟 3740:step

3742:步驟 3742:step

3744:步驟 3744:step

3746:步驟 3746:step

3750:步驟 3750:step

4102:測試粒子 4102: Test particles

4300:處理程序 4300: Handler

4310:步驟 4310:step

4320:步驟 4320:step

4330:步驟 4330:step

4342:步驟 4342:step

4346:步驟 4346:step

4601:小區域 4601: small area

4700:處理程序 4700: handler

4710:步驟 4710:step

4720:步驟 4720:step

4730:步驟 4730:step

4800:處理程序 4800: Handler

4810:步驟 4810:step

4820:步驟 4820:step

4830:步驟 4830:step

4840:步驟 4840:step

4901:平台的複數軸 4901: Plural axis of platform

5210:外罩 5210: outer cover

5217a:第一視覺提示 5217a: First visual cue

5217b:第二視覺提示 5217b: Second visual cue

5220:載體 5220: carrier

5230:相機模組 5230: camera module

A1:自動測試裝置 A1: Automatic test device

A2:自動測試裝置 A2: Automatic test device

A3:自動測試裝置 A3: Automatic test device

A4:自動測試裝置 A4: Automatic test device

A5:自動測試裝置 A5: Automatic test device

A6:自動測試裝置 A6: Automatic test device

A7:自動測試裝置 A7: Automatic test device

A8:自動測試裝置 A8: Automatic test device

A9:自動測試裝置 A9: Automatic test device

A10:自動測試裝置 A10: Automatic test device

H1:焦距參數 H1: focal length parameter

H2:焦距參數 H2: focal length parameter

L1:箭頭 L1: Arrow

L2:箭頭 L2: Arrow

L3:箭頭 L3: Arrow

S110:步驟 S110: step

S120:步驟 S120: step

S130:步驟 S130: step

S140:步驟 S140: step

圖1A為根據本發明之一具體實例之複數視角分析的自動測試裝置的分解視圖。 FIG. 1A is an exploded view of an automatic test device for complex view analysis according to an embodiment of the present invention.

圖1B為圖1A之測試裝置之組裝視圖。 FIG. 1B is an assembled view of the testing device of FIG. 1A .

圖2A為圖1A之測試裝置之橫截面視圖。 Figure 2A is a cross-sectional view of the testing device of Figure 1A.

圖2B為測試裝置之另一具體實例之橫截面視圖。 Figure 2B is a cross-sectional view of another embodiment of a testing device.

圖3為根據本發明之一具體實例之測試裝置的測試之流程圖。 FIG. 3 is a flow chart of the testing of the testing device according to an embodiment of the present invention.

圖4為根據本發明之另一具體實例之複數視角分析的自動測試裝置的橫截面視圖。 FIG. 4 is a cross-sectional view of an automatic test device for complex viewing angle analysis according to another embodiment of the present invention.

圖5為根據本發明之另一具體實例之複數視角分析的自動測試裝置的橫截面視圖。 FIG. 5 is a cross-sectional view of an automatic test device for complex viewing angle analysis according to another embodiment of the present invention.

圖6為正在使用之圖5之測試裝置的示意圖。 FIG. 6 is a schematic diagram of the testing device of FIG. 5 in use.

圖7為根據本發明之另一具體實例之複數視角分析的自動測試裝置的示意圖。 FIG. 7 is a schematic diagram of an automatic test device for complex view analysis according to another embodiment of the present invention.

圖8為根據本發明之另一具體實例之複數視角分析的自動測試裝置的示意圖。 FIG. 8 is a schematic diagram of an automatic test device for complex viewing angle analysis according to another embodiment of the present invention.

圖9為根據本發明之另一具體實例之複數視角分析的自動測試裝置的示意圖。 FIG. 9 is a schematic diagram of an automatic test device for complex viewing angle analysis according to another embodiment of the present invention.

圖10為根據本發明之另一具體實例之複數視角分析的自動測試裝置的示意圖。 FIG. 10 is a schematic diagram of an automatic test device for complex viewing angle analysis according to another embodiment of the present invention.

圖11至圖13為根據本發明之另三個具體實例之複數視角分析的自動測試裝置的視圖。 FIG. 11 to FIG. 13 are views of an automatic test device for analyzing multiple viewing angles according to another three specific examples of the present invention.

圖14A為根據本發明之另一具體實例之插入至儀表裝置中的測試條帶之示意圖。 14A is a schematic diagram of a test strip inserted into a meter device according to another embodiment of the present invention.

圖14B為根據本發明之另一具體實例之儀表裝置之組件的示意圖。 14B is a schematic diagram of components of an instrumentation device according to another embodiment of the present invention.

圖15A示出藉由諸如儀表裝置或智慧通信裝置之裝置進行的精液測試之樣本處理程序。 FIG. 15A shows a sample processing procedure for a semen test performed by a device such as a meter device or a smart communication device.

圖15B示出圖15A中所示之處理程序之樣本步驟1515。 Figure 15B shows a sample step 1515 of the process shown in Figure 15A.

圖15C示出圖15A中所示之處理程序之樣本步驟1520。 Figure 15C shows sample steps 1520 of the process shown in Figure 15A.

圖15D示出圖15A中所示之處理程序之樣本步驟1530。 Figure 15D shows sample steps 1530 of the process shown in Figure 15A.

圖15E示出圖15A中所示之處理程序之樣本步驟1550。 Figure 15E shows sample steps 1550 of the process shown in Figure 15A.

圖15F示出圖15A中所示之處理程序之樣本步驟1555。 Figure 15F shows a sample step 1555 of the process shown in Figure 15A.

圖16示出判定精子濃度之樣本處理程序。 Figure 16 shows a sample processing procedure for determining sperm concentration.

圖17示出樣本精子及樣本精子軌跡。 Fig. 17 shows the sample sperm and the track of the sample sperm.

圖18示出判定精子軌跡及活動力之樣本處理程序。 Fig. 18 shows the sample processing procedure for determining sperm trajectory and motility.

圖19為包括收集瓶之測試裝置之示意圖。 Figure 19 is a schematic diagram of a test setup including a collection vial.

圖20為不包括收集瓶之測試裝置之示意圖。 Figure 20 is a schematic diagram of the test setup excluding the collection bottle.

圖21B及圖21C為測試裝置之各種具體實例之截面示意圖。 21B and 21C are schematic cross-sectional views of various embodiments of testing devices.

圖22為具有兩個樣本固持區域之測試條帶裝置之測試裝置的截面示意圖。 22 is a schematic cross-sectional view of a test device with a test strip device having two sample holding areas.

圖23為具有自動聚焦功能之測試裝置之組件的示意圖。 Fig. 23 is a schematic diagram of components of a testing device with autofocus function.

圖24為具有自動聚焦功能之另一測試裝置之組件的示意圖。 Fig. 24 is a schematic diagram of components of another testing device with autofocus function.

圖25為包括開關及馬達之測試裝置的截面示意圖。 Fig. 25 is a schematic cross-sectional view of a testing device including a switch and a motor.

圖26為包括可撓性元件之測試裝置的截面示意圖。 Fig. 26 is a schematic cross-sectional view of a testing device including a flexible element.

圖27為用於分析男性客戶或患者之精液樣本的處理程序之流程圖。 27 is a flowchart of a process for analyzing a semen sample from a male client or patient.

圖28為用於分析女性客戶或患者之LH或HCG的處理程序之流程圖。 Figure 28 is a flowchart of a process for analyzing LH or HCG of a female client or patient.

圖29示出可適合於具有多相機設置之測試裝置(諸如圖22中所示之測試裝置)的載體之實例。 FIG. 29 shows an example of a carrier that may be suitable for a test device with a multi-camera setup, such as the test device shown in FIG. 22 .

圖30為用於利用本文所揭示之測試裝置來分析男性受試者及女性受試者兩者之生育力的處理程序之流程圖。 30 is a flowchart of a process for analyzing the fertility of both male and female subjects using the test devices disclosed herein.

圖31示出額外實例具有視覺提示(例如,在固持區域中或附近)載體可被用於利用控制測試裝置執行的分析處理程序。 Figure 31 shows an additional example of a carrier having a visual cue (eg, in or near the holding area) can be used for an analytical process performed with a control test device.

圖32為可被所揭示之測試裝置基於視覺提示適應性地執行分析處理程序所實施的處理程序額外實例流程圖。 32 is a flowchart of an additional example of a process that may be implemented by the disclosed test device to adaptively execute an analysis process based on visual cues.

圖33為可被所揭示之測試裝置實施的處理程序的實例流程圖。 33 is an example flow diagram of a process routine that may be implemented by the disclosed testing device.

圖34為固持區域被分割為許多區塊的實例圖像。 Fig. 34 is an example image where the holding area is divided into many blocks.

圖35為說明一部分的候選區塊的選擇處理程序實例圖像。 FIG. 35 is an example image illustrating a selection process of a part of candidate blocks.

圖36為說明圖像處理程序(例如,二極化)及細胞數判定後的結果的實例圖像。 Fig. 36 is an example image illustrating an image processing procedure (eg, polarization) and the result after cell number determination.

圖37為可被所揭示之測試裝置實施的校正程序實例流程圖。 Figure 37 is a flowchart of an example calibration routine that may be implemented by the disclosed testing device.

圖38測試載體攜載可用於校正或使測試裝置生效的視覺提示及/或圖像圖案的實例圖像。 Figure 38 Test carrier carries example images of visual cues and/or graphic patterns that may be used to calibrate or validate a test device.

圖39為被所揭示之測試裝置擷取的圖38中視覺提示的實例圖像。 FIG. 39 is an example image of the visual cue in FIG. 38 captured by the disclosed test device.

圖40A及圖40B說明圖39的經擷取圖像中不同區塊的不同的圖像品質。 40A and 40B illustrate different image qualities for different blocks in the captured image of FIG. 39 .

圖41為測試載體攜載可用於校正或使測試裝置生效的測試樣本實例圖像。 Figure 41 is an example image of a test carrier carrying a test sample that may be used to calibrate or validate a test device.

圖42A及圖42B說明圖41的經擷取圖像中不同區塊的不同的圖像品質。 42A and 42B illustrate different image qualities for different blocks in the captured image of FIG. 41 .

圖43為在此揭露的測試設備驗證樣本固持區域攜載生物樣本的可實施處理程序的實例流程圖。 43 is an example flow diagram of a process procedure that may be implemented by a test device disclosed herein to verify that a sample holding region carries a biological sample.

圖44A示出空的或乾的樣本固持區域的經擷取圖像的實例。 Figure 44A shows an example of a captured image of an empty or dry sample holding area.

圖44B示出空的或乾的樣本固持區域的經擷取圖像的另一實例。 Figure 44B shows another example of a captured image of an empty or dry sample holding area.

圖45A示出樣本固持區域裝載有攜載生物樣本的流體的經擷取圖像的實例。 Figure 45A shows an example of a captured image of a sample holding region loaded with biological sample-carrying fluid.

圖45B示出樣本固持區域裝載有攜載生物樣本的流體的經擷取圖像的另一實例。 45B shows another example of a captured image of a sample holding region loaded with biological sample-carrying fluid.

圖46示出包括有許多錯誤分類區域的實例圖像。 Figure 46 shows an example image including many misclassified regions.

圖47為本發明測試設備判定樣本的移動特性的可實施處理程序的實例流程圖。 FIG. 47 is an example flow chart of a processing procedure for determining the movement characteristics of a sample by the testing device of the present invention.

圖48為在此揭露的測試設備利用複數視野以改進結果的可實施處理程序的實例流程圖。 48 is an example flow diagram of a process that may be implemented by the test apparatus disclosed herein to utilize multiple fields of view to improve results.

圖49示出示例性多軸移動平台(multi-axis mobile platform)。 Figure 49 illustrates an exemplary multi-axis mobile platform.

圖50A示出從相機觀看時順時鐘順序依序地獲取圖像的實例方式。 FIG. 50A shows an example manner in which images are sequentially acquired clockwise as viewed from the camera.

圖50B示出依循序掃描(progressive scan)順序獲取圖像的實例方式。 FIG. 50B shows an example manner in which images are sequentially acquired in a progressive scan.

圖51A示出相機模組的可調整透鏡的預設位置實例。 FIG. 51A shows an example of a preset position of an adjustable lens of a camera module.

圖51B示出圖51A的相機模組具有在延伸位置的透鏡。 FIG. 51B shows the camera module of FIG. 51A with the lens in an extended position.

圖52示出判定載體內所含樣本實際體積的配置實例。 Fig. 52 shows an example of a configuration for determining the actual volume of a sample contained in a carrier.

圖1A及圖1B示出根據本發明之具體實例的用於測試生物樣本之複數視角分析的自動測試裝置。本文中所揭示之具體實例用於說明目的且不應視為對本發明之所需限制。用於測試生物樣本之複數視角分析的自動測試裝置A1包括:具有形成於載體10之頂部上之樣本固持區域11的載體10、堆疊於載體10之頂部上之外罩20及包括形成於外罩20上之凸透鏡型表面的至少一個放大部件30(亦被稱作放大組件或放大鏡)。 1A and 1B illustrate an automatic testing device for testing biological samples for multi-view analysis according to an embodiment of the present invention. The specific examples disclosed herein are for illustrative purposes and should not be considered as limitations on the invention as required. The automatic testing device A1 for multiple viewing angle analysis of testing biological samples comprises: a carrier 10 having a sample holding area 11 formed on the top of the carrier 10, an outer cover 20 stacked on the top of the carrier 10, and at least one magnifying part 30 (also referred to as a magnifying component or a magnifying glass) comprising a convex lens-type surface formed on the outer cover 20.

本具體實例之放大部件30包括如圖1A中所示之平面凸透鏡。然而,可包括其他類型之放大透鏡(例如,雙面雙凸透鏡)作為放大部件30。放大部件30經安置以與載體10之樣本固持區域11對準且覆蓋所述樣本固持區域11。放大部件30可基於各種測試之測試要求而具有各種放大比率。舉例而言,所述測試可包括精液測試、尿液測試、滑液關節液測試、皮膚測試、水測試或其他體液測試等等。 The magnifying component 30 of this embodiment includes a planar convex lens as shown in FIG. 1A. However, other types of magnification lenses (eg, double-sided lenticular lenses) may be included as the magnification member 30 . The magnification member 30 is arranged to align with and cover the sample holding area 11 of the carrier 10 . The amplification component 30 can have various amplification ratios based on the test requirements of various tests. For example, the tests may include semen tests, urine tests, synovial joint fluid tests, skin tests, water tests or other bodily fluid tests, among others.

使用本具體實例之用於測試生物樣本之複數視角分析的自動測試裝置A1的測試不需要昂貴且操作耗時的額外放大透鏡或實驗室顯微鏡。此外,不需要使樣本固持區域與所述放大透鏡或實驗室顯微鏡對準。 The test using the automatic test device A1 for testing multiple viewing angles of biological samples of this embodiment does not require additional magnifying lenses or laboratory microscopes, which are expensive and time-consuming to operate. Furthermore, there is no need to align the sample holding area with the magnifying lens or laboratory microscope.

如圖1A中所示,載體10之樣本固持區域11可經形成具有凹陷結構。所述凹陷結構設計提供含有樣本40之穩定且大的儲存空間。所述凹陷結構允許在執行測試之前將所述樣本靜置一所需時間段。舉例而言,在對精液樣本執行活動力測試之前,有必要在執行活動力測試之前使精液樣本於室溫下靜置一所需時間段。 As shown in FIG. 1A , the sample holding region 11 of the carrier 10 may be formed with a recessed structure. The recessed structure design provides a stable and large storage space containing the sample 40 . The recessed structure allows the sample to rest for a desired period of time before performing the test. For example, before performing a motility test on a semen sample, it is necessary to allow the semen sample to rest at room temperature for a desired period of time prior to performing the motility test.

樣本40可首先經滴注於凹陷結構(亦即,載體10之樣本固持區域11)中以靜置一段時間。如圖1B中所示,外罩20之總面積可小於載體10之總面積。暴露在外罩20外部之樣本接收埠12形成於樣本固持區域11之一側上。樣本接收埠12可經設計以具有朝外擴展之形狀,所述形狀可有助於平穩地滴注樣本。 The sample 40 may first be dripped into the recessed structure (ie, the sample holding area 11 of the carrier 10 ) to stand for a period of time. As shown in FIG. 1B , the total area of the housing 20 may be smaller than the total area of the carrier 10 . A sample receiving port 12 exposed to the outside of the housing 20 is formed on one side of the sample holding area 11 . The sample receiving port 12 can be designed to have an outwardly flared shape, which can help to drip the sample smoothly.

圖2A示出延伸超出外罩20之另一側且形成於樣本固持區域11之另一側上的空氣通道13。空氣通道13可阻止空氣填充樣本固持區域11之內部,該填充在樣本呈液體狀態時阻止對樣本之接收。 FIG. 2A shows the air channel 13 extending beyond the other side of the housing 20 and formed on the other side of the sample holding area 11 . The air channel 13 prevents air from filling the interior of the sample holding area 11 which prevents the sample from being received when it is in a liquid state.

如圖2A中所示,側向照明裝置50可安置於自動測試裝置A1之載體10之一側處。所述側向照明裝置50可為樣本固持區域11中之樣本40提供照明且因此改良樣本40之經擷取測試圖像之分辨率。在一些具體實例中,樣本固持區域11可接收在自動測試裝置A1之頂部或底部上之光源的照明。 As shown in FIG. 2A , the side lighting device 50 may be disposed at one side of the carrier 10 of the automatic test device A1 . The side illuminator 50 can provide illumination for the sample 40 in the sample holding area 11 and thus improve the resolution of the captured test image of the sample 40 . In some embodiments, the sample holding area 11 can receive illumination from a light source on the top or bottom of the automatic testing device A1 .

如圖1A中所示,放大部件30及外罩20可一體地形成,亦即,放大部件30及外罩20可為單一組件。在其他具體實例(諸如圖2B中所示之具體實例)中,可拆卸外罩20及安置於可拆卸外罩20之朝上凹型部件,即凹槽21中之放 大部件30可各自為適於經整合在一起的獨立組件。換言之,相同類型之可拆卸外罩20可與各種放大比率之不同放大部件30整合。 As shown in FIG. 1A , the amplifying member 30 and the housing 20 may be integrally formed, that is, the amplifying member 30 and the housing 20 may be a single component. In other embodiments (such as the embodiment shown in FIG. 2B ), the detachable cover 20 and the upwardly facing concave part disposed in the detachable cover 20, that is, the placement in the groove 21 Large components 30 may each be separate components adapted to be integrated together. In other words, the same type of detachable housing 20 can be integrated with different magnification components 30 of various magnification ratios.

在一些具體實例中,所述可拆卸外罩20之底部與所述樣本固持區域11之間的距離為0.005mm至10mm。在一些具體實例中,所述可拆卸外罩20之底部與所述樣本固持區域11之間的距離約為0.01mm。測試裝置可包括一或多個間隔件(圖未示)以確保可所述拆卸外罩20之底部與樣本固持區域11之間的距離。所述間隔件可與可拆卸外罩20或載體10之樣本固持區域11一體地形成。 In some specific examples, the distance between the bottom of the detachable cover 20 and the sample holding area 11 is 0.005 mm to 10 mm. In some embodiments, the distance between the bottom of the detachable cover 20 and the sample holding area 11 is about 0.01 mm. The test device may include one or more spacers (not shown) to ensure the distance between the bottom of the detachable housing 20 and the sample holding area 11 . The spacer may be integrally formed with the removable cover 20 or the sample holding area 11 of the carrier 10 .

在一些具體實例中,包括載體10及外罩20之條帶係用於精子測試。在一些具體實例中,用於判定精子濃度及活動力之最佳角度放大比率約為100至200。在一些具體實例中,用於判定精子形態之最佳角度放大比率為約200至300。放大組件愈薄,角度放大比率則愈高。 In some embodiments, the strip including carrier 10 and cover 20 is used for sperm testing. In some embodiments, the optimal angular magnification ratio for determining sperm concentration and motility is about 100 to 200. In some embodiments, the optimal angular magnification ratio for determining sperm morphology is about 200-300. The thinner the magnifying element, the higher the angular magnification ratio.

放大組件之焦距亦可與角度放大比率相關。在一些具體實例中,具有100之角度放大比率的放大組件具有2.19mm之焦距。具有角度放大比率為156的放大組件具有1.61mm的焦距。具有300之角度放大比率的放大組件具有0.73mm的焦距。在一些具體實例中,放大組件具有的角度放大比率至少為30、較佳地至少為50。在一些具體實例中,放大組件的焦距為0.1mm至3mm。 The focal length of the magnifying element can also be related to the angular magnification ratio. In some embodiments, a magnification element having an angular magnification ratio of 100 has a focal length of 2.19 mm. A magnification assembly with an angular magnification ratio of 156 has a focal length of 1.61 mm. A magnification element with an angular magnification ratio of 300 has a focal length of 0.73 mm. In some embodiments, the magnification assembly has an angular magnification ratio of at least 30, preferably at least 50. In some embodiments, the focal length of the magnification assembly is 0.1 mm to 3 mm.

圖3示出使用圖1B中所示之用於測試生物樣本之複數視角分析的自動測試裝置A1執行測試的樣本處理程序。在步驟S110中,將待測試之樣本40設置於樣本固持區域11中。在步驟S110中,使外罩20堆疊於載體10之頂部上,之後自樣本接收埠12將待測試之樣本40設置於樣本固持區域11中。替代地,可首先將待測試之樣本40直接設置於樣本固持區域11中,之後使外罩20堆疊於載體10之頂部上。在步驟S120中,根據樣本40之測試要求使樣本40靜置於 樣本固持區域11中,選擇性地持續一段時間。在步驟S130中,智慧通信裝置(例如,行動電話)附接在外罩20上,且使行動電話之相機與放大部件30對準,以使用行動電話之相機經由放大部件30擷取樣本之圖像或視訊。在步驟S140中,在行動電話或其他分析裝置處運行之應用程式(APP)可用於對圖像或視訊執行分析,從而獲得測試結果。 FIG. 3 shows a sample processing procedure for performing a test using the automatic test device A1 shown in FIG. 1B for testing multiple view angle analysis of a biological sample. In step S110 , the sample 40 to be tested is placed in the sample holding area 11 . In step S110 , the cover 20 is stacked on top of the carrier 10 , and then the sample 40 to be tested is placed in the sample holding area 11 from the sample receiving port 12 . Alternatively, the sample 40 to be tested may first be placed directly in the sample holding area 11 , after which the housing 20 is stacked on top of the carrier 10 . In step S120, according to the test requirements of the sample 40, the sample 40 is placed in a static In the sample holding area 11, selectively last for a period of time. In step S130, a smart communication device (such as a mobile phone) is attached to the housing 20, and the camera of the mobile phone is aligned with the magnifying part 30, so as to use the camera of the mobile phone to capture an image or video of the sample through the magnifying part 30. In step S140, an application program (APP) running on a mobile phone or other analysis device can be used to perform analysis on the image or video to obtain test results.

如圖4中所示,支撐側(諸如突起部件14)可進一步形成於自動測試裝置A2之外罩20之頂部上放大部件30之邊界處。在一些具體實例中,突起型支撐結構可藉由添加突起部件14形成於外罩20之頂部上。當使用者試圖使用智慧通信裝置60(例如,諸如智能型電話或單板計算機之行動裝置)擷取樣本之圖像或視訊時,具有相機61之智慧通信裝置60之一側可固定至突起部件14(沿箭頭L1示出之方向)。因此,自動測試裝置A2允許使用者使用智慧通信裝置60擷取樣本之圖像或視訊,且不需要昂貴測試裝置記錄圖像或視訊。此外,為了最佳觀測距離,可基於相機61及自動測試裝置A2之規格預定突起部件14之高度。 As shown in FIG. 4 , a supporting side such as a protruding part 14 may be further formed at the boundary of the enlarging part 30 on the top of the outer cover 20 of the automatic testing device A2. In some embodiments, a protruding support structure can be formed on top of the housing 20 by adding protruding features 14 . When a user attempts to capture an image or video of a sample using the smart communication device 60 (e.g., a mobile device such as a smart phone or a single-board computer), one side of the smart communication device 60 with the camera 61 can be fixed to the protruding member 14 (in the direction shown by arrow L1). Therefore, the automatic testing device A2 allows the user to use the smart communication device 60 to capture images or videos of the samples, and does not require expensive testing devices to record the images or videos. In addition, for an optimum observation distance, the height of the protruding part 14 can be predetermined based on the specifications of the camera 61 and the automatic test device A2.

如圖5及圖6中所示,自動測試裝置A3可包括儀表裝置70(亦被稱作基座組件)。儀表裝置70包括下部機筒基座71及可相對於下部機筒基座71上升或下降之上部機筒主體72。下部機筒基座71具有為堆疊在一起之外罩20及載體10提供插入位置之插入埠73。朝上發光裝置(亦被稱作光源)80安置於下部機筒基座71之底部上,以自底部向外罩20及載體10之組合提供照明。上部機筒主體72可包括例如用於進一步放大之至少一個額外放大透鏡74。 As shown in FIGS. 5 and 6 , the automatic test device A3 may include an instrumentation device 70 (also referred to as a base assembly). The meter device 70 includes a lower barrel base 71 and an upper barrel body 72 that can be raised or lowered relative to the lower barrel base 71 . The lower barrel base 71 has an insertion port 73 providing an insertion location for the housing 20 and carrier 10 stacked together. An upward light emitting device (also referred to as a light source) 80 is disposed on the bottom of the lower barrel base 71 to provide illumination to the combination of the housing 20 and the carrier 10 from the bottom. The upper barrel body 72 may include, for example, at least one additional magnifying lens 74 for further magnification.

可使用螺紋機構將上部機筒主體72附接至下部機筒基座71以使得上部機筒主體72可如同螺釘相對於下部機筒基座71上升或下降。換言之,上部機筒主體72可相對於下部機筒基座71沿箭頭L2方向旋轉以使得上部機筒主體72沿箭頭L3方向相對於下部機筒基座71向上及向下移動。藉由調整上部機筒主 體72相對於下部機筒基座71之高度,所述系統調整放大透鏡74之高度(改變放大比率)及相機61之高度。 The upper barrel body 72 may be attached to the lower barrel base 71 using a threaded mechanism such that the upper barrel body 72 may be raised or lowered relative to the lower barrel base 71 as a screw. In other words, the upper barrel body 72 is rotatable relative to the lower barrel base 71 in the arrow L2 direction so that the upper barrel body 72 moves upward and downward relative to the lower barrel base 71 in the arrow L3 direction. By adjusting the upper barrel main The height of the body 72 relative to the lower barrel base 71 , the system adjusts the height of the magnifying lens 74 (changing the magnification ratio) and the height of the camera 61 .

組裝框架75(亦被稱作形狀配合框架)可安置於上部機筒主體72之上端處。組裝框架75將智慧通信裝置60固定在預定位置處。組裝框架75具有相機對準孔76。智慧通信裝置60之相機61可經由相機對準孔76接收來自樣本的光。 An assembly frame 75 (also referred to as a form fit frame) may be placed at the upper end of the upper barrel body 72 . The assembly frame 75 fixes the smart communication device 60 at a predetermined position. The assembly frame 75 has a camera alignment hole 76 . The camera 61 of the smart communication device 60 can receive light from the sample through the camera alignment hole 76 .

安置於當前智慧通信裝置60上之相機61典型地僅具有數字變焦功能。一般而言,高精確度之測試需要光學變焦透鏡。然而,使用自動測試裝置A3之使用者不需要具有光學變焦透鏡之相機61。自動測試裝置A3之高度調整功能為對準樣本、放大透鏡及相機61提供靈活的解決方案。 The camera 61 installed on the current smart communication device 60 typically only has a digital zoom function. In general, high-precision testing requires optical zoom lenses. However, a user using the automatic test device A3 does not need the camera 61 with an optical zoom lens. The height adjustment function of the automatic testing device A3 provides a flexible solution for aligning the sample, magnifying lens and camera 61 .

圖6示出已組裝且固定至組裝框架75上之智慧通信裝置60,所述組裝框架75安置於上部機筒主體72上。外罩20及含有樣本40之載體10經由插入埠73插入。朝上發光裝置80可向樣本提供照明且增加樣本之亮度。 FIG. 6 shows the smart communication device 60 assembled and secured to the assembly frame 75 which rests on the upper barrel body 72 . The housing 20 and the carrier 10 containing the sample 40 are inserted through the insertion port 73 . The upward light emitting device 80 can provide illumination to the sample and increase the brightness of the sample.

上部機筒主體72或儀表裝置70可沿著方向L2旋轉,以沿方向L3朝上或向下調整放大透鏡74及相機61之高度。高度調整機構實現調整放大比率之功能。相機61可在放大之後擷取樣本40之動態視訊或靜態測試圖像。此外,智慧通信裝置60可使用其原始裝備功能儲存經擷取視訊或圖像、傳遞測試圖像或視訊及進行後續處理。 The upper barrel body 72 or the gauge device 70 can be rotated along the direction L2 to adjust the height of the magnifying lens 74 and the camera 61 upwards or downwards along the direction L3. The height adjustment mechanism realizes the function of adjusting the magnification ratio. The camera 61 can capture a dynamic video or a static test image of the sample 40 after zooming in. In addition, the smart communication device 60 can use its original equipment functions to store captured video or images, transmit test images or videos, and perform subsequent processing.

如圖7中所示,用於測試生物樣本之複數視角分析的自動測試裝置A4包括安置於外罩20上之具有不同放大比率之複數個放大部件30、30B、30C。使用者可使外罩20偏移以使載體10之樣本固持區域11與具有不同放大比率之放大部件30、30B、30C中之任一者對準,以便獲得具有不同放大比率之測試結果。藉由此設計,具有單一模組之放大功能的自動測試裝置A4可應用於滿足多個測試協定之放大要求,而不需要改變放大部件或外罩。 As shown in FIG. 7 , the automatic test device A4 for multiple view analysis of testing biological samples includes a plurality of magnification components 30 , 30B, 30C with different magnification ratios disposed on the housing 20 . The user can shift the housing 20 to align the sample holding area 11 of the carrier 10 with any of the magnification components 30, 30B, 30C having different magnification ratios in order to obtain test results having different magnification ratios. With this design, the automatic test device A4 with the amplification function of a single module can be applied to meet the amplification requirements of multiple test protocols without changing the amplification components or the housing.

如圖8中所示,用於測試生物樣本之複數視角分析的自動測試裝置A5包括可撓性透明薄膜15。可撓性透明薄膜15安置於載體10與放大部件30之間,且覆蓋樣本固持區域11。可撓性透明薄膜15覆蓋樣本40(呈液態)以使得樣本40在受限空間中。因此,將由空氣、灰塵及污物所致之外部影響約束至最低程度。此外,自動測試裝置A5可藉由改變可撓性透明薄膜15之厚度來調整焦距。 As shown in FIG. 8 , the automatic testing device A5 for testing biological samples for multi-view analysis includes a flexible transparent film 15 . The flexible transparent film 15 is disposed between the carrier 10 and the magnifying component 30 and covers the sample holding area 11 . The flexible transparent film 15 covers the sample 40 (in liquid state) such that the sample 40 is in a confined space. Therefore, external influences caused by air, dust and dirt are kept to a minimum. In addition, the automatic testing device A5 can adjust the focal length by changing the thickness of the flexible transparent film 15 .

如圖9中所示,用於測試生物樣本之複數視角分析的自動測試裝置A6之放大部件30為平面凸透鏡,且面向載體10之放大部件30之表面為突起表面。因此,朝上凹型空心部件,即凹槽21形成於面向載體10之放大部件30之表面處。藉由平面凸透鏡之放大部件30之最厚部分之厚度定義焦距參數H1。如圖10中所示,用於測試生物樣本之複數視角分析的自動測試裝置A7之焦距參數H2不同於圖9之焦距參數H1。 As shown in FIG. 9 , the magnifying part 30 of the automatic testing device A6 for testing multiple viewing angles of biological samples is a planar convex lens, and the surface of the magnifying part 30 facing the carrier 10 is a protruding surface. Accordingly, an upwardly concave hollow part, ie, a groove 21 is formed at the surface of the enlarged part 30 facing the carrier 10 . The focal length parameter H1 is defined by the thickness of the thickest part of the magnifying part 30 of the planar convex lens. As shown in FIG. 10 , the focal length parameter H2 of the automatic test device A7 for testing the multiple viewing angle analysis of biological samples is different from the focal length parameter H1 of FIG. 9 .

可藉由改變外罩20之厚度或放大部件30之曲率大小來調整焦距H1及H2。舉例而言,圖10中所示之焦距H2大於圖9中所示之焦距H1,且藉由改變放大部件30之曲率大小來達成。以此方式,可藉由採用不同放大部件30來滿足各種焦距之測試要求。 The focal lengths H1 and H2 can be adjusted by changing the thickness of the cover 20 or the curvature of the magnifying part 30 . For example, the focal length H2 shown in FIG. 10 is greater than the focal length H1 shown in FIG. 9 , and is achieved by changing the curvature of the magnifying part 30 . In this way, testing requirements for various focal lengths can be met by using different magnifying components 30 .

在一些具體實例中,放大部件30可為透明的且外罩20之其餘部分可不透明。另外,載體10可包括透明之樣本固持區域11。載體10之剩餘部分可為不透明的。當在測試裝置上執行測試操作時,光可傳播穿過樣本固持區域11、放大部件30以抑制裝置之其他部件中之光干擾的機會。 In some embodiments, magnification member 30 may be transparent and the remainder of housing 20 may be opaque. In addition, the carrier 10 may include a transparent sample holding area 11 . The remainder of the carrier 10 may be opaque. When performing a test operation on the test device, light can propagate through the sample holding area 11, the amplifying component 30 to suppress the chance of light interference in other parts of the device.

參見圖11,在用於測試生物樣本之複數視角分析的自動測試裝置A8中,自動測試裝置A8之載體10進一步包括形成於載體10之底部表面處的光束輔助導引結構16。載體10可由透明的或半透明的材料製成。光束輔助導引結構16可為不透明的或包括顆粒結構、粗糙圖案、雕刻圖案或散射到達導引結 構16之光束的其他合適結構。光束輔助導引結構16可為外罩及載體之整個表面或部分表面提供特定圖案。光束輔助導引結構16亦可全部圍繞載體10之側表面形成。 Referring to FIG. 11 , in the automatic testing device A8 for multiple viewing angle analysis of biological samples, the carrier 10 of the automatic testing device A8 further includes an auxiliary beam guiding structure 16 formed at the bottom surface of the carrier 10 . The carrier 10 can be made of transparent or translucent material. The beam assist guiding structure 16 may be opaque or include a grained structure, rough pattern, engraved pattern, or scattering to reach the guiding junction. Other suitable configurations for the beam of configuration 16. The auxiliary beam guiding structure 16 can provide a specific pattern on the entire surface or a part of the surface of the cover and the carrier. The auxiliary beam guiding structure 16 can also be formed entirely around the side surface of the carrier 10 .

當外罩20及載體10經堆疊且附接至智慧通信裝置60(例如,如圖4中所示)時,放大部件30與智慧通信裝置60之相機61對準。另外,補充光(圖未示)可安置在智慧通信裝置60之表面上之相機61附近處。由補充光提供之光束可經導引至載體10以穿過外罩20照亮樣本固持區域11。同時,載體10之光束輔助導引結構16可使由補充光提供之光束散射,進而改良樣本固持區域11之亮度及照明均勻性。 When the housing 20 and carrier 10 are stacked and attached to the smart communication device 60 (eg, as shown in FIG. 4 ), the magnification member 30 is aligned with the camera 61 of the smart communication device 60 . In addition, a supplementary light (not shown) can be placed near the camera 61 on the surface of the smart communication device 60 . A beam of light provided by supplemental light can be directed to the carrier 10 to illuminate the sample holding area 11 through the housing 20 . At the same time, the light beam auxiliary guiding structure 16 of the carrier 10 can scatter the light beam provided by the supplementary light, thereby improving the brightness and illumination uniformity of the sample holding area 11 .

藉由安置光束輔助導引結構16,測試裝置不需要額外的補充光源來照亮載體10。因此,外罩20包括光透射性材料以使得智慧通信裝置60之補充光可穿過外罩20到達樣本。在一些替代具體實例中,裝置不包括外罩20且補充光直接到達載體10而不傳播穿過外罩20。 By installing the light beam auxiliary guiding structure 16 , the testing device does not require an additional supplementary light source to illuminate the carrier 10 . Therefore, the cover 20 includes a light-transmitting material so that the supplementary light of the smart communication device 60 can pass through the cover 20 to reach the sample. In some alternative embodiments, the device does not include housing 20 and the supplemental light reaches carrier 10 directly without propagating through housing 20 .

用於測試生物樣本之複數視角分析的自動測試裝置A8可包括防滑薄膜92、離型紙96及pH試紙94。防滑薄膜92附接在外罩20之支撐側(諸如頂部側)上,且用於將外罩20穩定安置至智慧通信裝置60之相機61,如圖4中所示,以使得放大部件30與智慧通信裝置60之相機61對準。使用防滑薄膜92,智慧通信裝置60相對於自動測試裝置A8之定位經固定至預定結構。 The automatic test device A8 for testing multiple viewing angles of biological samples may include a non-slip film 92 , a release paper 96 and a pH test paper 94 . A non-slip film 92 is attached on the supporting side of the housing 20, such as the top side, and is used to stably seat the housing 20 to the camera 61 of the smart communication device 60, as shown in FIG. Using the anti-slip film 92, the positioning of the smart communication device 60 relative to the automatic test device A8 is fixed to a predetermined structure.

防滑薄膜92可具有與放大部件30對準之開口,以使得防滑薄膜92不阻斷穿過放大部件30自樣本傳輸至相機61之光。防滑薄膜92可包括(例如)矽之材料,利用離型紙96可保護防滑薄膜92表面,以維持紙黏性。pH試紙94可安置於載體10之樣本固持區域11上,以提供對樣本之pH值之指示。pH試紙94可在使用之後經替換。 The non-slip film 92 may have an opening aligned with the magnifying member 30 so that the non-slip film 92 does not block the transmission of light from the sample to the camera 61 through the magnifying member 30 . The anti-slip film 92 can include, for example, silicon material, and the surface of the anti-slip film 92 can be protected by using the release paper 96 to maintain the stickiness of the paper. A pH test paper 94 can be placed on the sample holding area 11 of the carrier 10 to provide an indication of the pH value of the sample. The pH paper 94 can be replaced after use.

另外,放大部件30及外罩20可採用可拆卸設計。因此,使用者可基於測試要求選擇不同於放大部件30之另一放大部件31來替換原始放大部件30。可與外罩20組裝之各種放大部件經組裝以達成不同的放大比率或其他光學特徵。 In addition, the magnifying component 30 and the cover 20 can adopt a detachable design. Therefore, the user may select another amplifying component 31 different from the amplifying component 30 to replace the original amplifying component 30 based on testing requirements. Various magnification components that may be assembled with housing 20 are assembled to achieve different magnification ratios or other optical characteristics.

現參見圖12,用於測試生物樣本之複數視角分析的自動測試裝置A9可進一步包括安置於樣本固持區域11中之樣本收集片42。樣本收集片42(例如)具有樣本收集區域42A。樣本收集區域42A可使用黏著或其他方法收集精子、皮下組織/細胞、寄生蟲卵及類似固體測試主體。在一些具體實例中,樣本收集片42可用作維持外罩20與樣本固持區域11之間的距離的間隔件。 Referring now to FIG. 12 , the automatic testing device A9 for testing multiple viewing angles of biological samples may further include a sample collection sheet 42 disposed in the sample holding area 11 . Sample collection sheet 42, for example, has a sample collection area 42A. The sample collection area 42A may collect sperm, subcutaneous tissue/cells, parasite eggs, and similar solid test subjects using adhesives or other methods. In some embodiments, the sample collection sheet 42 can serve as a spacer to maintain the distance between the housing 20 and the sample holding area 11 .

接著,參見圖13,用於測試生物樣本之複數視角分析的自動測試裝置A10可包括安置於載體10與外罩20之間的樣本固持區域11處的隔離組件98。隔離組件98可使放大部件30與樣本固持區域11中之測試液隔離,且防止測試液污染放大部件30。在一些具體實例中,隔離組件98可用作維持外罩20與樣本固持區域11之間的距離之間隔件。隔離組件98可與外罩20整合為單一組件。替代地,隔離組件98可與載體10整合為單一組件。 Next, referring to FIG. 13 , the automatic testing device A10 for testing multiple viewing angles of biological samples may include an isolation component 98 disposed at the sample holding area 11 between the carrier 10 and the housing 20 . The isolation component 98 can isolate the amplifying part 30 from the test liquid in the sample holding area 11 and prevent the test liquid from polluting the amplifying part 30 . In some embodiments, the isolation assembly 98 can be used as a spacer to maintain the distance between the housing 20 and the sample holding area 11 . Isolation assembly 98 may be integrated with housing 20 as a single assembly. Alternatively, isolation component 98 may be integrated with carrier 10 as a single component.

圖14A為根據本發明之另一具體實例之插入至儀表裝置中的測試條帶之示意圖。測試條帶5(亦稱為測試盒)包括可拆卸外罩20及載體10。換言之,可拆卸外罩20與載體10之組合(例如,如圖1B中所示)形成測試條帶5。測試條帶5經由插入埠插入至儀表裝置70(亦被稱作基座組件)中。插入埠可為例如側向或豎直插入埠。儀表裝置70可包括例如用於擷取測試條帶5中所收集之樣本之圖像的組件。 14A is a schematic diagram of a test strip inserted into a meter device according to another embodiment of the present invention. The test strip 5 (also called a test cartridge) includes a detachable cover 20 and a carrier 10 . In other words, the combination of the removable cover 20 and the carrier 10 (eg, as shown in FIG. 1B ) forms the test strip 5 . The test strip 5 is inserted into the meter device 70 (also referred to as the base assembly) via the insertion port. The insertion ports may be, for example, lateral or vertical insertion ports. Meter device 70 may include, for example, components for capturing images of samples collected in test strip 5 .

圖14B為根據本發明之另一具體實例之儀表裝置之組件的示意圖。儀表裝置70包括提供測試條帶5之插入位置的插入埠73。測試條帶5包括載體10及可拆卸外罩20。可拆卸外罩包括放大部件30。儀表裝置70包括用於擷取 載體10之樣本固持區域之圖像或視訊的相機61。相機61與放大部件30對準。儀表裝置進一步包括用於自底部為樣本固持區域提供照明之光源80。在一些具體實例中,平行光管(例如,平行光管透鏡或光反射器;現示出)可置放於光源80之頂部上以用於準直光束。環狀光圈可進一步置放於光源80與平行光管之間以使得行進穿過平行光管之光束形成空心錐形之光束。載體10可包括用於光傳播之透明或半透明材料。 14B is a schematic diagram of components of an instrumentation device according to another embodiment of the present invention. Meter device 70 includes an insertion port 73 that provides an insertion location for test strip 5 . The test strip 5 includes a carrier 10 and a detachable cover 20 . The detachable housing includes an enlargement member 30 . Meter unit 70 includes a Camera 61 for image or video of the sample holding area of carrier 10 . The camera 61 is aligned with the magnification part 30 . The instrumentation device further comprises a light source 80 for illuminating the sample holding area from the bottom. In some embodiments, a collimator (eg, a collimator lens or a light reflector; now shown) can be placed on top of the light source 80 for collimating the light beam. An annular aperture can further be placed between the light source 80 and the collimator so that the light beam traveling through the collimator forms a hollow cone-shaped light beam. The carrier 10 may comprise a transparent or translucent material for light transmission.

在一些具體實例中,儀表裝置70可進一步包括使自樣本固持區域發射之光線之相位偏移的相位板。當光線傳播穿過樣本時,光線之速度增大或減小。因此,傳播穿過樣本之光線與未傳播穿過樣本之剩餘光線異相(約90度)。異相光線彼此干擾且增強樣本圖像之明亮部分與黑暗部分之間的對比度。 In some embodiments, instrumentation device 70 may further include a phase plate that shifts the phase of light emitted from the sample holding region. The speed of light increases or decreases as it travels through the sample. Thus, the rays that propagate through the sample are out of phase (approximately 90 degrees) from the remaining rays that do not travel through the sample. The out-of-phase light rays interfere with each other and enhance the contrast between bright and dark portions of the sample image.

相位板可進一步使傳播穿過樣本之光線的相位偏移約90度,以便進一步增強由異相光線之干擾所致的對比度。因此,傳播穿過樣本之光線與未傳播穿過樣本之剩餘光線異相共約180度。光線之間的此破壞性干擾藉由暗化圖像中之對象且亮化該等對象之邊界來增強樣本圖像之對比度。 The phase plate can further shift the phase of the light propagating through the sample by about 90 degrees in order to further enhance the contrast caused by the interference of light out of phase. Thus, the light rays propagating through the sample are approximately 180 degrees out of phase with the remaining light rays not propagating through the sample. This destructive interference between light rays enhances the contrast of the sample image by darkening objects in the image and brightening the boundaries of those objects.

在一些替代具體實例中,此相位板可安置於測試條帶5之可拆卸外罩20之頂部上。換言之,相位板可為測試條帶5之部分,而非儀表裝置70之部分。 In some alternative embodiments, this phase plate may be placed on top of the removable housing 20 of the test strip 5 . In other words, the phase plate may be part of the test strip 5 rather than the instrumentation device 70 .

圖15示出藉由諸如分別在圖5及圖14中所示之儀表裝置70或智慧通信裝置60的裝置對精液測試進行之樣本處理程序。在步驟1505中,裝置獲得樣本之圖像(圖框)。在步驟1510中,裝置基於該圖像判定精子濃度。在步驟1515中,藉由分析pH條帶之色彩或灰度,裝置可進一步判定樣本的pH值。舉例而言,裝置可包括用以識別由相機擷取之圖像之部分(對應於pH條帶)的色彩及判定包含於該條帶中之生物樣本之生化特性(例如,pH水平)的處理器。在一些其他具體實例中,裝置之光源可提供具有至少一個色彩之照明。舉例而言, 光源可包括具有不同色彩(例如,紅色、綠色及藍色)之光發射器來形成各種色彩之光。裝置之相機可進一步擷取用光照亮之樣本之至少一個(或更多)圖像。處理器可比較圖像之特定區域(例如,pH條帶區域)之色彩以判定生物樣本之特性或分析物之量化。在一些具體實例中,處理器僅需要一個圖像之特定區域之色彩來判定生物樣本之特性。舉例而言,裝置(例如,測試裝置)可包括用於校正圖像之色彩的色彩校正模組。處理器接著分析經校正圖像以判定生物樣本之特性。替代地,測試條帶可包括具有已知色彩之色彩校正區域。處理器基於色彩校正區域對圖像進行色彩校正操作,且接著分析經校正圖像以判定生物樣本之特性或分析物之量化。在一些具體實例中,pH條帶(或其他類型之生化測試條帶)中之試劑與生物樣本反應,之後圖像之特定區域(例如,pH條帶區域)示出特定色彩。在一些具體實例中,用於色彩偵測之特定區域必定需要對由相機擷取之圖像的放大。因此,至少在一些具體實例中,在用於色彩偵測之條帶之特定區域(例如,pH條帶區域)上方不存在放大組件或補充物。舉例而言,一些類型之生化測試條帶含有光化學試劑。當光化學試劑與生物樣本中之特定分析物反應時,該反應造成條帶之樣本固持區域中之色彩變化。處理器可分析測試條帶之圖像(由相機擷取)以偵測色彩變化且量化生物樣本中之特定分析物。此外,裝置可判定精子形態(1520)、精子容量(1525)及精子總數(1530)。在步驟1540中,裝置獲得樣本之一系列多個圖框。在步驟1545、1550及1555中,裝置可基於精子軌跡判定精子活動力參數且判定精子活動力。 Fig. 15 shows a sample processing procedure for a semen test by a device such as the meter device 70 or the smart communication device 60 shown in Fig. 5 and Fig. 14 respectively. In step 1505, the device obtains an image (frame) of the sample. In step 1510, the device determines sperm concentration based on the image. In step 1515, the device can further determine the pH value of the sample by analyzing the color or gray scale of the pH strip. For example, a device may include a processor to identify the color of a portion of an image captured by a camera (corresponding to a pH strip) and determine a biochemical characteristic (eg, pH level) of a biological sample contained in the strip. In some other embodiments, the light source of the device can provide illumination having at least one color. For example, The light source may include light emitters of different colors (eg, red, green, and blue) to form various colors of light. The camera of the device may further capture at least one (or more) images of the sample illuminated with light. The processor can compare the color of specific regions of the image (eg, pH strip regions) to determine the identity of the biological sample or the quantification of an analyte. In some embodiments, the processor only needs the color of a specific region of an image to determine the identity of the biological sample. For example, a device (eg, a test device) may include a color correction module for correcting the color of an image. The processor then analyzes the rectified image to determine characteristics of the biological sample. Alternatively, the test strip may include color corrected areas of known colors. The processor performs a color correction operation on the image based on the color correction region, and then analyzes the corrected image to determine the identity of the biological sample or the quantification of the analyte. In some embodiments, reagents in a pH strip (or other type of biochemical test strip) react with the biological sample, after which specific regions of the image (eg, pH strip regions) show specific colors. In some embodiments, specific areas for color detection necessarily require magnification of the image captured by the camera. Thus, at least in some embodiments, there are no magnifying elements or supplements above certain regions of the strip used for color detection (eg, the pH strip region). For example, some types of biochemical test strips contain photochemical reagents. When the photochemical reagent reacts with a specific analyte in the biological sample, the reaction causes a color change in the sample-holding region of the strip. The processor can analyze the image of the test strip (captured by the camera) to detect color changes and quantify specific analytes in the biological sample. In addition, the device can determine sperm morphology (1520), sperm volume (1525) and total number of sperm (1530). In step 1540, the device acquires a series of frames of the sample. In steps 1545, 1550, and 1555, the device may determine sperm motility parameters based on sperm trajectories and determine sperm motility.

圖16示出判定精子濃度之樣本處理程序。在1605中,如分別在圖5及圖14中所示之儀表裝置70或智慧通信裝置60(「所述裝置」)之相機擷取精子樣本之經放大圖像。經擷取圖像為用於判定精子濃度之原始圖像。所述裝置接著將數字色彩圖像轉換成數字灰度圖像,且進一步將數字灰度圖像劃分成多個區域。 Figure 16 shows a sample processing procedure for determining sperm concentration. In 1605, a camera of meter device 70 or smart communication device 60 ("the device") as shown in Figures 5 and 14, respectively, captures a magnified image of the sperm sample. The captured image is the original image used to determine the concentration of sperm. The device then converts the digital color image into a digital grayscale image, and further divides the digital grayscale image into regions.

在步驟1610中,所述裝置基於每一區域之灰度值之均值及標準差對彼區域進行自適應定限二進制計算。該自適應定限二進制計算之目標為將為精子之候選者的對象識別為前景對象,且將區域之其餘部分識別為背景。 In step 1610, the device performs an adaptive bounded binary calculation for each region based on the mean and standard deviation of the gray value of that region. The goal of this adaptive bounded binary computation is to identify objects that will be candidates for sperm as foreground objects and the rest of the region as background.

在二進制計算之後的圖像中之前景對象可仍包括實際上不為精子的雜質。彼等雜質小於該等精子或大於該等精子。所述方法可為精子之大小設置上邊界值及下邊界值。在步驟1615中,所述裝置藉由移除大於精子之上邊界值或小於精子之下邊界值的雜質來對圖像進行降噪操作。在降噪操作之後,圖像中之前景對象表示精子。 Foreground objects in the image after the binary calculation may still include impurities that are not actually sperm. The impurities are smaller or larger than the sperm. The method may set upper and lower boundary values for the size of the sperm. In step 1615, the device performs a noise reduction operation on the image by removing impurities that are larger than the upper boundary value of the sperm or smaller than the lower boundary value of the sperm. After the noise reduction operation, the foreground objects in the image represent sperm.

所述方法基於精子之頭部部分對圖像中之精子數目進行計數。在步驟1620及1625中,所述裝置進行距離變換操作以計算前景對象與背景之間的最小距離,且亦識別局部最大值之位置。彼等位置為精子頭部位置之候選者。 The method counts the number of sperm in an image based on the head portion of the sperm. In steps 1620 and 1625, the device performs a distance transform operation to calculate the minimum distance between the foreground object and the background, and also identify the location of the local maximum. These positions are candidates for sperm head positions.

在步驟1630中,所述裝置對每一精子候選對象進行橢圓擬合操作以減少不具有橢圓形狀且因此不為精子頭部之偽陽性候選者。接著,所述裝置對精子之剩餘陽性候選者之總數進行計數,且基於由圖像所表示之體積計算所述精子之濃度。該體積可為(例如)經擷取樣本固持區域之面積乘以樣本固持區域與外罩之底部之間的距離。 In step 1630, the device performs an ellipse fitting operation on each sperm candidate to reduce false positive candidates that do not have an elliptical shape and thus are not sperm heads. The device then counts the total number of remaining positive candidates for the sperm and calculates the concentration of the sperm based on the volume represented by the image. The volume can be, for example, the area of the captured sample holding area multiplied by the distance between the sample holding area and the bottom of the housing.

在一些具體實例中,所述裝置可使用樣本之多個圖像且分別基於該等圖像計算濃度值。接著,所述裝置計算該等濃度值之平均值以使得精子濃度之量測誤差最小化。 In some embodiments, the device can use multiple images of the sample and calculate concentration values based on the images, respectively. Then, the device calculates the average value of these concentration values to minimize the measurement error of sperm concentration.

使用樣本之一系列圖像(例如,視訊圖框),所述裝置可進一步判定精子之軌跡及活動力。舉例而言,圖17示出諸如精子1705之樣本精子及諸如軌跡1710及軌跡1720之樣本精子軌跡。 Using a series of images (eg, video frames) of the sample, the device can further determine the trajectory and motility of the sperm. For example, FIG. 17 shows sample sperm such as sperm 1705 and sample sperm trajectories such as trajectories 1710 and 1720 .

圖18示出判定精子軌跡及活動力之樣本處理程序。如分別在圖5及圖14中所示之儀表裝置70或智慧通信裝置60(「所述裝置」)之相機擷取精子樣本之一系列圖像(例如,視訊圖框)。所述裝置使用經擷取之一系列圖像判定精子活動力之參數。為判定精子活動力之參數,所述裝置需要追蹤該系列圖像中之每一精子之軌跡。 Fig. 18 shows the sample processing procedure for determining sperm trajectory and motility. A camera of meter device 70 or smart communication device 60 ("the device") as shown in FIGS. 5 and 14, respectively, captures a series of images (eg, video frames) of the sperm sample. The device uses the captured series of images to determine parameters of sperm motility. To determine parameters of sperm motility, the device needs to track the trajectory of each sperm in the series of images.

所述裝置將數字色彩圖像轉換成數字灰度圖像。所述裝置首先識別所述系列之第一圖像中之精子之頭部位置(例如,使用圖16中所示之方法)。第一圖像中之精子之經識別頭部位置為待追蹤之精子軌跡之初始位置。在一些具體實例中,所述裝置可使用二維卡爾曼過濾(Kalman filter)來估計該等精子之運動的軌跡。 The device converts a digital color image into a digital grayscale image. The device first identifies the location of the head of the sperm in the first image of the series (eg, using the method shown in Figure 16). The identified head position of the sperm in the first image is the initial position of the sperm trajectory to be tracked. In some embodiments, the device can use a two-dimensional Kalman filter to estimate the movement trajectory of the sperm.

在一些具體實例中,用於追蹤具有量測值z j (k)之精子s j 的二維卡爾曼過濾包括以下之步驟: In some embodiments, the two-dimensional Kalman filtering for tracking the sperm s j with the measurement z j ( k ) includes the following steps:

1:計算預測狀態

Figure 110122043-A0305-02-0020-9
(k|k-1)及誤差共變數矩陣
Figure 110122043-A0305-02-0020-10
(k|k-1):
Figure 110122043-A0305-02-0020-8
1: Calculate the predicted state
Figure 110122043-A0305-02-0020-9
( k | k -1) and error covariate matrix
Figure 110122043-A0305-02-0020-10
( k | k -1):
Figure 110122043-A0305-02-0020-8

2:使用預測狀態

Figure 110122043-A0305-02-0020-2
(k|k-1)、量測值z j (k)及誤差共變數矩陣
Figure 110122043-A0305-02-0020-5
(k|k-1),計算經預測量測值
Figure 110122043-A0305-02-0020-3
(k|k-1)、量測值殘差
Figure 110122043-A0305-02-0020-4
(k)及殘差共變數矩陣
Figure 110122043-A0305-02-0020-6
(k):
Figure 110122043-A0305-02-0020-7
2: Use Predicted State
Figure 110122043-A0305-02-0020-2
( k | k -1), measured value z j ( k ) and error covariate matrix
Figure 110122043-A0305-02-0020-5
( k | k -1), computes the predicted measured value
Figure 110122043-A0305-02-0020-3
( k | k -1), measurement residual
Figure 110122043-A0305-02-0020-4
( k ) and residual covariate matrix
Figure 110122043-A0305-02-0020-6
( k ):
Figure 110122043-A0305-02-0020-7

3:若

Figure 110122043-A0305-02-0020-18
(k) T
Figure 110122043-A0305-02-0020-19
(k)-1
Figure 110122043-A0305-02-0020-20
(k)<γ及∥
Figure 110122043-A0305-02-0020-25
(k)∥/T
Figure 110122043-A0305-02-0020-23
V max,則計算卡爾曼過濾增益
Figure 110122043-A0305-02-0020-11
(k)、經更新狀態估計值
Figure 110122043-A0305-02-0020-12
(k|k)及經更新誤差共變數矩陣
Figure 110122043-A0305-02-0020-13
(k|k):
Figure 110122043-A0305-02-0021-17
3: if
Figure 110122043-A0305-02-0020-18
( k ) T
Figure 110122043-A0305-02-0020-19
( k )-1
Figure 110122043-A0305-02-0020-20
( k )< γ and ∥
Figure 110122043-A0305-02-0020-25
( k )∥/ T
Figure 110122043-A0305-02-0020-23
V max , then calculate the Kalman filter gain
Figure 110122043-A0305-02-0020-11
( k ), the updated state estimate
Figure 110122043-A0305-02-0020-12
( k | k ) and the updated error covariate matrix
Figure 110122043-A0305-02-0020-13
( k | k ):
Figure 110122043-A0305-02-0021-17

(k|k-1)表示基於圖像k-1對圖像k之預測,

Figure 110122043-A0305-02-0021-14
為第j個精子的位置及速度的狀態。
Figure 110122043-A0305-02-0021-15
為估計誤差的共變數矩陣,Q(k-1)為處理雜訊共變數矩陣,N(k)為白色位置雜訊向量之共變數矩陣,γ為閘極臨限值且V max為最大可能精子速度。 ( k | k -1) represents the prediction of image k based on image k -1,
Figure 110122043-A0305-02-0021-14
is the position and velocity of the jth sperm.
Figure 110122043-A0305-02-0021-15
is the covariate matrix of estimation error, Q(k -1) is the covariate matrix of processing noise, N(k ) is the covariate matrix of white position noise vector, γ is the gate threshold and V max is the maximum possible sperm velocity.

當追蹤多個精子之多個軌跡時,所述方法可使用聯合概率資料關聯過濾來決定軌跡路徑。該聯合概率資料關聯過濾判定偵測目標與量測目標之間的可行聯合關聯事件。可行聯合關聯事件(A js )為偵測精子s與量測精子j之間的相對概率值。接著,所述方法基於最佳指定方法進行路徑分配決策。Ajs定義為:

Figure 110122043-A0305-02-0021-16
When tracking multiple trajectories of multiple spermatozoa, the method may use joint probabilistic data association filtering to determine trajectory paths. The joint probabilistic data association filter determines feasible joint association events between the detection object and the measurement object. The feasible joint association event ( A js ) is the relative probability value between the detected sperm s and the measured sperm j . Next, the method makes a path assignment decision based on the best assignment method. A js is defined as:
Figure 110122043-A0305-02-0021-16

λ為參數,

Figure 110122043-A0305-02-0021-22
[z j (k)]為該等偵測精子之高斯概率密度函數。 λ is a parameter,
Figure 110122043-A0305-02-0021-22
[ z j ( k )] is the Gaussian probability density function of the detected sperm.

基於一時間段內之所述系列圖框,所述方法識別每一精子之軌跡,諸如如圖18中所示之軌跡1805。接著,所述方法基於該等軌跡判定精子活動力之各種參數。該等參數包括:例如,曲線速度(curvilinear velocity;VCL)、直線速度(straight-line velocity;VSL)、線性度(linearity;LIN)及橫向頭部位移幅度(amplitude of lateral head displacement;ALH)。曲線速度(VCL)1810經定義為在單位時間內之運動距離的總和。直線速度(VSL)1815經定義為在單位時間內之直線運動距離。線性度(LIN)經定義為VSL除以VCL。橫向頭部位移幅度(ALH)1820經定義為精子頭部相對於平均路徑1825之橫向位移之幅度的兩倍。 Based on the series of frames over a time period, the method identifies a trajectory for each sperm, such as trajectory 1805 shown in FIG. 18 . The method then determines various parameters of sperm motility based on these trajectories. These parameters include, for example, curvilinear velocity (curvilinear velocity; VCL), straight-line velocity (straight-line velocity; VSL), linearity (linearity; LIN) and amplitude of lateral head displacement (ALH). Curve velocity (VCL) 1810 is defined as the sum of the movement distance per unit of time. Linear Velocity (VSL) 1815 is defined as the distance traveled in a straight line per unit of time. Linearity (LIN) is defined as VSL divided by VCL. The amplitude of lateral head displacement (ALH) 1820 is defined as twice the magnitude of the lateral displacement of the sperm head relative to the mean path 1825 .

在一些具體實例中,曲線速度(VCL)1810可用於判定精子活動力。所述方法可設定速度臨限值。具有高於或等於速度臨限值之VCL的任何精 子經識別為活躍精子。具有低於速度臨限值之VCL的其餘精子經識別為非活躍精子。活動力之水平為經識別活躍精子之數目除以自圖像辨識之精子之總數。 In some embodiments, velocity curve (VCL) 1810 can be used to determine sperm motility. The method may set a speed threshold. Any precision motor with a VCL above or equal to the speed threshold Sons were identified as active sperm. The remaining spermatozoa with a VCL below the velocity threshold were identified as inmotile spermatozoa. The level of motility was the number of identified motile sperm divided by the total number of sperm identified from the image.

所述方法可進一步分析精子形態。儀表裝置70或智慧通信裝置60(「所述裝置」)之相機擷取精子樣本之經放大圖像。經擷取圖像為判定精子形態之原始圖像。 The method can further analyze sperm morphology. A camera of meter device 70 or smart communication device 60 ("the device") captures a magnified image of the sperm sample. The captured image is the original image for determining the morphology of the sperm.

所述方法基於分段偵測精子候選者之形狀。所述方法將該等精子之頭部之位置用作初始點。使用與形狀相關之分段演算法,所述方法將精子之圖像分割成頭部部分、頸部部分及尾部部分。舉例而言,所述方法可使用諸如主動輪廓模型之方法分割該等精子。 The method is based on segmented detection of the shape of sperm candidates. The method uses the position of the heads of the sperm as an initial point. Using a shape-dependent segmentation algorithm, the method segments the image of the sperm into a head section, a neck section and a tail section. For example, the method can segment the sperm using methods such as active contour modeling.

基於各部分,所述方法計算各種部分之參數(諸如長度及寬度)。可使用包括已經標記之樣本的訓練資料集合來訓練分類器(諸如支援向量機、神經網路、迴旋神經網路或AdaBoost算法)。在訓練之後,可將精子之各種部分之參數饋入至分類器以判定精子是否具有恰當的形態。在一些具體實例中,分類器可用於諸如偵測細胞及微生物之特性的其他應用。 Based on each section, the method calculates various section parameters such as length and width. A classifier (such as a support vector machine, neural network, convolutional neural network, or AdaBoost algorithm) can be trained using a training data set that includes labeled samples. After training, parameters of various parts of the sperm can be fed into the classifier to determine whether the sperm has the proper morphology. In some embodiments, classifiers can be used in other applications such as detecting properties of cells and microorganisms.

此外,在一些情況下發現,由於不穩定的電壓,閃爍的光源或其他類型的雜訊,圖像中的圖像的數個區域可能被誤認為是精子的運動軌跡。圖46示出包括有許多錯誤分類區域的實例圖像。在圖46中,小區域4601被分類為運動軌跡,實際上為靜態的。為了降低外部的雜訊,所述處理器可以採用分析演算法以判定精子的運動特性以最小化錯誤分類。 Additionally, it was found in some cases that several areas of the image could be mistaken for sperm trajectories due to unstable voltages, flickering light sources, or other types of noise. Figure 46 shows an example image including many misclassified regions. In Fig. 46, a small area 4601 is classified as a motion trajectory, which is actually static. To reduce external noise, the processor may employ analytical algorithms to determine sperm motility characteristics to minimize misclassification.

圖47為在此揭露的測試設備精確地判定樣本運動特性的可實施處理程序4700的實例流程圖。步驟4710,例如:在插入載體盒後,器件可利用相機模組擷取載體的樣本固持區域的複數圖像。 FIG. 47 is an example flow diagram of a process 4700 that may be implemented by the testing apparatus disclosed herein to accurately determine sample motion characteristics. Step 4710, for example: after inserting the carrier cartridge, the device can use the camera module to capture a plurality of images of the sample holding area of the carrier.

步驟4720所述器件可適應性地基於複數圖像選擇一適於被測生物樣本移動特性分析演算法。在一些具體實例中,該移動特性顯示所述生物樣 本實質靜態或動態。在判定生物樣本為實質靜態後,可選取靜態演算法來處理經擷取圖像。在一實例中,此靜態演算法可判定其形態(morphology),如精子頂體(acrosome)及/或精子之中間段。在一些具體實例中,靜態演算法還可以分析精子染色質分散(SCD)染色圖像,以判定精子DNA片段之正常性。另一方面,在判定生物樣本為實質動態後,可選取動態演算。在另一示例中,可使用動態演算法以判定高活動力精子的軌跡。動態演算法有助於判定與精子活動力相關的多個參數,例如:如圖15所示的VCL,VSL,VAP,ALH等,以優化計算效率。 In step 4720, the device can adaptively select an analysis algorithm suitable for the movement characteristic of the biological sample to be tested based on the plurality of images. In some embodiments, the mobility characteristic indicates that the biological sample This essence is static or dynamic. After determining that the biological sample is substantially static, a static algorithm may be selected to process the captured image. In one example, the static algorithm can determine its morphology, such as the sperm acrosome and/or the middle segment of the sperm. In some embodiments, the static algorithm can also analyze sperm chromatin dispersion (SCD) staining images to determine the normality of sperm DNA fragments. On the other hand, after it is determined that the biological sample is substantially dynamic, dynamic calculation can be selected. In another example, dynamic algorithms can be used to determine the trajectory of hypermotile sperm. The dynamic algorithm helps to determine multiple parameters related to sperm motility, such as: VCL, VSL, VAP, ALH, etc. as shown in Figure 15, to optimize calculation efficiency.

為了於步驟4720選取分析演算法,根據一些具體實例,裝置可先在複數圖像中選取兩個圖像。該裝置接著對兩個圖像進行比較以確定第一和第二圖像間的變化量,以判定適合使用哪種分析演算法。可根據生物樣本中可檢測標的之移動變化率以判定變化量。舉例來說,檢測裝置可將兩個圖像間的變化量與預先定義的閾值進行比較,指出所述生物樣本特性為實質靜態或動態。若所述變化量小於閾值,則該生物樣本被認定為靜態,並選擇靜態分析演算法來處理經擷取圖像。另一方面,若所述變化量大於等於閾值,則該生物樣本被認定為動態,並選取動態分析演算法以進行後續處理。 In order to select an analysis algorithm in step 4720, according to some specific examples, the device may first select two images from the plurality of images. The device then compares the two images to determine the amount of change between the first and second images to determine which analysis algorithm is appropriate to use. The change amount can be determined according to the change rate of movement of the detectable target in the biological sample. For example, the detection device may compare the amount of change between the two images to a predefined threshold, indicating that the characteristic of the biological sample is substantially static or dynamic. If the variation is less than the threshold, the biological sample is considered static, and a static analysis algorithm is selected to process the captured image. On the other hand, if the change amount is greater than or equal to the threshold, the biological sample is determined as dynamic, and a dynamic analysis algorithm is selected for subsequent processing.

複數圖像可包括於短時間內所獲取的一系列圖像。在一些具體實例中,於0.04到10秒內可獲取2至600張圖像(例如:以每秒60張圖像的速率)。在另一具體實例中,速率可為每秒15張圖像。舉例來說,在3秒內可獲取45張圖像。所述裝置可選取兩個各自在時間和/或次序上分開拍攝的圖像,從而使兩圖像間的變化量更為明顯。舉例來說,此兩圖像可以相隔2至5秒(例如:選取序列中第一圖像及最後圖像)。 A plurality of images may include a series of images acquired over a short period of time. In some embodiments, 2 to 600 images can be acquired in 0.04 to 10 seconds (eg, at a rate of 60 images per second). In another specific example, the rate may be 15 images per second. For example, 45 images can be acquired in 3 seconds. The device may select two images that are each taken separately in time and/or sequence so that the amount of change between the two images is more pronounced. For example, the two images may be separated by 2 to 5 seconds (for example: select the first image and the last image in the sequence).

在步驟4730,以此所述方式,所述裝置可對經擷取集合圖像執行與所選取分析演算法對應的一組分析處理程序,以取得生物樣本相關之分析結果。 In step 4730, in this manner, the device can execute a set of analysis processing procedures corresponding to the selected analysis algorithm on the captured set of images to obtain analysis results related to the biological sample.

圖19為根據本發明之至少一個具體實例之包括收集瓶之測試裝置的示意圖。測試條帶裝置1905可經由插入埠插入至測試裝置1900中。測試條帶裝置1905可包括用於收集樣本(例如,精子樣本)之收集瓶1910或包括容納收集瓶之槽孔。測試裝置1900可包括感測器(圖未示)以偵測收集瓶1910是否插入至測試裝置1900中。 19 is a schematic diagram of a testing device including a collection bottle according to at least one embodiment of the present invention. The test strip device 1905 can be inserted into the test device 1900 through the insertion port. The test strip device 1905 may include a collection vial 1910 for collecting a sample (eg, a sperm sample) or include a well to receive a collection vial. The testing device 1900 may include a sensor (not shown) to detect whether the collection bottle 1910 is inserted into the testing device 1900 .

測試裝置1900可具有用於判定收集瓶1910插入至測試裝置1900中所歷經之時間段的計時器機構。在插入含有樣本之收集瓶1910之後,測試裝置1900可等待預定時間段(例如,30分鐘)來液化樣本,之後促使使用者將樣本自收集瓶1910轉移至測試條帶裝置1905。在一些具體實例中,測試裝置1900可包括相機或感測器以判定樣本是否已經液化。 The testing device 1900 may have a timer mechanism for determining the period of time that the collection bottle 1910 has been inserted into the testing device 1900 . After inserting the collection bottle 1910 containing the sample, the test device 1900 may wait for a predetermined period of time (eg, 30 minutes) to liquefy the sample before prompting the user to transfer the sample from the collection bottle 1910 to the test strip device 1905 . In some embodiments, testing device 1900 may include a camera or sensor to determine whether a sample has liquefied.

此外,測試裝置可包括移動機構以將機械力施加至收集瓶1910以便將樣本混合於收集瓶1910中。舉例而言,移動機構可(例如)搖動、振動或旋轉收集瓶1910。在一些其他具體實例中,測試裝置可包括待插入至收集瓶1910中且攪拌收集瓶1910中之樣本的桿。 Additionally, the testing device may include a movement mechanism to apply mechanical force to the collection bottle 1910 in order to mix the sample in the collection bottle 1910 . For example, the movement mechanism can shake, vibrate or rotate the collection bottle 1910, for example. In some other embodiments, the testing device can include a rod to be inserted into collection bottle 1910 and agitate the sample in collection bottle 1910 .

測試裝置1900視情況可包括用於顯示資訊的顯示器(例如,螢幕1920)。舉例而言,螢幕1920可示出關於如何操作測試裝置1900的指令或提示。螢幕1920亦可示出在測試裝置1900進行測試之後的測試結果。另外或替代地,測試裝置1900可包括已知通信模組以使得其可與使用者的計算裝置(例如,具有移動軟件應用程式之智能電話,或諸如膝上型計算機之傳統個人計算機)通信(例如,分析結果及/或藉由相機模組獲取之圖像)。測試裝置1900可操作以接收來自使用者(例如,來自螢幕1920及/或來自前述通信模組)的指令,且基於指令 執行選定數目之自動化分析處理程序。測試裝置1900亦可將結果及/或樣本之圖像顯示於螢幕1920上或使用者的計算機(例如,經由前述通信模組)上,或兩者上。 Testing device 1900 may optionally include a display (eg, screen 1920) for displaying information. For example, screen 1920 may show instructions or prompts on how to operate testing device 1900 . The screen 1920 can also show the test results after the test performed by the test device 1900 . Additionally or alternatively, the test device 1900 may include known communication modules so that it can communicate (e.g., analysis results and/or images captured by a camera module) with a user's computing device (e.g., a smartphone with a mobile software application, or a conventional personal computer such as a laptop). The test device 1900 is operable to receive instructions from a user (eg, from the screen 1920 and/or from the aforementioned communication module), and based on the instructions Execute a selected number of automated analytical processing procedures. The testing device 1900 can also display the results and/or an image of the sample on the screen 1920 or on the user's computer (eg, via the aforementioned communication module), or both.

類似於在圖14A及圖14B中所示之測試裝置,測試裝置1900可包括用於擷取測試條帶裝置1905之圖像或視訊的相機(圖未示)。測試裝置1900可進一步包括用於處理用於判定測試結果之圖像或視訊(例如,經由圖16中所示的處理程序)的處理器(圖未示)。 Similar to the testing device shown in FIGS. 14A and 14B , testing device 1900 may include a camera (not shown) for capturing images or video of test strip device 1905 . The testing device 1900 may further include a processor (not shown) for processing images or videos for determining test results (eg, via the processing procedure shown in FIG. 16 ).

在一些具體實例中,舉例而言,放大組件2110為放大透鏡。放大組件2110之放大能力可由角度放大比率或線性放大比率表示。角度放大比率為如經由光學系統所見的對象的角度大小與如直接在最近明視距離處(亦即,距人眼250mm)所見的對象的角度大小之間的比率。線性放大比率為將投射在圖像感測器上的對象的圖像的大小與實際對象的大小之間的比率。 In some embodiments, for example, the magnifying component 2110 is a magnifying lens. The magnification capability of the magnification component 2110 can be represented by an angular magnification ratio or a linear magnification ratio. The angular magnification ratio is the ratio between the angular magnitude of the object as seen through the optical system and the angular magnitude of the object as seen directly at the closest photopic distance (ie, 250mm from the human eye). The linear magnification ratio is the ratio between the size of the image of the object to be projected on the image sensor and the size of the actual object.

舉例而言,所述放大透鏡可具有6mm之焦距、1mm之厚度及2mm之直徑。假設250mm為人眼之近點距離(亦即,人眼可聚焦之最近距離),則角度放大比率為250mm/6mm=41.7倍。放大組件2110與樣本固持區域2115之間的距離可為(例如)9mm。因此,線性放大比率可接近於2。換言之,由放大組件造成的圖像感測器上的對象的圖像之大小為在放大組件下方的實際對象的大小的2倍。 For example, the magnifying lens may have a focal length of 6 mm, a thickness of 1 mm and a diameter of 2 mm. Assuming that 250mm is the near point distance of the human eye (that is, the shortest distance that the human eye can focus), the angle magnification ratio is 250mm/6mm=41.7 times. The distance between the magnification assembly 2110 and the sample holding area 2115 may be, for example, 9 mm. Therefore, the linear amplification ratio can be close to 2. In other words, the size of the image of the object on the image sensor caused by the magnification component is twice the size of the actual object below the magnification component.

在一些具體實例中,放大組件具有0.1mm至8.5mm之焦距。在一些具體實例中,放大組件的線性放大比率為至少1。在一些具體實例中,放大組件之線性放大比率為0.5至10.0。 In some embodiments, the magnifying element has a focal length of 0.1 mm to 8.5 mm. In some embodiments, the amplification component has a linear amplification ratio of at least one. In some embodiments, the linear amplification ratio of the amplification element is 0.5 to 10.0.

在一些具體實例中,補充透鏡2135置放於相機模組2130下方以用於進一步放大圖像及減小放大組件2110與樣本固持區域2115之間的距離。整個光學系統的有效線性放大比率可為(例如)3。換言之,由相機模組2130擷取的 對象之圖像的大小為樣本固持區域2115中的實際對象的大小的3倍。在一些具體實例中,測試裝置的整個光學系統的有效線性放大比率為1.0至100.0,較佳為1.0至48.0。 In some embodiments, a supplementary lens 2135 is placed under the camera module 2130 for further magnifying the image and reducing the distance between the magnifying component 2110 and the sample holding area 2115 . The effective linear magnification ratio of the entire optical system may be, for example, three. In other words, captured by the camera module 2130 The size of the image of the object is 3 times the size of the actual object in the sample holding area 2115. In some specific examples, the effective linear magnification ratio of the entire optical system of the test device is 1.0 to 100.0, preferably 1.0 to 48.0.

在一些具體實例中,相機模組的圖像感測器具有1.4μm的像素大小。典型地,對象之經擷取圖像需要獲取至少1像素以便恰當地分析對象的形狀。因此,對象之經擷取圖像之大小需要為至少1.4μm。若測試裝置的線性放大比率為3,則測試裝置可恰當地分析具有至少0.47μm之大小的對象的形狀。 In some embodiments, the image sensor of the camera module has a pixel size of 1.4 μm. Typically, a captured image of an object needs to capture at least 1 pixel in order to properly analyze the shape of the object. Therefore, the size of the captured image of the object needs to be at least 1.4 μm. If the linear magnification ratio of the test device is 3, the test device can properly analyze the shape of an object having a size of at least 0.47 μm.

在一些具體實例中,相機模組的圖像感測器具有1.67μm的像素大小。接著,對象之經擷取圖像的大小需要為至少1.67μm以便恰當地分析對象的形狀。若測試裝置的線性放大比率為3,則測試裝置可恰當地分析具有至少0.56μm之大小的對象的形狀。 In some embodiments, the image sensor of the camera module has a pixel size of 1.67 μm. Then, the size of the captured image of the object needs to be at least 1.67 μm in order to properly analyze the shape of the object. If the linear magnification ratio of the test device is 3, the test device can properly analyze the shape of an object having a size of at least 0.56 μm.

在一些具體實例中,舉例而言,整個光學系統的長度可為(例如)24mm。放大組件的底部與樣本固持區域2115之頂部之間的距離可為(例如)1mm。在一些具體實例中,測試裝置的整個光學系統之長度為2mm至100mm,較佳為5mm至35mm。 In some embodiments, for example, the length of the entire optical system may be, for example, 24 mm. The distance between the bottom of the amplification component and the top of the sample holding area 2115 may be, for example, 1 mm. In some specific examples, the length of the entire optical system of the testing device is 2 mm to 100 mm, preferably 5 mm to 35 mm.

圖20為根據本發明的至少一個具體實例之不包括收集瓶的測試裝置的示意圖。不同於測試裝置1900,測試裝置2000不包括收集瓶或用於插入收集瓶的槽孔。由使用者或操作員將樣本直接施加至測試條帶裝置2005,而不收集在收集瓶中。 20 is a schematic diagram of a test device that does not include a collection bottle, according to at least one embodiment of the present invention. Unlike test device 1900, test device 2000 does not include a collection bottle or a slot for inserting a collection bottle. The sample is applied directly to the test strip device 2005 by the user or operator without being collected in a collection bottle.

圖21A為測試裝置1900之具體實例的A-A截面示意圖。測試裝置1900的A-A截面示出在測試條帶裝置2105之頂部上用於擷取測試條帶裝置2105的樣本固持區域2115的圖像或視訊的相機模組2130。測試條帶裝置2105包括在樣本固持區域2115的頂部上的放大組件2110。在測試條帶裝置2105下方的光源 2140為樣本固持區域2115提供照明。在一些其他具體實例中,光源可置放於測試條帶裝置的頂部上或橫向置放於測試條帶裝置的一側。可存在用於在測試條帶裝置上提供照明之多個光源或光源陣列。在一些具體實例中,可視分析物類型而切換、調整或選擇光源之不同組合,以使得分析物由具有恰當色彩之光照亮。 FIG. 21A is a schematic cross-sectional view A-A of an embodiment of a testing device 1900 . The A-A section of the test device 1900 shows the camera module 2130 on top of the test strip device 2105 for capturing images or video of the sample holding area 2115 of the test strip device 2105 . The test strip device 2105 includes a magnification assembly 2110 on top of a sample holding area 2115 . Light source below test strip device 2105 2140 provides illumination to the sample holding area 2115. In some other embodiments, the light source may be placed on top of the test strip device or laterally to the side of the test strip device. There may be multiple light sources or an array of light sources for providing illumination on the test strip device. In some embodiments, different combinations of light sources may be switched, adjusted, or selected depending on the type of analyte so that the analyte is illuminated with light of the appropriate color.

在一些具體實例中,測試條帶裝置2105可包括在樣本固持區域2115中或附近之測試條帶。舉例而言,測試條帶可為pH測試條帶、HCG(人絨毛膜促性腺激素)測試條帶、LH(黃體激素)測試條帶或果糖測試條帶。當樣本固持區域中之樣本的分析物與測試條帶中的化學或生化試劑相互作用時,測試條帶的一些光學特性(例如,色彩或光強度)可改變。相機模組2130可擷取測試條帶的色彩或強度以判定測試結果,諸如pH水平、HCG水平、LH水平或果糖水平。在一些具體實例中,在測試條帶上方的放大組件2110可用透明的或半透明的外罩替換。因此,測試裝置可同時對樣本中的分析物進行檢核及經由樣本的一或多個放大圖像對樣本進行另一分析。 In some embodiments, test strip device 2105 can include a test strip in or near sample holding area 2115 . For example, the test strips can be pH test strips, HCG (human chorionic gonadotropin) test strips, LH (luteinizing hormone) test strips or fructose test strips. When analytes of the sample in the sample holding area interact with chemical or biochemical reagents in the test strip, some optical properties of the test strip (eg, color or light intensity) can change. The camera module 2130 can capture the color or intensity of the test strip to determine the test result, such as pH level, HCG level, LH level or fructose level. In some embodiments, the magnifying assembly 2110 over the test strip can be replaced with a transparent or translucent cover. Thus, the test device can simultaneously check for an analyte in the sample and perform another analysis of the sample via one or more magnified images of the sample.

圖21B為測試裝置1900的另一具體實例之A-A截面示意圖。測試裝置1900的A-A截面示出在測試條帶裝置2105的頂部上之用於擷取測試條帶裝置2105的樣本固持區域2115的圖像或視訊的相機模組2130,其包括感測器及一或多個透鏡2135(亦被稱作補充透鏡或光學透鏡模組)。在測試條帶裝置2105下方(或安置於其他地方)的光源2140為樣本固持區域2115提供照明。放大組件2110可附接至透鏡2135之底部,而非如圖21A中所示在樣本固持區域2115的頂部上。在一些具體實例中,若透鏡2135提供足夠的放大能力,則放大組件2110可為不具有放大能力的平坦光透射性外罩。在一些其他具體實例中,若透鏡2135提供足夠的放大能力(例如,若透鏡2135的線性放大比率為至少1.0),則測試裝置1900不包括放大組件2110。 FIG. 21B is a schematic cross-sectional view of A-A of another embodiment of the testing device 1900 . The A-A section of the test device 1900 shows the camera module 2130 on top of the test strip device 2105 for capturing images or video of the sample holding area 2115 of the test strip device 2105, which includes a sensor and one or more lenses 2135 (also referred to as supplemental lenses or optical lens modules). A light source 2140 below (or otherwise disposed on) the test strip device 2105 provides illumination for the sample holding area 2115 . The magnification component 2110 can be attached to the bottom of the lens 2135 rather than on top of the sample holding area 2115 as shown in FIG. 21A. In some embodiments, the magnification component 2110 can be a flat light transmissive housing without magnification provided that the lens 2135 provides sufficient magnification. In some other embodiments, test device 1900 does not include magnification component 2110 if lens 2135 provides sufficient magnification capability (eg, if lens 2135 has a linear magnification ratio of at least 1.0).

圖22為具有兩個樣本固持區域的測試條帶裝置的測試裝置的示意圖。圖29示出可適合於具有多相機配置的測試裝置(諸如圖22中所示的測試裝置)的載體之實例。同時參照圖19及圖20,圖22中所示的測試裝置可為測試裝置1900(亦即,具有收集瓶)或測試裝置2000(亦即,不具有收集瓶)之另一變體。如圖22中所示,接收機構包括於測試裝置中以接收一或多個載體(例如,諸如測試條帶裝置2205之測試條帶裝置,或諸如瓶子1910之收集瓶),所述載體可經由測試裝置之殼體上的開口插入。 22 is a schematic diagram of a test device of a test strip device with two sample holding areas. FIG. 29 shows an example of a carrier that may be suitable for a test device having a multi-camera configuration, such as the test device shown in FIG. 22 . Referring to FIGS. 19 and 20 concurrently, the test device shown in FIG. 22 may be another variation of test device 1900 (ie, with a collection bottle) or test device 2000 (ie, without a collection bottle). As shown in FIG. 22, a receiving mechanism is included in the test device to receive one or more carriers (e.g., a test strip device such as test strip device 2205, or a collection bottle such as bottle 1910) that are insertable through openings on the housing of the test device.

在一些具體實例中,單一載體可包括第一固持區域及第二固持區域,諸如由圖22中的測試條帶裝置2205所示。如圖22中所示,至少兩個相機模組可包括於測試裝置中。兩個相機模組包括經配置以分別擷取第一固持區域2215A及第二固持區域2215B之圖像及/或視訊的第一相機模組2230A及第二相機模組2230B。更特定言之,測試條帶裝置2205可包括第一固持區域2215A及第二固持區域2215B。在一些實例中,透明的或半透明的外罩2210A置放於第一固持區域2215A之頂部上。光源2240A可為可控制的且可在第一固持區域2215A上提供照明。第一相機模組2230A經定位以擷取第一固持區域2215A的圖像或視訊。作為一可選實施,放大組件2210B可置放於第二固持區域2215B的頂部上。另外,在一些具體實例中,光源2240B可操作以在第二固持區域2215B上提供照明。第二相機模組2230B經定位以擷取第二固持區域2215B的圖像或視訊。第一固持區域及第二固持區域可直接攜載生物樣本或已暴露於生物樣本。類似於關於圖14B引入的結構,在一些具體實例中,測試裝置可包括用於將光源發射的光束準直至固持區域中的至少一者的平行光管。在一些具體實例中,環狀光圈可進一步包括在光源與平行光管之間以用於形成行進穿過平行光管且接著到達樣本固持區域的空心錐形光束。在一些額外具體實例中,相位板可包括在樣本 固持區域與相機模組中的至少一者之間以用於相移由樣本固持區域反射的光線。 In some embodiments, a single carrier can include a first holding area and a second holding area, such as shown by test strip device 2205 in FIG. 22 . As shown in Figure 22, at least two camera modules may be included in the test device. The two camera modules include a first camera module 2230A and a second camera module 2230B configured to capture images and/or video of the first holding area 2215A and the second holding area 2215B, respectively. More specifically, the test strip device 2205 may include a first holding area 2215A and a second holding area 2215B. In some examples, a transparent or translucent cover 2210A is placed on top of the first retention region 2215A. The light source 2240A can be controllable and can provide illumination on the first holding area 2215A. The first camera module 2230A is positioned to capture images or video of the first holding area 2215A. As an optional implementation, the magnification component 2210B can be placed on top of the second holding area 2215B. Additionally, in some embodiments, the light source 2240B is operable to provide illumination on the second holding area 2215B. The second camera module 2230B is positioned to capture an image or video of the second holding area 2215B. The first holding area and the second holding area can directly carry biological samples or have been exposed to biological samples. Similar to the structure introduced with respect to FIG. 14B , in some embodiments, the testing device can include a collimator for collimating the light beam emitted by the light source to at least one of the holding regions. In some embodiments, an annular aperture can further be included between the light source and the collimator for forming a hollow cone of light that travels through the collimator and then reaches the sample holding region. In some additional embodiments, a phase plate may be included in the sample between the holding area and at least one of the camera modules for phase shifting the light reflected by the sample holding area.

作為具有多個固持區域的單一載體的替代方案,多個載體可經由其個別開口、埠或槽孔插入至測試裝置中。舉例而言,兩個獨立測試條帶裝置可分別包括第一固持區域2215A及第二固持區域2215B。視測試的需要而定,第一固持區域2215A及第二固持區域2215B在測試條帶中的位置可經設計以與第一相機模組2230A及第二相機模組2230B對準。在一些具體實例中,兩個測試條帶裝置經由兩個獨立插入埠插入至測試裝置中。 As an alternative to a single carrier with multiple holding areas, multiple carriers can be inserted into the test device through their individual openings, ports or slots. For example, two independent test strip devices may respectively include a first holding area 2215A and a second holding area 2215B. Depending on the needs of the test, the positions of the first holding area 2215A and the second holding area 2215B in the test strip can be designed to align with the first camera module 2230A and the second camera module 2230B. In some embodiments, two test strip devices are inserted into the test device via two independent insertion ports.

除其他益處之外,測試的便利性及容易度為本文所揭示的測試裝置可提供的兩個顯著益處。根據本文具體實例,所揭示的測試裝置之使用者不必在該使用者可利用測試裝置產生結果之前具備關於如何對生物樣本執行各種類型的分析的任何專業知識。因此,測試裝置可包括用於對樣本執行自動化分析處理程序的處理器且判定關於樣本的結果。所述處理器可藉由主電路板(亦即,已知組件,為簡單起見未示出)攜載。另外,測試裝置較佳地為較小的且不與在實驗室中常見的傳統測試裝置一樣龐大。因此,在一些具體實例中,諸如圖19及圖20中所示之彼等,載體的接收機構、相機模組及主電路板可全部封裝於測試裝置的殼體內。測試裝置可具有較小的外觀尺寸,諸如小於30厘米(cm)×30cm×30cm,亦即27,000cm3。在一些具體實例中,測試裝置可進一步包括封裝於殼體內的電池隔室,以使得電池可安裝在電池隔室中為測試裝置供電。 Among other benefits, convenience and ease of testing are two significant benefits that the testing devices disclosed herein can provide. According to embodiments herein, a user of the disclosed test devices does not have to have any specialized knowledge about how to perform various types of analyzes on biological samples before the user can utilize the test device to produce results. Accordingly, a test device may include a processor for executing an automated analytical processing procedure on a sample and determining a result with respect to the sample. The processor may be carried by a main circuit board (ie, known components, not shown for simplicity). Additionally, the test device is preferably small and not as bulky as conventional test devices commonly found in laboratories. Thus, in some embodiments, such as those shown in Figures 19 and 20, the receiving mechanism of the carrier, the camera module and the main circuit board may all be enclosed within the housing of the test device. The test device may have a relatively small physical size, such as less than 30 centimeters (cm) x 30 cm x 30 cm, ie, 27,000 cm 3 . In some embodiments, the testing device can further include a battery compartment enclosed within the housing such that a battery can be mounted in the battery compartment to power the testing device.

在一些具體實例中,包括於測試裝置中的處理器可對不同固持區域執行不同分析,且可基於對不同區域執行之分析的結果的組合導出結果。換言之,處理器可經配置以對第一固持區域的經擷取圖像執行第一分析處理程序、對第二固持區域的經擷取圖像執行不同於第一分析處理程序的第二分析處理程序,且基於第一分析處理程序及第二分析處理程序兩者之結果判定關於生 物樣本的結果。如本文所使用,術語「分析處理程序(analytic process)」意謂可評估自許多來源收集的資訊(例如,固持區域的圖像)的一或多個片段,且產生關於來源之結果、結論、最終結果、估計值或其類似者的處理程序。 In some embodiments, a processor included in the test device can perform different analyzes on different holding regions, and can derive results based on a combination of the results of the analyzes performed on the different regions. In other words, the processor may be configured to execute a first analysis processing program on the captured image of the first holding area, execute a second analysis processing program different from the first analysis processing program on the captured image of the second holding area, and determine the results of both the first analysis processing program and the second analysis processing program. result of the physical sample. As used herein, the term "analytic process" means a process that can evaluate one or more pieces of information collected from a number of sources (e.g., images of a held region) and produce results, conclusions, final results, estimates, or the like about the sources.

根據一些實例,測試裝置可使用第一相機模組2230A、光源2240A及外罩2210A之組合來定量分析物或判定樣本之特性(例如,pH水平、LH水平、HCG水平或果糖水平)。另外,測試裝置可進一步使用第二相機模組2230B、光源2240B及放大組件2210B的組合來分析樣本之經放大圖像以判定樣本的特性(例如,精子數量、精子活動力、精子形態等)。視各種類型的生化測試的要求而定,不同組合或配置的光源可用於照亮生化樣本。多相機配置尤其有益,此係由於不同分析處理程序可經由不同相機模組執行而不需要使用者更換載體(例如,測試條帶裝置),由此加速結果生成且降低必要人類操作的複雜度。光源2240A及2240B封裝於殼體內部且經配置以為相機模組中的至少一者照亮生物樣本。根據一或多個具體實例,處理器經配置以基於處理器當前經配置以執行之分析處理程序來控制光源。 According to some examples, the testing device may use a combination of first camera module 2230A, light source 2240A, and housing 2210A to quantify an analyte or determine a characteristic of a sample (eg, pH level, LH level, HCG level, or fructose level). In addition, the test device can further use the combination of the second camera module 2230B, the light source 2240B and the magnifying component 2210B to analyze the magnified image of the sample to determine the characteristics of the sample (eg, sperm count, sperm motility, sperm morphology, etc.). Depending on the requirements of various types of biochemical tests, different combinations or configurations of light sources can be used to illuminate biochemical samples. Multi-camera configurations are particularly beneficial because different analysis processes can be performed via different camera modules without requiring the user to change carriers (eg, test strip devices), thereby speeding up result generation and reducing the complexity of necessary human operations. Light sources 2240A and 2240B are housed inside the housing and configured to illuminate the biological sample for at least one of the camera modules. According to one or more embodiments, the processor is configured to control the light source based on the analytical processing program that the processor is currently configured to execute.

此外,在一些具體實例中,處理器可基於載體上之視覺提示執行不同的分析處理程序。舉例而言,一些具體實例可對固持區域的圖像執行圖像辨識及處理,且可根據來自圖像辨識的結果的視覺提示執行不同的分析處理程序。實例載體2905(1)至2905(4)示出於圖29中,其中載體2905(1)用於關於男性受試者之生殖細胞的生育力測試(例如,經由其精子),且載體2905(2)、2905(3)及2905(4)用於關於女性受試者之生殖細胞的生育力測試(例如,經由其尿液)。如所示,載體2905(1)至2905(4)全部具有對應於第一相機模組2230A之位置的第一固持區域2915A,但僅載體2905(1)包括第二固持區域2915B。在一些實例中,載體上之視覺提示可為特定固持區域(例如,第一固持區域2215A)的形狀。對於本文中之論述,固持區域的形狀意謂固持區域的整體邊緣(或外部周 邊)。舉例而言,所述形狀可為圓形、卵形、三角形、矩形,或藉由利用已知圖像處理技術的處理器在如由個別相機模組(例如,第一相機模組2230A)所擷取之固持區域的圖像上可識別的任何適合的形狀。視覺提示的額外實例可包括圖形圖案、視覺標誌、一維條碼、多維圖案碼(例如,QR碼)等。 In addition, in some embodiments, the processor may execute different analysis processing programs based on visual cues on the carrier. For example, some embodiments may perform image recognition and processing on the image of the holding region, and may perform different analytical processing procedures based on visual cues from the results of the image recognition. Example vectors 2905(1 ) to 2905(4) are shown in FIG. 29 , wherein vector 2905(1 ) is used for fertility tests on germ cells of male subjects (eg, via their sperm), and vectors 2905(2), 2905(3) and 2905(4) are used for fertility tests of germ cells of female subjects (eg, via their urine). As shown, carriers 2905(1 )- 2905(4) all have a first retention area 2915A corresponding to the location of the first camera module 2230A, but only carrier 2905(1) includes a second retention area 2915B. In some examples, the visual cue on the carrier may be the shape of a particular retention area (eg, first retention area 2215A). For the discussion herein, the shape of the holding area means the overall edge (or outer perimeter) of the holding area. side). For example, the shape may be circular, oval, triangular, rectangular, or any suitable shape recognizable by a processor utilizing known image processing techniques on an image of the holding area as captured by an individual camera module (eg, first camera module 2230A). Additional examples of visual cues may include graphic patterns, visual signs, one-dimensional bar codes, multi-dimensional pattern codes (eg, QR codes), and the like.

同時參照圖22及圖29,在一些具體實例中,當處理器識別(例如,經由第一相機模組2230A)第一固持區域(例如,載體2905(1)的第一固持區域2215A或第一固持區域2915A)呈第一形狀(例如,圓形)時,處理器經配置以執行某一分析處理程序(例如,男性受試者之生育力,諸如根據其精子樣本之各種特性),且當第一固持區域(載體2905(2)之第一固持區域2215A或第一固持區域2915A)呈第二形狀(例如,卵形)時,處理器將執行不同的分析處理程序(例如,對女性受試者的生育力的分析,諸如根據其尿液樣本的激素水平)。以此方式,測試裝置不僅不限於執行僅一種類型之測試(例如,精子的生育力),而且其亦可基於插入至機器中的載體(例如,測試條帶裝置)相應地切換分析處理程序。 Referring to FIGS. 22 and 29 concurrently, in some embodiments, when the processor identifies (e.g., via the first camera module 2230A) that the first holding region (e.g., the first holding region 2215A of the carrier 2905(1) or the first holding region 2915A) has a first shape (e.g., a circle), the processor is configured to perform an analysis process (e.g., male subject's fertility, such as according to various characteristics of his sperm sample), When the first holding area 2215A or the first holding area 2915A) of ) is in the second shape (e.g., oval), the processor will perform a different analysis process (e.g., an analysis of a female subject's fertility, such as hormone levels based on her urine sample). In this way, the test device is not limited to performing only one type of test (eg, sperm fertility), but it can also switch the analysis process accordingly based on the carrier (eg, test strip device) inserted into the machine.

更特定言之,根據一些實施,當形狀表示生物樣本包括來自男性受試者的精子時,則處理程序可判定精子的一或多個特性,諸如本文中所引入的彼等特性。在一些實例中,可藉由使用第二相機模組2230B執行對精子的一或多個特性的判定。對於一些特定實例,可判定的特性可包括:精子的濃度、精子的活動力及/或精子的形態。根據一些具體實例,處理器經配置以(1)基於經擷取圖像中的單一圖像判定精子的濃度及/或精子的形態,且(2)基於經擷取圖像中的兩個或多於兩個圖像判定精子的活動力。 More specifically, according to some implementations, when the shape indicates that the biological sample includes sperm from a male subject, then the processing program may determine one or more properties of the sperm, such as those introduced herein. In some examples, the determination of one or more characteristics of the sperm may be performed by using the second camera module 2230B. For some specific examples, the determinable properties may include: sperm concentration, sperm motility, and/or sperm morphology. According to some embodiments, the processor is configured to (1) determine sperm concentration and/or sperm morphology based on a single of the captured images, and (2) determine sperm motility based on two or more of the captured images.

鑒於以上情況,圖30為用於利用本文所揭示之測試裝置(例如,在圖22中)分析男性受試者及女性受試者兩者之生育力的實例處理程序3000之流程圖。繼續參照圖29,在下文說明處理程序3000。應注意,以下實例首先施 加男性的樣本,接著為女性的樣本,但可執行反向次序(亦即,女性及接著男性),而對結果的精確度無影響。 In view of the above, FIG. 30 is a flowchart of an example process 3000 for analyzing the fertility of both male and female subjects using the test devices disclosed herein (eg, in FIG. 22 ). With continued reference to FIG. 29, the processing routine 3000 is described below. It should be noted that the following example first implements A sample of males is added, followed by a sample of females, but the reverse order (ie, females followed by males) can be performed without affecting the precision of the results.

首先在步驟3002中,使用者可將男性受試者的生物樣本(例如,精子)施加至第一載體(例如,載體2905(1))之第一固持區域(例如,第一固持區域2915A)及第二固持區域(第二固持區域2915B)。接著,在步驟3004中,使用者將第一載體插入至測試裝置(例如,圖22中所示之一者),且因為載體2905(1)之第一固持區域2915A的形狀為圓形,測試裝置可自動獲取當前樣本含有來自男性的精子的知識且相應地選擇分析處理程序。接著,在步驟3006中,使用者可使用測試裝置判定精子的一或多個特性。舉例而言,如此處所論述,測試裝置中的處理器可利用第一相機模組2230A來獲取載體2095(1)之第一固持區域2915A的圖像(所述載體2095(1)可包括回應於不同酸度而示出不同色彩之測試條帶),且識別測試條帶的色彩以判定精子的酸度。另外,在步驟3006中,測試裝置中的處理器可利用第二相機模組2230B來判定選自由以下組成的群組的精子的一或多個特性:細胞數(例如精子數)、精子的濃度、精子的活動力及精子的形態。 First in step 3002, a user may apply a biological sample (e.g., sperm) of a male subject to a first holding area (e.g., first holding area 2915A) and a second holding area (e.g., second holding area 2915B) of a first carrier (e.g., carrier 2905(1)). Next, in step 3004, the user inserts the first carrier into the testing device (e.g., the one shown in FIG. 22), and because the first holding region 2915A of the carrier 2905(1) is circular in shape, the testing device can automatically acquire the knowledge that the current sample contains sperm from a male and select the analysis processing program accordingly. Next, in step 3006, the user can use the test device to determine one or more characteristics of the sperm. For example, as discussed herein, a processor in the testing device may utilize the first camera module 2230A to acquire an image of the first retention region 2915A of the carrier 2095(1) (which may include test strips showing different colors in response to different acidities), and identify the color of the test strip to determine the acidity of the sperm. In addition, in step 3006, the processor in the test device may utilize the second camera module 2230B to determine one or more characteristics of the sperm selected from the group consisting of: cell count (e.g., sperm count), sperm concentration, sperm motility, and sperm morphology.

接著,在步驟3008中,使用者可將來自女性受試者之尿液施加至第二載體(例如,載體2905(2))的第一固持區域2915A。在步驟3010中,使用者將第二載體插入至測試裝置,且由於載體2905(2)的第一固持區域2915A的形狀為卵形,測試裝置可自動地獲取當前樣本含有來自女性的尿液的知識且相應地選擇分析處理程序。在步驟3012中,測試裝置例如藉由利用第二相機模組2230B判定尿液的一或多個特性。舉例而言,測試條帶可適合於使測試裝置能夠判定一或多個類型之女性激素(例如,FSH、LH或HCG)的濃度水平。最後,在步驟3014中,使用者利用測試裝置自動地分析男性及女性生物樣本的結果且判定關於受試者的生育力的最終結果。 Next, in step 3008, the user may apply urine from the female subject to the first retention region 2915A of the second carrier (eg, carrier 2905(2)). In step 3010, the user inserts the second carrier into the testing device, and since the first holding area 2915A of the carrier 2905(2) is oval in shape, the testing device can automatically acquire the knowledge that the current sample contains urine from a woman and select the analysis process accordingly. In step 3012, the test device determines one or more characteristics of the urine, for example by utilizing the second camera module 2230B. For example, a test strip may be adapted to enable the test device to determine the concentration level of one or more types of female hormones (eg, FSH, LH, or HCG). Finally, in step 3014, the user utilizes the test device to automatically analyze the results of the male and female biological samples and determine the final results regarding the subject's fertility.

在一些特定實例中,第一相機模組2230A與第二相機模組2230B相比可具有較低的相機分辨率,且因此所述兩個攝像機由處理器用以執行不同的分析處理程序。另外,第一相機模組2230A與第二相機模組2230B相比可具有較低的放大比率。第一相機模組2230A的一些實例可根本不具有放大功能,而第二相機模組2230B可具有固定的放大比率。另外或作為本身具有較高放大比率的第二相機模組2230B的替代方案,第二固持區域2215B的放大組件2210B如圖22中所示。在一些實施中,所述相機模組的放大比率可為可調整的(例如,由處理器控制)。測試裝置的一些實例規定第一相機模組2230A具有2百萬像素或更高之相機分辨率,且第二相機模組2230B具有13百萬像素或更高之相機分辨率。在一些實例中,第二相機模組2230B可包括至少4.8倍或更高的線性放大比率。 In some specific examples, the first camera module 2230A may have a lower camera resolution than the second camera module 2230B, and thus the two cameras are used by the processor to perform different analysis processes. In addition, the first camera module 2230A may have a lower magnification ratio than the second camera module 2230B. Some instances of the first camera module 2230A may not have a magnification function at all, while the second camera module 2230B may have a fixed magnification ratio. In addition or as an alternative to the second camera module 2230B, which itself has a higher magnification ratio, the magnification component 2210B of the second holding area 2215B is as shown in FIG. 22 . In some implementations, the magnification ratio of the camera module may be adjustable (eg, controlled by a processor). Some examples of test setups provide that the first camera module 2230A has a camera resolution of 2 megapixels or higher, and the second camera module 2230B has a camera resolution of 13 megapixels or higher. In some examples, the second camera module 2230B can include a linear magnification ratio of at least 4.8x or higher.

在此等實例中之一些中,處理器進一步藉由使用第一相機模組2230A來判定精子的至少一個額外特性。此額外特性可包括精子的酸度。舉例而言,載體可包括在第一固持區域2215A中使用色彩表示精子之酸度的pH指示器,處理器可辨識該色彩以識別酸度。類似地,一些實例規定處理器可基於第一或第二固持區域的一或多個圖像中的一區域之色彩來判定生物樣本的生化特性。 In some of these examples, the processor further determines at least one additional characteristic of the sperm by using the first camera module 2230A. This additional characteristic may include the acidity of the sperm. For example, the carrier may include a pH indicator in the first retention region 2215A that represents the acidity of the sperm using a color that the processor may recognize to identify the acidity. Similarly, some examples provide that the processor may determine a biochemical characteristic of the biological sample based on the color of a region in one or more images of the first or second holding region.

繼續在圖22中的具有多相機配置之以上測試裝置實例及圖29中的載體實例的情況下,在一些實施中,當處理器識別第一固持區域(例如,第一固持區域2215A或載體2905(2)之第一固持區域2915A)呈可指示生物樣本包括來自女性受試者的尿液的第二形狀(諸如卵形)時,處理器經配置以判定尿液的一或多個特性。可判定的特性可包括:LH水平水平、FSH水平及/或HCG水平。如同酸度,可藉由使用第一相機模組執行對尿液的一或多個特性的判定。類似地,載體可包括第一固持區域(例如,個別載體之第一固持區域2915A)中的LH 指示器(例如,如載體2905(3)中所示)、FSH指示器(例如,如載體2905(2)中所示)及/或HCG指示器(例如,如載體2905(4)中所示)。 Continuing with the above test device example with a multi-camera configuration in FIG. 22 and the carrier example in FIG. 29, in some implementations, when the processor identifies a first holding region (e.g., first holding region 2215A or first holding region 2915A of carrier 2905(2)) having a second shape, such as an oval shape, that may indicate that the biological sample includes urine from a female subject, the processor is configured to determine one or more characteristics of the urine. Determinable characteristics may include: LH level, FSH level and/or HCG level. Like acidity, determination of one or more properties of urine can be performed by using the first camera module. Similarly, a carrier may include an LH in a first holding region (e.g., first holding region 2915A of an individual carrier) Indicator (eg, as shown in carrier 2905(3)), FSH indicator (eg, as shown in carrier 2905(2)), and/or HCG indicator (eg, as shown in carrier 2905(4)).

此外,在一些具體實例中,處理器可利用兩個相機模組中之至少一者(例如,第一相機模組2230A)或另一感測器(例如,下文關於圖26引入的光感測器2690)來在執行分析處理程序之前判定生物樣本的準備狀態或有效性。在一些實施中,可基於識別第一視覺標誌是否顯示在第一固持區域(例如,第一固持區域2915A)中的特定區域中來判定測試樣本的準備狀態或有效性。此第一視覺標誌之實例可為測試條帶上之某一指定區域中所顯示的線,如一紅線。前述紅線可用作品質控制構件,其可指示測試為有效的或結果準備好了。另外,第一固持區域2915A可包括顯示表示關於生物樣本之特性之測試結果的第二視覺標誌的另一區域。此第二視覺標誌之實例可為測試條帶上準備狀態另一某一指定區域中所顯示的線 Additionally, in some embodiments, the processor may utilize at least one of the two camera modules (e.g., first camera module 2230A) or another sensor (e.g., light sensor 2690 introduced below with respect to FIG. 26 ) to determine the readiness or validity of the biological sample prior to executing the analytical processing procedure. In some implementations, the readiness or validity of the test sample can be determined based on identifying whether the first visual indicia is displayed in a particular area of the first holding area (eg, first holding area 2915A). An example of this first visual indicator could be a line displayed in a designated area on the test strip, such as a red line. The aforementioned red line can be used as a quality control means that can indicate that a test is valid or results are ready. In addition, the first holding area 2915A may include another area displaying a second visual indicia representing test results regarding characteristics of the biological sample. An example of this second visual indication could be a line displayed in another designated area on the test strip for readiness

在一些具體實例中,測試裝置可回應於生物樣本未準備好的判定執行動作。在一些實例中,藉由處理器執行的動作包括實施具有藉由待執行的分析處理程序判定的持續時間的計時器。在一些其他實例中,測試裝置進一步包括移動機構,且測試裝置中的處理器可利用移動機構將機械力施加至載體以提高生物樣本的準備度。在下文關於圖25(圖25A及圖25B)及圖26(圖26A及圖26B)引入可在測試裝置中實施的動作及機構的更多細節。 In some embodiments, the testing device can perform an action in response to a determination that the biological sample is not ready. In some examples, the action performed by the processor includes implementing a timer having a duration determined by the analysis process to be executed. In some other examples, the testing device further includes a movement mechanism, and the processor in the testing device can utilize the movement mechanism to apply a mechanical force to the carrier to improve the readiness of the biological sample. More details of the actions and mechanisms that may be implemented in the test device are introduced below with respect to Figures 25 (Figures 25A and 25B) and Figure 26 (Figures 26A and 26B).

該等放大組件(例如,相機模組之放大組件或測試條帶之放大組件)的位置及該等光源的位置可視各種類型的分析物分析的要求而經調整或選擇。在變體中,該等相機模組可具有可調整放大比率。在此等實例中的至少一些中,處理器經進一步配置以基於所述處理器當前經配置以執行的分析處理程序來調整兩個相機模組中的至少一者的放大比率。如上文引入,當生物樣本包 括精子時,測試裝置可配置合適相機模組(例如,第二相機模組2230B)達到不同的放大比率以用於判定精子的活動力及精子的形態。 The positions of the magnifying components (eg, of a camera module or of a test strip) and the positions of the light sources can be adjusted or selected as required for various types of analyte analysis. In a variant, the camera modules may have adjustable magnification ratios. In at least some of these examples, the processor is further configured to adjust a magnification ratio of at least one of the two camera modules based on an analysis process that the processor is currently configured to execute. As introduced above, when the biological sample package When sperm are included, the test device can be configured with a suitable camera module (for example, the second camera module 2230B) to achieve different magnification ratios for determining the motility and shape of the sperm.

應注意,相機模組與放大組件之間的最佳距離可具有低誤差界限。舉例而言,甚至與最佳距離之0.01mm之微小偏差可阻止相機模組擷取樣本固持區域之清晰圖像。為了精細調節相機模組與放大組件之間的距離,測試裝置可包括自動聚焦(AF)功能。自動聚焦功能為自動地調整光學系統(例如,調整光學系統的組件之間的距離)以使得正成像的對象(例如,精液)在光學系統的焦平面內的功能。至少一或多個具體實例亦提供可藉由處理器控制的機械聚焦機構以使得兩個相機模組中的至少一者聚焦於個別固持區域上。在下文關於圖23及圖24更詳細地論述機械聚焦機構。所述機械聚焦機構可為可控制的以調整透鏡在兩個相機模組中之至少一者中的位置(例如,圖23中大體所示)。另外或替代地,所述機械聚焦機構可為可控制的以調整載體的位置(例如,圖24中大體所示)。 It should be noted that the optimal distance between the camera module and the magnification component may have a low margin of error. For example, even a small deviation of 0.01mm from the optimal distance can prevent the camera module from capturing a clear image of the sample holding area. To fine-tune the distance between the camera module and the magnification assembly, the test setup may include an autofocus (AF) function. The autofocus function is the function of automatically adjusting the optical system (eg, adjusting the distance between components of the optical system) so that the object being imaged (eg, semen) is within the focal plane of the optical system. At least one or more embodiments also provide a mechanical focus mechanism controllable by the processor to cause at least one of the two camera modules to focus on a respective holding area. The mechanical focus mechanism is discussed in more detail below with respect to FIGS. 23 and 24 . The mechanical focus mechanism may be controllable to adjust the position of the lens in at least one of the two camera modules (eg, as generally shown in FIG. 23 ). Additionally or alternatively, the mechanical focus mechanism may be controllable to adjust the position of the carrier (eg, as generally shown in Figure 24).

圖23為具有自動聚焦功能的測試裝置的組件的示意圖。如圖23中所示,測試裝置可沿Z軸朝上或朝下移動相機模組(例如,藉由機動軌、超音波馬達驅動或步進馬達)。藉由調整相機模組的豎直位置,測試裝置可調整相機模組與放大組件之間的距離。 FIG. 23 is a schematic diagram of components of a test setup with autofocus functionality. As shown in FIG. 23, the test apparatus can move the camera module up or down along the Z-axis (eg, by motorized rails, ultrasonic motor drive, or stepper motors). By adjusting the vertical position of the camera module, the test device can adjust the distance between the camera module and the amplifying component.

圖24為具有自動聚焦功能的另一測試裝置的組件的示意圖。如圖24中所示,測試裝置可沿Z軸朝上或朝下移動測試條帶裝置。藉由調整測試條帶裝置的豎直位置,測試裝置可調整相機模組與放大組件之間的距離。 Fig. 24 is a schematic diagram of components of another testing device with autofocus function. As shown in Figure 24, the test device can move the test strip device up or down along the Z axis. By adjusting the vertical position of the test strip device, the test device can adjust the distance between the camera module and the amplifying component.

在如圖23或圖24中所示之自動聚焦操作期間,相機模組及補充透鏡保持為單一模組。換言之,相機模組與補充透鏡之間的距離在如圖23或圖24中所示之自動聚焦操作期間保持不變。 During the autofocus operation as shown in Fig. 23 or Fig. 24, the camera module and supplementary lens remain as a single module. In other words, the distance between the camera module and the supplementary lens remains constant during the autofocus operation as shown in FIG. 23 or FIG. 24 .

圖25為包括開關及馬達的測試裝置的示意圖。圖25中的測試裝置1900之B-B橫截面示出所述測試裝置的各種組件。測試裝置1900包括用以偵測插入至測試裝置1900中的收集瓶2510的開關2550。當插入了收集瓶2510時,開關2550被激活。接著經由開關2550將收集瓶2510告知測試裝置1900。基於開關2550處於被激活的時間段,測試裝置可判定收集瓶2510保持插入的時間段。 Fig. 25 is a schematic diagram of a test setup including a switch and a motor. The B-B cross-section of test device 1900 in Figure 25 shows various components of the test device. The testing device 1900 includes a switch 2550 for detecting the collection bottle 2510 inserted into the testing device 1900 . When collection vial 2510 is inserted, switch 2550 is activated. The collection bottle 2510 is then notified to the testing device 1900 via the switch 2550 . Based on the period of time switch 2550 is activated, the test device may determine the period of time collection bottle 2510 remains inserted.

測試裝置1900進一步包括用於搖動、振動或旋轉收集瓶2510以便在收集瓶2510中混合樣本的馬達2560。測試裝置1900可包括相機2570以基於收集瓶2510中的樣本之經擷取圖像來判定樣本是否已經液化。 The testing device 1900 further includes a motor 2560 for shaking, vibrating or rotating the collection bottle 2510 to mix the sample in the collection bottle 2510 . The testing device 1900 may include a camera 2570 to determine based on captured images of the sample in the collection bottle 2510 whether the sample has liquefied.

圖26為包括可撓性元件之測試裝置的示意圖。圖26中的測試裝置1900的B-B橫截面示出所述測試裝置的各種組件。測試裝置1900包括在用於以移動方式容納收集瓶2610之槽孔之底部的移動元件2680(例如,彈性組件)。舉例而言,移動元件2680可包括在收縮或變形之後可自發地恢復其正常形狀的彈簧。當收集瓶2610插入至槽孔中時,移動元件2680經壓縮。光感測器2690(或其他類型之距離感測器)負責偵測光感測器2690與收集瓶2610的底部之間的距離。基於光感測器2690與收集瓶2610的底部之間的距離,測試裝置1900可判定收集瓶2610中所含樣本的重量或體積。舉例而言,光感測器2690與收集瓶2610的底部之間的距離可與收集瓶2610中所含樣本的重量或體積成反比。 Figure 26 is a schematic diagram of a testing device including a flexible element. The B-B cross-section of the testing device 1900 in Figure 26 shows various components of the testing device. The testing device 1900 includes a moving element 2680 (eg, a resilient member) at the bottom of a slot for receiving the collection vial 2610 in a moving manner. For example, moving element 2680 may include a spring that spontaneously returns to its normal shape after contraction or deformation. When the collection vial 2610 is inserted into the slot, the moving element 2680 is compressed. The light sensor 2690 (or other type of distance sensor) is responsible for detecting the distance between the light sensor 2690 and the bottom of the collection bottle 2610 . Based on the distance between the light sensor 2690 and the bottom of the collection bottle 2610 , the test device 1900 can determine the weight or volume of the sample contained in the collection bottle 2610 . For example, the distance between the light sensor 2690 and the bottom of the collection bottle 2610 can be inversely proportional to the weight or volume of the sample contained in the collection bottle 2610 .

在一些其他具體實例中,測試裝置1900可包括在收集瓶2610的頂部上的感測器。感測器可負責偵測感測器與收集瓶2610的頂部之間的距離。可基於所述距離判定收集瓶2610中所含樣本的重量或體積,此係由於所述體積或所述重量可(例如)同感測器與收集瓶2610的頂部之間的距離成正比。繼而,基於樣本的重量或體積,測試裝置1900可判定等待收集瓶2610中的樣本液化的時間段。測試裝置1900進一步包括用於搖動、振動或旋轉收集瓶2610以便在收集瓶2610中混合樣本的馬達2660。 In some other embodiments, testing device 1900 may include a sensor on top of collection vial 2610 . The sensor may be responsible for detecting the distance between the sensor and the top of the collection bottle 2610. The weight or volume of the sample contained in the collection bottle 2610 may be determined based on the distance, since the volume or the weight may, for example, be proportional to the distance between the sensor and the top of the collection bottle 2610 . Then, based on the weight or volume of the sample, the testing device 1900 can determine a time period to wait for the sample in the collection bottle 2610 to liquefy. The testing device 1900 further includes a motor 2660 for shaking, vibrating or rotating the collection bottle 2610 to mix the sample in the collection bottle 2610 .

在一些具體實例中,測試裝置之相機模組可包括擷取光線的強度以及方向之光場相機(圖未示)。光場相機可包括在圖像感測器的前方的微透鏡陣列或多相機陣列以偵測方向資訊。使用光線的方向資訊,相機模組可在廣泛範圍的焦平面處擷取清晰圖像。因此,使用光場相機的測試裝置可不需要自動聚焦功能來精細調整相機模組與放大組件之間的距離。 In some embodiments, the camera module of the test device may include a light field camera (not shown) for capturing the intensity and direction of light. A light field camera may include a microlens array or a multi-camera array in front of the image sensor to detect direction information. Using the directional information of the light, the camera module can capture sharp images at a wide range of focal planes. Therefore, a test device using a light field camera may not need an auto-focus function to finely adjust the distance between the camera module and the magnifying component.

鑒於以上情況,本發明的裝置適用於測試男性生育力及/或女性生殖力。 In view of the above, the device of the present invention is suitable for testing male fertility and/or female fertility.

本發明提供一種使用本申請案的裝置測試男性生育力的方法。所述方法包含以下步驟:將來自男性受試者的生物樣本施加至載體的第一固持區域及第二固持區域;將載體插入至裝置中;根據第一分析處理程序判定精子的酸度;根據第二分析處理程序判定選自由以下組成之群組的精子的一或多個特性:精子的濃度、精子的活動力及精子的形態;以及分析結果以判定男性生育力。 The present invention provides a method of testing male fertility using the device of the present application. The method comprises the steps of: applying a biological sample from a male subject to the first and second holding regions of the carrier; inserting the carrier into the device; determining the acidity of the sperm according to a first analysis procedure; determining one or more characteristics of the sperm selected from the group consisting of sperm concentration, sperm motility, and sperm morphology according to a second analysis procedure; and analyzing the results to determine male fertility.

本發明亦提供一種使用本申請案的裝置測試女性生殖激素的方法。所述方法包含以下步驟:將來自女性受試者的生物樣本施加至載體的第一固持區域;將載體插入至裝置中;以及判定一或多個類型的女性激素的濃度水平,所述女性激素諸如黃體激素(LH)、濾泡刺激激素(FSH),或人絨毛膜促性腺激素(HCG)。 The present invention also provides a method for testing female reproductive hormones using the device of the present application. The method comprises the steps of: applying a biological sample from a female subject to a first retention region of a carrier; inserting the carrier into the device; and determining a concentration level of one or more types of female hormones, such as luteinizing hormone (LH), follicle stimulating hormone (FSH), or human chorionic gonadotropin (HCG).

本發明進一步提供一種用於測試一對男性受試者與女性受試者之生育力的方法。所述方法包含以下步驟:將來自男性受試者之生物樣本施加至第一載體之第一固持區域及第二固持區域;將第一載體插入至裝置中;根據第一分析處理程序判定精子的酸度;根據第二分析處理程序判定選自由以下組成之群組的精子的一或多個特性:精子的濃度、精子的活動力及精子的形態;將來自女性受試者的生物樣本施加至第二載體的固持區域;將第二載體插入至 裝置中;判定一或多個類型的雌性激素的濃度水平;以及分析男性與女性生物樣本的結果。 The invention further provides a method for testing the fertility of a pair of male and female subjects. The method comprises the steps of: applying a biological sample from a male subject to a first holding area and a second holding area of a first carrier; inserting the first carrier into the device; determining the acidity of the sperm according to a first analytical processing procedure; determining one or more characteristics of sperm selected from the group consisting of sperm concentration, sperm motility, and sperm morphology according to a second analytical processing procedure; applying a biological sample from a female subject to the holding region of the second carrier; device; determining the concentration level of one or more types of estrogen; and analyzing the results of male and female biological samples.

圖27為用於分析男性客戶或患者的精液樣本的處理程序之流程圖。用於分析精液樣本之系統可包括測試機(例如,測試裝置1900)、行動裝置及雲端伺服器。圖28為用於分析女性客戶或患者的LH或HCG的處理程序的流程圖。用於分析LH或HCG的系統可包括測試機(例如,測試裝置1900)、行動裝置及雲端伺服器。圖27及圖28之流程圖示出藉由測試機、行動裝置及雲端伺服器執行的步驟及在測試機、行動裝置及雲端伺服器之間傳遞的資訊。 27 is a flowchart of a process for analyzing a semen sample from a male client or patient. A system for analyzing a semen sample may include a testing machine (eg, testing device 1900 ), a mobile device, and a cloud server. Figure 28 is a flowchart of a process for analyzing LH or HCG of a female client or patient. A system for analyzing LH or HCG may include a testing machine (eg, testing device 1900 ), a mobile device, and a cloud server. The flowcharts of FIGS. 27 and 28 illustrate the steps performed by the tester, the mobile device and the cloud server and the information transferred between the tester, the mobile device and the cloud server.

在一些具體實例中,用於測試精子的方法包含以下步驟:獲得用於測試生物樣本之複數視角分析的自動測試裝置,將精子樣本施加至樣本固持區域,記錄精子樣本的視訊或圖像;基於經記錄視訊或經記錄圖像的至少一個圖框來判定精子樣本的精子數;以及基於經記錄視訊或經記錄圖像判定精子樣本的精子活動力。 In some embodiments, a method for testing sperm comprises the steps of: obtaining an automated testing device for testing a biological sample for multiple view analysis, applying a sperm sample to a sample holding area, recording a video or image of the sperm sample; determining a sperm count of the sperm sample based on at least one frame of the recorded video or a recorded image; and determining sperm motility of the sperm sample based on the recorded video or recorded image.

在相關具體實例中,所述方法進一步包含:在將精子樣本施加至樣本固持區域之前等待用於精子樣本的液化的預定時間段。 In a related embodiment, the method further includes waiting a predetermined period of time for liquefaction of the sperm sample before applying the sperm sample to the sample holding region.

在另一相關具體實例中,所述方法進一步包含:置放包括在裝置的頂部上的相機組件的行動裝置以使得所述相機組件與放大組件及樣本固持區域對準;及藉由行動裝置接收樣本固持區域中經由放大組件之放大來自精子樣本的光信號。 In another related embodiment, the method further includes: positioning a mobile device including a camera assembly on top of the device such that the camera assembly is aligned with the amplification assembly and the sample holding area; and receiving, by the mobile device, an amplified light signal from the sperm sample in the sample holding area via the amplification assembly.

在又一相關具體實例中,所述方法進一步包含:藉由安置於裝置的載體之一側的側向照明裝置或安置於裝置的載體之頂部或下方的豎直照明裝置來照亮樣本固持區域。 In yet another related embodiment, the method further includes illuminating the sample holding area by a side illuminator disposed on a side of a carrier of the device or a vertical illuminator disposed on top or below the carrier of the device.

在再一相關具體實例中,所述方法進一步包含:導引來自側向照明裝置的光束穿過由透明的或半透明材料製成的載體;及藉由包括於載體中的複數個光反射圖案將光束反射至樣本固持區域。 In yet another related embodiment, the method further includes: directing a light beam from the side illuminator through a carrier made of a transparent or translucent material; and reflecting the light beam to the sample holding area by a plurality of light reflecting patterns included in the carrier.

在又一相關具體實例中,所述方法進一步包含:將一次性測試裝置插入至基座中,該基座包括用於記錄精子樣本的視訊的相機組件或用於固定行動裝置的形狀配合框架,所述行動裝置包括用於記錄精子樣本的視訊的相機組件。 In yet another related embodiment, the method further includes inserting the disposable testing device into the base including a camera assembly for recording video of the sperm sample or a form-fitting frame for securing a mobile device including the camera assembly for recording video of the sperm sample.

在再一相關具體實例中,所述方法進一步包含:自生物樣本之經記錄視訊提取至少一個圖框;自至少一個圖框識別複數個精子;以及基於經識別精子之數目及由至少一個圖框記錄之面積計算精子數。 In yet another related embodiment, the method further comprises: extracting at least one frame from the recorded video of the biological sample; identifying a plurality of sperm from the at least one frame; and calculating a sperm count based on the number of identified sperm and the area recorded by the at least one frame.

在又一相關具體實例中,所述方法進一步包含:分析經識別精子的形狀;及基於經識別精子的形狀判定形態水平。 In yet another related embodiment, the method further comprises: analyzing a shape of the identified sperm; and determining a morphology level based on the shape of the identified sperm.

在再一相關具體實例中,所述方法進一步包含:自精子樣本之經記錄視訊提取一系列視訊圖框;自該系列視訊圖框識別複數個精子;基於所述系列視訊圖框識別精子的移動軌跡;基於精子的移動軌跡及由所述系列視訊圖框擷取的時間段判定精子的移動速度;以及基於精子的移動速度計算精子活動力。 In yet another related embodiment, the method further comprises: extracting a series of video frames from the recorded video of the sperm sample; identifying a plurality of sperm from the series of video frames; identifying movement trajectories of the sperm based on the series of video frames; determining movement speed of the sperm based on the movement trajectory of the sperm and a time period captured by the series of video frames; and calculating sperm motility based on the movement speed of the sperm.

在又一相關具體實例中,所述方法進一步包含:經由放大透鏡進一步放大精子樣本的視訊或圖像。 In yet another related embodiment, the method further comprises: further magnifying the video or image of the sperm sample via a magnifying lens.

在一些具體實例中,一種用於使用測試生物樣本的系統來測試精子的方法,其包含:將裝置插入至基座組件中;藉由行動裝置記錄樣本固持區域中的精子樣本的視訊,所述行動裝置固定在基座組件的形狀配合框架中;基於經記錄視訊之至少一個圖框判定精子樣本的精子數;以及基於經記錄視訊判定精子樣本的精子活動力。 In some embodiments, a method for testing sperm using a system for testing a biological sample, comprising: inserting a device into a base assembly; recording video of a sperm sample in a sample holding region by a mobile device, the mobile device secured in a form-fitting frame of the base assembly; determining a sperm count of the sperm sample based on at least one frame of the recorded video; and determining sperm motility of the sperm sample based on the recorded video.

在相關具體實例中,所述方法進一步包含:經由放大透鏡進一步放大精子樣本的視訊。 In a related embodiment, the method further includes: further magnifying the video of the sperm sample through a magnifying lens.

在一些具體實例中,用於測試生物樣本的系統包含用於測試生物樣本的一次性裝置及基座組件。一次性裝置包括含樣本固持區域的樣本載體及置放於該樣本固持區域的頂部上的可拆卸外罩。基座組件包括用於將一次性裝置插入至基座組件中的插入埠,及用於擷取樣本固持區域之圖像的相機組件,所述相機組件包括圖像感測器及光學透鏡模組。在相關具體實例中,光學透鏡模組可具有至少為0.1的線性放大比率。 In some embodiments, a system for testing a biological sample includes a disposable device and a base assembly for testing the biological sample. The disposable device includes a sample carrier including a sample holding area and a removable cover placed on top of the sample holding area. The base assembly includes an insertion port for inserting the disposable device into the base assembly, and a camera assembly for capturing images of the sample holding area, the camera assembly including an image sensor and an optical lens module. In a related embodiment, the optical lens module can have a linear magnification ratio of at least 0.1.

圖31示出一額外實例載體3105有一或多的視覺標誌3117(1)-3117(5)(或可以被共同地稱為視覺提示3117)可用以控制測式裝置執行的分析處理程序(例如,圖21C或圖22示出之測試裝置)。如圖31中所示,視覺提示3117可以在載體3105固持區域(例如固持區域3115B)中(或附近,在一些另外或替代之實施例)。 FIG. 31 illustrates an additional example carrier 3105 with one or more visual indicators 3117(1)-3117(5) (or may be collectively referred to as visual cues 3117) that may be used to control the analysis processing performed by a test device (e.g., the test device shown in FIG. 21C or FIG. 22). As shown in FIG. 31 , visual cue 3117 may be in (or near, in some additional or alternative embodiments) a holding area of carrier 3105 (eg, holding area 3115B).

如同前述(例如有關於圖29),處理器可基於一載體上之視覺提示執行不同的分析處理程序。例如在一些特定的實施例可以執行圖像辨識並處理固持區域的圖像並可根據來自圖像辨識的結果的視覺提示執行不同的分析處理程序。在一些實施例中,載體的視覺提示可為一特定固持區域的一形狀。另外的視覺提示實施例可包括圖形圖案、視覺標誌、一維條碼、多維圖案碼(例如,QR碼)等。 As previously described (eg, with respect to Figure 29), the processor may execute different analysis processes based on visual cues on a carrier. For example, in some specific embodiments image recognition may be performed and the image of the holding area may be processed and different analysis processes may be performed based on visual cues from the image recognition results. In some embodiments, the visual cue of the carrier may be a shape of a particular holding area. Additional examples of visual cues may include graphic patterns, visual signs, one-dimensional barcodes, multi-dimensional patterned codes (eg, QR codes), and the like.

在一些特定實例如圖31所示,任一視覺標誌(例如視覺記號3117(1))可為一特定小型的圖形圖案可被刻印、被附接再者或被標記在載體3105中的固持區域3115B上。圖31之實例中,視覺標誌3117(1)-3117(5)是全部相同或實質上相似的圖案,然而在其他實例中(為簡單起見未示出),它們不必完全相同且每一視覺標誌可有特有的形狀、尺寸、圖案等。在一或多的實施 中,視覺提示3117(例如視覺標誌3117(1)-3117(5))是一不被人類感知的尺寸但可以被一相機模組經由顯微透鏡放大後識別(例如,圖22中之第二相機模組2230B或圖21C的相機模組2130)。在其中一些實施中,視覺標誌3117(1)-3117(5)是小於15微米(μm),此外,視覺標誌3117(1)-3117(5)可經配置以使得它們的位置共同地形成一圖案(例如一預定的配置)。另外或作為視覺標誌特有的特性的替代方案(例如尺寸、形狀、顏色及/或位置),此由每一視覺記號的位置形成的集合圖案可為可識別的提示以被用來控制測試裝置的功能(例如,是否且接續地執行何種分析處理程序)。此集合圖案可基於視覺標誌(例如在固持區域)的絕對位置及/或視覺標誌的相對位置(例如,從它們各別的鄰近標誌)。圖31中,由視覺標誌3117(1)-3117(5)所示的集合圖案是視覺標誌3117(1)-3117(4)每一被設置在(相機捕捉的影像)四個角落之一且視覺記號3117(5)被設置在中心,每一視覺標誌是被均勻的分佈。一些另外或替代地實施例提供在視覺提示的每一(或每一組)特別的視覺記號(或標誌)可代表一個不同的分析功能以被執行。 In some specific examples, as shown in FIG. 31 , any visual indicia (eg, visual indicia 3117(1)) can be a specific small graphic pattern that can be imprinted, attached, or marked on holding area 3115B in carrier 3105. In the example of FIG. 31 , visual indicia 3117(1)-3117(5) are all the same or substantially similar patterns, however in other examples (not shown for simplicity), they need not be identical and each visual indicium may have a unique shape, size, pattern, etc. implemented in one or more Here, a visual cue 3117 (e.g., visual markers 3117(1)-3117(5)) is a size that is not perceived by humans but can be recognized by a camera module (e.g., second camera module 2230B in FIG. 22 or camera module 2130 in FIG. 21C) after magnification through a microlens. In some of these implementations, the visual markers 3117(1)-3117(5) are smaller than 15 micrometers (μm), and furthermore, the visual markers 3117(1)-3117(5) can be configured such that their positions collectively form a pattern (e.g., a predetermined configuration). Additionally or as an alternative to characteristics specific to the visual markers (e.g. size, shape, color and/or position), the collective pattern formed by the position of each visual marker may be a recognizable cue to be used to control the functionality of the test device (e.g., whether and subsequently which analytical procedures are performed). This collective pattern can be based on the absolute position of the visual markers (eg, at the holding area) and/or the relative position of the visual markers (eg, from their respective neighboring markers). In FIG. 31 , the collective pattern shown by visual markers 3117(1)-3117(5) is that visual markers 3117(1)-3117(4) are each placed in one of the four corners (camera-captured image) and visual marker 3117(5) is placed in the center, and each visual marker is evenly distributed. Some additional or alternative embodiments provide that each (or each group) of specific visual indicia (or signs) on the visual cue may represent a different analysis function to be performed.

鑒於以上狀況,此處之測試裝置可利用載體上之視覺提示(例如,在固持區域中或附近)以控制測試裝置之功能且適應性地基於視覺提示執行分析處理程序。在某些實施例中,視覺提示可用來確認是否載體為一授權的載體(例如,適當的被授權且在符合某一規範下並根據適用的品質標準製造)。在其他實例中,視覺提示可被用於控制測試裝置以在何種模式(例如,男性或女性、實驗室或家庭、高準確度或短時間、使用電池或插電)下執行計算。此外,在一些實施例中提供視覺提示可用於控制存取測試設備的某一功能,這根據客戶身分、地理位置等提供彈性訂製由測試設備提供的服務的能力。 In view of the above, the test device herein can utilize visual cues on the carrier (eg, in or near the holding area) to control the functions of the test device and adaptively execute analysis processing procedures based on the visual cues. In some embodiments, a visual cue may be used to confirm whether the carrier is an authorized carrier (eg, properly licensed and manufactured under certain specifications and according to applicable quality standards). In other examples, visual cues can be used to control in which mode the test device performs calculations (eg, male or female, laboratory or home, high accuracy or short time, on battery or plugged in). Additionally, providing visual cues in some embodiments may be used to control access to certain functions of the test device, which provides the ability to flexibly customize the services provided by the test device based on customer identity, geographic location, and the like.

圖32是在此揭露的測試裝置(如在圖21C或圖22)基於視覺提示適應性的執行一分析處理程序可實施的處理程序3200另外實例流程圖。繼續參照圖31,在下文說明處理程序3200。應注意,以下處理程序3200的實例中,視覺 提示是被應用於執行一載體認證應用,然而處理程序可同樣地被適用於執行其他應用(例如,有關於圖30之敘述)。例如在一些不是載體驗證的應用,處理器可以基於不同視覺提示執行不同組的分析處理程序。 FIG. 32 is a flow diagram of another example of a process 3200 that may be implemented by a test device disclosed herein (as in FIG. 21C or 22 ) adaptively executing an analysis process based on visual cues. With continued reference to FIG. 31 , processing routine 3200 is described below. It should be noted that in the following instance of handler 3200, the visual Hints are applied to execute a bearer authentication application, however the process can be equally adapted to execute other applications (eg, as described with respect to FIG. 30). For example, in some applications other than carrier authentication, the processor may execute different sets of analytical processing procedures based on different visual cues.

首先,步驟3202,在測試裝置的接收機構接收經由開口插入之載體,感測器(簡單起見未示出)可通知處理器,而處理器將造成測試裝置內建的相機模組以擷取一或多個載體固持區域的圖像。在步驟3204,處理器可利用經擷取圖像識別(例如基於已知圖像分析技術或揭露於此的那些)在載體中的視覺提示。如上討論,視覺提示可包括一些視覺標誌,每一視覺標誌可以是相同或不同尺寸、形狀、圖案、顏色等(如圖31所示之實例)或他們可能不相同。視覺標誌可共同進一步呈現一個圖案(例如,從他們的位置)。接著,處理器可將視覺提示(例如特有的尺寸、形狀、位置或集合圖案)與預定的視覺提示(例如,儲存在本機記憶體及/或雲端資料庫(可藉由測試裝置的製造商或其他管理員操作或控制)進行比較。 First, in step 3202, the receiving mechanism of the test device receives the carrier inserted through the opening, the sensor (not shown for simplicity) can notify the processor, and the processor will cause the built-in camera module of the test device to capture images of one or more carrier holding areas. At step 3204, the processor may utilize the captured image to identify visual cues in the carrier (eg, based on known image analysis techniques or those disclosed herein). As discussed above, the visual cues may include a number of visual cues, each of which may be the same or different size, shape, pattern, color, etc. (as shown for example in FIG. 31 ) or they may be different. The visual signs can collectively further present a pattern (eg, from their location). The processor can then compare the visual cues (e.g., characteristic size, shape, location, or set pattern) with predetermined visual cues (e.g., stored in local memory and/or cloud databases (operable or controllable by the manufacturer or other administrator of the test device).

步驟3206,處理器選擇性地對固持區域的經擷取圖像基於視覺提示的識別結果執行一組分析處理程序。如果視覺提示的識別結果回覆正向(例如,回應具有預定的視覺提示的載體固持區域),接著處理器繼續進行可包括選擇性的擷取額外的圖像(或視訊)以用於分析(步驟3208)及對經圖像執行分析處理程序的相對應組(步驟3210)的後續步驟。另一方面,若識別結果回覆負向(例如,回應不具有預定的視覺提示的載體固持區域),則處理器造成替代性的動作(例如,顯示錯誤代碼)反映視覺提示的不可識別,且不對圖像執行任何分析處理程序(步驟3212)。在所述的分析處理程序組被執行後,處理器可如前述基於分析處理程序的結果繼續判定關於生物樣本的結果。 In step 3206, the processor selectively executes a set of analysis processing procedures on the captured image of the holding area based on the recognition result of the visual cue. If the recognition result of the visual cue is positive (e.g., responding to a carrier holding area with a predetermined visual cue), then the processor proceeds with subsequent steps which may include optionally capturing additional images (or video) for analysis (step 3208) and performing a corresponding set of analysis processing procedures on the images (step 3210). On the other hand, if the recognition result returns negative (e.g., responding to a carrier holding area that does not have the predetermined visual cue), the processor causes an alternative action (e.g., displays an error code) reflecting the unrecognizability of the visual cue, and does not perform any analysis processing on the image (step 3212). After the set of analysis processing procedures is executed, the processor can continue to determine the results about the biological sample based on the results of the analysis processing procedures as described above.

此外,值得注意的是傳統的電腦輔助精子分析(computer-assisted sperm analyzers,CASA)依賴大型顯微鏡及操作技術人員的經驗以判定精子的參 數。有一些電腦軟體輔助以補充技術人員的經驗及使標準化分析結果。然而,由於透鏡及感測模組的不同,模糊圖像時常會嚴重影響輔助軟體的有效性,導致相關功能(例如精子數計算)的不精確。 In addition, it is worth noting that traditional computer-assisted sperm analyzers (CASA) rely on large-scale microscopes and the experience of operating technicians to determine the parameters of sperm. number. There are several computer software aids to supplement the technician's experience and to standardize the analytical results. However, due to differences in lenses and sensing modules, blurred images often seriously affect the effectiveness of assistive software, resulting in inaccurate related functions (such as sperm count calculation).

另外,主管機關例如世界衛生組織(World Health Organization,WHO)發佈人類精液檢查與處理實驗室手冊,手冊中明訂被評估用以決定精子的濃度、精子的活動力及精子的形態的樣本最低量(例如,200個精子)。現有的基於電腦輔助精子分析圖像的分析一般缺乏自動採樣或需要手動操作以取得多個視野以達到世界衛生組織規範及降低分析中的採樣誤差,替代地,如果採樣僅用單一視野重複的執行,為了達到令人滿意的低採樣誤差,而重複程序所花費的時間往往變得過長而無法大規模地實現。 In addition, competent authorities such as the World Health Organization (WHO) publish human semen examination and processing laboratory manuals, which specify the minimum sample size (for example, 200 spermatozoa) to be evaluated to determine sperm concentration, sperm motility, and sperm morphology. Existing computer-assisted sperm analysis image-based analysis generally lacks automatic sampling or requires manual operations to obtain multiple fields of view to meet the World Health Organization specification and reduce sampling errors in the analysis. Instead, if sampling is performed repeatedly with only a single field of view, the time it takes to repeat the procedure often becomes too long to be realized on a large scale in order to achieve a satisfactorily low sampling error.

圖33是可被此處測試裝置(例如,圖21C或圖22)為了較佳的結果(例如較佳的分析精確性或效率)實施的處理程序3300實例流程圖。處理程序3300可為此處(例如圖16示出的處理程序)的處理程序的替代性或補充性處理程序。 FIG. 33 is an example flow diagram of a process 3300 that may be implemented by a test device herein (eg, FIG. 21C or FIG. 22 ) for a better outcome (eg, better assay accuracy or efficiency). Handler 3300 may be an alternative or supplemental handler to the handlers herein (eg, the handler shown in FIG. 16 ).

首先,步驟3310(例如,在攜載所述生物樣本或已暴露於所述生物樣本之載體盒插入後(如上文引入)),此被引入的裝置可利用相機模組以擷取載體盒固持區域的一或多個圖像(或共同地稱為,集合圖像(imagery))。在一些選擇性的實施例(例如,關於圖29或31的形容),裝置可從固持區域的經擷取集合圖像識別(步驟3320)載體上的視覺提示。在這些選擇性的實施例中,此裝置可基於視覺提示的識別結果對經擷取集合圖像執行一組分析處理程序。 First, step 3310 (e.g., after insertion of the carrier cartridge carrying or exposed to the biological sample (as introduced above)), the introduced device may utilize a camera module to capture one or more images (or collectively, imagery) of the carrier cartridge holding area. In some optional embodiments (eg, as described with respect to FIG. 29 or 31 ), the device may recognize (step 3320 ) a visual cue on the carrier from the captured set of images of the holding area. In these alternative embodiments, the device may perform a set of analytical processes on the captured set of images based on the recognition of the visual cues.

於步驟3330,此裝置可將經擷取集合圖像分割為複數的區塊。在某些實施例中,區塊可以是多邊形的。更特定地來說,一些實施指出區塊可以是三角形、矩形、正方形、五邊形、六邊形等等。這些(區塊的)形狀可能至少有一邊常為0.05毫米。在一個或多個實施例中,區塊為正方形且尺寸為 0.05毫米乘以0.05毫米。值得注意的是,依據特定的實施,區塊的數量及尺寸可根據相機模組的解析度調整。在圖34中說明指出一個固持區域的圖像實例分割為數個區塊(例如,區塊3402)。應注意到,為了在此促進所揭示的技術的討論,經擷取集合圖像被認為「分割」成區塊;然而,在一個或多個實施中應該要了解到,處理器在電腦運作時間(或在正常操作時)並不需要實際上進行數學上的劃分運作來執行此技術;而是,所得到的區塊或網格可以被預定、邏輯上預接、程式預設,或是預先配置在裝置的相機控制器及/或處理器上,如此與集合圖像為分割為區塊的相關運算執行的需求可以被減少,或在某些實例中完全被消除。 In step 3330, the device may divide the captured set image into a plurality of blocks. In some embodiments, tiles may be polygonal. More specifically, some implementations state that tiles may be triangles, rectangles, squares, pentagons, hexagons, and the like. These (blocks') shapes may have at least one side usually 0.05 mm. In one or more embodiments, the blocks are square and have dimensions 0.05 mm by 0.05 mm. It is worth noting that, depending on the specific implementation, the number and size of the blocks can be adjusted according to the resolution of the camera module. An example segmentation of an image indicating a holding region into blocks (eg, block 3402 ) is illustrated in FIG. 34 . It should be noted that for purposes of facilitating the discussion of the disclosed techniques herein, the captured aggregate image is considered to be "segmented" into blocks; however, it should be appreciated that in one or more implementations, the processor need not actually perform mathematical division operations to perform this technique at computer runtime (or during normal operation); rather, the resulting blocks or grids may be predetermined, logically prewired, pre-programmed, or pre-configured on the camera controller and/or processor of the device so that the need to perform computations associated with the aggregate image being segmented into blocks may be reduced, or in some instances is completely eliminated.

於步驟3340,實例裝置從複數區塊、候選區塊中選取以做分析。根據一個或更多實施例,候選區塊的選取是基於很多因素,舉例來說某一區塊的聚焦程度及/或某一區塊的正常性。 In step 3340, the example device selects from the plurality of blocks, candidate blocks, for analysis. According to one or more embodiments, the selection of candidate blocks is based on many factors, such as the degree of focus of a certain block and/or the normality of a certain block.

更特定言之,在許多實施中,此裝置可判定(步驟3342)每一複數的區塊的聚焦程度,以至於每一區塊能夠有相對應的聚焦程度測量。此聚焦程度可基於一或多個焦距測量功能判定。依據實施,被採納的焦距測量功能可包括一或多個:變異型、差異係數總和型、拉普拉斯能量圖像型、及/或側梯度強度最大化型。 More specifically, in many implementations, the apparatus may determine (step 3342) the degree of focus for each of the plurality of blocks, such that each block can have a corresponding measure of focus. The degree of focus can be determined based on one or more focus measurement functions. Depending on the implementation, the adopted focal length measurement functions may include one or more of: variation, sum of variance coefficients, Laplace energy image, and/or lateral gradient strength maximization.

在判定每個區塊的聚焦程度後,在一些實施例中,此裝置會將一區塊的聚焦程度與最小聚焦程度閾值進行比較。在一或多個實施中,一個區塊只有在聚焦程度滿足(例如,達到或超過)最小聚焦程度閾時可以被選擇為候選區塊。此外,此裝置亦可標記或標號區塊。此裝置在一個或多個實施例中指出,區塊只有在滿足最小聚焦程度閾值時會被標記或標號(例如,為了進一步的分析或追蹤識別)。標記或標號可以是連續的或隨機的完成。在圖35中說 明是一部分的候選區塊的選取過程,在此,區塊是隨機地經標號,且超過最小焦距程度閾值的區塊被初步的選取為候選區塊3510。 After determining the focus level of each block, in some embodiments, the apparatus compares the focus level of a block with a minimum focus level threshold. In one or more implementations, a block may be selected as a candidate block only if the focus level satisfies (eg, meets or exceeds) a minimum focus level threshold. In addition, the device can also mark or label blocks. This means, in one or more embodiments, that blocks are marked or labeled (eg, for further analysis or tracking identification) only if they meet a minimum focus threshold. Marking or numbering can be done sequentially or randomly. In Figure 35 it says This is part of the selection process of candidate blocks, where the blocks are randomly marked, and the blocks exceeding the minimum focus degree threshold are preliminarily selected as candidate blocks 3510 .

接下來,此裝置可對於數個被選取的區塊執行圖像處理程序,以判定被選取之區塊的特性(步驟3344),以判定一區塊之正常性,例如查看此區塊是否「足夠正常」以授予更進一步的分析。在一些實例中,被選取做正常性判定的區塊是那些已經被初步的選取為候選區塊(例如,那些滿足最小聚焦程度閾值,如上文說明)。在一些實例中,此階段被用於判定正常性的特性是細胞數(如精子數)。在特定的實例中,此裝置可對滿足最小聚焦程度的區塊(意即它們是足夠聚焦的)執行圖像處理程序以對每一足夠聚焦的區塊判定區塊內細胞(精子)數。此圖像處理程序可包括二值化(binarization)(且在一些實施中,搭配適應定限)以識別區塊中部分可能是精子的對象為前景,並識別區塊的剩餘部份為背景,經圖像處理程序後,此裝置可判定細胞(精子)數。在一或多個實施例中,候選區塊的細胞數可基於有精子與沒有精子的面積比例被判定(例如,利用與已知細胞數比例相關的表格進行外插法)。 Next, the device can perform an image processing program on several selected blocks to determine the characteristics of the selected blocks (step 3344), to determine the normality of a block, for example, to check whether the block is "normal enough" to grant further analysis. In some examples, the blocks selected for normality determination are those that have been preliminarily selected as candidate blocks (eg, those satisfying a minimum focus threshold, as described above). In some instances, the characteristic used at this stage to determine normality is cell count (eg, sperm count). In a specific example, the device may perform an image processing procedure on the blocks satisfying the minimum degree of focus (ie, they are sufficiently focused) to determine the number of cells (sperm) in the block for each sufficiently focused block. The image processing procedure may include binarization (and in some implementations, with adaptive limitation) to identify a part of the object that may be sperm in the block as the foreground, and identify the rest of the block as the background. After the image processing process, the device can determine the number of cells (sperm). In one or more embodiments, the cell count of a candidate block may be determined based on the ratio of areas with and without sperm (eg, by extrapolation using a table with known cell ratios).

之後,此裝置能夠計算所有剩餘候選區塊(例如,這些滿足最小聚焦程度閾值的區塊)的統計數據(例如,平均值和標準差)。統計數據經計算後,此裝置能夠藉由統計上比較特定區塊和所有剩餘候選區塊的一或多個特性(例如,精子數)判定(步驟3344)特定區塊的正常性。在一些實施例中,只有在特定區塊的正常性滿足一個正常性條件,才會被繼續的選取為候選區塊。以精子數為例,在多個實施例中,一區塊被認為「足夠正常」(例如,滿足正常性條件),是當區塊中的精子數在複數區塊的以平均值而言的標準差預設數值中。在一或多個實施中,正常性的要求是(以平均值而言)在兩個標準差之內。在其他的實施之中,正常性要求以是一個或三個標準差,或其他適合的的統計技術,能夠反映一個區塊與其他區塊組的正常性之比較。在圖36中說明,此圖為在圖 像處理程序後的結果(例如,適應限定二值化(adaptive thresholding binarization))和細胞數判定。應注意,在圖36中,顯示每一個候選區塊的估計細胞數替代它的標誌。 The apparatus is then able to calculate statistics (eg mean and standard deviation) of all remaining candidate blocks (eg those satisfying a minimum focus threshold). After the statistics are calculated, the apparatus can determine (step 3344 ) the normality of a particular block by statistically comparing one or more characteristics (eg, sperm count) of the particular block with all remaining candidate blocks. In some embodiments, only if the normality of a specific block satisfies a normality condition, it will be continuously selected as a candidate block. Taking sperm count as an example, in various embodiments, a block is considered "sufficiently normal" (eg, satisfies the condition of normality) when the sperm count in the block is within a predetermined value of standard deviation from the mean of the plurality of blocks. In one or more implementations, the requirement for normality is to be within two standard deviations (of the mean). In other implementations, the normality requirement is one or three standard deviations, or other suitable statistical technique, that reflects the normality of a block compared to other groups of blocks. illustrated in Figure 36, this figure is shown in Figure Like results after processing procedures (eg adaptive thresholding binarization) and cell number determination. It should be noted that in FIG. 36, the estimated cell number of each candidate block is shown instead of its label.

此外,此裝置可判定(步驟3346)是否已達到欲被分析細胞的目標數量。特定地來說,所揭示的裝置的一或多個實施例能夠維持總細胞數,且針對被選取為候選區塊的每一區塊,此裝置將該區塊的相應細胞數加至總細胞數。此裝置可用此該目標數量的分析細胞去控制欲被分析生物樣本的數量,且根據實施此數量是可配置的。此數量(數目)可依實驗室手冊和測試特定生物樣本之標準訂做。在一些實施例中,欲被分析細胞的目標數量是兩百(200)。在某些實例中,當總細胞量達到欲被分析細胞的目標數量時,選取候選區塊即完成。也就是說,根據至少某些揭示於此的實施例,在滿足聚焦程度閾值和總細胞數達到欲被分析細胞的目標數量的正常性要求的區塊上,候選區塊的選取能夠被執行(例如,以隨機的方式)。 Additionally, the device can determine (step 3346) whether the target number of cells to be analyzed has been reached. In particular, one or more embodiments of the disclosed apparatus are capable of maintaining a total cell count, and for each block selected as a candidate block, the device adds the corresponding cell count for that block to the total cell count. The device can control the number of biological samples to be analyzed with the target number of analyzed cells, and the number is configurable according to the implementation. This quantity (number) can be customized according to laboratory manuals and standards for testing specific biological samples. In some embodiments, the target number of cells to be analyzed is two hundred (200). In some instances, when the total cell volume reaches the target number of cells to be analyzed, the selection of candidate blocks is completed. That is, according to at least some of the embodiments disclosed herein, selection of candidate blocks can be performed (eg, in a random manner) on blocks that meet the focus threshold and the normality of the total cell count to a target number of cells to be analyzed.

於步驟3350,在選取候選區塊後,此引入的裝置可以藉由分析選取的候選區塊(例如,藉由此處所引入的一個或更多技術),判定生物樣本一或多個特性。在至少數個實施例中,此生物樣本為精液,且在候選區塊中一或多的生物樣本特性欲被判定,其包括一或多的:細胞數量(或濃度,可以從細胞數量推斷)、活動力、或形態。在一些實例中,此裝置更配置了,在該組分析處理程序執行後,可基於分析處理程序的結果判定關於此生物樣本的結果(例如,生育力)。 At step 3350, after selecting candidate blocks, the introduced device can determine one or more characteristics of the biological sample by analyzing the selected candidate blocks (eg, by one or more techniques described herein). In at least several embodiments, the biological sample is semen, and one or more characteristics of the biological sample are to be determined in the candidate block, including one or more of: cell number (or concentration, which can be inferred from cell number), motility, or morphology. In some examples, the device is further configured, after execution of the set of analytical processing procedures, to determine a result (eg, fertility) regarding the biological sample based on the results of the analytical processing procedures.

此外,在此觀察到完美地製造鏡片的組合件通常是困難的(尤其是量大時和須控制成本時)諸如安裝在在此引入之測試裝置上的顯微的透鏡組合件和/或放大透鏡組合件。透鏡的瑕疵以各式各樣的形式存在著,諸如雜質,或透鏡本身的不完美(例如,清楚程度、折射度、焦點及其他),而這些 瑕疵可以對測試裝置的精確性做出不利的影響。因此在此介紹,是校正和合格檢查的技術以減輕透鏡瑕疵並且更進一步改善於此所揭示的測試裝置之分析精確性。 Furthermore, it has been observed here that it is often difficult (especially in large quantities and cost-controlled) to perfectly manufacture optical lens assemblies such as microscopic lens assemblies and/or magnifying lens assemblies mounted on the test apparatus introduced here. Lens defects exist in various forms, such as impurities, or imperfections in the lens itself (eg, sharpness, refraction, focus, etc.), and these Imperfections can adversely affect the accuracy of the test device. Introduced here, therefore, are calibration and qualification techniques to mitigate lens imperfections and further improve the analytical accuracy of the test apparatus disclosed herein.

圖37是一例校正處理程序的實例流程圖3700,可以由一個在此揭示的測試裝置實施(例如,圖21C或圖22)以獲得改進的結果。此處理程序3700可以是在此揭示的過程之替代的或是補充的處理程序,例如在圖16中說明的處理程序。 FIG. 37 is an example flow diagram 3700 of a calibration process that may be implemented by a testing device disclosed herein (eg, FIG. 21C or FIG. 22 ) to obtain improved results. This process 3700 may be an alternative or supplemental process to the processes disclosed herein, such as the process illustrated in FIG. 16 .

首先,在步驟3710中(舉例來說,載體盒插入後),此引入之裝置能夠利用相機模組以擷取於載體盒固持區域的一個或多個圖像(或共同地稱為,集合圖像(imagery))。在一些選擇性的實施例中(例如,那些有關於圖29或31的敘述,此裝置可以,從固持區域擷取之集合圖像識別(步驟3720)載體上的視覺提示。在這些選擇性的實施例中,此裝置可以根據上述視覺提示的識別之結果對經擷取集合圖像執行一組的分析過程。 First, in step 3710 (eg, after the carrier case is inserted), the incoming device can utilize the camera module to capture one or more images (or collectively, imagery) of the carrier case holding area. In some optional embodiments (e.g., those described with respect to FIG. 29 or 31 ), the device may identify (step 3720) a visual cue on the carrier from the captured collective image of the holding area. In these optional embodiments, the device may perform a set of analysis processes on the captured collective image based on the results of the recognition of the visual cue described above.

更特定地來說,在一些實施中,在此的載體盒可以作為一個專門的虛擬盒,可用以觸發校正處理程序。舉例來說,專門的虛擬盒可能帶有一或更多的專門的圖形圖案(例如,關於圖38如下介紹),在視覺提示識別處理程序後(例如,在步驟3720中),能夠觸發測試裝置進入校正模式。另一實例中,一個專門的虛擬盒能夠攜載專門的測試樣本(例如,關於圖41如下介紹),且使用者可以手動造成(例如,透過面板上的使用者介面或遙控測試裝置)測試裝置進入校正模式中。在許多實例中,虛擬盒可以包括一個電子的(例如,一個無線射頻辨識(RFID))或一個機械的特徵(例如,一個特殊的形狀或是機械的凸出物),能夠觸發校正模式。 More specifically, in some implementations, the carrier box herein can serve as a dedicated virtual box that can be used to trigger the calibration process. For example, a dedicated dummy box may carry one or more dedicated graphic patterns (eg, described below with respect to FIG. 38 ) that, after a visual cue recognizes the handler (eg, in step 3720 ), can trigger the test device to enter calibration mode. In another example, a dedicated virtual box can carry a dedicated test sample (eg, as described below with respect to FIG. 41 ), and the user can manually cause (eg, through an on-panel user interface or a remote tester) the test device to enter calibration mode. In many instances, the virtual box may include an electronic (eg, a radio frequency identification (RFID)) or a mechanical feature (eg, a special shape or mechanical protrusion) that triggers the correction mode.

圖38是一測試載體攜載一視覺提示或一個圖像圖案,能夠用於校正或驗證在此揭露的測試裝置。在一個或更多的實施例中,視覺提示包括一 個圖像圖案,使測試裝置能夠識別作為一觸發器以進入校正模式。之後,此測試裝置能利用相機模組擷取圖像圖案之圖像,且執行自我診斷以從經擷取圖像中之結果自行校正。視覺圖案應要易於識別(且不容易誤認)。如同在圖38中說明,實例中的視覺圖案包含重複的(例如,每0.08毫米,也就是重複率或「間距(pitch)」)、更大的(例如,0.02毫米乘以0.02毫米)和一般地有規則的形狀。此視覺提示可以更進一步包含一個或更多重複的線性樣式。在圖38說明的例子中,此線性樣式包含一組(例如,三個)水平線條和一組(例如,三個)垂直線條。在一些實施例中,這些線條有200線對/毫米(LP/mm)或是更高的解析度。在圖38特定的例子中,線條有500LP/mm的解析度。應注意到,水平和/或垂直線條是的視覺線性圖案的實例,適合輔助測試裝置以執行特定安裝於測試裝置本身的光學儀器(例如,顯微透鏡)的光學特性與性能之自我診斷;其他適合的視覺圖案可取代圖38中的說明例。舉例來說,在一些實施列中,一個「E」形狀圖案或同等物可取代平行線條用作視覺線性圖案。舉例來說,在一些實施列中,實線和虛線能夠用於視覺線性圖案。 Figure 38 is a test carrier carrying a visual cue or an image pattern that can be used to calibrate or verify the test devices disclosed herein. In one or more embodiments, the visual cue includes a An image pattern that the test device can recognize as a trigger to enter calibration mode. Afterwards, the test device can capture an image of the image pattern using the camera module, and perform self-diagnosis to correct itself from the results in the captured image. Visual patterns should be easily identifiable (and not easily mistaken). As illustrated in FIG. 38 , visual patterns in examples include repeating (eg, every 0.08 millimeters, ie, repetition rate or "pitch"), larger (eg, 0.02 millimeters by 0.02 millimeters), and generally regular shapes. This visual cue can go a step further by including one or more repeating linear styles. In the example illustrated in FIG. 38, this linear style includes a set (eg, three) of horizontal lines and a set (eg, three) of vertical lines. In some embodiments, the lines have a resolution of 200 line pairs per millimeter (LP/mm) or higher. In the particular example of Figure 38, the lines have a resolution of 500 LP/mm. It should be noted that horizontal and/or vertical lines are examples of visual linear patterns suitable for assisting the test device in performing self-diagnosis of the optical properties and performance of optical instruments (e.g., microlenses) specific to the test device itself; other suitable visual patterns may be substituted for the illustrated example in FIG. 38. For example, in some embodiments, an "E" shaped pattern or equivalent may be used as a visually linear pattern instead of parallel lines. For example, in some implementations, solid and dashed lines can be used for visual linear patterns.

繼續處理程序3700,儘管於步驟3730校正模式已被引發,在載體的集合圖像被擷取後(例如,於步驟3710),此裝置能分割經擷取集合圖像為複數區塊(此與步驟3330相似,如上討論)。在一些實施例中,區塊可以是多邊形的。更特定言之,一些實施中指出區塊能為三角形、矩形、正方形、五邊形、六邊形等等。這些(區塊的)這些形狀可能至少有一邊為0.05毫米。在一個或多個實施例中,區塊為正方形且尺寸為0.05毫米乘以0.05毫米。值得注意的是,根據特定的實施,區塊的數量與尺寸能依據相機模組的解析度調整。在一個或更多的實施中,上文提到的間距(例如,視覺圖案規律地自行重複率)能夠對應到集合圖像能被分割的區塊的數量。在一些實施例中,間距可以與集合圖像能被測試裝置分割的區塊數量一致。 Continuing with process 3700, although the correction mode has been initiated at step 3730, after the aggregated image of the carrier is captured (eg, at step 3710), the device can segment the captured aggregated image into a plurality of blocks (this is similar to step 3330, discussed above). In some embodiments, tiles may be polygonal. More specifically, some implementations indicate that the blocks can be triangular, rectangular, square, pentagonal, hexagonal, etc. These shapes (of blocks) may have at least one side of 0.05mm. In one or more embodiments, the blocks are square and measure 0.05 mm by 0.05 mm. It is worth noting that, depending on the particular implementation, the number and size of blocks can be adjusted according to the resolution of the camera module. In one or more implementations, the above-mentioned spacing (eg, the rate at which the visual pattern regularly repeats itself) can correspond to the number of blocks into which the collective image can be divided. In some embodiments, the spacing may correspond to the number of tiles in which the collective image can be divided by the test device.

於步驟3740,實例中的裝置能執行校正/自我診斷程序,例如於每一區塊。校正程序通常應為一或更多步驟,能夠使測試裝置能夠自主地自我診斷當前安裝在測試裝置自身上的光學模組(例如,包括顯微透鏡、相機模組)品質。在一或多個實施例中,測試裝置可以判定(於步驟3742)每個區塊的聚焦程度,例如,藉由使用一或更多焦距測量函數。焦距測量函數的例子可以包含變異型、差異係數總和型、拉普拉斯能量圖像型、和/或側梯度強度最大化型。接著,於步驟3744,此測試儀器可判定一區塊是否滿足聚焦程度,例如,上文討論之最小聚焦程度閾值。另外或替代地,此測試裝置能將經擷取之結果與一或多個期望結果做比較(於步驟3746)。舉例來說,此測試儀器之處理器存取到一或多個預先安裝在記憶體中的圖像(例如,非使用相機擷取,例如,被傳遞或被程式預設安裝),與經擷取的圖像做出比較,並判定在區塊中之有疑慮之經擷取圖像品質是否滿足最低標準。預先安裝的一個或多個圖像應為應用於校正之視覺圖案的代表。於步驟3746,測試裝置能夠比較並檢視示例圖像品質參數,包括顏色失真、圖案變形、清晰程度瑕疵及/或其他圖像瑕疵。 In step 3740, the device of the example can perform a calibration/self-diagnostic procedure, eg, on each block. The calibration procedure should generally be one or more steps, enabling the test device to autonomously self-diagnose the quality of the optical modules (eg, including microlenses, camera modules) currently installed on the test device itself. In one or more embodiments, the test device may determine (at step 3742) the degree of focus of each block, eg, by using one or more focus measurement functions. Examples of focal length measurement functions may include variant, sum of coefficient of difference, Laplace energy image, and/or lateral gradient strength maximization types. Next, at step 3744, the tester can determine whether a region satisfies a degree of focus, eg, the minimum degree of focus threshold discussed above. Additionally or alternatively, the test device can compare (at step 3746) the retrieved results to one or more expected results. For example, the tester's processor accesses one or more images pre-installed in memory (e.g., not captured using a camera, e.g., passed on or installed by default), compares them with the captured images, and determines whether the quality of the captured images in question in the block meets minimum standards. The preinstalled image or images shall be representative of the visual pattern applied to the correction. In step 3746, the testing device can compare and review sample image quality parameters, including color distortion, pattern distortion, sharpness artifacts, and/or other image artifacts.

圖39是一個視覺提示圖38的示例圖像,經此處所揭示的測試裝置擷取,此圖像品質一般而言往左下角較佳,往右上角則較差。圖40A及40B為兩個在圖39中在不同區塊中經擷取圖像的不同圖像品質的特定實例說明。在一些實施例中,例如,其中間距與可以分割集合圖像的區塊數量一致,圖像40A及40B能分別代表一個區塊。如圖說明,圖40A的區塊中圖像品質較圖40B良好,因為圖像較為清晰且更加聚焦。 Fig. 39 is an example image of a visual cue to Fig. 38, captured by the test device disclosed herein, the image quality is generally better toward the lower left corner and worse toward the upper right corner. 40A and 40B are two specific examples illustrating different image qualities of the captured images in different blocks in FIG. 39 . In some embodiments, images 40A and 40B can each represent one block, for example, where the pitch corresponds to the number of blocks by which the collective image can be divided. As illustrated, the image quality in the block of FIG. 40A is better than that of FIG. 40B because the image is clearer and more focused.

回溯到處理程序3700,於步驟3750中,步驟3740的結果(例如,區塊是否滿足最小圖像品質要求,例如最低聚焦程度)被記錄在結合於測試裝置(簡易起見不多加贅述)的電腦可讀取儲存媒體中(例如,可以是非暫態的,例如快速記憶(flash memory))。從校正處理程序獲得的知識可以,舉例 來說,當測試裝置在之後的正常操作中被利用。在一個或更多實施例中,在正常的操作中(例如,於步驟3340中,如上討論)此時測試裝置可以自動地跳過或忽略那些在校正或自我診斷時未能達到最小圖像品質要求的區塊。這樣一來,在此揭示的測試裝置能減輕透鏡瑕疵的不良反應並增加分析精確性。 Returning to process 3700, in step 3750, the result of step 3740 (e.g., whether the block meets minimum image quality requirements, such as minimum focus) is recorded in a computer-readable storage medium (e.g., may be non-transitory, such as flash memory) incorporated in the test device (not to be described here). Knowledge gained from correction handlers can, for example In other words, when the test device is then utilized in normal operation. In one or more embodiments, during normal operation (eg, in step 3340, discussed above) at this point the test device may automatically skip or ignore those blocks that do not meet the minimum image quality requirements during calibration or self-diagnosis. As such, the testing apparatus disclosed herein can mitigate adverse effects of lens imperfections and increase analytical accuracy.

圖41所揭示的是一測試載體攜載一測試樣本的示例圖像,其可用於校正或驗證揭露於此的測試裝置。此技術可被應用在一或多個前述的實施例中,一個專門的虛擬盒能攜載專門的測試樣本且校正模式能被視覺圖案以外的觸發器啟動(例如使用者手動啟動,或由機械的特徵或是虛擬盒上的無線射頻辨識(RFID))。某一些實施例指出測試樣本應為水介質型式(例如,液態溶液)包含小型的測試粒子,例如在圖41中說明的測試粒子4102。這些微粒子可以被任何適合的物質所製成,包括,舉例來說聚合物。一特定的粒子4102實例物質為乳膠。粒子的尺寸可適合於特定的應用。在某些實施中,粒子的尺寸能與那些細胞,例如精子,的尺寸相似。粒子的實例尺寸範圍可從直徑0.5微米至50微米。在實例中,粒子為直徑5微米。當測試粒子作為樣本,此測試裝置可以如3700處理程序執行校正/自我診斷而不需步驟3720,且自我診斷當前安裝於自身的光學模組的品質。在這些當中的一些實施,此測試裝置可以預先安裝測試粒子的圖像(例如,非經相機擷取,例如,透過被傳輸或被其他方式程式安裝)於記憶體中,例如上述討論,以做出比較和校正目的。 Figure 41 discloses an example image of a test carrier carrying a test sample, which can be used to calibrate or verify the test device disclosed herein. This technique can be applied to one or more of the aforementioned embodiments, where a dedicated dummy box can carry a specific test sample and the calibration mode can be activated by a trigger other than a visual pattern (e.g. manual activation by the user, or by a mechanical feature or radio frequency identification (RFID) on the dummy box). Certain embodiments indicate that the test sample should be in the form of an aqueous medium (eg, a liquid solution) containing small test particles, such as test particle 4102 illustrated in FIG. 41 . These microparticles can be made of any suitable substance including, for example, polymers. A particular example substance for particles 4102 is latex. The size of the particles can be tailored to a particular application. In some implementations, the size of the particles can be similar to those of cells, such as sperm. Example sizes of particles may range from 0.5 microns to 50 microns in diameter. In the example, the particles are 5 microns in diameter. When the test particle is used as a sample, the test device can perform calibration/self-diagnosis without step 3720 as the processing procedure 3700, and self-diagnose the quality of the optical module currently installed in itself. In some of these implementations, the test device may preload images of the test particles (eg, not captured by a camera, eg, by being transmitted or otherwise programmed) in memory, such as discussed above, for comparison and calibration purposes.

圖42A及42B說明在圖41中經擷取圖像的不同區塊中不同圖像品質。如同說明,圖42A中區塊中圖像品質較圖42B佳,因為圖像較為清晰且更加聚焦。與上述討論相似,關於步驟3750,每一區塊的基線圖像品質的知識可以用來,例如,當測試裝置在之後的正常操作時被利用。舉例來說,一些測試設備的實施例可以自動地跳過或忽略那些在校正時未能達成最小圖像品質條件的 區塊或自我診斷。這樣一來,在此揭露的測試設備能減輕透鏡瑕疵的不良反應並改進分析準確性。 42A and 42B illustrate different image qualities in different blocks of the captured image in FIG. 41 . As explained, the image quality in the block in Fig. 42A is better than that in Fig. 42B because the image is clearer and more focused. Similar to the discussion above, with respect to step 3750, the knowledge of the baseline image quality of each block can be used, for example, to be exploited later in normal operation of the test device. For example, some test device embodiments may automatically skip or ignore those blocks or self-diagnostics. As such, the test apparatus disclosed herein can mitigate adverse effects of lens imperfections and improve analytical accuracy.

在一些具體實例中視覺提示(例如:於圖31討論的有關)可以幫助測試設備判定載體或樣本固持區域的狀態(例如:區域為乾的或濕的,或是攜載良好的樣本)。圖43是在此揭露的測試設備(例如:圖21B或22中)驗證樣本固持區域攜載生物樣本的可實施處理程序4300的實例流程圖。 In some embodiments visual cues (eg, discussed in relation to FIG. 31 ) can help the test device determine the status of the carrier or sample holding area (eg, the area is dry or wet, or is carrying a good sample). FIG. 43 is an example flowchart of a process 4300 that may be implemented by a test device disclosed herein (eg, in FIG. 21B or 22 ) to verify that a sample holding region carries a biological sample.

步驟4310(例如,在載體盒(carrier cartridge)被插入後),裝置可以利用相機模組獲取載體盒的固持區域的一或多個圖像(或合併稱為集合圖像)。步驟4320裝置可以基於固持區域的經擷取集合圖像識別載體上的視覺提示。視覺的識別包括步驟4342基於視覺提示於經擷取集合圖像中顯示的方式驗證固持區域是否攜載生物樣本。所述識別進一步包括在步驟4344選擇性地使處理器對經擷取集合圖像根據所述驗證結果執行該組分析處理程序。步驟4330裝置可對經擷取集合圖像根據視覺提示的識別結果執行該組分析處理程序。 In step 4310 (eg, after a carrier cartridge is inserted), the device may utilize a camera module to acquire one or more images (or aggregated images) of the holding area of the carrier cartridge. Step 4320 The device may identify visual cues on the carrier based on the captured set of images of the holding area. Visual identification includes step 4342 verifying whether the holding area carries a biological sample based on the visual cues shown in the captured set of images. The identifying further includes, at step 4344, selectively causing the processor to execute the set of analysis processing procedures on the captured set of images according to the verification results. In step 4330, the device may execute the set of analysis processing procedures on the captured set of images according to the recognition results of the visual cues.

圖44A至B示出空的或乾的樣本固持區域的經擷取集合圖像實例。圖45A至B示出樣本固持區域裝載有攜載生物樣本的流體的經擷取圖像的實例。在這些特定實例中,每一經擷取圖像示出一微型圖解圖案的視覺記號。視覺記號的陰影在空的或乾的樣本固持區域為清晰可見的。攜載生物樣本的流體會造成樣本固持區域顯示與空的載體盒相比不同的折射率(refractive index),因此將影響視覺記號的經擷取形狀。視覺記號的陰影會因折射而消褪。例如,有生物樣本的視覺記號的經擷取形狀與模板(如圖44A至B所示出的沒有任何樣本的視覺記號的經擷取形狀)相比將會形成光學失真(optical distorted)。因此,藉由與模板比較視覺記號的經擷取形狀並評估失真程度,例如判定記號的邊界厚度或是陰影區域等,處理器可以判定固持區域是否真的裝載待測生物樣本。此處,失真閾值代表顯示固持區域中生物樣本存在的光學失真程度。特別 是,失真程度可與預設的閾值比較以驗證是否載體攜載一生物樣本。在許多實施態樣中,不同的閾值可被基於採用的演算法及/或啟發式演算法(heuristics)定義,例如,如像素梯度方向(pixel gradient direction)及強度檢測(intensity detection)的演算法可被用於判定相應的閾值。 44A-B show examples of captured collective images of an empty or dry sample holding area. 45A-B show examples of captured images of a sample holding region loaded with biological sample-carrying fluid. In these particular examples, each captured image shows a visual signature of a micrographic pattern. The shadow of the visual mark is clearly visible on the empty or dry sample holding area. The fluid carrying the biological sample will cause the sample holding area to exhibit a different refractive index compared to an empty carrier cartridge, thus affecting the captured shape of the visual signature. Shadows of visual markers fade due to refraction. For example, the captured shape of a visual signature with a biological sample will be optically distorted compared to the template (eg, the captured shape of a visual signature without any sample as shown in FIGS. 44A-B ). Therefore, by comparing the captured shape of the visual mark with the template and evaluating the degree of distortion, such as determining the border thickness of the mark or the shadow area, etc., the processor can determine whether the holding area is really loaded with the biological sample to be tested. Here, the distortion threshold represents the degree of optical distortion that indicates the presence of the biological sample in the holding area. special Yes, the degree of distortion can be compared with a preset threshold to verify whether the carrier carries a biological sample. In many implementations, different thresholds can be defined based on the algorithms and/or heuristics employed, for example, algorithms such as pixel gradient direction and intensity detection can be used to determine the corresponding thresholds.

在一些實施例中,模板可以在檢測任何生物樣本前透過在配置階段擷取空的載體盒的影像,並儲存代表經擷取圖像的視覺提示的圖像數據來產生。在一些實施例中,模板可以被儲存在裝置中以降低在配置階段降低需執行的操作數量。在一些實施例中,視覺提示可被與經儲存的圖像比較,以判定兩者的相異性。當相異低於預設的閾值,處理器可以判定固持區域攜載生物樣本。 In some embodiments, the template can be generated by capturing an image of an empty carrier cassette during the configuration phase and storing image data representing visual cues of the captured image prior to testing any biological samples. In some embodiments, templates may be stored on the device to reduce the number of operations that need to be performed during the configuration phase. In some embodiments, the visual cues can be compared to stored images to determine their dissimilarity. When the difference is lower than a preset threshold, the processor may determine that the holding area carries a biological sample.

若處理器驗證樣本固持區域攜載一有效的樣本,處理器進行分析經擷取圖像。然而若處理器無法基於比較驗證樣本固持區域攜載任何有效的(例如當要進行的分析任務(在一些實例中辨識固持區域的形狀如同上述)需要流體樣本時,而不是流體)生物樣本,則處理器不進行任何圖像分析。取而代之的,在一些實施例中,裝置會通知使用者所提供的為無效樣本。所述通知可以利用訊號或指出沒有已提供的生物樣本的標記示出。 If the processor verifies that the sample holding area carries a valid sample, the processor proceeds to analyze the captured image. However, if the processor cannot verify based on the comparison that the sample holding area carries any valid (e.g., when the analysis task to be performed (in some instances identifying the shape of the holding area as described above) requires a fluid sample, rather than a fluid) biological sample, then the processor does not perform any image analysis. Instead, in some embodiments, the device notifies the user that an invalid sample was provided. The notification may be shown with a signal or indicia indicating that no biological sample has been provided.

在一些情況下,如前所述,基於CASA圖像分析通常缺乏自動取樣或需要手動圖像後處理(post-processing)以取得複數視野以達到WHO規格。為了解決此問題,測試設備可以包括定位機構,所述定位機構可操作以在或不在人為干預下調整載體對於相機的相對位置使得圖像可與複數的相鄰視野被獲取。 In some cases, as previously mentioned, CASA-based image analysis often lacks automatic sampling or requires manual image post-processing to obtain multiple fields of view to meet WHO specifications. To address this issue, the test apparatus may include a positioning mechanism operable to adjust, with or without human intervention, the relative position of the carrier to the camera so that images may be acquired with a plurality of adjacent fields of view.

圖48為在此揭露的測試設備利用複數視野以改進結果的可實施處理程序4800實例流程圖。步驟4810,例如在載體盒被插入後,裝置可以利用相機模組以擷取載體的樣本固持區域的第一圖像。步驟4820裝置識別第一圖像 的邊緣,步驟4830裝置的定位機構調整載體對於相機的相對位置(透過調整載體、相機或兩者)使得當相機獲取第二圖像時,第二圖像的邊緣是與第一圖像的經識別邊緣相鄰或對齊。步驟4840裝置對第一及第二圖像所組合的圖像進行一組分析處理程序,以判定生物樣本的一或多個特性(例如細胞數)。在一些實施例中,當第二圖像的邊緣與第一圖像的邊緣對齊時,兩圖像可用於組成更大的圖像。在一些實施例中,第一及第二圖像僅為來自不同視角。第二圖像可座落於鄰近於第一圖像或隨機座落於使得第二圖像不與第一圖像重疊的位置。 FIG. 48 is an example flow diagram of a process 4800 that may be implemented by a test device disclosed herein to utilize multiple fields of view to improve results. Step 4810, for example, after the carrier cartridge is inserted, the device may utilize a camera module to capture a first image of the sample holding area of the carrier. Step 4820 device identifies the first image In step 4830, the positioning mechanism of the device adjusts the relative position of the carrier to the camera (by adjusting the carrier, the camera, or both) so that when the camera captures the second image, the edge of the second image is adjacent to or aligned with the identified edge of the first image. Step 4840 means performing a set of analysis processing procedures on the combined image of the first and second images to determine one or more characteristics of the biological sample (eg, cell count). In some embodiments, when the edges of the second image are aligned with the edges of the first image, the two images can be used to compose a larger image. In some embodiments, the first and second images are simply from different perspectives. The second image may be positioned adjacent to the first image or randomly positioned such that the second image does not overlap the first image.

在一些實施例中,定位機構可以判定相機的複數個固定位置。在一些實施例中,定位機構可以判定載體的複數位置。例如圖49所示的多軸可移動平台(multi-axis mobile platform)可用於調整載體位置及/或相機位置。 In some embodiments, the positioning mechanism may determine a plurality of fixed positions of the camera. In some embodiments, the positioning mechanism can determine multiple positions of the carrier. For example, a multi-axis mobile platform as shown in FIG. 49 can be used to adjust the position of the carrier and/or the position of the camera.

在一些實施例中,複數標記(例如圖31所示的視覺提示)可被置於測試設備(例如至於可移動平台)使相機可以偵測到他們。在相機確定標記的位置後,相機利用標記作為起始點開始掃瞄。剩餘的標記作為相機掃瞄路徑的引導,因此使得測試設備調整相機自動地到固定位置以擷取複數視角的圖像。隨著標記的掃瞄路徑可為隨機的只要沒有區域被重複掃瞄。掃描路徑也可按一定順序(例如順時鐘或逆時鐘)。舉例來說,四個標記可被用於標出四個相應區域。相機可沿著標記依序或是隨機的擷取每一區域而不重複。在一些實施例中,平台的複數軸4901使得載體及/或相機手動或自動的沿X、Y及載體平台的方向調整。 In some embodiments, multiple markers (such as the visual cues shown in FIG. 31 ) can be placed on the test device (such as on a movable platform) so that cameras can detect them. After the camera determines the location of the marker, the camera starts scanning using the marker as a starting point. The remaining marks serve as a guide for the camera scan path, thus allowing the test equipment to automatically adjust the camera to a fixed position to capture images from multiple perspectives. Scanning paths with markers can be random as long as no areas are scanned repeatedly. The scan paths can also be in a certain order (eg, clockwise or counterclockwise). For example, four markers can be used to designate four corresponding regions. The camera can capture each area sequentially or randomly along the markers without duplication. In some embodiments, the multiple axes 4901 of the stage allow manual or automatic adjustment of the carrier and/or camera along the X, Y and direction of the carrier stage.

在一些實施例中,定位機構調整載體對於相機的相對位置的方式使得當自相機觀看時,經相機擷取的複數圖像是依序為順時鐘或逆時鐘。例如,圖50A示出自相機觀看獲取圖像依順時鐘順序的實例方式。在一些實施例中,定位機構調整載體對相機的相對位置以一方式,使得自相機觀看時,複數 圖像是經由相機依循序掃瞄獲取。圖50B示出依循序掃描獲取圖像的實例方式。 In some embodiments, the positioning mechanism adjusts the relative position of the carrier to the camera so that when viewed from the camera, the plurality of images captured by the camera are sequentially clockwise or counterclockwise. For example, FIG. 50A shows an example manner in which images are acquired clockwise from the camera view. In some embodiments, the positioning mechanism adjusts the relative position of the carrier to the camera in such a way that when viewed from the camera, the plural Images are acquired through sequential scanning of the camera. FIG. 50B shows an example manner of sequential scanning to acquire images.

在一些實施例中,第一及第二圖像在執行進一步的圖像分析前被組合。在一些情況下,第一及第二圖像可能會因相機或載體的調整而有重疊的部分。重疊的部分可以被利用圖像處理技術移除以形成組合的圖像。 In some embodiments, the first and second images are combined before performing further image analysis. In some cases, the first and second images may overlap due to camera or carrier adjustments. The overlapping portions can be removed using image processing techniques to form a combined image.

如圖50A至B,第一圖像的所述邊緣可以是第一圖像的底邊且第二圖像的所述邊緣可以是第二圖像的頂邊。在一些情況下,第一圖像的所述邊緣為第一圖像的頂邊,且第二圖像的所述邊緣是第二圖像的底邊。第一圖像的所述邊緣也可以是第一圖像的左側且第二圖像的所述邊緣可以是第二圖像的右側。類似地,第一圖像的所述邊緣也可以是第一圖像的右側且第二圖像的所述邊緣可以是第二圖像的左側。 As in Figures 50A-B, the edge of the first image may be the bottom edge of the first image and the edge of the second image may be the top edge of the second image. In some cases, the edge of the first image is a top edge of the first image and the edge of the second image is a bottom edge of the second image. Said edge of the first image may also be the left side of the first image and said edge of the second image may be the right side of the second image. Similarly, said edge of the first image may also be the right side of the first image and said edge of the second image may be the left side of the second image.

如有關圖16的敘述,測試設備基於樣本的體積計算精子的濃度,所述樣本的體積是經擷取樣本固持區域乘以樣本固持區域與外罩底部之間的距離,然而,由於製造上的不精確性,樣本的體積可能不會一樣因為樣本固持區域與外罩底部之間的距離可能會變化。為了彌補前述的不精確性並判定樣本的實際體積,測試設備可包括一具有聚焦馬達的相機模組,所述聚焦馬達可例如音圈馬達(voice coil motor,VCM)、陶瓷壓電致動機(ceramic piezoelectric actuator)、用於單眼相機聚焦機構或用於顯微鏡的伺服馬達(servo motor)機構等。所述聚焦馬達可操作以驅動相機透鏡調整相機焦點。圖51A至B示出相機模組的可調整透鏡實例。在圖51A中,透鏡位於初始或預設,對應於透鏡的第一焦距(focal length)。在圖51B中,透鏡延伸到其最大長度,對應於透鏡的第二焦距。透鏡的兩不同位置形成一距離L,所述距離L可被分成複數步數(step),而每一個步數對應到一焦距的變化。因此,透過知道兩目標物體透鏡的位置,即可得出兩個目標物體之間的距離。 As described with respect to FIG. 16 , the test device calculates the concentration of sperm based on the volume of the sample that is taken by multiplying the sample holding area by the distance between the sample holding area and the bottom of the housing, however, due to manufacturing inaccuracies, the sample volume may not be the same as the distance between the sample holding area and the bottom of the housing may vary. In order to compensate for the aforementioned inaccuracies and determine the actual volume of the sample, the testing device may include a camera module with a focusing motor, such as a voice coil motor (VCM), a ceramic piezoelectric actuator, a focusing mechanism for a monocular camera or a servo motor mechanism for a microscope, etc. The focus motor is operable to drive the camera lens to adjust the camera focus. 51A-B illustrate an example of an adjustable lens for a camera module. In FIG. 51A, the lens is at an initial or preset position, corresponding to the first focal length of the lens. In Figure 5 IB, the lens is extended to its maximum length, corresponding to the second focal length of the lens. The two different positions of the lens form a distance L, which can be divided into a plurality of steps, and each step corresponds to a change in focal length. Therefore, by knowing the positions of the lenses of the two target objects, the distance between the two target objects can be obtained.

圖52示出了用以判定載體內所含樣本實際體積的配置實例。在將載體5220插入以擷取樣本的圖像前,將外罩5210先行置於載體5220的頂部。第一視覺提示5217a(例如:如圖31所示)可置於外罩5210的底部。第二視覺提示5217b則可置於載體5220的一表面,所述表面與載體5220的樣本接觸或已暴露於載體5520的樣本。 Fig. 52 shows an example of an arrangement for determining the actual volume of a sample contained in a carrier. The housing 5210 is placed on top of the carrier 5220 before the carrier 5220 is inserted to capture an image of the sample. A first visual cue 5217a (eg, as shown in FIG. 31 ) can be placed on the bottom of the housing 5210. The second visual cue 5217b may then be placed on a surface of the carrier 5220 that is in contact with or has been exposed to the sample of the carrier 5220 .

在進行載體中生物樣本的分析前,此裝置會先針對外罩5220判定相機模組5230的第一聚焦位置。此一步驟的執行,係透過調整透鏡以對焦在第一視覺提示5217a。此裝置亦可透過調整透鏡以判定外罩5210的第二聚焦位置,以對焦在第二視覺提示5217b。此裝置接著可經由這兩個聚焦位置來判定焦距,並計算外罩5210的第一表面與載體5220的第二表面之間的距離。此一處理程序可在分析一批樣品前的配置階段進行(例如:同一批次中的載體及外罩應使用同批製造之器材,以使其具有相同之特性)。為達更加精確的樣本讀取,若每一載體及外罩具有不同特性,則此一處理程序亦可於使用階段進行。 Before analyzing the biological sample in the carrier, the device first determines the first focus position of the camera module 5230 for the housing 5220 . This step is performed by adjusting the lens to focus on the first visual cue 5217a. The device can also adjust the lens to determine the second focus position of the cover 5210, so as to focus on the second visual prompt 5217b. The device can then determine the focus distance from these two focus positions and calculate the distance between the first surface of the housing 5210 and the second surface of the carrier 5220 . This processing procedure can be carried out at the configuration stage before analyzing a batch of samples (for example: the carrier and the cover in the same batch should use the equipment manufactured in the same batch so that they have the same characteristics). For more accurate sample reading, this procedure can also be performed during the use phase if each carrier and housing has different characteristics.

在一特定實例中,相機模組的透鏡可支援之焦距範圍為50μm至550μm。此範圍對應於兩透鏡位置間的距離L,如圖51A-B所示。在一些實施中,距離L可以被分為1024段步數(步數0、步數1、…步數1023),每一步數皆對應於一特定焦距(即每個步數是對應到(550-50)/1024=0.49μm而有不同焦距)。在配置階段,測試設備先行判定第一視覺提示5217a的聚焦位置為步數235。此設備接著判定第二視覺提示5217b的聚焦位置為步數295。此兩個步數間的差距(295-235)=60個步數則對應到60×0.49=29.4μm之焦距差距,此亦指出外罩底部表面與載體頂部表面之間的實際距離。透過此一距離及經擷取樣本固持區域的區域可判定樣本的實際體積。 In a specific example, the lens of the camera module can support a focal length ranging from 50 μm to 550 μm. This range corresponds to the distance L between the two lens positions, as shown in Figures 51A-B. In some implementations, the distance L can be divided into 1024 steps (step 0, step 1, ... step 1023), each step corresponds to a specific focal length (that is, each step corresponds to (550-50)/1024=0.49 μm and has a different focal length). In the configuration phase, the test device first determines that the focus position of the first visual cue 5217a is 235 steps. The device then determines that the focus position of the second visual cue 5217b is 295 steps. The difference between these two steps (295-235)=60 steps corresponds to a focal distance difference of 60×0.49=29.4 μm, which also indicates the actual distance between the bottom surface of the housing and the top surface of the carrier. Through this distance and the area of the captured sample holding area, the actual volume of the sample can be determined.

在一些實例中,外罩5210及載體5220可以有複數視覺提示,位於頂部或底部的表面。為取得更精確的讀值,所述測量可在固持區域的不同位 置執行。值得注意的是,焦距及所述距離的比例會因不同的透鏡設計而有所不同。上述特定實例所採用之比例為1:1(即所述透鏡的焦距等同於外罩與載體間的距離)。焦距與所述距離間各種不同的比例均可被支持,如1:1.2,1:1.5,1:2等。 In some examples, the housing 5210 and carrier 5220 can have multiple visual cues, located on top or bottom surfaces. For more accurate readings, the measurements can be made at different positions in the holding area set to execute. It is worth noting that the focal length and the ratio of said distance will vary with different lens designs. The ratio used in the above specific example is 1:1 (that is, the focal length of the lens is equal to the distance between the housing and the carrier). Various ratios between focal length and said distance can be supported, such as 1:1.2, 1:1.5, 1:2, etc.

儘管本文所揭示之具體實例中之一些將所揭示之技術應用於精子測試,但一般熟習此項技術者容易瞭解,所揭示之技術可應用於測試各種類型之生物樣本,諸如精液、尿液、滑動關節液、表層組織或細胞、腫瘤細胞、水樣本等。此外,在此揭露的技術亦可應用於各種分析處理程序,如精子染色質分散(Sperm Chromatin Dispersion,SCD)或用於去氧核醣核酸(DNA)片段檢測的末端去氧核糖核苷酸轉移酶脫氧尿苷三磷酸切口末端標記(terminal deoxynucleotidyl transferase dUTP nick end labeling,TUNEL)。更特定言之,在一個或多個實施中可以執行SCD,在此所述的測試設備的處理器可經配置以利用經擷取圖像來判定精子DNA片段之正常性(normalcy)。在一些實例中,在SCD的測試下,精子頭部呈現大或中的暈環(halo)(所述尺寸大小在本領域中為已知),則此處理器可以判定受測精子樣本中不具有DNA片段的問題。反之,若精子頭部呈現小、無暈環或是降解暈環,則所述處理器判定此受測精子樣本有DNA片段的問題。此外,在一個或多個實施中可以執行TUNEL。在一個或多個實施中,在此所述的測試設備的處理器可經配置以利用經擷取集合圖像來偵測凋亡的DNA片段。所述處理器可用於識別一個或多個經TUNEL染色的細胞,從而定量凋亡細胞及/或檢測個別細胞中過多的DNA斷裂。 Although some of the embodiments disclosed herein apply the disclosed technology to sperm testing, those skilled in the art will readily understand that the disclosed technology can be applied to testing various types of biological samples, such as semen, urine, sliding joint fluid, superficial tissue or cells, tumor cells, water samples, etc. In addition, the technology disclosed here can also be applied to various analytical processing procedures, such as sperm chromatin dispersion (Sperm Chromatin Dispersion, SCD) or terminal deoxyribose nucleotidyl transferase deoxyribonucleotidyl transferase dUTP nick end labeling (TUNEL) for detection of deoxyribonucleic acid (DNA) fragments. More specifically, in one or more implementations SCD can be performed, and the processor of the testing device described herein can be configured to use the captured images to determine the normalcy of sperm DNA fragments. In some examples, under the SCD test, the sperm head shows a large or medium halo (the size is known in the art), then the processor can determine that there is no DNA fragment problem in the tested sperm sample. On the contrary, if the sperm head is small, without halo or degraded halo, then the processor determines that the tested sperm sample has a DNA fragment problem. Additionally, TUNEL may be performed in one or more implementations. In one or more implementations, a processor of a test device described herein can be configured to detect apoptotic DNA fragments using the captured set of images. The processor can be used to identify one or more TUNEL-stained cells, thereby quantifying apoptotic cells and/or detecting excessive DNA fragmentation in individual cells.

在一實例方面,用於檢測生物樣本的裝置包括了用於接收載體的接收機構。所述載體包括一個固持區域,所述固持區域經配置以攜載生物樣本。此裝置包括相機模組,所述相機模組經配置以擷取固持區域的集合圖像。此裝置亦包括一個處理器,所述處理器經配置以利用相機模組從固持區域的經 擷取集合圖像識別載體上的視覺提示,並基於所述視覺提示的識別結果,對經擷取集合圖像執行一組分析處理程序。所述視覺提示的識別包括:根據視覺提示在擷取集合圖像中的顯示方式,驗證固持區域是否含有生物樣本,並根據所述驗證的結果,選擇性的使處理器對經擷取集合圖執行一組分析處理程序。 In an example aspect, a device for detecting a biological sample includes a receiving mechanism for receiving a carrier. The carrier includes a holding area configured to carry a biological sample. The device includes a camera module configured to capture collective images of the holding area. The device also includes a processor configured to use the camera module to A set of images is captured to identify visual cues on the carrier, and a set of analysis processes are performed on the set of captured images based on the recognition of the visual cues. The identification of the visual cue includes: verifying whether the holding area contains a biological sample according to the way the visual cue is displayed in the captured set of images, and selectively causing the processor to execute a set of analysis processing procedures on the captured set of images according to the result of the verification.

在一些具體實例中,該處理器僅會在確認固持區域中攜載有生物樣本後,才會對經擷取集合圖像執行該組分析處理程序。在一些具體實例中,若未能確認固持區域是否攜載有生物樣本,處理器則不會對經擷取集合圖像執行該組分析處理程序。在一些具體實例中,處理器還會顯示出與所述未能驗證固持區域是否含有生物樣本相關的預設訊號或標誌。 In some embodiments, the processor executes the set of analysis processing procedures on the captured set of images only after confirming that the holding area carries the biological sample. In some embodiments, the processor does not execute the set of analysis processing procedures on the captured set of images if it is not confirmed whether the holding area carries the biological sample. In some embodiments, the processor may also display a predetermined signal or flag related to the failure to verify whether the holding area contains a biological sample.

在一些具體實例中,視覺提示的顯示方式包括視覺提示的光學失真。在一些具體實例中,視覺提示所產生的光學失真是對應於生物樣本和空氣間折射率的差異。在一些具體實例中,驗證固持區域是否攜載有生物樣本包括比較視覺提示之光學失真與失真閾值,其中失真閾值表示光學失真的程度,所述光學失真的程度可表示出生物樣本存在於固持區域中。在一些具體實例中,驗證固持區域是否載有生物樣本之過程,包括比較所述視覺提示與已儲存的視覺提示集合圖像之間的差異,若該差異低於預設閾值,則證明該固持區域存在生物樣本。 In some embodiments, the manner in which the visual cue is displayed includes optical distortion of the visual cue. In some embodiments, the optical distortion produced by the visual cue corresponds to a difference in refractive index between the biological sample and air. In some embodiments, verifying whether the holding region carries a biological sample includes comparing an optical distortion of the visual cue with a distortion threshold, where the distortion threshold represents a degree of optical distortion that may be indicative of the presence of the biological sample in the holding region. In some embodiments, the process of verifying whether the holding area carries a biological sample includes comparing the difference between the visual cue and the stored visual cue set image, and if the difference is lower than a preset threshold, it proves that the holding area has a biological sample.

在一些具體實例中,在配置階段、載體上不含任何生物樣本時,處理器會經配置以擷取已儲存的視覺提示集合圖像。在一些具體實例中,視覺提示位於或鄰近載體上的固持區域中。在一些具體實例中,當視覺提示以預設形狀或於預設位置存在,則所述視覺提示被識別。在一些具體實例中,視覺提示包含複數視覺記號的預設配置。 In some embodiments, the processor is configured to retrieve the stored images of the set of visual cues during the configuration phase without any biological sample on the carrier. In some embodiments, the visual cue is located in or adjacent to a retention area on the carrier. In some embodiments, the visual cue is recognized when the visual cue is present in a predetermined shape or at a predetermined location. In some embodiments, the visual cue includes a preset configuration of a plurality of visual markers.

在一些具體實例中,所述裝置包括一殼體。裝置的組件皆封裝於所述殼體內。殼體外觀尺寸小於27000立方公分。在一些具體實例中,設備 還包含了封裝於殼體內部的顯示器。處理器經配置在得出最終結果後於顯示器上顯示出該判定的最終結果。在一些具體實例中,顯示器經配置基於驗證的結果顯示通知。在一些具體實例中,所述通知包括一個訊號或標誌,顯示尚未提供生物樣本。在一些具體實例中,所述處理器進一步經配置以利用該組分析處理程序判定該生物樣本的生物化學性質。 In some embodiments, the device includes a housing. The components of the device are all encapsulated within the housing. The exterior size of the shell is less than 27000 cubic centimeters. In some specific instances, the device Also included is a display housed inside the housing. The processor is configured to display the final result of the determination on the display after obtaining the final result. In some embodiments, the display is configured to display a notification based on a result of the verification. In some embodiments, the notification includes a signal or flag indicating that the biological sample has not been provided. In some embodiments, the processor is further configured to determine a biochemical property of the biological sample using the set of analytical processing procedures.

在另一實例方面,一用於測試生物樣本之複數視角分析的自動測試裝置包括一接收機構,以接收一載體,所述載體經配置以攜載所述生物樣本或已暴露所述生物樣本。所述裝置包括一相機模組,所述相機模組經配置以擷取固持區域的複數圖像。所述裝置亦包括一處理器,所述處理器經配置以基於固持區域的複數圖像利用相機模組進行適應性地選擇一分析演算法,所述分析演算法適用於受測生物樣本的移動特性,並對經擷取複數圖像執行一組和所選擇的分析演算法相對應的分析處理程序,以取得所述生物樣本的相關分析結果。 In another example aspect, an automated test device for testing multiple view angle analysis of a biological sample includes a receiving mechanism to receive a carrier configured to carry or have been exposed to the biological sample. The device includes a camera module configured to capture a plurality of images of the holding area. The device also includes a processor configured to use the camera module to adaptively select an analysis algorithm based on the plurality of images of the holding area, the analysis algorithm is suitable for the movement characteristics of the biological sample to be tested, and execute a set of analysis processing procedures corresponding to the selected analysis algorithm on the captured plurality of images to obtain relevant analysis results of the biological sample.

在一些具體實例中,所述移動特性基本維持實質靜態或實質動態。在一些具體實例中,所述處理器將根據以下步驟適應性地選擇分析演算法,所述步驟包括判定複數個圖像中第一圖像和第二圖像間的變化量,並根據判定出的變化量小於或大於閾值來選取靜態演算法或動態演算法,。在一些具體實例中,所述變化量是根據生物樣本中可偵測標的物的移動變化率來判定。 In some embodiments, the mobility characteristic remains substantially static or substantially dynamic. In some specific examples, the processor will adaptively select the analysis algorithm according to the following steps, the steps include determining the amount of change between the first image and the second image in the plurality of images, and selecting a static algorithm or a dynamic algorithm according to whether the determined amount of change is less than or greater than a threshold. In some embodiments, the amount of change is determined according to the change rate of movement of the detectable target in the biological sample.

在一些具體實例中,處理器將根據以下步驟進行適應性地選取分析演算法,所述步驟包括:判定複數圖像中第一圖像和第二圖像間的變化量,並將判定出的變化量和閾值做比較,並根據判定出的變化量與閾值的比較結果,以選取適合用於移動特性的分析演算法。在一些具體實例中,分析演算法是靜態演算法或動態演算法。在一些具體實例中,閾值是生物樣本是否為實質靜態或動態的特徵。在一些具體實例中,處理器經配置以利用分析演算法判 定生物樣本的移動性(motility)。在一些具體實例中,當被判定出的變化量小於閾值時,所選擇之演算法為靜態演算法。在一些具體實例中,當被判定出的變化量不小於閾值時,所選取之演算法為動態演算法。 In some specific examples, the processor will adaptively select an analysis algorithm according to the following steps. The steps include: determining the amount of change between the first image and the second image in the plurality of images, comparing the determined amount of change with a threshold, and selecting an analysis algorithm suitable for the motion characteristic according to the comparison result between the determined amount of change and the threshold. In some embodiments, the analysis algorithm is a static algorithm or a dynamic algorithm. In some embodiments, the threshold is a characteristic of whether the biological sample is substantially static or dynamic. In some embodiments, the processor is configured to use an analysis algorithm to determine Determine the mobility of biological samples. In some specific examples, when the determined variation is less than a threshold, the selected algorithm is a static algorithm. In some specific examples, when the determined variation is not less than the threshold, the selected algorithm is a dynamic algorithm.

在一些具體實例中,處理器經配置利用動態算法來判定生物樣本的軌跡。在一些具體實例中,第一及第二圖像的獲取,兩者在時序上必須至少相隔一段預設的時間。在一些具體實例中,該預設時間的範圍在0.04秒至10秒之間。在一些具體實例中,對於依序給定數量的圖像獲取,第一圖像及第二圖像兩者分開獲取。在一些具體實例中,所述依序給定數量的圖像獲取的範圍從2張至600張圖像。在一些具體實例中,所述設備還包括一殼體,其中所述接收機構、所述相機模組及所述處理器皆封裝於所述殼體內,殼體外觀尺寸小於27,000立方公分。 In some embodiments, the processor is configured to determine the trajectory of the biological sample using a dynamic algorithm. In some specific examples, the acquisition of the first image and the second image must be separated by at least a predetermined period of time in sequence. In some specific examples, the preset time ranges from 0.04 seconds to 10 seconds. In some embodiments, for a given number of image acquisitions in sequence, both the first image and the second image are acquired separately. In some specific examples, the sequentially given number of images acquired ranges from 2 to 600 images. In some specific examples, the device further includes a casing, wherein the receiving mechanism, the camera module, and the processor are all packaged in the casing, and the outer size of the casing is less than 27,000 cubic centimeters.

在另一實例中,用於測試生物樣本之複數視角分析的自動測試裝置包括:一接收機構,以接收載體,所述載體包括固持區域,所述固持區域經配置以攜帶所述生物樣本或已暴露於所述生物樣本。所述裝置包括一相機模組,其經配置以擷取固持區域的複數圖像,包括第一圖像及第二圖像,及一可操作以調整載體與相機的相對位置的定位機構。所述裝置亦包括一處理器,所述處理器經配置以利用所述相機模組以識別第一圖像的一邊緣,使定位機構調整載體和相機的相對位置使得當相機獲取第二圖像,第二圖像的一邊緣與第一圖像的經識別邊緣相鄰或對其並對第一及第二圖像所組合的圖像執行一組分析處理程序以判定生物樣本的一或多個特性。 In another example, an automated testing device for testing multiple view angle analysis of a biological sample includes a receiving mechanism to receive a carrier including a holding area configured to carry or have been exposed to the biological sample. The device includes a camera module configured to capture a plurality of images of the holding area, including a first image and a second image, and a positioning mechanism operable to adjust the relative positions of the carrier and the camera. The device also includes a processor configured to utilize the camera module to identify an edge of the first image, cause the positioning mechanism to adjust the relative positions of the carrier and the camera so that when the camera acquires a second image, an edge of the second image is adjacent to the identified edge of the first image or to perform a set of analysis processing procedures on the combined image of the first and second images to determine one or more characteristics of the biological sample.

在一些具體實例中,定位機構調整載體與相機的相對位置的方式為,當從相機觀看時,複數個圖像由相機以順時針或逆時針方向依序獲取。在一些具體實例中,定位機構判定載體與相機的相對位置是根據相機偵測到的複數標記。在一些具體實例中,定位機構調整載體與相機的相對位置的方式 為:從相機觀察時,相機依循序掃描的順序獲取複數圖像。所述處理器尚可經配置以組合第一和第二圖像而形成組合的圖像。在一些具體實例中,對於組合圖像的分析處理程序,不包括第一和第二圖像的重疊部分。在一些具體實例中,所述生物樣品的一或多個特性包括了細胞數。 In some specific examples, the positioning mechanism adjusts the relative position of the carrier and the camera in such a way that when viewed from the camera, a plurality of images are sequentially acquired by the camera in a clockwise or counterclockwise direction. In some specific examples, the positioning mechanism determines the relative position of the carrier and the camera based on a plurality of marks detected by the camera. In some specific examples, the way the positioning mechanism adjusts the relative position of the carrier and the camera is: When observing from the camera, the camera acquires multiple images in the order of sequential scanning. The processor may also be configured to combine the first and second images to form a combined image. In some embodiments, overlapping portions of the first and second images are not included for analysis processing of the combined images. In some embodiments, the one or more characteristics of the biological sample include cell number.

在一些具體實例中,第一圖像的邊緣為第一圖像的底邊,第二圖像的邊緣則在第二圖像的頂邊。在一些具體實例中,第一圖像的邊緣係在於第一圖像的頂邊,第二圖像的邊緣則在第二圖像的底邊。在一些具體實例中,第一圖像的邊緣是第一圖像的左側,第二圖像的邊緣則在第二圖像的右側。在一些具體實例中,第一圖像的邊緣是在第一圖像的右側,第二圖像的邊緣則在第二圖像的左側。 In some specific examples, the edge of the first image is at the bottom of the first image, and the edge of the second image is at the top of the second image. In some embodiments, the edge of the first image is at the top of the first image, and the edge of the second image is at the bottom of the second image. In some specific examples, the edge of the first image is on the left side of the first image, and the edge of the second image is on the right side of the second image. In some specific examples, the edge of the first image is on the right side of the first image, and the edge of the second image is on the left side of the second image.

在一些具體實例中,為調整載體與相機的相對位置,定位機構將載體調整至下個位置,以利相機獲取後續圖像。在一些具體實例中,為調整載體與相機的相對位置,定位機構將相機調整至下個位置,以利相機獲取後續圖像。在一些具體實例中,在相機獲取第一圖像後,處理器會自動調整載體與相機之相對位置。 In some specific examples, in order to adjust the relative position of the carrier and the camera, the positioning mechanism adjusts the carrier to a next position, so that the camera can acquire subsequent images. In some specific examples, in order to adjust the relative position of the carrier and the camera, the positioning mechanism adjusts the camera to a next position, so that the camera can acquire subsequent images. In some specific examples, after the camera acquires the first image, the processor automatically adjusts the relative position of the carrier and the camera.

在一些具體實例中,定位機構經配置以自動調節相機至複數個固定位置。在一些具體實例中,定位機構包括一多軸移動平台,所述多軸移動平台經配置以將載體或相機調整至複數個位置。在一些具體實例中,所述多軸移動平台經配置以能手動調節載體位置。在一些具體實例中,多軸移動平台經配置以能自動調節載體位置。在一些具體實例中,所述設備進一步包括一殼體。所述接收機構、所述相機模組及所述處理器皆封裝於所述殼體內,所述殼體外觀尺寸於27,000立方公分。 In some embodiments, the positioning mechanism is configured to automatically adjust the camera to a plurality of fixed positions. In some embodiments, the positioning mechanism includes a multi-axis motion platform configured to adjust the carrier or camera to a plurality of positions. In some embodiments, the multi-axis mobile platform is configured to enable manual adjustment of the carrier position. In some embodiments, the multi-axis motion platform is configured to automatically adjust the position of the carrier. In some embodiments, the device further includes a housing. The receiving mechanism, the camera module and the processor are all packaged in the housing, and the outer dimension of the housing is 27,000 cubic centimeters.

在另一實例中,用於測試生物樣本之複數視角分析的自動測試裝置包含:一接收機構,以接收一載體,其中所述載體包括一固持區域,所述 固持區域經配置以攜載所述生物樣本或已暴露所述生物樣本。所述裝置包括一相機模組,所述相機模組經配置以擷取固持區域的集合圖像。所述相機模組包括一可操作(operable)聚焦馬達以調整相機之焦點。所述裝置包括一處理器,所述處理器經配置以利用相機模組根據聚焦馬達的操作來判定固持區域的體積特性並對至少一部分經擷取之固持區域圖像執行分析處理程序,以判定所述生物樣本的一或多個特性。所述生物樣品的一或多個特性由處理器根據所判定之固持區域體積性質進行調整。 In another example, an automatic testing device for testing multiple viewing angles of a biological sample includes: a receiving mechanism for receiving a carrier, wherein the carrier includes a holding area, the The holding area is configured to carry or have been exposed to the biological sample. The device includes a camera module configured to capture collective images of the holding area. The camera module includes an operable focus motor to adjust the focus of the camera. The device includes a processor configured to utilize a camera module to determine a volumetric characteristic of a holding region based on operation of a focus motor and to perform an analysis process on at least a portion of the captured holding region images to determine one or more characteristics of the biological sample. One or more properties of the biological sample are adjusted by the processor based on the determined retention region volume properties.

在一些具體實例中,處理器經配置以透過操作聚焦馬達以聚焦在固持區域的不同位置上,以判定固持區域的體積特性。在一些具體實例中,處理器經配置以在判定固持區域的體積特性時同步估算固持區域的深度。在一些具體實例中,處理器經配置以執行計算,以將預估的固持區域深度轉換成固區域之體積特性。 In some embodiments, the processor is configured to focus on different positions of the holding area by operating the focus motor to determine the volumetric properties of the holding area. In some embodiments, the processor is configured to simultaneously estimate the depth of the retention region when determining the volumetric properties of the retention region. In some embodiments, the processor is configured to perform calculations to convert the estimated depth of the retention region into volumetric properties of the retention region.

在一些具體實例中,處理器經配置以判定固持區域的體積特性,是藉由使相機聚焦在一外罩或固持區域的其中一個上以形成第一焦點、測量第一焦點的第一深度、使相機聚焦在外罩或固持區域的另一個上以形成第二焦點,並測量第二焦點的第二深度。在一些具體實例中,外罩及固持區域的每一個都包括有視覺記號,供相機對焦。在一些具體實例中,外罩底面亦標有視覺記號。在一些具體實例中,視覺記號置於固持區域的表面上,所述固持區域的表面與所述生物樣本接觸或已暴露於所述生物樣本。所述視覺記號可做成顯微級大小(microscopic in size)。 In some embodiments, the processor is configured to determine the volumetric properties of the holding area by focusing the camera on one of the housing or the holding area to form a first focus, measuring a first depth of the first focus, focusing the camera on the other of the housing or holding area to form a second focus, and measuring a second depth of the second focus. In some embodiments, the housing and the holding area each include visual indicia for the camera to focus on. In some embodiments, the underside of the housing is also marked with visual markings. In some embodiments, the visual indicia is placed on a surface of the holding area that is in contact with or has been exposed to the biological sample. The visual indicia can be made microscopic in size.

在一些具體實例中,第一及第二深度是根據聚焦馬達的操作進行測量。可根據從預設起點到達第一焦點及第二焦點時聚焦馬達運作之步數(how many steps),以測量第一深度和第二深度。在一些具體實例中,預設了可用於焦點調整的總行程(travel),且其中可用(available)總步數對應於可 用於焦點調整的總行程。在一些具體實例中,聚焦馬達組件包括了一音圈馬達、一陶瓷壓電致動機以及一單眼相機聚焦機構或顯微鏡的伺服馬達機構。在一些具體實例中,生物樣本的一或多個特性亦包含生物樣品的濃度。在一些具體實例中,所述生物樣本為精液。 In some embodiments, the first and second depths are measured based on the operation of the focus motor. The first depth and the second depth can be measured according to how many steps the focus motor operates when reaching the first focal point and the second focal point from the preset starting point. In some specific examples, the total travel (travel) available for focus adjustment is preset, and the total available (available) steps correspond to the available Total travel for focus adjustment. In some embodiments, the focus motor assembly includes a voice coil motor, a ceramic piezoelectric actuator, and a focus mechanism of a monocular camera or a servo motor mechanism of a microscope. In some embodiments, the one or more characteristics of the biological sample also include the concentration of the biological sample. In some embodiments, the biological sample is semen.

在一些具體實例中,在配置階段,固持區域的體積特性被判定。在一些具體實例中,於正常使用過程中,對所述生物樣本的分析處理程序被執行。在一些具體實例中,所述裝置進一步包含一殼體,所述接受機構、所述相機模組及所述處理器皆封裝於所述殼體內,殼體外觀尺寸小於27,000立方公分。 In some embodiments, during the configuration phase, volumetric properties of the holding area are determined. In some embodiments, during normal use, analysis and processing procedures on the biological sample are performed. In some embodiments, the device further includes a casing, the receiving mechanism, the camera module and the processor are packaged in the casing, and the outer size of the casing is less than 27,000 cubic centimeters.

熟習此項技術者將顯而易見,在不脫離本發明之範疇或精神之情況下可對本發明之結構進行各種修改及變化。鑒於前述內容,意欲本發明涵蓋本發明的修改以及變化,只要其屬於以下申請專利範圍以及其等效內容的範疇。 It will be apparent to those skilled in the art that various modifications and changes can be made in the structure of this invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention covers the modifications and variations of the present invention, as long as they fall within the scope of the following claims and their equivalents.

2205:測試條帶裝置 2205: Test strip device

2210A:外罩 2210A: outer cover

2210B:放大組件 2210B: Magnification component

2215A:第一固持區域 2215A: The first holding area

2215B:第二固持區域 2215B: Second holding area

2230A:第一相機模組 2230A: The first camera module

2230B:第二相機模組 2230B: Second camera module

2240A:光源 2240A: light source

2240B:光源 2240B: light source

Claims (18)

一種複數視角分析的自動測試裝置,所述裝置包含:一接收機構,以接收一載體,其中所述載體包括一固持區域,其中所述固持區域經配置以攜載所述生物樣本或已暴露於所述生物樣本;一相機模組,其經配置以擷取所述固持區域的複數圖像,且所述複數圖像包括一第一圖像及一第二圖像;一定位機構,所述定位機構可操作以調整所述載體對於所述相機模組的相對位置;一處理器,所述處理器經配置以利用所述相機模組來:識別所述第一圖像的邊緣;使所述定位機構調整所述載體對於所述相機模組的相對位置,使得當所述相機模組獲取所述第二圖像時,所述第二圖像的邊緣與所述第一圖像的經識別邊緣對齊;及對至少部份包括所述第一圖像及所述第二圖像的一圖像執行一組分析處理程序,以判定所述生物樣本的一或多個特性;及一殼體,其中所述接收機構、所述相機模組及所述處理器全部封裝於所述殼體內,其中所述殼體的外觀尺寸是小於27,000立方公分。 An automatic test device for analysis of multiple viewing angles, the device comprising: a receiving mechanism to receive a carrier, wherein the carrier includes a holding area, wherein the holding area is configured to carry the biological sample or has been exposed to the biological sample; a camera module, which is configured to capture a plurality of images of the holding area, and the plurality of images includes a first image and a second image; a positioning mechanism, the positioning mechanism is operable to adjust the relative position of the carrier to the camera module; a processor, the processor is configured to use the camera module Combining: identifying the edge of the first image; causing the positioning mechanism to adjust the relative position of the carrier to the camera module so that when the camera module acquires the second image, the edge of the second image is aligned with the identified edge of the first image; and executing a set of analysis processing procedures on an image at least partially including the first image and the second image to determine one or more characteristics of the biological sample; Cubic centimeters. 如請求項1所述之裝置,其中使所述定位機構調整所述載體對於所述相機模組的相對位置,使得當從所述相機模組觀看時,所述複數圖像由所述相機模組依照預定順序獲取。 The device according to claim 1, wherein the positioning mechanism adjusts the relative position of the carrier to the camera module, so that when viewed from the camera module, the plurality of images are captured by the camera module in a predetermined order. 如請求項1所述的裝置,其中使所述定位機構調整所述載體對於所述相機模組的相對位置,使得當從所述相機觀模組看時,所述複數圖像由所述相機模組以順時針或逆時針方向依序獲取。 The device according to claim 1, wherein the positioning mechanism adjusts the relative position of the carrier to the camera module, so that when viewed from the camera module, the plurality of images are sequentially captured by the camera module in a clockwise or counterclockwise direction. 如請求項1所述之裝置,其中使所述定位機構調整所述載體 對於所述相機模組的相對位置,使得當從所述相機模組觀看時,所述複數圖像由所述相機模組以依循序掃描的順序獲取。 The device according to claim 1, wherein the positioning mechanism adjusts the carrier The relative positions of the camera modules are such that when viewed from the camera modules, the plurality of images are captured by the camera modules in a sequentially scanned order. 如請求項1所述的裝置,其中使所述定位機構調整所述載體對於所述相機模組的相對位置,使得當從所述相機模組觀看時,所述複數圖像由所述相機模組隨機獲取。 The device according to claim 1, wherein the positioning mechanism adjusts the relative position of the carrier to the camera module so that when viewed from the camera module, the plurality of images are randomly captured by the camera module. 如請求項1所述的裝置,其中所述處理器係經進一步配置以組合所述第一圖像和所述第二圖像而形成所述圖像。 The device of claim 1, wherein the processor is further configured to combine the first image and the second image to form the image. 如請求項1所述的裝置,其中對於所述圖像的分析處理程序,不包括所述第一圖像和所述第二圖像的重疊部分。 The device according to claim 1, wherein the analysis and processing program of the image does not include overlapping portions of the first image and the second image. 如請求項1所述的裝置,其中所述生物樣品的一或多個特性包括細胞數。 The device of claim 1, wherein the one or more characteristics of the biological sample include cell number. 如請求項1所述的裝置,其中所述第一圖像的邊緣為所述第一圖像的底邊,所述第二圖像的邊緣則在所述第二圖像的頂邊。 The device according to claim 1, wherein the edge of the first image is at the bottom of the first image, and the edge of the second image is at the top of the second image. 如請求項1所述的裝置,其中所述第一圖像的邊緣係在於所述第一圖像的頂邊,所述第二圖像的邊緣則在所述第二圖像的底邊。 The apparatus according to claim 1, wherein the edge of the first image is at the top of the first image, and the edge of the second image is at the bottom of the second image. 如請求項1所述的裝置,其中所述第一圖像的邊緣是所述第一圖像的左側,所述第二圖像的邊緣則在所述第二圖像的右側。 The device according to claim 1, wherein the edge of the first image is on the left side of the first image, and the edge of the second image is on the right side of the second image. 如請求項1所述的裝置,其中所述第一圖像的邊緣是在所述第一圖像的右側,所述第二圖像的邊緣則在所述第二圖像的左側。 The device according to claim 1, wherein the edge of the first image is on the right side of the first image, and the edge of the second image is on the left side of the second image. 如請求項1所述的裝置,其中為調整所述載體與所述相機模組的相對位置,所述定位機構將所述載體調整至下個位置,以利所述相機模組獲取後續圖像。 The device according to claim 1, wherein in order to adjust the relative position of the carrier and the camera module, the positioning mechanism adjusts the carrier to a next position, so that the camera module can acquire subsequent images. 如請求項1所述的裝置,其中為調整所述載體與所述相機模組的相對位置,所述定位機構將所述相機模組調整至下個位置,以利所述相機 模組獲取後續圖像。 The device according to claim 1, wherein in order to adjust the relative position of the carrier and the camera module, the positioning mechanism adjusts the camera module to the next position, so that the camera The module fetches subsequent images. 如請求項1所述的裝置,其中在所述相機模組獲取所述第一圖像後,所述處理器會自動調整所述載體與所述相機模組之相對位置。 The device according to claim 1, wherein after the camera module acquires the first image, the processor automatically adjusts the relative position of the carrier and the camera module. 如請求項1所述的裝置,其中所述生物樣本的一或多個特性亦包含所述生物樣品的濃度。 The device of claim 1, wherein the one or more characteristics of the biological sample also include a concentration of the biological sample. 如請求項1所述的裝置,其中所述生物樣本為精液。 The device of claim 1, wherein the biological sample is semen. 一種控制器,其係用於控制一測試生物樣本之複數視角分析的自動測試裝置,所述裝置包含:一接收機構,以接收一載體,其中所述載體包括一固持區域,其中所述固持區域經配置以攜載所述生物樣本或已暴露於所述生物樣本;一相機模組,其經配置以擷取所述固持區域的複數圖像,且所述複數圖像包括一第一圖像及一第二圖像;一定位機構,所述定位機構可操作以調整所述載體對於所述相機模組的相對位置;且其中該控制器經配置以利用所述相機模組來:識別所述第一圖像的邊緣;使所述定位機構調整所述載體對於所述相機模組的相對位置,使得當所述相機模組獲取所述第二圖像時,所述第二圖像的邊緣與所述第一圖像的經識別邊緣對齊;及對至少部份包括所述第一圖像及所述第二圖像的一圖像執行一組分析處理程序,以判定所述生物樣本的一或多個特性;及一殼體,其中所述接收機構、所述相機模組及所述控制器全部封裝於所述殼體內,其中所述殼體的外觀尺寸是小於27,000立方公分。 A controller for controlling an automatic testing device for multiple viewing angle analysis of a test biological sample, the device comprising: a receiving mechanism for receiving a carrier, wherein the carrier includes a holding area, wherein the holding area is configured to carry the biological sample or has been exposed to the biological sample; a camera module configured to capture a plurality of images of the holding area, and the plurality of images includes a first image and a second image; a positioning mechanism operable to adjust the relative position of the carrier to the camera module; wherein the controller is configured to utilize the camera module to: identify edges of the first image; cause the positioning mechanism to adjust the relative position of the carrier to the camera module so that when the camera module acquires the second image, the edges of the second image are aligned with the identified edges of the first image; and execute a set of analysis processing procedures on an image at least partially comprising the first image and the second image to determine one or more characteristics of the biological sample; The exterior size is less than 27,000 cubic centimeters.
TW110122043A 2019-06-17 2020-06-15 Multi-view analysis in automated testing apparatus TWI808435B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/443,699 2019-06-17
US16/443,699 US10852290B2 (en) 2016-05-11 2019-06-17 Analysis accuracy improvement in automated testing apparatus

Publications (2)

Publication Number Publication Date
TW202136849A TW202136849A (en) 2021-10-01
TWI808435B true TWI808435B (en) 2023-07-11

Family

ID=73749740

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110122043A TWI808435B (en) 2019-06-17 2020-06-15 Multi-view analysis in automated testing apparatus
TW109120110A TWI755755B (en) 2019-06-17 2020-06-15 Equipment for testing biological specimens

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW109120110A TWI755755B (en) 2019-06-17 2020-06-15 Equipment for testing biological specimens

Country Status (2)

Country Link
CN (2) CN113406318A (en)
TW (2) TWI808435B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI828160B (en) * 2022-05-24 2024-01-01 國立陽明交通大學 Analyzing method of cilia images

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100177953A1 (en) * 2006-08-10 2010-07-15 Shibaura Mechatronics Corporation Disc wafer inspecting device and inspecting method
US20150078642A1 (en) * 2012-04-24 2015-03-19 The General Hospital Corporation Method and system for non-invasive quantification of biologial sample physiology using a series of images
CN105122114A (en) * 2012-12-06 2015-12-02 克拉里安特诊断服务公司 Systems and methods for split screen display of a biological specimen and for capturing records thereof
CN106062172A (en) * 2014-01-03 2016-10-26 意大利科潘恩集团公司 Apparatus and method for treatment of diagnostic information relating to samples of microbiological material
EP2232319B1 (en) * 2007-12-19 2017-09-13 Diagnostic Vision Corporation Method and system for identifying biological specimen slides using unique slide fingerprints
CN108693009A (en) * 2017-03-31 2018-10-23 合度精密生物科技有限公司 Candidate cell is identified using image analysis
CN109387517A (en) * 2017-08-10 2019-02-26 爱科来株式会社 Analytical equipment and analysis method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4653041B2 (en) * 2005-08-31 2011-03-16 クラリエント・インコーポレーテッド System and method for synthesizing image blocks and creating a seamless enlarged image of a microscope slide
JP4923541B2 (en) * 2005-11-30 2012-04-25 株式会社ニコン microscope
EP3229010A3 (en) * 2007-10-25 2018-01-10 Washington University in St. Louis Confocal photoacoustic microscopy with optical lateral resolution
US8396269B2 (en) * 2010-04-08 2013-03-12 Digital Pathco LLC Image quality assessment including comparison of overlapped margins
JP5818458B2 (en) * 2011-02-25 2015-11-18 キヤノン株式会社 Image processing apparatus, photographing system, image processing method, and program
US9784961B2 (en) * 2013-03-08 2017-10-10 Church & Dwight Co., Inc. Sperm motility test device and method
US9857361B2 (en) * 2013-03-15 2018-01-02 Iris International, Inc. Flowcell, sheath fluid, and autofocus systems and methods for particle analysis in urine samples
BR112015026037A2 (en) * 2013-04-19 2017-07-25 Koninklijke Philips Nv optical system for determining a feature as a function of time of at least a part of a net volume, and method of determining a feature as a function of time of a net volume comprising a plurality of objects
US9816940B2 (en) * 2015-01-21 2017-11-14 Kla-Tencor Corporation Wafer inspection with focus volumetric method
WO2017056002A1 (en) * 2015-09-29 2017-04-06 Ascensia Diabetes Care Holdings Ag Method and system of using a mobile device for analyte detection
US10324022B2 (en) * 2016-05-11 2019-06-18 Bonraybio Co., Ltd. Analysis accuracy improvement in automated testing apparatus
US9958665B2 (en) * 2016-05-11 2018-05-01 Bonraybio Co., Ltd. Testing equipment with magnifying function
TWI620923B (en) * 2016-10-19 2018-04-11 邦睿生技股份有限公司 Collection bottle and method for checking characteristic of sample
US11265449B2 (en) * 2017-06-20 2022-03-01 Academia Sinica Microscope-based system and method for image-guided microscopic illumination

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100177953A1 (en) * 2006-08-10 2010-07-15 Shibaura Mechatronics Corporation Disc wafer inspecting device and inspecting method
EP2232319B1 (en) * 2007-12-19 2017-09-13 Diagnostic Vision Corporation Method and system for identifying biological specimen slides using unique slide fingerprints
US20150078642A1 (en) * 2012-04-24 2015-03-19 The General Hospital Corporation Method and system for non-invasive quantification of biologial sample physiology using a series of images
CN105122114A (en) * 2012-12-06 2015-12-02 克拉里安特诊断服务公司 Systems and methods for split screen display of a biological specimen and for capturing records thereof
CN106062172A (en) * 2014-01-03 2016-10-26 意大利科潘恩集团公司 Apparatus and method for treatment of diagnostic information relating to samples of microbiological material
CN108693009A (en) * 2017-03-31 2018-10-23 合度精密生物科技有限公司 Candidate cell is identified using image analysis
CN109387517A (en) * 2017-08-10 2019-02-26 爱科来株式会社 Analytical equipment and analysis method

Also Published As

Publication number Publication date
CN112098405A (en) 2020-12-18
CN113406318A (en) 2021-09-17
TWI755755B (en) 2022-02-21
TW202107148A (en) 2021-02-16
TW202136849A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
US10281386B2 (en) Automated testing apparatus
US11899007B2 (en) Specimen verification in automated testing apparatus
EP3244250B1 (en) Testing equipment with dual cameras
US10324022B2 (en) Analysis accuracy improvement in automated testing apparatus
US9959621B2 (en) Testing apparatus with dual cameras
KR102069752B1 (en) Testing apparatus
JP2019194584A (en) Household inspection device
US20230324278A1 (en) Assay accuracy improvement
JP2022528693A (en) Improved assay accuracy and reliability
US20230408534A1 (en) Assay Error Reduction
TWI808435B (en) Multi-view analysis in automated testing apparatus
CN110824165B (en) Lung cancer tumor marker detection device and method based on micro-fluidic chip and mobile phone
US9958658B2 (en) Testing equipment with magnifying function
TWI699532B (en) Equipment for testing biological specimens
JP2022518233A (en) Printed coverslips and slides to identify the reference focal plane of the light microscope
US20110313746A1 (en) Method for preparing a processed virtual analysis plate
ES2942571T3 (en) Test strip fixation device for optical measurements of an analyte