TWI808142B - Methods and systems for controlling tintable windows with cloud detection - Google Patents

Methods and systems for controlling tintable windows with cloud detection Download PDF

Info

Publication number
TWI808142B
TWI808142B TW108109593A TW108109593A TWI808142B TW I808142 B TWI808142 B TW I808142B TW 108109593 A TW108109593 A TW 108109593A TW 108109593 A TW108109593 A TW 108109593A TW I808142 B TWI808142 B TW I808142B
Authority
TW
Taiwan
Prior art keywords
sensor
infrared
window
range
cloud
Prior art date
Application number
TW108109593A
Other languages
Chinese (zh)
Other versions
TW201941105A (en
Inventor
史蒂芬 克拉克 布朗
強森 大衛 賽德里茲
應宇陽
王珏
蓋伊 加納尼
Original Assignee
美商唯景公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商唯景公司 filed Critical 美商唯景公司
Publication of TW201941105A publication Critical patent/TW201941105A/en
Application granted granted Critical
Publication of TWI808142B publication Critical patent/TWI808142B/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Automation & Control Theory (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Analysis (AREA)
  • User Interface Of Digital Computer (AREA)
  • Radiation Pyrometers (AREA)

Abstract

Methods and systems for controlling tintable windows based on cloud detection.

Description

用於藉由雲偵測控制可著色窗之方法及系統 Method and system for controlling tintable windows with cloud detection

本揭露內容大體係關於用於偵測雲覆蓋條件之感測元件之配置,且詳言之,係關於紅外線雲偵測器系統及偵測其雲覆蓋條件之方法。 The disclosure generally relates to the configuration of sensing elements for detecting cloud cover conditions, and in detail, relates to an infrared cloud detector system and a method for detecting cloud cover conditions thereof.

偵測雲覆蓋可為決定將裝備投入運轉之一重要部分,例如,在機器人氣象台,此係由於天文學家可能想要偵測可干擾其觀測之雲。測繪天空以偵測雲覆蓋之習知方法依賴於通常依賴於可見光量測之昂貴的成像裝置。 Detecting cloud cover can be an important part of the decision to put equipment into operation, for example, at a robotic weather station, since astronomers may want to detect clouds that can interfere with their observations. Conventional methods of mapping the sky to detect cloud cover rely on expensive imaging devices that typically rely on visible light measurements.

某些態樣係關於一種用於控制一建築物之一區帶中的一或多個可著色窗之色調之控制器。所述控制器包括具有控制邏輯之一電腦可讀媒體,所述控制邏輯經組態以基於光感測器讀數及紅外線感測器讀數中之一或兩者,基於一雲條件,判定用於一或多個可著色窗之所述區帶的一色調等級。所述控制器進一步包括一與所述電腦可讀媒體通信且與所述可著色窗之一本端窗控制器通信之處理器。所述處理器經組態以基於光感測器讀數及紅外線感測器讀數中之一或兩者判定所述雲條件,基於所述判定之雲條件計算用於一或多個可著色窗之所述區帶的所述色調等級,及經由一網路將色調指令發送至一本端窗控制器 以將可著色窗之所述區帶之色調轉變至所述計算之色調等級。在某些態樣中,所述色調等級係基於一有可能在一未來時間出現之雲條件而判定。 Certain aspects relate to a controller for controlling the tint of one or more tintable windows in a zone of a building. The controller includes a computer readable medium having control logic configured to determine a tint level for the zone of one or more tintable windows based on a cloud condition based on one or both of light sensor readings and infrared sensor readings. The controller further includes a processor in communication with the computer readable medium and with a local window controller of the tintable window. The processor is configured to determine the cloud condition based on one or both of light sensor readings and infrared sensor readings, calculate the tint level for the zone of one or more tintable windows based on the determined cloud condition, and send tint commands to a local window controller via a network to convert the tint of the zone of the tintable window to the calculated tint level. In some aspects, the hue level is determined based on a cloud condition that is likely to occur at a future time.

某些態樣係關於一種控制一建築物之一或多個可著色窗的一區帶之色調之方法。所述方法包括基於光感測器讀數及紅外線感測器讀數中之一或兩者判定一雲條件,基於所述判定之雲條件計算用於一或多個可著色窗之所述區帶的一色調等級,及經由一網路將色調指令傳達至一本端窗控制器以將可著色窗之所述區帶之色調轉變至所述計算的色調等級。某些態樣係關於用於藉由雲偵測控制可著色窗之色調等級之方法及系統。在某些態樣中,所述色調等級係基於一有可能在一未來時間出現之雲條件而計算。 Certain aspects relate to a method of controlling the tint of a zone of one or more tintable windows of a building. The method includes determining a cloud condition based on one or both of light sensor readings and infrared sensor readings, calculating a tint level for the zone of one or more tintable windows based on the determined cloud condition, and communicating a tint command to a local window controller via a network to convert the tint level of the zone of the tintable window to the calculated tint level. Certain aspects relate to methods and systems for controlling tint levels of tintable windows through cloud detection. In some aspects, the hue level is calculated based on cloud conditions that are likely to occur at a future time.

某些態樣係關於紅外線雲偵測器系統。在一些態樣中,一種紅外線雲偵測器系統包括:一紅外線感測器,其經組態以基於在其視野內接收的紅外線輻射量測天空溫度;一環境溫度感測器,其經組態以量測一環境溫度;及經組態以基於所述量測的天空溫度與所述量測的環境溫度之間的一差判定一雲條件之邏輯。 Some aspects relate to infrared cloud detector systems. In some aspects, an infrared cloud detector system includes: an infrared sensor configured to measure a sky temperature based on infrared radiation received within its field of view; an ambient temperature sensor configured to measure an ambient temperature; and logic configured to determine a cloud condition based on a difference between the measured sky temperature and the measured ambient temperature.

在一些態樣中,一種紅外線雲偵測器系統包括:一紅外線感測器,其經組態以基於在其視野內接收的紅外線輻射量測天空溫度;一環境溫度感測器,其經組態以量測一環境溫度;一光感測器,其經組態以量測可見光之強度;及經組態以判定一雲條件之邏輯。若一當日時間在日出前之一時間與日出後之一第二時間之間或在日落前之一第三時間與日落之間,則所述邏輯經組態以基於所述量測之天空溫度與所述量測之環境溫度之間的一差判定所述雲條件。若所述當日時間在日出後之所述第二時間與日落前之所述第三時間之間,則所述邏輯經組態以基於來自所述光感測器的可見光之所述量測之強度判定所述雲條件。 In some aspects, an infrared cloud detector system includes: an infrared sensor configured to measure sky temperature based on infrared radiation received within its field of view; an ambient temperature sensor configured to measure an ambient temperature; a light sensor configured to measure an intensity of visible light; and logic configured to determine a cloud condition. If a time of day is between a time before sunrise and a second time after sunrise or between a third time before sunset and sunset, the logic is configured to determine the cloud condition based on a difference between the measured sky temperature and the measured ambient temperature. If the time of day is between the second time after sunrise and the third time before sunset, the logic is configured to determine the cloud condition based on the measured intensity of visible light from the light sensor.

某些態樣係關於紅外線雲偵測器方法。在一些態樣中,一種紅外 線雲偵測器方法包括接收來自一紅外線感測器之一天空溫度讀數及來自一環境溫度感測器之一環境溫度讀數,計算所述天空溫度讀數與所述環境溫度讀數之間的一差,及基於所述天空溫度讀數與所述環境溫度讀數之間的所述計算的差判定一雲條件。 Certain aspects relate to the infrared cloud detector method. In some aspects, an infrared The line cloud detector method includes receiving a sky temperature reading from an infrared sensor and an ambient temperature reading from an ambient temperature sensor, calculating a difference between the sky temperature reading and the ambient temperature reading, and determining a cloud condition based on the calculated difference between the sky temperature reading and the ambient temperature reading.

在一些態樣中,一種紅外線雲偵測器方法包括接收來自一紅外線感測器之一天空溫度讀數、來自一環境溫度感測器之一環境溫度讀數及來自一光感測器之一強度讀數,及判定一當日時間是否:(i)在日出前之一第一時間與日出後之一第二時間之間或在日落前之一第三時間與日落之間;(ii)在日出後之所述第二時間與日落前之一第三時間之間;(iii)在(i)後且在(iii)前;或(iv)在(iii)後且在(i)前。若所述當日時間為(i)、(iii)或(iv),則所述雲條件係基於所述量測之天空溫度與所述量測之環境溫度之間的一差而判定。若所述當日時間為(iii),則所述雲條件係基於自所述光感測器接收之所述強度讀數而判定。 In some aspects, an infrared cloud detector method includes receiving a sky temperature reading from an infrared sensor, an ambient temperature reading from an ambient temperature sensor, and an intensity reading from a light sensor, and determining whether a time of day is: (i) between a first time before sunrise and a second time after sunrise or between a third time before sunset and sunset; (ii) between the second time after sunrise and a third time before sunset; (iii) after (i) and between (i) ii) before; or (iv) after (iii) and before (i). If the time of day is (i), (iii) or (iv), the cloud condition is determined based on a difference between the measured sky temperature and the measured ambient temperature. If the time of day is (iii), then the cloud condition is determined based on the intensity reading received from the light sensor.

此等及其他特徵及實施例將在以下參看圖式更詳細地描述。 These and other features and embodiments will be described in more detail below with reference to the drawings.

100:紅外線雲偵測器 100: Infrared Cloud Detector

101:外殼 101: shell

102:蓋 102: cover

104:孔隙或變薄之部分 104: porosity or thinned part

106:第一表面 106: first surface

108:第二表面 108: second surface

110:IR感測器 110:IR sensor

112:假想軸線 112: Imaginary axis

114:圓錐形視野 114: Conical field of view

130:環境溫度感測器 130: Ambient temperature sensor

140:處理器 140: Processor

220:第一曲線 220: The first curve

222:第二曲線 222: second curve

230:第一曲線 230: first curve

232:第二曲線 232: second curve

300:紅外線雲偵測器系統 300:Infrared Cloud Detector System

310:紅外線雲偵測器 310: Infrared Cloud Detector

312:外殼 312: shell

314:紅外線感測器 314: infrared sensor

315:圓錐形視野 315: Conical Field of View

316:環境溫度感測器 316: Ambient temperature sensor

320:外部可見光光感測器 320: External Visible Light Sensor

330:房間 330: room

332:可著色窗 332: Tintable windows

334:桌子 334: table

340:控制器 340: controller

400:紅外線雲偵測器系統 400:Infrared Cloud Detector System

401:多感測器裝置 401: Multi-sensor device

410:外殼 410: shell

411:蓋 411: cover

412:變薄之部分 412: Thinned part

414:基底部分 414: base part

420:環境溫度感測器 420: Ambient temperature sensor

440:可見光光感測器 440:Visible light sensor

442:定向軸線 442: Orientation axis

452:第一紅外線感測器裝置 452: The first infrared sensor device

453:第一定向軸線 453:First Orientation Axis

454:第二紅外線感測器裝置 454: Second infrared sensor device

455:第二定向軸線 455:Second Orientation Axis

510:曲線 510: curve

520:曲線 520: curve

610:曲線 610: curve

620:高頻部分 620: high frequency part

630:低頻部分 630: low frequency part

640:曲線 640: curve

710:曲線 710: curve

720:曲線 720: curve

800:流程圖 800: flow chart

801:操作 801: Operation

810:操作 810: operation

820:操作 820: Operation

830:操作 830: Operation

840:操作 840: Operation

850:操作 850: operation

860:操作 860: operation

870:操作 870: Operation

880:操作 880: operation

900:流程圖 900: flow chart

901:操作 901: Operation

910:操作 910: Operation

920:操作 920: Operation

930:操作 930: Operation

932:操作 932:Operation

934:操作 934:Operation

936:操作 936: Operation

940:操作 940: Operation

942:操作 942:Operation

950:操作 950: operation

960:操作 960: Operation

962:操作 962:Operation

970:操作 970: Operation

980:操作 980: operation

990:操作 990: operation

1000:電致變色裝置 1000: electrochromic device

1002:基板 1002: Substrate

1004:第一傳導性層(CL) 1004: first conductive layer (CL)

1006:電致變色層(EC) 1006: Electrochromic layer (EC)

1008:離子傳導層(IC) 1008: ion conducting layer (IC)

1010:相對電極層(CE) 1010: opposite electrode layer (CE)

1014:第二傳導性層(CL) 1014: second conductive layer (CL)

1016:電壓源 1016: Voltage source

1020:電致變色堆疊 1020:Electrochromic stack

1100:電致變色裝置 1100: Electrochromic device

1102:基板 1102: Substrate

1104:傳導性層(CL) 1104: conductive layer (CL)

1106:氧化鎢電致變色層(EC) 1106: Tungsten oxide electrochromic layer (EC)

1108:離子傳導層(IC) 1108: ion conducting layer (IC)

1110:氧化鎳鎢相對電極層(CE) 1110: nickel tungsten oxide opposite electrode layer (CE)

1114:傳導性層(CL) 1114: conductive layer (CL)

1116:電源 1116: Power

1120:電致變色堆疊 1120:Electrochromic stack

1200:電致變色裝置 1200: Electrochromic device

1250:窗控制器 1250: window controller

1255:微處理器 1255: Microprocessor

1260:脈衝寬度調變器 1260: Pulse Width Modulator

1265:信號調節模組 1265: Signal conditioning module

1270:電腦可讀媒體 1270: Computer-readable media

1275:組態檔案 1275: Configuration file

1280:網路 1280: network

1300:建築物管理系統(BMS) 1300: Building Management Systems (BMS)

1301:建築物 1301:Buildings

1302:主窗控制器 1302: Main window controller

1303:主網路控制器 1303: Main network controller

1305a:中間網路控制器 1305a: intermediate network controller

1305b:中間網路控制器 1305b: intermediate network controller

1310:端部或葉控制器 1310: End or Leaf Controller

1400:系統 1400: system

1401:EC裝置 1401: EC device

1402:主窗控制器 1402: Main window controller

1403:主網路控制器 1403: Primary Network Controller

1405:中間網路 1405: intermediate network

1410:通信網路/葉或端部窗控制器 1410: Communication Network/Leaf or End Window Controller

1412:多感測器裝置 1412: Multi-sensor device

1490:可選壁開關 1490: Optional wall switch

1500:房間 1500: room

1501:桌子 1501: table

1502:紅外線雲偵測器系統 1502: Infrared Cloud Detector System

1505:電致變色窗 1505: Electrochromic window

1510:光感測器 1510: Light sensor

1520:懸垂物 1520: Overhang

1530:紅外線雲偵測器 1530: Infrared Cloud Detector

1532:外殼 1532: shell

1534:紅外線感測器 1534: Infrared sensor

1536:環境溫度感測器 1536: Ambient temperature sensor

1550:本端窗控制器 1550: local window controller

1600:流程圖 1600: Flowchart

1610:操作 1610: Operation

1620:操作 1620: Operation

1630:操作 1630: Operation

1640:操作 1640: Operation

1650:操作 1650: Operation

1770:操作 1770: Operation

1780:操作 1780: Operation

1790:操作 1790: Operation

1800:流程圖 1800: Flowchart

1810:操作 1810: Operation

1820:操作 1820: Operation

1830:操作 1830: Operation

1840:操作 1840: Operation

1850:操作 1850: Operation

1860:操作 1860: Operation

1870:操作 1870: Operation

1900:流程圖 1900: Flowchart

1910:操作 1910: Operation

1920:操作 1920: Operation

1930:操作 1930: Operation

1932:操作 1932: Operation

1934:操作 1934: Operation

1936:操作 1936: Operation

1940:操作 1940: Operation

1942:操作 1942: Operation

1950:操作 1950: Operation

1970:操作 1970: Operation

1980:操作 1980:Operation

1990:操作 1990:Operation

1995:操作 1995: Operation

2000:房間 2000: Room

2001:桌子 2001: table

2005:電致變色窗 2005: Electrochromic windows

2010:可見光光感測器 2010: Visible light sensor

2020:懸垂物 2020: Overhangs

2030:多感測器裝置 2030: Multi-sensor devices

2032:外殼 2032: shell

2034:紅外線感測器裝置 2034: Infrared sensor device

2050:窗控制器 2050: window controller

2090:紅外線輻射 2090: infrared radiation

2100:流程圖 2100: Flowchart

2110:操作 2110: Operation

2120:操作 2120: Operation

2130:操作 2130: Operation

2140:操作 2140: Operation

2150:操作 2150: Operation

2220:區塊 2220: block

2270:操作 2270: Operation

2280:操作 2280: Operation

2290:操作 2290: Operation

2295:操作 2295: Operation

2300:流程圖 2300: flow chart

2310:操作 2310: Operation

2320:操作 2320: Operation

2330:操作 2330: Operation

2340:操作 2340: Operation

2350:操作 2350: Operation

2360:操作 2360: Operation

2370:操作 2370: Operation

2380:操作 2380: Operation

2400:流程圖 2400: flow chart

2405:操作 2405: Operation

2412:操作 2412: Operation

2414:操作 2414: Operation

2422:操作 2422: Operation

2424:操作 2424: Operation

2430:操作 2430: Operation

2432:操作 2432: Operation

2434:操作 2434: Operation

2436:操作 2436: Operation

2440:操作 2440: Operation

2490:操作 2490: Operation

2492:操作 2492:Operation

2496:操作 2496:Operation

2600:流程圖 2600: flow chart

2610:操作 2610: Operation

2620:操作 2620: Operation

2630:操作 2630: Operation

2640:操作 2640: Operation

2650:操作 2650: Operation

2700:流程圖 2700: Flowchart

2710:操作 2710: Operation

2720:操作 2720: Operation

2730:操作 2730: Operation

2740:操作 2740: Operation

2750:操作 2750: Operation

2800:流程圖 2800: Flowchart

2810:操作 2810: Operation

2820:操作 2820: Operation

2830:操作 2830: Operation

2832:操作 2832: Operation

2840:操作 2840: Operation

2850:操作 2850: Operation

2930:第一曲線 2930: first curve

2932:第二曲線 2932: Second Curve

3000:流程圖 3000: flow chart

3020:操作 3020: Operation

3025:操作 3025: Operation

3030:操作 3030: Operation

3050:操作 3050: Operation

3070:操作 3070: Operation

3100:流程圖 3100: Flowchart

3110:操作 3110: Operation

3120:操作 3120: Operation

3130:操作 3130: Operation

3140:操作 3140: Operation

3150:操作 3150: Operation

3160:操作 3160: Operation

3170:操作 3170: Operation

3180:操作 3180: Operation

3200:紅外線雲偵測器系統 3200: Infrared Cloud Detector System

3201:多感測器裝置 3201: Multi-sensor device

3210:外殼 3210: shell

3211:蓋 3211: cover

3212:變薄之部分 3212: The thinning part

3214:基底部分 3214: base part

3220:桅桿 3220: Mast

3222:第一環境溫度感測器 3222: The first ambient temperature sensor

3301:多感測器裝置 3301: Multi-sensor device

3302:外殼 3302: shell

3304:擴散器 3304: Diffuser

3340:可見光光感測器 3340: Visible light sensor

3342:可見光光感測器/軸線 3342: Visible Light Sensor/Axis

3343:光敏性區 3343: photosensitivity zone

3360:第三紅外線感測器裝置 3360: Third infrared sensor device

3361:假想軸線 3361: Imaginary axis

3372:第一紅外線感測器裝置 3372: The first infrared sensor device

3373:假想軸線 3373: imaginary axis

3374:第二紅外線感測器裝置 3374:Second Infrared Sensor Device

3375:假想軸線 3375: imaginary axis

圖1展示根據一些實施的一紅外線雲偵測器系統之側視圖之示意性表示。 Figure 1 shows a schematic representation of a side view of an infrared cloud detector system according to some implementations.

圖2A展示根據此實施的具有隨著時間的過去由紅外線雲偵測器之紅外線感測器而取得的溫度讀數之兩個曲線之曲線圖。 2A shows a graph with two curves of temperature readings taken by the infrared sensors of the infrared cloud detector over time according to this implementation.

圖2B展示具有隨著時間的過去由關於圖2A論述之紅外線雲偵測器之環境溫度感測器取得的環境溫度讀數之兩個曲線之曲線圖。 2B shows a graph with two plots of ambient temperature readings taken by the ambient temperature sensor of the infrared cloud detector discussed with respect to FIG. 2A over time.

圖2C展示具有關於圖2A圖2B論述的由紅外線感測器取得之 溫度讀數與由紅外線雲偵測器之環境溫度感測器取得之環境溫度讀數之間的計算之差量之兩個曲線之曲線圖。 2C shows a graph with two curves of the calculated difference between the temperature readings taken by the infrared sensor and the ambient temperature readings taken by the ambient temperature sensor of the infrared cloud detector discussed with respect to FIGS. 2A and 2B .

圖3描繪根據一實施的一包括一紅外線雲偵測器及一光感測器之紅外線雲偵測器系統之示意圖(側視圖)。 3 depicts a schematic diagram (side view) of an infrared cloud detector system including an infrared cloud detector and a light sensor according to an implementation.

圖4A展示根據一實施的一包括呈多感測器之形式的紅外線雲偵測器之紅外線雲偵測器系統之圖解表示之透視圖。 4A shows a perspective view of a diagrammatic representation of an infrared cloud detector system including infrared cloud detectors in the form of multiple sensors, according to an implementation.

圖4B展示包括呈圖4A中展示之多感測器之形式的紅外線雲偵測器之紅外線雲偵測器系統之另一透視圖。 4B shows another perspective view of an infrared cloud detector system including an infrared cloud detector in the form of the multi-sensor shown in FIG. 4A .

圖4C展示在圖4A圖4B中展示之紅外線雲偵測器系統之多感測器裝置的內組件中之一些之透視圖。 Figure 4C shows a perspective view of some of the internal components of the multi-sensor device of the infrared cloud detector system shown in Figures 4A and 4B .

圖5A為具有隨著時間的過去由可見光光感測器取得的強度讀數之曲線之曲線圖。 5A is a graph with a plot of intensity readings taken by a visible light photosensor over time.

圖5B為具有隨著時間的過去由紅外線感測器取得之溫度讀數與由環境溫度感測器取得之溫度讀數之間的差之曲線之曲線圖。 5B is a graph with a plot of the difference between temperature readings taken by the infrared sensor and temperature readings taken by the ambient temperature sensor over time.

圖6A為具有隨著時間的過去由可見光光感測器取得的強度讀數之曲線之曲線圖。 6A is a graph with a plot of intensity readings taken by a visible light photosensor over time.

圖6B為具有隨著時間的過去由紅外線感測器取得之溫度讀數與隨著時間的過去由環境溫度感測器取得之溫度讀數之間的差的曲線之曲線圖。 6B is a graph with a plot of the difference between temperature readings taken by an infrared sensor over time and temperature readings taken by an ambient temperature sensor over time.

圖7A為具有隨著時間的過去由可見光光感測器取得的強度讀數之曲線之曲線圖。 7A is a graph with a plot of intensity readings taken by a visible light photosensor over time.

圖7B為具有隨著時間的過去由紅外線感測器取得之溫度讀數與由環境溫度感測器取得之溫度讀數之間的差之曲線之曲線圖。 7B is a graph with a plot of the difference between temperature readings taken by the infrared sensor and temperature readings taken by the ambient temperature sensor over time.

圖8展示描述根據實施的使用來自紅外線感測器及環境溫度感測器之溫度讀數判定雲覆蓋條件之方法之流程圖。 8 shows a flowchart describing a method of determining cloud cover conditions using temperature readings from an infrared sensor and an ambient temperature sensor, according to an implementation.

圖9展示描述根據實施的使用來自紅外線雲偵測器系統之紅外線感測器、環境溫度感測器及光感測器之讀數判定雲覆蓋條件之方法之流程圖。 9 shows a flowchart describing a method of determining cloud cover conditions using readings from an infrared sensor, an ambient temperature sensor, and a light sensor of an infrared cloud detector system, according to an implementation.

圖10描繪一電致變色裝置之示意性橫截面。 Figure 10 depicts a schematic cross-section of an electrochromic device.

圖11A描繪在經漂白狀態中(或轉變至經漂白狀態)之電致變色裝置之示意性橫截面。 11A depicts a schematic cross-section of an electrochromic device in (or transitioning to) a bleached state.

圖11B描繪在圖11A中展示但在有色狀態中(或轉變有色狀態)之電致變色裝置之示意性橫截面。 FIG. 11B depicts a schematic cross-section of the electrochromic device shown in FIG. 11A but in (or transitioning to) a colored state.

圖12描繪根據一實施例的窗控制器之組件之簡化方塊圖。 Figure 12 depicts a simplified block diagram of components of a window controller according to one embodiment.

圖13描繪根據一實施例的BMS之一實施例之示意圖。 Figure 13 depicts a schematic diagram of an embodiment of a BMS according to an embodiment.

圖14為根據實施例的一用於控制建築物之一或多個可著色窗之功能的系統之組件之方塊圖。 14 is a block diagram of components of a system for controlling the function of one or more tintable windows of a building, according to an embodiment.

圖15A展示根據一實施的經由在包含房間之建築物之外部與內部之間的電致變色窗的直射陽光至房間內之穿透深度。 15A shows the penetration depth of direct sunlight into a room through an electrochromic window between the exterior and interior of a building containing the room, according to an implementation.

圖15B展示根據一實施的在晴朗的天空條件下經由電致變色窗進入房間之直射陽光及輻射。 15B shows direct sunlight and radiation entering a room through an electrochromic window under clear sky conditions, according to an implementation.

圖15C展示根據一實施的如可由諸如雲及其他建築物之物體阻擋或自所述物體反射的來自天空之輻射光。 15C shows radiant light from the sky as may be blocked by or reflected from objects such as clouds and other buildings, according to an implementation.

圖16描繪展示根據實施例的用於控制在一建築物中之一或多個電致變色窗之方法之一般控制邏輯之流程圖。 16 depicts a flowchart showing the general control logic of a method for controlling one or more electrochromic windows in a building according to an embodiment.

圖17為根據一實施的展示來自圖16的區塊中之一者之一特定實施之圖。 Figure 17 is a diagram showing a particular implementation of one of the blocks from Figure 16 , according to an implementation.

圖18描繪展示根據實施例的在圖16中展示的操作之控制邏輯之一特定實施之流程圖。 Figure 18 depicts a flow diagram showing one particular implementation of the control logic for the operation shown in Figure 16 , according to an embodiment.

圖19為根據一實施的描繪在圖18中展示的操作之控制邏輯之一 特定實施之流程圖。 Figure 19 is a flow diagram depicting one particular implementation of the control logic for the operation shown in Figure 18 , according to an implementation.

圖20A展示根據一實施的經由在包含房間之建築物之外部與內部之間的電致變色窗的直射陽光至房間內之穿透深度。 20A shows the penetration depth of direct sunlight into a room through an electrochromic window between the exterior and interior of a building containing the room, according to an implementation.

圖20B展示根據一實施的在晴朗的天空條件下經由電致變色窗進入房間之直射陽光及輻射。 20B shows direct sunlight and radiation entering a room through an electrochromic window under clear sky conditions, according to an implementation.

圖20C展示根據一實施的如可由諸如雲及其他建築物之物體阻擋或自所述物體反射的來自天空之輻射光。 20C shows radiant light from the sky as may be blocked by or reflected from objects such as clouds and other buildings, according to an implementation.

圖20D展示根據一實施的來自天空之紅外線輻射。 Figure 20D shows infrared radiation from the sky, according to an implementation.

圖21包含描繪根據實施例的用於控制在一建築物中之一或多個電致變色窗之方法之一般控制邏輯之流程圖。 21 includes a flowchart depicting the general control logic of a method for controlling one or more electrochromic windows in a building according to an embodiment.

圖22包含根據圖21中說明之流程圖之一區塊之一個實施的邏輯之流程圖。 FIG. 22 includes a flow diagram of logic according to one implementation of one block of the flow diagram illustrated in FIG. 21 .

圖23包含描繪根據實施的用於判定一經過濾紅外線感測器值之模組D'之控制邏輯之流程圖。 23 includes a flowchart depicting the control logic of module D' for determining a filtered infrared sensor value, according to an implementation.

圖24包含描繪根據實施的取決於在上午範圍期間、在白天時間範圍期間、在晚上範圍期間還是在夜間期間基於紅外線感測器及/或光感測器資料作出著色決策之控制邏輯之流程圖。 24 includes a flowchart depicting control logic for making coloring decisions based on infrared sensor and/or light sensor data depending on whether it is during the morning range, during the day time range, during the evening range, or during the night, according to an implementation.

圖25為根據某些態樣的一佔有率查找表之一實例。 25 is an example of an occupancy lookup table according to certain aspects.

圖26包含描繪根據某些態樣的用於當當前時間在白天範圍期間時自模組D判定色調等級之控制邏輯之流程圖。 26 includes a flowchart depicting control logic for determining hue levels from module D when the current time is during the daytime range, according to certain aspects.

圖27包含描繪根據某些態樣的用於當當前時間在晚上範圍期間時自模組D判定色調等級之控制邏輯之流程圖。 27 includes a flowchart depicting control logic for determining hue levels from module D when the current time is during the evening range, according to certain aspects.

圖28包含描繪根據某些態樣的用於當當前時間在白天範圍期間時自模組C1及/模組D判定色調等級之控制邏輯之流程圖。 28 includes a flowchart depicting control logic for determining hue levels from module C1 and/or module D when the current time is during the daytime range, according to certain aspects.

圖29展示根據一實施的在24小時週期期間以毫度計之經過濾紅外線感測器值對時間之曲線圖。 29 shows a graph of filtered infrared sensor values in millidegrees versus time during a 24-hour period, according to an implementation.

圖30包含描繪根據一實施的用於判定用於一建築物中之一或多個電致變色窗的色調等級之模組C1之控制邏輯之流程圖。 30 includes a flowchart depicting the control logic of module C1 for determining a tint level for one or more electrochromic windows in a building, according to an implementation.

圖31包含描繪根據實施的用於判定一經過濾光感測器值之模組C1'之控制邏輯之流程圖。 FIG. 31 includes a flowchart depicting the control logic of module C1 ′ for determining a filtered light sensor value, according to an implementation.

圖32A展示根據一實施的一具有一多感測器裝置之紅外線雲偵測器系統之圖解表示之透視圖。 32A shows a perspective view of a diagrammatic representation of an infrared cloud detector system with a multi-sensor device according to an implementation.

圖32B展示在圖32A中展示之多感測器裝置之另一透視圖。 Figure 32B shows another perspective view of the multi-sensor device shown in Figure 32A .

圖33A展示根據一實施的在圖32A中展示之多感測器裝置之組件之透視圖。 Figure 33A shows a perspective view of components of the multi-sensor device shown in Figure 32A , according to an implementation.

圖33B展示圖32A中展示的多感測器裝置之組件之另一透視圖。 Figure 33B shows another perspective view of the components of the multi-sensor device shown in Figure 32A .

I.介紹I. Introduction

在一天中之某些時刻,可見光之強度處於低等級,諸如,在日出前後之上午及緊接在日落前之晚上。經校準以量測可見光之強度的光感測器(在本文中被稱作「可見光光感測器」或通常稱作「光感測器」)不偵測直射陽光,且其在一天中之此等時間之強度量測在判定雲條件時可並不有效。在某些態樣中,雲條件經判定為以下中之一者:1)當天空明朗而無雲或幾乎無雲時之「晴朗」條件;2)「部分多雲」條件;及3)當天空多雲時之「多雲」或「陰天」條件。亦即,在此等時間引向天空之可見光光感測器將量測在「晴朗」條件、「部分多雲」條件及「多雲」條件期間之低強度值。因此,由可見光光感測器單獨取 得之強度量測結果可能不準確地區分在此等時間之不同雲條件。若來自可見光光感測器之強度量測結果單獨用以判定緊接在日落前之黃昏的晚上之「多雲」條件(例如,當量測強度等級掉到低於一特定最小值時),可偵測到錯誤之「多雲」條件。類似地,在不存在直射陽光的緊接在日出前區分「多雲」與「晴朗」條件,可見光光感測器量測結果並不有效。在此等時間週期中之任一者,光感測器量測結果可用以偵測錯誤的「多雲」條件。依賴於來自此等光感測器讀數之錯誤「多雲」判定之控制器可因此基於此錯誤「多雲」判定而實施不當的控制決策。舉例而言,若光感測器讀數判定在緊接在日出前之時間的錯誤「多雲」條件,則控制一面向東之光學可切換窗(例如,電致變色窗)中之色調等級的窗控制器可不當地清除窗,從而允許來自升起之太陽的直射眩光照亮至房間內。 At certain times of the day, the intensity of visible light is at low levels, such as in the morning around sunrise and in the evening just before sunset. A light sensor calibrated to measure the intensity of visible light (referred to herein as a "visible light sensor" or "light sensor" generally) does not detect direct sunlight, and its intensity measurements at these times of day may not be useful in determining cloud conditions. In some aspects, the cloud condition is judged to be one of: 1) a "clear" condition when the sky is clear with no or almost no clouds; 2) a "partly cloudy" condition; and 3) a "cloudy" or "overcast" condition when the sky is cloudy. That is, a visible light photosensor directed toward the sky at these times will measure low intensity values during "clear" conditions, "partly cloudy" conditions, and "overcast" conditions. Therefore, taken by the visible light sensor alone The resulting intensity measurements may not accurately distinguish between different cloud conditions at such times. If the intensity measurements from the visible light sensor are used alone to determine "cloudy" conditions in the evening just before sunset (eg, when the measured intensity level drops below a certain minimum value), false "cloudy" conditions can be detected. Similarly, visible light sensor measurements are not valid for distinguishing between "cloudy" and "clear" conditions immediately before sunrise when there is no direct sunlight. During either of these time periods, light sensor measurements can be used to detect false "cloudy" conditions. Controllers that rely on false "cloudy" determinations from such light sensor readings can therefore implement inappropriate control decisions based on such false "cloudy" determinations. For example, a window controller controlling tint levels in an east-facing optically switchable window (e.g., an electrochromic window) may inappropriately clear the window, allowing direct glare from the rising sun to illuminate the room if the light sensor readings determine false "cloudy" conditions at a time immediately before sunrise.

此外,主要基於來自可見光光感測器之當前讀數作出決策之控制器不考量可與可能的當前/未來雲覆蓋條件有關之地理區域中的歷史強度等級,例如,在預期有可能出現之條件時作出控制命令。舉例而言,在少量雲通過所述地理區域之上午,可存在歷史上低之光等級。在此情況中,臨時阻擋至光感測器之陽光的少量雲將導致與當大風暴翻滾至所述區域內時相同的「多雲」條件判定。在此情況下,少量雲之穿過可使控制器轉變可著色窗,且可能將光學可切換窗鎖定至不當的低色調等級,直至窗可轉變至一較高(較深)色調等級。 Furthermore, controllers making decisions based primarily on current readings from visible light sensors do not take into account historical intensity levels in geographic areas that may be related to likely current/future cloud coverage conditions, eg, making control commands in anticipation of likely conditions. For example, on mornings when few clouds pass over the geographic area, there may be historically low light levels. In this case, a small amount of cloud temporarily blocking sunlight to the light sensors will result in the same "cloudy" condition determination as when a large storm rolls into the area. In this case, the passage of a small amount of cloud could cause the controller to switch the tintable window, and possibly lock the optically switchable window to an inappropriately low tint level, until the window can be switched to a higher (darker) tint level.

II.紅外線(IR)雲偵測器系統II. Infrared (IR) Cloud Detector System

雲及水蒸汽皆吸收並重新發射在紅外線(IR)頻譜上之離散頻帶中之輻射。由於雲吸收並重新發射IR輻射且晴朗的天空透射IR輻射,因此雲通常比晴朗的天空暖(具有較高溫度)。換言之,雲之存在通常產生高於來自晴朗的天空之信號的增強型IR信號(其對應於在約地面溫度之大致黑體頻譜)。亦存在較小之大氣濕度效應,其亦可產生增強型IR信號,特定言之,在低高程處。基於此等區別,量測IR輻射之裝置可有效地偵測雲條件。 Both clouds and water vapor absorb and re-emit radiation in discrete frequency bands on the infrared (IR) spectrum. Because clouds absorb and re-emit IR radiation and clear skies transmit IR radiation, clouds are generally warmer (have a higher temperature) than clear skies. In other words, the presence of clouds generally produces an enhanced IR signal (which corresponds to a roughly black body spectrum at about ground temperature) higher than that from a clear sky. There is also a small effect of atmospheric humidity, which can also produce an enhanced IR signal, particularly at low elevations. Based on these distinctions, devices that measure IR radiation can effectively detect cloud conditions.

各種實施係關於基於紅外線讀數偵測雲覆蓋或其他雲條件之紅外線雲偵測器及其方法。紅外線雲偵測器通常包含至少一個紅外線(IR)感測器及至少一個環境溫度感測器,其結合使用以取得可用以偵測雲覆蓋條件的天空之溫度讀數。一般而言,由一介質/物體發射且接著由一IR感測器量測的紅外線輻射之量取決於介質/物體之溫度、介質/物體之表面及其他物理特性、IR感測器之視野及介質/物體與IR感測器之間的距離而變化。IR感測器將在其視野內接收之IR輻射轉換至電壓/電流,且將電壓/電流轉換至在其視野內的介質/物體之對應的溫度讀數(例如,數位溫度讀數)。舉例而言,一經引導(定向)以面向天空之IR感測器輸出在其視野內的天空之區域之溫度讀數。IR感測器可定向於一特定方向(例如,方位角及仰角)上以優先地捕獲在其圍繞彼方向居中之視野內的天空之地理區域中之IR輻射。環境溫度感測器量測包圍感測器的環境空氣之溫度。通常,環境溫度感測器經定位以量測包圍紅外線雲偵測器的環境空氣之溫度。紅外線雲偵測器亦具有一處理器,其判定由IR感測器與環境溫度感測器取得之溫度讀數之間的差,且使用此差偵測在IR感測器之視野內的天空之區域中之雲覆蓋之量。 Various implementations relate to infrared cloud detectors and methods thereof for detecting cloud cover or other cloud conditions based on infrared readings. Infrared cloud detectors typically include at least one infrared (IR) sensor and at least one ambient temperature sensor that are used in combination to obtain a temperature reading of the sky that can be used to detect cloud cover conditions. In general, the amount of infrared radiation emitted by a medium/object and then measured by an IR sensor varies depending on the temperature of the medium/object, the surface and other physical characteristics of the medium/object, the field of view of the IR sensor, and the distance between the medium/object and the IR sensor. The IR sensor converts IR radiation received within its field of view to a voltage/current, and converts the voltage/current to a corresponding temperature reading (eg, a digital temperature reading) of the medium/object within its field of view. For example, an IR sensor directed (orientated) to face the sky outputs temperature readings for the area of sky within its field of view. An IR sensor may be oriented in a particular direction (eg, azimuth and elevation) to preferentially capture IR radiation in a geographic region of the sky within its field of view centered around that direction. The ambient temperature sensor measures the temperature of the ambient air surrounding the sensor. Typically, an ambient temperature sensor is positioned to measure the temperature of the ambient air surrounding the infrared cloud detector. The infrared cloud detector also has a processor that determines the difference between the temperature readings taken by the IR sensor and the ambient temperature sensor, and uses this difference to detect the amount of cloud cover in the area of the sky within the field of view of the IR sensor.

通常,由環境溫度感測器取得之溫度讀數傾向於隨著改變之天氣條件而在比由紅外線輻射感測器取得之天空溫度讀數小的範圍上波動。舉例而言,由紅外線輻射感測器取得之天空溫度讀數傾向於在快速移動天氣型樣中之「間歇性多雲」條件期間高頻地波動。紅外線雲偵測器之某些實施具有根據方程式1判定紅外線感測器天空溫度讀數(T sky )與環境溫度讀數(T amb )之間的差(差量(△))以幫助正規化紅外線感測器溫度讀數(T sky )中之任何波動之邏輯。在一個實例中,若差量(△)經判定為高於上臨限值(例如,約攝氏0毫度),則邏輯判定「多雲」條件,若差量(△)經判定為低於下臨限值(例如,約攝氏-5毫度),則邏輯判定「晴朗」條件,且若差量(△)經判定為在上臨限值與下 臨限值之間,則邏輯判定「間歇性多雲」條件。在另一實例中,若差量(△)高於一單一臨限值,則邏輯判定「多雲」條件,且若差量(△)低於所述臨限值,則邏輯判定「晴朗」條件。在一個態樣中,在判定差量(△)高於還是低於臨限值前,所述邏輯可將一或多個校正因數應用於其。可在實施中使用的校正因數之一些實例包含濕度、太陽角度/仰角及位點高程。舉例而言,可基於正偵測的雲之海拔高度及密度來應用一校正因數。較低海拔高度及/或較高密度雲與環境溫度讀數相關得比與紅外線感測器讀數相關更緊密。較高海拔高度及/或不太密集之雲與紅外線感測器讀數相關得比與環境溫度讀數相關緊密。在此實例中,可應用對於較低海拔高度及/或較高密度雲對環境溫度讀數給予較高權重之一校正因數,或可使用對於較高海拔高度及/或不太密集雲對紅外線感測器讀數給予較高權重之一校正因數。在另一實例中,可基於濕度及/或太陽位置應用一校正因數以更準確地描述雲覆蓋及/或移除任何離群值。以下參看圖2A圖2C描述說明使用差量(△)判定雲條件之技術優勢。 Typically, temperature readings taken by ambient temperature sensors tend to fluctuate over a smaller range with changing weather conditions than sky temperature readings taken by infrared radiation sensors. For example, sky temperature readings taken by infrared radiation sensors tend to fluctuate at high frequencies during "intermittent cloudy" conditions in fast-moving weather patterns. Some implementations of the infrared cloud detector have logic to determine the difference (delta (Δ)) between the infrared sensor sky temperature reading ( T sky ) and the ambient temperature reading ( T amb ) according to Equation 1 to help normalize any fluctuations in the infrared sensor temperature reading ( T sky ). In one example, if the difference (△) is determined to be above an upper threshold (e.g., about 0 millidegrees Celsius), then a "cloudy" condition is logically asserted, if the difference (△) is determined to be below a lower threshold (eg, about -5 millidegrees Celsius), then a "clear" condition is logically asserted, and if the difference (Δ) is determined to be between the upper and lower thresholds, an "intermittent cloudy" condition is logically asserted. In another example, a "cloudy" condition is logically asserted if the difference (Δ) is above a single threshold, and a "clear" condition is logically asserted if the delta (Δ) is below the threshold. In one aspect, the logic may apply one or more correction factors to the delta (Δ) before determining whether it is above or below a threshold. Some examples of correction factors that may be used in an implementation include humidity, sun angle/elevation, and site elevation. For example, a correction factor may be applied based on the altitude and density of the clouds being detected. Lower altitudes and/or higher density clouds correlate more closely with ambient temperature readings than with infrared sensor readings. Higher altitudes and/or less dense clouds correlate more closely with infrared sensor readings than with ambient temperature readings. In this example, a correction factor that gives higher weight to ambient temperature readings for lower altitudes and/or higher density clouds may be applied, or a correction factor that gives higher weight to infrared sensor readings for higher altitudes and/or less dense clouds may be used. In another example, a correction factor may be applied based on humidity and/or sun position to more accurately describe cloud cover and/or remove any outliers. The following describes the technical advantages of using the delta (Δ) to determine cloud conditions with reference to FIGS . 2A to 2C .

由於溫度讀數通常獨立於存在之直射陽光,因此在某些情況下,使用溫度讀數可比可見光光感測器可在陽光之強度低時(例如,緊接在日出之前及緊接在日出後的上午早些時候、在日落前的晚上早些時候)偵測更準確地偵測到雲覆蓋條件。在此等時間,可見光光感測器可潛在地偵測到錯誤之「多雲」條件。根據此等實施,紅外線雲偵測器可用以偵測雲覆蓋,且其偵測之準確度與太陽是否出來或是否否則存在低光強度等級(諸如,緊接在日出或日落之前)無關。在此等實施中,相對低溫度通常指示「晴朗」條件之可能性,且相對高溫度讀數通常指示「多雲」條件之可能性(亦即,雲覆蓋)。 Since temperature readings are generally independent of the presence of direct sunlight, in some cases cloud cover conditions can be detected more accurately using temperature readings than visible light sensors can detect when the intensity of sunlight is low (e.g., in the early morning immediately before and immediately after sunrise, and in the early evening before sunset). During these times, the visible light sensor can potentially detect false "cloudy" conditions. According to such implementations, infrared cloud detectors can be used to detect cloud cover with accuracy independent of whether the sun is out or otherwise low light intensity levels exist, such as immediately before sunrise or sunset. In such implementations, relatively low temperatures generally indicate the likelihood of "clear" conditions, and relatively high temperature readings generally indicate the likelihood of "cloudy" conditions (ie, cloud cover).

在各種實施中,紅外線雲偵測器之IR感測器經校準以量測在一具體範圍內的長波長紅外線輻射之輻射通量。IR感測器之處理器或一單獨處理器可用以自此等量測結果推斷溫度讀數。在一個態樣中,IR感測器經校準以偵 測在約8μm與約14μm之間的波長範圍中之紅外線輻射。在另一態樣中,IR感測器經校準以偵測具有超過約5μm之波長的紅外線輻射。在另一態樣中,IR感測器經校準以偵測在約9.5μm與約11.5μm之間的波長範圍中之紅外線輻射。在另一態樣中,IR感測器經校準以偵測在約10.5μm與12.5μm之間的波長範圍中之紅外線輻射。在另一態樣中,IR感測器經校準以偵測在約6.6μm至20μm之間的波長範圍中之紅外線輻射。可使用的IR感測器之類型之一些實例包含紅外線溫度計(例如,熱電堆)、紅外線輻射計、紅外線地面輻射計、紅外線高溫計及類似者。IR感測器之一市售實例為由密歇根州底特律之Melexis製造的Melexis MLX90614。IR感測器之另一市售實例為由瑞士TE connectivity Ltd.製造之TS305-11C55溫度感測器。IR感測器之另一市售實例為由瑞士TE connectivity Ltd.製造之Apogee溫度感測器所製造之SI-111紅外線輻射計。 In various implementations, the IR sensor of the infrared cloud detector is calibrated to measure the radiant flux of long wavelength infrared radiation within a specific range. The IR sensor's processor or a separate processor can be used to infer the temperature reading from these measurements. In one aspect, the IR sensor is calibrated to detect Infrared radiation is measured in the wavelength range between about 8 μm and about 14 μm. In another aspect, the IR sensor is calibrated to detect infrared radiation having a wavelength in excess of about 5 μm. In another aspect, the IR sensor is calibrated to detect infrared radiation in the wavelength range between about 9.5 μm and about 11.5 μm. In another aspect, the IR sensor is calibrated to detect infrared radiation in a wavelength range between about 10.5 μm and 12.5 μm. In another aspect, the IR sensor is calibrated to detect infrared radiation in the wavelength range between about 6.6 μm and 20 μm. Some examples of types of IR sensors that may be used include infrared thermometers (eg, thermopiles), infrared radiometers, infrared ground radiometers, infrared pyrometers, and the like. One commercially available example of an IR sensor is the Melexis MLX90614 manufactured by Melexis of Detroit, Michigan. Another commercially available example of an IR sensor is the TS305-11C55 temperature sensor manufactured by TE connectivity Ltd., Switzerland. Another commercially available example of an IR sensor is the SI-111 Infrared Radiometer manufactured by Apogee Temperature Sensors manufactured by TE connectivity Ltd., Switzerland.

在各種實施中,紅外線雲偵測器具有一IR感測器,其經定位及定向使得其視野可自所關心之天空之一特定區域接收紅外線輻射。在一個實施中,IR感測器可位於建築物之屋頂上,且經定向,其感測表面豎直面向上,或與豎直線成一小角度,使得其視野具有在建築物上方或在距建築物一段距離的天空之區域。 In various implementations, the infrared cloud detector has an IR sensor positioned and oriented such that its field of view receives infrared radiation from a particular region of the sky of interest. In one implementation, the IR sensor may be located on the roof of a building and oriented with its sensing surface facing vertically upwards, or at a slight angle from vertical, such that its field of view has an area of sky above or at a distance from the building.

在某些實施中,紅外線雲偵測器具有一保護性外殼,且紅外線感測器位於所述外殼內。所述外殼可具有一蓋,所述蓋具有一或多個孔隙或變薄區,所述孔隙或變薄區允許/限制紅外線輻射透射至紅外線感測器。在一些情況下,所述蓋可由塑膠形成,諸如,聚碳酸酯、聚乙烯、聚丙烯及/或熱塑性塑膠(諸如,耐綸或其他聚醯胺、聚酯或其他熱塑性塑膠),外加其他合適材料。在一個實例中,所述材料為耐風雨之塑膠。在其他情況下,蓋可由諸如鋁、鈷或鈦之金屬材料或諸如耐綸混合鋁粉(alumide)之半金屬材料形成。在一些實施中,所述蓋可傾斜或為凸形以防止水之累積。取決於用以形成蓋的材料之類型,蓋可 經3D打印、射出模製或經由另一或多個合適製程形成。 In some implementations, the infrared cloud detector has a protective housing, and the infrared sensor is located within the housing. The housing may have a cover with one or more apertures or thinned areas that allow/restrict transmission of infrared radiation to the infrared sensor. In some cases, the cover may be formed of plastic, such as polycarbonate, polyethylene, polypropylene, and/or thermoplastics such as nylon or other polyamides, polyesters, or other thermoplastics, plus other suitable materials. In one example, the material is weather resistant plastic. In other cases, the cover may be formed from a metallic material such as aluminum, cobalt, or titanium, or a semi-metallic material such as nylon mixed with aluminum powder (alumide). In some implementations, the cover can be sloped or convex to prevent accumulation of water. Depending on the type of material used to form the cover, the cover may 3D printed, injection molded, or formed via another suitable process or processes.

在一些實施中,所述蓋包含一或多個孔隙或變薄區以增大入射輻射或其他信號至外殼內之偵測器的透射(減少阻擋)。舉例而言,蓋可包含最接近外殼中之紅外線感測器的一或多個孔隙或變薄區以允許入射紅外線輻射至紅外線感測器之改良透射。孔隙或變薄區亦可改良其他信號(例如,GPS信號)至外殼內之其他偵測裝置之透射。另外或替代地,蓋中之一些或所有可由光擴散材料形成。在一些實施中,蓋可經由黏著劑或藉由某一機械耦接機制(諸如,經由使用螺紋及螺紋穿過或經由壓力密封墊或其他壓合)與外殼連接。 In some implementations, the cover includes one or more apertures or thinned regions to increase transmission (reduce blockage) of incident radiation or other signals to detectors within the housing. For example, the cover may include one or more apertures or thinned regions proximate the infrared sensor in the housing to allow improved transmission of incident infrared radiation to the infrared sensor. Apertures or thinned regions may also improve the transmission of other signals (eg, GPS signals) to other detection devices within the housing. Additionally or alternatively, some or all of the covers may be formed from a light diffusing material. In some implementations, the cover can be connected to the housing via adhesive or by some mechanical coupling mechanism, such as by using threads and threads through or via a pressure seal or other compression fit.

紅外線感測器之感測表面之視野由其材料組成及其結構界定。在一些情況下,紅外線感測器之視野可因障礙物而變窄。障礙物之一些實例包含建築物結構(諸如,懸伸部或屋頂結構)、在建築物附近之障礙物(諸如,樹或另一建築物)等。作為另一實例,若紅外線感測器位於外殼內,則所述外殼內之結構可使視野變窄。 The field of view of the sensing surface of an infrared sensor is defined by its material composition and its structure. In some cases, the field of view of the infrared sensor may be narrowed by obstacles. Some examples of obstacles include building structures such as overhangs or roof structures, obstacles in the vicinity of buildings such as trees or another structure, and the like. As another example, if the infrared sensor is located within the housing, structures within the housing can narrow the field of view.

在一個態樣中,一單一IR感測器具有一豎直無約束之視野,距豎直線約50度至約130程度+- 40度。在一個態樣中,IR感測器具有在50度與100度之範圍中的視野。在另一態樣中,IR感測器具有在50度與80度之範圍中的視野。在另一態樣中,IR感測器具有約88度之視野。在另一態樣中,IR感測器具有約70度之視野。在另一態樣中,IR感測器具有約44度之視野。IR感測器之視野通常定義為圓錐形體積。IR感測器通常具有比可見光光感測器寬之視野,且因此能夠自天空之較大區域接收輻射。由於IR感測器可取得天空之較大區域之讀數,因此IR感測器可在判定接近條件(例如,到來之暴風雲)時比可見光光感測器有用,可見光光感測器將更限於偵測影響在其較小視野內的光感測器之緊鄰附近之當前條件。在一個態樣中,安裝之感測器的五感測器阻擋式IR感測器配置(例如,在多感測器組態中)具有四個成角度安裝之IR感測器,每 一者約束至20-70度或110-160度之視野,且一個面向上之IR感測器約束至70-110度之視野。 In one aspect, a single IR sensor has a vertical unconstrained field of view from about 50 degrees to about 130 degrees +- 40 degrees from vertical. In one aspect, the IR sensor has a field of view in the range of 50 degrees and 100 degrees. In another aspect, the IR sensor has a field of view in the range of 50 degrees and 80 degrees. In another aspect, the IR sensor has a field of view of about 88 degrees. In another aspect, the IR sensor has a field of view of about 70 degrees. In another aspect, the IR sensor has a field of view of about 44 degrees. The field of view of an IR sensor is usually defined as a conical volume. IR sensors typically have a wider field of view than visible light sensors and are therefore able to receive radiation from a larger area of the sky. Since an IR sensor can take readings of a larger area of the sky, an IR sensor may be more useful in determining approaching conditions (eg, approaching storm clouds) than a visible light light sensor, which would be more limited to detecting current conditions affecting the immediate vicinity of the light sensor within its smaller field of view. In one aspect, a five-sensor blocking IR sensor configuration of mounted sensors (e.g., in a multi-sensor configuration) has four angled mounted IR sensors, each One constrained to a 20-70 degree or 110-160 degree field of view, and one upward facing IR sensor constrained to a 70-110 degree field of view.

某些IR感測器傾向於在當直射陽光未照射感測表面時量測天空溫度過程中更有效。在某些實施中,紅外線雲偵測器具有遮住來自IR感測器之感測表面的直射陽光之一結構,或具有在直射陽光照射IR感測器之感測表面前將其擴散之一結構(例如,不透明塑膠之殼體)。在一個實施中,IR感測器可由建築物或紅外線雲偵測器之懸伸結構遮住。在另一實施中,IR感測器可位於一保護性外殼內,在IR感測器之感測表面與天空之間具有擴散材料以擴散任何直射陽光,以免於到達IR感測器之感測表面,及亦提供針對潛在有害要素(諸如,灰塵、動物等)之保護。另外或替代地,一些實施僅使用在日出前或日落後取得之IR感測器讀數來避免直射陽光照射IR感測器之可能性。在此等實施中,光感測器讀數或其他感測器讀數可用以偵測日出與日落之間的雲覆蓋條件。 Certain IR sensors tend to be more effective at measuring sky temperature when direct sunlight is not hitting the sensing surface. In some implementations, the infrared cloud detector has a structure that blocks direct sunlight from the sensing surface of the IR sensor, or has a structure that diffuses direct sunlight before it hits the sensing surface of the IR sensor (eg, a housing of opaque plastic). In one implementation, the IR sensor may be obscured by a building or overhanging the infrared cloud detector. In another implementation, the IR sensor may be located within a protective housing with diffuser material between the sensing surface of the IR sensor and the sky to diffuse any direct sunlight from reaching the sensing surface of the IR sensor and also provide protection from potentially harmful elements such as dust, animals, etc. Additionally or alternatively, some implementations only use IR sensor readings taken before sunrise or after sunset to avoid the possibility of direct sunlight hitting the IR sensor. In such implementations, light sensor readings or other sensor readings may be used to detect cloud cover conditions between sunrise and sunset.

在各種實施中,紅外線雲偵測器具有一環境溫度感測器用於量測環境溫度感測器周圍的空氣之溫度。通常,環境溫度感測器之位置與室外環境(例如,位於建築物之外)接觸以取得天空之溫度讀數。環境溫度感測器可為(例如)熱敏電阻、熱電偶、電阻溫度計、熱電偶、矽帶隙溫度感測器等。可使用的環境溫度感測器之一市售實例為由Omega製造之Pt100溫度計探針。某些實施包含經定位以避免直射陽光照射其感測表面之一環境溫度感測器。舉例而言,環境溫度感測器可位於一懸伸部下或安裝於為環境溫度感測器遮住直射陽光之一結構下面。 In various implementations, the infrared cloud detector has an ambient temperature sensor for measuring the temperature of the air surrounding the ambient temperature sensor. Typically, an ambient temperature sensor is positioned in contact with the outdoor environment (eg, located outside a building) to take a temperature reading of the sky. The ambient temperature sensor may be, for example, a thermistor, thermocouple, resistance thermometer, thermocouple, silicon bandgap temperature sensor, or the like. One commercial example of an ambient temperature sensor that can be used is the Pt100 thermometer probe manufactured by Omega. Some implementations include an ambient temperature sensor positioned to avoid direct sunlight hitting its sensing surface. For example, the ambient temperature sensor may be located under an overhang or mounted under a structure that shields the ambient temperature sensor from direct sunlight.

雖然本文中描述的紅外線雲偵測器之許多實施包含一個IR感測器及一個環境溫度感測器,但將理解,其他實施可包含多於一個IR感測器及/或多於一個環境溫度感測器。舉例而言,在一個實施中,紅外線雲偵測器包含兩個或更多個IR感測器,供冗餘使用及/或將IR感測器引導至天空之不同區域。另 外或替代地,在另一實施中,紅外線雲偵測器可具有供冗餘使用之兩個或更多個環境溫度感測器。使用兩個IR感測器引導之不同天空區域用於偵測雲的系統之一實例可見於2015年9月29日提交且題為《具有可變距離感測之陽光強度或雲偵測(SUNLIGHT INTENSITY OR CLOUD DETECTION WITH VARIABLE DISTANCE SENSING)》的國際申請案PCT/US15/53041中,其在此被以引用的方式全部併入。 While many implementations of infrared cloud detectors described herein include one IR sensor and one ambient temperature sensor, it will be understood that other implementations may include more than one IR sensor and/or more than one ambient temperature sensor. For example, in one implementation, the infrared cloud detector includes two or more IR sensors for redundancy and/or to direct the IR sensors to different regions of the sky. Other Additionally or alternatively, in another implementation, the infrared cloud detector may have two or more ambient temperature sensors for redundant use. An example of a system for detecting clouds using different regions of the sky directed by two IR sensors can be found in International Application PCT/US15/53041, filed September 29, 2015 and entitled "SUNLIGHT INTENSITY OR CLOUD DETECTION WITH VARIABLE DISTANCE SENSING," which is hereby incorporated by reference in its entirety.

紅外線雲偵測器之各種實施具有偵測雲覆蓋條件之基本功能性。在一些情況下,紅外線雲偵測器可偵測「多雲」條件及「晴朗」條件。另外,一些實施可進一步將「多雲」條件分化成分級。舉例而言,一個實施可將「多雲」條件分化成「陰天」或「間歇性雲」。在另一實例中,一實施可將不同等級(例如,1-10)之雲量指派至「多雲」條件。在又一實例中,一實施可預測未來雲條件,亦即,雲條件在未來時間出現之可能性。另外或替代地,一些實施亦可偵測其他天氣條件。 Various implementations of infrared cloud detectors have the basic functionality of detecting cloud cover conditions. In some cases, infrared cloud detectors can detect "cloudy" conditions as well as "clear" conditions. Additionally, some implementations may further break down "cloudy" conditions into classes. For example, an implementation may classify "cloudy" conditions into "overcast" or "intermittent clouds." In another example, an implementation may assign different levels (eg, 1-10) of cloudiness to the "cloudy" condition. In yet another example, an implementation can predict future cloud conditions, ie, the likelihood of cloud conditions occurring at a future time. Additionally or alternatively, some implementations may detect other weather conditions as well.

在各種實施中,紅外線雲偵測器包含經組態以取得天空溫度讀數T sky 之一IR感測器,及經組態以取得環境溫度讀數T amb 之一環境溫度感測器。所述紅外線雲偵測器亦包含含有程式指令之一或多個處理器,所述程式指令可經執行以執行紅外線雲偵測器之各種功能。處理器執行程式指令以判定溫度讀數之間的溫度差,差量(△),如在方程式1中提供。處理器亦執行程式指令以基於差量(△)判定雲覆蓋條件。如上所提到,在一些情況下,使用環境溫度讀數可幫助正規化IR感測器溫度讀數中之任何快速波動。 In various implementations, the infrared cloud detector includes an IR sensor configured to take a sky temperature reading T sky , and an ambient temperature sensor configured to take an ambient temperature reading T amb . The infrared cloud detector also includes one or more processors containing program instructions executable to perform various functions of the infrared cloud detector. The processor executes programmed instructions to determine the temperature difference between the temperature readings, Delta (Δ), as provided in Equation 1 . The processor also executes programmed instructions to determine cloud cover conditions based on the delta (Δ). As mentioned above, in some cases, using the ambient temperature reading can help normalize any rapid fluctuations in the IR sensor temperature reading.

差量(△)=紅外線感測器天空溫度讀數(Tsky)-環境溫度讀數(Tamb) (方程式1) Difference (△) = Infrared sensor sky temperature reading (T sky ) - ambient temperature reading (T amb ) (Equation 1)

在一個實施中,處理器執行程式指令以將差量(△)與一上臨限值及一下臨限值比較,及判定一雲覆蓋條件。若差量(△)高於上臨限值,則判定 「晴朗」條件。若差量(△)低於下臨限值,則判定「多雲」條件。若差量(△)低於上臨限值且高於下臨限值(亦即在臨限值之間),則判定一「間歇性」雲覆蓋條件。另外或替代地,當差量(△)在臨限值之間時,可使用額外因素來判定雲覆蓋條件。此實施在黎明前後之上午及在黃昏前後之晚上很好地起作用,以準確地判定「多雲」條件或「晴朗」條件。在日出與日落之間,可使用額外因素判定雲覆蓋條件,諸如,藉由使用可見光感測器值。額外因素之一些實例包含:高程、風速/方向及太陽仰角/角度。 In one implementation, the processor executes programmed instructions to compare the delta (Δ) with an upper threshold and a lower threshold, and determine a cloud coverage condition. If the difference (△) is higher than the upper threshold, then judge "Sunny" conditions. If the difference (△) is lower than the lower threshold, the "cloudy" condition is determined. If the difference (Δ) is below the upper threshold and above the lower threshold (ie, between the thresholds), then an "intermittent" cloud cover condition is determined. Additionally or alternatively, additional factors may be used to determine cloud cover conditions when the difference (Δ) is between thresholds. This implementation works well in the morning around dawn and in the evening around dusk to accurately determine "cloudy" or "clear" conditions. Between sunrise and sunset, additional factors may be used to determine cloud cover conditions, such as by using visible light sensor values. Some examples of additional factors include: elevation, wind speed/direction, and sun elevation/angle.

A.紅外線(IR)感測器雲偵測系統A. Infrared (IR) sensor cloud detection system

圖1展示根據一些實施的具有一紅外線雲偵測器100之系統之側視圖之示意性表示。紅外線雲偵測器100具有一外殼101,其具有一蓋102,所述蓋在外殼101之第一表面106具有一孔隙或變薄之部分104。外殼101亦具有與第一表面106對置之一第二表面108。紅外線雲偵測器100亦包含:一IR感測器110,其經組態以基於在其圓錐形視野114內接收之紅外線輻射取得溫度讀數T sky ;一環境溫度感測器130,其用於取得環境溫度讀數T amb ;及一處理器140,其與IR感測器110及環境溫度感測器130通信(有線或無線)。在一個態樣中,IR感測器為紅外線溫度計(例如,熱電堆)、紅外線輻射計、紅外線地面輻射計及紅外線高溫計中之一者。在一個態樣中,環境溫度感測器為熱敏電阻、溫度計及熱電偶中之一者。 Figure 1 shows a schematic representation of a side view of a system with an infrared cloud detector 100 , according to some implementations. The infrared cloud detector 100 has a housing 101 with a cover 102 having an aperture or thinned portion 104 on a first surface 106 of the housing 101 . The housing 101 also has a second surface 108 opposite to the first surface 106 . Infrared cloud detector 100 also includes: an IR sensor 110 configured to take a temperature reading T sky based on infrared radiation received within its cone of field of view 114 ; an ambient temperature sensor 130 for taking an ambient temperature reading T amb ; and a processor 140 in communication (wired or wireless) with IR sensor 110 and ambient temperature sensor 130 . In one aspect, the IR sensor is one of an infrared thermometer (eg, a thermopile), an infrared radiometer, an infrared ground radiometer, and an infrared pyrometer. In one aspect, the ambient temperature sensor is one of a thermistor, thermometer, and thermocouple.

圖1中,IR感測器110位於孔隙或變薄之部分104後且在外殼101之殼體內。孔隙或變薄之部分104使IR感測器110能夠量測經由孔隙或變薄之部分104透射且在其感測表面處接收的紅外線輻射。IR感測器110包含一假想軸線112,其與IR感測器110之感測表面正交且穿過IR感測器110之中心。在說明之實例中,IR感測器110經定向使得其軸線112在豎直定向上,且感測表面面向上。在其他實例中,IR感測器110可經引導使得感測表面面向另 一定向以(例如)將IR感測器引導至天空之一特定區域。IR感測器110具有經由孔隙或變薄之部分104至外殼102外的一圓錐形視野114。在此實例中,蓋102在孔隙或變薄之部分104周圍的部分由阻擋紅外線輻射之材料製成,且孔隙或變薄之部分104之周長界定視野114。視野114具有一角度α,且關於軸線112居中。在圖1中,環境溫度感測器130經定位且遠離邊緣貼附至外殼102之第二表面108以避免當紅外線雲偵測器100在此定向上時直射陽光照射環境溫度感測器130。雖未展示,但紅外線雲偵測器100亦包含將紅外線感測器110及其他組件固持於外殼101內適當位置之一或多個結構。 In FIG. 1 , the IR sensor 110 is located behind the aperture or thinned portion 104 and within the housing of the housing 101 . The aperture or thinned portion 104 enables the IR sensor 110 to measure infrared radiation transmitted through the aperture or thinned portion 104 and received at its sensing surface. The IR sensor 110 includes an imaginary axis 112 that is normal to the sensing surface of the IR sensor 110 and passes through the center of the IR sensor 110 . In the illustrated example, the IR sensor 110 is oriented such that its axis 112 is in a vertical orientation and the sensing surface faces upward. In other examples, the IR sensor 110 may be directed such that the sensing surface faces another orientation to, for example, direct the IR sensor to a particular region of the sky. The IR sensor 110 has a cone-shaped field of view 114 out of the housing 102 through the aperture or thinned portion 104 . In this example, the portion of the cover 102 surrounding the aperture or thinned portion 104 is made of a material that blocks infrared radiation, and the perimeter of the aperture or thinned portion 104 defines a field of view 114 . The field of view 114 has an angle α and is centered about the axis 112 . In FIG. 1 , the ambient temperature sensor 130 is positioned and attached to the second surface 108 of the housing 102 away from the edge to avoid direct sunlight hitting the ambient temperature sensor 130 when the infrared cloud detector 100 is in this orientation. Although not shown, the infrared cloud detector 100 also includes one or more structures that hold the infrared sensor 110 and other components in place within the housing 101 .

紅外線雲偵測器100亦具有在每一讀取時間計算紅外線感測器天空溫度讀數(T sky )與環境溫度讀數(T amb )之間的差量(△)且基於計算之差量(△)判定雲覆蓋條件之邏輯。在操作期間,IR感測器110基於自在其視野114內的天空之區域接收之紅外線輻射取得天空溫度讀數T sky ,且環境溫度感測器130取得在紅外線雲偵測器100周圍的環境空氣之環境溫度讀數T amb 。處理器140接收來自IR感測器110的具有溫度讀數T sky 之信號及來自環境溫度感測器130的具有環境溫度讀數T amb 之信號。處理器140執行儲存於記憶體(未展示)中之指令,所述指令使用計算在特定時間之紅外線感測器溫度讀數(T sky )與環境溫度讀數(T amb )之間的一差量(△)以判定雲覆蓋條件之邏輯。處理器140可執行進行以下操作之指令:若在彼時之差量(△)高於上臨限值,則判定一「多雲」條件,若差量(△)低於下臨限值,則判定「晴朗」條件,且若判定差量(△)在上臨限值與下臨限值之間,則判定「間歇性多雲」條件。處理器140亦可執行儲存於記憶體中之指令以執行本文中描述的方法之其他操作。 The infrared cloud detector 100 also has the logic to calculate the difference (Δ) between the infrared sensor sky temperature reading ( T sky ) and the ambient temperature reading ( T amb ) at each reading time and determine the cloud coverage condition based on the calculated difference (Δ). During operation, IR sensor 110 takes a sky temperature reading T sky based on infrared radiation received from a region of the sky within its field of view 114 , and ambient temperature sensor 130 takes an ambient temperature reading T amb of the ambient air surrounding infrared cloud detector 100 . The processor 140 receives a signal from the IR sensor 110 with a temperature reading T sky and a signal from the ambient temperature sensor 130 with an ambient temperature reading T amb . Processor 140 executes instructions stored in memory (not shown) that use logic that calculates a difference (Δ) between the infrared sensor temperature reading ( T sky ) and the ambient temperature reading ( T amb ) at a particular time to determine cloud cover conditions. Processor 140 may execute instructions to: if the difference (Δ) at that time is above the upper threshold, then determine a "cloudy" condition, if the difference (Δ) is below the lower threshold, then determine a "clear" condition, and if the difference (Δ) is determined to be between the upper and lower thresholds, then determine an "intermittently cloudy" condition. Processor 140 may also execute instructions stored in memory to perform other operations of the methods described herein.

雖然在圖1中說明一單一紅外線感測器110,但在另一實施中,倘若一個出故障及/或由(例如)鳥糞或另一環境作用物遮蔽,則兩個或更多個紅外線感測器可供冗餘使用。在一個實施中,使用兩個或更多個紅外線感測器來 面向不同定向以捕獲來自不同視野及/或在距建築物/結構不同距離處之IR輻射。若兩個或更多個IR感測器位於紅外線雲偵測器100之外殼內,則IR感測器通常相互偏移一段距離,所述距離足以減小遮蔽之作用物將影響所有IR感測器之可能性。舉例而言,IR感測器可分開至少約一吋或至少約兩吋。 Although a single infrared sensor 110 is illustrated in FIG. 1 , in another implementation, two or more infrared sensors may be used redundantly should one fail and/or be obscured by, for example, bird droppings or another environmental agent. In one implementation, two or more infrared sensors are used facing different orientations to capture IR radiation from different fields of view and/or at different distances from the building/structure. If two or more IR sensors are located within the housing of infrared cloud detector 100 , the IR sensors are typically offset from each other by a distance sufficient to reduce the likelihood that an obscuring agent will affect all IR sensors. For example, the IR sensors can be separated by at least about one inch or at least about two inches.

B.在晴天及下午多雲之一天期間的紅外線感測器溫度讀數、環境溫度讀數及差量值之比較B. Comparison of infrared sensor temperature readings, ambient temperature readings and delta values during a sunny day and a cloudy day in the afternoon

如上所論述,由環境溫度感測器取得之天空溫度讀數傾向於在比由紅外線輻射感測器取得之天空溫度讀數小的範圍上波動。紅外線雲偵測器之某些實施具有根據方程式1判定紅外線感測器溫度讀數(T sky )與環境溫度讀數(T amb )之間的差(差量(△))以幫助正規化紅外線感測器溫度讀數(T sky )中之任何波動之邏輯。藉由比較,圖2A圖2C包含由根據一實施的紅外線雲偵測器之紅外線感測器取得之溫度讀數T IR 、由紅外線雲偵測器之環境溫度感測器取得之天空溫度讀數T sky 及此等讀數之間的差量(△)之實例之曲線圖。每一曲線圖包含兩個曲線:在晴天期間取得的讀數之曲線及在下午有雲之一天期間取得的讀數之曲線。在此實例中使用之紅外線雲偵測器包含類似於關於圖1中展示之紅外線雲偵測器100所描述的組件之組件。在此情況下,紅外線雲偵測器位於建築物之屋頂上且紅外線感測器經定向以豎直面向上。紅外線感測器經校準以量測在自約8μm至約14μm之波長範圍中的紅外線輻射。為了避免直射陽光照射紅外線感測器,紅外線感測器位於由諸如塑膠(例如,聚碳酸酯、聚乙烯、聚丙烯及/或熱塑性塑膠(諸如,耐綸或其他聚醯胺、聚酯或其他熱塑性塑膠),外加其他合適材料)之光漫射材料形成之蓋後。在此實例中,紅外線雲偵測器亦具有可用以計算由IR感測器取得之天空溫度讀數T sky 與由紅外線雲偵測器之環境溫度感測器取得之環境溫度讀數T amb 之間的差(差量(△))之邏輯。所述邏輯亦可用以若差量(△)處於或高於上臨限值,則判定「多雲」條件,若差量(△) 處於或低於下臨限值,則判定「晴朗」條件,且若判定差量(△)在上臨限值與下臨限值之間,則判定「間歇性多雲」條件。 As discussed above, sky temperature readings taken by ambient temperature sensors tend to fluctuate over a smaller range than sky temperature readings taken by infrared radiation sensors. Some implementations of the infrared cloud detector have logic to determine the difference (delta (Δ)) between the infrared sensor temperature reading ( T sky ) and the ambient temperature reading ( T amb ) according to Equation 1 to help normalize any fluctuations in the infrared sensor temperature reading ( T sky ). By way of comparison, FIGS. 2A - 2C contain graphs of temperature readings T IR taken by the infrared sensor of the infrared cloud detector according to one implementation, sky temperature readings T sky taken by the ambient temperature sensor of the infrared cloud detector, and examples of the difference (Δ) between these readings. Each graph contains two curves: a curve for readings taken during a sunny day and a curve for readings taken during a cloudy day in the afternoon. The infrared cloud detector used in this example included components similar to those described with respect to the infrared cloud detector 100 shown in FIG. 1 . In this case, the infrared cloud detector is located on the roof of the building and the infrared sensor is oriented to face vertically upwards. The infrared sensor is calibrated to measure infrared radiation in the wavelength range from about 8 μm to about 14 μm. To protect the infrared sensor from direct sunlight, the infrared sensor is located behind a cover formed of a light diffusing material such as plastic (eg, polycarbonate, polyethylene, polypropylene, and/or thermoplastics such as nylon or other polyamides, polyesters, or other thermoplastics, plus other suitable materials). In this example, the infrared cloud detector also has logic to calculate the difference (difference (Δ) ) between the sky temperature reading T sky taken by the IR sensor and the ambient temperature reading Tamb taken by the ambient temperature sensor of the infrared cloud detector. The logic can also be used to determine a "cloudy" condition if the difference (Δ) is at or above the upper threshold, a "clear" condition if the difference (Δ) is at or below the lower threshold, and an "intermittently cloudy" condition if the difference (Δ) is determined to be between the upper and lower thresholds.

圖2A展示根據此實施的具有隨著時間的過去由紅外線雲偵測器之紅外線感測器而取得的溫度讀數T sky 之兩個曲線之曲線圖。兩個曲線中之每一者具有在一天之時間週期上由紅外線感測器取得之溫度讀數T sky 。第一曲線110具有在下午有雲之第一天期間由紅外線感測器取得之溫度讀數T sky 。第二曲線112具有在全天晴朗之第二天期間由紅外線感測器取得之溫度讀數T sky 。如所展示,在下午有雲之第一天之下午期間取得的第一曲線110之溫度讀數T sky 大體高於在全天晴朗之第二天期間取得的第二曲線112之溫度讀數T sky FIG. 2A shows a graph with two curves of temperature readings T sky taken by the infrared sensor of the infrared cloud detector over time according to this implementation. Each of the two curves has temperature readings T sky taken by the infrared sensor over a time period of one day. The first curve 110 has temperature readings T sky taken by the infrared sensor during the first day with cloudy afternoons. The second curve 112 has the temperature readings T sky taken by the infrared sensor during the second day when the sky is clear. As shown, the temperature reading T sky of the first curve 110 taken during the afternoon of the first day with cloudy afternoons is generally higher than the temperature reading T sky of the second curve 112 taken during the second day of the day with all clear weather.

圖2B展示具有隨著時間的過去由關於圖2A論述之紅外線雲偵測器之環境溫度感測器取得的環境溫度讀數T amb 之兩個曲線之曲線圖。兩個曲線中之每一者具有在一天之時間週期上由環境溫度感測器取得之溫度讀數T amb 。為了避免直射陽光照射環境溫度感測器,將其對直射陽光遮住。第一曲線220具有在下午有雲之第一天期間由環境溫度感測器取得之溫度讀數。第二曲線222具有在全天晴朗之第二天期間由紅外線感測器取得之溫度讀數。如所展示,在下午有雲之第一天期間取得的第一曲線220之環境溫度讀數T amb 處於比在全天晴朗之第二天期間取得的第二曲線222之溫度讀數T amb 低之等級下。 2B shows a graph with two plots of ambient temperature readings T amb over time taken by the ambient temperature sensor of the infrared cloud detector discussed with respect to FIG. 2A . Each of the two curves has temperature readings T amb taken by the ambient temperature sensor over a time period of one day. To avoid direct sunlight hitting the ambient temperature sensor, shield it from direct sunlight. The first curve 220 has the temperature readings taken by the ambient temperature sensor during the first day with cloudy afternoons. The second curve 222 has the temperature readings taken by the infrared sensor during the second day when the sky was clear. As shown, the ambient temperature reading Tamb of the first curve 220 taken during the first day with cloudy afternoons is at a lower level than the temperature reading Tamb of the second curve 222 taken during the second day of the clear day.

圖2C展示具有由IR感測器取得的天空溫度讀數T sky 與由關於圖2A圖2B論述之紅外線雲偵測器之環境溫度感測器取得的環境溫度讀數T amb 之間的計算之差量(△)之兩個曲線之曲線圖。兩個曲線中之每一者具有在一天中之一時間週期上的計算之差量(△)。第一曲線230為在下午有雲之第一天期間取得的讀數之計算之差量(△)。第二曲線232為在全天晴朗之第二天期間取得的計算之差量(△)。所述曲線圖亦包含一上臨限值及一下臨限值。 2C shows a graph with two curves of the calculated difference (Δ) between the sky temperature reading T sky taken by the IR sensor and the ambient temperature reading Tamb taken by the ambient temperature sensor of the infrared cloud detector discussed with respect to FIGS . 2A and 2B . Each of the two curves has a calculated difference (Δ) over a time period of the day. The first curve 230 is the calculated delta (Δ) of readings taken during the first day with cloudy afternoons. The second curve 232 is the calculated delta ([Delta]) taken during the second day of full day clear. The graph also includes an upper threshold and a lower threshold.

圖2C中,在自緊接在日出之前直至緊接在日出之後之一時間 間隔期間及在緊接在日落之前直至日落之一時間間隔期間的第二曲線232之差量(△)之值低於下臨限值。使用在圖2C中之曲線中展示的計算之差量(△)值,紅外線雲偵測器之邏輯將判定在此時間間隔期間的一「晴朗」條件。又,由於在一天中之多數其他時間第二曲線232之差量(△)之值低於下臨限值,因此紅外線雲偵測器之邏輯將針對所述其他時間亦判定一「晴朗」條件。 In FIG. 2C , the value of the difference (Δ) of the second curve 232 during the time interval from immediately before sunrise to immediately after sunrise and during the time interval from immediately before sunset to sunset is below the lower threshold. Using the calculated delta (Δ) values shown in the graph in Figure 2C , the logic of the infrared cloud detector will determine a "clear" condition during this time interval. Also, since the value of the delta (Δ) of the second curve 232 is below the lower threshold value at most other times of the day, the logic of the infrared cloud detector will also determine a "clear" condition for those other times.

圖2C中,對於下午中之多數時間,第一曲線230之差量(△)之值高於上臨限值,且紅外線雲偵測器將判定在下午期間之「多雲」條件。在自緊接在日出之前直至緊接在日出之後之一時間間隔期間及在緊接在日落之前直至日落之一時間間隔期間,第一曲線230之差量(△)之值低於下臨限值。基於此等計算之差量(△)值,紅外線雲偵測器之邏輯將判定在此時間間隔期間之「晴朗」條件。在下午早些時候與晚些時候之過渡中的簡短時間週期期間,第一曲線230之差量(△)之值在下臨限值與上臨限值之間。基於此等計算之差量(△)值,紅外線雲偵測器之邏輯將判定一「間歇性多雲」條件。 In FIG. 2C , the value of the delta (Δ) of the first curve 230 is above the upper threshold for most of the afternoon, and the infrared cloud detector will determine "cloudy" conditions during the afternoon. The value of the delta (Δ) of the first curve 230 is below the lower threshold value during a time interval from immediately before sunrise to immediately after sunrise and during a time interval from immediately before sunset to sunset. Based on these calculated delta (Δ) values, the logic of the infrared cloud detector will determine "clear" conditions during this time interval. During the brief period of time in the transition between early afternoon and late afternoon, the value of the delta (Δ) of the first curve 230 is between the lower threshold and the upper threshold. Based on these calculated delta (Δ) values, the logic of the infrared cloud detector will determine an "intermittently cloudy" condition.

C.具有光感測器之紅外線雲偵測器系統C. Infrared cloud detector system with light sensor

在某些實施中,紅外線雲偵測器系統亦包含一可見光光感測器(例如,光電二極體),用於量測在操作期間的可見光輻射之強度。此等系統通常包含至少一個紅外線感測器、至少一個環境溫度感測器、至少一個可見光光感測器,及用於基於由紅外線感測器、環境溫度感測器及可見光光感測器中之一或多者取得之讀數判定一雲覆蓋條件之邏輯。在一些情況下,紅外線感測器經校準以量測在8μm至14μm頻譜中之波長。在一些情況下,光感測器經校準以偵測在亮光範圍內的可見光(例如,在約390nm與約700nm之間)之強度。所述光感測器可位於與紅外線感測器及環境溫度感測器相同的外殼中/上,或可位置分開。在一些情況下,所述邏輯基於紅外線感測器溫度讀數T sky 與環境溫度讀數T amb 之間的計算之差量(△)值判定雲覆蓋條件,例如,當紅外線感測器之置信 度水平高及/或光感測器之置信度水平低時。當紅外線感測器之置信度水平低及/或光感測器之置信度水平高時,所述邏輯基於光感測器讀數判定雲覆蓋條件。 In some implementations, the infrared cloud detector system also includes a visible light sensor (eg, a photodiode) for measuring the intensity of visible radiation during operation. These systems typically include at least one infrared sensor, at least one ambient temperature sensor, at least one visible light sensor, and logic for determining a cloud cover condition based on readings taken by one or more of the infrared sensor, ambient temperature sensor, and visible light sensor. In some cases, the infrared sensor is calibrated to measure wavelengths in the 8 μm to 14 μm spectrum. In some cases, the light sensor is calibrated to detect the intensity of visible light in the bright light range (eg, between about 390 nm and about 700 nm). The light sensor can be located in/on the same housing as the IR sensor and the ambient temperature sensor, or it can be located separately. In some cases, the logic determines cloud cover conditions based on a calculated delta (Δ) value between the infrared sensor temperature reading T sky and the ambient temperature reading Tamb , for example, when the confidence level of the infrared sensor is high and/or the confidence level of the light sensor is low. The logic determines cloud cover conditions based on light sensor readings when the confidence level of the infrared sensor is low and/or the confidence level of the light sensor is high.

在各種實施中,紅外線雲偵測器系統包含用於使用以下中之一或多者作為輸入來判定雲覆蓋條件之邏輯:當日時間、一年中之某天、來自紅外線感測器之溫度讀數T sky 、來自環境溫度感測器之環境溫度讀數T amb 及來自光感測器之光強度讀數、來自光感測器的可見光強度讀數之振盪頻率及來自紅外線感測器的溫度讀數T sky 之振盪頻率。在一些情況下,所述邏輯自可見光強度讀數判定振盪頻率,及/或自溫度讀數T sky 判定振盪頻率。所述邏輯判定當日時間是否在以下四個時間週期中之一者期間:(i)在日出前不久且至稍微在日出後之一時間週期;(ii)定義為在(i)後且(iii)前之白天;(iii)在日落前不久(黃昏)且直至日落之一時間週期;或(iv)定義為在(iii)後且(i)前之夜間。在一種情況下,日出之時間可自由可見光波長光感測器取得之量測結果判定。舉例而言,時間週期(i)可結束於可見光波長光感測器開始量測直射陽光之時點,亦即,可見光光感測器之強度讀數處於或高於一最小強度值之時點。此外或替代地,時間週期(iii)可判定為結束於來自可見光波長光感測器之強度讀數處於或低於一最小強度值之時點。在另一實例中,可基於一年中之某天使用太陽計算器來計算日出之時間及/或日落之時間,且時間週期(i)及(iii)可藉由在日出/日落之計算時間前後的一定義之時間週期(例如,45分鐘)計算。若當日時間在(i)或(iii)時間週期內,則光感測器讀數之置信度水平傾向於低且紅外線感測器讀數傾向於高。在此情形中,所述邏輯基於有或無校正因數的計算之差量(△)判定雲覆蓋條件。舉例而言,若差量(△)高於上臨限值,則所述邏輯可判定一「多雲」條件,若差量(△)低於下臨限值,則判定一「晴朗」條件,且若差量(△)在上臨限值與下臨限值之間,則判定一「間歇性多雲」條件。作為另一實例,若差量(△)高於一單一臨限值,則所述邏輯可判定一「多雲」條件,且若差量(△) 低於所述臨限值,則邏輯判定一「晴朗」條件。若當日時間在(ii)白天期間,則光感測器讀數之置信度水平處於高等級,且紅外線感測器讀數之置信度水平傾向於低。在此情況下,所述邏輯可使用光感測器讀數判定雲覆蓋條件,只要紅外線讀數與光感測器讀數之間的計算之差處於或低於一可接受值。舉例而言,若光感測器讀數高於某一強度等級,則所述邏輯可判定一「晴朗」條件,且若光感測器讀數處於或低於所述強度等級,則判定一「多雲」條件。若紅外線讀數與光感測器讀數之間的計算之差增大高於可接受值,則紅外線讀數之置信度增大,且所述邏輯基於如上所述之差量(△)判定雲覆蓋條件。替代地或另外,若光感測器讀數經判定為以大於第一定義之等級的一頻率振盪,則紅外線讀數之置信度水平增大,且所述邏輯基於差量(△)判定雲覆蓋條件。若紅外線讀數經判定為以大於第二定義之等級的一頻率振盪,則光感測器讀數之置信度水平增大,且所述邏輯基於光感測器讀數判定雲覆蓋條件。若當日時間在(iv)夜間期間,則所述邏輯可基於如上所述之差量(△)判定雲覆蓋條件。本文中描述可由紅外線雲偵測器系統使用的邏輯之其他實施,包含參看圖21圖22圖23圖24圖26圖27圖28圖30圖31描述之各種邏輯。 In various implementations, the infrared cloud detector system includes logic for determining cloud cover conditions using one or more of the following as inputs: time of day, day of year, temperature reading T sky from the infrared sensor, ambient temperature reading Tamb from the ambient temperature sensor, and light intensity reading from the light sensor, an oscillation frequency of the visible light intensity reading from the light sensor, and an oscillation frequency of the temperature reading T sky from the infrared sensor. In some cases, the logic determines the frequency of oscillation from a visible light intensity reading, and/or determines the frequency of oscillation from a temperature reading T sky . The logic determines whether the time of day is during one of four time periods: (i) a time period shortly before sunrise and to slightly after sunrise; (ii) a time period defined as after (i) and before (iii); (iii) a time period shortly before sunset (dusk) and until sunset; or (iv) a time period defined as after (iii) and before (i). In one instance, the time of sunrise can be determined from measurements taken by the visible wavelength light sensor. For example, time period (i) may end at the point when the visible light sensor starts measuring direct sunlight, ie, the point at which the intensity reading of the visible light sensor is at or above a minimum intensity value. Additionally or alternatively, time period (iii) may be determined to end at the point at which the intensity reading from the visible wavelength light sensor is at or below a minimum intensity value. In another example, the time of sunrise and/or the time of sunset can be calculated based on the day of the year using a solar calculator, and the time periods (i) and (iii) can be calculated by a defined period of time (e.g., 45 minutes) around the calculated time of sunrise/sunset. If the time of day is within the (i) or (iii) time period, the confidence level for light sensor readings tends to be low and infrared sensor readings tends to be high. In this case, the logic determines the cloud cover condition based on the delta (Δ) calculated with or without the correction factor. For example, the logic may determine a "cloudy" condition if the difference (Δ) is above the upper threshold, a "clear" condition if the difference (Δ) is below the lower threshold, and an "intermittently cloudy" condition if the difference (Δ) is between the upper and lower thresholds. As another example, the logic may assert a "cloudy" condition if the delta (Δ) is above a single threshold, and a "clear" condition if the delta (Δ) is below the threshold. If the time of day is during (ii) daylight, the confidence level for light sensor readings is at a high level, and the confidence level for infrared sensor readings tends to be low. In this case, the logic may use the light sensor readings to determine cloud cover conditions as long as the calculated difference between the infrared readings and the light sensor readings is at or below an acceptable value. For example, the logic may determine a "clear" condition if the light sensor reading is above a certain intensity level, and a "cloudy" condition if the light sensor reading is at or below the intensity level. If the calculated difference between the infrared reading and the light sensor reading increases above an acceptable value, the confidence level of the infrared reading is increased and the logic determines cloud cover conditions based on the difference (Δ) as described above. Alternatively or additionally, if the light sensor reading is determined to oscillate at a frequency greater than the first defined level, the confidence level for the infrared reading is increased and the logic determines cloud cover conditions based on the delta (Δ). If the infrared reading is determined to oscillate at a frequency greater than the second defined level, the confidence level for the light sensor reading is increased, and the logic determines a cloud cover condition based on the light sensor reading. If the time of day is during (iv) nighttime, the logic may determine cloud cover conditions based on the delta (Δ) as described above. Other implementations of logic that may be used by an infrared cloud detector system are described herein , including various logic described with reference to FIGS .

圖3描繪根據一實施的包括一紅外線雲偵測器310及一外部可見光光感測器320之紅外線雲偵測器系統300之示意圖(側視圖)。紅外線雲偵測器310包含一外殼312、一在外殼312之殼體內的紅外線感測器314及一亦在外殼312之殼體內的環境溫度感測器316。紅外線感測器314經組態以基於自其圓錐形視野315內的天空之區域接收之紅外線輻射取得溫度讀數T sky 。環境溫度感測器316經組態以取得在紅外線雲偵測器310周圍的環境空氣之環境溫度讀數T amb 。在一個態樣中,紅外線感測器314為紅外線溫度計(例如,熱電堆)、紅外線輻射計、紅外線地面輻射計及紅外線高溫計中之一者。在一個態樣中,環境溫度感測器為熱敏電阻、溫度計及熱電偶中之一者。 3 depicts a schematic diagram (side view) of an infrared cloud detector system 300 including an infrared cloud detector 310 and an external visible light sensor 320 according to one implementation. The infrared cloud detector 310 includes a housing 312 , an infrared sensor 314 inside the casing of the casing 312 and an ambient temperature sensor 316 also inside the casing of the casing 312 . Infrared sensor 314 is configured to take a temperature reading T sky based on infrared radiation received from a region of the sky within its cone-shaped field of view 315 . The ambient temperature sensor 316 is configured to take an ambient temperature reading T amb of the ambient air surrounding the infrared cloud detector 310 . In one aspect, the infrared sensor 314 is one of an infrared thermometer (eg, a thermopile), an infrared radiometer, an infrared ground radiometer, and an infrared pyrometer. In one aspect, the ambient temperature sensor is one of a thermistor, thermometer, and thermocouple.

紅外線雲偵測器310展示為位於具有房間330(具有一可著色窗332(例如,具有至少一個電致變色裝置之電致變色窗))的建築物之屋頂上,且外部可見光光感測器320位於建築物之外部表面上。可著色窗332位於包含房間330的建築物之外部與內部之間。圖5亦展示在房間330中之一桌子334。雖然在此實例中光感測器320位置與紅外線雲偵測器310分開,但在其他實施中,光感測器320位於外殼之殼體中或在外殼312之外側上。 Infrared cloud detector 310 is shown on the roof of a building having room 330 with a tintable window 332 (eg, an electrochromic window with at least one electrochromic device), and external visible light sensor 320 is on an exterior surface of the building. Tintable window 332 is located between the exterior and interior of the building containing room 330 . FIG. 5 also shows a table 334 in room 330 . Although in this example the light sensor 320 is located separately from the infrared cloud detector 310 , in other implementations the light sensor 320 is located in the housing of the housing or on the outside of the housing 312 .

紅外線感測器314包含一假想軸線,其垂直於紅外線感測器314之感測表面且穿過其中心。紅外線雲偵測器310由一楔形結構支撐,所述楔形結構將紅外線雲偵測器310定向使得按距水平面之一傾斜角β引導其軸線。在其他實施中,可使用其他組件支撐紅外線雲偵測器310。紅外線感測器314經引導使得感測表面面向天空,且可接收來自在其視野315內的天空之區域之紅外線輻射。環境溫度感測器130位於外殼312之殼體內,遠離邊緣,且由外殼312之一懸伸部分遮住,從而避免直射陽光照射環境溫度感測器130之感測表面。雖然未展示,但紅外線雲偵測器310亦包含將其組件固持在外殼312內之一或多個結構。 The infrared sensor 314 includes an imaginary axis that is perpendicular to the sensing surface of the infrared sensor 314 and passes through its center. The infrared cloud detector 310 is supported by a wedge-shaped structure that orients the infrared cloud detector 310 so that its axis is directed at an inclination angle β from the horizontal. In other implementations, other components may be used to support the infrared cloud detector 310 . Infrared sensor 314 is directed such that the sensing surface faces the sky and can receive infrared radiation from the region of sky within its field of view 315 . The ambient temperature sensor 130 is located within the casing of the housing 312 , away from the edge, and is covered by an overhang of the housing 312 to prevent direct sunlight from irradiating the sensing surface of the ambient temperature sensor 130 . Although not shown, infrared cloud detector 310 also includes one or more structures that hold its components within housing 312 .

圖3中,紅外線雲偵測器系統300亦包含一具有一處理器之控制器340,所述處理器可執行儲存於記憶體(未展示)中的用於使用紅外線雲偵測器系統300之邏輯之指令。控制器340與紅外線感測器314及環境溫度感測器316通信(無線或有線)以接收具有溫度讀數之信號。控制器340亦與光感測器320通信(無線或有線)以接收具有可見光強度讀數之信號。 In FIG. 3 , infrared cloud detector system 300 also includes a controller 340 having a processor that executes instructions stored in memory (not shown) for using the logic of infrared cloud detector system 300 . Controller 340 communicates (wirelessly or wired) with infrared sensor 314 and ambient temperature sensor 316 to receive signals with temperature readings. Controller 340 is also in communication (wireless or wired) with light sensor 320 to receive a signal with a visible light intensity reading.

在一些實施中,電力/通信線可自建築物或另一結構延伸至紅外線雲偵測器310。在一個實施中,紅外線雲偵測器310包含一網路介面,其可將紅外線雲偵測器310耦接至一合適纜線。紅外線雲偵測器310可經由網路介面將資料傳達至控制器340或建築物之另一控制器(例如,網路控制器及/或主控制 器)。在一些其他實施中,紅外線雲偵測器310可另外或替代地包含一實現與一或多個外部控制器之無線通信的無線網路介面。 In some implementations, power/communication lines may run from a building or another structure to infrared cloud detector 310 . In one implementation, the infrared cloud detector 310 includes a network interface that couples the infrared cloud detector 310 to a suitable cable. Infrared cloud detector 310 may communicate data via a network interface to controller 340 or another controller of the building (eg, a network controller and/or a master controller). In some other implementations, infrared cloud detector 310 may additionally or alternatively include a wireless network interface to enable wireless communication with one or more external controllers.

在一些實施中,紅外線雲偵測器310或紅外線雲偵測器之其他實例亦可包含一在其外殼內或與其外殼耦接之電池,以對其內之感測器及電組件供電。作為來自電源供應器(例如,來自建築物電源供應器)之電力之代替或補充,所述電池可提供此電力。在一個實施中,一紅外線雲偵測器進一步包含至少一個光伏打電池,例如,在外殼之一外表面上。作為由任一其他電源供應器提供之電力之代替或補充,此至少一個光伏打電池可提供電力。 In some implementations, infrared cloud detector 310 or other examples of infrared cloud detectors may also include a battery within or coupled to its housing to power the sensors and electrical components within it. Instead or in addition to power from a power supply (eg, from a building power supply), the battery can provide this power. In one implementation, an infrared cloud detector further includes at least one photovoltaic cell, for example, on an outer surface of the housing. The at least one photovoltaic cell may provide power instead or in addition to power provided by any other power supply.

紅外線雲偵測器系統300亦包含用於使用以下中之一或多者作為輸入來判定雲覆蓋條件之邏輯:當日時間、一年中之某天、來自紅外線感測器314之溫度讀數T sky 、來自環境溫度感測器316之環境溫度讀數T amb 及來自光感測器320之光強度讀數、來自光感測器320的可見光強度讀數之振盪頻率及來自紅外線感測器314的溫度讀數T sky 之振盪頻率。在操作期間,紅外線感測器314基於自在其視野315內的天空之區域接收之紅外線輻射取得溫度讀數T sky ,環境溫度感測器316取得在紅外線雲偵測器310周圍的環境空氣之環境溫度讀數T amb ,且光感測器320取得在其感測表面處接收的可見光之強度讀數。控制器340之處理器接收來自紅外線感測器314的具有溫度讀數T sky 之信號、來自環境溫度感測器316的具有環境溫度讀數T amb 之信號及來自光感測器320的具有強度讀數之信號。處理器執行儲存於記憶體中的用於使用邏輯基於各種輸入判定雲覆蓋條件之指令。此邏輯之一實例在上文且亦參看圖9描述。在一個實施中,控制器340亦與一或多個建築物組件通信且經組態以控制一或多個建築物組件。舉例而言,控制器340可與可著色窗332通信且經組態以控制其色調等級。在此實施中,紅外線雲偵測器系統300亦包含用於基於判定之雲覆蓋條件判定針對一或多個建築物組件(例如,可著色窗332)之控制決策之邏輯。用於基於 判定之雲覆蓋條件判定控制決策的邏輯之一實例更詳細地關於圖10來描述。 Infrared cloud detector system 300 also includes logic for determining cloud cover conditions using one or more of the following as inputs: time of day, day of year, temperature reading T sky from infrared sensor 314 , ambient temperature reading Tamb from ambient temperature sensor 316 and light intensity reading from light sensor 320 , oscillation frequency of visible light intensity reading from light sensor 320 , and temperature reading from infrared sensor 314 Count the oscillation frequency of T sky . During operation, infrared sensor 314 takes a temperature reading T sky based on infrared radiation received from a region of the sky within its field of view 315 , ambient temperature sensor 316 takes an ambient temperature reading T amb of the ambient air surrounding infrared cloud detector 310 , and light sensor 320 takes a reading of the intensity of visible light received at its sensing surface. The processor of the controller 340 receives the signal from the infrared sensor 314 having a temperature reading T sky , the signal from the ambient temperature sensor 316 having an ambient temperature reading Tamb and the signal from the light sensor 320 having an intensity reading. The processor executes instructions stored in memory for using logic to determine cloud cover conditions based on various inputs. An example of this logic is described above and also with reference to FIG. 9 . In one implementation, the controller 340 is also in communication with and configured to control one or more building components. For example, controller 340 may be in communication with tintable window 332 and configured to control its tint level. In this implementation, infrared cloud detector system 300 also includes logic for determining control decisions for one or more building components (eg, tintable windows 332 ) based on determined cloud coverage conditions. One example of logic for deciding control decisions based on determined cloud cover conditions is described in more detail with respect to FIG. 10 .

雖然在圖3中說明一單一紅外線感測器314、環境溫度感測器316及可見光光感測器320,但應理解,在另一實施中,本揭露內容不受如此限制,且可使用額外組件。舉例而言,倘若一個組件出故障及/或經遮住或另外防止發揮功能,則多個組件可供冗餘使用。在另一實例中,可在不同位置或在不同定向使用兩個或更多個組件以捕獲不同資訊。在一個實施中,使用兩個或更多個紅外線感測器來面向不同定向以捕獲來自不同視野及/或在距建築物/結構不同距離處之紅外線輻射。在具有多個感測器之情況下,可使用來自多個感測器的值之平均數或平均值判定雲覆蓋條件。若兩個或更多個IR感測器位於紅外線雲偵測器之外殼內,則IR感測器通常相互偏移一段距離,所述距離足以減小遮蔽之作用物將影響所有IR感測器之可能性。舉例而言,IR感測器可分開至少約一吋或至少約兩吋。 Although a single infrared sensor 314 , ambient temperature sensor 316 , and visible light sensor 320 are illustrated in FIG. 3 , it should be understood that in another implementation, the disclosure is not so limited and additional components may be used. For example, multiple components are available for redundant use should one component fail and/or be blocked or otherwise prevented from functioning. In another example, two or more components may be used in different locations or in different orientations to capture different information. In one implementation, two or more infrared sensors are used facing different orientations to capture infrared radiation from different fields of view and/or at different distances from the building/structure. Where there are multiple sensors, the cloud cover condition may be determined using an average or average of the values from the multiple sensors. If two or more IR sensors are located within the housing of the infrared cloud detector, the IR sensors are typically offset from each other by a distance sufficient to reduce the likelihood that an obscuring object will affect all IR sensors. For example, the IR sensors can be separated by at least about one inch or at least about two inches.

在以下章節D中描述呈多感測器裝置之形式的紅外線雲偵測器系統之其他實例。 Further examples of infrared cloud detector systems in the form of multi-sensor devices are described in Section D below.

D.多感測器裝置D. Multi-sensor device

根據各種態樣,紅外線雲偵測器系統包含用於量測來自天空之熱輻射及環境之環境溫度的熱感測器。按度(例如,攝氏毫度、攝氏度、華氏度、克耳文度等)輸出熱感測器讀數。可實施的熱感測器類型之一些實例包含一用於量測天空溫度(T sky )之紅外線感測器、一用於量測環境之環境溫度(T amb )之環境溫度感測器及一紅外線感測器裝置,所述紅外線感測器裝置包含一用於量測天空溫度(T sky )之機載紅外線感測器及一用於量測環境之(T amb )之環境溫度感測器兩者。在使用一具有一機載紅外線感測器及一機載環境溫度感測器兩者之紅外線感測器裝置的實施中,所述裝置可輸出天空溫度(T sky )、環境溫度(T amb )及T sky T amb 之間的差(△)中之一或多者的讀數。 According to various aspects, the infrared cloud detector system includes thermal sensors for measuring thermal radiation from the sky and ambient temperature of the environment. Outputs thermal sensor readings in degrees (eg, milli-degrees Celsius, degrees Celsius, degrees Fahrenheit, degrees Kelvin, etc.). Some examples of thermal sensor types that may be implemented include an infrared sensor for measuring the temperature of the sky ( T sky ), an ambient temperature sensor for measuring the ambient temperature of the environment ( T amb ), and an infrared sensor arrangement that includes both an onboard infrared sensor for measuring the temperature of the sky ( T sky ) and an ambient temperature sensor for measuring the ambient temperature ( T amb ). In implementations using an infrared sensor device having both an on-board infrared sensor and an on-board ambient temperature sensor, the device may output a reading of one or more of sky temperature ( T sky ), ambient temperature ( T amb ), and the difference between T sky and Tamb ( Δ).

根據某些態樣,環境溫度可實施為一熱電偶、熱敏電阻等。環境溫度感測器可為紅外線感測器之部分或可為一單獨感測器。 According to some aspects, the ambient temperature may be implemented as a thermocouple, thermistor, or the like. The ambient temperature sensor can be part of the infrared sensor or can be a separate sensor.

在某些實施中,紅外線雲偵測器系統包含一紅外線雲偵測器,其具有在一多感測器裝置之格式內的一或多個紅外線感測器及一或多個可見光光感測器,所述多感測器裝置可具有各種其他可選感測器(例如,環境溫度感測器)及在其外殼內或上之電組件。多感測器裝置之不同實例之細節描述於2016年10月6日提交且題為《多感測器(MULTI-SENSOR)》的美國專利申請第15/287,646號及2015年10月6日提交且題為《多感測器(MULTI-SENSOR)》的美國專利申請第14/998,019號中,所述申請案在此被以引用的方式全部併入。此等實施之多感測器裝置經組態以位於在建築物外部之一環境中,以便將感測器曝露於外部環境,例如,在建築物之屋頂上。在此等實施中之一些中,電力/通信線自建築物延伸至多感測器裝置。在一個此情況下,所述多感測器裝置包含一網路介面,其可將多感測器裝置耦接至一合適纜線。所述多感測器裝置可經由網路介面將感測器資料及其他資訊傳達至一或多個外部控制器,諸如,本端控制器、網路控制器及/或建築物之主控制器。在其他實施中,多感測器裝置可另外或替代地包含一實現與一或多個外部控制器之無線通信的無線網路介面。在一些實施中,多感測器裝置亦可包含一在其外殼內或與外殼耦接之電池以對其內之感測器及電組件供電。作為來自電源供應器(例如,來自建築物電源供應器)之電力之代替或補充,所述電池可提供此電力。在一些實施中,多感測器裝置進一步包含至少一個光伏打電池,例如,在其外殼之表面上。作為來自另一來源之電力的代替或補充,光伏打電池可將電力提供至多感測器裝置。 In certain implementations, an infrared cloud detector system includes an infrared cloud detector having one or more infrared sensors and one or more visible light sensors in the format of a multi-sensor device that may have various other optional sensors (e.g., ambient temperature sensors) and electrical components within or on its housing. Details of various examples of multi-sensor devices are described in U.S. Patent Application Nos. 15/287,646, filed October 6, 2016, and entitled "MULTI-SENSOR," and in U.S. Patent Application Nos. 14/998,019, filed October 6, 2015, and entitled "MULTI-SENSOR," which are hereby incorporated by reference in their entirety. The multi-sensor devices of these implementations are configured to be located in an environment outside the building so that the sensors are exposed to the outside environment, for example, on the roof of the building. In some of these implementations, power/communication lines run from the building to the multi-sensor device. In one such case, the multi-sensor device includes a network interface that couples the multi-sensor device to a suitable cable. The multi-sensor device can communicate sensor data and other information via a network interface to one or more external controllers, such as a local controller, a network controller, and/or a building master controller. In other implementations, the multi-sensor device may additionally or alternatively include a wireless network interface enabling wireless communication with one or more external controllers. In some implementations, the multi-sensor device may also include a battery within or coupled to its housing to power the sensors and electrical components within it. Instead or in addition to power from a power supply (eg, from a building power supply), the battery can provide this power. In some implementations, the multi-sensor device further includes at least one photovoltaic cell, eg, on a surface of its housing. As an alternative or in addition to power from another source, photovoltaic cells can provide power to the multi-sensor device.

-實例A- Instance A

圖4A圖4B圖4C展示根據一個此實施的包括一呈多感測器裝置401之形式之紅外線雲偵測器的紅外線雲偵測器系統400之圖解表示之透 視圖。圖4A圖4B展示多感測器裝置401包含一耦接至一桅桿420之外殼410。桅桿420可充當一安裝總成,其包含一用於耦接至外殼410之一基底部分414的第一端部分及一用於安裝至建築物之第二端部分。在一個實例中,基底部分414經由機械螺紋穿過或經由橡膠密封墊壓緊固定地附接或以其他方式耦接至桅桿420之第一端部分,或與所述第一端部分耦接。桅桿420亦可包含一第二端部分,其可包含一安裝或附接機構以用於將桅桿420安裝或附接至建築物之屋頂(例如,在具有房間330的建築物之屋頂上,如圖3中所展示),諸如,至屋頂之表面、屋頂上之壁或至屋頂上之另一結構。所述外殼包含一蓋411,其經描繪為由光擴散材料形成。蓋411亦包含一變薄之部分412。在其他實例中,蓋411可不透明或透明。 4A , 4B and 4C show perspective views of a diagrammatic representation of an infrared cloud detector system 400 including an infrared cloud detector in the form of a multi-sensor device 401 according to one such implementation. 4A and 4B show that the multi-sensor device 401 includes a housing 410 coupled to a mast 420 . Mast 420 may serve as a mounting assembly including a first end portion for coupling to base portion 414 of housing 410 and a second end portion for mounting to a building. In one example, the base portion 414 is mechanically threaded therethrough or fixedly attached or otherwise coupled to or coupled with the first end portion of the mast 420 via a rubber gasket. Mast 420 may also include a second end portion, which may include a mounting or attachment mechanism for mounting or attaching mast 420 to the roof of a building (e.g., on the roof of a building having room 330 , as shown in FIG. 3 ), such as to a surface of the roof, a wall on the roof, or to another structure on the roof. The housing includes a cover 411 , which is depicted as being formed from a light diffusing material. Cover 411 also includes a thinned portion 412 . In other examples, cover 411 may be opaque or transparent.

圖4B亦展示多感測器裝置401包含一位於基底部分414之底部外部表面上的環境溫度感測器420。環境溫度感測器420經組態以在操作期間量測外部環境之環境溫度。環境溫度感測器420位於底表面上以幫助將其對直射太陽輻射遮住,例如,當紅外線雲偵測器系統400位於上表面面向上之室外環境中時。溫度感測器420可為(例如)熱敏電阻、熱電偶、電阻溫度計、矽帶隙溫度感測器等。 FIG. 4B also shows that the multi-sensor device 401 includes an ambient temperature sensor 420 located on the bottom exterior surface of the base portion 414 . The ambient temperature sensor 420 is configured to measure the ambient temperature of the external environment during operation. The ambient temperature sensor 420 is located on the bottom surface to help shield it from direct solar radiation, for example, when the infrared cloud detector system 400 is located in an outdoor environment with the upper surface facing upward. The temperature sensor 420 may be, for example, a thermistor, thermocouple, resistance thermometer, silicon bandgap temperature sensor, or the like.

圖4C展示在圖4A圖4B中展示之紅外線雲偵測器系統400之多感測器裝置401的內部組件中之一些之透視圖。如所展示,紅外線雲偵測器系統400進一步包含一可見光光感測器440、冗餘的第一紅外線感測器裝置452及第二紅外線感測器裝置454。第一紅外線感測器裝置452及第二紅外線感測器裝置454位於多感測器裝置401之上部部分上,且定位於由光擴散材料形成之蓋411(在圖4A圖4B中展示)後。 Figure 4C shows a perspective view of some of the internal components of the multi-sensor device 401 of the infrared cloud detector system 400 shown in Figures 4A and 4B . As shown, the infrared cloud detector system 400 further includes a visible light sensor 440 , redundant first infrared sensor means 452 and second infrared sensor means 454 . A first infrared sensor device 452 and a second infrared sensor device 454 are located on the upper portion of the multi-sensor device 401 and positioned behind a cover 411 (shown in FIGS. 4A and 4B ) formed of a light diffusing material.

圖4C中所展示,第一紅外線感測器裝置452具有一垂直於其感測表面之第一定向軸線453。第二紅外線感測器裝置454具有一垂直於其感測 表面之第二定向軸線455。在所說明之實例中,第一紅外線感測器裝置452及第二紅外線感測器裝置454經定位使得其定向軸線453455自外殼410之頂部部分面向外(圖4A圖4B中展示),以便能夠取得操作期間之溫度讀數,其係基於自多感測器裝置401上方捕獲之紅外線輻射。第一紅外線感測器裝置452與第二紅外線感測器裝置454分開至少約一吋。在一個態樣中,每一紅外線感測器裝置452454具有一紅外線感測器用於量測天空溫度(T sky )。在另一態樣中,每一紅外線感測器裝置452454具有一用於量測天空溫度(T sky )的用於偵測熱輻射之紅外線感測器及一用於量測環境溫度(T amb )之機載環境溫度感測器。 As shown in FIG. 4C , the first infrared sensor device 452 has a first orientation axis 453 perpendicular to its sensing surface. The second infrared sensor device 454 has a second orientation axis 455 perpendicular to its sensing surface. In the illustrated example, the first infrared sensor device 452 and the second infrared sensor device 454 are positioned such that their orientation axes 453 , 455 face outward from the top portion of the housing 410 (shown in FIGS. 4A and 4B ) so that temperature readings during operation can be taken based on infrared radiation captured from above the multi-sensor device 401 . The first infrared sensor device 452 is separated from the second infrared sensor device 454 by at least about one inch. In one aspect, each infrared sensor device 452 , 454 has an infrared sensor for measuring the sky temperature ( T sky ). In another aspect, each infrared sensor device 452 , 454 has an infrared sensor for detecting thermal radiation for measuring sky temperature ( T sky ) and an on-board ambient temperature sensor for measuring ambient temperature ( T amb ).

在操作期間,所述第一紅外線感測器裝置452及第二紅外線感測器裝置454偵測自其視野內之任何物體或介質輻射之紅外線輻射以量測天空溫度(T sky )。視野係基於第一紅外線感測器452及第二紅外線感測器454之物理及材料性質。單獨基於其物理及材料性質,紅外線感測器之一些實例具有一範圍自約50度至約80度之視野。在一個特定實例中,紅外線感測器具有約70度之視野。 During operation, the first infrared sensor device 452 and the second infrared sensor device 454 detect infrared radiation radiated from any object or medium within their field of view to measure the sky temperature ( T sky ). The field of view is based on the physical and material properties of the first infrared sensor 452 and the second infrared sensor 454 . Based solely on their physical and material properties, some examples of infrared sensors have a field of view ranging from about 50 degrees to about 80 degrees. In one particular example, the infrared sensor has a field of view of about 70 degrees.

光感測器440具有一垂直於其感測表面之定向軸線442。光感測器440定位於外殼410之變薄之部分412後,如圖4A中所展示。變薄之部分412允許光感測器440經由變薄之部分412接收可見光輻射。在操作期間,光感測器440量測經由變薄之部分412接收的可見光之強度。 The light sensor 440 has an orientation axis 442 perpendicular to its sensing surface. The light sensor 440 is positioned behind the thinned portion 412 of the housing 410 , as shown in FIG. 4A . The thinned portion 412 allows the light sensor 440 to receive visible light radiation through the thinned portion 412 . During operation, light sensor 440 measures the intensity of visible light received through thinned portion 412 .

紅外線雲偵測器系統400亦包含用於基於由多感測器裝置401收集之感測器資料進行判定之邏輯。在此情況下,多感測器裝置401及/或一或多個外部控制器(未展示)包含記憶體及一或多個處理器,所述一或多個處理器可執行儲存於記憶體(未展示)中用於使用紅外線雲偵測器系統400之邏輯的指令。所述一或多個外部控制器與多感測器裝置401通信(例如,經由無線或有線通信)以接收具有由紅外線感測器452454、環境溫度感測器420及光感測器 440取得的感測器讀數或經過濾感測器值之信號。在一些實施中,電力/通信線可自建築物或另一結構延伸至紅外線雲偵測器系統400。在一個實施中,紅外線雲偵測器系統400包含一可耦接至一合適纜線之網路介面。紅外線雲偵測器系統400可經由網路介面將資料傳達至建築物之一或多個外部控制器。在一些其他實施中,紅外線雲偵測器系統400可另外或替代地包含一實現與一或多個外部控制器之無線通信的無線網路介面。在一些實施中,紅外線雲偵測器系統400亦可包含一在外殼內或與外殼耦接之電池以對其內之感測器及電組件供電。作為來自電源供應器(例如,來自建築物電源供應器)之電力之代替或補充,所述電池可提供此電力。在一些實施中,紅外線雲偵測器系統400進一步包含至少一個光伏打電池,例如,在外殼之一表面上。 Infrared cloud detector system 400 also includes logic for making decisions based on sensor data collected by multi-sensor device 401 . In this case, the multi-sensor device 401 and/or one or more external controllers (not shown) include memory and one or more processors that can execute instructions stored in the memory (not shown) for using the logic of the infrared cloud detector system 400 . The one or more external controllers communicate with multi-sensor device 401 (eg, via wireless or wired communication) to receive signals having sensor readings or filtered sensor values taken by infrared sensors 452 , 454 , ambient temperature sensor 420 , and light sensor 440 . In some implementations, power/communication lines may run from a building or another structure to infrared cloud detector system 400 . In one implementation, infrared cloud detector system 400 includes a network interface that can be coupled to a suitable cable. The infrared cloud detector system 400 can communicate data to one or more external controllers of the building via a network interface. In some other implementations, infrared cloud detector system 400 may additionally or alternatively include a wireless network interface to enable wireless communication with one or more external controllers. In some implementations, infrared cloud detector system 400 may also include a battery within or coupled to the housing to power the sensors and electrical components within it. Instead or in addition to power from a power supply (eg, from a building power supply), the battery can provide this power. In some implementations, the infrared cloud detector system 400 further includes at least one photovoltaic cell, eg, on a surface of the housing.

根據一個態樣,紅外線雲偵測器系統400包含用於使用以下中之一或多者作為輸入來判定雲覆蓋條件之邏輯:當日時間、一年中之某天、來自紅外線感測器裝置452454中之一或兩者之溫度讀數T sky 、來自環境溫度感測器420之環境溫度讀數T amb 及來自光感測器440之光強度讀數、來自光感測器440的可見光強度讀數之振盪頻率及來自紅外線感測器裝置452454的溫度讀數T sky 之振盪頻率。此邏輯之實例在本文中例如關於圖8圖10描述。 According to one aspect, infrared cloud detector system 400 includes logic for determining cloud cover conditions using one or more of the following as inputs: time of day, day of year, temperature reading T sky from one or both of infrared sensor devices 452 , 454 , ambient temperature reading Tamb from ambient temperature sensor 420 and light intensity reading from light sensor 440 , oscillation of visible light intensity reading from light sensor 440 Frequency and oscillation frequency of the temperature reading T sky from the infrared sensor means 452 , 454 . Examples of this logic are described herein, for example, with respect to FIGS . 8-10 .

根據另一態樣,紅外線雲偵測器系統400包含各種邏輯,諸如,參看圖21圖22圖23圖24圖26圖27圖28圖30圖31描述之某些邏輯。舉例而言,在一個實施中,多感測器裝置401及/或一或多個外部控制器包含用於以下操作之邏輯:1)基於來自紅外線感測器裝置452454中之一或兩者之溫度讀數T sky 及來自環境溫度感測器420之環境溫度讀數T amb 判定一經過濾紅外線感測器值;及/或2)基於來自光感測器440之光強度讀數判定一經過濾光感測器值。用於判定一經過濾紅外線感測器值的邏輯之一實例為參考圖23中展示之流程圖2300描述之模組D'。根據某些實施,控制邏輯可基於一或多 個天空感測器、一或多個環境感測器或天空感測器及環境感測器兩者判定一經過濾紅外線感測器值。用於判定一經過濾光感測器值的邏輯之一實例為參看圖31中展示之流程圖3100描述之模組C1'。 According to another aspect , infrared cloud detector system 400 includes various logic, such as some of the logic described with reference to FIGS . For example, in one implementation, multi-sensor device 401 and/or one or more external controllers include logic for: 1) determining a filtered infrared sensor value based on the temperature reading T sky from one or both of infrared sensor devices 452 , 454 and the ambient temperature reading Tamb from ambient temperature sensor 420 ; and/or 2) determining a filtered light sensor value based on the light intensity reading from light sensor 440 . One example of logic for determining a filtered infrared sensor value is module D' described with reference to the flowchart 2300 shown in FIG. 23 . According to some implementations, the control logic may determine a filtered infrared sensor value based on one or more sky sensors, one or more environmental sensors, or both sky sensors and environmental sensors. An example of logic for determining a filtered light sensor value is module C1' described with reference to flowchart 3100 shown in FIG .

在一種情況下,多感測器裝置401可執行儲存於記憶體中用於判定經過濾感測器值且經由一通信網路將經過濾感測器值傳遞至外部控制器之指令。包含一可經由一通信網路1410將感測器讀數及/或經過濾值傳遞至外部控制器之多感測器裝置的紅外線雲偵測器系統400之一實例展示於圖14中。由外部控制器實施之控制邏輯可作出著色決策以判定一色調等級且實施色調指令以轉變建築物中的一或多個可著色窗之色調。參考圖22圖24圖28圖30中展示之模組A1、B、C1及D描述此控制邏輯。 In one instance, multi-sensor device 401 may execute instructions stored in memory for determining filtered sensor values and communicating the filtered sensor values to an external controller over a communication network. An example of an infrared cloud detector system 400 including a multi-sensor device that can communicate sensor readings and/or filtered values to an external controller via a communication network 1410 is shown in FIG. 14 . Control logic implemented by an external controller can make tinting decisions to determine a tint level and implement tint commands to shift the tint of one or more tintable windows in a building. This control logic is described with reference to modules A1 , B, C1 and D shown in FIGS. 22 , 24-28 and 30 .

-實例B- Instance B

32A及圖32B展示根據各種實施的一包括一呈多感測器裝置3201之形式的紅外線雲偵測器及經由一通信網路(未展示)與多感測器裝置3201通信之一或多個外部控制器(未展示)的紅外線雲偵測器系統3200之圖解表示之透視圖。圖33A圖33B展示根據一個態樣的多感測器裝置3301之內部組件之圖解表示之透視圖。在一個實施中,圖32A圖32B之多感測器裝置3201可實施在圖33A圖33B中展示的多感測器裝置3301之組件。 32A and 32B show perspective views of a diagrammatic representation of an infrared cloud detector system 3200 including an infrared cloud detector in the form of a multi-sensor device 3201 and one or more external controllers (not shown) in communication with the multi-sensor device 3201 via a communication network (not shown), according to various implementations. 33A and 33B show perspective views of diagrammatic representations of internal components of a multi-sensor device 3301 according to one aspect. In one implementation, the multi-sensor device 3201 of FIGS. 32A and 32B may implement components of the multi-sensor device 3301 shown in FIGS. 33A and 33B .

圖32A圖32B中,多感測器裝置3201包含一耦接至一桅桿3220之外殼3210。桅桿3220可充當一安裝總成,其包含一用於耦接至外殼3210之一基底部分3214的第一端部分及一用於安裝至建築物之第二端部分。在一個實例中,基底部分3214經由機械螺紋穿過或經由橡膠密封墊壓緊固定地附接或以其他方式耦接至桅桿3220之第一端部分,或與所述第一端部分耦接。桅桿3220亦可包含一第二端部分,其可包含一安裝或附接機構以用於將桅桿3220安裝或附接至建築物之屋頂(例如,在具有房間3230的建築物之屋頂上,如圖3中所展示), 諸如,至屋頂之表面、屋頂上之壁或至屋頂上之另一結構。所述外殼包含一蓋3211,其由光擴散材料形成。蓋3211亦包含一變薄之部分3212In FIGS. 32A and 32B , the multi-sensor device 3201 includes a housing 3210 coupled to a mast 3220 . Mast 3220 may serve as a mounting assembly comprising a first end portion for coupling to base portion 3214 of housing 3210 and a second end portion for mounting to a building. In one example, the base portion 3214 is mechanically threaded therethrough or fixedly attached or otherwise coupled to or coupled with the first end portion of the mast 3220 via a rubber gasket. Mast 3220 may also include a second end portion, which may include a mounting or attachment mechanism for mounting or attaching mast 3220 to the roof of a building (e.g., on the roof of a building having room 3230 , as shown in FIG. 3 ), such as to a surface of the roof, a wall on the roof, or to another structure on the roof. The housing includes a cover 3211 formed of a light diffusing material. Cover 3211 also includes a thinned portion 3212 .

圖32B中所展示,多感測器裝置3201亦包含一位於基底部分3214之底部外部表面上的第一環境溫度感測器3222。第一環境溫度感測器3222經組態以在操作期間量測外部環境之環境溫度。第一環境溫度感測器3222位於底表面上以幫助將其對直射太陽輻射遮住,例如,當紅外線雲偵測器系統3200位於上表面面向上之室外環境中時。第一環境溫度感測器3222可為例如熱敏電阻、熱電偶、電阻溫度計、矽帶隙溫度感測器等。 As shown in FIG. 32B , multi-sensor device 3201 also includes a first ambient temperature sensor 3222 located on the bottom exterior surface of base portion 3214 . The first ambient temperature sensor 3222 is configured to measure the ambient temperature of the external environment during operation. The first ambient temperature sensor 3222 is located on the bottom surface to help shield it from direct solar radiation, for example, when the infrared cloud detector system 3200 is located in an outdoor environment with the upper surface facing upward. The first ambient temperature sensor 3222 can be, for example, a thermistor, a thermocouple, a resistance thermometer, a silicon bandgap temperature sensor, and the like.

圖33A圖33B圖33C展示根據一個態樣的多感測器裝置3301之內部組件之圖解表示之透視圖。多感測器裝置3301通常包含一外殼3302(部分展示),其具有一由包含至少一個變薄之部分之光擴散材料形成的蓋。多感測器裝置3301亦包含一擴散器3304。如所展示,在一些實施中,外殼3302及擴散器3304關於一穿過多感測器裝置3301之中心的假想軸線3342旋轉對稱。 33A , 33B, and 33C show perspective views of diagrammatic representations of internal components of a multi-sensor device 3301 according to one aspect. The multi-sensor device 3301 generally includes a housing 3302 (partially shown) having a cover formed of light diffusing material including at least one thinned portion. The multi-sensor device 3301 also includes a diffuser 3304 . As shown, in some implementations, the housing 3302 and the diffuser 3304 are rotationally symmetric about an imaginary axis 3342 passing through the center of the multi-sensor device 3301 .

多感測器裝置3301亦包含位於多感測器裝置3301之上部部分上且定位於由光擴散材料形成之蓋後的第一紅外線感測器裝置3372及第二紅外線感測器裝置3374。第一紅外線感測器裝置3372及第二紅外線感測器裝置3374中之每一者包含一用於量測天空溫度(T sky )之機載紅外線感測器及一用於量測環境溫度(T amb )之機載環境溫度感測器。第一紅外線感測器裝置3372經定位以在沿著假想軸線3373之方向上自多感測器裝置3201之上表面面向外。第二紅外線感測器裝置3374經定位以在沿著假想軸線3375之方向上自多感測器裝置3201之上表面面向外。多感測器裝置3301亦可包含位於多感測器裝置3301之上部部分上且定位於由光擴散材料形成之蓋後的可選第三紅外線感測器裝置3360。第三紅外線感測器裝置3360為獨立式紅外線感測器,或包含一機載紅外線感測器及機載環境溫度感測器兩者。可選第三紅外線感測器裝置3360經定位 以在沿著假想軸線3361之方向上自多感測器裝置3201之上表面面向外。在說明之實例中,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374經定位使得其軸線33733375自外殼(例如,圖4A圖4B中展示之外殼)之頂部部分面向外,以便能夠在操作期間取得係基於自多感測器裝置3301上方捕獲之紅外線輻射的溫度讀數。在一個態樣中,第一紅外線感測器裝置3372與第二紅外線感測器裝置3374分開至少約一吋。 The multi-sensor device 3301 also includes a first infrared sensor device 3372 and a second infrared sensor device 3374 on an upper portion of the multi-sensor device 3301 and positioned behind a cover formed of a light diffusing material. Each of the first infrared sensor device 3372 and the second infrared sensor device 3374 includes an on-board infrared sensor for measuring sky temperature ( T sky ) and an on-board ambient temperature sensor for measuring ambient temperature ( T amb ). The first infrared sensor device 3372 is positioned to face outward from the upper surface of the multi-sensor device 3201 in a direction along the imaginary axis 3373 . The second infrared sensor device 3374 is positioned to face outward from the upper surface of the multi-sensor device 3201 in a direction along the imaginary axis 3375 . The multi-sensor device 3301 may also include an optional third infrared sensor device 3360 on an upper portion of the multi-sensor device 3301 and positioned behind a cover formed of a light diffusing material. The third infrared sensor device 3360 is a stand-alone infrared sensor, or includes both an on-board infrared sensor and an on-board ambient temperature sensor. Optional third infrared sensor device 3360 is positioned to face outward from the upper surface of multi-sensor device 3201 in a direction along imaginary axis 3361 . In the illustrated example, the first infrared sensor device 3372 and the second infrared sensor device 3374 are positioned such that their axes 3373 , 3375 face outward from the top portion of the housing (e.g., the housing shown in FIGS. 4A and 4B ) so that temperature readings based on infrared radiation captured from above the multi-sensor device 3301 can be taken during operation. In one aspect, the first infrared sensor device 3372 is separated from the second infrared sensor device 3374 by at least about one inch.

視情況,多感測器裝置3301亦可包含一位於外殼之底部外部表面上以將其對直射太陽輻射遮住之獨立式環境溫度感測器(未展示)。獨立式環境溫度感測器(例如,熱敏電阻、熱電偶、電阻溫度計、矽帶隙溫度感測器)經組態以在操作期間量測外部環境之環境溫度。 Optionally, the multi-sensor device 3301 may also include a free-standing ambient temperature sensor (not shown) located on the bottom exterior surface of the housing to shield it from direct solar radiation. Standalone ambient temperature sensors (eg, thermistors, thermocouples, resistance thermometers, silicon bandgap temperature sensors) are configured to measure the ambient temperature of the external environment during operation.

返回到圖33A圖33B,多感測器裝置3301包含定位於由光擴散材料形成之蓋後的多個可見光光感測器3342。雖然展示了十二(12)個可見光光感測器3342,但應理解,可實施不同數目。多個可見光光感測器3342沿著一環(例如,所述環可具有與軸線3342一致之中心且可界定一與軸線3342正交之平面)環形地定位。在此實施中,更具體言之,可見光光感測器3342可沿著環之圓周等距地定位。可見光光感測器3342中之每一者具有一光敏性區3343。多感測器裝置3301亦視情況包含一位於多感測器裝置3301之上部部分上的額外面向上之可見光感測器3340。此可選可見光光感測器感測器3340具有一與軸線3342平行且在一些情況下沿著軸線3342引導且與其同心之定向軸線。可見光光感測器3340具有一光敏性區3343Returning to FIGS. 33A and 33B , the multi-sensor device 3301 includes a plurality of visible light sensors 3342 positioned behind a cover formed of a light diffusing material. While twelve (12) visible light photosensors 3342 are shown, it should be understood that a different number may be implemented. A plurality of visible light photosensors 3342 are positioned annularly along a ring (eg, the ring may have a center coincident with axis 3342 and may define a plane orthogonal to axis 3342 ). In this implementation, and more specifically, visible light photosensors 3342 may be positioned equidistantly along the circumference of the ring. Each of the visible light photosensors 3342 has a photosensitive region 3343 . The multi-sensor device 3301 also optionally includes an additional upward facing visible light sensor 3340 on the upper portion of the multi-sensor device 3301 . This optional VL light sensor sensor 3340 has an orientation axis parallel to and in some cases directed along and concentric with axis 3342 . The visible light sensor 3340 has a photosensitive area 3343 .

在一些實施中,可見光光感測器33423340中之每一者之視角在大致30度至大致120度之範圍中。舉例而言,在一個特定應用中,視角為大致100度。在一些實施中,可由可見光光感測器33423340中之每一者偵測的入射光之分佈接近高斯(或「正態」)分佈。假定由可見光光感測器33423340 中之每一者偵測的光與一高斯分佈相關聯,則由感光器中之每一者偵測的功率之一半(-3dB點)在由所述視角界定之一檢視圓錐內發現。 In some implementations, the viewing angle of each of the visible light sensors 3342 , 3340 is in the range of approximately 30 degrees to approximately 120 degrees. For example, in one particular application, the viewing angle is approximately 100 degrees. In some implementations, the distribution of incident light detectable by each of the visible light sensors 3342 , 3340 approaches a Gaussian (or "normal") distribution. Assuming that the light detected by each of the visible light photosensors 3342 , 3340 is associated with a Gaussian distribution, half of the power detected by each of the photosensors (the -3dB point) is found within a viewing cone defined by the viewing angle.

擴散器3304定位於可見光光感測器3342之環之周邊周圍以在光由光感測器3342感測前擴散在裝置上之光入射。舉例而言,擴散器3304可有效地充當一光積分器,其更均勻地散佈或分佈入射光。此組態減小任一個可見光光感測器3342接收到充分強度之針尖反射或眩光(諸如,離開汽車擋風玻璃、金屬表面或鏡子)之可能性。擴散器3342亦可增加呈傾斜角度的光入射之偵測。圖33A展示根據一些實施的能夠在圖33A之多感測器裝置3301中使用的一實例擴散器3304之圖解表示。在一些實施中,擴散器3304為一具有一環形狀之單一整體結構。舉例而言,擴散器3304可具有一中空圓柱形形狀,其具有一內徑、一外徑及由內徑與外徑界定之一厚度。在一些實施中,擴散器3304具有一涵蓋可見光光感測器3342中之每一者之視野的高度(所述視野由視角及可見光光感測器3342之光敏性區之外表面與擴散器3304之內表面之間的距離或間距界定)。 Diffuser 3304 is positioned around the perimeter of the ring of visible light sensor 3342 to diffuse light incident on the device before the light is sensed by light sensor 3342 . For example, diffuser 3304 can effectively act as a light integrator, which spreads or distributes incident light more evenly. This configuration reduces the likelihood that either visible light photosensor 3342 will receive a sufficient intensity of a tip reflection or glare (such as off a car windshield, metal surface, or mirror). The diffuser 3342 can also increase the detection of light incident at oblique angles. Figure 33A shows a diagrammatic representation of an example diffuser 3304 that can be used in the multi-sensor device 3301 of Figure 33A, according to some implementations. In some implementations, the diffuser 3304 is a single unitary structure having a ring shape. For example, diffuser 3304 may have a hollow cylindrical shape with an inner diameter, an outer diameter, and a thickness defined by the inner and outer diameters. In some implementations, the diffuser 3304 has a height that encompasses the field of view of each of the visible light photosensors 3342 (the field of view is defined by the viewing angle and the distance or spacing between the surface outside the photosensitive region of the visible light photosensor 3342 and the inner surface of the diffuser 3304 ).

在操作期間,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之紅外線感測器偵測到自其視野內之任何物體或介質輻射的紅外線輻射以量測天空溫度(T sky )。所述視野係基於紅外線感測器之物理及材料性質。單獨基於其物理及材料性質,紅外線感測器之一些實例具有一範圍自約50度至約80度之視野。在一個特定實例中,紅外線感測器具有約70度之視野。在操作期間,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之環境溫度感測器量測環境溫度(T amb )。雖然展示多感測器3301具有冗餘紅外線感測器,但應理解,多感測器包含一或多個紅外線感測器。在操作期間,定位於由光擴散材料形成之蓋後的多個可見光光感測器3342及面向上之光感測器3340量測接收到的可見光之強度。 During operation, the infrared sensors of the first infrared sensor device 3372 and the second infrared sensor device 3374 detect infrared radiation radiated from any object or medium within their field of view to measure the sky temperature ( T sky ). The field of view is based on the physical and material properties of the infrared sensor. Based solely on their physical and material properties, some examples of infrared sensors have a field of view ranging from about 50 degrees to about 80 degrees. In one particular example, the infrared sensor has a field of view of about 70 degrees. During operation, the ambient temperature sensors of the first infrared sensor device 3372 and the second infrared sensor device 3374 measure the ambient temperature ( T amb ). Although multi-sensor 3301 is shown with redundant infrared sensors, it should be understood that multi-sensor includes one or more infrared sensors. During operation, a plurality of visible light photosensors 3342 and upward facing photosensors 3340 positioned behind a cover formed of light diffusing material measure the intensity of the received visible light.

返回到圖32A圖32B,紅外線雲偵測器系統3200亦包含用於基於由多感測器裝置之感測器取得的讀數之感測器資料進行確定之邏輯。在此情況下,多感測器裝置及/或一或多個外部控制器(未展示)包含記憶體及一或多個處理器,所述一或多個處理器可執行儲存於記憶體(未展示)中用於使用紅外線雲偵測器系統3200之邏輯的指令。一或多個外部控制器與多感測器裝置通信(無線或有線)以接收具有由紅外線感測器(例如,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之紅外線感測器及/或紅外線感測器3360)、環境溫度感測器(例如,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之環境溫度感測器或位於外殼之一底部外部表面上以將其對直射太陽輻射遮住之可選獨立式溫度感測器3222)及可見光光感測器(例如,光感測器3342或面向上之光感測器3340)取得之感測器讀數或經過濾感測器值的信號。在一些實施中,電力/通信線可自建築物或另一結構延伸至紅外線雲偵測器系統3200。在一個實施中,紅外線雲偵測器系統3200包含一可耦接至一合適纜線之網路介面。紅外線雲偵測器系統3200可經由網路介面將資料傳達至建築物之一或多個外部控制器。在一些其他實施中,紅外線雲偵測器系統3200可另外或替代地包含一實現與一或多個外部控制器之無線通信的無線網路介面。在一些實施中,紅外線雲偵測器系統3200亦可包含一在外殼內或與外殼耦接之電池以對其內之感測器及電組件供電。作為來自電源供應器(例如,來自建築物電源供應器)之電力之代替或補充,所述電池可提供此電力。在一些實施中,紅外線雲偵測器系統3200進一步包含至少一個光伏打電池,例如,在外殼之一表面上。 Returning to FIGS. 32A and 32B , the infrared cloud detector system 3200 also includes logic for making determinations based on sensor data from readings taken by the sensors of the multi-sensor device. In this case, the multi-sensor device and/or one or more external controllers (not shown) include memory and one or more processors that can execute instructions stored in memory (not shown) for using the logic of infrared cloud detector system 3200 .一或多個外部控制器與多感測器裝置通信(無線或有線)以接收具有由紅外線感測器(例如,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之紅外線感測器及/或紅外線感測器3360 )、環境溫度感測器(例如,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之環境溫度感測器或位於外殼之一底部外部表面上以將其對直射太陽輻射遮住之可選獨立式溫度感測器3222 )及可見光光感測器(例如,光感測器3342或面向上之光感測器3340 )取得之感測器讀數或經過濾感測器值的信號。 In some implementations, power/communication lines may run from a building or another structure to infrared cloud detector system 3200 . In one implementation, infrared cloud detector system 3200 includes a network interface that can be coupled to a suitable cable. The infrared cloud detector system 3200 can communicate data to one or more external controllers of the building via a network interface. In some other implementations, infrared cloud detector system 3200 may additionally or alternatively include a wireless network interface to enable wireless communication with one or more external controllers. In some implementations, infrared cloud detector system 3200 may also include a battery within or coupled to the housing to power the sensors and electrical components within it. Instead or in addition to power from a power supply (eg, from a building power supply), the battery can provide this power. In some implementations, infrared cloud detector system 3200 further includes at least one photovoltaic cell, eg, on a surface of the housing.

根據一個態樣,紅外線雲偵測器系統3200進一步包含用於將以下各者用作輸入來判定雲覆蓋條件之邏輯:當日時間、一年中之某天、來自紅外線感測器(例如,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之紅外線感測器及/或紅外線感測器3360)中之一或多者之天空溫度讀數T sky 、來 自一或多個環境溫度感測器(例如,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之環境溫度感測器或位於外殼之一底部外部表面上以將其對直射太陽輻射遮住之可選獨立式溫度感測器3222)之環境溫度讀數T amb 及來自一或多個光感測器(例如,光感測器3342或面向上之光感測器3340)之可見光強度讀數及來自紅外線感測器的溫度讀數T sky 之振盪頻率。此邏輯之實例在本文中例如關於圖8圖10描述。 根據一個態樣,紅外線雲偵測器系統3200進一步包含用於將以下各者用作輸入來判定雲覆蓋條件之邏輯:當日時間、一年中之某天、來自紅外線感測器(例如,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之紅外線感測器及/或紅外線感測器3360 )中之一或多者之天空溫度讀數T sky 、來自一或多個環境溫度感測器(例如,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之環境溫度感測器或位於外殼之一底部外部表面上以將其對直射太陽輻射遮住之可選獨立式溫度感測器3222 )之環境溫度讀數T amb 及來自一或多個光感測器(例如,光感測器3342或面向上之光感測器3340 )之可見光強度讀數及來自紅外線感測器的溫度讀數T sky 之振盪頻率。 Examples of this logic are described herein, for example, with respect to FIGS . 8-10 .

根據另一態樣,紅外線雲偵測器系統3200進一步包含參看圖21圖22圖23圖24圖26圖27圖28圖30圖31描述之各種邏輯。在一個實施中,舉例而言,多感測器裝置3301及/或一或多個外部控制器包含用於以下操作之邏輯:1)基於來自紅外線感測器(例如,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之紅外線感測器及/或紅外線感測器3360)中之一或多者之溫度讀數T sky 及來自一或多個環境溫度感測器(例如,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之環境溫度感測器或位於外殼之一底部外部表面上以將其對直射太陽輻射遮住之可選獨立式溫度感測器3222)之環境溫度讀數T amb 判定一經過濾紅外線感測器值;及/或2)基於來自一或多個光感測器(例如,光感測器3342或面向上之光感測器3340)之光強度讀數判定一經過濾光感測器值。用於判定一經過濾紅外線感測器值的邏輯之一實例為參考圖23中展示之流程圖2300描述之模組D'。用於判定一經過濾紅外線感測器值的邏輯之一實例為參考圖31中展示之流程圖3100描述之模組C1'。在一種情況下,多感測器裝置401可執行儲存於記憶體中用於判定經過濾感測器值且經由一通信網路將經過濾感測器值傳遞至外部控制器之指令。包含一可經由一通信網路1410將感測器讀數及/或經過濾值傳遞至外部控制器之多感測器裝置的紅外線雲偵測器系統之一實例在圖14中展示。由外部控制器實施之控制邏輯可作出著色決策以判定一色調等級且實施色調指令以轉變建築物中的一或多個 可著色窗之色調。參考圖22圖24圖28圖30中展示之模組A1、B、C1及D描述此控制邏輯。 According to another aspect, the infrared cloud detector system 3200 further includes various logics described with reference to FIGS. 21 , 22 , 23 , 24 , 26 , 27 , 28 and 30 and 31 .在一個實施中,舉例而言,多感測器裝置3301及/或一或多個外部控制器包含用於以下操作之邏輯:1)基於來自紅外線感測器(例如,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之紅外線感測器及/或紅外線感測器3360 )中之一或多者之溫度讀數T sky 及來自一或多個環境溫度感測器(例如,第一紅外線感測器裝置3372及第二紅外線感測器裝置3374之環境溫度感測器或位於外殼之一底部外部表面上以將其對直射太陽輻射遮住之可選獨立式溫度感測器3222 )之環境溫度讀數T amb 判定一經過濾紅外線感測器值;及/或2)基於來自一或多個光感測器(例如,光感測器3342或面向上之光感測器3340 )之光強度讀數判定一經過濾光感測器值。 One example of logic for determining a filtered infrared sensor value is module D' described with reference to the flowchart 2300 shown in FIG. 23 . An example of logic for determining a filtered IR sensor value is module C1' described with reference to flowchart 3100 shown in FIG. 31 . In one instance, multi-sensor device 401 may execute instructions stored in memory for determining filtered sensor values and communicating the filtered sensor values to an external controller over a communication network. An example of an infrared cloud detector system including a multi-sensor device that can communicate sensor readings and/or filtered values to an external controller via a communication network 1410 is shown in FIG. 14 . Control logic implemented by an external controller can make tinting decisions to determine a tint level and implement tint commands to shift the tint of one or more tintable windows in a building. This control logic is described with reference to modules A1 , B, C1 and D shown in FIGS. 22 , 24-28 and 30 .

E.來自光感測器之強度讀數與在不同雲條件期間之差量值之比較E. Comparison of Intensity Readings from Light Sensors and Delta Values During Different Cloud Conditions

如上所論述,在偵測上午早些時候及晚上之「晴朗」條件過程中,紅外線感測器可比可見光光感測器準確。然而,直射太陽光及其他條件可引起一些雜訊,所述雜訊導致紅外線感測器讀數之振盪。若此等振盪之頻率及/或振幅低,則紅外線感測器讀數可用以作出雲覆蓋條件之高置信度評價。又,某些條件(例如,快速移動之雲)可引起光感測器讀數之振盪。若振盪頻率低,則光感測器讀數可用以作出在白天期間的雲覆蓋條件之高置信度評價。在某些實施中,邏輯可判定紅外線感測器讀數之振盪是否具有高頻及/或光感測器讀數之振盪是否具有高頻。若判定紅外線感測器讀數之振盪具有高頻,則邏輯使用光感測器讀數判定雲覆蓋條件。若判定光感測器讀數之振盪具有高頻,則所述邏輯使用紅外線感測器讀數與環境溫度感測器讀數之間的差判定雲覆蓋條件。為了說明此邏輯取決於振盪而選擇感測器讀數類型使用之技術優勢,圖5A、圖5B圖6A圖6B圖7A圖7B包含由可見光光感測器取得用於與在不同雲覆蓋條件期間由紅外線感測器取得之溫度讀數T sky 與由環境溫度感測器取得之溫度讀數T amb 之間的差(差量(△))比較之強度讀數I之曲線之曲線圖。可見光光感測器、紅外線感測器及環境溫度感測器類似於關於圖3中展示之紅外線雲偵測器310之組件所描述的彼等感測器。所述曲線中之每一者具有在一天中之時間週期期間取得之讀數。 As discussed above, infrared sensors can be more accurate than visible light sensors in detecting "clear" conditions in the early morning and evening. However, direct sunlight and other conditions can cause some noise that causes oscillations in the infrared sensor readings. If the frequency and/or amplitude of these oscillations are low, infrared sensor readings can be used to make a high confidence assessment of cloud cover conditions. Also, certain conditions (eg, fast moving clouds) can cause oscillations in light sensor readings. If the oscillation frequency is low, the light sensor readings can be used to make a high confidence assessment of cloud cover conditions during the day. In some implementations, logic may determine whether the oscillations in infrared sensor readings have a high frequency and/or whether the oscillations in light sensor readings have a high frequency. If it is determined that the oscillations in the infrared sensor readings have a high frequency, the logic uses the light sensor readings to determine cloud cover conditions. If it is determined that the oscillations in the light sensor readings have a high frequency, the logic uses the difference between the infrared sensor readings and the ambient temperature sensor readings to determine cloud cover conditions. To illustrate the technical advantage of using this logic to select the type of sensor reading that depends on the oscillation, FIGS. 5A , 5B , 6A , 6B , 7A and 7B contain graphs of intensity readings I taken by the visible light photosensor for comparison with the difference (difference ( Δ )) between the temperature reading T sky taken by the infrared sensor and the temperature reading Tamb taken by the ambient temperature sensor during different cloud cover conditions. The visible light sensor, infrared sensor, and ambient temperature sensor are similar to those sensors described with respect to the components of infrared cloud detector 310 shown in FIG. 3 . Each of the curves has readings taken during a time period of the day.

實施多感測器裝置中之紅外線感測器之一個優勢在於,如與光感測器相比,振盪之振幅常將較低,此係歸因於通常較大之視野、光擴散器及在一整天當中紅外線感測器對熱量之一致回應,因此可按較高置信度作出基於紅外 線感測器之評價。 One advantage of implementing an infrared sensor in a multi-sensor device is that the amplitude of the oscillations will generally be lower as compared to a light sensor due to the generally larger field of view, light diffuser, and consistent response of the infrared sensor to heat throughout the day, so infrared based sensing can be made with higher confidence. Evaluation of line sensors.

圖5A圖5B包含在全天有太陽且晴朗(只是在白天中間時候有雲經過)之一天取得的讀數之曲線之曲線圖。圖5A為具有隨著時間的過去由可見光光感測器取得的強度讀數I之曲線510之曲線圖。圖5B為具有隨著時間的過去由紅外線感測器取得之溫度讀數T sky 與由環境溫度感測器取得之溫度讀數T amb 之間的差(差量(△))之曲線520之曲線圖。如在圖5A之曲線510中所展示,由可見光光感測器取得之強度讀數I在白天中之多數時間較高,且當在白天中間時候雲經過時,按高頻(短週期)振盪下降。圖5A之曲線520展示差量(△)之值在全天期間未增大高於下臨限值,此指示高置信度「晴朗」條件。 5A - 5B contain graphs of plots of readings taken on a day with full sun and clear weather (only clouds passing by in the middle of the day). FIG. 5A is a graph with a plot 510 of intensity readings I taken by a visible light photosensor over time. 5B is a graph having a curve 520 of the difference (difference (Δ)) between the temperature reading T sky taken by the infrared sensor and the temperature reading Tamb taken by the ambient temperature sensor over time. As shown in curve 510 of FIG. 5A , the intensity reading I taken by the visible light photosensor is high most of the day and falls off in a high frequency (short period) oscillation when clouds pass in the middle of the day. Curve 520 of FIG. 5A shows that the value of Delta (Δ) did not increase above the lower threshold value during the day, which indicates a high confidence "clear" condition.

圖6A圖6B包含在上午具有頻繁經過的雲直至下午及稍後在下午有兩個慢速移動之雲經過的一天上取得之讀數之曲線之曲線圖。圖6A為具有隨著時間的過去由可見光光感測器取得的強度讀數I之曲線610之曲線圖。圖6B為具有隨著時間的過去由紅外線感測器取得之溫度讀數T sky 與隨著時間的過去由環境溫度感測器取得之溫度讀數T amb 之間的差(差量(△))之曲線640之曲線圖。如圖6A之曲線610中所展示,由可見光光感測器取得之強度讀數I在上午直至下午有頻繁雲經過之時間週期期間具有一高頻部分620。稍後在兩個慢速移動雲經過之下午,曲線610具有一低頻部分630圖6B中之曲線640展示差量(△)之值在上午直至下午有頻繁雲經過之時間週期期間具有高頻,且所述值保持在上臨限值與下臨限值之間,指示間歇性多雲。稍後在下午的差量(△)之值具有一低頻振盪,其具有在上臨限值與下臨限值之間的值,及亦在「間歇性多雲」與「晴朗」條件之間移位的下部臨限值。在此情況下,紅外線感測器值指示自上午直至下午之高置信度「間歇性多雲」條件,且光感測器值指示在稍後下午之高置信度「間歇性多雲」條件。 6A - 6B contain graphs of plots of readings taken on a day with frequent passing clouds in the morning until afternoon and later in the afternoon with two slow moving clouds passing by. FIG. 6A is a graph with a plot 610 of intensity readings I taken by a visible light photosensor over time. 6B is a graph having a curve 640 of the difference (Delta (Δ)) between the temperature reading T sky taken by the infrared sensor over time and the temperature reading Tamb taken by the ambient temperature sensor over time. As shown in curve 610 of FIG. 6A , the intensity reading I taken by the visible light sensor has a high frequency portion 620 during the time period of morning through afternoon when there are frequent cloud passages. Later in the afternoon when two slow moving clouds pass by, the curve 610 has a low frequency portion 630 . Curve 640 in FIG. 6B shows that the value of delta (Δ) has a high frequency during the time period with frequent cloud passing in the morning until the afternoon, and the value remains between the upper and lower thresholds, indicating intermittent cloudiness. The value of delta (Δ) later in the afternoon has a low frequency oscillation with values between the upper and lower thresholds, and the lower threshold is also shifted between "intermittently cloudy" and "clear" conditions. In this case, the infrared sensor values indicate high confidence "intermittent cloudy" conditions from the morning until the afternoon, and the light sensor values indicate high confidence "intermittent cloudy" conditions later in the afternoon.

圖7A圖7B包含在多雲之一天(惟在白天之中間時候之一短 時間除外)期間隨著時間的過去取得的讀數之曲線之曲線圖。圖7A為具有隨著時間的過去由可見光光感測器取得的強度讀數I之曲線710之曲線圖。圖7B為具有隨著時間的過去由紅外線感測器取得之溫度讀數T sky 與由環境溫度感測器取得之溫度讀數T amb 之間的差(差量(△))之曲線720之曲線圖。如在圖7A之曲線710中所展示,由可見光光感測器取得之強度讀數I在白天中之多數時間較低,且當在白天中間時候天空短時間晴朗時,按高頻(短週期)振盪增大。圖7A之曲線720展示在全天期間,差量(△)之值不會變得低於上臨限值,其指示一高置信度「多雲」條件。 7A - 7B contain graphs of plots of readings taken over time during a cloudy day (except for a brief period in the middle of the day). FIG. 7A is a graph with a plot 710 of intensity readings I taken by a visible light photosensor over time. 7B is a graph having a curve 720 of the difference (Delta (Δ)) between the temperature reading T sky taken by the infrared sensor and the temperature reading Tamb taken by the ambient temperature sensor over time. As shown in curve 710 of FIG. 7A , the intensity readings I taken by the visible light photosensor are low most of the day and increase in high frequency (short period) oscillations when the sky is clear for short periods of time in the middle of the day. Curve 720 of FIG. 7A shows that the value of delta (Δ) does not become lower than the upper threshold during the day, which indicates a high confidence "cloudy" condition.

在一些實施中,紅外線雲偵測器系統使用來自紅外線感測器之讀數評估環境溫度與來自量測紅外線範圍中之波長(例如,在8微米至14微米之間的波長)之紅外線感測器的溫度讀數之間的差量差分。在一些情況下,將一或多個校正因素應用於計算之差量差分。差量差分提供一可用以將雲覆蓋條件分類之相對天空溫度值。舉例而言,可判定一在三個桶「晴朗」、「多雲」及「陰天」中之一者中的雲覆蓋條件。在使用此紅外線雲偵測器系統過程中,判定之雲覆蓋條件與太陽是否出來或是否在日出/日落前無關係。 In some implementations, the infrared cloud detector system uses the readings from the infrared sensors to assess the difference between the ambient temperature and the temperature readings from the infrared sensors that measure wavelengths in the infrared range (eg, wavelengths between 8 microns and 14 microns). In some cases, one or more correction factors are applied to the calculated delta difference. The delta difference provides a relative sky temperature value that can be used to classify cloud cover conditions. For example, a cloud cover condition may be determined to be in one of three buckets "clear," "cloudy," and "overcast." In the process of using this infrared cloud detector system, the cloud cover condition judged has nothing to do with whether the sun is out or whether it is before sunrise/sunset.

根據某些實施之紅外線雲偵測器系統可具有一或多個技術優勢。舉例而言,在上午早些時候及晚上條件期間,紅外線感測器可獨立於可見光強度等級判定多雲還是有太陽。當在太陽未出來時光感測器將低效時,在此等時間期間的雲覆蓋條件之此判定可提供額外情境來判定可著色窗之色調狀態(在本文中亦被稱作「色調等級」)。作為另一實例,紅外線感測器可用以偵測其視野內之一般雲覆蓋條件。此資訊可結合光感測器讀數用以判定由光感測器判定之「晴朗」或「多雲」條件是否有可能持續。舉例而言,若光感測器偵測到將傾向於指示「晴朗」條件的強度等級之急劇上升,則紅外線感測器指示「多雲」條件,預期「晴朗」條件不持續。 Infrared cloud detector systems according to certain implementations may have one or more technical advantages. For example, during early morning and evening conditions, an infrared sensor can determine whether it is cloudy or sunny independently of visible light intensity levels. This determination of cloud cover conditions during times when the sun is not out may provide additional context to determine the tint status (also referred to herein as "tint level") of tintable windows when the sensor would be ineffective during these times. As another example, an infrared sensor may be used to detect general cloud cover conditions within its field of view. This information can be used in conjunction with light sensor readings to determine whether "clear" or "cloudy" conditions as determined by the light sensor are likely to persist. For example, if the light sensor detects a sharp rise in intensity levels that would tend to indicate "clear" conditions, the infrared sensor indicates "cloudy" conditions, and the "clear" conditions are not expected to persist.

相反地,若紅外線感測器報道「晴朗」條件且光感測器讀數指示其為「晴朗」條件,則「晴朗」條件有可能持續。作為另一實例,在可著色窗需要在日出時處於穩態之時刻,轉變需要在日出前之X時間(例如,轉變時間)開始。在此時間期間,光感測器低效,因為存在最少曝光。IR感測器可判定日出前之雲條件以通知控制邏輯是否開始著色過程(在晴朗的天空期間),或在預期日出時之「多雲」條件時保持可著色窗清透。 Conversely, if the infrared sensor reports a "clear" condition and the light sensor reading indicates it is a "clear" condition, then the "clear" condition is likely to persist. As another example, at the time the tintable window needs to be in steady state at sunrise, the transition needs to start X time before sunrise (eg, transition time). During this time, the light sensor is inefficient because there is minimal exposure. The IR sensor can determine pre-sunrise cloud conditions to inform control logic whether to start the tinting process (during clear skies), or to keep the tintable window clear when "cloudy" conditions at sunrise are expected.

III.使用紅外線及環境溫度讀數判定雲覆蓋條件之方法之實例III. Example of a method for determining cloud cover conditions using infrared and ambient temperature readings

圖8圖10展示描述根據各種實施例的使用來自至少一個紅外線感測器及一個環境溫度感測器之讀數判定一雲覆蓋條件之方法之流程圖。在圖9圖10中,來自至少一個光感測器之讀數亦可用以判定在某些條件下之雲覆蓋條件。在一些情況下,用以取得溫度讀數之紅外線感測器經校準以偵測在約8μm至14μm頻譜中之紅外線輻射及/或具有約72度之視野。在一些情況下,用以取得光感測器讀數之光感測器經校準以偵測在亮光範圍內的可見光(例如,在約390nm與約700nm之間)之強度,亮光範圍一般指在良好光照條件(例如,範圍自約10cd/m2與約108cd/m2之間的亮度等級)下對普通人眼可見之光。雖然關於來自單一紅外線感測器、單一環境溫度感測器及/或單一光感測器之讀數描述此等方法,但應理解,可使用來自一類型之多個感測器的值,例如,可使用在不同方向上定向之多個感測器。若使用多個感測器,則所述方法可使用一基於一特定定向之一感測器(例如,一發揮功能之感測器)的單一值,或取得來自多個發揮功能之感測器的讀數之一平均數、平均值或其他統計相關值。在其他情況下,可存在冗餘感測器,且紅外線雲偵測器可具有使用來自一發揮功能之感測器的值之邏輯。舉例而言,藉由基於比較來自各種感測器之讀數評估感測器中之哪一者在發揮功能及/或哪些不在發揮功能。 8-10 show flowcharts describing methods of determining a cloud cover condition using readings from at least one infrared sensor and an ambient temperature sensor according to various embodiments. In FIGS. 9-10 , readings from at least one light sensor can also be used to determine cloud cover conditions under certain conditions. In some cases, the infrared sensor used to take the temperature reading is calibrated to detect infrared radiation in the spectrum of about 8 μm to 14 μm and/or has a field of view of about 72 degrees. In some cases, the light sensor used to take the light sensor reading is calibrated to detect the intensity of visible light (eg, between about 390 nm and about 700 nm) in the bright light range, which generally refers to light visible to the average human eye under good lighting conditions (eg, brightness levels ranging from about 10 cd/ m2 to about 108 cd/ m2 ). Although these methods are described with respect to readings from a single infrared sensor, a single ambient temperature sensor, and/or a single light sensor, it should be understood that values from multiple sensors of one type may be used, for example, multiple sensors oriented in different directions may be used. If multiple sensors are used, the method may use a single value based on a particular orientation of one sensor (eg, a functioning sensor), or take an average, mean, or other statistically related value of readings from multiple functioning sensors. In other cases, there may be redundant sensors, and the infrared cloud detector may have logic to use the value from a functioning sensor. For example, by evaluating which of the sensors is functioning and/or which is not based on comparing readings from various sensors.

A.方法IA. Method I

圖8展示描述根據實施的使用來自紅外線感測器及環境溫度感測器之溫度讀數判定雲覆蓋條件之方法之流程圖800。所述紅外線雲偵測器系統之紅外線感測器及環境溫度感測器通常定期地取得讀數(在樣本時間)。處理器執行儲存於記憶體中之指令以執行此方法之操作。在一個實施中,紅外線雲偵測器系統具有類似於關於具有關於圖1所描述之紅外線雲偵測器100之系統所描述的組件之組件。在另一實施中,紅外線雲偵測器系統具有類似於關於具有圖3中之紅外線雲偵測器310之系統所描述的組件之組件。 FIG. 8 shows a flowchart 800 describing a method of determining cloud cover conditions using temperature readings from an infrared sensor and an ambient temperature sensor, according to an implementation. The infrared sensor and ambient temperature sensor of the infrared cloud detector system typically take readings periodically (at sample time). The processor executes the instructions stored in the memory to perform the operations of the method. In one implementation, the infrared cloud detector system has components similar to those described with respect to the system with the infrared cloud detector 100 described with respect to FIG. 1 . In another implementation, an infrared cloud detector system has components similar to those described with respect to the system with infrared cloud detector 310 in FIG. 3 .

圖8中,方法開始於操作801。在操作810,在處理器處接收一信號,具有由紅外線感測器取得之天空溫度讀數T sky 及由環境溫度感測器取得之環境溫度讀數T amb 。以無線方式及/或經由有線電連接接收來自紅外線感測器及/或環境溫度感測器之信號。紅外線感測器基於在其視野內接收之紅外線輻射取得溫度讀數。紅外線感測器通常朝向所關注之天空之一區域定向,例如,在建築物上方之一區域。環境溫度感測器經組態以暴露於外部環境以量測環境溫度。 In FIG. 8 , the method starts at operation 801 . At operation 810 , a signal is received at the processor having a sky temperature reading T sky from the infrared sensor and an ambient temperature reading Tamb from the ambient temperature sensor. Signals from the infrared sensor and/or the ambient temperature sensor are received wirelessly and/or via a wired electrical connection. The infrared sensor takes temperature readings based on the infrared radiation it receives within its field of view. Infrared sensors are typically oriented towards an area of the sky of interest, eg, an area above a building. The ambient temperature sensor is configured to be exposed to the external environment to measure the ambient temperature.

在操作820,處理器計算在樣本時間由紅外線感測器取得之溫度讀數T sky 與由環境溫度感測器取得之溫度讀數T amb 之間的差(差量(△))。視情況(由點線表示),將校正因數應用於計算之差量(△)(操作830)。可應用的校正因數之一些實例包含濕度、太陽角度/仰角及位點高程。 In operation 820 , the processor calculates the difference (difference (Δ)) between the temperature reading T sky obtained by the infrared sensor and the temperature reading T amb obtained by the ambient temperature sensor at the sample time. Optionally (represented by the dotted line), a correction factor is applied to the calculated delta (Δ) (operation 830 ). Some examples of applicable correction factors include humidity, sun angle/elevation, and site elevation.

在操作840,處理器判定計算之差量(△)值是否低於一下臨限值(例如,攝氏-5毫度、攝氏-2毫度等)。若判定計算之差量(△)值低於下臨限值,則將雲覆蓋條件判定為「晴朗」條件(操作850)。在紅外線雲偵測器之操作期間,所述方法接著增加至下一個樣本時間且返回至操作810In operation 840 , the processor determines whether the calculated delta (Δ) value is below a threshold value (eg, -5 millidegrees Celsius, -2 millidegrees Celsius, etc.). If it is determined that the calculated delta (Δ) value is below the lower threshold, then the cloud cover condition is determined to be a "clear" condition (operation 850 ). During operation of the infrared cloud detector, the method then increments to the next sample time and returns to operation 810 .

若判定計算之差量(△)高於下臨限值,則處理器在操作860判定計算之差量(△)是否高於一上臨限值(例如,攝氏0毫度、攝氏2毫度等)。若在操作860判定計算之差量(△)高於上臨限值,則處理器將雲覆蓋條件判定 為「多雲」條件(操作870)。在紅外線雲偵測器之操作期間,所述方法接著增加至下一個樣本時間且返回至操作810If it is determined that the calculated difference (Δ) is higher than the lower threshold, the processor determines in operation 860 whether the calculated difference (Δ) is higher than an upper threshold (eg, 0 millidegrees Celsius, 2 millidegrees Celsius, etc.). If it is determined in operation 860 that the calculated difference (Δ) is higher than the upper threshold, the processor determines the cloud coverage condition as a "cloudy" condition (operation 870 ). During operation of the infrared cloud detector, the method then increments to the next sample time and returns to operation 810 .

若在操作860判定計算之差量(△)低於上臨限值,則處理器將雲覆蓋條件判定為「間歇性多雲」或另一中間條件(操作880)。在紅外線雲偵測器之操作期間,所述方法接著增加至下一個樣本時間且返回至操作810If it is determined in operation 860 that the calculated difference (Δ) is lower than the upper threshold, the processor determines the cloud coverage condition as "intermittent cloudy" or another intermediate condition (operation 880 ). During operation of the infrared cloud detector, the method then increments to the next sample time and returns to operation 810 .

B.方法IIB. Method II

圖9展示描述根據實施的使用來自紅外線雲偵測器系統之紅外線感測器、環境溫度感測器及光感測器之讀數判定雲覆蓋條件之方法之流程圖900。紅外線感測器、環境溫度感測器及光感測器通常定期地取得讀數(在樣本時間)。紅外線雲偵測器系統亦包含一處理器,其可執行儲存於記憶體中之指令以執行此方法之邏輯操作。在一個實施中,紅外線感測器、環境溫度感測器及光感測器類似於關於圖3中描述之紅外線雲偵測器系統300之組件。在另一實施中,紅外線感測器、環境溫度感測器及光感測器類似於關於圖4A圖4C描述之紅外線雲偵測器系統400之組件。 9 shows a flowchart 900 depicting a method of determining cloud cover conditions using readings from an infrared sensor, an ambient temperature sensor, and a light sensor of an infrared cloud detector system, according to an implementation. Infrared sensors, ambient temperature sensors, and light sensors typically take readings periodically (at sample time). The infrared cloud detector system also includes a processor that executes instructions stored in the memory to perform the logical operations of the method. In one implementation, the infrared sensor, ambient temperature sensor, and light sensor are similar to the components of the infrared cloud detector system 300 described with respect to FIG. 3 . In another implementation, the infrared sensor, ambient temperature sensor, and light sensor are similar to the components of the infrared cloud detector system 400 described with respect to FIGS. 4A - 4C .

圖9中,所述方法之邏輯開始於操作901。在操作910,在處理器處接收一或多個信號,其具有一在一特定樣本時間由紅外線感測器取得之溫度讀數T sky 、一在樣本時間由環境溫度感測器取得之溫度讀數T amb 及一在樣本時間由光感測器取得之強度讀數。以無線方式及/或經由有線電連接接收來自紅外線感測器、環境溫度感測器及光感測器之信號。紅外線感測器基於在其視野內接收之紅外線輻射取得溫度讀數。紅外線感測器通常朝向所關注之天空之一區域定向,例如,在建築物上方之一區域。環境溫度感測器經組態以暴露於外部環境以量測環境溫度。光感測器之感測表面通常亦朝向所關注之天空之區域定向,且直射陽光經阻擋或擴散以免照射感測表面。 In FIG. 9 , the logic of the method begins at operation 901 . At operation 910 , one or more signals are received at the processor having a temperature reading T sky from the infrared sensor at a particular sample time, a temperature reading Tamb from the ambient temperature sensor at the sample time, and an intensity reading from the light sensor at the sample time. Signals from the infrared sensor, the ambient temperature sensor and the light sensor are received wirelessly and/or via a wired electrical connection. The infrared sensor takes temperature readings based on the infrared radiation it receives within its field of view. Infrared sensors are typically oriented towards an area of the sky of interest, eg, an area above a building. The ambient temperature sensor is configured to be exposed to the external environment to measure the ambient temperature. The sensing surface of the light sensor is also typically oriented towards the region of sky of interest, and direct sunlight is blocked or diffused from illuminating the sensing surface.

在操作920,所述邏輯判定當日時間是否在以下時間週期中之一 者期間:(i)在日出前不久(例如,開始於日出前45分鐘、日出前30分鐘、日出前20分鐘或日出前之其他合適時間量的第一時間)且直至在日出稍後(例如,開始於日出後45分鐘、日出後30分鐘、日出後20分鐘或日出後之其他合適時間量的第二時間)之時間週期,及(iii)在日落前不久(黃昏)(例如,開始於日落前45分鐘、日落前30分鐘、日落前20分鐘或日落前之其他合適時間量的第三時間)且直至日落之時間週期。在一種情況下,日出之時間可自由可見光波長光感測器取得之量測結果判定。舉例而言,時間週期(i)可結束於可見光波長光感測器開始量測直射陽光之時點,亦即,可見光光感測器之強度讀數處於或高於一最小強度值之時點。此外或替代地,時間週期(iii)可判定為結束於來自可見光波長光感測器之強度讀數處於或低於一最小強度值之時點。在另一實例中,可使用太陽計算器及一年中之某天來計算日出之時間及/或日落之時間,且時間週期(i)及(iii)可藉由在日出/日落之計算時間前後的一定義之時間週期(例如,45分鐘)計算。 在操作920 ,所述邏輯判定當日時間是否在以下時間週期中之一者期間:(i)在日出前不久(例如,開始於日出前45分鐘、日出前30分鐘、日出前20分鐘或日出前之其他合適時間量的第一時間)且直至在日出稍後(例如,開始於日出後45分鐘、日出後30分鐘、日出後20分鐘或日出後之其他合適時間量的第二時間)之時間週期,及(iii)在日落前不久(黃昏)(例如,開始於日落前45分鐘、日落前30分鐘、日落前20分鐘或日落前之其他合適時間量的第三時間)且直至日落之時間週期。 In one instance, the time of sunrise can be determined from measurements taken by the visible wavelength light sensor. For example, time period (i) may end at the point when the visible light sensor starts measuring direct sunlight, ie, the point at which the intensity reading of the visible light sensor is at or above a minimum intensity value. Additionally or alternatively, time period (iii) may be determined to end at the point at which the intensity reading from the visible wavelength light sensor is at or below a minimum intensity value. In another example, the time of sunrise and/or the time of sunset can be calculated using a solar calculator and the day of the year, and the time periods (i) and (iii) can be calculated by a defined period of time (e.g., 45 minutes) around the calculated time of sunrise/sunset.

在某些實施中,所述邏輯基於一計算之太陽仰角判定當前時間是否在時間週期(i)、(ii)、(iii)或(iv)中之一者期間。所述邏輯使用各種公開程式碼中之一者判定當前時間之太陽仰角。若判定計算之太陽仰角小於0,則所述邏輯判定所述時間在夜間時間週期(iv)期間。若判定計算之太陽仰角大於0且小於與緊接在日出後之時間(例如,日出後10分鐘、日出後20分鐘、日出後45分鐘等)相關聯的第一太陽仰角臨限值,則所述邏輯可判定時間在以下時間週期中:(i)在緊接在日出前與緊接在日出後之間。在一個實例中,第一太陽仰角臨限值為地平線上5度。在另一實例中,第一太陽仰角臨限值為地平線上10度。若判定計算之太陽仰角小於180度且大於與緊接在日落前之時間(例如,在日落後10分鐘、在日落後20分鐘、在日落後45分鐘等)相關聯的第二臨限值,則所述邏輯可判定時間在以下時間週期中:(iii)在緊接在日落前與日 落之間。在一個實例中,第二太陽仰角臨限值為自地平線175度或5度。在另一實例中,第二太陽仰角臨限值為自地平線170度或10度。若邏輯判定計算之太陽仰角大於第一太陽仰角臨限值且小於第二太陽仰角臨限值,則所述邏輯可判定時間在以下時間週期中:(ii)時間週期(i)與(iii)之間。 In some implementations, the logic determines whether the current time is during one of time periods (i), (ii), (iii) or (iv) based on a calculated sun elevation. The logic uses one of various publicly available codes to determine the sun's elevation for the current time. If it determines that the calculated solar elevation is less than 0, then the logic determines that the time is during the night time period (iv). If it is determined that the calculated solar elevation is greater than 0 and less than a first solar elevation threshold associated with a time immediately after sunrise (e.g., 10 minutes after sunrise, 20 minutes after sunrise, 45 minutes after sunrise, etc.), then the logic may determine that the time is within the following time period: (i) between immediately before sunrise and immediately after sunrise. In one example, the first sun elevation threshold is 5 degrees above the horizon. In another example, the first sun elevation threshold is 10 degrees above the horizon. If it is determined that the calculated solar elevation is less than 180 degrees and greater than a second threshold value associated with the time immediately before sunset (e.g., 10 minutes after sunset, 20 minutes after sunset, 45 minutes after sunset, etc.), then the logic may determine that the time is within the following time period: (iii) within the time period immediately before sunset fall between. In one example, the second sun elevation threshold is 175 degrees or 5 degrees from the horizon. In another example, the second sun elevation threshold is 170 degrees or 10 degrees from the horizon. If the logic determines that the calculated solar elevation is greater than the first solar elevation threshold and less than the second solar elevation threshold, then the logic may determine that the time is within the following time period: (ii) between time periods (i) and (iii).

若在操作920判定當日時間在時間週期(i)或(iii)中之任一者期間,則所述邏輯經實施以計算在一樣本時間由紅外線感測器取得之溫度讀數T sky 與由環境溫度感測器取得之溫度讀數T amb 之間的差──差量(△)(操作930)。視情況(由點線表示),將校正因數應用於計算之差量(△)(操作930)。可應用的校正因數之一些實例包含濕度、太陽角度/仰角及位點高程。 If it is determined at operation 920 that the time of day is during either of the time periods (i) or (iii), the logic is implemented to calculate the difference (Δ) between the temperature reading T sky taken by the infrared sensor and the temperature reading Tamb taken by the ambient temperature sensor at a sample time (operation 930 ). Optionally (represented by the dotted line), a correction factor is applied to the calculated delta (Δ) (operation 930 ). Some examples of applicable correction factors include humidity, sun angle/elevation, and site elevation.

在一個實施例中,所述邏輯亦在操作920判定紅外線讀數是否以大於一第二定義之等級的頻率振盪。若處理器在操作920判定當日時間在時間週期(i)或(iii)內且紅外線讀數以大於一第二定義之等級的頻率振盪,則處理器應用操作990以使用光感測器讀數判定雲條件。舉例而言,若光感測器讀數高於某一最小強度等級,則處理器可判定一「晴朗」條件,且若光感測器讀數處於或低於最小強度等級,則判定一「多雲」條件。若系統仍然在操作,則所述方法增加至下一個樣本時間且返回至操作910In one embodiment, the logic also determines at operation 920 whether the infrared readings oscillate at a frequency greater than a second defined level. If the processor determines at operation 920 that the time of day is within time period (i) or (iii) and the infrared readings oscillate at a frequency greater than a second defined level, the processor applies operation 990 to determine cloud conditions using the light sensor readings. For example, the processor may determine a "clear" condition if the light sensor reading is above a certain minimum intensity level, and a "cloudy" condition if the light sensor reading is at or below the minimum intensity level. If the system is still operating, the method advances to the next sample time and returns to operation 910 .

在操作934,處理器判定計算之差量(△)值是否低於一下臨限值(例如,攝氏-5毫度、攝氏-2毫度等)。若判定計算之差量(△)值低於下臨限值,則將雲覆蓋條件判定為「晴朗」條件(操作936)。在紅外線雲偵測器之操作期間,所述方法接著增加至下一個樣本時間且返回至操作910In operation 934 , the processor determines whether the calculated delta (Δ) value is below a threshold value (eg, -5 millidegrees Celsius, -2 millidegrees Celsius, etc.). If it is determined that the calculated delta (Δ) value is below the lower threshold value, then the cloud cover condition is determined to be a "clear" condition (operation 936 ). The method then increments to the next sample time and returns to operation 910 during operation of the infrared cloud detector.

若判定計算之差量(△)高於下臨限值,則處理器在操作940判定計算之差量(△)是否高於一上臨限值(例如,攝氏0毫度、攝氏2毫度等)。若在操作940判定計算之差量(△)高於上臨限值,則處理器將雲覆蓋條件判定為「多雲」條件(操作942)。若仍然在操作中,方法增加至下一個樣本時間且 返回至操作910If it is determined that the calculated difference (Δ) is higher than the lower threshold, the processor determines in operation 940 whether the calculated difference (Δ) is higher than an upper threshold (eg, 0 millidegrees Celsius, 2 millidegrees Celsius, etc.). If it is determined in operation 940 that the calculated difference (Δ) is higher than the upper threshold, the processor determines the cloud coverage condition as a "cloudy" condition (operation 942 ). If still in operation, the method advances to the next sample time and returns to operation 910 .

若在操作940判定計算之差量(△)低於上臨限值,則處理器將雲覆蓋條件判定為「間歇性多雲」或另一中間條件(操作950)。若系統仍然在操作,則所述方法增加至下一個樣本時間且返回至操作910If it is determined in operation 940 that the calculated difference (Δ) is lower than the upper threshold, the processor determines the cloud coverage condition as "intermittently cloudy" or another intermediate condition (operation 950 ). If the system is still operating, the method advances to the next sample time and returns to operation 910 .

若在操作920判定當日時間不在時間週期(i)或(iii)中之任一者期間,則處理器判定當日時間在時間週期(ii)期間,所述時間週期在時間週期(i)後之白天中且在時間週期(iii)前(操作960)。若在操作960處理器判定當日時間在時間週期(ii)白天期間,則處理器計算由紅外線感測器取得之溫度讀數T sky 與由光感測器取得之強度讀數之間的差(操作970)。在操作980,處理器判定計算之差在一可接受極限內。若處理器在操作980判定計算之差大於可接受極限,則處理器應用操作930以計算差量(△)且使用計算之差量(△)判定雲覆蓋條件,如上所論述。 If it is determined at operation 920 that the time of day is not during any of time periods (i) or (iii), the processor determines that the time of day is during time period (ii) which is during the day after time period (i) and before time period (iii) (operation 960 ). If the processor determines at operation 960 that the time of day is during time period (ii) daytime, the processor calculates the difference between the temperature reading T sky obtained by the infrared sensor and the intensity reading obtained by the light sensor (operation 970 ). At operation 980 , the processor determines that the calculated difference is within an acceptable limit. If the processor determines at operation 980 that the calculated difference is greater than the acceptable limit, the processor applies operation 930 to calculate the difference (Δ) and use the calculated difference (Δ) to determine the cloud cover condition, as discussed above.

在一個實施例中,所述處理器亦在操作960判定紅外線讀數是否以大於一第二定義之等級的頻率振盪。若處理器在操作960判定當日時間在時間週期(ii)內且紅外線讀數以大於一第二定義之等級的頻率振盪,則處理器應用操作990以使用光感測器讀數判定雲條件。舉例而言,若光感測器讀數高於某一最小強度等級,則處理器可判定一「晴朗」條件,且若光感測器讀數處於或低於最小強度等級,則判定一「多雲」條件。若系統仍然在操作,則所述方法增加至下一個樣本時間且返回至操作910In one embodiment, the processor also determines at operation 960 whether the infrared readings oscillate at a frequency greater than a second defined level. If the processor determines at operation 960 that the time of day is within time period (ii) and the infrared readings oscillate at a frequency greater than a second defined level, the processor applies operation 990 to determine cloud conditions using the light sensor readings. For example, the processor may determine a "clear" condition if the light sensor reading is above a certain minimum intensity level, and a "cloudy" condition if the light sensor reading is at or below the minimum intensity level. If the system is still operating, the method advances to the next sample time and returns to operation 910 .

若處理器在操作980判定計算之差在可接受極限內,則光感測器讀數用以判定雲覆蓋條件(操作990)。舉例而言,若光感測器讀數高於某一最小強度等級,則處理器可判定一「晴朗」條件,且若光感測器讀數處於或低於最小強度等級,則判定一「多雲」條件。若系統仍然在操作,則所述方法增加至下一個樣本時間且返回至操作910If the processor determines at operation 980 that the calculated difference is within acceptable limits, then the light sensor readings are used to determine cloud cover conditions (operation 990 ). For example, the processor may determine a "clear" condition if the light sensor reading is above a certain minimum intensity level, and a "cloudy" condition if the light sensor reading is at or below the minimum intensity level. If the system is still operating, the method advances to the next sample time and returns to operation 910 .

在一個實施例中,處理器亦在操作970判定光感測器讀數是否以大於一第一定義之等級的頻率振盪及紅外線讀數是否以大於一第二定義之等級的頻率振盪。若處理器在操作980判定計算之差在可接受極限內且處理器判定光感測器讀數以大於第一定義之等級的頻率振盪,則處理器應用操作930以計算差量(△)且使用計算之差量(△)判定雲覆蓋條件,如上所論述。若處理器在操作980判定計算之差不在可接受極限內且處理器判定紅外線讀數以大於第二定義之等級的頻率振盪,則處理器應用操作990以使用光感測器讀數判定雲條件。舉例而言,若光感測器讀數高於某一最小強度等級,則處理器可判定一「晴朗」條件,且若光感測器讀數處於或低於最小強度等級,則判定一「多雲」條件。若系統仍然在操作,則所述方法增加至下一個樣本時間且返回至操作910In one embodiment, the processor also determines at operation 970 whether the light sensor readings oscillate with a frequency greater than a first defined level and the infrared readings oscillate with a frequency greater than a second defined level. If the processor determines at operation 980 that the calculated difference is within acceptable limits and the processor determines that the light sensor reading oscillates at a frequency greater than the first defined level, then the processor applies operation 930 to calculate the difference (Δ) and uses the calculated difference (Δ) to determine cloud cover conditions, as discussed above. If the processor determines at operation 980 that the calculated difference is not within acceptable limits and the processor determines that the infrared readings oscillate at a frequency greater than the second defined level, the processor applies operation 990 to determine cloud conditions using the light sensor readings. For example, the processor may determine a "clear" condition if the light sensor reading is above a certain minimum intensity level, and a "cloudy" condition if the light sensor reading is at or below the minimum intensity level. If the system is still operating, the method advances to the next sample time and returns to operation 910 .

在另一實施例中,替代或實施操作970、980990,處理器執行指令以實施執行白天紅外線感測器演算法及白天光感測器演算法兩者之邏輯以獨立地判定多雲/晴朗/中間條件,每一者係基於其自己的信號臨限值及對應之色調等級。所述控制邏輯接著應用由白天光感測器演算法及白天紅外線感測器演算法獨立判定的兩個色調等級之較深色調等級。類似控制邏輯之一實例係關於圖28中描繪之操作2820283028322840描述。 In another embodiment, instead of or implementing operations 970, 980 , and 990 , the processor executes instructions to implement logic that executes both the daytime infrared sensor algorithm and the daylight sensor algorithm to independently determine cloudy/clear/intermediate conditions, each based on its own signal threshold and corresponding hue level. The control logic then applies the darker of the two tone levels determined independently by the daylight sensor algorithm and the daylight infrared sensor algorithm. An example of similar control logic is described with respect to operations 2820 , 2830 , 2832 , and 2840 depicted in FIG .

返回至圖9,若處理器在操作960判定當日時間在時間週期(iii)後且時間週期(i)前之夜間時間週期(iv)中,則處理器在操作930計算差量且使用計算之差量(△)判定雲覆蓋條件,如上所論述。 Returning to FIG. 9 , if the processor determines at operation 960 that the time of day is in the night time period (iv) after time period (iii) and before time period (i), the processor calculates a delta at operation 930 and uses the calculated delta (Δ) to determine cloud cover conditions, as discussed above.

IV.使用紅外線感測器及/或光感測器讀數控制可著色窗之方法及系統IV. Method and system for controlling tintable windows using infrared sensor and/or light sensor readings

在有能量效率之建築物中,用於設定其建築物系統之等級的控制邏輯可在其決策中考慮雲覆蓋。舉例而言,在具有光學可切換窗(在本文中亦被稱作「可著色窗」)之建築物中,控制邏輯可在設定光學可切換窗之光學狀態(例 如,電致變色窗之色調狀態)過程中考慮雲覆蓋。意在提供此功能性之習知系統通常使用昂貴之感測裝備映射整個天空且追蹤雲之移動。此映射技術可受到直至存在足夠可見光看到雲才能夠與其對齊妨礙。因此,在對齊雲之時,可能不需要調整建築物系統。 In an energy efficient building, the control logic used to set the level of its building systems may consider cloud cover in its decisions. For example, in a building with optically switchable windows (also referred to herein as "tintable windows"), the control logic may set the optical state of the optically switchable windows (e.g. For example, cloud cover is taken into account during the tint state of electrochromic windows. Conventional systems intended to provide this functionality typically use expensive sensing equipment to map the entire sky and track cloud movement. This mapping technique can suffer from not being able to align with the cloud until there is enough visible light to see it. Therefore, building systems may not need to be adjusted while aligning with the cloud.

在本文中描述之各種實施中,來自紅外線雲偵測器系統(例如,圖1之系統、圖3中之系統300圖4A圖4C中之系統400或本文中描述之其他紅外線雲偵測器系統)之感測器資料可用以設定建築物系統之等級。作為一實例,此章節描述使用由一紅外線雲偵測器系統中之感測器取得之讀數(包含紅外線量測結果)基於判定之雲覆蓋條件判定雲覆蓋條件且設定建築物之一或多個光學可切換窗(例如,電致變色窗)中之色調等級之控制邏輯。雖然此章節中描述之控制邏輯係參考控制電致變色窗中之色調狀態描述,但應理解,此邏輯可用以控制其他類型之光學可切換窗及其他建築物系統。電致變色窗具有一或多個電致變色裝置,諸如,在2014年7月1日發佈且題為《電致變色裝置(ELECTROCHROMIC DEVICES)》之美國專利第8,764,950號中及在2012年5月2日提交且題為《電致變色裝置(ELECTROCHROMIC DEVICES)》之美國專利申請第13/462,725號(作為美國專利第9,261,751號發佈)中描述之電致變色裝置,其中之每一者在此被以引用的方式全部併入。 In various implementations described herein, sensor data from an infrared cloud detector system (e.g., the system of FIG. 1 , system 300 in FIG. 3 , system 400 in FIGS. 4A-4C , or other infrared cloud detector systems described herein) can be used to classify building systems. As an example, this section describes control logic for determining cloud cover conditions and setting tint levels in one or more optically switchable windows (e.g., electrochromic windows) in a building based on the determined cloud cover conditions using readings (including infrared measurements) taken by sensors in an infrared cloud detector system. Although the control logic described in this section is described with reference to controlling the tint state in electrochromic windows, it should be understood that this logic can be used to control other types of optically switchable windows and other building systems. Electrochromic windows have one or more electrochromic devices, such as in U.S. Patent No. 8,764,950, issued July 1, 2014, and entitled "ELECTROCHROMIC DEVICES," and U.S. Patent Application No. 13/462,725, entitled "ELECTROCHROMIC DEVICES," filed May 2, 2012 (as U.S. Patent Application No. 9,261,751), each of which is hereby incorporated by reference in its entirety.

A.電致變色裝置/窗A. Electrochromic devices/windows

圖10以橫截面示意性地描繪一電致變色裝置1000。電致變色裝置1000包含一基板1002、一第一傳導性層(CL)1004、一電致變色層(EC)1006、一離子傳導層(IC)1008、一相對電極層(CE)1010及一第二傳導性層(CL)1014。在一個實施中,包括氧化鎢及相對電極層(CE)1010之電致變色層(EC)1006包含氧化鎳-鎢。層10041006100810101014共同地被稱作一電致變色堆疊1020。一可操作以跨電致變色堆疊1020施加一電 位之電壓源1016實現電致變色裝置之轉變,例如,在一經漂白狀態(例如,如圖11A中所描繪)與一有色狀態(例如,如圖11B中所描繪)之間。可關於基板1002顛倒層之次序。 FIG. 10 schematically depicts an electrochromic device 1000 in cross section. The electrochromic device 1000 includes a substrate 1002 , a first conductive layer (CL) 1004 , an electrochromic layer (EC) 1006 , an ion conductive layer (IC) 1008 , a counter electrode layer (CE) 1010 and a second conductive layer (CL) 1014 . In one implementation, the electrochromic layer (EC) 1006 including tungsten oxide and the counter electrode layer (CE) 1010 includes nickel-tungsten oxide. Layers 1004 , 1006 , 1008 , 1010 , and 1014 are collectively referred to as an electrochromic stack 1020 . A voltage source 1016 operable to apply a potential across the electrochromic stack 1020 effects a transition of the electrochromic device, for example, between a bleached state (eg, as depicted in FIG. 11A ) and a colored state (eg, as depicted in FIG. 11B ). The order of the layers may be reversed with respect to the substrate 1002 .

在一些情況下,電致變色裝置具有截然不同之層,且可製造為全固態裝置及/或所有無機裝置。此等裝置及其製造方法之實例更詳細地描述於以下各者中:題為《低缺陷度電致變色裝置之製造(Fabrication of Low-Defectivity Electrochromic Devices)》且2009年12月22日提交之美國專利申請案第12/645,111號(作為美國專利第9,664,974號發佈),及題為《電致變色裝置(Electrochromic Devices)》且2009年12月22日提交之美國專利申請案第12/645,159號(作為美國專利第8,432,603號在2013年4月30日發佈),所述兩個申請案皆在此被以引用的方式全部併入。然而,應理解,所述堆疊中的層中之任何一或多個可含有一些量之有機材料。其可用於可少量存在於一或多個層中之液體。亦應理解,可藉由使用液體組分之製程(諸如,使用溶膠-凝膠之某些製程或化學氣相沈積)來沈積或另外形成固態材料。另外,應理解,對經漂白狀態與有色狀態之間的轉變之參考為非限制性的且建議可實施的電致變色轉變的許多當中之僅一個實例,除非本文中(包含前述論述)另外指定,否則不論何時對經漂白-有色轉變進行參考,對應裝置或過程涵蓋其他光學狀態轉變,諸如,非反射性-反射性、透明-不透明等。另外,術語「經漂白」指光學中性狀態,例如,無色、透明或半透明。又另外,除非本文中另外指定,否則電致變色轉變之「色彩」不限於任一特定波長或波長範圍。如由熟習此項技術者理解,適當電致變色及相對電極材料之選擇控管相關光學轉變。 In some cases, electrochromic devices have distinct layers and can be fabricated as all solid state devices and/or all inorganic devices. Examples of such devices and methods of making them are described in more detail in U.S. Patent Application Serial No. 12/645,111, entitled "Fabrication of Low-Defectivity Electrochromic Devices," and filed December 22, 2009 (issued as U.S. Patent No. 9,664,974), and entitled "Electrochromic Devices Devices) and U.S. Patent Application No. 12/645,159, filed December 22, 2009 (issued April 30, 2013 as U.S. Patent No. 8,432,603), both of which are hereby incorporated by reference in their entirety. It should be understood, however, that any one or more of the layers in the stack may contain some amount of organic material. It is useful for liquids that may be present in one or more layers in small amounts. It should also be understood that solid state materials may be deposited or otherwise formed by processes using liquid components, such as certain processes using sol-gels or chemical vapor deposition. In addition, it should be understood that references to transitions between bleached and colored states are non-limiting and suggest only one example among many of electrochromic transitions that may be implemented, and unless otherwise specified herein (including the foregoing discussion), whenever reference is made to a bleached-colored transition, the corresponding device or process encompasses other optical state transitions, such as non-reflective-reflective, transparent-opaque, etc. In addition, the term "bleached" refers to an optically neutral state, eg, colorless, transparent or translucent. Still further, unless otherwise specified herein, the "color" of an electrochromic transition is not limited to any particular wavelength or range of wavelengths. As understood by those skilled in the art, selection of appropriate electrochromic and counter electrode materials governs the associated optical transition.

在一些實施中,一電致變色裝置經組態以在一經漂白狀態與一有色狀態之間可逆地循環。當電致變色裝置在經漂白狀態中時,將一電位施加至電致變色堆疊1020,使得所述堆疊中之可用離子主要地駐留於相對電極1010中。 當電致變色堆疊上之電位顛倒時,跨離子傳導層1008將離子輸送至電致變色材料1006且使材料轉變至有色狀態。以類似方式,本文中描述的某些實施之電致變色裝置經組態以在不同色調等級(例如,經漂白狀態、最深有色狀態及在經漂白狀態與最深有色狀態之間的中間等級)之間可逆地循環。 In some implementations, an electrochromic device is configured to reversibly cycle between a bleached state and a colored state. When the electrochromic device is in the bleached state, a potential is applied to the electrochromic stack 1020 such that the available ions in the stack reside primarily in the opposing electrode 1010 . When the potential across the electrochromic stack is reversed, ions are transported across the ion conducting layer 1008 to the electrochromic material 1006 and transition the material to a colored state. In a similar manner, certain implementations of electrochromic devices described herein are configured to cycle reversibly between different shade levels (e.g., a bleached state, a darkest colored state, and intermediate levels between the bleached state and the darkest colored state).

再次參看圖10,一電壓源1016經組態以結合來自感測器之輸入操作。如本文中所描述,電壓源1016與一控制器(此圖中未展示)介接。另外,電壓源1016可與一能量管理系統介接,所述能量管理系統根據諸如一年中之時間、當日時間及量測之環境條件的各種準則控制電致變色裝置。此能量管理系統結合大面積電致變色窗可顯著地降低具有所述電致變色窗的建築物之能量消耗。 Referring again to FIG. 10 , a voltage source 1016 is configured to operate in conjunction with the input from the sensor. As described herein, voltage source 1016 interfaces with a controller (not shown in this figure). Additionally, the voltage source 1016 may interface with an energy management system that controls the electrochromic device according to various criteria such as time of year, time of day, and measured environmental conditions. This energy management system combined with large area electrochromic windows can significantly reduce the energy consumption of buildings with said electrochromic windows.

具有合適光學、電、熱及機械性質之任何材料可用作本文中描述的電致變色堆疊之基板1002或其他基板。合適基板之實例包括例如玻璃、塑膠及鏡子材料。合適眼鏡包含透明或經著色鹼石灰玻璃,包含鹼石灰漂浮玻璃。玻璃可經回火或未回火。在許多情況下,所述基板為針對住宅窗應用定大小之玻璃板。此玻璃板之大小可取決於住宅之具體需求而廣泛地變化。在其他情況下,基板為架構玻璃。架構玻璃通常用於商業建築物中,但亦可用於住宅建築物中,且通常但未必,將室內環境與室外環境分開。在某些實例中,架構玻璃為至少20吋乘20吋,且可更大得多,例如,大為約80吋乘120吋。架構玻璃通常為至少約2mm厚,通常在約3mm與約6mm厚之間。當然,電致變色裝置可與基板按比例調整得比架構玻璃小或大。另外,電致變色裝置可提供於任何大小及形狀之鏡子上。 Any material with suitable optical, electrical, thermal and mechanical properties may be used as the substrate 1002 or other substrates for the electrochromic stacks described herein. Examples of suitable substrates include, for example, glass, plastic, and mirror materials. Suitable glasses include clear or tinted soda lime glass, including soda lime float glass. Glass can be tempered or untempered. In many cases, the substrate is a glass sheet sized for residential window applications. The size of this glass pane can vary widely depending on the specific needs of the dwelling. In other cases, the substrate is architectural glass. Architectural glass is commonly used in commercial buildings, but can also be used in residential buildings, and often, but not necessarily, separates the indoor environment from the outdoor environment. In some examples, the architectural glass is at least 20 inches by 20 inches, and can be much larger, eg, as large as about 80 inches by 120 inches. Architectural glass is typically at least about 2mm thick, typically between about 3mm and about 6mm thick. Of course, the electrochromic device can be scaled smaller or larger with the substrate than the architectural glass. Additionally, electrochromic devices can be provided on mirrors of any size and shape.

在說明之基板1002之上的為傳導性層1004。在某些實施中,傳導性層10041014中之一或兩者為無機及/或實心。傳導性層10041014可自許多不同材料製成,包含傳導性氧化物、薄金屬塗層、傳導性金屬氮化物及複 合導體。通常,傳導性層10041014至少在電致變色由電致變色層展現之波長的範圍中透明。透明傳導性氧化物包含金屬氧化物及摻雜有一或多種金屬之金屬氧化物。此等金屬氧化物及摻雜之金屬氧化物之實例包含氧化銦、氧化銦錫、摻雜之氧化銦、氧化錫、摻雜之氧化錫、氧化鋅、氧化鋁鋅、摻雜之氧化鋅、氧化釕、摻雜之氧化釕及類似者。由於氧化物常用於此等層,因此其有時被稱作「透明傳導性氧化物」(TCO)層。亦可使用實質上透明之薄金屬塗層,以及TCO與金屬塗層之組合。 Above the illustrated substrate 1002 is a conductive layer 1004 . In certain implementations, one or both of conductive layers 1004 and 1014 are inorganic and/or solid. Conductive layers 1004 and 1014 can be made from many different materials, including conductive oxides, thin metal coatings, conductive metal nitrides, and composite conductors. Typically, conductive layers 1004 and 1014 are transparent at least in the range of wavelengths at which electrochromism is exhibited by the electrochromic layers. Transparent conductive oxides include metal oxides and metal oxides doped with one or more metals. Examples of such metal oxides and doped metal oxides include indium oxide, indium tin oxide, doped indium oxide, tin oxide, doped tin oxide, zinc oxide, aluminum zinc oxide, doped zinc oxide, ruthenium oxide, doped ruthenium oxide, and the like. Because oxides are commonly used for these layers, they are sometimes referred to as "transparent conductive oxide" (TCO) layers. Thin metallic coatings that are substantially transparent may also be used, as well as combinations of TCO and metallic coatings.

傳導性層之功能為將由在電致變色堆疊1020之表面上的電壓源1016提供之電位散佈至堆疊之內部區域,具有相對極小的歐姆電位降。經由至傳導性層之電連接將電位轉移至傳導性層。在一些態樣中,匯流條(至少一個與傳導性層1004接觸且至少一個與傳導性層1014接觸)提供電壓源1016與傳導性層10041014之間的電連接。傳導性層10041014亦可藉由其他習知方式連接至電壓源1016The function of the conductive layer is to spread the potential provided by the voltage source 1016 on the surface of the electrochromic stack 1020 to the inner regions of the stack with relatively minimal ohmic potential drop. The potential is transferred to the conductive layer via the electrical connection to the conductive layer. In some aspects, bus bars (at least one in contact with conductive layer 1004 and at least one in contact with conductive layer 1014 ) provide electrical connection between voltage source 1016 and conductive layers 1004 and 1014 . The conductive layers 1004 and 1014 can also be connected to the voltage source 1016 by other conventional methods.

覆疊說明之傳導性層1004為一電致變色層1006。在一些態樣中,電致變色層1006為無機及/或實心。所述電致變色層可含有包含金屬氧化物之許多不同電致變色材料中之任何一或多者。合適金屬氧化物之一些實例包含氧化鎢(WO3)、氧化鉬(MoO3)、氧化鈮(Nb2O5)、氧化鈦(TiO2)、氧化銅(CuO)、氧化銥(Ir2O3)、氧化鉻(Cr2O3)、氧化錳(Mn2O3)、氧化釩(V2O5)、氧化鎳(Ni2O3)、氧化鈷(Co2O3)及類似者。在操作期間,電致變色層1006將離子轉移至相對電極層1010及自相對電極層1010接收離子以引起可逆之光學轉變。通常,電致變色材料之著色(或任何光學性質之改變,例如,吸光率、反射比及透射率)藉由至材料內之可逆離子注入(例如,插入)及電荷平衡電子之對應注入來引起。通常,負責光學轉變的某一分率之離子不可逆地束縛於電致變色材料中。不可逆束縛離子中之一些或所有用以補償材料中之「盲電荷」。在多 數電致變色材料中,合適離子包含鋰離子(Li+)及氫離子(H+)(亦即,質子)。然而,在一些情況下,其他離子將合適。在各種實施例中,鋰離子用以產生電致變色現象。鋰離子至氧化鎢(WO3-y(0<y

Figure 108109593-A0305-02-0051-1
~0.3))內之插入使氧化鎢自透明(經漂白狀態)改變至藍(有色狀態)。 The conductive layer 1004 illustrated in the overlay is an electrochromic layer 1006 . In some aspects, electrochromic layer 1006 is inorganic and/or solid. The electrochromic layer may contain any one or more of a number of different electrochromic materials including metal oxides. Some examples of suitable metal oxides include tungsten oxide ( WO3 ), molybdenum oxide ( MoO3), niobium oxide ( Nb2O5 ), titanium oxide (TiO2), copper oxide ( CuO ), iridium oxide ( Ir2O3 ), chromium oxide ( Cr2O3 ), manganese oxide ( Mn2O3 ) , vanadium oxide ( V2O5 ) , nickel oxide ( Ni2O3 ), cobalt oxide ( Co 2 O 3 ) and the like. During operation, the electrochromic layer 1006 transfers ions to and receives ions from the counter electrode layer 1010 to cause a reversible optical transition . Typically, the coloration (or change of any optical property, such as absorbance, reflectance, and transmittance) of an electrochromic material is caused by reversible ion implantation (eg, intercalation) into the material and corresponding injection of charge-balancing electrons. Typically, a certain fraction of ions responsible for the optical transition is irreversibly bound in the electrochromic material. Some or all of the irreversibly bound ions are used to compensate for "blind charge" in the material. In most electrochromic materials, suitable ions include lithium ions (Li+) and hydrogen ions (H+) (ie, protons). However, in some cases other ions will be suitable. In various embodiments, lithium ions are used to generate electrochromism. Li-ion to tungsten oxide (WO 3-y (0<y
Figure 108109593-A0305-02-0051-1
Insertion within ~0.3)) changes tungsten oxide from transparent (bleached state) to blue (colored state).

再次參看圖10,在電致變色堆疊1020中,離子傳導層1008夾在電致變色層1006與相對電極層1010之間。在一些實施例中,相對電極層1010為無機及/或實心。相對電極層可包含當電致變色裝置在經漂白狀態中時充當離子之儲集器的許多不同材料中之一或多者。在藉由(例如)施加適當電位起始電致變色轉變期間,相對電極層將其持有的離子中之一些或所有轉移至電致變色層,從而將電致變色層改變至有色狀態。同時,在NiWO之情況下,相對電極層隨著離子之損失而著色。用於與WO3互補的相對電極之合適材料包含氧化鎳(NiO)、氧化鎳鎢(NiWO)、氧化鎳釩、氧化鎳鉻、氧化鎳鋁、氧化鎳錳、氧化鎳鎂、氧化鉻(Cr2O3)、氧化錳(MnO2)及普魯士藍。當自由氧化鎳鎢製成之相對電極1010移除電荷(亦即,將離子自相對電極1010輸送至電致變色電致變色1006)時,相對電極層1010將自透明狀態轉變至有色狀態。 Referring again to FIG. 10 , in the electrochromic stack 1020 , the ion-conducting layer 1008 is sandwiched between the electrochromic layer 1006 and the opposing electrode layer 1010 . In some embodiments, the counter electrode layer 1010 is inorganic and/or solid. The counter electrode layer may comprise one or more of many different materials that act as a reservoir for ions when the electrochromic device is in the bleached state. During initiation of the electrochromic transition by, for example, applying an appropriate potential, the counter electrode layer transfers some or all of the ions it holds to the electrochromic layer, thereby changing the electrochromic layer to a colored state. Meanwhile, in the case of NiWO, the counter electrode layer is colored with the loss of ions. Suitable materials for the counter electrode complementary to WO include nickel oxide (NiO), nickel tungsten oxide (NiWO), nickel vanadium oxide, nickel chromium oxide , nickel aluminum oxide, nickel manganese oxide, nickel magnesium oxide, chromium oxide ( Cr2O3 ), manganese oxide ( MnO2 ), and Prussian blue. When the counter electrode 1010 made of nickel-tungsten oxide removes charge (ie, transports ions from the counter electrode 1010 to the electrochromic electrochromic 1006 ), the counter electrode layer 1010 will transition from a transparent state to a colored state.

在說明之電致變色裝置1100中,在電致變色層1006與相對電極層1010之間,存在離子傳導層1008。離子傳導層1008充當一介質,當電致變色裝置在經漂白狀態與有色狀態之間轉變時,經由所述介質輸送離子(按電解質之方式)。較佳地,離子傳導層1008對用於電致變色及相對電極層之相關離子高度傳導,但具有在正常操作期間發生可忽略的電子轉移之足夠低電子傳導率。具有高離子傳導率之薄離子傳導層准許快速離子傳導,及因此針對高效能電致變色裝置之快速切換。在某些態樣中,離子傳導層1008為無機及/或實心。 In the illustrated electrochromic device 1100 , between the electrochromic layer 1006 and the counter electrode layer 1010 , there is an ion-conducting layer 1008 . The ion-conducting layer 1008 acts as a medium through which ions are transported (by way of electrolytes) when the electrochromic device transitions between the bleached state and the colored state. Preferably, the ion-conducting layer 1008 is highly conductive to the relevant ions for the electrochromic and counter electrode layers, but has sufficiently low electron conductivity that negligible electron transfer occurs during normal operation. Thin ion-conducting layers with high ion conductivity allow fast ion conduction and thus fast switching for high performance electrochromic devices. In certain aspects, ion conducting layer 1008 is inorganic and/or solid.

用於離子傳導層(亦即,用於具有截然不同的IC層之電致變色裝置)的合適材料之實例包含矽酸鹽、氧化矽、氧化鎢、氧化鉭、氧化鈮及硼酸 鹽。此等材料可摻雜有不同摻雜劑,包含鋰。鋰摻雜之氧化矽包含鋰矽-鋁-氧化物。在一些實施例中,離子傳導層包含一基於矽酸鹽之結構。在一個態樣中,將氧化矽鋁(SiAlO)用於離子傳導層1008Examples of suitable materials for ion-conducting layers (ie, for electrochromic devices with distinct IC layers) include silicates, silicon oxides, tungsten oxides, tantalum oxides, niobium oxides, and borates. These materials can be doped with different dopants, including lithium. Lithium-doped silicon oxide includes lithium silicon-aluminum-oxide. In some embodiments, the ion-conducting layer includes a silicate-based structure. In one aspect, silicon aluminum oxide (SiAlO) is used for ion conducting layer 1008 .

在某些實施中,電致變色裝置1000包含一或多個額外層(未展示),諸如,一或多個被動層。用以改良某些光學性質之被動層可包含於所述電致變色裝置1000中。用於提供防水及防刮擦之被動層亦可包含於電致變色裝置1000中。舉例而言,傳導性層可藉由抗反射或保護性氧化物或氮化物層來處理。其他被動層可用以將電致變色裝置300氣密性地密封。 In certain implementations, electrochromic device 1000 includes one or more additional layers (not shown), such as one or more passive layers. Passive layers to improve certain optical properties may be included in the electrochromic device 1000 . Passive layers for providing waterproof and scratch resistance may also be included in the electrochromic device 1000 . For example, the conductive layer may be treated with an anti-reflective or protective oxide or nitride layer. Other passive layers may be used to hermetically seal the electrochromic device 300 .

圖11A為在經漂白狀態中(或轉變至經漂白狀態)之電致變色裝置之示意性橫截面。根據此說明之實例,電致變色裝置1100包含一氧化鎢電致變色層(EC)1106及一氧化鎳鎢相對電極層(CE)1110。電致變色裝置1100亦包含一基板1102、一傳導性層(CL)11011、一離子傳導層(IC)1108及傳導性層(CL)1114。層11041106110810101114共同地被稱作電致變色堆疊1120。電源1116經組態以經由至傳導性層11041114之合適電連接(例如,匯流條)將電壓電位及/或電流施加至電致變色堆疊1120。在一個態樣中,電壓源經組態以施加數伏特之電位以便驅動裝置自一個光學狀態至另一個之轉變。如圖11A中所展示的電位之極性使得離子(在此實例中,鋰離子)主要地駐留(如由虛線箭頭指示)於氧化鎳鎢相對電極層1110中。 11A is a schematic cross-section of an electrochromic device in (or transitioning to) a bleached state. According to the illustrated example, an electrochromic device 1100 includes a tungsten oxide electrochromic layer (EC) 1106 and a nickel tungsten oxide counter electrode layer (CE) 1110 . The electrochromic device 1100 also includes a substrate 1102 , a conductive layer (CL) 11011 , an ion-conducting layer (IC) 1108 and a conductive layer (CL) 1114 . Layers 1104 , 1106 , 1108 , 1010 , and 1114 are collectively referred to as electrochromic stack 1120 . Power source 1116 is configured to apply a voltage potential and/or current to electrochromic stack 1120 via suitable electrical connections (eg, bus bars) to conductive layers 1104 and 1114 . In one aspect, the voltage source is configured to apply a potential of several volts to drive the transition of the device from one optical state to another. The polarity of the potential as shown in FIG. 11A is such that ions (in this example, lithium ions) reside primarily (as indicated by dashed arrows) in the nickel-tungsten oxide counter electrode layer 1110 .

圖11B為在圖11A中展示但在有色狀態中(或轉變有色狀態)之電致變色裝置1100之示意性橫截面。在圖11B中,電壓源1116之極性顛倒,使得使氧化鎢電致變色層1106更具負性以接受額外鋰離子,且藉此轉變至有色狀態。如由虛線箭頭指示,跨離子傳導層1108將鋰離子輸送至氧化鎢電致變色層1106。展示氧化鎢電致變色層1106處於有色狀態中或轉變至有色狀態。亦展示氧化鎳鎢相對電極1110處於有色狀態中或轉變至有色狀態。如所解釋,氧化 鎳鎢在其放棄(去插入)鋰離子時逐漸地變得更不透明。在此實例中,存在一協同效應,其中針對兩個層11061110至有色狀態之轉變朝向減少經由電致變色堆疊及基板透射的光之量而增添。 FIG. 11B is a schematic cross-section of the electrochromic device 1100 shown in FIG. 11A but in a colored state (or transitioning to a colored state). In FIG. 11B , the polarity of the voltage source 1116 is reversed, making the tungsten oxide electrochromic layer 1106 more negative to accept additional lithium ions, and thereby transition to a colored state. Lithium ions are transported across the ion conducting layer 1108 to the tungsten oxide electrochromic layer 1106 as indicated by the dashed arrow. Tungsten oxide electrochromic layer 1106 is shown in or transitioning to a colored state. The nickel tungsten oxide counter electrode 1110 is also shown in or transitioning to a colored state. As explained, nickel tungsten oxide gradually becomes more opaque as it relinquishes (deintercalates) lithium ions. In this example, there is a synergistic effect in which the transition to the colored state for both layers 1106 and 1110 increases towards reducing the amount of light transmitted through the electrochromic stack and substrate.

在某些實施中,電致變色裝置包含由一離子傳導性(IC)層分開之一電致變色(EC)電極層及一相對電極(CE)層,所述離子傳導性(IC)層對離子高度傳導且對電子高度阻性。如習知地理解,離子傳導性層因此防止電致變色層與相對電極層之間的短接。所述離子傳導性層允許電致變色及相對電極固持電荷且藉此維持其經漂白或有色狀態。在具有截然不同之層的電致變色裝置中,所述組件形成一堆疊,所述堆疊包含夾在電致變色電極層與相對電極層之間的離子傳導層。此等三個堆疊組件之間的邊界由突然的組成及/或微結構之改變來界定。因此,所述裝置具有具兩個急轉界面的三個截然不同之層。 In certain implementations, an electrochromic device includes an electrochromic (EC) electrode layer and a counter electrode (CE) layer separated by an ionically conductive (IC) layer that is highly conductive to ions and highly resistive to electrons. As is conventionally understood, the ionically conductive layer thus prevents shorting between the electrochromic layer and the counter electrode layer. The ionically conductive layer allows the electrochromic and opposing electrodes to hold charge and thereby maintain their bleached or colored state. In electrochromic devices having distinct layers, the components form a stack comprising an ion-conducting layer sandwiched between an electrochromic electrode layer and an opposing electrode layer. The boundaries between these three stacked components are defined by abrupt compositional and/or microstructural changes. Thus, the device has three distinct layers with two sharp interfaces.

根據某些實施,相對電極與電致變色電極相互緊鄰地形成,有時直接接觸,而不分開來沈積一離子傳導層。在一些實施中,使用具有一界面區域而非一截然不同的IC層之電致變色裝置。此等裝置及其製造方法描述於美國專利第8,300,298號、美國專利第8,582,193號、美國專利第8,764,950號及美國專利第8,764,951號中,所述專利中之每一者題為《電致變色裝置(Electrochromic Devices)》且每一者在此被以引用的方式全部併入。 According to some implementations, the counter electrode and the electrochromic electrode are formed in close proximity to each other, sometimes in direct contact, without separating to deposit an ionically conductive layer. In some implementations, electrochromic devices are used that have an interface region rather than a distinct IC layer. Such devices and methods of making them are described in US Patent No. 8,300,298, US Patent No. 8,582,193, US Patent No. 8,764,950, and US Patent No. 8,764,951, each of which is entitled "Electrochromic Devices" and each of which is hereby incorporated by reference in its entirety.

在某些實施中,一電致變色裝置可整合至電致變色窗之絕緣玻璃單元(IGU)內,或可在一單框電致變色窗中。舉例而言,電致變色窗可具有一包含一第一電致變色鏡片及一第二鏡片之IGU。所述IGU亦包含一分開第一電致變色鏡片與第二鏡片之間隔物。所述IGU中之第二鏡片可為非電致變色鏡片或其他。舉例而言,第二鏡片可具有在其上之一電致變色裝置,及/或一或多個塗層,諸如,低E塗層及類似者。所述鏡片中之任一者亦可為層壓玻璃。在間隔物與電致變色鏡片之第一TCO層之間的為一初級密封材料。此初級密封材料亦 在間隔物與第二玻璃鏡片之間。圍繞間隔物之周邊的為次級密封件。此等密封件輔助保持水分不進入IGU之內部空間。其亦用以防止可引入至IGU之內部空間內的氬或其他氣體逸出。所述IGU亦包含匯流條佈線,用於連接至窗控制器。在一些實施中,匯流條中之一或兩者在完工之IGU內部,然而在一個實施中,一個匯流條在IGU之密封件外,且一個匯流條在IGU內部。在前者實施例中,使用一區來進行與用以形成IGU的間隔物之一個面之密封。因此,電線或至匯流條之其他連接在間隔物與玻璃之間伸展。因為許多間隔物由傳導性之金屬(例如,不鏽鋼)製成,所以需要採取措施以避免歸因於匯流條及至其之連接器與金屬間隔物之間的電連通之短路連接。 In certain implementations, an electrochromic device can be integrated into the insulating glass unit (IGU) of the electrochromic window, or can be in a single frame electrochromic window. For example, an electrochromic window may have an IGU that includes a first electrochromic lens and a second lens. The IGU also includes a spacer separating the first electrochromic lens from the second lens. The second lens in the IGU can be a non-electrochromic lens or others. For example, the second lens may have an electrochromic device thereon, and/or one or more coatings, such as low-E coatings and the like. Any of the lenses may also be laminated glass. Between the spacer and the first TCO layer of the electrochromic lens is a primary sealing material. This primary seal material is also Between the spacer and the second glass lens. Around the perimeter of the spacer is a secondary seal. These seals help keep moisture out of the interior space of the IGU. It also serves to prevent the escape of argon or other gases that may be introduced into the interior space of the IGU. The IGU also includes bus bar wiring for connection to the window controller. In some implementations, one or both of the bus bars are inside the finished IGU, however in one implementation, one bus bar is outside the seal of the IGU and one bus bar is inside the IGU. In the former embodiment, a region is used for sealing to one side of the spacer used to form the IGU. Thus, wires or other connections to the bus bars run between the spacers and the glass. Because many spacers are made of conductive metals, such as stainless steel, measures need to be taken to avoid short connections due to electrical communication between the bus bars and their connectors and the metal spacers.

B.窗控制器B. Window Controller

窗控制器用以控制在一電致變色窗或一或多個電致變色窗之一區帶中的一或多個電致變色裝置之色調狀態(在本文中亦被稱作「色調等級」)。在一些實施例中,窗控制器能夠在兩個色調狀態(一經漂白狀態與一有色狀態)之間轉變電致變色窗。在其他實施例中,控制器可另外在包含以下各者之色調狀態之間轉變電致變色窗(例如,具有一單一電致變色裝置之窗):一經漂白狀態、一或多個中間中間等級及一有色狀態。在一些實施例中,窗控制器能夠在四個或多於四個色調狀態之間轉變電致變色窗。在其他實施例中,窗控制器能夠在處於經漂白狀態與有色狀態之間的任何數目個色調等級之間轉變一併有一電致變色裝置之電致變色窗。某些電致變色窗藉由使用在一單一IGU中之兩個(或更多個)電致變色鏡片允許中間色調等級,其中每一電致變色鏡片為兩狀態鏡片。 The window controller is used to control the tint state (also referred to herein as "tint level") of one or more electrochromic devices in an electrochromic window or a zone of one or more electrochromic windows. In some embodiments, the window controller is capable of transitioning the electrochromic window between two tint states, a bleached state and a tinted state. In other embodiments, the controller may additionally toggle electrochromic windows (eg, windows with a single electrochromic device) between tint states including: a bleached state, one or more intermediate intermediate levels, and a tinted state. In some embodiments, the window controller is capable of transitioning the electrochromic window between four or more tint states. In other embodiments, the window controller is capable of switching an electrochromic window incorporating an electrochromic device between any number of shade levels between a bleached state and a colored state. Certain electrochromic windows allow for mid-tone gradations by using two (or more) electrochromic lenses in a single IGU, where each electrochromic lens is a two-state lens.

在一些實施例中,一電致變色窗可包含一在絕緣玻璃單元(IGU)之一個鏡片上的電致變色裝置及在另一鏡片上之另一電致變色裝置。若窗控制器能夠在兩個狀態(經漂白狀態與有色狀態)之間轉變每一電致變色裝置,則IGU能夠達到四個不同狀態(色調等級)──兩個電致變色裝置皆有色之有色狀 態、一個電致變色裝置有色之第一中間狀態、另一電致變色裝置有色之第二中間狀態及兩個電致變色裝置皆經漂白之經漂白狀態。多框電致變色窗之實施例(諸如,IGU)進一步描述於指明Robin Friedman等人為發明人、題為《多框電致變色窗(MULTI-PANE ELECTROCHROMIC WINDOWS)》之美國專利第8,270,059號中,所述專利在此被以引用的方式全部併入。 In some embodiments, an electrochromic window may comprise an electrochromic device on one lens of an insulating glass unit (IGU) and another electrochromic device on the other lens. If the window controller is able to switch each electrochromic device between two states (bleached state and colored state), then the IGU can achieve four different states (tint levels) - colored state where both electrochromic devices are colored state, a first intermediate state in which one electrochromic device is colored, a second intermediate state in which the other electrochromic device is colored, and a bleached state in which both electrochromic devices are bleached. Embodiments of multi-pane electrochromic windows, such as IGUs, are further described in U.S. Patent No. 8,270,059, entitled "MULTI-PANE ELECTROCHROMIC WINDOWS," to Robin Friedman et al. as the inventor, which is hereby incorporated by reference in its entirety.

在一些實施例中,可實施窗控制器以轉變一具有一能夠在兩個或更多個色調等級之間轉變之電致變色裝置的電致變色窗。舉例而言,一窗控制器可能夠將電致變色窗轉變至一經漂白狀態、一或多個中間等級及一有色狀態。在一些其他實施例中,窗控制器能夠在處於經漂白狀態與有色狀態之間的任何數目個色調等級之間轉變一併有一電致變色裝置之電致變色窗。用於將電致變色窗轉變至一或多個中間色調等級的方法及控制器之實施例進一步描述於指名Disha Mehtani等人為發明人、題為《控制光學可切換裝置中之轉變(CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES)》之美國專利第8,254,013號中,及2017年5月31日申請的題為《用於實施中間色調狀態之可著色窗的控制方法(CONTROL METHODS FOR TINTABLE WINDOWS IMPLEMENTING INTERMEDIATE TINT STATES)》之國際PCT申請案PCT/US17/35290中,所述專利在此被以引用的方式全部併入。 In some embodiments, a window controller may be implemented to switch an electrochromic window having an electrochromic device capable of switching between two or more shade levels. For example, a window controller may be capable of transitioning electrochromic windows to a bleached state, one or more intermediate levels, and a tinted state. In some other embodiments, the window controller is capable of switching an electrochromic window incorporating an electrochromic device between any number of shade levels between a bleached state and a colored state. Embodiments of a method and controller for transitioning an electrochromic window to one or more midtone levels are further described in U.S. Patent No. 8,254,013, entitled "CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES," naming Disha Mehtani et al. International PCT application PCT/US17/35290 for CONTROL METHODS FOR TINTABLE WINDOWS IMPLEMENTING INTERMEDIATE TINT STATES", which is hereby incorporated by reference in its entirety.

在一些實施例中,一窗控制器可對電致變色窗之一或多個電致變色裝置供電。通常,窗控制器之此功能藉由在以下更詳細地描述之一或多個其他功能來擴增。本文中描述之窗控制器不限於具有為了控制之目的而對其相關聯之電致變色裝置供電之功能的窗控制器。亦即,用於電致變色窗之電源可與窗控制器分開,其中所述控制器具有其自己的電源,且引導來自窗電源的電力施加至所述窗。然而,方便地,包括一具有窗控制器之電源且組態所述控制器以直接對窗供電,因為其消除了對於用於對電致變色窗供電之單獨佈線之需求。 In some embodiments, a window controller can power one or more electrochromic devices of an electrochromic window. Typically, this function of the window controller is augmented by one or more other functions described in more detail below. The window controllers described herein are not limited to window controllers that have the functionality to power their associated electrochromic devices for control purposes. That is, the power supply for the electrochromic window can be separate from the window controller, where the controller has its own power supply and directs power from the window power supply to the window. However, it is convenient to include a power supply with a window controller and configure the controller to power the window directly, as it eliminates the need for separate wiring for powering the electrochromic window.

在一些情況下,窗控制器為獨立式控制器,其經組態以控制單一窗或多個電致變色窗之功能,而無窗控制器至一建築物控制網路或一建築物管理系統(BMS)之整合。然而,窗控制器可整合於一建築物控制網路或一BMS中,如此章節中進一步描述。 In some cases, the window controller is a stand-alone controller configured to control the functions of a single window or multiple electrochromic windows without integration of the window controller into a building control network or a building management system (BMS). However, window controllers can be integrated into a building control network or a BMS, as further described in this section.

圖12描繪根據本文中論述之實施的一窗控制器1250之組件及一窗控制器系統之組件的方塊圖。圖12為窗控制器1250之簡化方塊圖,且關於窗控制器之更多細節可見於美國專利申請案13/449,248及13/449,251中,兩者皆指明Stephen Brown為發明人,題目皆為《用於光學可切換窗之控制器(CONTROLLER FOR OPTICALLY-SWITCHABLE WINDOWS)》且兩者皆在2012年4月17日提交,且可見於美國專利申請案13/449,235(作為美國專利第8,705,162號發佈),其題目為《控制光學可切換裝置中之轉變(CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES)》,指明Stephen Brown等人為發明人,且在2012年4月17日提交;所有所述申請案在此被以引用的方式全部併入。 12 depicts a block diagram of components of a window controller 1250 and components of a window controller system according to implementations discussed herein.圖12為窗控制器1250之簡化方塊圖,且關於窗控制器之更多細節可見於美國專利申請案13/449,248及13/449,251中,兩者皆指明Stephen Brown為發明人,題目皆為《用於光學可切換窗之控制器(CONTROLLER FOR OPTICALLY-SWITCHABLE WINDOWS)》且兩者皆在2012年4月17日提交,且可見於美國專利申請案13/449,235(作為美國專利第8,705,162號發佈),其題目為《控制光學可切換裝置中之轉變(CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES)》,指明Stephen Brown等人為發明人,且在2012年4月17日提交;所有所述申請案在此被以引用的方式全部併入。

圖12中,窗控制器1250之說明的組件包含一微處理器1255或其他處理器、一脈衝寬度調變器1260(PWM)、一信號調節模組1265及一具有一組態檔案1275之電腦可讀媒體(例如,記憶體)1270。窗控制器1250經由網路1280與電致變色窗中之一或多個電致變色裝置1200電子通信(有線或無線)以將控制指令發送至一或多個電致變色裝置1200。在一些實施例中,窗控制器1250可為一經由一網路與一主機窗控制器通信(有線或無線)之本端窗控制器。在其他實例中,所述窗控制器省略信號調節模組。 In FIG. 12 , the illustrated components of window controller 1250 include a microprocessor 1255 or other processor, a pulse width modulator 1260 (PWM), a signal conditioning module 1265 , and a computer readable medium (e.g., memory) 1270 having a configuration file 1275 . Window controller 1250 is in electronic communication (wired or wireless) with one or more electrochromic devices 1200 in the electrochromic window via network 1280 to send control commands to one or more electrochromic devices 1200 . In some embodiments, window controller 1250 may be a local window controller that communicates (wired or wirelessly) with a host window controller over a network. In other examples, the window controller omits a signal conditioning module.

在本文中論述之一些實例中,一建築物具有在建築物之外部與內部之間的一或多個電致變色窗,及位於建築物之外部及/或具有電致變色窗之一或多個房間內部的一或多個感測器(例如,光感測器、紅外線感測器、環境溫度 感測器等)。自一或多個感測器之輸出可接收為至窗控制器1250之信號調節模組1265的輸入(例如,經由通信網路)。在一些情況下,自一或多個感測器之輸出可接收為至建築物管理系統(BMS)之輸入,如在此章節中進一步描述。雖然描繪之實施例之感測器展示為位於屋頂上,但感測器亦可另外或替代地位於其他位置中,諸如,建築物之外豎直壁、房間內部或在至外部之其他表面上。在某些實例中,一具有多個感測器之多感測器裝置位於一外殼內或最接近一外殼。在此等實例中之一些中,多感測器裝置中之兩個或更多個感測器可操作以量測相同或幾乎相同資料(例如,引導至天空之同一大體區域之兩個紅外線感測器),此可在感測器中之一者出故障或具有一另外錯誤讀數之情況下提供冗餘。 In some examples discussed herein, a building has one or more electrochromic windows between the exterior and interior of the building, and one or more sensors (e.g., light sensors, infrared sensors, ambient temperature sensors, etc.) located on the exterior of the building and/or inside one or more rooms with electrochromic windows. Outputs from one or more sensors may be received as inputs to signal conditioning module 1265 of window controller 1250 (eg, via a communications network). In some cases, output from one or more sensors may be received as input to a building management system (BMS), as described further in this section. Although the sensors of the depicted embodiments are shown as being located on a roof, the sensors may additionally or alternatively be located in other locations, such as outside a vertical wall of a building, inside a room, or on other surfaces to the outside. In some examples, a multi-sensor device having multiple sensors is located within or proximate to a housing. In some of these examples, two or more sensors in a multi-sensor arrangement are operable to measure the same or nearly the same data (e.g., two infrared sensors directed to the same general area of the sky), which can provide redundancy in case one of the sensors fails or has an otherwise erroneous reading.

至建築物之一外部光感測器(例如,在屋頂上的多感測器裝置之一光感測器)可用以偵測直接自諸如太陽之光源或自自一表面、大氣中之粒子、雲等反射至感測器之光入射於光感測器上的輻射光。每一光感測器可產生一呈自光電效應產生之電流之形式的信號,且所述信號隨入射於光感測器上的光而變。在一些情況下,光感測器按以瓦/平方公尺或其他類似單位為單位之輻照度來偵測輻射光。在其他情況下,光感測器以呎燭光或類似單位為單位來偵測在波長之可見範圍中的光。在許多情況下,在輻照度之此等值與可見光之間存在一線性關係。 An exterior light sensor to the building (e.g., one of a multi-sensor installation on a roof) can be used to detect radiant light incident on the light sensor, either directly from a light source such as the sun, or from light reflected to the sensor from a surface, particles in the atmosphere, clouds, etc. Each photosensor can generate a signal in the form of a current generated from the photoelectric effect, and the signal is a function of light incident on the photosensor. In some cases, light sensors detect radiant light in terms of irradiance in watts per square meter or other similar units. In other cases, light sensors detect light in the visible range of wavelengths in foot-candles or similar units. In many cases there is a linear relationship between these values of irradiance and visible light.

在有太陽之條件期間來自陽光之輻照度值可隨著陽光照射地球之角度改變,基於當日時間及一年中之時間來預測。一外部光感測器可即時地偵測實際輻射光,其考量歸因於建築物或其他結構、天氣(例如,雲)之改變等的經反射及阻擋光。舉例而言,在多雲之日子,陽光可受到雲阻擋且由外部感測器偵測之輻射光將低於在無雲(有太陽之)日子。 Irradiance values from sunlight during solar conditions can be predicted based on the time of day and time of year as the angle at which the sun hits the Earth varies. An external light sensor can detect actual radiant light in real time, taking into account reflected and blocked light due to buildings or other structures, changes in weather (eg, clouds), and the like. For example, on a cloudy day, sunlight may be blocked by clouds and the radiant light detected by the external sensor will be lower than on a cloudless (sun) day.

在上午及晚上,陽光等級低且由外部光感測器取得之對應讀數為低值,亦可將所述低值考慮為與在一天中之多雲條件期間取得之讀數一致。出於 此原因,在上午及晚上期間取得之外部光感測器讀數可錯誤地指示一多雲條件(若單獨地考慮)。此外,來自建築物或山/山脈之任何阻擋亦可單獨基於外部光感測器讀數而導致針對多雲天之一錯誤肯定指示。此外,緊接在日出前,單獨使用外部光感測器值將導致針對多雲條件之錯誤肯定,此可導致在日出時將電致變色窗轉變至一透明狀態,從而允許在具有透明窗之房間中的眩光條件。 In the morning and evening, the sunlight level is low and the corresponding readings taken by the external light sensor are low values, which can also be considered consistent with readings taken during cloudy conditions during the day. out of For this reason, exterior light sensor readings taken during morning and evening may falsely indicate a cloudy condition (if considered separately). Additionally, any obstruction from buildings or mountains/mountains could also result in a false positive indication for cloudy days based on the exterior light sensor readings alone. Furthermore, using the external light sensor value alone would result in false positives for cloudy conditions immediately before sunrise, which could result in switching the electrochromic window to a transparent state at sunrise, allowing for glare conditions in rooms with clear windows.

在某些實施例中,由至少兩個紅外線感測器取得之讀數可用以判定在緊接在日出前之時間及亦在上午及在晚上的雲條件。此等紅外線感測器可獨立於陽光等級操作,從而允許著色控制邏輯判定日出前之雲條件,且隨著太陽落下,判定及維持在上午及晚上期間的電致變色窗之恰當色調狀態。此外,至少兩個紅外線感測器可用以偵測雲條件,甚至當感測器經遮住或另外對直射陽光阻擋時。 In some embodiments, readings taken by at least two infrared sensors can be used to determine cloud conditions at times immediately before sunrise and also in the morning and at night. These infrared sensors can be operated independently of sunlight levels, allowing the tinting control logic to determine cloud conditions before sunrise, and as the sun sets, determine and maintain the proper tint state for the electrochromic windows during the morning and evening periods. Additionally, at least two infrared sensors can be used to detect cloud conditions even when the sensors are covered or otherwise blocked from direct sunlight.

在一些態樣中,一單一裝置(有時在本文中被稱作「紅外線感測器裝置」、「紅外線雲偵測器」或「多感測器裝置」)包含一用於偵測熱輻射之紅外線感測器及一機載環境溫度感測器。紅外線感測器通常經定位以引導至天空以量測天空溫度(T sky )。機載環境溫度感測器通常經定位以量測裝置處之環境溫度(T amb )。另外或替代地,紅外線感測器裝置輸出在天空溫度讀數與環境溫度讀數之間的差之溫度讀數──差量(△)。紅外線感測器裝置溫度讀數(T sky T amb 及/或△)通常以度計,例如,攝氏毫度或華氏毫度。 In some aspects, a single device (sometimes referred to herein as an "infrared sensor device,""infrared cloud detector," or "multi-sensor device") includes an infrared sensor for detecting thermal radiation and an onboard ambient temperature sensor. Infrared sensors are typically positioned to be directed into the sky to measure the sky temperature ( T sky ). On-board ambient temperature sensors are typically positioned to measure the ambient temperature ( T amb ) at the device. Additionally or alternatively, the infrared sensor means outputs a temperature reading - delta (Δ) - the difference between the sky temperature reading and the ambient temperature reading. The infrared sensor device temperature readings ( T sky , Tamb and/or Δ ) are usually in degrees, eg, millidegrees Celsius or millidegrees Fahrenheit.

根據某些態樣,可存在與一建築物之一單一電致變色窗或一建築物之多個電致變色窗(例如,電致變色窗之區帶)相關聯的多個感測器。舉例而言,多個感測器可呈具有至少兩個紅外線感測器、一環境溫度感測器(例如,一紅外線感測器之部分)及多個光感測器的多感測器裝置之形式。舉例而言,多感測器裝置可位於具有一或多個電致變色窗的建築物之屋頂上。在一個實施例中,將來自冗餘感測器之輸出相互比較以判定(例如)所述感測器中之一者是否由一 物體遮住,諸如,由落在屋頂上之多感測器裝置上的鳥。在一些情況下,可能需要使用建築物中之相對極少感測器,此係因為具有許多感測器可為昂貴的及/或一些感測器可能不可靠。在某些實施中,一單一感測器或相對極少感測器(例如,2個、3個、4個、5個)可用以判定來自照射於建築物或建築物之可能一側上的陽光之輻射光之電流電平。雲可能在太陽前方經過,或一施工車輛可能停放在落下之太陽前方。此等發生將導致與來自太陽的輻射光之量之偏差,所述量將經計算以通常在晴空條件期間照射於建築物上。 According to certain aspects, there may be multiple sensors associated with a single electrochromic window of a building or multiple electrochromic windows (eg, zones of electrochromic windows) of a building. For example, the multiple sensors may be in the form of a multi-sensor device having at least two infrared sensors, an ambient temperature sensor (eg, part of an infrared sensor), and multiple light sensors. For example, a multi-sensor device may be located on the roof of a building with one or more electrochromic windows. In one embodiment, outputs from redundant sensors are compared to each other to determine, for example, whether one of the sensors is controlled by a Obscuration by objects, such as a bird falling on a multi-sensor device on a roof. In some cases, it may be desirable to use relatively few sensors in a building because having many sensors may be expensive and/or some sensors may be unreliable. In some implementations, a single sensor or relatively few sensors (eg, 2, 3, 4, 5) may be used to determine the current level of radiant light from sunlight striking a building or possible sides of a building. Clouds may pass in front of the sun, or a construction vehicle may be parked in front of the setting sun. This occurrence will result in a deviation from the amount of radiant light from the sun that would be calculated to fall on the building normally during clear sky conditions.

在具有光感測器之實例中,光感測器可為(例如)電荷耦合裝置(CCD)、光電二極體、光電阻或光伏打電池。一般熟習此項技術者將瞭解,光感測器及其他感測器技術之未來發展亦將適用,因為其量測光強度且提供表示光等級之電輸出。 In examples with light sensors, the light sensors may be, for example, charge coupled devices (CCDs), photodiodes, photoresistors, or photovoltaic cells. Those of ordinary skill in the art will understand that future developments in light sensors and other sensor technologies will also apply as they measure light intensity and provide an electrical output indicative of light levels.

在一些實施例中,可將來自感測器之輸出輸入至信號調節模組1265。輸入可呈至信號調節模組1265之電壓信號之形式。信號調節模組1265將輸出信號傳遞至微處理器1255或其他處理器。微處理器1255或其他處理器基於來自組態檔案1275之資訊且基於來自信號調節模組1265之輸出或更動值判定電致變色窗之色調等級。微處理器1255接著將指令發送至1260以經由網路1280將電壓及/或電流施加至建築物之一或多個電致變色窗之電致變色裝置1200以將電致變色窗轉變至所要的色調等級。 In some embodiments, the output from the sensor may be input to the signal conditioning module 1265 . The input may be in the form of a voltage signal to the signal conditioning module 1265 . The signal conditioning module 1265 passes the output signal to the microprocessor 1255 or other processors. The microprocessor 1255 or other processor determines the tint level of the electrochromic window based on the information from the configuration file 1275 and based on the output or modification value from the signal conditioning module 1265 . Microprocessor 1255 then sends instructions to 1260 to apply voltage and/or current to electrochromic device 1200 of one or more electrochromic windows of a building via network 1280 to transition the electrochromic windows to a desired tint level.

在一個態樣中,信號調節模組1265為接收來自多感測器裝置之一或多個感測器之輸出的多感測器裝置(例如,屋頂多感測器裝置)之部分。在此情況下,信號調節模組1265經由有線或無線網路將輸出信號傳達至微處理器1255或窗控制器1250之其他處理器。微處理器1255或其他處理器判定電致變色窗之色調等級,且將指令發送至PWM 1260以經由網路1280將電壓及/或電流施加至建築物之一或多個電致變色窗之電致變色裝置1200以將電致變色窗轉變 所述所要的色調等級。 In one aspect, the signal conditioning module 1265 is part of a multi-sensor device (eg, a rooftop multi-sensor device) that receives an output from one or more sensors of the multi-sensor device. In this case, the signal conditioning module 1265 communicates the output signal to the microprocessor 1255 or other processors of the window controller 1250 via a wired or wireless network. Microprocessor 1255 or other processor determines the tint level of the electrochromic window and sends instructions to PWM 1260 to apply voltage and/or current to electrochromic device 1200 of one or more electrochromic windows of a building via network 1280 to transition the electrochromic window to said desired tint level.

在一些實施例中,微處理器1260可指導PWM 1260將電壓及/或電流施加至電致變色窗以將其轉變至四個或多於四個不同色調等級中之任一者。在一種情況下,可將電致變色窗轉變至至少八個不同色調等級,其描述為:0(最亮)、5、10、15、20、25、30及35(最暗)。色調等級可線性對應於經由電致變色窗透射的光之視覺透射率值及太陽熱量增益係數(SHGC)值。舉例而言,使用以上八個色調等級,最亮色調等級0可對應於SHGC值0.80,色調等級5可對應於SHGC值0.70,色調等級10可對應於SHGC值0.60,色調等級15可對應於SHGC值0.50,色調等級20可對應於SHGC值0.40,色調等級25可對應於SHGC值0.30,色調等級30可對應於SHGC值0.20,且色調等級35(最暗)可對應於SHGC值0.10。 In some embodiments, microprocessor 1260 may direct PWM 1260 to apply voltage and/or current to the electrochromic window to transition it to any of four or more different hue levels. In one instance, the electrochromic window can be switched to at least eight different shade levels described as: 0 (brightest), 5, 10, 15, 20, 25, 30, and 35 (darkest). The tint level may correspond linearly to the visual transmittance value and solar heat gain coefficient (SHGC) value of light transmitted through the electrochromic window. For example, using the above eight hue grades, the brightest hue grade 0 may correspond to a SHGC value of 0.80, hue grade 5 may correspond to a SHGC value of 0.70, hue grade 10 may correspond to a SHGC value of 0.60, hue grade 15 may correspond to a SHGC value of 0.50, hue grade 20 may correspond to a SHGC value of 0.40, hue grade 25 may correspond to a SHGC value of 0.30, hue grade 30 may correspond to an SHGC value of 0.20, and hue grade 35 ( darkest) may correspond to a SHGC value of 0.10.

窗控制器1250或與窗控制器1250通信之主控制器可使用任何一或多個控制邏輯組件基於來自感測器之信號及/或其他輸入判定所要的色調等級。窗控制器1250可指導PWM 1260將電壓及/或電流施加至一或多個電致變色窗之電致變色裝置1200以將其轉變至所要的色調等級。 Window controller 1250 or a master controller in communication with window controller 1250 may use any one or more control logic components to determine a desired tint level based on signals from sensors and/or other inputs. Window controller 1250 may instruct PWM 1260 to apply voltage and/or current to one or more electrochromic windows of electrochromic device 1200 to transition them to a desired tint level.

C.建築物管理系統(BMS)C. Building Management System (BMS)

本文中描述之窗控制器亦適合於與一建築物管理系統(BMS)整合。BMS為裝設於建築物中之一基於電腦之控制系統,其監視及控制建築物之機械及電裝備,諸如,通風、照明、電力系統、電梯、消防系統及安全系統。BMS由硬體(包括藉由通信通道至一或多個電腦之互連件)及用於根據由居住者及/或由建築物管理者設定之偏好維持建築物中之狀況的相關聯之軟體組成。舉例而言,可使用一諸如乙太網路之區域網路實施BMS。軟體可基於(例如)網際網路協定及/或開放標準。一個實例為來自(弗吉尼亞州Richmond之)Tridium,Inc.之軟體。通常供BMS使用之一個通信協定為BACnet(建築物自動化及控制 網路)。 The window controllers described herein are also suitable for integration with a building management system (BMS). BMS is a computer-based control system installed in a building, which monitors and controls the mechanical and electrical equipment of the building, such as ventilation, lighting, electrical systems, elevators, fire protection systems and security systems. A BMS consists of hardware (including interconnections through communication channels to one or more computers) and associated software for maintaining conditions in a building according to preferences set by occupants and/or by the building manager. For example, a BMS can be implemented using a local area network such as Ethernet. Software may be based on, for example, Internet protocols and/or open standards. One example is software from Tridium, Inc. (Richmond, VA). One communication protocol commonly used by BMS is BACnet (Building Automation and Control network).

BMS在大建築物中最常見,且通常至少發揮功能以控制建築物內之環境。舉例而言,BMS可控制建築物內之溫度、二氧化碳含量及濕度。通常,存在由BMS控制之許多機械裝置,諸如,加熱器、空調器、吹風機、通風口及類似者。為了控制建築物環境,BMS可在定義之條件下接通及關斷此等各種裝置。典型現代BMS之一核心功能為維持建築物之居住者的舒適環境,同時使加熱及冷卻成本/需求最小化。因此,現代BMS不僅用以監視及控制,並且使各種系統之間的協同作用最佳化,例如,以保存能量及降低建築物運營成本。 BMSs are most common in large buildings and typically at least function to control the environment within the building. For example, a BMS can control the temperature, carbon dioxide level and humidity inside a building. Typically, there are many mechanical devices controlled by the BMS, such as heaters, air conditioners, blowers, vents, and the like. To control the building environment, the BMS can switch these various devices on and off under defined conditions. One of the core functions of a typical modern BMS is to maintain a comfortable environment for the building's occupants while minimizing heating and cooling costs/demand. Therefore, a modern BMS is not only used for monitoring and control, but also to optimize the synergy between various systems, for example, to conserve energy and reduce building operating costs.

在一些實施例中,窗控制器與BMS整合在一起,其中所述窗控制器經組態以控制一或多個電致變色窗或其他可著色窗。在一個實施例中,一或多個電致變色窗包含至少一個全固態且無機電致變色裝置,但可包含多於一個電致變色裝置,例如,其中IGU之每一鏡片或邊框可著色。在一個實施例中,一或多個電致變色窗僅包含全固態及無機電致變色裝置。在一個實施例中,電致變色窗為多態電致變色窗,如在2010年8月5日提交且題為《多窗格電致變色窗(Multipane Electrochromic Windows)》之美國專利申請案第12/851,514號(現在為美國專利第8,705,162號)中所描述,所述申請案在此被以引用的方式全部併入。 In some embodiments, a window controller is integrated with the BMS, where the window controller is configured to control one or more electrochromic windows or other tintable windows. In one embodiment, one or more electrochromic windows comprise at least one all-solid-state and inorganic electrochromic device, but may comprise more than one electrochromic device, eg, where each lens or bezel of the IGU is tintable. In one embodiment, one or more electrochromic windows include only all solid state and inorganic electrochromic devices. In one embodiment, the electrochromic window is a multi-state electrochromic window, as described in U.S. Patent Application Serial No. 12/851,514 (now U.S. Patent No. 8,705,162), filed August 5, 2010, and entitled "Multipane Electrochromic Windows," which is hereby incorporated by reference in its entirety.

圖13描繪BMS 1300之一實施例之示意圖,其管理建築物1301之許多系統,包含安全系統、加熱/通風/空調(HVAC)、建築物之照明、電力系統、電梯、消防系統及類似者。安全系統可包含磁卡存取、十字轉門、螺線管驅動式門鎖、監控相機、夜盜警報、金屬偵測器及類似者。防火系統可包含火警報及火抑制系統(包含水管道控制)。照明系統可包含內部照明、外部照明、緊急警告燈、緊急出口標誌及緊急樓層出口照明。電力系統可包含主發電機、備份發電機及不間斷電源(UPS)網格。 13 depicts a schematic diagram of one embodiment of a BMS 1300 that manages many systems of a building 1301 , including security systems, heating/ventilating/air conditioning (HVAC), building lighting, electrical systems, elevators, fire protection systems, and the like. Security systems may include magnetic card access, turnstiles, solenoid actuated door locks, surveillance cameras, burglar alarms, metal detectors, and the like. Fire protection systems may include fire alarm and fire suppression systems (including water piping controls). The lighting system may include interior lighting, exterior lighting, emergency warning lights, emergency exit signs and emergency floor exit lighting. The power system may include primary generators, backup generators, and an uninterruptible power supply (UPS) grid.

又,BMS 1300管理主窗控制器1302。在此實例中,主窗控制器3102經描繪為包含一主網路控制器1303、中間網路控制器1305a1305b及端部或葉控制器1310的窗控制器之分散式網路。端部或葉控制器1310可類似於關於圖12所描述之窗控制器1250。在一個實例中,主網路控制器1303可最緊密接近BMS 1300,且建築物1301之每一樓層可具有一或多個中間網路控制器1305a1305b,同時建築物之窗具有其自己的端部或葉控制器1310。在此實例中,端部或葉控制器1310中之每一者控制建築物1301之一具體電致變色窗。 Also, the BMS 1300 manages the main window controller 1302 . In this example, master window controller 3102 is depicted as a distributed network of window controllers including a master grid controller 1303 , intermediate grid controllers 1305a and 1305b , and end or leaf controllers 1310 . End or leaf controller 1310 may be similar to window controller 1250 described with respect to FIG. 12 . In one example, the main network controller 1303 may be closest to the BMS 1300 , and each floor of the building 1301 may have one or more intermediate network controllers 1305a and 1305b , while the windows of the building have their own end or leaf controllers 1310 . In this example, each of the end or leaf controllers 1310 controls a specific electrochromic window of the building 1301 .

端部或葉控制器1310中之每一者可處於與其控制的電致變色窗分開之位置中,或可整合至電致變色窗內。為簡單起見,建築物1301之僅十個電致變色窗經描繪為由主窗控制器1302控制。在一典型設定中,在由主窗控制器1302控制之建築物中可存在大量電致變色窗。在此等實施中,主窗控制器1302不需要為窗控制器之分散式網路。舉例而言,作為控制單一電致變色窗之功能的單端控制器之主窗控制器1302亦屬於如上所述的本文中揭露的實施例之範疇。 Each of the tip or leaf controllers 1310 may be in a separate location from the electrochromic window it controls, or may be integrated into the electrochromic window. For simplicity, only ten electrochromic windows of building 1301 are depicted as being controlled by master window controller 1302 . In a typical setup, there may be a large number of electrochromic windows in a building controlled by master window controller 1302 . In such implementations, master window controller 1302 need not be a distributed network of window controllers. For example, the master window controller 1302, which is a single-ended controller controlling the function of a single electrochromic window, is also within the scope of the embodiments disclosed herein as described above.

揭露之實施例之一個態樣為一包含一多感測器裝置(例如,在圖4A圖4C中展示之多感測器裝置401)或其他形式之紅外線雲偵測器系統的BMS。藉由併有來自紅外線雲偵測器系統之回饋,BMS可提供(例如)增強之:1)環境控制,2)能量節省,3)安全性,4)控制選項中之靈活性,5)其他系統之改良之可靠性及可使用壽命,此係歸因於對其之較少依賴及因此對其之較少維護,6)資訊可用性及診斷,及7)工作人員之有效使用及來自工作人員之較高生產力,及此等之各種組合,此係因為可自動控制電致變色窗。在一些實施例中,BMS可不存在,或BMS可存在,但可不與主網路控制器通信,或在高等級下與主網路控制器通信。在某些實施例中,對BMS之維護將不中斷電致變色窗之控制。 One aspect of the disclosed embodiments is a BMS that includes a multi-sensor device (eg, multi-sensor device 401 shown in FIGS. 4A - 4C ) or other form of infrared cloud detector system. By incorporating feedback from the infrared cloud detector system, the BMS can provide, for example, enhanced: 1) environmental control, 2) energy savings, 3) security, 4) flexibility in control options, 5) improved reliability and service life of other systems due to less reliance on them and thus less maintenance, 6) information availability and diagnostics, and 7) efficient use of and higher productivity from workers, and various combinations of these due to automatic control of electrochromic windows. In some embodiments, the BMS may not be present, or the BMS may be present but may not communicate with the master network controller, or communicate with the master network controller at a high level. In certain embodiments, maintenance of the BMS will not interrupt control of the electrochromic window.

在一些情況下,BMS 1300之系統可根據每日、每月、每季度或 每年排程來運作。舉例而言,照明控制系統、窗控制系統、HVAC及安全性系統可按24小時排程操作,此考量人在工作日期間在建築物中之時間。在夜裏,建築物可進入能量節省模式,且在白天,系統可以使建築物之能量消耗最小化同時提供居住者舒適性之方式操作。作為另一實例,系統可在假期週期關閉或進入能量節省模式。 In some cases, the system of BMS 1300 may operate according to a daily, monthly, quarterly or yearly schedule. For example, lighting control systems, window control systems, HVAC, and security systems may operate on a 24-hour schedule, which takes into account the time people are in the building during the workday. At night, the building can enter an energy saving mode, and during the day, the system can operate in a manner that minimizes the building's energy consumption while providing occupant comfort. As another example, the system may shut down or enter an energy saving mode during the holiday period.

排程資訊可與地理資訊組合。地理資訊可包含建築物之緯度及經度。地理資訊亦可包含關於建築物之每一側面對之方向的資訊。使用此資訊,建築物之不同側上的不同房間可以不同方式控制。舉例而言,在冬天,對於建築物之面向東的房間,窗控制器可指導窗在上午不具有色調,使得歸因於陽光照在房間裏,房間變暖,且由於來自陽光之照明,照明控制面板可指導燈變暗淡。面向西的窗在上午可由房間之居住者控制,因為在西側上的窗之色調可對能量節省不具有影響。然而,面向東之窗及面向西之窗的操作模式可在晚上切換(例如,當太陽落下時,面向西之窗不著色以允許陽光帶來熱量及照明)。 Scheduling information can be combined with geographic information. Geographical information may include the latitude and longitude of buildings. Geographical information may also include information about the direction each side of the building is facing. Using this information, different rooms on different sides of the building can be controlled differently. For example, in winter, for an east-facing room of a building, the window controller may direct the windows to have no tint in the morning, so that due to sunlight shining in the room, the room warms, and the lighting control panel may direct the lights to dim due to the illumination from the sun. West facing windows can be controlled by the occupants of the room in the morning, since the tint of windows on the west side can have no effect on energy savings. However, the mode of operation of the east-facing and west-facing windows can be switched at night (eg, when the sun goes down, the west-facing windows are untinted to allow sunlight to bring heat and illumination).

另外,建築物內之溫度可受到外部光及/或外部溫度影響。舉例而言,在寒冷的日子且在建築物由加熱系統加熱之情況下,較靠近門及/或窗之房間將比建築物之內部區域快地失去熱量,且與內部區域相比,更冷。 Additionally, the temperature within a building can be affected by external light and/or external temperature. For example, on a cold day and where the building is heated by a heating system, rooms closer to doors and/or windows will lose heat faster than, and be cooler than, interior areas of the building.

對於具有外部感測器之實施,建築物可包含在建築物之屋頂上的外部感測器。替代地,建築物可包含一與每一外部窗相關聯之外部感測器或一在建築物之每一側上之外部感測器。在建築物之每一側上之外部感測器可隨著太陽在白天改變位置而追蹤在建築物之一側上的輻照度。 For implementations with external sensors, the building may include external sensors on the roof of the building. Alternatively, the building may include an exterior sensor associated with each exterior window or an exterior sensor on each side of the building. Exterior sensors on each side of the building can track the irradiance on one side of the building as the sun changes position during the day.

建築物(如圖13中之建築物1301)之一實例包含建築物網路或BMS、用於建築物外部窗(亦即,將建築物之內部與建築物之外部分開的窗)之可著色窗及許多不同感測器。來自建築物之外部窗的光通常對建築物中自窗至約20呎或約30呎之內部照明具有效應。亦即,建築物中自外部窗大於約20呎 或約30呎之空間自外部窗接收極少光。建築物中遠離外部窗之此等空間主要由建築物之內部照明系統照亮。 An example of a building, such as building 1301 in FIG. 13 , includes a building network or BMS, tintable windows for building exterior windows (ie, windows that separate the interior of the building from the exterior of the building), and many different sensors. Light from an exterior window of a building typically has an effect on interior lighting in the building from the window to about 20 or about 30 feet. That is, spaces in a building that are greater than about 20 feet or about 30 feet from an exterior window receive very little light from the exterior window. These spaces in the building away from the exterior windows are primarily illuminated by the building's interior lighting system.

圖14為根據實施例的用於控制一建築物(例如,圖13中展示之建築物1301)之一或多個可著色窗之功能(例如,轉變至不同色調等級)的系統1400之組件之方塊圖。系統1400可為由BMS(例如,圖13中展示之BMS 1300)管理的系統中之一者,或可獨立於BMS操作。 14 is a block diagram of components of a system 1400 for controlling the function (eg, switching to different tint levels) of one or more tintable windows of a building (eg, building 1301 shown in FIG. 13 ), according to an embodiment. System 1400 may be one of the systems managed by a BMS (eg, BMS 1300 shown in FIG. 13 ), or may operate independently of the BMS.

系統1400包含一主窗控制器1402,其可將控制信號發送至一或多個可著色窗以控制其功能。系統1400亦包含一與主窗控制器1402電子通信之網路1410。用於控制可著色窗之功能的控制邏輯及指令及/或感測器資料可經由網路1410傳達至主窗控制器1402。網路1410可為有線或無線網路(例如,雲網路)。在一個實施例中,網路1410可與BMS通信以允許BMS將用於控制可著色窗之指令經由網路1410發送至建築物中之可著色窗。 System 1400 includes a master window controller 1402 that can send control signals to one or more tintable windows to control their functions. System 1400 also includes a network 1410 in electronic communication with master window controller 1402 . Control logic and instructions and/or sensor data for controlling the functions of the tintable windows may be communicated to the main window controller 1402 via the network 1410 . The network 1410 can be a wired or wireless network (eg, cloud network). In one embodiment, the network 1410 can communicate with the BMS to allow the BMS to send instructions for controlling the tintable windows over the network 1410 to the tintable windows in the building.

系統1400亦包含在一或多個可著色窗(未展示)中之每一者中的EC裝置400,及可選壁開關1490,其皆與主窗控制器1402電子通信。在此說明之實例中,主窗控制器1402可將控制信號發送至EC裝置1401以控制具有EC裝置400的可著色窗之色調等級。每一壁開關1490亦與EC裝置1401及主窗控制器1402通信。最終使用者(例如,具有可著色窗的房間之居住者)可使用壁開關1490控制具有相關聯之EC裝置1401的可著色窗之色調等級及其他功能。 System 1400 also includes an EC device 400 in each of one or more tintable windows (not shown), and optional wall switch 1490 , all in electronic communication with primary window controller 1402 . In this illustrated example, master window controller 1402 may send a control signal to EC device 1401 to control the tint level of the tintable window with EC device 400 . Each wall switch 1490 also communicates with the EC device 1401 and the main window controller 1402 . An end user (eg, an occupant of a room with a tintable window) can use the wall switch 1490 to control the tint level and other functions of the tintable window with the associated EC device 1401 .

圖14中,將主窗控制器1402描繪為包含一主網路控制器1403、與主網路控制器1403通信之多個中間網路控制器1405及多個端部或葉窗控制器1410的窗控制器之一分散式網路。多個端部或葉窗控制器1410中之每一者與單一中間網路控制器1405通信。雖然將主窗控制器1402說明為窗控制器之分散式網路,但在其他實施中主窗控制器1402亦可為控制單一可著色窗 之功能的一單一窗控制器。圖14中的系統1400之組件可在一些方面類似於關於圖13所描述之組件。舉例而言,主網路控制器1403可類似於主網路控制器1303,且中間網路控制器1405可類似於中間網路控制器1305。在圖14之分散式網路中的窗控制器中之每一者包含一處理器(例如,微處理器)及一與處理器電連通之電腦可讀媒體。 In FIG. 14 , the master window controller 1402 is depicted as a distributed network of window controllers comprising a master grid controller 1403 , a plurality of intermediate grid controllers 1405 in communication with the master grid controller 1403 , and a plurality of end or shutter controllers 1410 . Each of the plurality of end or shutter controllers 1410 communicates with a single intermediate network controller 1405 . Although master window controller 1402 is illustrated as a distributed network of window controllers, in other implementations master window controller 1402 can be a single window controller that controls the functions of a single tintable window. The components of system 1400 in FIG. 14 may be similar in some respects to those described with respect to FIG. 13 . For example, primary network controller 1403 can be similar to primary network controller 1303 , and intermediate network controller 1405 can be similar to intermediate network controller 1305 . Each of the window controllers in the distributed network of FIG. 14 includes a processor (eg, microprocessor) and a computer-readable medium in electrical communication with the processor.

圖14中,每一葉或端部窗控制器1410與一單一可著色窗之EC裝置1401通信以控制建築物中的彼可著色窗之色調等級。在IGU之情況下,葉或端部窗控制器1410可與IGU之多個鏡片上的EC裝置1401通信以控制IGU之色調等級。在其他實施例中,每一葉或端部窗控制器1410可與例如可著色窗之一區帶之多個可著色窗通信。葉或端部窗控制器1410可整合至可著色窗內,或可與其控制之可著色窗分開。圖14中之葉及端部窗控制器1410可類似於圖13中之端部端部葉控制器1410,及/或亦可類似於關於圖12所描述之窗控制器1250In Figure 14 , each lobe or end window controller 1410 communicates with the EC device 1401 of a single tintable window to control the tint level of that tintable window in the building. In the case of an IGU, a leaf or end window controller 1410 may communicate with EC devices 1401 on multiple lenses of the IGU to control the tint level of the IGU. In other embodiments, each leaf or end window controller 1410 may communicate with multiple tintable windows, such as a zone of tintable windows. The leaf or end window controller 1410 may be integrated into the tintable window, or may be separate from the tintable window it controls. The leaf and end window controller 1410 in FIG. 14 may be similar to the end leaf controller 1410 in FIG. 13 , and/or may also be similar to the window controller 1250 described with respect to FIG. 12 .

每一壁開關1490可由一最終使用者(例如,房間之居住者)操作以控制與壁開關1490通信的可著色窗之色調等級及其他功能。最終使用者可操作壁開關1490以將控制信號傳達至相關聯之可著色窗中的EC裝置400。在一些情況下,來自壁開關1490之此等信號可更動來自主窗控制器1402之信號。在其他情況(例如,高需求情況)下,來自主窗控制器1402之控制信號可更動來自壁開關1490之控制信號。每一壁開關1490亦與葉或端部窗控制器1410通信以將關於自壁開關1490發送之控制信號的資訊(例如,時間、日期、請求之色調等級等)發送回至主窗控制器1402,例如,以儲存於記憶體中。在一些情況下,壁開關1490可手動地操作。在其他情況下,壁開關1490可由最終使用者使用遠程裝置(例如,蜂巢式電話、平板電腦等)無線控制,所述遠程裝置藉由控制信號發送無線通信,例如,使用紅外線(IR)及/或射頻(RF)信號。在此 等情況下,壁開關1490可包含一無線協定晶片,諸如,藍芽、EnOcean、WiFi、Zigbee及類似者。雖然圖14中描繪之壁開關1490位於壁上,但系統1400之其他實施例可具有位於房間中其他處之開關。 Each wall switch 1490 can be operated by an end user (eg, the occupant of the room) to control the tint level and other functions of the tintable windows in communication with the wall switch 1490 . The end user can operate the wall switch 1490 to communicate a control signal to the EC device 400 in the associated tintable window. In some cases, these signals from wall switch 1490 may alter the signal from master window controller 1402 . In other situations (eg, high demand situations), the control signal from the main window controller 1402 may alter the control signal from the wall switch 1490 . Each wall switch 1490 also communicates with the leaf or end window controller 1410 to send information (e.g., time, date, requested tint level, etc.) about the control signal sent from the wall switch 1490 back to the main window controller 1402 , e.g., for storage in memory. In some cases, wall switch 1490 may be manually operated. In other cases, the wall switch 1490 may be controlled wirelessly by the end user using a remote device (e.g., cellular phone, tablet, etc.) that communicates wirelessly via control signals, e.g., using infrared (IR) and/or radio frequency (RF) signals. In such cases, the wall switch 1490 may include a wireless protocol chip, such as Bluetooth, EnOcean, WiFi, Zigbee, and the like. While the wall switch 1490 depicted in FIG. 14 is located on a wall, other embodiments of the system 1400 may have switches located elsewhere in the room.

系統1400亦包含一多感測器裝置1412,其經由通信網路1410與一或多個控制器電子通信以便將感測器讀數及/或經過濾感測器值傳達至控制器。 System 1400 also includes a multi-sensor device 1412 in electronic communication with one or more controllers via communications network 1410 for communicating sensor readings and/or filtered sensor values to the controllers.

D.用於控制電致變色裝置/窗之邏輯D. Logic for Controlling Electrochromic Devices/Windows

在一些實施中,一控制器(例如,本端端部或葉窗控制器、主或中間網路控制器、主窗控制器等)包含用於計算、判定、選擇或以其他方式產生用於建築物之一或多個光學可切換窗(例如,電致變色窗)之色調狀態的智慧控制邏輯。此控制邏輯可用以基於來自在建築物處之紅外線雲偵測器系統的感測器資料判定一雲覆蓋條件,及使用所述判定之雲覆蓋條件判定所述可切換窗之色調狀態。此控制邏輯可用以實施用於判定及控制用於一或多個電致變色窗或其他可著色窗之所要的色調等級以考量居住者舒適性、能量保存及/或其他考慮之方法。在一些情況下,所述控制邏輯使用一或多個邏輯模組。 In some implementations, a controller (e.g., local end or louver controller, master or intermediate network controller, master window controller, etc.) includes intelligent control logic for calculating, determining, selecting, or otherwise generating the tint state for one or more optically switchable windows (e.g., electrochromic windows) of a building. This control logic can be used to determine a cloud cover condition based on sensor data from an infrared cloud detector system at the building, and use the determined cloud cover condition to determine the tint state of the switchable window. Such control logic may be used to implement methods for determining and controlling a desired tint level for one or more electrochromic windows or other tintable windows to account for occupant comfort, energy conservation, and/or other considerations. In some cases, the control logic uses one or more logic modules.

舉例而言,圖15A圖15C描繪根據某些實施的至一例示性控制邏輯之三個邏輯模組A、B及C中之每一者之一般輸入。模組A、B及C之其他實例描述於題為《用於可著色窗之控制方法(CONTROL METHOD FOR TINTABLE WINDOWS)》的2016年7月7日提交之國際專利申請案PCT/US16/41344及題為《用於可著色窗之控制方法(CONTROL METHOD FOR TINTABLE WINDOWS)》且2015年5月5日提交之國際專利申請案PCT/US15/29675中;所述申請案中之每一者在此被以引用的方式全部併入。邏輯模組之其他實例描述於題為《用於可著色窗之控制方法(CONTROL METHOD FOR TINTABLE WINDOWS)》的2017年12月13日提交之國際專利申請案 PCT/US17 PCT/US17/66198中,所述申請案在此被以引用的方式全部併入。稍後在此章節中描述包含四(4)個模組之例示性控制邏輯之另一實例。 For example, Figures 15A - 15C depict general inputs to each of three logic modules A, B, and C of an exemplary control logic, according to certain implementations. Other examples of modules A, B, and C are described in International Patent Application PCT/US16/41344, entitled "CONTROL METHOD FOR TINTABLE WINDOWS", filed on July 7, 2016, and PCT/US, filed on May 5, 2015, entitled "CONTROL METHOD FOR TINTABLE WINDOWS"15/29675; each of said applications is hereby incorporated by reference in its entirety. Other examples of logic modules are described in International Patent Application PCT/US17 PCT/US17/66198, entitled CONTROL METHOD FOR TINTABLE WINDOWS, filed December 13, 2017, which is hereby incorporated by reference in its entirety. Another example of illustrative control logic involving four (4) modules is described later in this section.

-模組A、B及C之實例- Examples of modules A, B and C

圖15A圖15C包含描繪至揭露之實施之一例示性控制邏輯之三個邏輯模組A、B及C中之每一者之某一一般輸入之圖。每一圖描繪具有一桌子1501及一位於建築物之外部與內部之間的電致變色窗1505的建築物之房間1500之示意性側視圖。所述圖亦描繪一根據一個實例之紅外線雲偵測器系統1502。在其他實施中,可使用本文中描述的紅外線雲偵測器系統之其他實例。在說明之實例中,紅外線雲偵測器系統1502包含一位於建築物之屋頂上的紅外線雲偵測器1530。紅外線雲偵測器1530具有一具有由光擴散材料製成之蓋之外殼1532、在外殼1532之殼體內的一紅外線感測器1534及一光感測器1510,及一位於外殼1532之遮住表面上的環境溫度感測器1536。紅外線感測器1534經組態以基於自其圓錐形視野內的天空之區域接收之紅外線輻射取得溫度讀數T sky 。環境溫度感測器1536經組態以取得在紅外線雲偵測器1530周圍的環境空氣之環境溫度讀數T amb 。在一個態樣中,紅外線感測器及環境溫度感測器整合至同一感測器內。紅外線感測器1534包含一假想軸線,其垂直於紅外線感測器1534之感測表面且穿過其中心。紅外線感測器1534經引導使得其感測表面面向上,且可接收來自在其視野內的天空之區域之紅外線輻射。環境溫度感測器1536位於一遮住表面上以避免直射陽光照射其感測表面。雖然未展示,但紅外線雲偵測器1530亦包含將其組件固持在外殼1532內之一或多個結構。 15A - 15C include diagrams depicting certain general inputs to each of the three logic modules A, B, and C of an exemplary control logic of the disclosed implementation. Each figure depicts a schematic side view of a room 1500 of a building with a table 1501 and an electrochromic window 1505 located between the exterior and interior of the building. The figure also depicts an infrared cloud detector system 1502 according to one example. In other implementations, other examples of the infrared cloud detector systems described herein can be used. In the illustrated example, infrared cloud detector system 1502 includes an infrared cloud detector 1530 located on the roof of a building. The infrared cloud detector 1530 has a housing 1532 with a cover made of light diffusing material, an infrared sensor 1534 and a light sensor 1510 within the housing of the housing 1532 , and an ambient temperature sensor 1536 located on a covered surface of the housing 1532 . Infrared sensor 1534 is configured to take a temperature reading T sky based on infrared radiation received from the region of sky within its cone-shaped field of view. The ambient temperature sensor 1536 is configured to take an ambient temperature reading T amb of the ambient air surrounding the infrared cloud detector 1530 . In one aspect, the infrared sensor and the ambient temperature sensor are integrated into the same sensor. The infrared sensor 1534 includes an imaginary axis that is perpendicular to the sensing surface of the infrared sensor 1534 and passes through its center. Infrared sensor 1534 is directed such that its sensing surface faces upward and can receive infrared radiation from the region of the sky within its field of view. The ambient temperature sensor 1536 is located on a covered surface to prevent direct sunlight from hitting its sensing surface. Although not shown, infrared cloud detector 1530 also includes one or more structures that hold its components within housing 1532 .

紅外線雲偵測器系統1502亦包含一具有一處理器(未展示)之本端窗控制器1550,所述處理器可執行儲存於記憶體(未展示)中的用於實施控制邏輯以控制電致變色窗1505之色調等級之指令。本端窗控制器1550與電致變色窗1505通信以發送控制信號。本端窗控制器1550亦與紅外線感測器1534 及環境溫度感測器1536通信(無線或有線)以接收具有溫度讀數之信號。本端窗控制器1550亦與光感測器1510通信(無線或有線)以接收具有可見光強度讀數之信號。 The infrared cloud detector system 1502 also includes a local window controller 1550 having a processor (not shown) that can execute instructions stored in memory (not shown) for implementing control logic to control the tint level of the electrochromic window 1505 . The local window controller 1550 communicates with the electrochromic window 1505 to send control signals. The local window controller 1550 is also in communication (wireless or wired) with the infrared sensor 1534 and the ambient temperature sensor 1536 to receive signals with temperature readings. The local window controller 1550 also communicates (wirelessly or wired) with the light sensor 1510 to receive a signal with a visible light intensity reading.

根據某些態樣,電力/通信線自建築物或另一結構延伸至紅外線雲偵測器1530。在一個實施中,紅外線雲偵測器1530包含一網路介面,其可將紅外線雲偵測器1530耦接至一合適纜線。紅外線雲偵測器1530可經由網路介面將資料傳達至本端窗控制器1550或建築物之另一控制器(例如,網路控制器及/或主控制器)。在一些其他實施中,紅外線雲偵測器1530可另外或替代地包含一實現與一或多個外部控制器之無線通信的無線網路介面。在一些態樣中,紅外線雲偵測器1530亦可包含一在其外殼內或與其外殼耦接之電池以對其內之感測器及電組件供電。作為來自電源供應器(例如,來自建築物電源供應器)之電力之代替或補充,所述電池可提供此電力。在一個態樣中,紅外線雲偵測器1530進一步包含至少一個光伏打電池,例如,在外殼之一外表面上。作為由任一其他電源供應器提供之電力之代替或補充,此至少一個光伏打電池可提供電力。 According to some aspects, power/communication lines run from a building or another structure to infrared cloud detector 1530 . In one implementation, the infrared cloud detector 1530 includes a network interface that can couple the infrared cloud detector 1530 to a suitable cable. The infrared cloud detector 1530 can communicate data to the local window controller 1550 or another controller of the building (eg, a network controller and/or a master controller) via a network interface. In some other implementations, infrared cloud detector 1530 may additionally or alternatively include a wireless network interface to enable wireless communication with one or more external controllers. In some aspects, infrared cloud detector 1530 may also include a battery within or coupled to its housing to power the sensors and electrical components within it. Instead or in addition to power from a power supply (eg, from a building power supply), the battery can provide this power. In one aspect, infrared cloud detector 1530 further includes at least one photovoltaic cell, eg, on one of the outer surfaces of the housing. The at least one photovoltaic cell may provide power instead or in addition to power provided by any other power supply.

圖15A展示直射陽光經由在包含房間1500之建築物之外部與內部之間的電致變色窗1505至房間1500內之穿透深度。穿透深度為直射陽光可穿透至房間1500內多遠之一量測。如所展示,穿透深度係在遠離窗1505之窗台(底部)之水平方向上量測。通常,窗界定一提供用於直射陽光之受光角之孔隙。基於窗之幾何尺寸(例如,窗尺寸)、其在房間中之位置及定向、在窗外之任何散熱片或其他外部遮蔭及太陽之位置(例如在一天中之一特定時間及一特定日期的直射陽光之角度)計算穿透深度。至電致變色窗1505之外部遮蔭可歸因於可遮住窗的任何類型之結構,諸如,懸垂物、散熱片等。在圖15A中,在電致變色窗1505上方存在一懸垂物1520,其阻擋直射陽光之一部分進入房間1500,因此縮短穿透深度。 FIG. 15A shows the penetration depth of direct sunlight into the room 1500 through the electrochromic window 1505 between the exterior and interior of the building containing the room 1500 . Penetration depth is measured as one of how far direct sunlight can penetrate into a room 1500 . As shown, penetration depth is measured in the horizontal direction away from the sill (bottom) of window 1505 . Typically, the window defines an aperture that provides an acceptance angle for direct sunlight. Penetration depth is calculated based on the geometry of the window (e.g., window size), its location and orientation in the room, any fins or other external shading outside the window, and the position of the sun (e.g., the angle of direct sunlight at a particular time of day and on a particular day). External shading to the electrochromic window 1505 may be due to any type of structure that can shade the window, such as overhangs, fins, etc. In FIG. 15A , there is an overhang 1520 above the electrochromic window 1505 , which blocks a portion of direct sunlight from entering the room 1500 , thus shortening the penetration depth.

模組A可用以判定考慮來自直射陽光經由電致變色窗1505至居住者或其活動區上的居住者舒適性之色調等級(在本文中亦被稱作「眩光條件」)。基於直射陽光至房間內的計算之穿透深度及在一特定時刻(當日時間及一年中之某天)房間中之空間類型(例如,在窗附近之桌子、門廳等)判定色調等級。在一些情況下,色調等級亦可基於將充分自然照明提供至房間內。在一些情況下,在未來之時間計算穿透深度以考量玻璃態化時間(窗著色所需之時間,例如,至所要的色調等級之80%、90%或100%)。在模組A中解決之問題為,直射陽光可如此深地穿透至房間1500內,以致直接照在在房間中之桌子或其他工作表面處工作之居住者身上。可使用可公開獲得之程式計算太陽之位置,且允許穿透深度之容易計算。 Module A may be used to determine tint levels that take into account occupant comfort from direct sunlight passing through the electrochromic window 1505 onto the occupant or their active area (also referred to herein as "glare conditions"). The tint level is determined based on the calculated penetration depth of direct sunlight into the room and the type of space in the room at a particular moment (time of day and day of year) (eg, table near a window, hallway, etc.). In some cases, the tint scale may also be based on providing sufficient natural lighting into the room. In some cases, the depth of penetration is calculated at a future time to account for the vitrification time (the time required for the window to tint, eg, to 80%, 90%, or 100% of the desired shade level). The problem addressed in Module A is that direct sunlight can penetrate so deep into room 1500 that it falls directly on occupants working at a desk or other work surface in the room. The position of the sun can be calculated using publicly available programs and allows easy calculation of penetration depth.

圖15A15C亦展示在房間1500中之桌子1501,作為具有與活動區域(亦即,桌子)相關聯之桌子及活動區域之位置(亦即,桌子之位置)的一單一佔用辦公室之空間類型之一實例。為了居住者舒適性,每一空間類型與不同色調等級相關聯。舉例而言,若活動為諸如在桌子或電腦邊正進行的在辦公室中之工作之關鍵活動,且桌子位於窗附近,則所要的色調等級可比在桌子更遠離窗之情況下高。作為另一實例,若活動為非關鍵性的,諸如,在門廳中之活動,則所要的色調等級可比在對於辦公室中具有一桌子之同一空間低。 15A to 15C also show desk 1501 in room 1500 as an example of a single occupancy office space type with desks associated with active areas (ie, desks) and locations of active areas (ie, desk locations). Each space type is associated with a different tone level for occupant comfort. For example, if the activity is a key activity such as work in an office being done at a desk or computer, and the desk is located near a window, then the desired tint level may be higher than if the desk is further away from the window. As another example, if the activity is non-critical, such as in the foyer, the desired tone level may be lower than in the same space with a desk for an office.

圖15B展示根據一實施的在晴朗的天空條件下經由電致變色窗1505進入房間1500之直射陽光及輻射。輻射可來自由大氣中之分子及粒子散射之陽光。模組B基於流過考慮中之電致變色窗1505的在晴朗的天空條件下之輻照度之計算值來判定一色調等級。諸如開放原始碼RADIANCE程式之各種軟體可用以計算在某一緯度、經度、一年中之時間及當日時間及針對一給定窗定向的晴空輻照度。 15B shows direct sunlight and radiation entering room 1500 through electrochromic window 1505 under clear sky conditions, according to an implementation. Radiation can come from sunlight scattered by molecules and particles in the atmosphere. Module B determines a tint level based on the calculated irradiance under clear sky conditions flowing through the electrochromic window 1505 under consideration. Various software such as the open source RADIANCE program can be used to calculate clear sky irradiance at a latitude, longitude, time of year, and time of day, and for a given window orientation.

圖15C展示根據一實施的如可由諸如雲及其他建築物之物體阻 擋或自所述物體反射的來自天空之輻射光。在晴空輻射計算中,未考量此等障礙物及反射。基於來自感測器(諸如,紅外線雲偵測器系統1502之紅外線感測器1534、光感測器1510及環境溫度感測器1536)之感測器資料判定來自天空之輻射光。由模組C判定之色調等級係基於感測器資料。在許多情況下,色調等級係基於使用來自感測器之讀數判定的雲覆蓋條件。通常,模組B之操作將判定一使由模組A判定之色調等級變暗(或不改變)之色調等級,且模組C之操作將判定一使由模組B判定之色調等級變亮(或不改變)之色調等級。 15C shows radiant light from the sky as may be blocked by or reflected from objects such as clouds and other buildings, according to an implementation. These obstacles and reflections are not considered in the clear sky radiation calculations. Radiant light from the sky is determined based on sensor data from sensors such as infrared sensor 1534 , light sensor 1510 , and ambient temperature sensor 1536 of infrared cloud detector system 1502 . The tone level determined by module C is based on sensor data. In many cases, the hue rating is based on cloud cover conditions determined using readings from sensors. In general, the operation of module B will determine a tone level that darkens (or does not change) the tone level determined by module A, and the operation of module C will determine a tone level that brightens (or does not change) the tone level determined by module B.

所述控制邏輯可針對建築物中之每一電致變色窗1505或針對電致變色窗之一區帶之一代表性窗分開來實施邏輯模組A、B及C中之一或多者。每一電致變色窗1505可具有尺寸、定向(例如,豎直、水平、按一角度傾斜)、位置、相關聯之空間類型等之一唯一集合。可針對每一電致變色窗1505維護具有此資訊及其他資訊之一組態檔案。所述組態檔案可儲存於電致變色窗1505之本端窗控制器1550之一電腦可讀媒體中或建築物管理系統(BMS)中。組態檔案可包含諸如窗組態、佔有率查找表、關於相關聯之基準玻璃之資訊及/或由控制邏輯使用之其他資料的資訊。窗組態可包含諸如電致變色窗1505之尺寸、電致變色窗1505之定向、電致變色窗1505之位置等的資訊。佔有率查找表描述針對某些空間類型及穿透深度提供居住者舒適性之色調等級。亦即,佔有率查找表中之色調等級經設計以為可在房間1500中之居住者提供來自在居住者或其工作空間上之直射陽光的舒適性。空間類型為一量測,其判定將需要多少著色來針對一給定穿透深度解決居住者舒適性關注及/或提供房間中之舒適的自然照明。空間類型參數可考慮許多因素。在此等因素當中有正在一特定房間中進行的工作或其他活動之類型及活動之位置。關閉與需要大量注意力之詳細研究相關聯的工作可能在一個空間類型,而休息室或會議室可具有不同空間類型。另外,在房間中之桌子或其他工作表面相對於窗之位置為定義空間類型過程中之一考慮因 素。舉例而言,空間類型可與具有一位於電致變色窗1505附近之桌子或其他工作空間的單一居住者之辦公室相關聯。作為另一實例,空間類型可為一門廳。 The control logic may implement one or more of logic modules A, B, and C for each electrochromic window 1505 in the building or for a representative window division of a zone of electrochromic windows. Each electrochromic window 1505 may have a unique set of dimensions, orientations (eg, vertical, horizontal, tilted at an angle), positions, associated spatial types, and the like. A configuration file with this and other information can be maintained for each electrochromic window 1505 . The configuration file may be stored in a computer readable medium of the local window controller 1550 of the electrochromic window 1505 or in a building management system (BMS). The configuration file may contain information such as window configuration, occupancy lookup tables, information about associated reference glazing, and/or other data used by the control logic. The window configuration may include information such as the size of the electrochromic window 1505 , the orientation of the electrochromic window 1505 , the position of the electrochromic window 1505 , and the like. The occupancy lookup table describes the shade levels that provide occupant comfort for certain space types and depths of penetration. That is, the tint levels in the occupancy lookup table are designed to provide occupants in room 1500 with comfort from direct sunlight on the occupants or their workspace. Space type is a measure that determines how much tinting will be needed to address occupant comfort concerns and/or provide comfortable natural lighting in a room for a given depth of penetration. The Space Type parameter can take many factors into account. Among these factors are the type of work or other activity being performed in a particular room and the location of the activity. Close Work associated with detailed studies that require a lot of attention may be in one space type, while a break room or meeting room may have a different space type. Additionally, the location of a desk or other work surface in a room relative to a window is a consideration in defining a space type. For example, a space type may be associated with a single occupant office with a desk or other workspace located near the electrochromic window 1505 . As another example, the space type may be a foyer.

在某些實施例中,控制邏輯之一或多個模組可判定所要的色調等級,同時除了居住者舒適性之外,亦考量能量節省。此等模組可藉由比較在一特定色調等級處的電致變色窗1505與一基準玻璃或其他標準參考窗之效能來判定與彼色調等級相關聯之能量節省。使用此參考窗之目的可為確保控制邏輯遵守城市建築條例之要求或對在建築物場所中使用之參考窗之其他要求。市政當局常使用習知低發射率玻璃來定義參考窗以控制建築物中的空調負荷之量。作為參考窗1505適合控制邏輯之方式的一實例,所述邏輯可經設計使得經由一給定電致變色窗1505到來之輻照度從不大於經由如由各別市政當局指定之一參考窗到來之最大輻照度。在揭露之實施例中,控制邏輯可使用在一特定色調等級下的電致變色窗1505之太陽熱量增益係數(SHGC)值及參考窗之SHGC以判定使用所述色調等級之能量節省。通常,SHGC之值為經由窗透射的所有波長之入射光之分率。雖然在許多實施例中描述一基準玻璃,但可使用其他標準參考窗。通常,參考窗(例如,基準玻璃)之SHGC為一變數,其可針對不同地理位置及窗定向而不同,且係基於由各別市政當局指定之條例要求。 In some embodiments, one or more modules of the control logic may determine a desired tint level while considering energy savings in addition to occupant comfort. These modules can determine the energy savings associated with a particular tint level by comparing the performance of the electrochromic window 1505 at that tint level to a baseline glass or other standard reference window. The purpose of using this reference window may be to ensure that the control logic complies with the requirements of city building regulations or other requirements for reference windows used in building sites. Municipalities often use conventional low-emissivity glass to define reference windows to control the amount of air conditioning load in buildings. As an example of how the reference window 1505 fits into the control logic, the logic can be designed so that the irradiance coming through a given electrochromic window 1505 is never greater than the maximum irradiance coming through a reference window as specified by the respective municipality. In disclosed embodiments, the control logic may use the solar heat gain coefficient (SHGC) value of the electrochromic window 1505 at a particular tint level and the SHGC of the reference window to determine energy savings using that tint level. Typically, the value of SHGC is the fraction of incident light of all wavelengths transmitted through the window. While a reference glass is described in many embodiments, other standard reference windows may be used. In general, the SHGC of a reference window (eg, reference glass) is a variable that can vary for different geographic locations and window orientations, and is based on ordinance requirements specified by individual municipalities.

通常,建築物經設計成具有一加熱、通風及空調(「HVAC」)系統,所述系統具有滿足在任一給定情況下所需的最大預期加熱及/或空調負荷之容量。所需容量之計算可考慮在正建構建築物之特定位置處的建築物中需要之基準玻璃或參考窗。因此,重要地,控制邏輯符合或超過基準玻璃之功能要求以便允許建築物設計者確信地判定將多少HVAC容量置入一特定建築物內。由於控制邏輯可用以對窗著色以提供較之基準玻璃上額外能量節省,因此控制邏輯可有用於允許建築物設計者具有比將使用由條例及標準指定之基準玻璃已所需之容量低的HVAC容量。 Typically, buildings are designed with a heating, ventilation and air conditioning ("HVAC") system with the capacity to meet the maximum expected heating and/or air conditioning load required in any given situation. The calculation of required capacity may take into account the datum glazing or reference windows required in the building at the particular location where the building is being constructed. Therefore, it is important that the control logic meet or exceed the functional requirements of the baseline glass in order to allow building designers to confidently determine how much HVAC capacity to place in a particular building. Since the control logic can be used to tint the windows to provide additional energy savings over baseline glass, the control logic can be useful to allow building designers to have lower HVAC capacity than would have been required using baseline glass specified by codes and standards.

本文中描述之特定實施例假定能量節省係藉由減小建築物中之空調負荷來達成。因此,許多實施嘗試達成最大可能著色,同時考量居住者舒適性等級及可能在具有考慮中之窗之房間中的照明負荷。然而,在一些氣候(諸如,在更北及更南緯度之氣候)中,加熱可為比空調更加關注之問題。因此,可修改控制邏輯,具體言之,在一些情況中逆向之手段,使得發生較少著色以便確保減小建築物之加熱負荷。 Certain embodiments described herein assume that energy savings are achieved by reducing air conditioning loads in buildings. Therefore, many implementations attempt to achieve the maximum possible shading, taking into account occupant comfort levels and possible lighting loads in the room with the window in question. However, in some climates, such as those at more northern and southern latitudes, heating can be a greater concern than air conditioning. Therefore, the control logic can be modified, in particular in some cases reversed, so that less coloration occurs in order to ensure a reduction in the heating load of the building.

-包括模組A、B及C之控制邏輯之實例- Examples of control logic including modules A, B and C

圖16描繪展示根據實施例的用於控制建築物中之一或多個電致變色窗(例如,圖15A圖15C中之電致變色窗1505)之方法之一般控制邏輯之流程圖1600。所述控制邏輯使用模組A、B及C中之一或多者計算用於窗之色調等級且發送指令以將電致變色窗轉變至所述色調等級。在操作1610,以由計時器計時之間隔將在控制邏輯中之計算執行1至n次。舉例而言,色調等級可由模組A、B及C中之一或多者重新計算1至n次,且針對時刻t i =t 1 t 2 ......t n 計算。n為執行的重新計算之數目,n且可為至少1。在一些情況下,可按恆定時間間隔進行邏輯計算。在一種情況下,可每2至5分鐘進行邏輯計算。然而,針對大塊電致變色玻璃(例如,高達6呎×10呎)之色調轉變可佔用30分鐘或更多。對於此等大窗,可以不太頻繁為基礎(諸如,每隔30分鐘)進行計算。 16 depicts a flowchart 1600 showing the general control logic of a method for controlling one or more electrochromic windows in a building (eg, electrochromic window 1505 in FIGS. 15A - 15C ), according to an embodiment. The control logic calculates a tint level for the window using one or more of modules A, B, and C and sends instructions to transition the electrochromic window to that tint level. In operation 1610 , calculations in the control logic are performed 1 to n times at intervals clocked by a timer. For example, the hue level may be recalculated 1 to n times by one or more of modules A, B, and C, and calculated for time t i = t 1 , t 2 . . . t n . n is the number of recalculations performed, and n may be at least one. In some cases, logical calculations may be performed at constant time intervals. In one instance, logic calculations may be performed every 2 to 5 minutes. However, tint transitions for large pieces of electrochromic glass (eg, up to 6 feet by 10 feet) can take 30 minutes or more. For such large windows, calculations may be made on a less frequent basis, such as every 30 minutes.

操作1620,邏輯模組A、B及C執行計算以在一單一時刻t i 針對每一電致變色窗判定一色調等級。此等計算可由控制器之處理器執行。在某些實施例中,控制邏輯為預測性邏輯,其計算在實際轉變之前窗應轉變之程度。在此等情況下,模組A、B及C中之計算係基於未來時間(例如,t i =目前時間+諸如電致變色窗之轉變時間的持續時間)來進行,例如,大約在轉變完成時或在轉變完成後。舉例而言,在計算中使用之未來時間可為未來足以允許在接收到色調指令後完成轉變之時間。在此等情況下,控制器可在實際轉變前在目前時間發送 色調指令。在轉變完成時,窗將已轉變至一對於彼未來時間所要的色調等級。 In operation 1620 , logic modules A, B, and C perform calculations to determine a tint level for each electrochromic window at a single time t i . These calculations may be performed by the processor of the controller. In some embodiments, the control logic is predictive logic that calculates how much the window should transition before actually transitioning. In such cases, the calculations in modules A, B, and C are based on future times (e.g., ti = present time + duration of transition time such as electrochromic windows), e.g., approximately when the transition is complete or after the transition is complete. For example, the future time used in the calculation may be sufficiently in the future to allow the transition to be completed after the hue command is received. In such cases, the controller can send hue commands at the current time before the actual transition. When the transition is complete, the window will have transitioned to a desired tint level for that future time.

操作1630,控制邏輯允許某些類型之更動,其脫離在模組A、B及C處之演算法且在操作1640基於某一其他考慮因素定義更動色調等級。一個類型之更動為手動更動。此為由自佔據房間且判定一特定色調等級(更動值)合乎需要之最終使用者實施的更動。可存在使用者之手動更動經自身更動之情形。更動之實例為高需求(或尖峰負荷)更動,其與建築物中之能量消耗減少的實用之要求相關聯。舉例而言,在大城區中之特定熱天,可能有必要減少整個市區之能量消耗,以便不過度加重市區之能量產生及遞送系統負擔。在此等情況下,建築物可更動來自本文中描述之控制邏輯之色調等級以確保所有窗具有一特別高之著色等級。更動之另一實例可為若在房間中不存在居住者,例如,在週末時之商業辦公室建築物中。在此等情況下,建築物可脫離關於居住者舒適性之一或多個模組,且所有窗在冷天可具有低著色等級,且在溫暖的天氣裏可具有高著色等級。 At operation 1630 , the control logic allows for certain types of alterations that depart from the algorithms at modules A, B, and C and at operation 1640 defines the altered tint level based on some other consideration. One type of modifier is a manual modifier. This is a modification implemented by the end user who has self-occupied the room and has determined that a particular tint level (modification value) is desirable. There may be a situation where the user's manual modification is modified by itself. An example of a modification is a high demand (or peak load) modification that is associated with a practical requirement for reduced energy consumption in a building. For example, on certain hot days in large urban areas, it may be necessary to reduce energy consumption throughout the urban area so as not to overburden the energy generation and delivery systems in the urban area. In such cases, the building can alter the tint level from the control logic described herein to ensure that all windows have a particularly high tint level. Another example of a modification might be if there is no occupant in the room, eg, in a commercial office building on weekends. In such cases, the building can be disengaged from one or more modules pertaining to occupant comfort, and all windows can have a low tinting rating in cold weather and a high tinting rating in warm weather.

操作1650,用於實施色調等級之控制信號經由一網路傳輸至與建築物中之一或多個電致變色窗中之電致變色裝置電連通的電源供應器。在某些實施例中,可牢記著效率來實施至建築物之所有窗的色調等級之透射。舉例而言,若色調等級之重新計算建議不需要自當前色調等級的色調之改變,則不存在具有經更新色調等級之指令的傳輸。作為另一實例,可基於建築物中之窗大小及/或位置將建築物劃分成區帶。在一種情況下,控制邏輯對於具有較小窗之區帶比對於具有較大窗之區帶頻率地重新計算色調等級。 At operation 1650 , control signals for implementing tint grading are transmitted over a network to a power supply in electrical communication with the electrochromic devices in one or more electrochromic windows in the building. In certain embodiments, transmission of tint levels to all windows of a building may be implemented with efficiency in mind. For example, if the recalculation of the tone level suggests that no change in tone from the current tone level is required, then there is no transmission of an instruction with an updated tone level. As another example, a building may be divided into zones based on window size and/or location in the building. In one case, the control logic recalculates the tone level more frequently for zones with smaller windows than for zones with larger windows.

在一些實施例中,用於實施針對在整個建築物中之多個電致變色窗之控制方法的圖16中之控制邏輯可在一單一裝置(例如,一單一主窗控制器)上。此裝置可針對建築物中之每一個可著色窗執行計算,且亦提供一介面用於將色調等級傳輸至個別電致變色窗中之一或多個電致變色裝置,例如,在多區帶窗 中或在絕緣玻璃單元之多個EC鏡片上。多區帶窗之一些實例可見於2014年12月14日提交且題為《多區帶EC窗(MULTI-ZONE EC WINDOWS)》之國際PCT申請案第PCT/US14/71314號中,所述申請案在此被以引用的方式全部併入。 In some embodiments, the control logic in FIG. 16 used to implement the control method for multiple electrochromic windows throughout a building can be on a single device (eg, a single master window controller). This device can perform calculations for each tintable window in a building, and also provides an interface for communicating tint levels to one or more electrochromic devices in an individual electrochromic window, for example, in a multi-zone window or across multiple EC lenses of an insulating glass unit. Some examples of multi-zone windows can be found in International PCT Application No. PCT/US14/71314, filed December 14, 2014, and entitled "MULTI-ZONE EC WINDOWS," which is hereby incorporated by reference in its entirety.

又,可存在某些實施例之控制邏輯之某些自適應組件。舉例而言,所述控制邏輯可判定最終使用者(例如居住者)如何嘗試在一天中之特定時間更動演算法及以更為預測性之方式使用此資訊判定所要的色調等級。在一種情況下,最終使用者可使用壁開關將由控制邏輯在每日某一時間提供之色調等級更動至一更動值。所述控制邏輯可接收關於此等實例之資訊,且改變所述控制邏輯以在彼當日時間將色調等級改變至更動值。 Also, there may be some adaptive components of the control logic of certain embodiments. For example, the control logic can determine how end users, such as occupants, attempt to alter the algorithm at certain times of day and use this information in a more predictive manner to determine desired tint levels. In one instance, the end user can use a wall switch to alter the tint level provided by the control logic at a certain time of day to an altered value. The control logic can receive information about these instances and alter the control logic to change the tint level to a modified value at that time of day.

圖17為展示來自圖16之區塊1620之一特定實施之圖。此圖展示依序執行所有三個模組A、B及C以計算在一單一時刻t i 的一特定電致變色窗之最終色調等級之方法。在預測性邏輯之情況下,基於判定在未來一時間之最終色調等級來執行模組A、B及C。最終色調等級可為考慮中之窗之最大容許透射率。圖17亦展示模組A、B及C之一些例示性輸入及輸出。模組A、B及C中之計算由本端窗控制器、網路控制器或主控制器之處理器執行。雖然某些實例描述使用所有三個模組A、B及C,但其他實施可使用模組A、B及C中之一或多者或可使用額外/不同模組。 FIG. 17 is a diagram showing a particular implementation of block 1620 from FIG. 16 . This figure shows the method of executing all three modules A, B and C in sequence to calculate the final tint level for a particular electrochromic window at a single time t i . In the case of predictive logic, modules A, B, and C are executed based on determining the final tone level at a time in the future. The final tint level may be the maximum allowable transmittance of the window under consideration. Figure 17 also shows some exemplary inputs and outputs of modules A, B and C. Computations in modules A, B, and C are performed by processors in the local window controller, network controller, or host controller. While certain examples describe using all three modules A, B, and C, other implementations may use one or more of modules A, B, and C or may use additional/different modules.

操作1770,處理器使用模組A針對居住者舒適性判定一色調等級以防止來自陽光之直射眩光穿透至房間內。處理器使用模組A基於太陽在天空中之位置及來自組態檔案之窗組態計算直射陽光至房間內之穿透深度。太陽之位置係基於建築物之緯度及經度及當日時間與日期計算。佔有率查找表及空間類型為針對所述特定窗自一組態檔案之輸入。模組A將來自A之色調等級輸出至模組B。模組A之目標通常為確保直射陽光或眩光不照射居住者或其工 作空間。判定來自模組A之色調等級實現此目的。模組B及C中的色調等級之後續計算可減少能量消耗且可需要甚至更大色調。然而,若基於能量消耗進行的色調等級之後續計算建議比避免干擾居住者所需之著色少的著色,則所述邏輯防止執行計算之較大等級之透射率以確保居住者舒適性。 At operation 1770 , the processor uses module A to determine a tint level for occupant comfort to prevent direct glare from sunlight from penetrating into the room. The processor uses module A to calculate the penetration depth of direct sunlight into the room based on the position of the sun in the sky and the window configuration from the configuration file. The position of the sun is calculated based on the latitude and longitude of the building and the time and date of the day. The occupancy lookup table and space type are inputs from a configuration file for that particular window. Module A outputs tone levels from A to module B. The goal of Module A is usually to ensure that direct sunlight or glare does not illuminate the occupants or their workspace. Determining the hue level from module A accomplishes this. Subsequent calculations of hue levels in modules B and C may reduce energy consumption and may require even larger hues. However, if a subsequent calculation of the tint level based on energy consumption suggests less tint than is needed to avoid disturbing the occupants, the logic prevents execution of the calculated larger level of transmittance to ensure occupant comfort.

操作1780,在模組A中計算之色調等級經輸入至模組B內。通常,模組B判定一使在模組B中計算之色調等級變暗(或不改變)之色調等級。基於在晴朗的天空條件(晴空輻照度)下的輻照度之計算來計算色調等級。控制器之處理器使用模組B基於來自組態檔案之窗定向且基於建築物之緯度及經度計算針對所述電致變色窗之晴空輻照度。此等計算亦係基於當日時間及日期。諸如RADIANCE程式(其為一開放原始碼程式)之可公開獲得之軟體可提供用於計算晴空輻照度之計算。基準玻璃之SHGC亦自組態檔案輸入至模組B內。處理器使用模組B判定一比A中之色調等級暗且傳輸比基準玻璃少的熱量之色調等級經計算以在最大晴空輻照度下透射。最大晴空輻照度為針對晴朗的天空條件計算之所有時間內的最高輻照度等級。 At operation 1780 , the tone levels calculated in module A are input into module B. Typically, module B determines a tone level that darkens (or does not change) the tone level calculated in module B. The hue scale is calculated based on a calculation of irradiance under clear sky conditions (clear sky irradiance). The processor of the controller uses module B to calculate the clear sky irradiance for the electrochromic window based on the window orientation from the configuration file and based on the latitude and longitude of the building. These calculations are also based on the time and date of the day. Publicly available software such as the RADIANCE program (which is an open source program) may provide calculations for calculating clear sky irradiance. The SHGC of the reference glass is also imported into module B from the configuration file. The processor uses module B to determine a tint class that is darker than the tint class in A and transmits less heat than the reference glass calculated to transmit at maximum clear-air irradiance. The maximum clear sky irradiance is the highest irradiance level for all time calculated for clear sky conditions.

操作1790,來自模組B之色調等級及計算之晴空輻照度經輸入至模組C內。基於由紅外線感測器、環境溫度感測器及光感測器取得之量測結果將感測器讀數輸入至模組C。處理器使用模組C基於感測器讀數及實際輻照度判定雲覆蓋條件。若在晴朗的天空條件下窗經著色至來自模組B之色調等級,則所述處理器亦使用模組C計算透射至房間內之輻照度。若基於來自感測器讀數的判定之雲覆蓋條件,經由具有適當色調等級之窗的實際輻照度小於或等於經由具有來自模組B之色調等級之窗的輻照度,則處理器使用模組C發現此適當色調等級。通常,模組C之操作將判定一使由模組B之操作判定之色調等級變亮(或不改變)之色調等級。在此實例中,在模組C中判定之所述色調等級為最終色調等級。 At operation 1790 , the tint level and calculated clear sky irradiance from module B are input into module C. The sensor readings are input to module C based on the measurement results obtained by the infrared sensor, the ambient temperature sensor and the light sensor. The processor uses module C to determine cloud cover conditions based on sensor readings and actual irradiance. The processor also uses module C to calculate the irradiance transmitted into the room if the window is tinted to the tint level from module B under clear sky conditions. If the actual irradiance through the window with the appropriate tint level is less than or equal to the irradiance through the window with the tint level from module B based on the determined cloud cover conditions from the sensor readings, then the processor uses module C to find the appropriate tint level. Typically, the operation of module C will determine a tone level that brightens (or does not change) the tone level determined by the operation of module B. In this example, the tone level determined in module C is the final tone level.

輸入至控制邏輯之許多資訊係自關於緯度及經度、當日時間及日期之固定資訊判定。此資訊描述太陽相對於建築物、且更特定言之相對於正實施控制邏輯之窗的情況。太陽相對於窗之位置提供諸如直射陽光借助於窗至房間內之穿透深度的資訊。其亦提供經由窗到來的最大輻照度或太陽輻射能量通量之指示。此計算之輻照度等級可基於感測器輸入,所述感測器輸入可指示基於判定之雲覆蓋條件或窗與太陽之間的另一障礙物,存在減小。 Much of the information input to the control logic is determined from fixed information about latitude and longitude, time of day, and date. This information describes the condition of the sun relative to the building, and more specifically relative to the windows on which the control logic is being implemented. The position of the sun relative to the window provides information such as the penetration depth of direct sunlight into the room through the window. It also provides an indication of the maximum irradiance or solar energy flux arriving through the window. This calculated irradiance level may be based on sensor inputs that may indicate that there is a decrease based on a determined cloud cover condition or another obstruction between the window and the sun.

諸如開放原始碼程式輻射率之程式用以針對一單一時刻t i 及所有時間之最大值,基於窗定向及建築物之緯度及經度座標,判定晴空輻照度。基準玻璃SHGC及計算之最大晴空輻照度經輸入至模組B內。模組B按步驟增大模組A中計算之色調等級,且選取內部輻射小於或等於基準內部輻照度之一色調等級,其中:內部輻照度=色調等級SHGC×晴空輻照度,且基準內部輻照度=基準SHGC×最大晴空輻照度。然而,當模組A計算玻璃之最大色調時,模組B不改變所述色調以使其較亮。接著將在模組B中計算之色調等級輸入至模組C內。計算之晴空輻照度亦經輸入至模組C內。 A program such as the open source program Radiance is used to determine the clear sky irradiance based on the window orientation and the latitude and longitude coordinates of the building for a single instant ti and the maximum value over all times. The reference glass SHGC and the calculated maximum clear sky irradiance are input into module B. Module B increases the hue grade calculated in module A step by step, and selects a hue grade whose internal radiation is less than or equal to the reference internal irradiance, where: internal irradiance = hue grade SHGC × clear sky irradiance, and reference internal irradiance = reference SHGC × maximum clear sky irradiance. However, when module A calculates the maximum tint of the glass, module B does not change the tint to make it lighter. The tone levels calculated in module B are then input into module C. The calculated clear sky irradiance is also input into module C.

-用於使用具有一光感測器之紅外線雲偵測器系統作出著色決策的控制邏輯之實例- Example of control logic for making shading decisions using an infrared cloud detector system with a light sensor

圖18為根據一實施的描繪在圖16中展示的操作之控制邏輯之一特定實施之流程圖1800。雖然此控制邏輯係關於一單一窗描述,但應理解,控制邏輯可用以控制多個窗或一或多個窗之一區帶。 FIG. 18 is a flowchart 1800 depicting one particular implementation of the control logic for the operations shown in FIG. 16 , according to an implementation. Although this control logic is described in relation to a single window, it should be understood that the control logic may be used to control multiple windows or a zone of one or more windows.

在操作1810,所述控制邏輯判定當日時間是否在以下時間週期中之一者期間:(i)開始於日出前不久之第一時間(例如,開始於日出前45分鐘、日出前30分鐘、日出前20或日出前之其他合適時間量之第一時間)與結束於日出後不久之第二時間(例如,結束於日出後45分鐘、日出後30分鐘、日出後20分鐘或日出後之其他合適時間量之第二時間)的時間週期;(ii)開始於日落 前之一第三時間與結束於日落的時間週期;(iii)開始於日出後之第二時間後與結束於日落前之第三時間或結束於日落(黃昏)(例如,結束於日落前45分鐘、日落前30分鐘、日落前20分鐘、日落前0分鐘(亦即,在日落時)或日落前之其他合適時間量之第三時間)的時間週期;及(iv)開始於第三時間與結束於日出前之第一時間的時間週期。在一種情況下,日出之時間可自由可見光波長光感測器取得之量測結果判定。舉例而言,第二時間可處於一可見光波長光感測器開始量測直射陽光之時點,亦即,可見光光感測器之強度讀數處於或高於一最小強度值之時點。此外或替代地,第三時間可經判定結束於來自可見光波長光感測器之強度讀數處於或低於一最小強度值之時點。在另一實例中,可使用太陽計算器及一年中之某天來計算日出之時間及/或日落之時間,且時間週期(i)至(iv)可藉由在日出/日落之計算時間前後的一定義之時間週期(例如,45分鐘)計算。 在操作1810 ,所述控制邏輯判定當日時間是否在以下時間週期中之一者期間:(i)開始於日出前不久之第一時間(例如,開始於日出前45分鐘、日出前30分鐘、日出前20或日出前之其他合適時間量之第一時間)與結束於日出後不久之第二時間(例如,結束於日出後45分鐘、日出後30分鐘、日出後20分鐘或日出後之其他合適時間量之第二時間)的時間週期;(ii)開始於日落前之一第三時間與結束於日落的時間週期;(iii)開始於日出後之第二時間後與結束於日落前之第三時間或結束於日落(黃昏)(例如,結束於日落前45分鐘、日落前30分鐘、日落前20分鐘、日落前0分鐘(亦即,在日落時)或日落前之其他合適時間量之第三時間)的時間週期;及(iv)開始於第三時間與結束於日出前之第一時間的時間週期。 In one instance, the time of sunrise can be determined from measurements taken by the visible wavelength light sensor. For example, the second time may be at the point when a visible light wavelength photosensor starts to measure direct sunlight, ie, the point when the intensity reading of the visible light photosensor is at or above a minimum intensity value. Additionally or alternatively, the third time may be determined to end at the point at which the intensity reading from the visible wavelength light sensor is at or below a minimum intensity value. In another example, the time of sunrise and/or the time of sunset can be calculated using a solar calculator and the day of the year, and time periods (i) to (iv) can be calculated by a defined period of time (e.g., 45 minutes) around the calculated time of sunrise/sunset.

若在操作1810判定當日時間不在時間週期(i)、(ii)或(iii)中之一者期間,則控制邏輯判定所述當日時間在時間週期(iii)後且在時間週期(i)前之時間週期(iv)中。在此情況下,控制邏輯傳遞夜間色調狀態(例如,出於安全,「晴朗」色調狀態或暗色調狀態),且繼續進行至操作1870以判定是否存在一更動,例如,來自操作者或居住者的接收於信號中之一更動命令。若在操作1860判定存在一更動,則所述更動值為最終色調等級。若判定在適當位置不存在更動,則夜間色調狀態為最終色調等級。在操作1870,經由一網路或直接將一控制命令發送至窗之電致變色裝置以將窗轉變至最終色調等級,更新當日時間,且方法返回至操作1810If it is determined at operation 1810 that the time of day is not during one of time periods (i), (ii) or (iii), then the control logic determines that the time of day is in time period (iv) after time period (iii) and before time period (i). In this case, the control logic communicates the nighttime tint status (e.g., "clear" tint status or dark tint status, for safety), and proceeds to operation 1870 to determine whether there is a change, e.g., a change command received in the signal from an operator or occupant. If it is determined in operation 1860 that there is a change, the change value is the final tone level. If it is determined that there is no change in place, the nighttime tint state is the final tint level. At operation 1870 , a control command is sent via a network or directly to the window's electrochromic device to transition the window to the final tint level, the time of day is updated, and the method returns to operation 1810 .

若取而代之在操作1810判定當日時間在時間週期(i)、(ii)或(iii)中之一者期間,則所述當日時間在緊接在日出前與緊接在日落前或在日落時之間,且所述控制邏輯在操作1820繼續判定太陽方位角是否在可著色窗之臨界角度之間。若控制邏輯在操作1820判定太陽方位角在臨界角度之外,則繞過 模組A,且將一「晴朗」色調等級傳遞至模組B,且模組B用以在操作1840處進行計算。若在操作1820判定太陽方位角在臨界角度之間,則模組A中之控制邏輯用以在操作1830計算穿透深度及基於穿透深度計算一適當色調等級。自模組A判定之色調等級接著經輸入至模組B,且模組B用以進行在操作1840處之計算。 If instead at operation 1810 it is determined that the time of day is during one of time periods (i), (ii) or (iii), then the time of day is between immediately before sunrise and immediately before or at sunset, and the control logic continues at operation 1820 to determine whether the solar azimuth is between the critical angles for tintable windows. If the control logic determines at operation 1820 that the sun azimuth is outside the critical angle, module A is bypassed and a "sunny" tint level is passed to module B, which is used for calculation at operation 1840 . If it is determined at operation 1820 that the sun azimuth is between the critical angles, then the control logic in module A is used at operation 1830 to calculate the penetration depth and calculate an appropriate hue level based on the penetration depth. The hue level determined from module A is then input to module B, and module B is used for the calculation at operation 1840 .

在操作1840,來自模組B之控制邏輯判定一將其自模組A接收之色調等級或來自操作1820之「晴朗」色調等級變暗(或不改變)的色調等級。基於在晴朗的天空條件下之輻照度(晴空輻照度)之計算在模組B中計算色調等級。模組B用以基於來自組態檔案之窗定向及基於建築物之緯度及經度計算窗之晴空輻照度。此等計算亦係基於當日時間及一年中之某天。諸如RADIANCE程式(其為一開放源程式)之可公開獲得之軟體可提供用於判定晴空輻照度之計算。基準玻璃之SHGC亦自組態檔案輸入至模組B內。處理器使用模組B之控制邏輯判定一比其接收之色調等級暗(或與之相同)且傳輸比基準玻璃少的熱量之色調等級經計算以在最大晴空輻照度下透射。最大晴空輻照度為針對晴朗的天空條件計算之所有時間內的最高輻照度等級。 At operation 1840 , the control logic from module B determines a tone level that darkens (or does not change) the tone level it received from module A or the "sunny" tone level from operation 1820 . The hue scale is calculated in module B based on the calculation of irradiance under clear sky conditions (clear sky irradiance). Module B is used to calculate the clear sky irradiance of the window based on the window orientation from the configuration file and based on the latitude and longitude of the building. These calculations are also based on the time of day and day of the year. Publicly available software such as the RADIANCE program (which is an open source program) may provide calculations for determining clear sky irradiance. The SHGC of the reference glass is also imported into module B from the configuration file. The processor uses the control logic of module B to determine a tint level darker than (or the same as) the tint level it receives and transmits less heat than the reference glass calculated to transmit at maximum clear sky irradiance. The maximum clear sky irradiance is the highest irradiance level for all time calculated for clear sky conditions.

在操作1850,將來自模組B之色調等級、計算之晴空輻照度及來自紅外線感測器、環境溫度感測器及光感測器之感測器讀數輸入至模組C。模組C之控制邏輯基於感測器讀數判定雲覆蓋條件,且基於雲覆蓋條件判定實際輻照度。模組C之控制邏輯亦計算一輻照度等級,若在晴朗的天空條件下窗經著色至來自模組B之色調等級,則所述輻照度等級將透射至房間內。若基於雲覆蓋條件的經由窗之判定之實際輻照度小於或等於當著色至來自模組B之色調等級的經由窗之計算之輻照度,則模組C中之控制邏輯降低色調等級。通常,模組C之操作將判定一使由模組B之操作判定之色調等級變亮(或不改變)之色調等級。 At operation 1850 , the tint level from module B, the calculated clear sky irradiance and sensor readings from the infrared sensor, ambient temperature sensor and light sensor are input to module C. The control logic of module C determines the cloud cover condition based on the sensor readings, and determines the actual irradiance based on the cloud cover condition. The control logic of module C also calculates an irradiance level that would be transmitted into the room if the window was tinted to the tint level from module B under clear sky conditions. If the actual irradiance determined through the window based on cloud cover conditions is less than or equal to the calculated irradiance through the window when tinted to the tint level from module B, the control logic in module C lowers the tint level. Typically, the operation of module C will determine a tone level that brightens (or does not change) the tone level determined by the operation of module B.

在操作1850,控制邏輯基於感測器讀數判定一來自模組C之色調等級,且接著繼續進行至操作1860以判定是否存在在適當位置之更動,例如,來自操作者的接收於一信號中之更動命令。若在操作1860判定存在一更動,則所述更動值為最終色調等級。若判定在適當位置不存在更動,則來自模組C之色調等級為最終色調等級。在操作1870,一控制命令經由一網路發送至或引導至窗之電致變色裝置以將窗轉變至最終色調等級,更新當日時間,且方法返回至操作1810At operation 1850 , the control logic determines a tint level from module C based on the sensor readings, and then proceeds to operation 1860 to determine whether there is a modification in place, eg, a modification command received in a signal from the operator. If it is determined in operation 1860 that there is a change, the change value is the final tone level. If it is determined that there are no alterations in place, then the hue grade from module C is the final hue grade. At operation 1870 , a control command is sent or directed to the window's electrochromic device via a network to transition the window to the final tint level, the time of day is updated, and the method returns to operation 1810 .

圖19為描繪如在圖18中展示的實施模組C之操作1850之控制邏輯之一特定實施之流程圖1900。在操作1910,在處理器處接收一或多個信號,具有一由一紅外線感測器在一特定樣本時間取得之溫度讀數T IR一由環境溫度感測器在樣本時間取得之溫度讀數T amb 及一由光感測器在樣本時間取得之強度讀數。以無線方式及/或經由有線電連接接收來自紅外線感測器、環境溫度感測器及光感測器之信號。紅外線感測器基於在其視野內接收之紅外線輻射取得溫度讀數。紅外線感測器通常朝向所關注之天空之一區域(例如,在具有窗之建築物上方的一區域)定向。環境溫度感測器經組態以曝露於在建築物外部之外環境以量測環境溫度。環境溫度感測器通常經定位且其感測表面經定向使得直射陽光受阻擋或擴散,而不照射感測表面。直射陽光通常在照射光感測器之感測表面前經擴散(例如,藉由一擴散器)。在一些情況下,光感測器之感測表面在與窗面對之相同方向上定向。若在操作1920判定當日時間在時間週期(i)或(iii)中之任一者期間,則所述處理器計算在一樣本時間由紅外線感測器取得之溫度讀數T IR 與由環境溫度感測器取得之溫度讀數T amb 之間的差--差量(△)(操作1930)。視情況(由點線表示),將校正因數應用於計算之差量(△)(操作1930)。可應用的校正因數之一些實例包含濕度、太陽角度/仰角及位點高程。 FIG. 19 is a flow diagram 1900 depicting one particular implementation of the control logic implementing operations 1850 of module C as shown in FIG. 18 . At operation 1910 , one or more signals are received at the processor having a temperature reading T IR taken by an infrared sensor at a particular sample time, a temperature reading T amb taken by an ambient temperature sensor at a sample time, and an intensity reading taken by a light sensor at a sample time. Signals from the infrared sensor, the ambient temperature sensor and the light sensor are received wirelessly and/or via a wired electrical connection. The infrared sensor takes temperature readings based on the infrared radiation it receives within its field of view. Infrared sensors are typically oriented toward an area of the sky of interest (eg, an area above a building with windows). The ambient temperature sensor is configured to be exposed to the environment outside the building to measure the ambient temperature. Ambient temperature sensors are typically positioned and their sensing surfaces are oriented such that direct sunlight is blocked or diffused without illuminating the sensing surface. Direct sunlight is typically diffused (eg, by a diffuser) before striking the sensing surface of the photosensor. In some cases, the sensing surface of the light sensor is oriented in the same direction as the window facing. If it is determined in operation 1920 that the time of day is during any of the time periods (i) or (iii), the processor calculates the difference (Δ) between the temperature reading T IR obtained by the infrared sensor and the temperature reading T amb obtained by the ambient temperature sensor at a sample time (operation 1930 ). Optionally (represented by the dotted line), a correction factor is applied to the calculated delta (Δ) (operation 1930 ). Some examples of applicable correction factors include humidity, sun angle/elevation, and site elevation.

在一個實施例中,所述處理器亦在操作1920判定紅外線讀數是 否以大於一第二定義之等級的頻率振盪。若處理器在操作1920判定當日時間在時間週期(i)或(iii)內且紅外線讀數以大於一第二定義之等級的頻率振盪,則處理器應用操作1990以使用光感測器讀數判定雲條件。舉例而言,若光感測器讀數高於某一最小強度等級,則處理器可判定一「晴朗」條件,且若光感測器讀數處於或低於最小強度等級,則判定一「多雲」條件。控制邏輯接著應用操作1995以基於判定之雲條件判定色調等級。若紅外線雲偵測器仍然正被實施且在操作中,則方法增至下一個樣本時間且返回至操作1910。否則,方法返回至圖18中之操作1860In one embodiment, the processor also determines at operation 1920 whether the infrared readings oscillate at a frequency greater than a second defined level. If the processor determines at operation 1920 that the time of day is within time period (i) or (iii) and the infrared readings oscillate at a frequency greater than a second defined level, the processor applies operation 1990 to determine cloud conditions using the light sensor readings. For example, the processor may determine a "clear" condition if the light sensor reading is above a certain minimum intensity level, and a "cloudy" condition if the light sensor reading is at or below the minimum intensity level. Control logic then applies operation 1995 to determine a hue level based on the determined cloud condition. If the infrared cloud detector is still being implemented and in operation, the method advances to the next sample time and returns to operation 1910 . Otherwise, the method returns to operation 1860 in FIG. 18 .

在操作1934,處理器判定計算之差量(△)值是否低於一下臨限值(例如,攝氏-5毫度、攝氏-2毫度等)。若判定計算之差量(△)值低於下臨限值,則將雲覆蓋條件判定為「晴朗」條件(操作1936)。控制邏輯接著應用操作1995以基於判定之雲條件判定色調等級。在紅外線雲偵測器之操作/實施期間,所述方法接著增至下一個樣本時間且返回至操作1910。若不在實施紅外線雲偵測器,則方法返回至圖18中之操作1860In operation 1934 , the processor determines whether the calculated delta (Δ) value is below a threshold value (eg, -5 millidegrees Celsius, -2 millidegrees Celsius, etc.). If it is determined that the calculated delta (Δ) value is lower than the lower threshold value, then the cloud cover condition is determined to be a "clear" condition (operation 1936 ). Control logic then applies operation 1995 to determine a hue level based on the determined cloud condition. During operation/implementation of the infrared cloud detector, the method then increments to the next sample time and returns to operation 1910 . If an infrared cloud detector is not being implemented, the method returns to operation 1860 in FIG. 18 .

若判定計算之差量(△)高於下臨限值,則處理器在操作1940判定計算之差量(△)是否高於一上臨限值(例如,攝氏0毫度、攝氏2毫度等)。若在操作1940判定計算之差量(△)高於上臨限值,則所述處理器判定雲覆蓋條件為「多雲」條件(操作1942)且應用操作1995以基於判定之雲條件判定色調等級。在紅外線雲偵測器之操作/實施期間,所述方法接著增至下一個樣本時間且返回至操作1910。若不在實施紅外線雲偵測器,則方法返回至圖18中之操作1860If it is determined that the calculated difference (Δ) is higher than the lower threshold, the processor determines in operation 1940 whether the calculated difference (Δ) is higher than an upper threshold (eg, 0 millidegrees Celsius, 2 millidegrees Celsius, etc.). If it is determined at operation 1940 that the calculated delta (Δ) is above the upper threshold, then the processor determines that the cloud coverage condition is a "cloudy" condition (operation 1942 ) and applies operation 1995 to determine the hue level based on the determined cloud condition. During operation/implementation of the infrared cloud detector, the method then increments to the next sample time and returns to operation 1910 . If an infrared cloud detector is not being implemented, the method returns to operation 1860 in FIG. 18 .

在操作1995,控制邏輯基於雲覆蓋條件判定實際輻照度,且計算一若在晴朗的天空條件下窗經著色至來自模組B之色調等級則將透射至房間內的輻照度等級。若基於雲覆蓋條件之輻照度小於或等於當著色至來自模組B 之色調等級時經由窗的計算之輻照度,則模組C中之控制邏輯通常降低來自模組B之色調等級。在紅外線雲偵測器之操作/實施期間,所述方法接著增至下一個樣本時間且返回至操作1910。若仍然不在實施紅外線雲偵測器,則所述方法返回至圖18中之操作1860At operation 1995 , the control logic determines the actual irradiance based on cloud cover conditions and calculates an irradiance level that would be transmitted into the room if the window were tinted to the tint level from module B under clear sky conditions. Control logic in module C typically lowers the tint level from module B if the irradiance based on cloud cover conditions is less than or equal to the calculated irradiance through the window when tinted to the tint level from module B. During operation/implementation of the infrared cloud detector, the method then increments to the next sample time and returns to operation 1910 . If the infrared cloud detector is still not being implemented, the method returns to operation 1860 in FIG. 18 .

若在操作1940判定計算之差量(△)低於上臨限值,則所述處理器將雲覆蓋條件判定為「間歇性多雲」或另一中間條件(操作1950)且繼續進行至操作1995,如以上詳細地描述。 If it is determined at operation 1940 that the calculated delta (Δ) is below the upper threshold, then the processor determines the cloud coverage condition as "intermittently cloudy" or another intermediate condition (operation 1950 ) and proceeds to operation 1995 , as described in detail above.

若在操作1920判定當日時間不在時間週期(i)或(iii)中之任一者期間,則當日時間在時間週期(ii)(亦即,「白天」)期間,且在操作1970,所述處理器計算由紅外線感測器取得之溫度讀數T IR 與由光感測器取得之強度讀數之間的差。在操作1980,處理器判定計算之差在一可接受極限內。若處理器在操作1980判定計算之差大於可接受極限,則處理器應用操作1930以計算差量(△)且使用計算之差量(△)判定雲覆蓋條件,如上所論述。 If it is determined at operation 1920 that the time of day is not during either time period (i) or (iii), then the time of day is during time period (ii) (i.e., "daylight"), and at operation 1970 , the processor calculates the difference between the temperature reading T IR taken by the infrared sensor and the intensity reading taken by the light sensor. At operation 1980 , the processor determines that the calculated difference is within an acceptable limit. If the processor determines at operation 1980 that the calculated difference is greater than the acceptable limit, then the processor applies operation 1930 to calculate the difference (Δ) and use the calculated difference (Δ) to determine the cloud cover condition, as discussed above.

在一個實施例中,所述處理器亦在操作1960判定紅外線讀數是否以大於一第二定義之等級的頻率振盪。若處理器在操作1960判定當日時間在時間週期(ii)內且紅外線讀數以大於一第二定義之等級的頻率振盪,則處理器應用操作1990以使用光感測器讀數判定雲條件。舉例而言,若光感測器讀數高於某一最小強度等級,則處理器可判定一「晴朗」條件,且若光感測器讀數處於或低於最小強度等級,則判定一「多雲」條件。所述控制邏輯接著繼續進行至以上詳細描述之操作1995In one embodiment, the processor also determines at operation 1960 whether the infrared readings oscillate at a frequency greater than a second defined level. If the processor determines at operation 1960 that the time of day is within time period (ii) and the infrared readings oscillate at a frequency greater than a second defined level, the processor applies operation 1990 to determine cloud conditions using the light sensor readings. For example, the processor may determine a "clear" condition if the light sensor reading is above a certain minimum intensity level, and a "cloudy" condition if the light sensor reading is at or below the minimum intensity level. The control logic then proceeds to operation 1995 described in detail above.

若處理器在操作1980判定計算之差在可接受極限內,則光感測器讀數用以判定雲覆蓋條件(操作1990)。舉例而言,若光感測器讀數高於某一最小強度等級,則處理器可判定一「晴朗」條件,且若光感測器讀數處於或低於最小強度等級,則判定一「多雲」條件。所述控制邏輯接著繼續進行至以上詳 細描述之操作1995If the processor determines at operation 1980 that the calculated difference is within acceptable limits, then the light sensor readings are used to determine cloud cover conditions (operation 1990 ). For example, the processor may determine a "clear" condition if the light sensor reading is above a certain minimum intensity level, and a "cloudy" condition if the light sensor reading is at or below the minimum intensity level. The control logic then proceeds to operation 1995 described in detail above.

在一個實施例中,處理器亦在操作1910判定光感測器讀數是否以大於一第一定義之等級的頻率振盪及紅外線讀數是否以大於一第二定義之等級的頻率振盪。若處理器在操作1970判定計算之差在可接受極限內且處理器判定光感測器讀數以大於第一定義之等級的頻率振盪,則處理器應用操作1930以計算差量(△)且使用計算之差量(△)判定雲覆蓋條件,如上所論述。若處理器在操作1970判定計算之差不在可接受極限內且處理器判定紅外線讀數以大於第二定義之等級的頻率振盪,則處理器應用操作1990以使用光感測器讀數判定雲條件。舉例而言,若光感測器讀數高於某一最小強度等級,則處理器可判定一「晴朗」條件,且若光感測器讀數處於或低於最小強度等級,則判定一「多雲」條件。控制邏輯接著繼續進行至以上更詳細地描述之操作1995In one embodiment, the processor also determines at operation 1910 whether the light sensor readings oscillate at a frequency greater than a first defined level and the infrared readings oscillate at a frequency greater than a second defined level. If the processor determines at operation 1970 that the calculated difference is within acceptable limits and the processor determines that the light sensor reading oscillates at a frequency greater than the first defined level, then the processor applies operation 1930 to calculate the difference (Δ) and use the calculated difference (Δ) to determine cloud cover conditions, as discussed above. If the processor determines at operation 1970 that the calculated difference is not within acceptable limits and the processor determines that the infrared readings oscillate at a frequency greater than the second defined level, the processor applies operation 1990 to determine cloud conditions using the light sensor readings. For example, the processor may determine a "clear" condition if the light sensor reading is above a certain minimum intensity level, and a "cloudy" condition if the light sensor reading is at or below the minimum intensity level. Control logic then proceeds to operation 1995 described in more detail above.

-模組C1及D之實例- Examples of modules C1 and D

例示性色調控制邏輯之一個實例包括四(4)個邏輯模組A、B、C1及D。模組C1及D使用由各種感測器(諸如,溫度感測器及可見光光感測器)取得之感測器讀數判定色調等級。在一個實施例中,模組C1及D亦使用來自天氣饋入資料之環境溫度讀數。通常,此等感測器為紅外線雲偵測器系統之部分,諸如,呈多感測器裝置(例如,圖20A圖20D中展示之多感測器裝置2030圖4A圖4C中展示之多感測器裝置401圖32A圖32C中展示之多感測器裝置3201)之形式中之一者。 One example of exemplary tint control logic includes four (4) logic modules A, B, C1 and D. Modules C1 and D use sensor readings taken by various sensors, such as temperature sensors and visible light sensors, to determine hue levels. In one embodiment, modules C1 and D also use ambient temperature readings from weather feeds. Typically, these sensors are part of an infrared cloud detector system , such as in the form of one of a multi-sensor device (eg, multi-sensor device 2030 shown in FIGS. 20A - 20D , multi-sensor device 401 shown in FIGS. 4A - 4C , or multi-sensor device 3201 shown in FIGS. 32A - 32C ).

圖20A圖20D包含描繪至邏輯模組A、B、C1及D之某一一般輸入之示意圖。為了說明一般輸入,每一圖描繪一建築物之房間2000之示意性側視圖,所述房間具有一桌子2001及一位於建築物之外部與內部之間的電致變色窗2005。所述圖亦描繪一本端窗控制器2050與電致變色窗2005通信以發送控制信號來控制施加至電致變色窗2005之電致變色裝置的電壓以控制其至不 同色調等級之轉變。所述圖亦描繪呈位於具有一或多個可著色窗之建築物之屋頂上的多感測器裝置2030之形式之紅外線雲偵測器系統。 Figures 20A - 20D contain schematic diagrams depicting certain general inputs to logic modules A, B, C1 and D. To illustrate general input, each figure depicts a schematic side view of a room 2000 of a building with a desk 2001 and an electrochromic window 2005 between the exterior and interior of the building. The figure also depicts a terminal window controller 2050 in communication with the electrochromic window 2005 to send control signals to control the voltage applied to the electrochromic device of the electrochromic window 2005 to control its transition to different shade levels. The figure also depicts an infrared cloud detector system in the form of a multi-sensor device 2030 located on the roof of a building with one or more tintable windows.

多感測器裝置2030以簡化形式說明於圖20A圖20D中。多感測器裝置2030之組件類似於關於圖32A圖32C更詳細地描述的多感測器裝置3201之組件。在圖20A圖20D中展示之說明之實例中,多感測器裝置2030包含一外殼2032,其具有由光擴散材料製成之殼內。多感測器裝置2030亦包含至少兩個冗餘紅外線感測器裝置2034,例如,多個紅外線感測器裝置,以若一個紅外線感測器裝置出故障或不可用,則提供冗餘使用。紅外線感測器裝置2034中之每一者具有一機載環境溫度感測器及一紅外線感測器用於量測來自天空之熱輻射。此外,多感測器裝置2030包含位於殼之殼體內且在不同方向上面向外及/或面向上之多個可見光光感測器2010。舉例而言,多感測器裝置2030可具有十三(13)個可見光光感測器2010。多感測器裝置2030之每一紅外線感測器經組態以基於自其視野內的天空之區域接收之紅外線輻射取得天空之溫度讀數T sky 。每一機載環境溫度感測器經組態以取得環境空氣之環境溫度讀數T amb 。每一紅外線感測器裝置2034包含一假想軸線(未展示),其垂直於紅外線感測器之感測表面且大致穿過感測表面之中心。雖未展示,多感測器裝置2030亦包含將其組件固持於外殼2032內之一或多個結構。雖然參考來自多感測器裝置2030之感測器資料描述邏輯模組A、B、C1及D,但為簡單起見,應理解,此等模組可使用自一或多個其他來源導出之資料,諸如,其他紅外線雲偵測器系統、天氣饋入資料、建築物中之其他感測器(諸如,在一或多個電致變色窗處可用之獨立式感測器)、使用者輸入等。 The multi-sensor device 2030 is illustrated in simplified form in FIGS. 20A - 20D . The components of multi-sensor device 2030 are similar to the components of multi-sensor device 3201 described in more detail with respect to FIGS. 32A - 32C . In the illustrated example shown in FIGS. 20A - 20D , the multi-sensor device 2030 includes a housing 2032 having an interior made of a light diffusing material. The multi-sensor device 2030 also includes at least two redundant IR sensor devices 2034 , eg, multiple IR sensor devices, to provide redundancy if one IR sensor device fails or is unavailable. Each of the infrared sensor devices 2034 has an on-board ambient temperature sensor and an infrared sensor for measuring thermal radiation from the sky. In addition, the multi-sensor device 2030 includes a plurality of visible light sensors 2010 located within the casing of the housing and facing outward and/or upward in different directions. For example, the multi-sensor device 2030 can have thirteen (13) visible light sensors 2010 . Each infrared sensor of multi-sensor device 2030 is configured to take a temperature reading of the sky, T sky , based on infrared radiation received from an area of the sky within its field of view. Each onboard ambient temperature sensor is configured to take an ambient temperature reading T amb of the ambient air. Each infrared sensor device 2034 includes an imaginary axis (not shown) that is perpendicular to the sensing surface of the infrared sensor and passes approximately through the center of the sensing surface. Although not shown, multi-sensor device 2030 also includes one or more structures that retain its components within housing 2032 . Although logic modules A, B, C1, and D are described with reference to sensor data from multi-sensor device 2030 , for simplicity it should be understood that these modules may use data derived from one or more other sources, such as other infrared cloud detector systems, weather feeds, other sensors in the building (such as freestanding sensors available at one or more electrochromic windows), user input, etc.

多感測器裝置2030亦包含一處理器,其可執行儲存於記憶體(未展示)中用於實施邏輯之指令。舉例而言,在一個實施中,多感測器裝置2030之處理器使用模組D之邏輯(例如,參看圖23描述之模組D'之邏輯)過濾感測 器讀數。在此實例中,多感測器裝置2030之處理器接收來自多感測器裝置2030處之感測器的感測器讀數及/或經由一網路接收天氣饋入資料以隨著時間的過去過濾感測器讀數以判定作為至控制邏輯之輸入的經過濾感測器值。在此實施中,窗控制器2050接收具有經過濾感測器值之信號,且使用經過濾感測器值作為至模組C1及/或D之邏輯內的輸入。 Multi-sensor device 2030 also includes a processor that executes instructions stored in memory (not shown) for implementing logic. For example, in one implementation, the processor of the multi-sensor device 2030 filters the sensor readings using the logic of module D (eg, the logic of module D' described with reference to FIG. 23 ). In this example, the processor of the multi-sensor device 2030 receives sensor readings from sensors at the multi-sensor device 2030 and/or receives weather feeds over a network to filter the sensor readings over time to determine filtered sensor values as input to the control logic. In this implementation, the window controller 2050 receives the signal with the filtered sensor value and uses the filtered sensor value as an input into the logic of modules C1 and/or D.

房間2000亦包含一具有一處理器(未展示)之本端窗控制器2050,所述處理器可執行儲存於記憶體(未展示)中用於實施控制邏輯以控制電致變色窗2005之色調等級的指令。窗控制器2050與電致變色窗2005通信以發送控制信號。窗控制器2050亦與多感測器裝置2030通信(無線或有線)以接收具有(例如)經過濾感測器值或感測器讀數之信號。舉例而言,窗控制器2050可接收具有由紅外線感測器取得之紅外線感測器讀數(T sky )及由紅外線感測器裝置2034之機載環境溫度感測器取得之環境溫度讀數(T amb )及/或由多個光感測器2010取得之可見光讀數的信號。另外或替代地,窗控制器2050可接收具有基於由紅外線感測器2034取得之讀數的經過濾紅外線感測器值及/或由光感測器2010取得之讀數的經過濾光感測器值之信號。 Room 2000 also includes a local window controller 2050 having a processor (not shown) that can execute instructions stored in memory (not shown) for implementing control logic to control the tint levels of electrochromic windows 2005 . Window controller 2050 communicates with electrochromic window 2005 to send control signals. The window controller 2050 also communicates (wirelessly or wired) with the multi-sensor device 2030 to receive signals having, for example, filtered sensor values or sensor readings. For example, window controller 2050 may receive a signal having an infrared sensor reading ( T sky ) obtained by an infrared sensor, an ambient temperature reading ( T amb ) obtained by an on-board ambient temperature sensor of infrared sensor device 2034 and/or a visible light reading obtained by plurality of light sensors 2010 . Additionally or alternatively, window controller 2050 may receive signals having filtered infrared sensor values based on readings taken by infrared sensor 2034 and/or filtered light sensor values based on readings taken by light sensor 2010 .

根據某些態樣,電力/通信線自建築物或另一結構延伸至多感測器裝置2030。在一個實施中,多感測器裝置2030包含一網路介面,其可將多感測器裝置2030耦接至一合適纜線。多感測器裝置2030可經由網路介面將資料傳達至窗控制器2050或建築物之另一控制器(例如,網路控制器及/或主控制器)。在一些其他實施中,多感測器裝置2030可另外或替代地包含一實現與一或多個外部控制器之無線通信的無線網路介面。在一些態樣中,多感測器裝置2030亦可包含一在其外殼內或與外殼耦接之電池以對其內之感測器及電組件供電。作為來自電源供應器(例如,來自建築物電源供應器)之電力之代替或補充,所述電池可提供此電力。在一個態樣中,多感測器裝置2030進一步包含至少一 個光伏打電池,例如,在外殼之外表面上。作為由任一其他電源供應器提供之電力之代替或補充,此至少一個光伏打電池可提供電力。 According to certain aspects, power/communication lines run from a building or another structure to multi-sensor device 2030 . In one implementation, the multi-sensor device 2030 includes a network interface that can couple the multi-sensor device 2030 to a suitable cable. Multi-sensor device 2030 may communicate data via a network interface to window controller 2050 or another controller of the building (eg, a network controller and/or a master controller). In some other implementations, multi-sensor device 2030 may additionally or alternatively include a wireless network interface to enable wireless communication with one or more external controllers. In some aspects, multi-sensor device 2030 may also include a battery within or coupled to its housing to power the sensors and electrical components within it. Instead or in addition to power from a power supply (eg, from a building power supply), the battery can provide this power. In one aspect, multi-sensor device 2030 further includes at least one photovoltaic cell, eg, on an outer surface of the housing. The at least one photovoltaic cell may provide power instead or in addition to power provided by any other power supply.

圖20A展示直射陽光經由在包含房間2000之建築物之外部與內部之間的電致變色窗2005至房間2000內之穿透深度。穿透深度為直射陽光可穿透至房間2000內多遠之一量測。如所展示,穿透深度係在遠離電致變色窗2005之窗台(底部)之水平方向上量測。通常,窗界定一提供用於直射陽光之受光角之孔隙。基於窗之幾何尺寸(例如,窗尺寸)、其在房間中之位置及定向、在窗外之任何散熱片或其他外部遮蔭及太陽之位置(例如在一天中之一特定時間及一特定日期的直射陽光之角度)計算穿透深度。至電致變色窗2005之外部遮蔭可歸因於可遮住窗的任何類型之結構,諸如,懸垂物、散熱片等。在圖20A中,在電致變色窗2005上方存在一懸垂物2020,其阻擋直射陽光之一部分進入房間2000,因此縮短穿透深度。 FIG. 20A shows the penetration depth of direct sunlight into the room 2000 through the electrochromic window 2005 between the exterior and interior of the building containing the room 2000 . Penetration depth is measured as one of how far direct sunlight can penetrate into a room in 2000 . As shown, penetration depth is measured in the horizontal direction away from the sill (bottom) of the electrochromic window 2005 . Typically, the window defines an aperture that provides an acceptance angle for direct sunlight. Penetration depth is calculated based on the geometry of the window (e.g., window size), its location and orientation in the room, any fins or other external shading outside the window, and the position of the sun (e.g., the angle of direct sunlight at a particular time of day and on a particular day). External shading to the electrochromic window 2005 can be due to any type of structure that can shade the window, such as overhangs, fins, etc. In FIG. 20A , there is an overhang 2020 above the electrochromic window 2005 , which blocks a portion of the direct sunlight from entering the room 2000 , thus shortening the penetration depth.

模組A1可用以判定考慮來自直射陽光經由電致變色窗2005至居住者或其活動區域上的居住者舒適性之色調等級(在本文中亦被稱作「眩光條件」)。基於直射陽光至房間內的計算之穿透深度及在一特定時刻(當日時間及一年中之某天)房間中之空間類型(例如,在窗附近之桌子、門廳等)判定色調等級。在一些情況下,色調等級判定亦可基於將充分自然照明提供至房間內。在一些情況下,在未來之時間計算穿透深度以考量玻璃態化時間(窗著色所需之時間,例如,至所要的色調等級之80%、90%或100%)。在模組A1中解決之問題為,直射陽光可如此深地穿透至房間2000內,以致直接照在在房間中之桌子或其他工作表面處工作之居住者身上。可使用可公開獲得之程式計算太陽之位置,且允許穿透深度之容易計算。 Module A1 may be used to determine a tint level that takes into account occupant comfort from direct sunlight passing through the electrochromic window 2005 onto the occupant or their active area (also referred to herein as "glare conditions"). The tint level is determined based on the calculated penetration depth of direct sunlight into the room and the type of space in the room at a particular moment (time of day and day of year) (eg, table near a window, hallway, etc.). In some cases, the tint level determination may also be based on providing sufficient natural lighting into the room. In some cases, the depth of penetration is calculated at a future time to account for the vitrification time (the time required for the window to tint, eg, to 80%, 90%, or 100% of the desired shade level). The problem addressed in module A1 is that direct sunlight can penetrate so deep into room 2000 that it falls directly on occupants working at a desk or other work surface in the room. The sun's position can be calculated using publicly available programs and allows easy calculation of penetration depth.

圖20A圖20D亦展示在房間2000中之桌子2001,作為具有與活動區域(亦即,桌子)相關聯之桌子及活動區域之位置(亦即,桌子之位置) 的一單一佔用辦公室之空間類型之一實例。為了居住者舒適性,每一空間類型與不同色調等級相關聯。舉例而言,若活動為諸如在桌子或電腦邊正進行的在辦公室中之工作之關鍵活動,且桌子位於窗附近,則所要的色調等級可比在桌子更遠離窗之情況下高。作為另一實例,若活動為非關鍵性的,諸如,在門廳中之活動,則所要的色調等級可比在對於辦公室中具有一桌子之同一空間低。 20A - 20D also show desk 2001 in room 2000 , as an example of a single occupancy office space type with desks associated with activity areas (ie, desks) and locations of activity areas (ie, desk locations). Each space type is associated with a different tone level for occupant comfort. For example, if the activity is a key activity such as work in an office being done at a desk or computer, and the desk is located near a window, then the desired tint level may be higher than if the desk is further away from the window. As another example, if the activity is non-critical, such as in the foyer, the desired tone level may be lower than in the same space with a desk for an office.

圖20B展示根據一實施的在晴朗的天空條件下經由電致變色窗2005進入房間2000之直射陽光及輻射。輻射可來自由大氣中之分子及粒子散射之陽光。模組B基於流過考慮中之電致變色窗2005的在晴朗的天空條件下之輻照度之計算值來判定一色調等級。諸如開放原始碼RADIANCE程式之各種軟體可用以計算在某一緯度、經度、一年中之時間及當日時間及針對一給定窗定向的晴空輻照度。 20B shows direct sunlight and radiation entering a room 2000 through an electrochromic window 2005 under clear sky conditions, according to an implementation. Radiation can come from sunlight scattered by molecules and particles in the atmosphere. Module B determines a tint level based on the calculated irradiance under clear sky conditions flowing through the electrochromic window 2005 under consideration. Various software such as the open source RADIANCE program can be used to calculate clear sky irradiance at a latitude, longitude, time of year, and time of day, and for a given window orientation.

圖20C展示根據一實施的如可由諸如雲或其他建築物或結構之物體阻擋或自所述物體反射的來自天空之輻射光。在晴空輻射計算中,未考量此等障礙物及反射。基於來自多感測器裝置2030之多個光感測器2010的光感測器資料判定來自天空之輻射光。由模組C1之邏輯判定的色調等級係基於光感測器資料。所述色調等級係基於使用由多個光感測器2010取得之讀數判定的雲覆蓋條件。在一些情況下,雲覆蓋條件係基於一自隨著時間之過去取得的來自多個光感測器2010之讀數判定之經過濾光感測器值而判定。 20C shows radiant light from the sky as may be blocked by or reflected from objects such as clouds or other buildings or structures, according to an implementation. These obstacles and reflections are not considered in the clear sky radiation calculations. Radiant light from the sky is determined based on light sensor data from the plurality of light sensors 2010 of the multi-sensor device 2030 . The tone level determined by the logic of module C1 is based on the light sensor data. The hue rating is based on cloud cover conditions determined using readings taken by a plurality of light sensors 2010 . In some cases, the cloud cover condition is determined based on a filtered light sensor value determined from readings from the plurality of light sensors 2010 taken over time.

圖20D展示根據一實施的來自天空之紅外線輻射2090可自雲及其他障礙物輻射。如上參看圖20C所提到,在晴空輻射計算中並未考量此等障礙物。在可見光等級低且可見光之光感測器讀數低且可針對多雲條件給出錯誤肯定之上午及晚上期間,模組D之操作使用天空溫度及環境溫度資料判定雲覆蓋條件。 FIG. 20D shows that infrared radiation 2090 from the sky can radiate from clouds and other obstructions, according to an implementation. As mentioned above with reference to Figure 20C , such obstacles are not considered in the clear sky radiation calculations. Operation of module D uses sky temperature and ambient temperature data to determine cloud cover conditions during morning and evening periods when visible light levels are low and visible light sensor readings are low and may give false positives for cloudy conditions.

在一個實施中,模組D之操作使用基於隨著時間的過去取得的 天空溫度讀數(T sky )及環境溫度讀數(T amb )判定之經過濾紅外線感測器值判定在每一時刻t i 之雲覆蓋條件。環境溫度讀數來自一或多個環境溫度感測器或來自天氣饋入資料。舉例而言,天空溫度讀數可基於由多感測器裝置2030之紅外線感測器取得之讀數來判定。色調等級係基於自經過濾紅外線感測器值判定之雲覆蓋條件判定。通常,模組B之操作將判定一使由模組A1判定之色調等級變暗(或不改變)之色調等級,且模組C1或D之操作將判定一使由模組B判定之色調等級變亮(或不改變)之色調等級。 In one implementation, the operation of module D determines cloud cover conditions at each time t i using filtered infrared sensor values determined based on sky temperature readings ( T sky ) and ambient temperature readings ( T amb ) taken over time. Ambient temperature readings come from one or more ambient temperature sensors or from weather feeds. For example, the sky temperature reading may be determined based on readings taken by the infrared sensors of the multi-sensor device 2030 . Hue ratings are based on cloud cover conditions determined from filtered infrared sensor values. Typically, the operation of module B will determine a tone level that darkens (or does not change) the tone level determined by module A1, and the operation of module C1 or D will determine a tone level that brightens (or does not change) the tone level determined by module B.

所述控制邏輯可實施用於建築物中之一或多個窗的邏輯模組A1、B、C1及D中之一或多者。每一電致變色窗可具有尺寸、定向(例如,豎直、水平、按一角度傾斜)、位置、相關聯之空間類型等之一唯一集合。可針對建築物中之每一電致變色窗或電致變色窗之區帶維護具有此資訊及其他資訊之一組態檔案。在一個實例中,所述組態檔案可儲存於電致變色窗2005之本端窗控制器2050之電腦可讀媒體中或建築物管理系統(BMS)中。組態檔案可包含諸如窗組態、佔有率查找表、關於相關聯之基準玻璃之資訊及/或由控制邏輯使用之其他資料的資訊。窗組態可包含諸如電致變色窗2005之尺寸、電致變色窗2005之定向、電致變色窗2005之位置等的資訊。佔有率查找表描述針對某些空間類型及穿透深度提供居住者舒適性之色調等級。亦即,佔有率查找表中之色調等級經設計以為可在房間2000中之居住者提供來自在居住者或其工作空間上之直射陽光的舒適性。空間類型為一量測,其判定將需要多少著色來針對一給定穿透深度解決居住者舒適性關注及/或提供房間中之舒適的自然照明。空間類型參數可考慮許多因素。在此等因素當中有正在一特定房間中進行的工作或其他活動之類型及活動之位置。關閉與需要大量注意力之詳細研究相關聯的工作可能在一個空間類型,而休息室或會議室可具有不同空間類型。另外,在房間中之桌子或其他工作表面相對於窗之位置為定義空間類型過程中之一考慮因素。舉例 而言,空間類型可與具有一位於電致變色窗2005附近之桌子或其他工作空間的單一居住者之辦公室相關聯。作為另一實例,空間類型可為一門廳。 The control logic may implement one or more of logic modules A1, B, C1 and D for one or more windows in the building. Each electrochromic window may have a unique set of dimensions, orientation (eg, vertical, horizontal, tilted at an angle), position, associated spatial type, and the like. A configuration file with this and other information may be maintained for each electrochromic window or zone of electrochromic windows in the building. In one example, the configuration file may be stored in a computer readable medium of the local window controller 2050 of the electrochromic window 2005 or in a building management system (BMS). The configuration file may contain information such as window configuration, occupancy lookup tables, information about associated reference glazing, and/or other data used by the control logic. The window configuration may include information such as the size of the electrochromic window 2005 , the orientation of the electrochromic window 2005 , the position of the electrochromic window 2005 , and the like. The occupancy lookup table describes the shade levels that provide occupant comfort for certain space types and depths of penetration. That is, the tint levels in the occupancy lookup table are designed to provide occupants in room 2000 with comfort from direct sunlight on the occupants or their workspace. Space type is a measure that determines how much tinting will be needed to address occupant comfort concerns and/or provide comfortable natural lighting in a room for a given depth of penetration. The Space Type parameter can take into account many factors. Among these factors are the type of work or other activity being performed in a particular room and the location of the activity. Close Work associated with detailed studies that require a lot of attention may be in one space type, while a break room or meeting room may have a different space type. Additionally, the location of a desk or other work surface in a room relative to a window is a consideration in defining a space type. For example, a space type may be associated with a single occupant office with a desk or other workspace located near the electrochromic window 2005 . As another example, the space type may be a foyer.

在某些實施例中,控制邏輯之一或多個模組可判定所要的色調等級,同時除了居住者舒適性之外,亦考量能量節省。此等模組可藉由比較在一特定色調等級處的電致變色窗與一基準玻璃或其他標準參考窗之效能來判定與彼色調等級相關聯之能量節省。使用此參考窗之目的可為確保控制邏輯遵守城市建築條例之要求或對在建築物場所中使用之參考窗之其他要求。市政當局常使用習知低發射率玻璃來定義參考窗以控制建築物中的空調負荷之量。作為參考窗2005適合控制邏輯之方式的一實例,所述邏輯可經設計使得經由一給定電致變色窗2005到來之輻照度從不大於經由如由各別市政當局指定之一參考窗到來之最大輻照度。在揭露之實施例中,控制邏輯可使用在一特定色調等級下的電致變色窗2005之太陽熱量增益係數(SHGC)值及參考窗之SHGC以判定使用所述色調等級之能量節省。通常,SHGC之值為經由窗透射的所有波長之入射光之分率。雖然在許多實施例中描述一基準玻璃,但可使用其他標準參考窗。通常,參考窗(例如,基準玻璃)之SHGC為一變數,其可針對不同地理位置及窗定向而不同,且係基於由各別市政當局指定之條例要求。 In some embodiments, one or more modules of the control logic may determine a desired tint level while considering energy savings in addition to occupant comfort. These modules can determine the energy savings associated with a particular tint level by comparing the performance of the electrochromic window at that tint level to a baseline glass or other standard reference window. The purpose of using this reference window may be to ensure that the control logic complies with the requirements of city building regulations or other requirements for reference windows used in building sites. Municipalities often use conventional low-emissivity glass to define reference windows to control the amount of air conditioning load in buildings. As an example of how the reference window 2005 fits into the control logic, the logic can be designed so that the irradiance coming through a given electrochromic window 2005 is never greater than the maximum irradiance coming through a reference window as specified by the respective municipality. In disclosed embodiments, the control logic may use the solar heat gain coefficient (SHGC) value of the electrochromic window 2005 at a particular tint level and the SHGC of the reference window to determine energy savings using that tint level. Typically, the value of SHGC is the fraction of incident light of all wavelengths transmitted through the window. While a reference glass is described in many embodiments, other standard reference windows may be used. In general, the SHGC of a reference window (eg, reference glass) is a variable that can vary for different geographic locations and window orientations, and is based on ordinance requirements specified by individual municipalities.

-包括模組A、B、C1及D的控制邏輯之實例- Examples of control logic including modules A, B, C1 and D

圖21描繪展示根據實施例的用於控制在一建築物中之一或多個電致變色窗之方法之一般控制邏輯之流程圖2100。舉例而言,此控制邏輯可經實施以控制一或多個電致變色窗之區帶。所述控制邏輯實施模組A1、B、C1及D中之一或多者以計算用於所述一或多個電致變色窗之色調等級,且發送指令以將所述一或多個電致變色窗之所述電致變色裝置(例如,在多區帶電致變色窗中之電致變色裝置或在一絕緣玻璃單元之多個電致變色鏡片上之電致變色裝置)轉變至所述色調等級。多區帶窗之一些實例可見於2014年12月14日提交 且題為《多區帶EC窗(MULTI-ZONE EC WINDOWS)》之國際PCT申請案第PCT/US14/71314號中,所述申請案在此被以引用的方式全部併入。模組A1及B類似於關於圖15A圖15B所描述之模組A及B。 21 depicts a flowchart 2100 showing the general control logic of a method for controlling one or more electrochromic windows in a building, according to an embodiment. For example, such control logic can be implemented to control the zones of one or more electrochromic windows. The control logic implements one or more of modules A1, B, C1, and D to calculate a tint level for the one or more electrochromic windows, and to send instructions to transition the electrochromic device of the one or more electrochromic windows (e.g., an electrochromic device in a multi-zone electrochromic window or an electrochromic device on multiple electrochromic lenses of an insulating glass unit) to the tint level. Some examples of multi-zone windows can be found in International PCT Application No. PCT/US14/71314, filed December 14, 2014, and entitled "MULTI-ZONE EC WINDOWS," which is hereby incorporated by reference in its entirety. Modules A1 and B are similar to modules A and B described with respect to Figures 15A and 15B.

控制邏輯中之計算按在操作2110由計時器計時之間隔執行。在一些情況下,可按恆定時間間隔進行邏輯計算。在一種情況下,每2至5分鐘進行邏輯計算。在其他情況下,可能需要以不太頻繁為基礎進行計算,諸如,每30分鐘或每20分鐘,諸如,針對可佔用30分鐘或更多時間轉變的對於大塊電致變色鏡片(例如,高達6呎×10呎)之色調轉變。 Calculations in the control logic are performed at intervals ticked by the timer at operation 2110 . In some cases, logical calculations may be performed at constant time intervals. In one case, logical calculations are performed every 2 to 5 minutes. In other cases, calculations may need to be made on a less frequent basis, such as every 30 minutes or every 20 minutes, such as for tint transitions for large electrochromic lenses (e.g., up to 6 feet by 10 feet) that can take 30 minutes or more to change.

操作2120,邏輯模組A1、B、C1及D執行計算以判定在單一時刻t i 用於一或多個電致變色窗之色調等級。此等計算可由窗控制器及/或多感測器裝置之一或多個處理器執行。舉例而言,多感測器裝置之處理器可判定經過濾感測器值且將此等經過濾感測器值傳達至一基於經過濾感測器值判定色調等級之窗控制器。在另一實例中,窗控制器之一或多個處理器可基於自多感測器裝置接收之感測器讀數判定經過濾感測器值及對應的色調等級。 At operation 2120 , logic modules A1, B, C1, and D perform calculations to determine the tint level for one or more electrochromic windows at a single time t i . These calculations may be performed by one or more processors of the window controller and/or the multi-sensor device. For example, a processor of a multi-sensor device may determine filtered sensor values and communicate these filtered sensor values to a window controller that determines tint levels based on the filtered sensor values. In another example, one or more processors of the window controller may determine filtered sensor values and corresponding tint levels based on sensor readings received from a multi-sensor device.

在某些實施例中,控制邏輯為預測性邏輯,其計算在實際轉變之前窗應轉變之程度。在此等情況下,模組A1、B、C1及D中之計算係基於一未來時間(例如,t i =目前時間+諸如一或多個電致變色窗之轉變時間的持續時間)進行,例如,大約在轉變完成時或在轉變完成後。舉例而言,在計算中使用之未來時間可為未來足以允許在接收到色調指令後完成轉變之時間。在此等情況下,窗控制器可在實際轉變前在目前時間發送色調指令。在轉變完成時,窗將已轉變至一對於彼未來時間所要的色調等級。 In some embodiments, the control logic is predictive logic that calculates how much the window should transition before actually transitioning. In such cases, the calculations in modules A1, B, C1, and D are based on a future time (e.g., ti = present time + duration such as the transition time of one or more electrochromic windows), e.g., approximately when the transition is complete or after the transition is complete. For example, the future time used in the calculation may be sufficiently in the future to allow the transition to be completed after the hue command is received. In such cases, the window controller can send tint commands at the current time before the actual transition. When the transition is complete, the window will have transitioned to a desired tint level for that future time.

操作2130,控制邏輯允許各種類型之更動以脫離在模組A1、B、C1及D處之演算法,且在操作2140基於某一其他考慮因素定義更動色調等級。一個類型之更動為手動更動。此為由自佔據房間且判定一特定色調等級(更 動值)合乎需要之最終使用者實施的更動。可存在使用者之手動更動經自身更動之情形。更動之實例為高需求(或尖峰負荷)更動,其與建築物中之能量消耗減少的實用之要求相關聯。舉例而言,在大城區中之特定熱天,可能有必要減少整個市區之能量消耗,以便不過度加重市區之能量產生及遞送系統負擔。在此類情況下,建築物可更動來自控制邏輯之色調等級以確保所有窗具有一特別高之著色等級。此更動可更動使用者之手動更動。更動之另一實例為當在房間中不存在居住者時,例如,在週末時之商業辦公室建築物中。在此情況下,建築物可脫離關於居住者舒適性之一或多個模組,且所有窗在冷天可具有低著色等級,且在溫暖的天氣裏可具有高著色等級。 At operation 2130 , the control logic allows various types of alterations to depart from the algorithms at modules A1, B, C1, and D, and at operation 2140 defines the altered tint levels based on some other consideration. One type of modifier is a manual modifier. This is a modification implemented by the end user who has self-occupied the room and has determined that a particular tint level (modification value) is desirable. There may be a situation where the user's manual modification is modified by itself. An example of a modification is a high demand (or peak load) modification that is associated with a practical requirement for reduced energy consumption in a building. For example, on certain hot days in large urban areas, it may be necessary to reduce energy consumption throughout the urban area so as not to overburden the energy generation and delivery systems in the urban area. In such cases, the building can alter the tint level from the control logic to ensure that all windows have a particularly high tint level. This modifier overrides the user's manual modifier. Another example of alteration is when there are no occupants in the room, eg, in a commercial office building on weekends. In this case, the building can be disengaged from one or more modules pertaining to occupant comfort, and all windows can have a low tinting rating in cold weather and a high tinting rating in warm weather.

操作2150,用於實施色調等級之控制信號在一網路上傳輸至與一或多個電致變色窗之電致變色裝置電連通之電源供應器以將窗轉變至所述色調等級。在某些實施例中,可牢記著效率來實施至建築物之窗的色調等級之透射。舉例而言,若色調等級之重新計算建議不需要自當前色調等級的色調之改變,則不存在具有經更新色調等級之指令的傳輸。作為另一實例,可基於建築物中之窗大小及/或位置將建築物劃分成窗之區帶。在一種情況下,控制邏輯對於具有較小窗之區帶比對於具有較大窗之區帶頻率地重新計算色調等級。 At operation 2150 , control signals for implementing the tint level are transmitted over a network to a power supply in electrical communication with the electrochromic devices of the one or more electrochromic windows to transition the window to the tint level. In certain embodiments, the transmission of the tint levels to the windows of buildings may be implemented with efficiency in mind. For example, if the recalculation of the tone level suggests that no change in tone from the current tone level is required, then there is no transmission of an instruction with an updated tone level. As another example, a building may be divided into zones of windows based on window size and/or location in the building. In one case, the control logic recalculates the tone level more frequently for zones with smaller windows than for zones with larger windows.

在一種情況下,圖21中之控制邏輯實施用於在一單一裝置上(例如,在一單一主窗控制器上)控制全部建築物之所有電致變色窗之色調等級的控制方法。此裝置可針對建築物中之每一個電致變色窗執行計算,及亦提供一介面用於將色調等級傳輸至個別電致變色窗中之電致變色裝置。 In one case, the control logic in FIG. 21 implements a control method for controlling the tint levels of all electrochromic windows for all buildings on a single device (eg, on a single master window controller). This device can perform calculations for each electrochromic window in the building, and also provides an interface for transmitting the tint level to the electrochromic device in the individual electrochromic window.

又,可存在某些實施例之控制邏輯之某些自適應組件。舉例而言,所述控制邏輯可判定最終使用者(例如,居住者)如何嘗試在一天中之特定時間更動演算法及接著以更為預測性之方式使用此資訊判定一所要的色調等級。舉例而言,最終使用者可使用一壁開關將由控制邏輯在連續一連串天中之每一天 上之某一時間提供的色調等級更動至一更動值。控制邏輯可接收關於此等實例之資訊,且改變所述控制邏輯以在彼當日時間自最終使用者引入一更動值,所述更動值將色調等級改變至所述更動值。 Also, there may be some adaptive components of the control logic of certain embodiments. For example, the control logic may determine how end users (eg, occupants) attempt to alter the algorithm at certain times of day and then use this information in a more predictive manner to determine a desired tint level. For example, an end user could use a wall switch to switch the number of The tone level provided at a certain time above is changed to a changed value. Control logic may receive information about these instances and alter the control logic to introduce a modification value from the end user at that time of day that changes the tint level to the modification value.

圖22為展示來自圖21之區塊2020之一特定實施之圖。此圖展示依序執行所有四個模組A1、B、C1及D以計算在一單一時刻t i 的一特定電致變色窗之最終色調等級之方法。在預測性邏輯之情況下,基於判定在未來一時間t i 之最終色調等級來執行模組A1、B、C1及D。最終色調等級可為考慮中之窗之最大容許透射率。在一個實施例中,模組A1、B、C1及D之計算由本端窗控制器、網路控制器或主控制器之處理器執行。 FIG. 22 is a diagram showing a particular implementation of block 2020 from FIG. 21 . This figure shows the method of executing all four modules A1, B, C1 and D sequentially to calculate the final tint level for a particular electrochromic window at a single time t i . In the case of predictive logic, modules A1, B, C1 and D are executed based on determining the final tone level at a time t i in the future. The final tint level may be the maximum allowable transmittance of the window under consideration. In one embodiment, the calculations of the modules A1, B, C1 and D are performed by the processor of the local window controller, network controller or main controller.

在操作2270,處理器使用模組A1針對居住者舒適性判定一色調等級以防止來自陽光之直射眩光穿透至房間內。處理器使用模組A1基於太陽在天空中之位置及來自組態檔案之窗組態計算直射陽光至房間內之穿透深度。太陽之位置係基於建築物之緯度及經度及當日時間與日期計算。佔有率查找表及空間類型為針對所述特定窗自一組態檔案之輸入。模組A1將來自A1之色調等級輸出至模組B。模組A1之目標通常為確保直射陽光或眩光不照射居住者或其工作空間。判定來自模組A1之色調等級實現此目的。模組B、C1及D中的色調等級之後續計算可減少能量消耗且可需要甚至更大色調。然而,若基於能量消耗進行的色調等級之後續計算建議比避免干擾居住者所需之著色少的著色,則所述邏輯防止執行計算之較大等級之透射率以確保居住者舒適性。 At operation 2270 , the processor uses module A1 to determine a tint level for occupant comfort to prevent direct glare from sunlight from penetrating into the room. The processor uses module A1 to calculate the penetration depth of direct sunlight into the room based on the position of the sun in the sky and the window configuration from the configuration file. The position of the sun is calculated based on the latitude and longitude of the building and the time and date of the day. The occupancy lookup table and space type are inputs from a configuration file for that particular window. Module A1 outputs the tone grades from A1 to module B. The goal of module A1 is generally to ensure that direct sunlight or glare does not illuminate occupants or their workspaces. Determining the tone level from module A1 accomplishes this. Subsequent calculations of hue levels in modules B, C1 and D may reduce energy consumption and may require even larger hues. However, if a subsequent calculation of the tint level based on energy consumption suggests less tint than is needed to avoid disturbing the occupants, the logic prevents execution of the calculated larger level of transmittance to ensure occupant comfort.

操作2280,在模組A1中計算之色調等級經輸入至模組B內。通常,模組B判定一使在模組B中計算之色調等級變暗(或不改變)之色調等級。基於在晴朗的天空條件(晴空輻照度)下的輻照度之計算來計算色調等級。控制器之處理器使用模組B基於來自組態檔案之窗定向及基於建築物之緯度及經度座標計算一或多個電致變色窗之晴空輻照度。此等計算亦基於在時間t i 之當 日時間及/或針對所有時間之最大值。諸如RADIANCE程式(其為一開放原始碼程式)之可公開獲得之軟體可提供用於計算晴空輻照度之計算。基準玻璃之SHGC亦自組態檔案輸入至模組B內。處理器使用模組B判定一比A1中之色調等級暗且傳輸比基準玻璃少的熱量之色調等級經計算以在最大晴空輻照度下透射。最大晴空輻照度為針對晴朗的天空條件計算之所有時間內的最高輻照度等級。在一個實例中,模組B按步驟增大在模組A1中計算之色調等級,且選取內部輻射小於或等於基準內部輻照度之一色調等級,其中:內部輻照度=色調等級SHGC×晴空輻照度,且基準內部輻照度=基準SHGC×最大晴空輻照度。 In operation 2280 , the tone level calculated in module A1 is input into module B. Typically, module B determines a tone level that darkens (or does not change) the tone level calculated in module B. The hue scale is calculated based on a calculation of irradiance under clear sky conditions (clear sky irradiance). The controller's processor uses module B to calculate the clear sky irradiance for one or more electrochromic windows based on the window orientation from the configuration file and based on the latitude and longitude coordinates of the building. These calculations are also based on the time of day at time ti and/or the maximum value for all times. Publicly available software such as the RADIANCE program (which is an open source program) may provide calculations for calculating clear sky irradiance. The SHGC of the reference glass is also imported into module B from the configuration file. The processor uses module B to determine a tint class that is darker than the tint class in A1 and transmits less heat than the reference glass calculated to transmit at maximum clear-air irradiance. The maximum clear sky irradiance is the highest irradiance level for all time calculated for clear sky conditions. In one example, module B steps up the hue grade calculated in module A1 and selects a hue grade whose internal irradiance is less than or equal to the reference internal irradiance, where: internal irradiance = hue grade SHGC x clear sky irradiance, and reference internal irradiance = reference SHGC x maximum clear sky irradiance.

在操作2290,將來自模組B之色調等級及光感測器讀數及/或經過濾光感測器值輸入至模組C1。計算之晴空輻照度亦輸入至模組C1內。光感測器讀數係基於由例如多感測器裝置之多個光感測器取得的量測結果。所述處理器使用模組C1之邏輯藉由比較經過濾光感測器值與臨限值來判定一雲覆蓋條件。在一種情況下,模組C1基於原始光感測器讀數判定經過濾光感測器值。在另一情況下,模組C1接收經過濾光感測器值,作為輸入。處理器實施模組C1之邏輯以基於判定之雲覆蓋條件判定一色調等級。通常,模組C1之操作將判定一使由模組B之操作判定之色調等級變亮或不改變的色調等級。 At operation 2290 , the hue level and light sensor readings and/or filtered light sensor values from module B are input to module C1. The calculated clear sky irradiance is also input into module C1. Light sensor readings are based on measurements taken by multiple light sensors, such as a multi-sensor device. The processor uses the logic of module C1 to determine a cloud cover condition by comparing filtered light sensor values to thresholds. In one instance, module C1 determines filtered light sensor values based on raw light sensor readings. In another case, module C1 receives filtered light sensor values as input. The processor implements the logic of module C1 to determine a hue level based on the determined cloud cover condition. Typically, the operation of module C1 will determine a tone level that brightens or does not change the tone level determined by the operation of module B.

在操作2295,將來自模組C1之色調等級輸入至模組D。此外,將紅外線感測器讀數及環境溫度感測器讀數及/或其相關聯之經過濾紅外線感測器值輸入至模組D。紅外線感測器讀數及環境溫度感測器讀數包含天空溫度讀數(T sky )、來自建築物處之本端感測器之環境溫度讀數(T amb )或來自天氣饋入之環境溫度讀數(T weather )及/或T sky -T amb 之間的差。基於天空溫度讀數(T sky )及來自本端感測器之環境溫度讀數(T amb )或來自天氣饋入之環境溫度讀數(T weather )判定經過濾紅外線感測器值。天空溫度讀數由一或多個紅外線感測器取得。 At operation 2295 , the tone level from module C1 is input to module D. Additionally, the IR sensor reading and the ambient temperature sensor reading and/or their associated filtered IR sensor values are input to module D. The infrared sensor reading and the ambient temperature sensor reading comprise the sky temperature reading ( T sky ), the ambient temperature reading from the local sensor at the building ( T amb ) or the ambient temperature reading from the weather feed ( T weather ) and/or the difference between T sky -T amb . Determine the filtered IR sensor value based on the sky temperature reading ( T sky ) and the ambient temperature reading from the local sensor ( Tamb ) or the ambient temperature reading from the weather feed ( T weather ). Sky temperature readings are taken by one or more infrared sensors.

環境溫度讀數可接收自各種來源。舉例而言,可自位於紅外線感測器板上之一或多個環境溫度感測器及/或自例如建築物處的一多感測器裝置之一獨立式溫度感測器傳達環境溫度讀數。作為另一實例,環境溫度讀數可接收自天氣饋入。模組D之邏輯藉由比較經過濾紅外線感測器值與臨限值來判定雲覆蓋條件。通常,模組D之操作將判定一使由模組C1之操作判定之色調等級變暗(或不改變)的色調等級。在此實例中,在模組D中判定之色調等級為最終色調等級。 Ambient temperature readings may be received from various sources. For example, ambient temperature readings may be communicated from one or more ambient temperature sensors located on an infrared sensor board and/or from a stand-alone temperature sensor such as a multi-sensor device at a building. As another example, ambient temperature readings may be received from weather feeds. The logic of module D determines the cloud cover condition by comparing the filtered infrared sensor value to a threshold value. Typically, the operation of module D will determine a tone level that darkens (or does not change) the tone level determined by the operation of module C1. In this example, the tone level determined in module D is the final tone level.

輸入至關於圖22所描述之控制邏輯的許多資訊係自關於建築物之緯度及經度之固定資訊及亦自當日時間及日期(一年中之某天)判定。此資訊描述太陽相對於建築物之位置,且更特定言之,相對於正實施控制邏輯的一或多個窗中之每一者之位置。太陽相對於窗之位置可用以計算諸如直射陽光經由每一窗至房間內之穿透深度的資訊。其亦提供在晴朗的天空條件期間經由窗到來的最大輻照度或太陽輻射能量通量之指示。 Much of the information input to the control logic described with respect to Figure 22 is determined from fixed information about the latitude and longitude of the building and also from the time and date of day (day of the year). This information describes the position of the sun relative to the building, and more specifically, relative to each of the one or more windows for which the control logic is being implemented. The position of the sun relative to the windows can be used to calculate information such as the penetration depth of direct sunlight into the room through each window. It also provides an indication of the maximum irradiance or solar radiant energy flux arriving through the window during clear sky conditions.

在上午及晚上,陽光等級低且由在例如多感測器裝置中之外部可見光光感測器取得的讀數為低值,可將所述讀數考慮為與在白天期間在多雲條件期間取得之讀數一致。出於此原因,若孤立地考慮,則在上午及晚上期間取得之外部可見光光感測器讀數可錯誤地指示一多雲條件。此外,來自建築物或山/山脈之任何阻擋亦可基於單獨取得之可見光光感測器讀數而導致針對多雲條件之一錯誤肯定指示。此外,在日出前取得之外部可見光光感測器讀數若經單獨取得,則可導致一錯誤肯定多雲條件。在控制邏輯預測性地基於緊接在日出前單獨取得之可見光光感測器讀數預先判定日出時之色調等級之情況下,錯誤肯定多雲條件可導致在日出時將電致變色窗轉變至一清朗狀態,從而使得房間中有眩光。 In the morning and evening, sunlight levels are low and readings taken by external visible light sensors, such as in a multi-sensor arrangement, are low, which readings can be considered consistent with readings taken during cloudy conditions during the day. For this reason, external visible light sensor readings taken during morning and evening may falsely indicate a cloudy condition if considered in isolation. Additionally, any obstruction from buildings or mountains/mountains could also result in a false positive indication for cloudy conditions based on the visible light sensor readings taken alone. Furthermore, external visible light sensor readings taken before sunrise, if taken alone, can lead to a false positive for cloudy conditions. Where the control logic predictively predetermines the hue level at sunrise based on a single visible light sensor reading taken immediately before sunrise, a false positive for cloudy conditions may result in switching the electrochromic window to a clear state at sunrise, causing glare in the room.

在某些實施中,本文中描述之控制邏輯使用基於來自一或多個紅 外線感測器及來自環境溫度感測器之溫度讀數的經過濾感測器值判定在上午及晚上及/或在緊接在日出前之時間的雲條件。所述一或多個紅外線感測器通常獨立於陽光等級操作,從而允許著色控制邏輯判定日出前之雲條件,且隨著太陽落下,判定及維持在上午及晚上期間之恰當色調等級。此外,基於來自一或多個紅外線感測器之溫度讀數的經過濾感測器值可用以判定一雲條件,甚至在可見光光感測器經遮住或另外受阻擋時。 In some implementations, the control logic described herein uses The filtered sensor values of the outside sensor and temperature readings from the ambient temperature sensor determine cloud conditions in the morning and evening and/or at times immediately before sunrise. The one or more infrared sensors typically operate independently of sunlight levels, allowing the tinting control logic to determine cloud conditions before sunrise, and as the sun sets, determine and maintain proper tint levels during the morning and evening. Additionally, filtered sensor values based on temperature readings from one or more infrared sensors can be used to determine a cloud condition even when the visible light sensor is covered or otherwise blocked.

在一個實施中,關於圖22所描述之控制邏輯基於時間t i 在上午、白天還是晚上範圍中(如由太陽高度判定)來實施模組C1及/或模組D。此實施之一實例關於圖24詳細地描述。 In one implementation, the control logic described with respect to FIG. 22 implements module C1 and/or module D based on whether time ti is in the am, day, or night range (as determined by sun altitude). An example of this implementation is described in detail with respect to FIG. 24 .

-模組D及模組D'之實例- Examples of Module D and Module D'

在某些實施中,模組D使用經過濾紅外線(IR)感測器值(例如,感測器讀數之移動平均值或中位值)判定用於一建築物中之一或多個電致變色窗的色調等級。經過濾IR感測器值可由邏輯計算且傳遞至模組D,或模組D可查詢一資料庫以擷取儲存之經過濾IR感測器值。在一個態樣中,模組D包含邏輯以使用多雲偏差值及天空溫度讀數(T sky )及來自本端感測器之環境溫度讀數(T amb )或來自天氣饋入之環境溫度讀數(T weather )及/或天空溫度讀數與環境溫度讀數之間的差(差量(△))計算經過濾IR感測器值。多雲偏差值為一對應於臨限值之溫度偏差,所述臨限值將用以由模組D中之邏輯判定多雲條件。模組D之邏輯可由執行模組D(諸如,本端窗控制器、網路控制器或主控制器)之邏輯的一或多個處理器執行。 In some implementations, module D uses filtered infrared (IR) sensor values (eg, a moving average or median of sensor readings) to determine a tint level for one or more electrochromic windows in a building. The filtered IR sensor values can be calculated by logic and passed to module D, or module D can query a database to retrieve stored filtered IR sensor values. In one aspect, module D includes logic to calculate a filtered IR sensor value using the cloudy bias value and the sky temperature reading ( T sky ) and the ambient temperature reading from the local sensor ( T amb ) or from the weather feed ( T weather ) and/or the difference between the sky temperature reading and the ambient temperature reading (Delta (Δ)). The cloudy deviation value is a temperature deviation corresponding to the threshold value that will be used by the logic in module D to determine the cloudy condition. The logic of module D may be performed by one or more processors executing the logic of module D, such as a local window controller, network controller, or host controller.

舉例而言,圖22中展示的控制邏輯之一替代性實施進一步包含一模組D',其接收來自感測器之紅外線感測器讀數及環境溫度讀數,計算經過濾紅外線感測器值,且將經過濾紅外線感測器值傳達至模組D。替代地,模組D'之邏輯可由多感測器裝置之一或多個處理器執行。在一種情況下,將來自模組 D'之計算的經過濾IR感測器值保存至一儲存於記憶體中之IR感測器量測結果資料庫內。在此情況下,執行模組D之計算的一或多個處理器自IR感測器量測結果資料庫擷取經過濾IR感測器值,作為輸入。 For example, an alternative implementation of the control logic shown in FIG. 22 further includes a module D' that receives the IR sensor readings from the sensors and the ambient temperature reading, calculates the filtered IR sensor value, and communicates the filtered IR sensor value to module D. Alternatively, the logic of module D' may be executed by one or more processors of the multi-sensor device. In one case, will come from the mod The calculated filtered IR sensor value of D' is saved to a database of IR sensor measurement results stored in memory. In this case, the one or more processors executing the calculations of module D retrieves filtered IR sensor values from the IR sensor measurement database as input.

圖23說明描繪根據某些實施之模組D'的邏輯之流程圖2300。模組D'之邏輯可由本端窗控制器、網路控制器、主控制器或多感測器裝置之一或多個處理器執行。在操作2310,執行模組D'之操作的處理器接收當前時間之感測器讀數作為輸入。可經由建築物處之通信網路接收感測器讀數,例如,自屋頂多感測器裝置。接收之感測器讀數包含天空溫度讀數(T sky )及來自建築物處之本端感測器的環境溫度讀數(T amb )或來自天氣饋入之環境溫度讀數(T weather )及/或T sky T amb 之間的差之讀數(△)。來自建築物處之本端感測器的環境溫度讀數(T amb )為由位於IR感測器裝置板上或與IR感測器裝置分開之環境溫度感測器取得的量測結果。環境溫度感測器讀數可替代地來自天氣饋入資料。 FIG. 23 illustrates a flowchart 2300 depicting the logic of module D' according to certain implementations. The logic of module D' can be executed by one or more processors of the local window controller, network controller, main controller or multi-sensor device. At operation 2310 , the processor performing the operations of module D' receives as input the sensor readings of the current time. Sensor readings may be received via a communication network at the building, for example, from a rooftop multi-sensor installation. The received sensor readings include the sky temperature reading ( T sky ) and the ambient temperature reading ( T amb ) from the local sensor at the building or from the weather feed ( T weather ) and/or the reading of the difference between T sky and Tamb (Δ). The ambient temperature reading ( T amb ) from the local sensor at the building is the measurement taken by the ambient temperature sensor on board or separate from the IR sensor device. Ambient temperature sensor readings may alternatively come from weather feeds.

在一個實施中,模組D'之邏輯接收並使用由(例如,屋頂多感測器裝置之)在建築物處的兩個或更多個IR感測器裝置取得之量測結果之使用原始感測器讀數,每一IR感測器裝置具有一用於量測環境溫度(T amb )之機載環境溫度感測器及一經引導向天空以用於基於在其視野內接收之紅外線輻射量測天空溫度(T sky )之機載紅外線感測器。兩個或更多個IR感測器裝置通常用以提供冗餘。在一種情況下,每一紅外線感測器裝置輸出環境溫度之讀數(T amb )及天空溫度之讀數(T sky )。在另一情況下,每一紅外線感測器裝置輸出環境溫度之讀數(T amb )、天空溫度之讀數(T sky )及T sky T amb 之間的差(差量△)之讀數。在一種情況下,每一紅外線感測器裝置輸出T sky T amb 之間的差(差量△)之讀數。根據一個態樣,模組D'之邏輯使用由建築物處之兩個IR感測器裝置取得的量測結果之原始感測器讀數。在另一態樣中,模組D'之邏輯使用由建築物處之1至10個IR感測器裝置取得的量測結果之原始感測器讀數。 In one implementation, the logic of module D' receives and uses raw sensor readings of measurements taken by two or more IR sensor devices at the building (e.g., of a rooftop multi-sensor device), each IR sensor device having an onboard ambient temperature sensor for measuring ambient temperature ( T amb ) and an onboard infrared sensor directed toward the sky for measuring sky temperature ( T sky ) based on infrared radiation received within its field of view. Two or more IR sensor devices are typically used to provide redundancy. In one case, each infrared sensor device outputs a reading of the ambient temperature ( T amb ) and a reading of the sky temperature ( T sky ). In another case, each infrared sensor device outputs a reading of ambient temperature ( T amb ), a reading of sky temperature ( T sky ), and a reading of the difference (difference Δ) between T sky and Tamb . In one case, each infrared sensor device outputs a reading of the difference (difference Δ) between T sky and Tamb . According to one aspect, the logic of module D' uses the raw sensor readings of the measurements taken by the two IR sensor devices at the building. In another aspect, the logic of module D' uses raw sensor readings of measurements taken by 1 to 10 IR sensor devices at the building.

在另一實施中,模組D'之邏輯接收並使用由在建築物處且經引導向天空以接收在其視野內之紅外線輻射之紅外線感測器取得之原始天空溫度(T sky )讀數及來自天氣饋入資料之環境溫度讀數(T weather )。天氣饋入資料經由一通信網路接收自一或多個天氣服務及/或其他資料源。天氣饋入資料通常包含與天氣條件(諸如,雲覆蓋百分比、能見度資料、風速資料、溫度資料、沈澱之百分比機率及/或濕度)相關聯之資料。通常天氣饋入資料由窗控制器經由一通信網路在一信號中接收。根據某些態樣,窗控制器可在通信網路上經由一通信介面將具有對天氣饋入資料之請求的信號發送至一或多個天氣服務。所述請求通常至少包含正控制的窗之位置之經度及緯度。作為回應,所述一或多個天氣服務經由一通信介面,經由通信網路將具有天氣饋入資料之信號發送至窗控制器。所述通信介面及網路可呈有線或無線形式。在一些情況下,天氣服務可經由天氣網站存取。天氣網站之一實例可見於www.forecast.io。另一實例為國家天氣服務(www.weather.gov)。天氣饋入資料可基於當前時間,或可在未來時間預報。關於使用天氣饋入資料之邏輯的更多細節可見於2016年7月7日提交且題為《用於可著色窗之控制方法(CONTROL METHOD FOR TINTABLE WINDOWS)》之國際申請案PCT/US16/41344中,所述申請案在此被以引用的方式全部併入。 In another implementation, the logic of module D' receives and uses raw sky temperature ( T sky ) readings taken by infrared sensors at the building and directed towards the sky to receive infrared radiation within its field of view and ambient temperature readings ( T weather ) from weather feeds. Weather feed data is received from one or more weather services and/or other data sources via a communication network. Weather feed data typically includes data associated with weather conditions such as percent cloud cover, visibility data, wind speed data, temperature data, percent chance of precipitation, and/or humidity. Typically the weather feed is received by the window controller in a signal via a communication network. According to some aspects, a window controller may send a signal with a request for weather feeds to one or more weather services over a communication interface via a communication interface. The request typically includes at least the latitude and longitude of the location of the window being controlled. In response, the one or more weather services send a signal with the weather feed to the window controller via a communication interface via the communication network. The communication interface and network can be wired or wireless. In some cases, weather services may be accessed via weather websites. An example of a weather website can be found at www.forecast.io . Another example is the National Weather Service (www.weather.gov). Weather feeds can be based on the current time, or can be forecast for a future time. More details on the logic of using weather feeds can be found in International Application PCT/US16/41344, filed July 7, 2016, entitled CONTROL METHOD FOR TINTABLE WINDOWS, which is hereby incorporated by reference in its entirety.

返回至圖23,在操作2320,溫度值(T calc )係基於來自一或多個紅外線感測器之天空溫度讀數、來自一或多個本端環境溫度感測器或來自天氣饋入之環境溫度讀數及多雲偏差值計算。多雲偏差值為一判定用以在模組D中判定雲條件之第一及第二臨限值值的溫度偏差。在一個實施中,多雲偏差值為攝氏-17毫度。在一個實例中,攝氏-17毫度之多雲偏差值對應於攝氏0毫度之第一臨限值。在一個實施中,多雲偏差值在攝氏-30毫度至攝氏0毫度之範圍中。 Returning to FIG. 23 , at operation 2320 , a temperature value ( T calc ) is calculated based on sky temperature readings from one or more infrared sensors, ambient temperature readings from one or more local ambient temperature sensors or from weather feeds, and cloudy bias values. The cloudy deviation value is a temperature deviation used to determine the first and second threshold values for determining cloud conditions in module D. In one implementation, the cloudy bias value is -17 millidegrees Celsius. In one example, the cloudy deviation value of -17 degrees Celsius corresponds to the first threshold value of 0 degrees Celsius. In one implementation, the cloudy bias value is in the range of -30 millidegrees Celsius to 0 millidegrees Celsius.

在一個實施中,溫度值(T calc )係基於來自兩對或更多對之熱感測器之天空溫度讀數計算。每一對熱感測器具有一紅外線感測器及一環境溫度 感測器。在一種情況下,每一對之熱感測器為IR感測器裝置之整體組件。每一IR感測器裝置具有一機載紅外線感測器及一機載環境溫度感測器。兩個IR感測器裝置通常用以提供冗餘。在另一情況下,紅外線感測器與環境溫度感測器分開。 In one implementation, the temperature value ( T calc ) is calculated based on sky temperature readings from two or more pairs of thermal sensors. Each pair of heat sensors has an infrared sensor and an ambient temperature sensor. In one instance, the thermal sensors of each pair are integral components of the IR sensor device. Each IR sensor device has an onboard infrared sensor and an onboard ambient temperature sensor. Two IR sensor devices are typically used to provide redundancy. In another instance, the infrared sensor is separate from the ambient temperature sensor.

在一個實施中,將溫度值計算為:T calc =minimum(T sky1 ,T sky2,...)-minimum(T amb1 ,T amb2 ,...)-多雲偏差 (方程式2) In one implementation, the temperature value is calculated as: T calc =minimum( T sky1 ,T sky2 , ...)-minimum( T amb1 ,T amb2 ,...)-cloudy bias (Equation 2)

其中T sky1 、T sky2 ......為由多個紅外線感測器取得之溫度讀數,且T amb1 、T amb2 ......為由多個環境溫度感測器取得之溫度讀數。若使用兩個紅外線感測器及兩個環境溫度感測器,則T calc =minimum(T sky1 ,T sky2 )-minimum(T amb1 ,T amb2 )-多去偏差。來自相同類型之多個感測器的讀數中之最小值用以使結果朝向將指示較低雲覆蓋之低溫值偏置,且導致較高色調等級以便將結果朝向避開眩光偏置。 T sky1 , T sky2 . . . are temperature readings obtained by multiple infrared sensors, and T amb1 , T amb2 . . . are temperature readings obtained by multiple ambient temperature sensors. If two infrared sensors and two ambient temperature sensors are used, then T calc =minimum( T sky1 ,T sky2 )-minimum( Tamb1 ,T amb2 )-more debiasing. The minimum value in the readings from multiple sensors of the same type is used to bias the results towards lower temperature values which would indicate lower cloud cover, and results in higher tone levels to bias the results towards avoiding glare.

在另一實施中,舉例而言,當環境溫度感測器讀數變得不可用或不準確時,模組D'之邏輯可自使用本端環境溫度感測器切換至使用天氣饋入資料,其中環境溫度感測器正讀取來自一局部源(諸如,來自屋頂)之熱量輻射。在此實施中,基於天空溫度讀數及來自天氣饋入資料之環境溫度讀數(T weather )計算溫度值(T calc )。在此實施中,將溫度值計算為:T calc =minimum(T sky1 ,T sky2,...)-T weather -多雲偏差 (方程式3) In another implementation, the logic of module D' may switch from using the local ambient temperature sensor to use the weather feed, for example, when ambient temperature sensor readings become unavailable or inaccurate, where the ambient temperature sensor is reading heat radiation from a local source, such as from a roof. In this implementation, a temperature value ( T calc ) is calculated based on the sky temperature reading and the ambient temperature reading ( T weather ) from the weather feed. In this implementation, the temperature value is calculated as: T calc = minimum( T sky1 ,T sky2 , ...) - T weather - cloudy bias ( Equation 3 )

在另一實施中,基於天空溫度與如由兩個或更多個IR感測器裝置量測之環境溫度之間的差△之讀數計算溫度值(T calc ),各IR感測器裝置具有一機載紅外線感測器量測及環境溫度感測器。在此實施中,將溫度值計算為:T calc =minimum(△ 1 ,△ 2 ,...)-多雲偏差 (方程式4) In another implementation, the temperature value ( T calc ) is calculated based on the reading of the difference Δ between the sky temperature and the ambient temperature as measured by two or more IR sensor devices, each IR sensor device having an on-board infrared sensor measurement and ambient temperature sensor. In this implementation, the temperature value is calculated as: T calc =minimum(Δ 1 2 ,...) - cloudy bias ( Equation 4 )

其中△ 1 2 ......為天空溫度與由多個IR感測器裝置量測之環境溫度之間的 差△之讀數。 Where Δ 1 , Δ 2 . . . are the readings of the difference Δ between the sky temperature and the ambient temperature measured by a plurality of IR sensor devices.

在使用方程式1及方程式3之實施中,控制邏輯使用天空溫度與環境溫度之間的差判定輸入至模組D之經過濾IR感測器值以判定雲條件。環境溫度讀數傾向於比天空溫度讀數小地波動。藉由將天空溫度與環境溫度之間的差用作輸入來判定色調狀態,隨著時間的過去判定之色調狀態可在較小程度上波動且提供窗之更穩定著色。 In an implementation using Equation 1 and Equation 3, the control logic uses the difference between the sky temperature and the ambient temperature to determine the filtered IR sensor value input to module D to determine cloud conditions. Ambient temperature readings tend to fluctuate less than sky temperature readings. By using the difference between the sky temperature and the ambient temperature as input to determine the tint state, the determined tint state over time can fluctuate to a lesser extent and provide a more stable tinting of the window.

在另一實施中,控制邏輯僅基於來自兩個或更多個紅外線感測器之天空溫度讀數計算T calc 。在此實施方案中,由模組D'判定且輸入至模組D內之IR感測器值係基於天空溫度讀數且不基於環境溫度讀數。在此情況下,模組D基於天空溫度讀數判定雲條件。雖然用於判定T calc 之上述實施係基於每一類型之兩個或更多個冗餘感測器,但應理解,所述控制邏輯可藉由來自不同類型之單一感測器之讀數實施。 In another implementation, the control logic calculates T calc based solely on sky temperature readings from two or more infrared sensors. In this embodiment, the IR sensor value determined by module D' and input into module D is based on the sky temperature reading and not on the ambient temperature reading. In this case, module D determines cloud conditions based on sky temperature readings. While the above implementation for determining T calc is based on two or more redundant sensors of each type, it should be understood that the control logic could be implemented with readings from a single sensor of a different type.

在操作2330,處理器藉由在操作2320判定之T calc 更新短期矩形窗及長期矩形窗。為了更新矩形窗,將最近之感測器讀數添加至矩形窗,且將最早之感測器讀數自矩形窗拿掉。對於模組D及本文中描述之其他控制邏輯,將經過濾感測器值用作作出著色決策之輸入。模組D'及本文中描述之其他邏輯使用短期及長期矩形窗(過濾器)判定所述經過濾感測器值。短矩形窗(例如,使用在10分鐘、20分鐘、5分鐘等上取得之樣本值之矩形窗)係基於相對於長矩形窗(例如,使用在1小時、2小時等上取得之樣本值之矩形窗)中的感測器樣本之較大數目(例如,n=10、20、30、40等)更少數目個感測器樣本(例如,n=1、2、3,......10)。矩形窗(照明)值可基於在矩形窗中的樣本值之平均值、平均數、中位值或其他代表值。在一個實例中,短矩形窗值為感測器樣本之中位值,且長矩形窗值為感測器樣本之中位值。模組D'通常針對短矩形窗值及長矩形窗值中之每一者使用感測器樣本之一滾動中位值。在另一實例中,短矩形窗值 為感測器樣本之平均值,且長矩形窗值為感測器樣本之平均值。模組C1通常使用基於感測器樣本之平均值自短及/或長矩形窗值判定之經過濾光感測器值。 At operation 2330 , the processor updates the short-term rectangular window and the long-term rectangular window by T calc determined at operation 2320 . To update the rectangular window, the most recent sensor readings are added to the rectangular window, and the oldest sensor readings are removed from the rectangular window. For module D and other control logic described herein, filtered sensor values are used as input to make shading decisions. Module D' and other logic described herein determine the filtered sensor values using short-term and long-term rectangular windows (filters). Short rectangular windows (e.g., rectangular windows using sample values taken over 10 minutes, 20 minutes, 5 minutes, etc. ) are based on a smaller number of sensor samples (e.g., n =1, 2, 3, . The rectangular window (illumination) values may be based on an average, mean, median or other representative value of the sample values within the rectangular window. In one example, the short rectangular window value is the median value of the sensor samples, and the long rectangular window value is the median value of the sensor samples. Module D' typically uses a rolling median of sensor samples for each of the short and long rectangular window values. In another example, the short rectangular window value is the average value of the sensor samples, and the long rectangular window value is the average value of the sensor samples. Module C1 typically uses filtered light sensor values determined from short and/or long rectangular window values based on the average of sensor samples.

由於短矩形窗值係基於較少數目個感測器樣本,因此短矩形窗值比長矩形窗值緊密遵循當前感測器讀數。因此,短矩形窗值比長矩形窗值快且在更大程度上回應迅速改變之條件。雖然計算之短及長矩形窗值皆滯後於感測器讀數,但短矩形窗值將比長矩形窗值滯後程度小。短矩形窗值傾向於比長矩形窗值快地對當前條件反應。長矩形窗可用以使窗控制器對頻繁之短持續時間天氣波動(如經過之雲)的回應平滑,而短矩形窗卻不也平滑化,但對迅速且顯著天氣改變(如陰天條件)更快地回應。在有雲經過之情況下,僅使用長矩形窗值之控制邏輯將不對當前有雲經過之條件快速反應。在此情況下,長矩形窗值可在著色決策中用以判定一適當高色調等級。在霧消散之情況下,在著色決策中使用短期矩形窗值可為更適合的。在此情況下,在霧消散之後,短期矩形窗更快速地對新的有太陽條件反應。藉由使用短期矩形窗值以作出著色決策,可著色窗可在霧迅速消散時快速地調整至有太陽條件且保持居住者舒適性。 Since the short rectangular window is based on a smaller number of sensor samples, the short rectangular window follows the current sensor reading more closely than the long rectangular window. Thus, short rectangular windows respond faster and to a greater extent to rapidly changing conditions than long rectangular windows. Although both the calculated short and long rectangular window values lag the sensor readings, the short rectangular window value will lag less than the long rectangular window value. Short rectangular windows tend to react faster to current conditions than long rectangular windows. Long rectangular windows can be used to smooth the window controller's response to frequent short duration weather fluctuations (such as passing clouds), while short rectangular windows do not also smooth, but respond more quickly to rapid and significant weather changes (such as overcast conditions). In the case of passing clouds, the control logic using only the long rectangular window value will not respond quickly to the current condition of passing clouds. In this case, the long rectangle window value can be used in the shading decision to determine an appropriate high tone level. In cases where fog dissipates, it may be more appropriate to use short-term rectangular window values in shading decisions. In this case, the short-term rectangular window reacts more quickly to new solar conditions after the fog dissipates. By using short-term rectangular window values to make tinting decisions, tintable windows can quickly adjust to solar conditions while maintaining occupant comfort when fog dissipates quickly.

在操作2340處,處理器基於在操作2330處更新之矩形窗中的當前感測器讀數判定短矩形窗值(Sboxcar值)及長矩形窗值(Lboxcar值)。在此實例中,藉由在操作2330處進行的最後更新之後取得矩形窗中之感測器讀數之中位值來計算每一矩形窗值。在另一實施中,藉由獲取每一矩形窗中之當前感測器讀數的均值來計算每一矩形窗值。在其他實施中,可使用每一矩形窗中之感測器讀數的其他計算。 At operation 2340 , the processor determines a short rectangular window value ( Sboxcar value) and a long rectangular window value ( Lboxcar value) based on the current sensor readings in the rectangular window updated at operation 2330 . In this example, each rectangular window value is calculated by taking the median value of the sensor readings in the rectangular window after the last update performed at operation 2330 . In another implementation, each rectangular window value is calculated by taking the mean of the current sensor readings in each rectangular window. In other implementations, other calculations of sensor readings in each rectangular window may be used.

在某些實施中,本文中所描述之控制邏輯評估短期矩形窗值與長期矩形窗值之間的差以判定在作出著色決策時實施哪一矩形窗值。舉例而言,當短期矩形窗值與長期矩形窗值之間的差之絕對值超過一臨限值時,可在著色決策中使用短期矩形窗值。在此情況下,短期中的感測器讀數之短矩形窗值比長期 感測器讀數之值大臨限值,此可指示足夠大顯著性之短期波動,例如,可建議至下部色調狀態之轉變之大片雲。若短與長矩形窗值之間的差之絕對值不超過臨限值,則使用長期矩形窗。返回對圖23,在操作2350,所述邏輯評估Sboxcar值與Lboxcar值之間的差之絕對值之值是否大於一差量臨限值(|Sboxcar值-Lboxcar值|>差量臨限值)。在一些情況下,差量臨限值之值在攝氏0毫度至攝氏10毫度之範圍中。在一種情況下,差量臨限值之值為攝氏0毫度。 In certain implementations, the control logic described herein evaluates the difference between the short-term and long-term rectangular window values to determine which rectangular window value to implement when making shading decisions. For example, when the absolute value of the difference between the short-term rectangular window value and the long-term rectangular window value exceeds a threshold value, the short-term rectangular window value can be used in the coloring decision. In this case, the short rectangular window of sensor reading values in the short term is larger than the value of the long term sensor reading by a threshold value, which may indicate short term fluctuations of sufficient significance, eg, a large cloud that may suggest a transition to a lower hue state. If the absolute value of the difference between the short and long rectangular window values does not exceed the threshold value, the long-term rectangular window is used. Returning to FIG. 23 , at operation 2350 the logic evaluates whether the value of the absolute value of the difference between the Sboxcar value and the Lboxcar value is greater than a delta threshold (|Sboxcar value−Lboxcar value|>delta threshold). In some cases, the value of the delta threshold is in the range of 0 millidegrees Celsius to 10 millidegrees Celsius. In one instance, the value of the delta threshold is 0 millidegrees Celsius.

若差之絕對值高於差量臨限值,則將Sboxcar值指派至IR感測器值,且將短期矩形窗重設以將其值清空(操作2360)。若差之絕對值不高於差量臨限值,則將Lboxcar值指派至IR感測器值且重設長期矩形窗以將其值清空(操作2370)。在操作2380,將經過濾IR感測器值保存至IR感測器量測結果資料庫以由模組D擷取。替代地,經過濾IR感測器值可直接傳遞至模組D。 If the absolute value of the difference is above the delta threshold, then the Sboxcar value is assigned to the IR sensor value, and the short-term rectangular window is reset to empty its value (operation 2360 ). If the absolute value of the difference is not higher than the delta threshold, then the Lboxcar value is assigned to the IR sensor value and the long-term rectangular window is reset to empty its value (operation 2370 ). At operation 2380 , the filtered IR sensor values are saved to the IR sensor measurement results database for retrieval by module D. Alternatively, the filtered IR sensor values can be passed directly to module D.

-用於取決於上午、白天、晚上、夜間範圍基於紅外線感測器及/或光感測器讀數作出著色決策的控制邏輯之實例- Example of control logic for making coloring decisions based on infrared sensor and/or light sensor readings depending on am, day, night, night range

在某些實施中,著色控制邏輯使用來自紅外線感測器之溫度讀數及環境溫度讀數之經過濾值判定在上午及晚上及/或在緊接在日出前之時間的雲條件。由於紅外線感測器通常獨立於陽光強度等級操作,因此此允許著色控制邏輯判定緊接在日出前之雲條件,且隨著太陽落下,維持在上午及晚上期間之恰當色調等級。此外,來自紅外線感測器之讀數可用以判定雲條件,甚至在可見光光感測器經遮住或另外受阻擋時。在啟用紅外線感測器之白天期間,著色控制邏輯基於紅外線感測器讀數及環境溫度讀數判定一第一色調等級,且基於光感測器讀數判定一第二色調等級,且接著使用第一及第二色調等級中之最大者。若不啟用IR感測器,則控制邏輯使用基於光感測器讀數之第二色調等級。 In some implementations, the tinting control logic uses filtered values of temperature readings from infrared sensors and ambient temperature readings to determine cloud conditions in the morning and evening and/or at times immediately before sunrise. Since infrared sensors typically operate independently of sunlight intensity levels, this allows the tinting control logic to determine cloud conditions immediately before sunrise, and maintain proper tint levels during the morning and evening as the sun sets. Additionally, readings from the infrared sensor can be used to determine cloud conditions even when the visible light sensor is covered or otherwise blocked. During daylight hours when the infrared sensor is enabled, the tinting control logic determines a first tint level based on the infrared sensor reading and the ambient temperature reading, and determines a second tint level based on the light sensor reading, and then uses the largest of the first and second tint levels. If the IR sensor is not enabled, the control logic uses a second tone level based on the light sensor reading.

在一個實施中,關於圖22所描述之控制邏輯取決於計算之時間t i 在上午、白天還是晚上範圍期間(如藉由太陽高度判定)實施模組C1及/或模 組D。此控制邏輯之一實例關於圖24詳細地描述。 In one implementation, the control logic described with respect to FIG. 22 implements module C1 and/or module D depending on whether the calculated time ti is during the am, day or night range (as determined by sun altitude). An example of this control logic is described in detail with respect to FIG. 24 .

圖24說明描繪根據實施的用於取決於計算之時間t i 在上午、白天還是晚上範圍期間而使用紅外線感測器及/或光感測器資料作出著色決策的控制邏輯之流程圖2400。關於圖24中說明之流程圖所描述的控制邏輯之某些操作之實例係參考圖26圖28中說明之流程圖描述。在一個態樣中,此控制邏輯為預測性邏輯,其預先計算窗應轉變至之色調等級。在此態樣中,進行模組A1、B、C1及D中之計算以判定在未來時間(亦即,t i =目前時間加諸如一或多個窗之轉變時間的持續時間)之一適當色調等級。舉例而言,在計算中使用之時間可為未來足以允許在接收到色調指令後完成轉變之時間。在此等情況下,窗控制器可在轉變之前發送色調指令。在轉變完成時,一或多個窗將已轉變至對於彼未來時間所要的色調等級。 24 illustrates a flowchart 2400 depicting control logic for making shading decisions using infrared sensor and/or light sensor data depending on whether the calculated time ti is during the morning, day, or night range, according to an implementation. Examples of certain operations of the control logic described with respect to the flow diagram illustrated in FIG. 24 are described with reference to the flow diagrams illustrated in FIGS . 26-28 . In one aspect, this control logic is predictive logic that pre-computes the hue level to which the window should transition. In this aspect, calculations in modules A1, B, C1 and D are performed to determine an appropriate tone level at a future time (ie, ti = present time plus duration of transition time such as one or more windows). For example, the time used in the calculation may be a time in the future long enough to allow the transition to complete after the hue command is received. In such cases, the window controller can send tint instructions prior to the transition. By the time the transition is complete, one or more windows will have transitioned to the desired tint level for that future time.

圖24中說明之流程圖2400中,按由計時器在操作2405計時之間隔執行控制邏輯之計算。在一個實施中,按恆定時間間隔執行邏輯計算。在一個實例中,每2至5分鐘進行邏輯計算。在另一實例中,可能需要以不太頻繁為基礎(諸如,每30分鐘或每20分鐘)來進行計算,諸如,對於可佔用30分鐘或更多時間轉變之大面積電致變色窗之色調轉變。 In the flowchart 2400 illustrated in FIG. 24 , calculations of the control logic are performed at intervals clocked by the timer at operation 2405 . In one implementation, logical calculations are performed at constant time intervals. In one example, logic calculations are performed every 2 to 5 minutes. In another example, calculations may need to be performed on a less frequent basis, such as every 30 minutes or every 20 minutes, such as a hue transition for a large area electrochromic window that may take 30 minutes or more to transition.

操作2412,模組A1之控制邏輯經實施以判定考慮來自直射陽光經由一或多個電致變色窗至居住者或其活動區上的居住者舒適性之色調等級。首先,所述控制邏輯用以判定太陽方位角是否在一或多個電致變色窗之臨界角度之外。模組A1之邏輯用以基於具有窗的建築物之緯度及經度及當日時間t i 及一年中之某天(日期)計算太陽在天空中的位置。太陽之位置包含太陽方位角度(亦被稱作太陽方位角)。公開可用之程式可提供用於判定太陽之位置之計算。臨界角度係自一或多個窗之組態檔案輸入。若判定太陽方位角在臨界角度外,則判定陽光按此角度照耀,使得直射陽光不進入具有一或多個窗之一或多個房間, 且控制邏輯繼續進行至在操作2414處之模組B。在此情況下,模組A1將「晴朗」色調等級(亦即,最低色調狀態)作為輸入傳遞至模組B。 At operation 2412 , the control logic of module A1 is implemented to determine a tint level that takes into account occupant comfort from direct sunlight through the one or more electrochromic windows onto the occupant or their active area. First, the control logic is used to determine whether the sun azimuth angle is outside the critical angle of one or more electrochromic windows. The logic of module A1 is to calculate the position of the sun in the sky based on the latitude and longitude of the building with windows and the time of day t i and the day of the year (date). The position of the sun includes the solar azimuth (also called solar azimuth). Publicly available programs provide calculations for determining the position of the sun. Critical angles are imported from configuration files for one or more windows. If it is determined that the sun azimuth is outside the critical angle, then it is determined that the sun shines at such an angle that direct sunlight does not enter the room or rooms with the window or windows, and control logic continues to module B at operation 2414 . In this case, module A1 passes the "sunny" tone level (ie, the lowest tone state) to module B as input.

若,另一方面,判定太陽方位角在一或多個窗之臨界角度之間,則陽光按一角度照耀,使得直射陽光可經由所述一或多個窗進入所述房間。在此情況下,實施模組A1之邏輯以基於太陽的計算之位置及窗組態資訊計算在時間t i 之穿透深度,組態資訊包含窗之位置、窗之尺寸、窗之定向(亦即,面對之方向)及任何外部遮蔭之細節中之一或多者。接著實施模組A1之邏輯以藉由在佔有率查找表中發現對於與針對計算之穿透深度的窗相關聯之空間類型(例如,具有在窗、門廳、會議室等附近之桌子的辦公室)之所要的色調等級或對應於具有空間類型及穿透深度之不同色調等級的其他資料,基於房間之空間類型判定針對計算之穿透深度將提供居住者舒適性之色調等級。將空間類型及佔有率查找表或類似資料作為輸入自與一或多個窗相關聯之組態檔案提供至模組A1。在一些情況下,色調等級亦可基於將充分之自然照明提供至具有一或多個窗之房間內。在此情況下,將針對空間類型及計算之穿透深度判定的色調等級作為輸入提供至模組B。 If, on the other hand, it is determined that the azimuth of the sun is between the critical angles of the one or more windows, then the sunlight shines at an angle such that direct sunlight can enter the room through the one or more windows. In this case, the logic of module A1 is implemented to calculate the penetration depth at time ti based on the calculated position of the sun and window configuration information, including one or more of the position of the window, the size of the window, the orientation of the window (i.e., the direction it is facing), and details of any external shading. The logic of module A1 is then implemented to determine the tint level that will provide occupant comfort for the calculated penetration depth based on the space type of the room by finding in the occupancy lookup table the desired tint level for the space type associated with the window for the calculated penetration depth (e.g., an office with a table near a window, foyer, conference room, etc.) or other data corresponding to different tint levels with the space type and penetration depth. A space type and occupancy lookup table or similar data is provided as input to module A1 from a configuration file associated with one or more windows. In some cases, the tint rating may also be based on providing sufficient natural lighting into a room with one or more windows. In this case, the tonal level determined for the space type and the calculated penetration depth is provided as input to module B.

佔有率查找表之一實例提供於圖25中。表中之值係就色調等級及在括符中的相關聯之SHGC值而言。圖25展示針對計算之穿透值與空間類型之不同組合的不同色調等級(SHGC值)。所述表係基於八個色調等級,包含0(最亮)、5、10、15、20、25、30及35(最亮)。最亮色調等級0對應於SHGC值0.80,色調等級5對應於SHGC值0.70,色調等級10對應於SHGC值0.60,色調等級15對應於SHGC值0.50,色調等級20對應於SHGC值0.40,色調等級25對應於SHGC值0.30,色調等級30對應於SHGC值0.20,且色調等級35(最暗)對應於SHGC值0.10。說明之實例包含三個空間類型:桌子1、桌子2及門廳及六個穿透深度。 An example of an occupancy lookup table is provided in FIG. 25 . The values in the table are in terms of hue grades and associated SHGC values in brackets. Figure 25 shows different hue levels (SHGC values) for different combinations of calculated penetration values and space types. The scale is based on eight hue scales, including 0 (brightest), 5, 10, 15, 20, 25, 30, and 35 (brightest). The brightest hue level 0 corresponds to a SHGC value of 0.80, hue level 5 corresponds to a SHGC value of 0.70, hue level 10 corresponds to a SHGC value of 0.60, hue level 15 corresponds to a SHGC value of 0.50, hue level 20 corresponds to a SHGC value of 0.40, hue level 25 corresponds to a SHGC value of 0.30, hue level 30 corresponds to a SHGC value of 0.20, and hue level 35 (darkest) corresponds to a SHGC value of 0.10. The illustrated example includes three space types: Desk 1, Desk 2, and Foyer and six penetration depths.

操作2415,模組B之控制邏輯經實施以基於在晴朗的天空條件下之預測之輻照度(晴空輻照度)判定一色調等級。模組B用以預測在t i 在晴朗的天空條件下在一或多個窗處之輻照度,及在所有時間下之最大晴空輻照度。最大晴空輻照度為針對晴朗的天空條件預測之所有時間內的最高輻照度等級。晴空輻照度係基於建築物之緯度及經度座標、窗定向(亦即,窗面對之方向)及當日時間t i 及一年中之某天來計算。可使用開放原始碼軟體(例如,Radiance)計算晴空輻照度之經預測值。模組B通常判定比自模組A1輸入之色調等級暗之色調等級。由模組B判定之色調等級傳輸比預測基準玻璃在最大晴空輻照度下傳輸之熱量少的熱量。模組B之邏輯藉由按步驟增大自模組A1輸入之色調等級來判定色調等級,且選取基於在t i 之晴空輻照度的房間中之預測之內部輻射少於或等於基準內部輻照度之一色調等級,其中:內部輻照度=色調等級SHGC×晴空輻照度,且基準內部輻照度=基準SHGC×最大晴空輻照度。基準玻璃之SHGC經自組態檔案輸入至模組B內。將來自模組B之色調等級作為輸入提供至模組C1及D。 At operation 2415 , the control logic of module B is implemented to determine a tint level based on the predicted irradiance under clear sky conditions (clear sky irradiance). Module B is used to predict the irradiance at one or more windows under clear sky conditions at t i and the maximum clear sky irradiance at all times. The maximum clear-sky irradiance is the highest irradiance level predicted for all periods of time for clear-sky conditions. Clear sky irradiance is calculated based on the latitude and longitude coordinates of the building, the window orientation (ie, the direction the window faces) and the time of day t i and the day of the year. Predicted values of clear sky irradiance can be calculated using open source software (eg, Radiance). Module B typically determines a tone level that is darker than the tone level input from module A1. The tint level judged by Module B transmits less heat than the predicted reference glass would transmit at maximum clear-air irradiance. The logic of module B determines the hue class by stepping up the hue class input from module A1, and selects a hue class where the predicted internal irradiance in the room based on the clear-sky irradiance at ti is less than or equal to the reference internal irradiance, where: internal irradiance=hue class SHGC×clear-sky irradiance, and reference internal irradiance =reference SHGC×maximum clear-air irradiance. The SHGC of the reference glass is imported into module B from the configuration file. The hue levels from module B are provided as input to modules C1 and D.

取決於時間t i 在上午、白天還是晚上範圍期間,控制邏輯使用紅外線感測器及/或光感測器資料作出著色決策。所述控制邏輯基於太陽仰角判定時間t i 在上午、白天、晚上還是夜間範圍期間。模組A1之邏輯判定在時間t i 的太陽位置,包含太陽仰角角度。太陽仰角角度經自模組A1傳遞至模組C1及D。在操作2422,控制邏輯判定在時間t i 的計算之太陽仰角是否小於0。若判定在時間t i 之太陽仰角小於0,則為夜間且控制邏輯在操作2424設定夜間色調狀態。夜間色調狀態之一實例係清透色調等級,其為最低色調狀態。清透色調等級可用作夜間色調狀態,例如,以藉由允許建築物外之安全人員經由清透窗看建築物之內部照亮之房間來提供安全性。夜間色調狀態之另一實例為最高色調等級,其亦可藉由在窗處於最暗色調狀態中時不允許其他人在夜間看建築物內部來提供私 密性及/或安全性。若判定在時間t i 之太陽仰角小於0,則控制邏輯在操作2490判定在適當位置是否存在更動。若更動不在適當位置,則將最終色調等級設定至夜間色調等級。若更動在適當位置,則控制邏輯在操作2492處將最終色調等級設定為更動值。在操作2496,控制邏輯經實施以傳達最終色調等級以將所述一或多個窗轉變至最終色調等級。所述控制邏輯接著繼續進行至在操作2405處之計時器以進行在下一個時間間隔之計算。 Depending on whether time t i is during the morning, day or night range, the control logic uses infrared sensor and/or light sensor data to make coloring decisions. The control logic determines whether time ti is during the am, day, evening or night range based on the sun elevation. The logic of module A1 determines the sun position at time t i , including the sun elevation angle. The sun elevation angle is transmitted from module A1 to modules C1 and D. At operation 2422 , the control logic determines whether the calculated solar elevation angle at time ti is less than zero. If it is determined that the sun elevation at time ti is less than 0, then it is nighttime and the control logic sets the nighttime tint state at operation 2424 . An example of a night tone state is the clear tone level, which is the lowest tone state. Clear tint levels can be used as night tint states, for example, to provide security by allowing security personnel outside the building to look through clear windows into the building's interior lit rooms. Another example of a nighttime tint state is the highest tint level, which may also provide privacy and/or security by not allowing others to see inside the building at night when the windows are in the darkest tint state. If it is determined that the sun elevation at time ti is less than 0, then the control logic determines at operation 2490 whether there is a change in place. If the change is not in place, the final tint level is set to the night tint level. If the modification is in place, the control logic sets the final tint level to the modified value at operation 2492 . At operation 2496 , control logic is implemented to communicate the final tint level to transition the one or more windows to the final tint level. The control logic then proceeds to the timer at operation 2405 for calculation at the next time interval.

若在操作2422判定在時間t i 的計算之太陽仰角大於或等於0,則所述控制邏輯在操作2430判定太陽仰角是否小於一太陽仰角臨限值。若太陽仰角小於太陽仰角臨限值,則時間t i 在上午或晚上。在一個實例中,太陽仰角臨限值小於10度。在另一實例中,太陽仰角臨限值小於15度。在另一實例中,太陽仰角臨限值小於20度。若太陽仰角小於太陽仰角臨限值,則控制邏輯判定太陽仰角是否在增大。 If it is determined at operation 2422 that the calculated sun elevation at time t i is greater than or equal to 0, then the control logic determines at operation 2430 whether the sun elevation is less than a sun elevation threshold. If the sun elevation angle is less than the threshold value of the sun elevation angle, the time t i is in the morning or evening. In one example, the sun elevation threshold is less than 10 degrees. In another example, the sun elevation threshold is less than 15 degrees. In another example, the sun elevation threshold is less than 20 degrees. If the sun elevation is less than the threshold value of the sun elevation, the control logic determines whether the sun elevation is increasing.

操作2432,控制邏輯用以基於太陽仰角在增大還是減小來判定是否在上午。所述控制邏輯藉由比較在t i 與另一時間取得的計算之太陽仰角值來判定太陽仰角在增大還是減小。若控制邏輯判定太陽仰角在增大,則判定為上午且控制邏輯在操作2434執行模組D之上午IR感測器演算法實施。關於圖26中之流程圖2600描述可使用之上午IR感測器演算法之一實例。模組D通常針對當前時間之經過濾IR感測器值查詢紅外線感測器量測結果資料庫,且基於經過濾IR感測器值判定一雲條件及相關聯之色調等級。若經過濾IR感測器值低於一下臨限值,則其為「有太陽」條件,且來自模組D之色調等級經設定至最高色調等級。若經過濾IR感測器值高於一上臨限值,則其為「多雲」條件,且來自模組D之色調等級經設定至最低色調等級。若經過濾IR感測器值小於或等於上臨限值且大於或等於下臨限值,則來自模組D之色調等級經設定至一中間色調等級。若控制邏輯在操作2432判定太陽仰角不增大(減小),則判定為 晚上且控制邏輯在操作2436執行模組D之晚上IR感測器演算法實施。關於圖27中說明之流程圖2700描述可使用的晚上IR感測器演算法之一實例。 At operation 2432 , the control logic operates to determine whether it is morning based on whether the sun elevation is increasing or decreasing. The control logic determines whether the sun elevation is increasing or decreasing by comparing t i with a calculated sun elevation value taken at another time. If the control logic determines that the sun elevation is increasing, then it is determined to be AM and the control logic executes the AM IR sensor algorithm implementation of module D at operation 2434 . One example of an AM IR sensor algorithm that may be used is described with respect to flowchart 2600 in FIG. 26 . Module D typically queries an infrared sensor measurement database for filtered IR sensor values at the current time, and determines a cloud condition and associated hue level based on the filtered IR sensor values. If the filtered IR sensor value is below the following threshold, then it is a "sun" condition and the tint level from module D is set to the highest tint level. If the filtered IR sensor value is above an upper threshold, then it is a "cloudy" condition and the tint level from module D is set to the lowest tint level. If the filtered IR sensor value is less than or equal to the upper threshold and greater than or equal to the lower threshold, then the tone level from module D is set to a midtone level. If the control logic determines at operation 2432 that the sun elevation angle does not increase (decrease), then it is determined to be night and the control logic executes the night IR sensor algorithm implementation of module D at operation 2436 . One example of an evening IR sensor algorithm that may be used is described with respect to the flowchart 2700 illustrated in FIG. 27 .

在執行模組D之上午或晚上IR感測器演算法以基於模組D判定一色調等級後,控制邏輯在操作2490判定在適當位置是否有更動。若更動不在適當位置,則將最終色調等級設定至由模組D判定之色調等級。若更動在適當位置,則控制邏輯在操作2492將最終色調等級設定至更動值。在操作2496,所述控制邏輯經實施以傳達最終色調等級以將所述一或多個窗上之一或多個電致變色裝置轉變至最終色調等級。所述控制邏輯接著繼續進行至在操作2405處之計時器以進行在下一個時間間隔之計算。 After executing the morning or evening IR sensor algorithm for module D to determine a tint level based on module D, the control logic determines whether there is a change in place at operation 2490 . If the change is not in place, the final tint level is set to the tint level determined by module D. If the modification is in place, control logic sets the final tint level to the modified value at operation 2492 . At operation 2496 , the control logic is implemented to communicate a final tint level to transition one or more electrochromic devices on the one or more windows to the final tint level. The control logic then proceeds to the timer at operation 2405 for calculation at the next time interval.

若在操作2430判定太陽仰角不小於(大於或等於)太陽仰角臨限值,則時間t i 在白天範圍期間且控制邏輯執行白天演算法,所述白天演算法實施模組C1及/或模組D以基於光感測器及/或紅外線感測器讀數判定一色調等級(操作2440)。所述控制邏輯接著在操作2490判定更動是否在適當位置。若更動不在適當位置,則最終色調等級經設定至由模組C1及/或模組D之白天演算法判定之色調等級。關於圖28中說明之流程圖2800描述可使用的白天演算法之一實例。若更動在適當位置,則控制邏輯在操作2492處將最終色調等級設定為更動值。在操作2496,控制邏輯經實施以傳達最終色調等級以將所述一或多個窗轉變至最終色調等級。所述控制邏輯接著繼續進行至在操作2405處之計時器以進行在下一個時間間隔之計算。 If it is determined in operation 2430 that the sun elevation is not less than (greater than or equal to) the sun elevation threshold, then time t i is during the daytime range and the control logic executes a daytime algorithm implementing module C1 and/or module D to determine a hue level based on light sensor and/or infrared sensor readings ( operation 2440 ). The control logic then determines whether a manipulation is in place at operation 2490 . If the change is not in place, the final tint level is set to the tint level determined by module C1 and/or module D's daytime algorithm. One example of a daytime algorithm that may be used is described with respect to the flowchart 2800 illustrated in FIG. 28 . If the modification is in place, the control logic sets the final tint level to the modified value at operation 2492 . At operation 2496 , control logic is implemented to communicate the final tint level to transition the one or more windows to the final tint level. The control logic then proceeds to the timer at operation 2405 for calculation at the next time interval.

在一個實施例中,替代執行在操作2434的模組D之上午IR感測器演算法、在操作2436的模組D之晚上IR感測器演算法及在操作2440的模組C1及/或模組D之白天演算法,在操作2434,使用模組C1之上午光感測器演算法,在操作2436,使用模組C1之晚上光感測器演算法,且在操作2440,使用模組C1之白天演算法。 In one embodiment, instead of performing the morning IR sensor algorithm for module D at operation 2434 , the night IR sensor algorithm for module D at operation 2436 , and the daytime algorithm for module C1 and/or module D at operation 2440 , at operation 2434 the morning light sensor algorithm for module C1 is used, at operation 2436 the night light sensor algorithm for module C1 is used, and at operation 2440, module C is used 1 daytime algorithm.

-模組D之上午IR感測器演算法及晚上IR感測器演算法之實例 -Example of morning IR sensor algorithm and evening IR sensor algorithm of module D

模組D針對一經過濾IR感測器值查詢紅外線感測器量測結果資料庫(或直接自另一邏輯模組接收所述值),且接著基於經過濾IR感測器值判定一雲條件及相關聯之色調等級。若經過濾IR感測器值低於一下臨限值,則其為「有太陽」條件,且來自模組D之色調等級經設定至最高色調等級。若經過濾IR感測器值高於一上臨限值,則其為「多雲」條件,且來自模組D之色調等級經設定至最低色調等級。若經過濾IR感測器值小於或等於上臨限值且大於或等於下臨限值,則來自模組D之色調等級經設定至一中間色調等級。用於此等計算中之上臨限值及下臨限值係基於正在實施上午IR感測器演算法、晚上IR感測器演算法還是白天演算法。 Module D queries the IR sensor measurement database for a filtered IR sensor value (or receives the value directly from another logic module), and then determines a cloud condition and associated hue level based on the filtered IR sensor value. If the filtered IR sensor value is below the following threshold, then it is a "sun" condition and the tint level from module D is set to the highest tint level. If the filtered IR sensor value is above an upper threshold, then it is a "cloudy" condition and the tint level from module D is set to the lowest tint level. If the filtered IR sensor value is less than or equal to the upper threshold and greater than or equal to the lower threshold, then the tone level from module D is set to a midtone level. The upper and lower thresholds used in these calculations are based on whether the morning IR sensor algorithm, the evening IR sensor algorithm, or the daytime algorithm is being implemented.

圖29展示在24小時週期期間按攝氏毫度對時間的經過濾IR感測器值之曲線圖。所述曲線圖展示經過濾IR感測器值之範圍的三個區域。高於上臨限值之上部區域為「多雲」區域。高於上臨限值之經過濾IR感測器值係在「多雲」區域中。介於上臨限值與下臨限值之間的中間區域為「間歇性多雲」或「部分多雲」區域。低於下臨限值之下部區域為亦被稱作「有太陽」區域之「晴朗」區域。低於上臨限值之經過濾IR感測器值在「晴朗」或「有太陽」區域中。所述曲線圖具有基於在兩個24小時週期上取得之讀數的計算之經過濾IR感測器值之兩個曲線。第一曲線2930展示在下午有雲之第一日期間取得的計算之經過濾IR感測器值。第二曲線2932展示在整日有太陽/晴朗之第二日期間取得的計算之經過濾IR感測器值。下臨限值描述中間區域與下部區域之間的下邊界。上臨限值描述中間區域與上部區域之間的上部邊界。在晚上期間使用的下臨限值及上臨限值(晚上下臨限值及晚上上臨限值)通常高於在上午期間使用的下臨限值及上臨限值(上午下臨限值及上午上臨限值)。 29 shows a graph of filtered IR sensor values in milliCelsius versus time during a 24 hour period. The graph shows three regions of the range of filtered IR sensor values. The upper area above the upper threshold is "cloudy". Filtered IR sensor values above the upper threshold are in "cloudy" regions. The intermediate areas between the upper and lower thresholds are "intermittently cloudy" or "partly cloudy". The lower region below the lower threshold is the "clear" region also known as the "sun" region. Filtered IR sensor values below the upper threshold are in the "clear" or "sun" region. The graph has two curves of calculated filtered IR sensor values based on readings taken over two 24 hour periods. The first curve 2930 shows calculated filtered IR sensor values taken during the first day with cloudy afternoons. The second curve 2932 shows the calculated filtered IR sensor values taken during the second full sun/clear day. The lower threshold describes the lower boundary between the middle region and the lower region. The upper threshold describes the upper boundary between the middle zone and the upper zone. The lower and upper thresholds used during the evening (evening lower threshold and evening upper threshold) are generally higher than the lower and upper thresholds used during the morning (morning lower threshold and morning upper threshold).

圖26說明描繪模組D之上午IR感測器演算法實施之控制邏輯 之流程圖2600。當著色控制邏輯判定當前時間在上午範圍期間時,可實施上午IR感測器演算法。上午IR感測器演算法為當控制邏輯判定太陽仰角角度小於一仰角臨限值且太陽仰角角度在增大時可在圖24中展示之流程圖之操作2434處實施的控制邏輯之一實例。 FIG. 26 illustrates a flowchart 2600 depicting the control logic implemented by the AM IR sensor algorithm of module D. The am IR sensor algorithm may be implemented when the tinting control logic determines that the current time is during the am range. The AM IR sensor algorithm is one example of control logic that may be implemented at operation 2434 of the flowchart shown in FIG. 24 when the control logic determines that the sun elevation angle is less than an elevation threshold and the sun elevation angle is increasing.

流程圖2600之控制邏輯開始於操作2610,且將經過濾IR感測器值與上午下臨限值比較以判定經過濾IR感測器值是否小於上午下臨限值。模組D之控制邏輯查詢紅外線感測器量測結果資料庫或其他資料庫以擷取經過濾IR感測器值。替代地,控制邏輯計算經過濾IR感測器值。可用以計算經過濾IR感測器值且將值儲存至紅外線感測器量測結果資料庫的控制邏輯之一實例為參考圖23中之流程圖所描述的模組D'之控制邏輯。上午下臨限值為在上午範圍期間應用的在下部區域(「有太陽」或「晴朗」區域)與中間區域(「部分多雲區域」)之間的經過濾IR感測器值之下邊界處之溫度值。在某些實施中,上午下臨限值在攝氏-20毫度與攝氏20毫度之範圍中。在一個實例中,上午下臨限值為攝氏1度。 The control logic of flowchart 2600 begins at operation 2610 and compares the filtered IR sensor value to the AM lower threshold to determine whether the filtered IR sensor value is less than the AM lower threshold. The control logic of module D queries the IR sensor measurement results database or other database to retrieve filtered IR sensor values. Alternatively, the control logic calculates filtered IR sensor values. An example of control logic that may be used to calculate filtered IR sensor values and store the values to an infrared sensor measurement database is the control logic of module D' described with reference to the flowchart in FIG. 23 . The AM lower threshold value is the temperature value at the lower boundary between the lower zone ("sun" or "clear" zone) and the middle zone ("partly cloudy zone") the filtered IR sensor value applied during the AM range. In some implementations, the AM lower threshold is in the range of -20 millidegrees Celsius and 20 millidegrees Celsius. In one example, the morning lower threshold is 1 degree Celsius.

若在操作2610判定經過濾IR感測器值小於上午下臨限值,則判定經過濾IR感測器值處於為「晴朗」或「有太陽」區域之下部區域中。在此情況下,控制邏輯將來自模組D之色調等級設定至高色調狀態(例如,色調等級4)且傳遞來自模組D之色調等級(操作2620)。 If it is determined at operation 2610 that the filtered IR sensor value is less than the morning lower threshold, then it is determined that the filtered IR sensor value is in the lower region of the "sunny" or "sun" region. In this case, the control logic sets the tint level from module D to a high tint state (eg, tint level 4) and passes the tint level from module D ( operation 2620 ).

若在操作2610判定經過濾IR感測器值不小於上午下臨限值,則控制邏輯繼續進行以在操作2630判定經過濾IR感測器值是否小於或等於上午上臨限值且大於或等於上午下臨限值。上午上臨限值為在一天之上午範圍期間應用的在中間區域(「部分多雲區域」)與上部區域(「多雲」區域)之間的經過濾IR感測器值之上部邊界處之溫度。在某些實施中,上午上臨限值在攝氏-20毫度與攝氏20毫度之範圍中。在一個實例中,上午上臨限值為攝氏3毫度。 If it is determined at operation 2610 that the filtered IR sensor value is not less than the lower AM threshold, then control logic proceeds to determine at operation 2630 whether the filtered IR sensor value is less than or equal to the upper AM threshold and greater than or equal to the lower AM threshold. The AM upper threshold value is the temperature at the upper boundary of filtered IR sensor values between the middle zone ("partly cloudy zone") and the upper zone ("cloudy" zone) applied during the morning range of the day. In some implementations, the upper AM threshold is in the range of -20 millidegrees Celsius and 20 millidegrees Celsius. In one example, the upper morning threshold is 3 millidegrees Celsius.

若在操作2630判定經過濾IR感測器值小於或等於上午上臨限值且大於或等於上午下臨限值,則將經過濾IR感測器值判定為在一為「部分多雲」區域的中間區域中(操作2640)。在此情況下,控制邏輯將模組D之色調等級設定至中間色調狀態(例如,色調等級2或3)且傳遞來自模組D之色調等級。 If it is determined at operation 2630 that the filtered IR sensor value is less than or equal to the upper AM threshold and greater than or equal to the lower AM threshold, then the filtered IR sensor value is determined to be in an intermediate region that is a "partly cloudy" region ( operation 2640 ). In this case, the control logic sets the tone level of module D to a midtone state (eg, tone level 2 or 3) and passes the tone level from module D.

若在操作2630判定經過濾IR感測器值不小於或等於上午上臨限值及大於或等於上午下臨限值(亦即,經過濾感測器值大於上午上臨限值),則將經過濾IR感測器值判定為在為「多雲」的上部區域中(操作2650)。在此情況下,控制邏輯將模組D之色調等級設定至低色調狀態(例如,色調等級2或較低色調等級)且傳遞來自模組D之色調等級。 If it is determined at operation 2630 that the filtered IR sensor value is not less than or equal to the upper AM threshold and greater than or equal to the lower AM threshold (i.e., the filtered sensor value is greater than the upper AM threshold), then the filtered IR sensor value is determined to be in an upper region that is "cloudy" ( operation 2650 ). In this case, the control logic sets the tint level of module D to a low tint state (eg, tint level 2 or a lower tint level) and passes the tint level from module D.

圖27說明描繪模組D之晚上IR感測器演算法實施之控制邏輯之流程圖2700。當著色控制邏輯判定當前時間在晚上範圍期間時,可實施晚上IR感測器演算法。晚上IR感測器演算法為當控制邏輯判定太陽仰角角度小於一仰角臨限值且太陽仰角角度在減小時可在圖24中展示之流程圖之操作2436處實施的控制邏輯之一實例。 FIG. 27 illustrates a flowchart 2700 depicting the control logic implemented by the night IR sensor algorithm for module D. When the tinting control logic determines that the current time is during the evening range, the evening IR sensor algorithm may be implemented. The evening IR sensor algorithm is one example of control logic that may be implemented at operation 2436 of the flowchart shown in FIG. 24 when the control logic determines that the sun elevation angle is less than an elevation threshold and that the sun elevation angle is decreasing.

流程圖2700之控制邏輯開始於操作2710,且將經過濾IR感測器值與晚上下臨限值比較以判定經過濾IR感測器值是否小於晚上下臨限值。模組D之控制邏輯查詢紅外線感測器量測結果資料庫或其他資料庫以擷取經過濾IR感測器值。替代地,控制邏輯計算經過濾IR感測器值。可用以計算經過濾IR感測器值且將值儲存至紅外線感測器量測結果資料庫的控制邏輯之一實例為參考圖23中之流程圖所描述的模組D'之控制邏輯。晚上下臨限值係在晚上範圍期間應用的在下部區(「晴朗」或「清透」區)與中間區(「部分多雲區」)之間的經過濾IR感測器值之下邊界處的溫度值。在某些實施中,晚上下臨限值在攝氏-20毫度與攝氏20毫度之範圍中。在一個實例中,晚上下臨限值為攝氏2毫 度。 The control logic of flowchart 2700 begins at operation 2710 and compares the filtered IR sensor value to the night lower threshold value to determine whether the filtered IR sensor value is less than the night lower threshold value. The control logic of module D queries the IR sensor measurement results database or other database to retrieve filtered IR sensor values. Alternatively, the control logic calculates filtered IR sensor values. An example of control logic that may be used to calculate filtered IR sensor values and store the values to an infrared sensor measurement database is the control logic of module D' described with reference to the flowchart in FIG. 23 . The evening lower threshold is the temperature value at the lower boundary between the lower zone ("clear" or "clear" zone) and the middle zone ("partly cloudy zone") the filtered IR sensor value applied during the evening range. In some implementations, the nighttime lower threshold is in the range of -20 degrees Celsius and 20 degrees Celsius. In one example, the lower threshold at night is 2 millidegrees Celsius.

若在操作2710判定經過濾IR感測器值小於晚上下臨限值,則經過濾IR感測器值處於為「晴朗」或「有太陽」區域之下部區域中。在此情況下,控制邏輯在操作2720將來自模組D之色調等級設定至高色調狀態(例如,色調等級4)且傳遞來自模組D之色調等級。 If it is determined at operation 2710 that the filtered IR sensor value is less than the evening lower threshold, then the filtered IR sensor value is in the lower region of the "sunny" or "sun" region. In this case, the control logic sets the tint level from module D to a high tint state (eg, tint level 4) and passes the tint level from module D at operation 2720 .

若在操作2710判定經過濾IR感測器值不小於晚上下臨限值,則控制邏輯繼續進行以在操作2730判定經過濾IR感測器值是否小於或等於晚上上臨限值且大於或等於晚上下臨限值。晚上上臨限值為在一天之晚上範圍期間應用的在中間區域(「部分多雲區域」)與上部區域(「多雲」區域)之間的經過濾IR感測器值之上部邊界處之溫度。在某些實施中,晚上上臨限值在攝氏-20毫度與攝氏20毫度之範圍中。在一個實例中,晚上上臨限值為攝氏5毫度。 If it is determined at operation 2710 that the filtered IR sensor value is not less than the lower night threshold, then control logic proceeds to determine at operation 2730 whether the filtered IR sensor value is less than or equal to the upper night threshold and greater than or equal to the lower night threshold. The evening upper threshold value is the temperature at the upper boundary of filtered IR sensor values between the middle zone ("partly cloudy zone") and the upper zone ("cloudy" zone) applied during the night range of the day. In some implementations, the nighttime upper threshold is in the range of -20 degrees Celsius and 20 degrees Celsius. In one example, the upper threshold at night is 5 millidegrees Celsius.

若在操作2730判定經過濾IR感測器值小於或等於晚上上臨限值且大於或等於晚上下臨限值,則將經過濾IR感測器值判定為處於為「部分多雲」區域之中間區域中(操作2740)。在此情況下,控制邏輯將模組D之色調等級設定至中間色調狀態(例如,色調等級2或3)且傳遞來自模組D之色調等級。 If it is determined at operation 2730 that the filtered IR sensor value is less than or equal to the upper evening threshold and greater than or equal to the lower evening threshold, then the filtered IR sensor value is determined to be in an intermediate region of the "partly cloudy" region ( operation 2740 ). In this case, the control logic sets the tone level of module D to a midtone state (eg, tone level 2 or 3) and passes the tone level from module D.

若在操作2730判定經過濾IR感測器值不小於或等於晚上上臨限值及大於或等於晚上下臨限值(亦即,經過濾感測器值大於晚上上臨限值),則將經過濾IR感測器值判定為在係「多雲」之上部區域中(操作2750)。在此情況下,控制邏輯將模組D之色調等級設定至低色調狀態(例如,色調等級2或較低色調等級)且傳遞來自模組D之此色調等級。 If it is determined at operation 2730 that the filtered IR sensor value is not less than or equal to the upper evening threshold and greater than or equal to the lower evening threshold (i.e., the filtered sensor value is greater than the upper evening threshold), then the filtered IR sensor value is determined to be in the upper region of "cloudy" ( operation 2750 ). In this case, the control logic sets the tint level of module D to a low tint state (eg, tint level 2 or a lower tint level) and passes this tint level from module D.

-模組C1及/或模組D之白天演算法之實例-Example of daytime algorithm for module C1 and/or module D

在白天期間,若紅外線感測器周圍之局部區經加熱,則由紅外線感測器獲取之溫度讀數可傾向於波動。舉例而言,位於屋頂上之紅外線感測器可 在屋頂吸收來自中午太陽之熱量時由屋頂加熱。在某些實施中,白天演算法在某些情況下停用IR感測器讀數在其著色決策中之使用,且使用模組C1單獨地自光感測器讀數判定色調等級。在其他情況下,白天演算法使用模組D基於IR感測器讀數判定第一色調等級,使用模組C1基於光感測器讀數判定第二色調等級,且接著將色調等級設定為第一色調等級與第二色調等級中之最大值。 During the day, the temperature readings taken by the infrared sensor may tend to fluctuate if the localized area around the infrared sensor is heated. For example, an infrared sensor on a roof can Heated by the roof as it absorbs heat from the midday sun. In some implementations, the daytime algorithm disables the use of IR sensor readings in its tinting decisions under certain circumstances, and uses module Cl to determine hue levels solely from light sensor readings. In other cases, the daytime algorithm uses module D to determine a first tint level based on IR sensor readings, uses module C1 to determine a second tint level based on light sensor readings, and then sets the tint level to the maximum of the first and second tint levels.

圖28說明描繪可實施模組C1之白天IR感測器演算法及/或模組D之白天光感測器演算法的白天演算法之控制邏輯的流程圖2800。當著色控制邏輯判定當前時間在白天範圍期間時,使用白天演算法。白天演算法係當太陽仰角角度大於或等於0且小於或等於仰角臨限值時可在圖24中所展示之流程圖之操作2440處實施的控制邏輯之一實例。 FIG. 28 illustrates a flowchart 2800 depicting control logic that may implement the daytime IR sensor algorithm of module C1 and/or the daylight algorithm of module D's daytime light sensor algorithm. The daytime algorithm is used when the shading control logic determines that the current time is during the daytime range. The daytime algorithm is one example of control logic that may be implemented at operation 2440 of the flowchart shown in FIG. 24 when the sun elevation angle is greater than or equal to 0 and less than or equal to the elevation threshold.

操作2810,判定是否啟用使用IR感測器讀數。在一種狀況下,用於著色控制邏輯之預設設定係停用使用IR感測器讀數,除非光感測器讀數例如歸因於發生故障之光感測器而不可用。在另一情況下,若IR感測器資料例如歸因於發生故障之IR感測器而不可用,則控制邏輯停用使用IR感測器讀數。若在操作2810判定啟用使用IR感測器讀數,則控制邏輯執行模組D之白天IR感測器演算法及模組C1之白天光感測器演算法兩者(操作2820)。若在操作2810判定不啟用使用IR感測器讀數,則控制邏輯執行模組C1之白天光感測器演算法(操作2850)。 At operation 2810 , it is determined whether to enable use of IR sensor readings. In one case, the default setting for the tinting control logic is to disable the use of IR sensor readings unless light sensor readings are not available, for example due to a malfunctioning light sensor. In another case, the control logic disables use of the IR sensor readings if IR sensor data is not available, eg, due to a malfunctioning IR sensor. If at operation 2810 it is determined that use of IR sensor readings is enabled, then the control logic executes both the daytime IR sensor algorithm for module D and the daytime light sensor algorithm for module C1 ( operation 2820 ). If it is determined at operation 2810 that use of IR sensor readings is not enabled, then the control logic executes the daylight sensor algorithm for module C1 ( operation 2850 ).

操作2830,執行模組D之白天IR感測器演算法之邏輯以判定第一色調狀態。自紅外線感測器量測結果資料庫或其他資料庫擷取經過濾IR感測器值。替代地,白天IR感測器演算法之邏輯計算經過濾IR感測器值。可用以計算經過濾IR感測器值且將值儲存至紅外線感測器量測結果資料庫的邏輯之一實例為參考圖23中之流程圖所描述的模組D'之控制邏輯。白天IR感測器演算法之邏輯將經過濾IR感測器值與白天下臨限值比較以判定經過濾IR感測器值 是否小於白天下臨限值、大於白天上臨限值或處於白天下臨限值與上臨限值之間。白天下臨限值係在白天範圍期間應用的在下部區域(「有太陽」或「晴朗」區域)與中間區域(「部分多雲」區域)之間的經過濾IR感測器值之下邊界處的溫度。在某些實施中,白天下臨限值在攝氏-20毫度與攝氏20毫度之範圍中。在一個實例中,白天下臨限值為攝氏-1毫度。白天上臨限值為在一天之晚上範圍期間應用的在中間區域(「部分多雲區域」)與上部區域(「多雲」區域)之間的經過濾IR感測器值之上部邊界處之溫度值。在某些實施中,白天上臨限值在攝氏-20毫度與攝氏20毫度之範圍中。在一個實例中,白天上臨限值為攝氏5毫度。若判定經過濾IR感測器值小於白天下臨限值,則經過濾IR感測器值處於係「晴朗」或「有太陽」區域之下部區域中。在此情況下,控制邏輯將來自模組D之第一色調等級設定至高色調狀態(例如,色調等級4)。若判定經過濾IR感測器值小於或等於白天上臨限值且大於或等於上白天臨限值,則經過濾IR感測器值經判定為處於為「部分多雲」區域之中間區域中。在此情況下,控制邏輯將第一色調等級設定至中間色調狀態(例如,色調等級2或3)。若判定經過濾IR感測器值不小於或等於白天上臨限值及大於或等於白天下臨限值(亦即,經過濾感測器值大於白天上臨限值),則將經過濾IR感測器值判定為處於為「多雲」區域之上部區域中。在此狀況下,控制邏輯將模組D之第一色調等級設定為低色調狀態(例如,色調等級2或更低色調等級)。 At operation 2830 , the logic of the daytime IR sensor algorithm of module D is executed to determine the first hue state. The filtered IR sensor values are retrieved from the IR sensor measurement results database or other databases. Instead, the logic of the daytime IR sensor algorithm calculates filtered IR sensor values. One example of logic that may be used to calculate filtered IR sensor values and store the values to the IR sensor measurement database is the control logic of module D' described with reference to the flowchart in FIG. 23 . The logic of the daytime IR sensor algorithm compares the filtered IR sensor value to the lower daytime threshold to determine whether the filtered IR sensor value is less than the lower daytime threshold, greater than the upper daytime threshold, or between the lower daytime threshold and the upper daytime threshold. The lower daytime threshold is the temperature at the lower boundary between the lower zone ("sun" or "clear" zone) and the middle zone ("partly cloudy" zone) the filtered IR sensor value applied during the daytime range. In some implementations, the daytime lower threshold is in the range of -20 degrees Celsius and 20 degrees Celsius. In one example, the daytime lower threshold is -1 millidegree Celsius. The daytime upper threshold value is the temperature value at the upper boundary of filtered IR sensor values between the middle zone ("partly cloudy zone") and the upper zone ("cloudy" zone) applied during the night range of the day. In some implementations, the daytime upper threshold is in the range of -20 degrees Celsius and 20 degrees Celsius. In one example, the daytime upper threshold is 5 millidegrees Celsius. If it is determined that the filtered IR sensor value is less than the lower daytime threshold value, then the filtered IR sensor value is in a region lower than the "sunny" or "sun" region. In this case, the control logic sets the first tint level from module D to a high tint state (eg, tint level 4). If the filtered IR sensor value is determined to be less than or equal to the daytime upper threshold and greater than or equal to the upper daytime threshold, then the filtered IR sensor value is determined to be in the middle region which is a "partly cloudy" region. In this case, the control logic sets the first tone level to a mid-tone state (eg, tone level 2 or 3). If it is determined that the filtered IR sensor value is not less than or equal to the upper daytime threshold and greater than or equal to the lower daytime threshold (i.e., the filtered sensor value is greater than the upper daytime threshold), then the filtered IR sensor value is determined to be in the upper region of the "cloudy" region. In this case, the control logic sets the first tone level of module D to a low tone state (eg, tone level 2 or lower).

操作2832,執行模組C1之白天光感測器感測器演算法之邏輯以判定第二色調等級。模組C1使用光感測器讀數基於即時輻照度判定第二色調等級。可用以判定第二色調等級的模組C1之控制邏輯之一實例在以下章節中關於在圖30中展示之流程圖3000描述。 In operation 2832 , the logic of the daylight sensor algorithm of module C1 is executed to determine the second tone level. Module C1 uses the light sensor readings to determine the second hue level based on the instantaneous irradiance. One example of control logic for module Cl that may be used to determine the second tone level is described in the following sections with respect to the flowchart 3000 shown in FIG. 30 .

操作2840,白天演算法之邏輯計算基於IR感測器讀數的使用模組D之第一色調等級及基於光感測器讀數的使用模組C1之第二色調等級中 之最大者。將來自白天演算法之色調等級設定至基於IR感測器讀數的計算之第一色調狀態及基於光感測器讀數的計算之第二色調等級中之最大者。返回來自模組C1或D之色調等級。 At operation 2840 , the logic of the daytime algorithm calculates the maximum of a first hue level using module D based on IR sensor readings and a second hue level using module C1 based on light sensor readings. The tint level from the daytime algorithm is set to the maximum of the calculated first tint state based on IR sensor readings and the calculated second tint level based on light sensor readings. Returns the hue level from module C1 or D.

若在操作2810判定不啟用使用IR感測器讀數,則控制邏輯執行模組C1之白天光感測器演算法(操作2850)。在操作2850,執行模組C1之白天光感測器感測器演算法之邏輯以判定第二色調等級。在此情況下,基於光感測器讀數將來自白天演算法之色調狀態設定成第二色調等級,且返回來自模組C1之此色調等級。可用以判定第二色調等級的模組C1之控制邏輯之一實例關於圖30中展示之流程圖描述。 If it is determined at operation 2810 that use of IR sensor readings is not enabled, then the control logic executes the daylight sensor algorithm for module C1 ( operation 2850 ). In operation 2850 , the logic of the daylight sensor algorithm of module C1 is executed to determine the second tone level. In this case, the tint state from the daytime algorithm is set to the second tint level based on the light sensor reading, and this tint level from module C1 is returned. An example of the control logic of module C1 that may be used to determine the second tone level is described with respect to the flowchart shown in FIG. 30 .

-模組C1之實例- Example of module C1

如所展示,圖30包含描繪根據一個態樣的用於判定一或多個電致變色窗之色調等級的模組C1之一實例之控制邏輯之流程圖3000。模組C1接收來自模組B之色調等級作為輸入。 As shown, FIG. 30 includes a flowchart 3000 depicting the control logic of an example of module C1 for determining the tint level of one or more electrochromic windows according to one aspect. Module C1 receives hue levels from module B as input.

操作3020處,接收反映建築物外之條件的當前光感測器值,且實施定限以計算待應用的所建議之色調等級。在一個實例中,當前光感測器值為由多個光感測器(例如,多感測器裝置之13個光感測器)在一個樣本時間取得的量測結果之最大值。在另一實例中,光感測器值為在不同樣本時間取得的多個讀數之經過濾滾動平均值,其中每一讀數為由多個光感測器取得的量測結果之最大值。可用以計算當前光感測器值的控制邏輯之一實例描述於圖31中之流程圖3100中,所述圖描繪模組C1'之控制邏輯。 At operation 3020 , current light sensor values reflecting conditions outside the building are received, and qualification is implemented to calculate a suggested tint level to apply. In one example, the current light sensor value is the maximum value of measurement results obtained by multiple light sensors (eg, 13 light sensors in a multi-sensor device) at one sample time. In another example, the light sensor value is a filtered rolling average of multiple readings taken at different sample times, where each reading is the maximum value of measurements taken by the multiple light sensors. One example of control logic that may be used to calculate the current light sensor value is depicted in flow diagram 3100 in FIG. 31 , which depicts the control logic for module C1 '.

返回至圖30,在操作3020,定限用以藉由判定在一時間週期上當前經過濾光感測器值是否已越過一或多個臨限值來計算所建議之色調等級。舉例而言,時間週期可為當前時間與由光感測器取得之最後樣本時間之間或當前時間與先前所獲取之多個樣本讀數中的第一讀數之間的時間週期。光感測器 讀數可定期地取得,諸如,一分鐘一次、每隔10秒一次、每隔10分鐘一次等。在一個實施中,定限使用兩個臨限值:下光感測器臨限值及上光感測器臨限值。若判定光感測器值高於上光感測器臨限值,則光感測器值處於係「晴朗」或「有太陽」區域的較高區域中。在此情況下,控制邏輯將來自模組C1的建議之色調等級判定為高色調狀態(例如,色調等級4)。若判定光感測器值小於或等上光感測器臨限值且大於或等於下光感測器臨限值,則光感測器值經判定為處於係「部分多雲」區域之中間區域中。在此情況下,控制邏輯將來自模組C1的建議之色調等級判定為中間色調狀態(例如,色調等級2或3)。若判定光感測器值大於晚上上臨限值,則光感測器值經判定為處於係「多雲」區域的上部區域中。在此情況下,控制邏輯將來自模組C1的所建議之色調等級判定為低色調狀態(例如,色調位準2或更低色調位準)。 Returning to FIG. 30 , at operation 3020 , thresholds are used to calculate suggested hue levels by determining whether the current filtered photosensor value has crossed one or more thresholds over a period of time. For example, the time period may be the time period between the current time and the time of the last sample taken by the light sensor or between the current time and the first reading of a plurality of previously taken sample readings. Light sensor readings may be taken periodically, such as once a minute, every 10 seconds, every 10 minutes, and the like. In one implementation, the qualification uses two thresholds: a lower light sensor threshold and an upper light sensor threshold. If it is determined that the light sensor value is above the upper light sensor threshold value, then the light sensor value is in the higher region of the "sunny" or "sun" region. In this case, the control logic determines the suggested tone level from module C1 as a high tone state (eg, tone level 4). If the light sensor value is determined to be less than or equal to the upper light sensor threshold and greater than or equal to the lower light sensor threshold, then the light sensor value is determined to be in the middle of the "partly cloudy" area. In this case, the control logic determines that the suggested tone level from module C1 is a mid-tone state (eg, tone level 2 or 3). If the light sensor value is determined to be greater than the evening upper threshold, then the light sensor value is determined to be in the upper region of the "cloudy" region. In this case, the control logic determines that the suggested tone level from module C1 is a low tone state (eg, tone level 2 or lower).

若當前時間為鎖定週期已結束之後的時刻,則控制邏輯基於在鎖定週期期間監視之條件在操作3020處計算所建議之色調等級。基於在鎖定週期期間監視之條件計算的所建議之色調位準係基於所監視輸入之統計評估。各種技術可用於在等待時間期間監視之輸入的統計評估。一個實例係在等待時間期間平均之色調等級。在等待時間期間,控制邏輯實施監視輸入及計算例如使用模組A1、B及C1中之一或多者判定之色調等級的操作。操作接著在等待時間內對所判定之色調等級求平均以判定針對一個色調區域轉變建議哪一方向。 If the current time is after the lockout period has ended, control logic calculates a suggested tint level at operation 3020 based on the conditions monitored during the lockout period. The suggested tone level calculated based on the conditions monitored during the lockout period is based on a statistical evaluation of the monitored input. Various techniques are available for statistical evaluation of the inputs monitored during the latency period. One example is the hue level averaged during the waiting time. During the wait time, the control logic performs operations of monitoring the input and calculating a hue level, eg, determined using one or more of modules A1, B, and C1. The operation then averages the determined hue levels over the wait time to determine which direction is suggested for a hue region transition.

操作3025,判定當前時間是否在鎖定週期期間。若當前時間在鎖定週期期間,那麼模組C1不改變自模組B接收的色調等級。在鎖定週期期間,監視外部條件之光感測器值。此外,控制邏輯在鎖定週期期間監視藉由操作3020判定的所建議之色調等級。若當前時間判定為不在鎖定週期期間,則控制邏輯繼續進行至操作3030In operation 3025 , it is determined whether the current time is during a lock period. If the current time is during the lockout period, then module C1 does not change the tone level received from module B. During the lockout period, the light sensor value is monitored for external conditions. Additionally, the control logic monitors the suggested hue level determined by operation 3020 during the lockout period. If the current time is determined not to be during the lockout period, then the control logic proceeds to operation 3030 .

操作3030,模組C1之邏輯繼續判定當前資訊是否建議色調轉 變。此操作3030比較在操作3020處判定的所建議之色調等級與應用於一或多個窗之當前色調等級,以判定色調等級是否不同。若所建議之色調等級與當前色調等級無不同,則色調等級不改變。 At operation 3030 , the logic of module C1 continues to determine whether the current information suggests a tone shift. This operation 3030 compares the suggested tint level determined at operation 3020 with the current tint level applied to one or more windows to determine if the tint level is different. If the suggested tint level is not different from the current tint level, the tint level is not changed.

操作3050,若所建議之色調等級不同於當前色調等級,則模組C1設定新色調等級,其為朝向在操作3020中判定的所建議之色調等級的一個色調等級(即使所建議之色調等級為來自當前色調等級之兩個或更多個色調等級)。舉例而言,若在操作3020中判定的所建議之色調區域係自第一色調等級至第三色調等級,則由模組C1返回之色調等級將一個色調等級轉變至第二色調等級。 In operation 3050 , if the suggested hue level is different from the current hue level, module C1 sets a new hue level, which is one tone level towards the suggested hue level determined in operation 3020 (even if the suggested hue level is two or more hue levels from the current hue level). For example, if the suggested tone range determined in operation 3020 is from the first tone level to the third tone level, then the tone level returned by module C1 shifts one tone level to the second tone level.

操作3070處,將鎖定週期設定為在鎖定週期期間鎖定轉變至其他色調等級。在鎖定週期期間,監視外部條件之光感測器值。此外,控制邏輯在間隔期間基於在鎖定週期期間監視之條件計算所建議之色調區域。在操作3050中將自模組C1傳遞之新色調等級判定為朝向在操作3020中判定的所建議之色調等級的一個色調等級。 At operation 3070 , a lockout period is set such that transitions to other tone levels are locked out during the lockout period. During the lockout period, the light sensor value is monitored for external conditions. Additionally, the control logic calculates during intervals a suggested hue region based on the conditions monitored during the lockout period. The new tone level delivered from module C1 is determined in operation 3050 as one towards the suggested tone level determined in operation 3020 .

-模組C1'之實例- Example of module C1'

圖31說明描繪根據某些實施的模組C1'之邏輯之流程圖3100。模組C1'之邏輯可由本端窗控制器、網路控制器、主控制器或多感測器裝置之一或多個處理器執行。在操作3110處,執行模組C1'之操作的處理器接收在當前時間之感測器讀數作為輸入。可經由建築物處之通信網路接收光感測器讀數,例如,自屋頂多感測器裝置。所接收之光感測器讀數為即時輻照度讀數。 FIG. 31 illustrates a flowchart 3100 depicting the logic of module C1' according to certain implementations. The logic of the module C1' can be executed by one or more processors of the local window controller, the network controller, the main controller or the multi-sensor device. At operation 3110 , the processor performing the operations of module C1' receives as input sensor readings at the current time. Light sensor readings may be received via a communication network at the building, for example, from a rooftop multi-sensor installation. The received light sensor readings are instant irradiance readings.

在一個實施中,模組C1'之邏輯接收並使用由建築物處之(例如,屋頂多感測器裝置之)兩個或更多個光感測器取得的量測結果之原始光感測器讀數。兩個或更多個光感測器通常用以提供冗餘。根據一個態樣,模組C1'之邏輯使用由建築物處之兩個光感測器裝置取得的量測結果之原始光感測器讀數。 在另一態樣中,模組C1'之邏輯使用由在建築物處之1至10個光感測器取得的量測結果之原始光感測器讀數。在另一態樣中,模組C1'之邏輯使用由建築物處之十三(13)個光感測器取得的量測結果之原始光感測器讀數。 In one implementation, the logic of module C1' receives and uses raw light sensor readings from measurements taken by two or more light sensors at the building (eg, of a rooftop multi-sensor installation). Two or more light sensors are usually used to provide redundancy. According to one aspect, the logic of module C1' uses raw light sensor readings from measurements taken by two light sensor devices at the building. In another aspect, the logic of module C1' uses raw light sensor readings from measurements taken by 1 to 10 light sensors at the building. In another aspect, the logic of module C1' uses raw light sensor readings from measurements taken by thirteen (13) light sensors at the building.

在操作3120,基於由兩個或更多個光感測器取得之原始量測結果計算光感測器值。舉例而言,光感測器值可計算為在單一樣本時間由兩個或多於兩個光感測器獲取之量測結果的最大值。 At operation 3120 , light sensor values are calculated based on raw measurements taken by the two or more light sensors. For example, the light sensor value can be calculated as the maximum value of measurements taken by two or more light sensors at a single sample time.

在操作3130,處理器用在操作3120中判定之光感測器值更新短期矩形窗及長期矩形窗。在模組C1'及本文中描述之其他控制邏輯中,將經過濾光感測器值用作作出著色決策之輸入。模組C1'及本文中描述之其他邏輯使用短期及長期矩形窗(過濾器)判定所述經過濾感測器值。短矩形窗(例如,使用在10分鐘、20分鐘、5分鐘等上取得之樣本值之矩形窗)係基於相對於長矩形窗(例如,使用在1小時、2小時等上取得之樣本值之矩形窗)中的感測器樣本之較大數目(例如,n=10、20、30、40等)更少數目個感測器樣本(例如,n=1、2、3,......10等)。矩形窗(照明)值可基於在矩形窗中的樣本值之平均值、平均數、中位值或其他代表值。在一個實例中,短矩形窗值為感測器樣本之平均值,且長矩形窗值為光感測器樣本之平均值。模組D'通常針對短矩形窗值及長矩形窗值中之每一者使用感測器樣本之一滾動平均值。在另一實例中,短矩形窗值為感測器樣本之平均值,且長矩形窗值為感測器樣本之平均值。 In operation 3130 , the processor updates the short-term rectangular window and the long-term rectangular window with the light sensor value determined in operation 3120 . In module C1' and other control logic described herein, the filtered light sensor values are used as input to make shading decisions. Module C1' and other logic described herein determine the filtered sensor values using short-term and long-term rectangular windows (filters). Short rectangular windows (e.g., rectangular windows using sample values taken over 10 minutes, 20 minutes, 5 minutes, etc.) are based on a smaller number of sensor samples (e.g., n=1, 2, 3, . The rectangular window (illumination) values may be based on an average, mean, median or other representative value of the sample values within the rectangular window. In one example, the short rectangular window values are the average of the sensor samples, and the long rectangular window values are the average of the light sensor samples. Module D' typically uses a rolling average of the sensor samples for each of the short and long rectangular window values. In another example, the short rectangular window value is the average value of the sensor samples, and the long rectangular window value is the average value of the sensor samples.

在操作3140處,處理器基於在操作3130處更新之矩形窗中的當前光感測器讀數判定短矩形窗值(Sboxcar值)及長矩形窗值(Lboxcar值)。在此實例中,藉由在操作3130處進行的最後更新之後取得矩形窗中之光感測器讀數之平均值來計算每一矩形窗值。在另一實例中,藉由在操作3130處進行的最後更新之後取得矩形窗中之光感測器讀數之中位值來計算每一矩形窗值。 At operation 3140 , the processor determines a short rectangular window value ( Sboxcar value) and a long rectangular window value ( Lboxcar value) based on the current light sensor readings in the rectangular window updated at operation 3130 . In this example, each rectangular window value is calculated by taking the average of the light sensor readings in the rectangular window after the last update performed at operation 3130 . In another example, each rectangular window value is calculated by taking the median value of the light sensor readings in the rectangular window after the last update performed at operation 3130 .

在操作3150,所述邏輯評估Sboxcar值與Lboxcar值之間的差的 絕對值之值是否大於一差量臨限值(|Sboxcar值-Lboxcar值|>差量臨限值)。在一些情況下,差量臨限值之值在攝氏0毫度至攝氏10毫度之範圍中。在一種情況下,差量臨限值之值為攝氏0毫度。 At operation 3150 , the logic evaluates whether the absolute value of the difference between the Sboxcar value and the Lboxcar value is greater than a delta threshold (|Sboxcar value−Lboxcar value|>delta threshold). In some cases, the value of the delta threshold is in the range of 0 millidegrees Celsius to 10 millidegrees Celsius. In one instance, the value of the delta threshold is 0 millidegrees Celsius.

若差高於差量臨限值,則將Sboxcar值指派給光感測器值且重設短期矩形窗以清空其值(操作3160)。若差不高於差量臨限值,則將Lboxcar值指派給光感測器值且重設長期矩形窗以清空其值(操作3170)。在操作3180處,將光感測器值保存至資料庫。 If the difference is above the delta threshold, then the Sboxcar value is assigned to the light sensor value and the short-term rectangular window is reset to empty its value (operation 3160 ). If the difference is not higher than the delta threshold, then the Lboxcar value is assigned to the light sensor value and the long-term rectangular window is reset to empty its value (operation 3170 ). At operation 3180 , the light sensor values are saved to a database.

雖然將單一紅外線感測器描述為包含於某些實施之紅外線雲偵測器中,但根據另一實施,倘若一個紅外線感測器出故障及/或由(例如)鳥糞或另一環境作用物遮蔽,則兩個或更多個紅外線感測器可供冗餘使用。在一個態樣中,可包含兩個或更多個紅外線感測器,其面向不同定向以捕獲來自不同視野及/或在距建築物/結構不同距離處之紅外線輻射。若兩個或更多個紅外線感測器位於紅外線雲偵測器之外殼內,則紅外線感測器通常相互偏移一段距離,所述距離足以減小遮蔽之作用物將影響所有紅外線感測器之可能性。舉例而言,紅外線感測器可分開至少約一吋或至少約兩吋。 While a single infrared sensor is described as being included in some implementations of the infrared cloud detector, according to another implementation, two or more infrared sensors are available for redundancy should one infrared sensor fail and/or be obscured by, for example, bird droppings or another environmental agent. In one aspect, two or more infrared sensors may be included, facing different orientations to capture infrared radiation from different fields of view and/or at different distances from the building/structure. If two or more infrared sensors are located within the housing of the infrared cloud detector, the infrared sensors are typically offset from each other by a distance sufficient to reduce the likelihood that an obscuring object will affect all the infrared sensors. For example, the infrared sensors can be separated by at least about one inch or at least about two inches.

在本文中所描述之某些實施例中,控制邏輯基於很可能在未來時間出現之條件(在本文中亦被稱作「未來條件」)判定色調等級。舉例而言,可基於在未來時間(例如,t i =目前時間+諸如一或多個電致變色窗之轉變時間的持續時間)的雲條件之出現之可能性判定一色調等級。可將此等邏輯運算中使用之未來時間設定為足以允許在接收到控制指令之後完成窗至在色調等級之轉變的未來時間。在此等情況下,控制器可在實際轉變前在目前時間發送指令。在轉變完成時,窗將已轉變至對於彼未來時間所要的色調等級。在其他實施例中,揭露的控制邏輯可用以基於在目前時間出現或有可能出現之條件判定色調等級,例如,藉由將持續時間設定至0。舉例而言,在某些電致變色窗中,至新色調等級 (例如,至中間色調等級)之轉變時間可能很短,使得發送基於目前時間轉變至一色調等級的指令將為適當的。 In some embodiments described herein, the control logic determines the tone level based on conditions that are likely to occur at a future time (also referred to herein as "future conditions"). For example, a tint level may be determined based on the likelihood of occurrence of cloud conditions at a future time (eg, ti = present time + duration such as transition time of one or more electrochromic windows). The future time used in these logic operations can be set to a time in the future sufficient to allow the transition of the window to the tint level to be completed after the control command is received. In such cases, the controller can send the command at the current time before the actual transition. By the time the transition is complete, the window will have transitioned to the desired tint level for that future time. In other embodiments, the disclosed control logic can be used to determine tone levels based on conditions that occur or are likely to occur at the current time, for example, by setting the duration to zero. For example, in some electrochromic windows, the transition time to a new tint level (eg, to a mid-tone level) may be so short that it would be appropriate to send a command to transition to a tint level based on the current time.

應理解,如上所述之本發明可以模組化或整合方式使用電腦軟體按控制邏輯之形式實施。基於本揭露內容及本文所提供之教示,一般熟習此項技術者將知曉及瞭解使用硬體及硬體與軟體之組合來實施本發明的其他方式及/或方法。 It should be understood that the present invention as described above can be implemented in the form of control logic using computer software in a modularized or integrated manner. Based on the present disclosure and the teachings provided herein, one of ordinary skill in the art will know and appreciate other ways and/or methods of implementing the present invention using hardware and combinations of hardware and software.

本申請案中所描述之軟體組件或功能中之任一者可實施為軟體程式碼,以由處理器使用例如習知或物件導向式技術,使用諸如Java、C++或Perl之任何合適電腦語言執行。軟體程式碼可儲存為在電腦可讀媒體上之一系列指令或命令,諸如,隨機存取記憶體(RAM)、唯讀記憶體(ROM)、諸如硬碟機或軟性磁碟之磁性媒體或諸如CDROM之光學媒體。任何此電腦可讀媒體可駐留於單一計算設備上或內,且可存在於系統或網路內之不同計算設備上或內。 Any of the software components or functions described in this application may be implemented as software code to be executed by a processor using, for example, conventional or object-oriented techniques, using any suitable computer language such as Java, C++ or Perl. Software code may be stored as a series of instructions or commands on a computer readable medium such as random access memory (RAM), read only memory (ROM), magnetic media such as a hard disk or floppy disk, or optical media such as CDROM. Any such computer-readable media may reside on or within a single computing device, and may reside on or within different computing devices within a system or network.

儘管已相當詳細地描述前述所揭示之實施例以促進理解,但所描述之實施例將被視為說明性而非限制性的。一般熟習此項技術者將顯而易見,可在所附申請專利範圍之範疇內實踐某些改變及修改。 While the foregoing disclosed embodiments have been described in some detail to facilitate understanding, the described embodiments are to be considered illustrative rather than restrictive. It will be apparent to those of ordinary skill in the art that certain changes and modifications may be practiced within the scope of the appended claims.

在不脫離本揭露內容之範疇的情況下,可將來自任一實施例之一或多個特徵與任一其他實施例之一或多個特徵組合。另外,在不脫離本揭露內容之範疇的情況下,可進行對任一實施例之修改、添加或省略。在不脫離本揭露內容之範疇的情況下,任一實施例之組件可根據特定需求整合或分離。 One or more features from any embodiment may be combined with one or more features from any other embodiment without departing from the scope of the present disclosure. In addition, modifications, additions or omissions to any of the embodiments may be made without departing from the scope of the present disclosure. Components of any embodiment may be integrated or separated according to particular needs without departing from the scope of the present disclosure.

300‧‧‧紅外線雲偵測器系統 300‧‧‧Infrared Cloud Detector System

310‧‧‧紅外線雲偵測器 310‧‧‧Infrared Cloud Detector

312‧‧‧外殼 312‧‧‧Shell

314‧‧‧紅外線感測器 314‧‧‧Infrared sensor

315‧‧‧圓錐形視野 315‧‧‧Conical Field of View

316‧‧‧環境溫度感測器 316‧‧‧Ambient temperature sensor

320‧‧‧外部可見光光感測器 320‧‧‧External Visible Light Sensor

330‧‧‧房間 Room 330‧‧‧

332‧‧‧可著色窗 332‧‧‧tintable windows

334‧‧‧桌子 334‧‧‧table

340‧‧‧控制器 340‧‧‧Controller

Claims (26)

一種用於控制一建築物的一或多個可著色窗之色調之控制器,所述控制器包括:一電腦可讀媒體,其具有經組態以基於一雲條件判定所述一或多個可著色窗的一色調等級;一處理器,其與所述電腦可讀媒體通信且與所述一或多個可著色窗之一本端窗控制器通信,其中所述處理器經組態以:部分基於:(A)來自至少一光感測器之光感測器讀數及來自至少一紅外線感測器之紅外線感測器讀數中之一或兩者及(B)一未來時間在一上午範圍、一白天範圍還是一晚上範圍期間以判定所述雲條件;基於所述判定之雲條件計算用於所述一或多個可著色窗的所述色調等級;及將色調指令發送至所述本端窗控制器以將所述一或多個可著色窗之色調轉變至經計算之所述色調等級。 A controller for controlling the tint of one or more tintable windows of a building, the controller comprising: a computer readable medium having a tint level configured to determine a tint level for the one or more tintable windows based on a cloud condition; a processor in communication with the computer readable medium and in communication with a local window controller of the one or more tintable windows, wherein the processor is configured to be based, in part, on: (A) light sensor readings from at least one light sensor and infrared sensor readings from at least one infrared sensor one or both of these and (B) a future time during a morning range, a daytime range, or an evening range to determine the cloud condition; calculate the tint level for the one or more tintable windows based on the determined cloud condition; and send a tint command to the local window controller to transition the tint of the one or more tintable windows to the calculated tint level. 如申請專利範圍第1項所述的控制器,其中所述雲條件被預測發生在所述未來時間。 The controller according to claim 1, wherein said cloud condition is predicted to occur at said future time. 如申請專利範圍第1項所述的控制器,其中所述處理器經進一步組態以基於在所述未來時間之一太陽仰角判定所述未來時間在該上午範圍、該白天範圍還是該晚上範圍期間。 The controller of claim 1, wherein the processor is further configured to determine whether the future time is during the morning range, the daytime range, or the evening range based on a sun elevation angle at the future time. 如申請專利範圍第1項所述的控制器,其中部分基於所述光感測器之一平均值、一平均數或一中位值及/或所述紅外線感測器之一平均值、一平均數或一中位值以判定所述雲條件。 The controller according to claim 1, wherein determining the cloud condition is based in part on an average value, an average value or a median value of the light sensors and/or an average value, an average value or a median value of the infrared sensors. 如申請專利範圍第1項所述的控制器,其中所述處理器經進一 步組態以:(i)若所述未來時間在所述上午範圍期間或在所述晚上範圍期間則部分基於所述紅外線感測器讀數判定所述雲條件,及(ii)若所述未來時間在所述白天範圍期間則基於所述光感測器讀數判定所述雲條件。 The controller as described in item 1 of the scope of the patent application, wherein the processor is further further configuring to: (i) determine the cloud condition based in part on the infrared sensor reading if the future time is during the morning range or during the evening range, and (ii) determine the cloud condition based on the light sensor reading if the future time is during the day range. 如申請專利範圍第1項所述的控制器,其中若所述未來時間在所述上午範圍期間或在所述晚上範圍期間則部分基於所述紅外線感測器讀數之一最小值判定所述雲條件。 The controller of claim 1 wherein determining said cloud condition is based in part on a minimum of said infrared sensor readings if said future time is during said am range or during said evening range. 如申請專利範圍第1項所述的控制器,其中若所述未來時間在所述上午範圍期間或在所述晚上範圍期間則部分基於所述紅外線感測器讀數中之一最小值與環境溫度感測器讀數中之一最小值之間的經計算之一差判定所述雲條件。 The controller of claim 1 wherein determining said cloud condition is based in part on a calculated difference between a minimum of said infrared sensor readings and a minimum of ambient temperature sensor readings if said future time is during said morning range or during said evening range. 如申請專利範圍第1項所述的控制器,其中若所述未來時間在所述上午範圍期間或在所述晚上範圍期間則基於所述紅外線感測器讀數中之一最小值與來自天氣饋入資料之一環境溫度之間的經計算之一差判定所述雲條件。 The controller of claim 1 wherein the cloud condition is determined based on a calculated difference between a minimum of the infrared sensor readings and an ambient temperature from a weather feed if the future time is during the morning range or during the evening range. 如申請專利範圍第1項所述的控制器,其中所述控制邏輯經組態以部分基於所述光感測器讀數、所述紅外線感測器讀數及環境溫度感測器讀數之一或多者判定所述雲條件。 The controller of claim 1, wherein the control logic is configured to determine the cloud condition based in part on one or more of the light sensor reading, the infrared sensor reading, and ambient temperature sensor reading. 如申請專利範圍第1項所述的控制器,其中所述處理器進一步經組態以:基於所述光感測器讀數判定一第一色調等級;基於所述紅外線感測器讀數判定一第二色調等級;及將所述色調等級計算為所述判定之第一及第二色調等級中之一最大值。 The controller according to claim 1, wherein the processor is further configured to: determine a first color tone level based on the light sensor reading; determine a second color tone level based on the infrared sensor reading; and calculate the color tone level as a maximum value of the determined first and second color tone levels. 如申請專利範圍第1項所述的控制器,其中所述處理器經組態 以若所述未來時間在夜間期間,則將所述色調等級計算為一夜間色調等級。 The controller as described in item 1 of the scope of the patent application, wherein the processor is configured If the future time is during nighttime, the hue level is calculated as a nighttime tone level. 一種由一控制器執行之控制一建築物之一或多個可著色窗之色調之方法,所述方法包括:部分基於:(A)來自至少一光感測器之光感測器讀數及來自至少一紅外線感測器之紅外線感測器讀數中之一或兩者及(B)一未來時間在一上午範圍、一白天範圍還是一晚上範圍期間以判定一雲條件;基於所述判定之雲條件計算用於所述一或多個可著色窗的一色調等級;及發送色調指令以將所述一或多個可著色窗之色調轉變至經計算之所述色調等級。 A method, performed by a controller, of controlling the tint of one or more tintable windows of a building, the method comprising: determining a cloud condition based in part on: (A) one or both of light sensor readings from at least one light sensor and infrared sensor readings from at least one infrared sensor and (B) a future time during a morning range, a daytime range, or an evening range; calculating a tint level for the one or more tintable windows based on the determined cloud condition; The tint of the tintable window is converted to the calculated tint scale. 如申請專利範圍第12項所述的方法,其中所述雲條件被預測發生在所述未來時間。 The method of claim 12, wherein said cloud condition is predicted to occur at said future time. 如申請專利範圍第12項所述的方法,其進一步包括:計算一太陽仰角;及基於經計算之所述太陽仰角判定所述未來時間在所述白天範圍、所述上午範圍還是所述晚上範圍期間。 The method according to claim 12, further comprising: calculating a sun elevation angle; and determining whether the future time is during the daytime range, the morning range or the evening range based on the calculated sun elevation angle. 如申請專利範圍第12項所述的方法,其中:若所述未來時間在所述上午範圍或所述晚上範圍期間,則部分基於所述紅外線感測器讀數判定所述雲條件;若所述未來時間在所述白天範圍期間,則部分基於所述光感測器讀數及所述紅外線感測器讀數中之一或兩者判定所述雲條件;及若所述未來時間在夜間期間,則將所述色調等級判定為一夜間色調等級。 The method according to claim 12, wherein: if the future time is during the morning range or the night range, then determining the cloud condition based partly on the infrared sensor reading; if the future time is during the daytime range, then determining the cloud condition based partly on one or both of the light sensor reading and the infrared sensor reading; and if the future time is during the night time, determining the hue level as a nighttime hue level. 如申請專利範圍第12項所述的方法,其進一步包括基於一當前時間及包含所述一或多個可著色窗之一窗區帶之一代表性窗之一轉變時間計 算所述未來時間。 The method of claim 12, further comprising calculating a transition time based on a current time and a representative window of a window zone comprising the one or more tintable windows Calculate said future time. 如申請專利範圍第12項所述的方法,其進一步包括其中若所述未來時間在所述白天範圍期間,則:基於所述光感測器讀數判定一第一色調等級;基於所述紅外線感測器讀數判定一第二色調等級;及將所述色調等級計算為所述第一及第二色調等級中之一最大值。 The method according to claim 12, further comprising wherein if the future time is within the daytime range: determining a first hue level based on the light sensor reading; determining a second hue level based on the infrared sensor reading; and calculating the hue level as a maximum value of the first and second hue levels. 如申請專利範圍第12項所述的方法,其進一步包括其中若所述未來時間在所述白天範圍期間且停用所述至少一紅外線感測器,則自部分基於所述光感測器讀數判定之所述雲條件計算所述色調等級。 The method of claim 12, further comprising wherein if the future time is during the daytime range and the at least one infrared sensor is disabled, then calculating the hue level from the cloud conditions determined based in part on the light sensor readings. 如申請專利範圍第12項所述的方法,其進一步包括:若所述未來時間在所述上午範圍或所述晚上範圍期間,基於該紅外線感測器讀數判定所述雲條件。 The method according to claim 12, further comprising: determining the cloud condition based on the infrared sensor reading if the future time is within the morning range or the evening range. 如申請專利範圍第19項所述的方法,其進一步包括若所述未來時間在所述上午範圍期間,則部分基於所述光感測器讀數以判定所述雲條件。 The method of claim 19, further comprising determining the cloud condition based in part on the light sensor readings if the future time is within the am range. 如申請專利範圍第12項所述的方法,其進一步包括若所述未來時間係在所述上午範圍或所述晚上範圍期間,則部分基於所述紅外線感測器讀數之一最小值判定所述雲條件。 The method of claim 12, further comprising determining said cloud condition based in part on a minimum of said infrared sensor readings if said future time falls during said morning range or said evening range. 如申請專利範圍第12項所述的方法,其進一步包括若所述未來時間係在所述上午範圍或所述晚上範圍期間,則部分基於所述紅外線感測器讀數之一最小值與環境溫度感測器讀數之一最小值之間的經計算之一差而判定所述雲條件。 The method of claim 12, further comprising determining said cloud condition based in part on a calculated difference between a minimum of said infrared sensor readings and a minimum of ambient temperature sensor readings if said future time falls during said am range or said evening range. 如申請專利範圍第12項所述的方法,其進一步包括若所述未來時間係在所述上午範圍或所述晚上範圍期間,則部分基於所述紅外線感測器 讀數之一最小值與來自天氣饋入資料之一環境溫度之間的經計算之一差而判定所述雲條件。 The method of claim 12, further comprising, based in part on the infrared sensor if the future time is during the morning range or the evening range The cloud condition is determined from a calculated difference between a minimum of readings and an ambient temperature from a weather feed. 如申請專利範圍第12項所述的方法,其進一步包括在若所述未來時間在一夜間時間期間,則判定所述色調等級為一夜間色調等級。 The method according to claim 12, further comprising determining that the tone level is a night tone level if the future time is during a night time period. 一種用於控制一或多個可著色窗之非暫態(non-transitory)電腦可讀媒體,當由操作地耦合至所述至少一紅外線感測器、至所述至少一光感測器及/或至至少一環境溫度感測器之一或多個處理器讀取時,致使所述一或多個處理器執行或引導執行如申請專利範圍第12項至第24項之任一項之方法。 A non-transitory computer-readable medium for controlling one or more tintable windows that, when read by one or more processors operatively coupled to said at least one infrared sensor, to said at least one light sensor, and/or to at least one ambient temperature sensor, causes said one or more processors to execute or direct execution of the method of any one of claims 12 to 24. 一種用於控制一或多個可著色窗之色調之系統,所述系統包括一網路,所述網路經組態以:(a)操作地耦合至所述一或多個可著色窗及至至少一紅外線感測器、至少一光感測器及至少一環境溫度感測器;及(b)傳送與如申請專利範圍第12項至第24項之任一項之方法相關聯之信號。 A system for controlling the tint of one or more tintable windows, the system comprising a network configured to: (a) be operatively coupled to the one or more tintable windows and to at least one infrared sensor, at least one light sensor, and at least one ambient temperature sensor; and (b) transmit signals associated with the method of any one of claims 12 to 24.
TW108109593A 2018-03-21 2019-03-20 Methods and systems for controlling tintable windows with cloud detection TWI808142B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862646260P 2018-03-21 2018-03-21
US62/646,260 2018-03-21

Publications (2)

Publication Number Publication Date
TW201941105A TW201941105A (en) 2019-10-16
TWI808142B true TWI808142B (en) 2023-07-11

Family

ID=66001375

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108109593A TWI808142B (en) 2018-03-21 2019-03-20 Methods and systems for controlling tintable windows with cloud detection
TW112115942A TW202333116A (en) 2018-03-21 2019-03-20 Methods and systems for controlling tintable windows with cloud detection

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW112115942A TW202333116A (en) 2018-03-21 2019-03-20 Methods and systems for controlling tintable windows with cloud detection

Country Status (4)

Country Link
EP (1) EP3768934A1 (en)
CN (1) CN112236576B (en)
TW (2) TWI808142B (en)
WO (1) WO2019183232A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533892B2 (en) 2015-10-06 2020-01-14 View, Inc. Multi-sensor device and system with a light diffusing element around a periphery of a ring of photosensors and an infrared sensor
US10690540B2 (en) 2015-10-06 2020-06-23 View, Inc. Multi-sensor having a light diffusing element around a periphery of a ring of photosensors
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
US9638978B2 (en) 2013-02-21 2017-05-02 View, Inc. Control method for tintable windows
US11566938B2 (en) 2014-09-29 2023-01-31 View, Inc. Methods and systems for controlling tintable windows with cloud detection
US11781903B2 (en) 2014-09-29 2023-10-10 View, Inc. Methods and systems for controlling tintable windows with cloud detection
CN114019580A (en) 2014-09-29 2022-02-08 唯景公司 Daylight intensity or cloud detection with variable distance sensing
TW202130977A (en) 2014-09-29 2021-08-16 美商唯景公司 Combi-sensor systems
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
CN114729559A (en) * 2019-10-24 2022-07-08 唯景公司 Method and system for controlling tintable windows using cloud detection
AT524200B1 (en) 2020-10-27 2022-03-15 Hella Sonnen Und Wetterschutztechnik Gmbh Shading and lighting system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201220111A (en) * 2011-10-12 2012-05-16 Shih-Chang Chao The WYSIWYG electronic position feng shui system
WO2016004109A1 (en) * 2014-06-30 2016-01-07 View, Inc. Control methods and systems for networks of optically switchable windows during reduced power availability
WO2017210346A1 (en) * 2016-05-31 2017-12-07 View, Inc. Control methods for tintable windows implementing intermediate tint states

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8120292B2 (en) * 2004-05-06 2012-02-21 Mechoshade Systems, Inc. Automated shade control reflectance module
US9261751B2 (en) 2010-04-30 2016-02-16 View, Inc. Electrochromic devices
US8300298B2 (en) 2010-04-30 2012-10-30 Soladigm, Inc. Electrochromic devices
US8432603B2 (en) 2009-03-31 2013-04-30 View, Inc. Electrochromic devices
US8764951B2 (en) 2010-04-30 2014-07-01 View, Inc. Electrochromic devices
US8764950B2 (en) 2010-04-30 2014-07-01 View, Inc. Electrochromic devices
US8582193B2 (en) 2010-04-30 2013-11-12 View, Inc. Electrochromic devices
US8270059B2 (en) 2010-08-05 2012-09-18 Soladigm, Inc. Multi-pane electrochromic windows
US8254013B2 (en) 2011-03-16 2012-08-28 Soladigm, Inc. Controlling transitions in optically switchable devices
US8705162B2 (en) 2012-04-17 2014-04-22 View, Inc. Controlling transitions in optically switchable devices
US9933761B2 (en) * 2012-11-30 2018-04-03 Lutron Electronics Co., Inc. Method of controlling a motorized window treatment
CN114019580A (en) * 2014-09-29 2022-02-08 唯景公司 Daylight intensity or cloud detection with variable distance sensing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201220111A (en) * 2011-10-12 2012-05-16 Shih-Chang Chao The WYSIWYG electronic position feng shui system
WO2016004109A1 (en) * 2014-06-30 2016-01-07 View, Inc. Control methods and systems for networks of optically switchable windows during reduced power availability
WO2017210346A1 (en) * 2016-05-31 2017-12-07 View, Inc. Control methods for tintable windows implementing intermediate tint states

Also Published As

Publication number Publication date
CN112236576A (en) 2021-01-15
TW201941105A (en) 2019-10-16
WO2019183232A1 (en) 2019-09-26
EP3768934A1 (en) 2021-01-27
TW202333116A (en) 2023-08-16
CN112236576B (en) 2023-06-02

Similar Documents

Publication Publication Date Title
US11566938B2 (en) Methods and systems for controlling tintable windows with cloud detection
TWI808142B (en) Methods and systems for controlling tintable windows with cloud detection
CN109863425B (en) System and method for infrared cloud detector
US11255722B2 (en) Infrared cloud detector systems and methods
US11674843B2 (en) Infrared cloud detector systems and methods
CN107850815B (en) Control method for tintable windows
CN112004984B (en) Method, apparatus and computer readable medium for determining hue level of tintable windows
TWI621766B (en) Control methods and controller for tintable windows
JP2023113633A (en) Control method for tintable window
EP4048851A1 (en) Methods and systems for controlling tintable windows with cloud detection
KR20170016336A (en) Control method for tintable windows
US11781903B2 (en) Methods and systems for controlling tintable windows with cloud detection
CN114631053A (en) Control method and system using outdoor temperature as driving factor for changing window tone state