TWI807893B - Method and device for predicting sports performance, and computer readable storage medium - Google Patents

Method and device for predicting sports performance, and computer readable storage medium Download PDF

Info

Publication number
TWI807893B
TWI807893B TW111124409A TW111124409A TWI807893B TW I807893 B TWI807893 B TW I807893B TW 111124409 A TW111124409 A TW 111124409A TW 111124409 A TW111124409 A TW 111124409A TW I807893 B TWI807893 B TW I807893B
Authority
TW
Taiwan
Prior art keywords
data
displacement
speed
motion
change interval
Prior art date
Application number
TW111124409A
Other languages
Chinese (zh)
Other versions
TW202402356A (en
Inventor
王恩慈
陳思宏
Original Assignee
博晶醫電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博晶醫電股份有限公司 filed Critical 博晶醫電股份有限公司
Priority to TW111124409A priority Critical patent/TWI807893B/en
Application granted granted Critical
Publication of TWI807893B publication Critical patent/TWI807893B/en
Publication of TW202402356A publication Critical patent/TW202402356A/en

Links

Images

Landscapes

  • Indicating And Signalling Devices For Elevators (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Embodiments of the disclosure provide a method and device for predicting sports performance, and a computer readable storage medium. The method includes: collecting motion data of a user in a process of the user performing a specific action through a wearable device; and in response to determining that the motion data match an action characteristics of the specific action, predicting at least one athletic performance of the user performing at least one other action based on the motion data.

Description

運動表現預估方法、裝置及電腦可讀儲存媒體Sports performance estimation method, device and computer-readable storage medium

本發明是有關於一種運動偵測技術,且特別是有關於一種運動表現預估方法、裝置及電腦可讀儲存媒體。 The present invention relates to a motion detection technology, and in particular to a motion performance estimation method, device and computer-readable storage medium.

在現代社會中,透過特殊的儀器對使用者進行運動偵測的技術已相當常見。例如,現有技術中已提出讓使用者穿戴某些測量裝置,以透過測量裝置中的動態偵測元件(例如慣性測量單元)來取得使用者的相關運動數據的技術手段。 In modern society, it is quite common to use special equipment to detect motion of users. For example, in the prior art, a technical means has been proposed to let the user wear some measuring device to obtain the relevant motion data of the user through the motion detection element (such as an inertial measurement unit) in the measuring device.

然而,在一些情境中,受限於場地或其他因素,使用者可能無法實際或頻繁進行某些運動項目或是自行或輕易地測量運動表現(例如50公尺短跑、跳遠)。因此,若能設計一種可基於使用者執行某運動項目的運動數據來預估使用者執行其他運動項目的運動表現的技術方案,應可有助於提升運動偵測的方便性, 並可隨時根據運動表現調整訓練的強度及方式。 However, in some situations, limited by venues or other factors, users may not be able to actually or frequently perform certain sports events or measure sports performance (eg 50-meter sprint, long jump) by themselves or easily. Therefore, if it is possible to design a technical solution that can predict the user's performance in other sports based on the exercise data of the user performing a certain sport, it should help to improve the convenience of motion detection. And the intensity and method of training can be adjusted at any time according to sports performance.

有鑑於此,本發明提供一種運動表現預估方法、裝置及電腦可讀儲存媒體,其可用於解決上述技術問題。 In view of this, the present invention provides a sports performance estimation method, device and computer-readable storage medium, which can be used to solve the above technical problems.

本發明實施例提供一種運動表現預估方法,適於一運動表現預估裝置,包括:透過一穿戴式裝置收集一使用者在執行一特定動作過程中的運動數據;以及反應於判定運動數據符合特定動作的動作特徵,基於運動數據預估使用者執行至少一其他動作的至少一運動表現。 An embodiment of the present invention provides a method for estimating sports performance, which is suitable for a sports performance estimating device, comprising: collecting motion data of a user during a specific action through a wearable device; and estimating at least one sports performance of the user performing at least one other action based on the motion data in response to determining that the motion data conforms to the action characteristics of the specific action.

本發明實施例提供一種運動表現預估裝置,其包括儲存電路及處理器。儲存電路儲存一程式碼。處理器耦接儲存電路,並存取程式碼以執行:透過一穿戴式裝置收集一使用者在執行一特定動作過程中的運動數據;以及反應於判定運動數據符合特定動作的動作特徵,基於運動數據預估使用者執行至少一其他動作的至少一運動表現。 An embodiment of the present invention provides an exercise performance estimation device, which includes a storage circuit and a processor. The storage circuit stores a program code. The processor is coupled to the storage circuit, and accesses the program code to execute: collecting motion data of a user during performing a specific action through a wearable device; and predicting at least one motion performance of the user performing at least one other motion based on the motion data in response to determining that the motion data conforms to the motion characteristics of the specific motion.

本發明實施例提供一種電腦可讀儲存媒體,電腦可讀儲存媒體對可執行電腦程式進行記錄,可執行電腦程式由一運動表現預估裝置載入以執行以下步驟:透過一穿戴式裝置收集一使用者在執行一特定動作過程中的運動數據;以及反應於判定運動數據符合特定動作的動作特徵,基於運動數據預估使用者執行至少一其他動作的至少一運動表現。 An embodiment of the present invention provides a computer-readable storage medium. The computer-readable storage medium records an executable computer program, and the executable computer program is loaded by an exercise performance estimation device to perform the following steps: collecting exercise data of a user during the execution of a specific action through a wearable device; and estimating at least one exercise performance of the user performing at least one other action based on the exercise data in response to determining that the exercise data conforms to the action characteristics of the specific action.

100:運動表現預估裝置 100: Sports performance prediction device

102:儲存電路 102: storage circuit

104:處理器 104: Processor

301:使用者 301: user

399:穿戴式裝置 399:Wearable devices

411~415:加速度變化區間 411~415: Acceleration change interval

421~426:速度變化區間 421~426: Speed change interval

421a~426a:速度數據 421a~426a: speed data

431~436:位移變化區間 431~436: Displacement change interval

431a~436a:位移數據 431a~436a: displacement data

510:第一線性迴歸模型 510:First Linear Regression Model

520:第二線性迴歸模型 520:Second Linear Regression Model

530:第三線性迴歸模型 530: Third Linear Regression Model

PH1~PH5:動作階段 PH1~PH5: Action stage

S210,S220:步驟 S210, S220: steps

圖1是依據本發明之一實施例繪示的運動表現預估裝置示意圖。 FIG. 1 is a schematic diagram of a sports performance prediction device according to an embodiment of the present invention.

圖2是依據本發明之一實施例繪示的運動表現預估方法流程圖。 FIG. 2 is a flowchart of a method for estimating sports performance according to an embodiment of the present invention.

圖3是依據本發明之一實施例繪示的由使用者執行下蹲跳動作的示意圖。 FIG. 3 is a schematic diagram illustrating a squat jump performed by a user according to an embodiment of the present invention.

圖4A是在使用者執行下蹲跳動作過程中測得的例示性加速度數據。 FIG. 4A is exemplary acceleration data measured during a user performing a squat jump.

圖4B是在使用者執行下蹲跳動作過程中測得的例示性速度數據。 FIG. 4B is exemplary velocity data measured during a user performing a squat jump.

圖4C例如是在使用者執行下蹲跳動作過程中測得的例示性位移數據。 FIG. 4C is, for example, exemplary displacement data measured when the user performs a squat jump action.

圖5A是依據本發明第一實施例繪示的下蹲跳動作與立定跳遠動作的運動表現之間的迴歸關係示意圖。 FIG. 5A is a schematic diagram showing the regression relationship between the sports performance of the squat jump and the standing long jump according to the first embodiment of the present invention.

圖5B是依據圖5A繪示的下蹲跳動作與50公尺短跑的運動表現之間的迴歸關係示意圖。 FIG. 5B is a schematic diagram of the regression relationship between the squat jump and the sports performance of the 50-meter sprint shown in FIG. 5A .

圖5C是依據圖5A及圖5B繪示的立定跳遠動作與50公尺短跑作之間的運動表現之間的迴歸關係示意圖。 FIG. 5C is a schematic diagram of the regression relationship between the standing long jump action and the 50-meter sprint action shown in FIG. 5A and FIG. 5B .

請參照圖1,其是依據本發明之一實施例繪示的運動表現預估裝置示意圖。在不同的實施例中,運動表現預估裝置100例如可實現為連接於一穿戴式裝置(例如智慧手環、智慧手錶、智慧戒指、位於手腕、手掌或手指的感應器或其他類似的穿戴式裝置)的各式智慧型裝置及/或電腦裝置。在一些實施例中,運動表現預估裝置100亦可與上述穿戴式裝置整合為同一裝置,但可不限於此。 Please refer to FIG. 1 , which is a schematic diagram of a sports performance estimation device according to an embodiment of the present invention. In different embodiments, the athletic performance prediction device 100 can be implemented as various smart devices and/or computer devices connected to a wearable device (such as a smart bracelet, a smart watch, a smart ring, sensors located on the wrist, palm or finger, or other similar wearable devices). In some embodiments, the athletic performance prediction device 100 can also be integrated with the aforementioned wearable device into the same device, but it is not limited thereto.

在圖1中,運動表現預估裝置100包括儲存電路102及處理器104。儲存電路102例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、硬碟或其他類似裝置或這些裝置的組合,而可用以記錄多個程式碼或模組。 In FIG. 1 , an athletic performance prediction device 100 includes a storage circuit 102 and a processor 104 . The storage circuit 102 is, for example, any type of fixed or removable random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), flash memory (Flash memory), hard disk or other similar devices or a combination of these devices, and can be used to record a plurality of program codes or modules.

處理器104耦接於儲存電路102,並可為一般用途處理器、特殊用途處理器、傳統的處理器、數位訊號處理器、多個微處理器(microprocessor)、一個或多個結合數位訊號處理器核心的微處理器、控制器、微控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)、現場可程式閘陣列電路(Field Programmable Gate Array,FPGA)、任何其他種類的積體電路、狀態機、基於進階精簡指令集機器(Advanced RISC Machine,ARM)的處理器以及類似品。 The processor 104 is coupled to the storage circuit 102 and may be a general-purpose processor, a special-purpose processor, a conventional processor, a digital signal processor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, a controller, a microcontroller, an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), or any other type of product. Body circuits, state machines, Advanced RISC Machine (ARM) based processors, and the like.

在本發明的實施例中,處理器104可存取儲存電路102中記錄的模組、程式碼來實現本發明提出的運動表現預估方法,其細節詳述如下。 In the embodiment of the present invention, the processor 104 can access the modules and program codes recorded in the storage circuit 102 to implement the sports performance prediction method proposed by the present invention, and the details are described below.

請參照圖2,其是依據本發明之一實施例繪示的運動表現預估方法流程圖。本實施例的方法可由圖1的運動表現預估裝置100執行,以下即搭配圖1所示的元件說明圖2各步驟的細節。 Please refer to FIG. 2 , which is a flowchart of a method for estimating sports performance according to an embodiment of the present invention. The method of this embodiment can be executed by the sports performance estimation device 100 shown in FIG. 1 , and the details of each step in FIG. 2 will be described below with the components shown in FIG. 1 .

在步驟S210中,處理器104透過穿戴式裝置收集使用者在執行特定動作過程中的運動數據。在不同的實施例中,上述穿戴式裝置可因應於所考慮的特定動作而穿戴於使用者身上的不同部位。並且,上述穿戴式裝置可設置有動態偵測元件(例如慣性測量單元),而由動態偵測元件測量到的動態數據可作為上述運動數據,但可不限於此。 In step S210 , the processor 104 collects motion data of the user during a specific action through the wearable device. In different embodiments, the above-mentioned wearable device can be worn on different parts of the user's body in response to the specific motion considered. Moreover, the above-mentioned wearable device may be provided with a motion detection element (such as an inertial measurement unit), and the motion data measured by the motion detection element may be used as the motion data, but it is not limited thereto.

為便於說明,本發明的實施例假設所考慮的特定動作為下蹲跳(counter movement jump,CMJ)動作。在此情況下,上述穿戴式裝置(例如為手錶、手環或戒指)可相應地穿戴於使用者的手部,但可不限於此。在本發明的實施例中,為使測量自使用者的運動數據更為精準,使用者可經要求而依特定的原則執行下蹲跳動作。 For ease of illustration, embodiments of the present invention assume that the specific motion considered is a counter movement jump (CMJ) motion. In this case, the aforementioned wearable device (such as a watch, bracelet or ring) can be worn on the user's hand accordingly, but is not limited thereto. In the embodiment of the present invention, in order to make the motion data measured from the user more accurate, the user can execute the squat jump action according to a specific principle upon request.

請參照圖3,其是依據本發明之一實施例繪示的由使用者執行下蹲跳動作的示意圖。在圖3中,使用者301可將穿戴式裝置399穿戴於其手部(例如手腕),並依序執行圖3所示的5個動作階段PH1~PH5以完成一次的下蹲跳動作。 Please refer to FIG. 3 , which is a schematic diagram of a squat jump performed by a user according to an embodiment of the present invention. In FIG. 3 , the user 301 can wear the wearable device 399 on his hand (eg, wrist), and sequentially execute the five action stages PH1-PH5 shown in FIG. 3 to complete a squat jump action.

在動作階段PH1(其可理解為一靜止階段)中,使用者301需將其手部往前平舉並靜止若干秒,例如至少2秒。在動作階段PH2(其可理解為一手部下揮階段),使用者301需將其手部往下/後揮動,並同時下蹲以預備起跳。在動作階段PH3(其可理解為一手部上揮階段),使用者301需將其手部往上/前揮動,以產生將其身體往上帶動的動量。在動作階段PH4(其可理解為一滯空階段)中,使用者301可因應於動作階段PH3中所產生的向上動量而起跳並滯空。在動作階段PH5(其可理解為一落地階段),使用者301可落地並維持手舉高的姿勢達數秒,例如至少2秒。 In the action phase PH1 (which can be understood as a static phase), the user 301 needs to raise his hands forward and remain still for several seconds, for example at least 2 seconds. In the action phase PH2 (which can be understood as the swinging down phase of one hand), the user 301 needs to swing his hand down/back, and at the same time squat down to prepare for jumping. In the action phase PH3 (which can be understood as a hand swinging up phase), the user 301 needs to swing his hand upwards/forwards to generate momentum to drive his body upwards. In the action phase PH4 (which can be understood as a stagnation phase), the user 301 can take off and stay in the air in response to the upward momentum generated in the action phase PH3. In the action phase PH5 (which can be understood as a landing phase), the user 301 can land and maintain the posture with hands raised for several seconds, for example at least 2 seconds.

在其他實施例中,因應於所考慮的特定動作的不同,使用者301可相應地執行對應的其他動作階段,並不限於圖3所示態樣。 In other embodiments, the user 301 can perform other corresponding action stages corresponding to the different specific actions considered, which is not limited to the aspect shown in FIG. 3 .

在本發明的實施例中,穿戴式裝置399可因應於圖3所示的動作階段PH1~PH5而測量到相應的運動數據,例如使用者301執行下蹲跳動作過程中的加速度數據、速度數據及位移數據,但可不限於此。 In an embodiment of the present invention, the wearable device 399 can measure corresponding motion data corresponding to the action phases PH1-PH5 shown in FIG. 3 , such as acceleration data, velocity data, and displacement data during the squat jump action performed by the user 301, but it is not limited thereto.

請參照圖4A至圖4C,其中圖4A例如是在使用者執行下蹲跳動作過程中測得的例示性加速度數據,圖4B例如是在使用者執行下蹲跳動作過程中測得的例示性速度數據,而圖4C例如是在使用者執行下蹲跳動作過程中測得的例示性位移數據。 Please refer to FIG. 4A to FIG. 4C , wherein FIG. 4A is, for example, exemplary acceleration data measured during the user's squatting and jumping action, and FIG. 4B is, for example, exemplary velocity data measured during the user's squatting and jumping action, and FIG. 4C is, for example, exemplary displacement data measured during the user's squatting and jumping action.

在本發明的實施例中,在取得圖4A中的加速度數據後,處理器104例如可對圖4A中的加速度數據進行積分(以及相應的 濾波操作)以取得圖4B中的速度數據。另外,處理器104還可對圖4B中的速度數據進行積分以取得圖4C中的位移數據,但可不限於此。 In an embodiment of the present invention, after obtaining the acceleration data in FIG. 4A , the processor 104 may, for example, integrate the acceleration data in FIG. 4A (and corresponding filtering operation) to obtain the velocity data in Fig. 4B. In addition, the processor 104 can also integrate the velocity data in FIG. 4B to obtain the displacement data in FIG. 4C , but it is not limited thereto.

在本發明的實施例中,在取得圖4A、圖4B及圖4C所例示的數據之後,處理器104可判斷這些運動數據是否符合下蹲跳動作的動作特徵。 In an embodiment of the present invention, after obtaining the data shown in FIG. 4A , FIG. 4B and FIG. 4C , the processor 104 can determine whether the motion data conforms to the motion characteristics of the squat jumping motion.

在一實施例中,處理器104可包括判斷加速度數據是否包括特定加速度變化區間、速度數據是否包括特定速度變化區間,及/或位移數據是否包括特定位移變化區間,以判定運動數據是否符合下蹲跳動作的動作特徵。 In one embodiment, the processor 104 may include judging whether the acceleration data includes a specific acceleration change interval, whether the velocity data includes a specific speed change interval, and/or whether the displacement data includes a specific displacement change interval, so as to determine whether the motion data conforms to the action characteristics of the squat jumping action.

在本發明的實施例中,所考慮的特定加速度變化區間例如可依序包括第一加速度變化區間、第二加速度變化區間、第三加速度變化區間、第四加速度變化區間及第五加速度變化區間。在一實施例中,第一加速度變化區間中的加速度數據的平均值及標準差小於對應的平均值門限值(例如0.5g,g為重力加速度)及標準差門限值(例如0.1g)。第二加速度變化區間中的加速度數據至少包括低於第一加速度門限值(例如-25m/s^2)的第一加速度數據。第三加速度變化區間中的加速度數據至少包括低於第二加速度門限值(例如-125m/s^2)的第二加速度數據。第五加速度變化區間中的加速度數據至少包括高於第三加速度門限值(例如25m/s^2)的第三加速度數據。 In the embodiment of the present invention, the considered specific acceleration change interval may sequentially include, for example, a first acceleration change interval, a second acceleration change interval, a third acceleration change interval, a fourth acceleration change interval and a fifth acceleration change interval. In one embodiment, the average value and standard deviation of the acceleration data in the first acceleration change interval are smaller than the corresponding average value threshold (for example, 0.5g, where g is the gravitational acceleration) and standard deviation threshold (for example, 0.1g). The acceleration data in the second acceleration change interval includes at least the first acceleration data lower than the first acceleration threshold value (eg -25m/s^2). The acceleration data in the third acceleration change interval includes at least second acceleration data lower than the second acceleration threshold value (eg -125m/s^2). The acceleration data in the fifth acceleration change interval includes at least third acceleration data higher than a third acceleration threshold value (for example, 25m/s^2).

在本發明的實施例中,上述第一、第二、第三、第四及 第五加速度變化區間,可理解為分別對應於靜止階段、手部下揮階段、手部上揮階段、滯空階段及落地階段。亦即,若使用者301已正確依圖3所示流程執行下蹲跳動作,則所測得的加速度數據即會相應地依序包括上述第一、第二、第三E、第四及第五加速度變化區間。 In an embodiment of the present invention, the first, second, third, fourth and The fifth acceleration change interval can be understood as corresponding to the static stage, the hand down stage, the hand up stage, the stagnation stage and the landing stage, respectively. That is, if the user 301 has correctly performed the squat jump action according to the process shown in FIG. 3 , the measured acceleration data will correspondingly include the above-mentioned first, second, third E, fourth and fifth acceleration change intervals in sequence.

在圖4A中,所示的加速度數據可經區分為加速度變化區間411~415。由圖4A可看出,加速度變化區間411中的加速度數據的平均值及標準差分別小於對應的平均值門限值(例如0.5g,g為重力加速度)及標準差門限值(例如0.1g);加速度變化區間412中的加速度數據至少包括低於第一加速度門限值(例如-25m/s^2)的加速度數據。加速度變化區間413中的加速度數據至少包括低於第二加速度門限值(例如-125m/s^2)的加速度數據。加速度變化區間415中的加速度數據至少包括高於第三加速度門限值(例如25m/s^2)的加速度數據。由此可知,加速度變化區間411~415可分別對應於上述第一、第二、第三、第四及第五加速度變化區間。在此情況下,圖4A中的加速度數據可經判定為包括特定加速度變化區間。 In FIG. 4A , the acceleration data shown can be divided into acceleration change intervals 411 - 415 . It can be seen from FIG. 4A that the average value and standard deviation of the acceleration data in the acceleration change interval 411 are respectively less than the corresponding average value threshold value (for example, 0.5g, g is the acceleration of gravity) and the standard deviation threshold value (for example, 0.1g); the acceleration data in the acceleration change interval 412 includes at least acceleration data lower than the first acceleration threshold value (for example, -25m/s^2). The acceleration data in the acceleration change interval 413 at least includes acceleration data lower than the second acceleration threshold value (eg -125m/s^2). The acceleration data in the acceleration variation interval 415 at least includes acceleration data higher than a third acceleration threshold (for example, 25 m/s^2). It can be seen that the acceleration change intervals 411 - 415 may respectively correspond to the above-mentioned first, second, third, fourth and fifth acceleration change intervals. In this case, the acceleration data in FIG. 4A may be determined to include a specific acceleration variation interval.

在另一實施例中,加速度變化區間僅需考慮上述對應於靜止階段之第一加速度變化區間,並考慮以下所述之特定速度變化區間以及特定位移變化區間,以判定運動數據符合下蹲跳動作的動作特徵 In another embodiment, the acceleration change interval only needs to consider the above-mentioned first acceleration change interval corresponding to the static stage, and consider the following specific speed change interval and specific displacement change interval to determine that the motion data conforms to the action characteristics of the squat jumping action

在本發明的實施例中,所考慮的特定速度變化區間例如 可依序包括第一速度變化區間、第二速度變化區間、第三速度變化區間、第四速度變化區間、第五速度變化區間及第六速度變化區間。在一實施例中,第一速度變化區間中的速度數據至少包括低於第一速度門限值(例如-0.4m/s)的第一速度數據。第二速度變化區間至少包括高於第二速度門限值(例如0.5m/s)的第二速度數據。第三速度變化區間至少包括低於一第三速度門限值(例如-1m/s)的第三速度數據。第四速度變化區間至少包括高於第四速度門限值(例如1.5m/s)的第四速度數據。第五速度變化區間至少包括低於第五速度門限值(例如0.25m/s)的第五速度數據。第六速度變化區間至少包括高於第六速度門限值(例如0.25m/s)的第六速度數據。 In an embodiment of the present invention, the specific speed variation interval considered is such as It may sequentially include a first speed change interval, a second speed change interval, a third speed change interval, a fourth speed change interval, a fifth speed change interval and a sixth speed change interval. In an embodiment, the speed data in the first speed change interval at least includes first speed data lower than a first speed threshold (eg -0.4m/s). The second speed change interval includes at least second speed data higher than a second speed threshold (for example, 0.5 m/s). The third speed range at least includes third speed data lower than a third speed threshold (eg -1m/s). The fourth speed change interval includes at least fourth speed data higher than a fourth speed threshold (for example, 1.5 m/s). The fifth speed change interval includes at least fifth speed data lower than a fifth speed threshold (for example, 0.25m/s). The sixth speed change interval includes at least sixth speed data higher than a sixth speed threshold (for example, 0.25m/s).

在本發明的實施例中,若使用者301已正確依圖3所示流程執行下蹲跳動作,則所測得的速度數據即會相應地依序包括上述第一、第二、第三、第四、第五及第六速度變化區間。 In the embodiment of the present invention, if the user 301 has correctly performed the squat jumping action according to the flow shown in FIG. 3 , the measured speed data will correspondingly include the above-mentioned first, second, third, fourth, fifth and sixth speed change intervals in sequence.

在圖4B中,所示的速度數據可經區分為速度變化區間421~426。由圖4B可看出,速度變化區間421(其例如對應於一波谷)至少包括低於第一速度門限值(例如-0.4m/s)的速度數據421a。速度變化區間422(其例如是接續於速度變化區間421的一波峰)至少包括高於第二速度門限值(例如0.5m/s)的速度數據422a。速度變化區間423(其例如是接續於速度變化區間422的一波谷)至少包括低於第三速度門限值(例如-1m/s)的速度數據423a。速度變化區間424(其例如是接續於速度變化區間423的一波峰) 至少包括高於第四速度門限值(例如1.5m/s)的速度數據424a。速度變化區間425(其例如是出現於速度變化區間424後的一波谷)至少包括低於第五速度門限值(例如0.25m/s)的速度數據425a。速度變化區間426(其例如是接續於速度變化區間425的一波峰)至少包括高於第六速度門限值(例如0.25m/s)的速度數據426a。由此可知,速度變化區間421~426可分別對應於上述第一、第二、第三、第四、第五及第六速度變化區間。在此情況下,圖4B中的速度數據可經判定為包括特定速度變化區間。 In FIG. 4B , the speed data shown can be divided into speed change intervals 421 - 426 . It can be seen from FIG. 4B that the speed variation interval 421 (corresponding to, for example, a trough) at least includes speed data 421 a lower than the first speed threshold (eg, −0.4 m/s). The speed change interval 422 (eg, a peak following the speed change interval 421 ) at least includes speed data 422 a higher than a second speed threshold (eg, 0.5 m/s). The speed change interval 423 (for example, a trough following the speed change interval 422 ) at least includes speed data 423 a lower than a third speed threshold (for example, −1 m/s). Speed change interval 424 (which is, for example, a peak following the speed change interval 423) At least speed data 424a higher than the fourth speed threshold (for example, 1.5m/s) is included. The speed change interval 425 (for example, a trough appearing after the speed change interval 424 ) at least includes speed data 425 a lower than a fifth speed threshold value (for example, 0.25 m/s). The speed change interval 426 (eg, a peak following the speed change interval 425 ) at least includes speed data 426 a higher than a sixth speed threshold (eg, 0.25 m/s). It can be seen that, the speed change intervals 421 - 426 may respectively correspond to the above-mentioned first, second, third, fourth, fifth and sixth speed change intervals. In this case, the speed data in FIG. 4B may be determined to include a certain speed change interval.

在本發明的實施例中,所考慮的特定位移變化區間例如可依序包括第一位移變化區間、第二位移變化區間、第三位移變化區間、第四位移變化區間、第五位移變化區間及第六位移變化區間。在一實施例中,第一位移變化區間中的位移數據至少包括低於第一位移門限值(例如-0.1m)的第一位移數據。第二位移變化區間中的位移數據至少包括高於第一位移數據的第二位移數據。第三位移變化區間中的位移數據至少包括低於第一位移數據的第三位移數據。第四位移變化區間至少包括高於第一位移數據的第四位移數據。第五位移變化區間至少包括高於第四位移數據的第五位移數據。第六位移變化區間至少包括低於第五位移數據的第六位移數據。 In an embodiment of the present invention, the considered specific displacement change interval may include, for example, the first displacement change interval, the second displacement change interval, the third displacement change interval, the fourth displacement change interval, the fifth displacement change interval, and the sixth displacement change interval. In an embodiment, the displacement data in the first displacement variation interval at least includes first displacement data lower than a first displacement threshold (eg, −0.1 m). The displacement data in the second displacement change interval includes at least second displacement data higher than the first displacement data. The displacement data in the third displacement change interval includes at least third displacement data lower than the first displacement data. The fourth displacement change interval includes at least fourth displacement data higher than the first displacement data. The fifth displacement variation interval includes at least fifth displacement data higher than the fourth displacement data. The sixth displacement change interval includes at least sixth displacement data lower than the fifth displacement data.

在本發明的實施例中,若使用者301已正確依圖3所示流程執行下蹲跳動作,則所測得的位移數據即會相應地依序包括上述第一、第二、第三、第四、第五及第六位移變化區間。 In the embodiment of the present invention, if the user 301 has correctly performed the squat jump action according to the process shown in FIG. 3 , the measured displacement data will correspondingly include the above-mentioned first, second, third, fourth, fifth and sixth displacement change intervals in sequence.

在圖4C中,所示的位移數據可經區分為位移變化區間431~436。由圖4C可看出,位移變化區間431(其例如對應於一波谷)中的位移數據至少包括低於第一位移門限值(例如-0.1m)的位移數據431a。位移變化區間432(其例如對應於接續於位移變化區間431的一波峰)中的位移數據至少包括高於位移數據431a的位移數據432a。位移變化區間433(其例如對應於接續於位移變化區間432的一波谷)中的位移數據至少包括低於位移數據431a的位移數據433a。位移變化區間434(其例如對應於接續於位移變化區間433的一波峰)至少包括高於位移數據431a的位移數據434a。位移變化區間435(其例如對應於出現於位移變化區間434之後的一波峰)至少包括高於位移數據434a的位移數據435a。位移變化區間436(其例如對應於接續於位移變化區間435的一波谷)至少包括低於位移數據435a的位移數據436a。由此可知,位移變化區間431~436可分別對應於上述第一、第二、第三、第四、第五及第六位移變化區間。在此情況下,圖4C中的位移數據可經判定為包括特定位移變化區間。 In FIG. 4C , the displacement data shown can be divided into displacement change intervals 431 - 436 . It can be seen from FIG. 4C that the displacement data in the displacement change interval 431 (for example, corresponding to a trough) includes at least displacement data 431 a lower than the first displacement threshold value (for example, −0.1 m). The displacement data in the displacement variation interval 432 (which corresponds to, for example, a peak following the displacement variation interval 431 ) at least includes displacement data 432a higher than the displacement data 431a. The displacement data in the displacement variation interval 433 (which corresponds to, for example, a trough following the displacement variation interval 432 ) at least includes displacement data 433 a lower than the displacement data 431 a. The displacement variation interval 434 (for example, corresponding to a peak following the displacement variation interval 433 ) at least includes displacement data 434 a higher than the displacement data 431 a. The displacement variation interval 435 (for example, corresponding to a peak appearing after the displacement variation interval 434 ) at least includes displacement data 435 a higher than the displacement data 434 a. The displacement variation interval 436 (eg, corresponding to a trough following the displacement variation interval 435 ) at least includes displacement data 436 a lower than the displacement data 435 a. It can be seen that the displacement variation intervals 431 to 436 may respectively correspond to the above-mentioned first, second, third, fourth, fifth and sixth displacement variation intervals. In this case, the displacement data in FIG. 4C may be determined to include a specific displacement variation interval.

在一實施例中,反應於判定加速度數據包括上述特定加速度變化區間、速度數據包括上述特定速度變化區間,且位移數據包括上述特定位移變化區間,處理器104可相應地判定上述運動數據符合下蹲跳動作的動作特徵,反之則可判定上述運動數據不符合下蹲跳動作的動作特徵,但可不限於此。 In one embodiment, in response to determining that the acceleration data includes the above-mentioned specific acceleration change interval, the velocity data includes the above-mentioned specific speed change interval, and the displacement data includes the above-mentioned specific displacement change interval, the processor 104 may accordingly determine that the above-mentioned motion data conforms to the action characteristics of the squat jump action, otherwise, it may determine that the above-mentioned motion data does not conform to the action characteristics of the squat jump action, but it is not limited thereto.

在步驟S220中,反應於判定運動數據符合特定動作(例 如下蹲跳動作)的動作特徵,處理器104基於運動數據預估使用者301執行至少一其他動作的至少一運動表現。 In step S220, in response to determining that the motion data conforms to a specific action (for example The processor 104 predicts at least one movement performance of the user 301 performing at least one other movement based on the movement characteristics such as the squat jump movement.

在第一實施例中,所考慮的其他動作例如包括立定跳遠(standing long jump,SLJ)動作,但可不限於此。在此情況下,處理器104例如可基於運動數據判定使用者301執行下蹲跳動作的跳躍高度。 In the first embodiment, other movements considered include, for example, standing long jump (SLJ) movements, but are not limited thereto. In this case, the processor 104 may, for example, determine the jump height of the squat jump performed by the user 301 based on the motion data.

舉例而言,在取得圖4C的位移數據之後,處理器104例如可基於位移數據435a(其例如對應於滯空階段的最高點)及位移數據436a(其例如對應於落地階段)之間的差異而得知使用者301執行下蹲跳動作的跳躍高度(以H1表示),但可不限於此。 For example, after obtaining the displacement data in FIG. 4C , the processor 104 may, for example, know the jump height (indicated by H1) of the user 301 performing the squat jump action based on the difference between the displacement data 435a (for example, corresponding to the highest point of the air stage) and the displacement data 436a (for example, corresponding to the landing stage), but it is not limited thereto.

之後,處理器104可取得下蹲跳動作與立定跳遠動作之間的一第一相關性,並基於跳躍高度H1以及上述第一相關性預估使用者301執行立定跳遠動作的跳躍距離(以D1表示)。 After that, the processor 104 can obtain a first correlation between the squat jump and the standing long jump, and estimate the jumping distance (indicated by D1 ) of the user 301 performing the standing long jump based on the jump height H1 and the first correlation.

在第一實施例中,下蹲跳動作與立定跳遠動作之間的第一相關性可體現為此二動作的運動表現之間的迴歸關係。 In the first embodiment, the first correlation between the squat jump action and the standing long jump action can be embodied as a regression relationship between the sports performance of the two actions.

請參照圖5A,其是依據本發明第一實施例繪示的下蹲跳動作與立定跳遠動作的運動表現之間的迴歸關係示意圖。 Please refer to FIG. 5A , which is a schematic diagram of the regression relationship between the squat jumping motion and the standing long jump motion according to the first embodiment of the present invention.

在圖5A中,所示的每個資料點例如可以是對應與使用者301屬同一群體(例如同屬於某一年齡範圍、性別等)的不同使用者或者可以是不分群體的不同使用者執行下蹲跳動作與立定跳遠動作的運動表現。在第一實施例中,處理器104可對圖5A中的資料點進行迴歸分析,以取得下蹲跳動作與立定跳遠動作的運動表 現之間的迴歸關係作為上述第一相關性。 In FIG. 5A , each data point shown may be, for example, corresponding to different users who belong to the same group as the user 301 (for example, belong to a certain age range, gender, etc.) or may be different users regardless of groups performing squat jumps and standing long jumps. In the first embodiment, the processor 104 can perform regression analysis on the data points in FIG. 5A to obtain the motion table of the squat jump and the standing long jump. The regressive relationship between the two is used as the first correlation mentioned above.

在第一實施例中,上述第一相關性可表徵為第一線性迴歸模型510,而其可具有「a*H1+b=D1」的形式,其中a、b為迴歸係數,但可不限於此。例如,在圖5A情境中,a約為3.3858,b約為87.3836。 In the first embodiment, the above-mentioned first correlation can be characterized as a first linear regression model 510, which can have the form of "a*H1+b=D1", where a and b are regression coefficients, but not limited thereto. For example, in the scenario of Figure 5A, a is about 3.3858, and b is about 87.3836.

基此,在處理器104測得跳躍高度H1之後,可將其代入第一線性迴歸模型510,以預估跳躍距離D1。 Based on this, after the jump height H1 is measured by the processor 104, it can be substituted into the first linear regression model 510 to estimate the jump distance D1.

在第二實施例中,除了立定跳遠動作之外,所考慮的其他動作還可包括對應於指定距離(例如50m)的短跑衝刺動作(以下簡稱為50公尺短跑),但可不限於此。在此情況下,處理器104例如可取得下蹲跳動作、立定跳遠動作及50公尺短跑之間的第二相關性。之後,處理器104基於跳躍高度H1、跳躍距離D1及上述第二相關性預估使用者301以短跑衝刺動作完成指定距離的跑步時間(以T1代稱)。 In the second embodiment, in addition to the standing long jump action, other actions considered may also include a sprint action corresponding to a specified distance (eg, 50m) (hereinafter referred to as a 50-meter sprint), but it is not limited thereto. In this case, the processor 104 may, for example, obtain the second correlation between the squat jump, the standing long jump, and the 50-meter sprint. Afterwards, the processor 104 estimates the running time (referred to as T1 ) for the user 301 to complete the specified distance with the sprint action based on the jump height H1 , the jump distance D1 and the above-mentioned second correlation.

在第二實施例中,處理器104可先取得下蹲跳動作與50公尺短跑之間的相關性(其可體現為下蹲跳動作與50公尺短跑作之間的運動表現之間的迴歸關係)以及立定跳遠動作與50公尺短跑之間的相關性(其可體現為立定跳遠動作與50公尺短跑作之間的運動表現之間的迴歸關係),再據以得到上述第二相關性。 In the second embodiment, the processor 104 can first obtain the correlation between the squat jump action and the 50-meter sprint (which can be embodied as the regression relationship between the sports performance between the squat jump action and the 50-meter sprint action) and the correlation between the standing long jump action and the 50-meter sprint (which can be expressed as the regression relationship between the standing long jump action and the 50-meter sprint action), and then obtain the above-mentioned second correlation.

請參照圖5B及圖5C,其中圖5B是依據圖5A繪示的下蹲跳動作與50公尺短跑的運動表現之間的迴歸關係示意圖,而圖5C是依據圖5A及圖5B繪示的立定跳遠動作與50公尺短跑作之 間的運動表現之間的迴歸關係示意圖。 Please refer to Figure 5B and Figure 5C, wherein Figure 5B is a schematic diagram of the regression relationship between the squat jump action and the 50-meter sprint shown in Figure 5A, and Figure 5C is based on the standing long jump action and the 50-meter sprint shown in Figure 5A and Figure 5B Schematic diagram of the regression relationship between exercise performance.

在圖5B中,所示的每個資料點例如可以是對應與使用者301屬同一群體的不同使用者或是不分群體的不同使用者執行下蹲跳動作與50公尺短跑的運動表現。在圖5C中,所示的每個資料點例如是對應與使用者301屬同一群體的不同使用者或是不分群體的不同使用者執行立定跳遠動作與50公尺短跑的運動表現。 In FIG. 5B , each data point shown may be, for example, corresponding to different users who belong to the same group as the user 301 or different users regardless of the group performing squat jumps and 50-meter sprints. In FIG. 5C , each data point shown corresponds to the sports performance of standing long jump and 50-meter sprint performed by different users who belong to the same group as user 301 or different users regardless of groups.

在第二實施例中,處理器104可對圖5B中的資料點進行迴歸分析,以取得下蹲跳動作與50公尺短跑的運動表現之間的迴歸關係,其例如可表徵為第二線性迴歸模型520。另外,處理器104可對圖5C中的資料點進行迴歸分析,以取得立定跳遠動作與50公尺短跑的運動表現之間的迴歸關係,其例如可表徵為第三線性迴歸模型530。 In the second embodiment, the processor 104 may perform regression analysis on the data points in FIG. 5B to obtain the regression relationship between the squat jumping action and the sports performance of the 50-meter sprint, which may be characterized as a second linear regression model 520 , for example. In addition, the processor 104 can perform regression analysis on the data points in FIG. 5C to obtain the regression relationship between the standing long jump action and the sports performance of the 50-meter sprint, which can be characterized as a third linear regression model 530 , for example.

在第二實施例中,處理器104例如可基於第一、第二、第三線性迴歸模型510、520、530進行多元迴歸分析,以取得下蹲跳動作、立定跳遠動作及50公尺短跑之間的第二相關性。 In the second embodiment, for example, the processor 104 may perform multiple regression analysis based on the first, second, and third linear regression models 510 , 520 , and 530 to obtain the second correlation among the squat jump, the standing long jump, and the 50-meter sprint.

在第二實施例中,上述第二相關性可表徵為第四線性迴歸模型,而其可具有「c*H1+d*D1+e=T1」的形式,其中c、d、e為迴歸係數,但可不限於此。在圖5A及5B情境中,c約為-0.03586,d約為-0.0199,e約為12.9281。 In the second embodiment, the above-mentioned second correlation can be characterized as a fourth linear regression model, and it can have the form of "c*H1+d*D1+e=T1", wherein c, d, e are regression coefficients, but not limited thereto. In the scenarios of Figures 5A and 5B, c is about -0.03586, d is about -0.0199, and e is about 12.9281.

在第三實施例中,處理器104可取得下蹲跳動作與50公尺短跑之間的相關性(其可體現為下蹲跳動作與50公尺短跑作之間的運動表現之間的迴歸關係),以取得下蹲跳動作及50公尺短 跑之間的一第三相關性,其例如可表徵為上述第二線性迴歸模型520。 In the third embodiment, the processor 104 can obtain the correlation between the squat jump action and the 50-meter sprint (which can be embodied as a regression relationship between the sports performance between the squat jump action and the 50-meter sprint action), so as to obtain the squat jump action and the 50-meter sprint A third correlation between runs, which can be characterized, for example, by the second linear regression model 520 described above.

基此,在處理器104測得跳躍高度H1並預估跳躍距離D1之後,可將其代入上述第四線性迴歸模型,以預估跑步時間T1。在另一實施例中,也可將其代入上述第二線性迴歸模型,以預估跑步時間T1 Based on this, after the processor 104 measures the jump height H1 and estimates the jump distance D1, it can be substituted into the above-mentioned fourth linear regression model to estimate the running time T1. In another embodiment, it can also be substituted into the above-mentioned second linear regression model to estimate running time T1

在本發明一實施例中,上述用於下蹲跳動作、立定跳遠動作及50公尺短跑之間相關之線性迴歸模型可由不同群體之使用者的運動表現資料分別產生。而在另一實施例中,上述線性迴歸模型也可由不分群體之使用者的運動表現資料產生。 In an embodiment of the present invention, the above-mentioned linear regression models for the correlation among the squat jump, the standing long jump and the 50-meter sprint can be respectively generated from the sports performance data of different groups of users. In another embodiment, the above-mentioned linear regression model can also be generated from the sports performance data of users regardless of groups.

在本發明一實施例中,使用者可透過使用者介面,選擇適合自己的群體,處理器104可根據使用者的選擇,選擇對應的線性迴歸模型。在另一實施例中,處理器104可根據使用者預先輸入的個人資料,例如包括但不限於年齡、性別等資訊,而自動選擇適合使用者的線性迴歸模型。 In an embodiment of the present invention, the user can select a suitable group through the user interface, and the processor 104 can select the corresponding linear regression model according to the user's selection. In another embodiment, the processor 104 can automatically select a linear regression model suitable for the user according to the personal information input by the user in advance, such as but not limited to age, gender and other information.

經實驗,透過本發明所預估而得的跳躍距離D1及跑步時間T1的統計誤差值皆低於10%。 Through experiments, the statistical error values of jumping distance D1 and running time T1 estimated by the present invention are both lower than 10%.

本發明更提供一種用於執行運動表現預估方法的電腦可讀儲存媒體。所述電腦可讀儲存媒體由在其中實施的多個程式指令(例如,設定程式指令及部署程式指令)構成。這些程式指令可被載入到運動表現預估裝置100中並由運動表現預估裝置100執行,以執行上述運動表現預估方法及運動表現預估裝置100的 功能。 The invention further provides a computer-readable storage medium for implementing the sports performance estimation method. The computer-readable storage medium is comprised of a plurality of program instructions (eg, setup program instructions and deploy program instructions) implemented therein. These program instructions can be loaded into the athletic performance estimating device 100 and executed by the athletic performance estimating device 100, so as to perform the above-mentioned athletic performance estimating method and the athletic performance estimating device 100. Function.

綜上所述,本發明實施例可基於使用者的運動數據是否符合所考慮的特定動作(例如下蹲跳動作)的動作特徵。若是,則本發明實施例可進一步基於上述運動數據預估使用者執行其他動作(例如立定跳遠動作及/或50公尺短跑)的運動表現。藉此,即便使用者因故而無法執行某些動作,本發明實施例仍可基於使用者在其他動作的運動數據來預估使用者這些無法執行的動作的運動表現,進而提升運動偵測的便利性及彈性。 To sum up, the embodiment of the present invention may be based on whether the user's motion data conforms to the motion characteristics of the considered specific motion (eg squat jump motion). If so, the embodiment of the present invention may further estimate the user's sports performance in performing other actions (such as standing long jump and/or 50-meter sprint) based on the above-mentioned exercise data. In this way, even if the user is unable to perform certain actions for some reason, the embodiment of the present invention can still predict the user's exercise performance of these unable to perform actions based on the user's exercise data in other actions, thereby improving the convenience and flexibility of motion detection.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application as the criterion.

S210,S220:步驟 S210, S220: steps

Claims (17)

一種運動表現預估方法,適於一運動表現預估裝置,包括: 透過一穿戴式裝置收集一使用者在執行一特定動作過程中的運動數據;以及 反應於判定該運動數據符合該特定動作的動作特徵,基於該運動數據預估該使用者執行至少一其他動作的至少一運動表現。 A method for estimating sports performance, suitable for a device for estimating sports performance, comprising: Collecting motion data of a user during a specific movement through a wearable device; and In response to determining that the motion data conforms to the motion characteristics of the specific motion, at least one motion performance of the user performing at least one other motion is estimated based on the motion data. 如請求項1所述的方法,其中該穿戴式裝置穿戴於該使用者的手部。The method as claimed in claim 1, wherein the wearable device is worn on the user's hand. 如請求項1所述的方法,其中該特定動作為下蹲跳動作,該運動數據包括該使用者執行該特定動作過程中的加速度數據、速度數據及位移數據,且所述方法更包括: 反應於判定該加速度數據包括特定加速度變化區間、該速度數據包括特定速度變化區間,且該位移數據包括特定位移變化區間,判定該運動數據符合該特定動作的該動作特徵。 The method as described in claim 1, wherein the specific action is a squat jumping action, the motion data includes acceleration data, velocity data, and displacement data during the user's execution of the specific action, and the method further includes: In response to determining that the acceleration data includes a specific acceleration change interval, the velocity data includes a specific speed change interval, and the displacement data includes a specific displacement change interval, it is determined that the motion data conforms to the motion feature of the specific motion. 如請求項3所述的方法,其中該些特定加速度變化區間包括一第一加速度變化區間;以及該第一加速度變化區間中的該加速度數據的平均值及標準差分別小於對應的一平均值門限值及一標準差門限值。The method as claimed in claim 3, wherein the specific acceleration change intervals include a first acceleration change interval; and an average value and a standard deviation of the acceleration data in the first acceleration change interval are respectively smaller than a corresponding average value threshold and a standard deviation threshold. 如請求項3所述的方法,其中該些特定速度變化區間包括一第一速度變化區間、一第二速度變化區間、一第三速度變化區間、一第四速度變化區間、一第五速度變化區間及一第六速度變化區間; 該第一速度變化區間中的該速度數據至少包括低於一第一速度門限值的一第一速度數據,該第二速度變化區間中的該速度數據至少包括高於一第二速度門限值的一第二速度數據,該第三速度變化區間中的該速度數據至少包括低於一第三速度門限值的一第三速度數據,該第四速度變化區間至少包括高於一第四速度門限值的一第四速度數據,該第五速度變化區間至少包括低於一第五速度門限值的一第五速度數據,該第六速度變化區間至少包括高於一第六速度門限值的一第六速度數據。 The method as described in claim 3, wherein the specific speed change intervals include a first speed change interval, a second speed change interval, a third speed change interval, a fourth speed change interval, a fifth speed change interval and a sixth speed change interval; The speed data in the first speed change interval includes at least a first speed data lower than a first speed threshold value, the speed data in the second speed change interval includes at least a second speed data higher than a second speed threshold value, the speed data in the third speed change interval includes at least a third speed data lower than a third speed threshold value, the fourth speed change interval includes at least a fourth speed data higher than a fourth speed threshold value, the fifth speed change interval includes at least a fifth speed data lower than a fifth speed threshold value, and the sixth speed change interval includes at least one speed data. A sixth speed data higher than a sixth speed threshold. 如請求項3所述的方法,其中該些特定位移變化區間包括一第一位移變化區間、一第二位移變化區間、一第三位移變化區間、一第四位移變化區間、一第五位移變化區間及一第六位移變化區間; 該第一位移變化區間中的該位移數據至少包括低於一第一位移門限值的一第一位移數據,該第二位移變化區間中的該位移數據至少包括高於該第一位移數據的一第二位移數據,該第三位移變化區間中的該位移數據至少包括低於該第一位移數據的一第三位移數據,該第四位移變化區間至少包括高於該第一位移數據的一第四位移數據,該第五位移變化區間至少包括高於該第四位移數據的一第五位移數據,該第六位移變化區間至少包括低於該第五位移數據的一第六位移數據。 The method as described in claim 3, wherein the specific displacement change intervals include a first displacement change interval, a second displacement change interval, a third displacement change interval, a fourth displacement change interval, a fifth displacement change interval and a sixth displacement change interval; The displacement data in the first displacement variation interval includes at least a first displacement data lower than a first displacement threshold value, the displacement data in the second displacement variation interval includes at least a second displacement data higher than the first displacement data, the displacement data in the third displacement variation interval includes at least a third displacement data lower than the first displacement data, the fourth displacement variation interval includes at least a fourth displacement data higher than the first displacement data, the fifth displacement variation interval includes at least a fifth displacement data higher than the fourth displacement data, and the sixth displacement variation interval includes at least a sixth displacement data lower than the fifth displacement data. displacement data. 如請求項1所述的方法,其中該特定動作為下蹲跳動作,該至少一其他動作包括一立定跳遠動作,且基於該運動數據預估該使用者執行該至少一其他動作的該至少一運動表現的步驟包括: 基於該運動數據判定該使用者執行該下蹲跳動作的一跳躍高度; 取得該下蹲跳動作與該立定跳遠動作之間的一第一相關性;以及 基於該跳躍高度以及該第一相關性預估該使用者執行該立定跳遠動作的一跳躍距離。 The method according to claim 1, wherein the specific action is a squat jump action, the at least one other action includes a standing long jump action, and the step of estimating the at least one athletic performance of the user performing the at least one other action based on the exercise data includes: determining a jump height for the user to perform the squat jump action based on the motion data; obtaining a first correlation between the squat jump motion and the standing long jump motion; and A jump distance for the user to perform the standing long jump action is estimated based on the jump height and the first correlation. 如請求項7所述的方法,其中該至少一其他動作更包括對應於一指定距離的一短跑衝刺動作,且所述方法更包括: 取得該下蹲跳動作、該立定跳遠動作及該短跑衝刺動作之間的一第二相關性;以及 基於該跳躍高度、該跳躍距離及該第二相關性預估該使用者以該短跑衝刺動作完成該指定距離的一跑步時間。 The method according to claim 7, wherein the at least one other action further comprises a sprint action corresponding to a specified distance, and the method further comprises: obtaining a second correlation between the squat jump motion, the standing long jump motion, and the sprint motion; and A running time for the user to complete the specified distance with the sprint action is estimated based on the jump height, the jump distance and the second correlation. 一種運動表現預估裝置,包括: 一儲存電路,其儲存一程式碼;以及 一處理器,其耦接該儲存電路,並存取該程式碼以執行: 透過一穿戴式裝置收集一使用者在執行一特定動作過程中的運動數據;以及 反應於判定該運動數據符合該特定動作的動作特徵,基於該運動數據預估該使用者執行至少一其他動作的至少一運動表現。 A device for predicting sports performance, comprising: a storage circuit storing a program code; and A processor, coupled to the storage circuit, accesses the program code to execute: Collecting motion data of a user during a specific movement through a wearable device; and In response to determining that the motion data conforms to the motion characteristics of the specific motion, at least one motion performance of the user performing at least one other motion is estimated based on the motion data. 如請求項9所述的裝置,其中該穿戴式裝置穿戴於該使用者的手部。The device as claimed in claim 9, wherein the wearable device is worn on the user's hand. 如請求項9所述的裝置,其中該特定動作為下蹲跳動作,該運動數據包括該使用者執行該特定動作過程中的加速度數據、速度數據及位移數據,且該處理器更執行: 反應於判定該加速度數據包括特定加速度變化區間、該速度數據包括特定速度變化區間,且該位移數據包括特定位移變化區間,判定該運動數據符合該特定動作的該動作特徵。 The device as described in claim 9, wherein the specific action is a squat jumping action, the motion data includes acceleration data, velocity data, and displacement data during the user's execution of the specific action, and the processor further executes: In response to determining that the acceleration data includes a specific acceleration change interval, the velocity data includes a specific speed change interval, and the displacement data includes a specific displacement change interval, it is determined that the motion data conforms to the motion feature of the specific motion. 如請求項11所述的裝置,其中該些特定加速度變化區間包括一第一加速度變化區間;以及該第一加速度變化區間中的該加速度數據的平均值及標準差分別小於對應的一平均值門限值及一標準差門限值。The device as claimed in claim 11, wherein the specific acceleration change intervals include a first acceleration change interval; and an average value and a standard deviation of the acceleration data in the first acceleration change interval are respectively smaller than a corresponding average value threshold and a standard deviation threshold. 如請求項11所述的裝置,其中該些特定速度變化區間包括一第一速度變化區間、一第二速度變化區間、一第三速度變化區間、一第四速度變化區間、一第五速度變化區間及一第六速度變化區間; 該第一速度變化區間中的該速度數據至少包括低於一第一速度門限值的一第一速度數據,該第二速度變化區間中的該速度數據至少包括高於一第二速度門限值的一第二速度數據,該第三速度變化區間中的該速度數據至少包括低於一第三速度門限值的一第三速度數據,該第四速度變化區間至少包括高於一第四速度門限值的一第四速度數據,該第五速度變化區間至少包括低於一第五速度門限值的一第五速度數據,該第六速度變化區間至少包括高於一第六速度門限值的一第六速度數據。 The device as described in claim 11, wherein the specific speed change intervals include a first speed change interval, a second speed change interval, a third speed change interval, a fourth speed change interval, a fifth speed change interval and a sixth speed change interval; The speed data in the first speed change interval includes at least a first speed data lower than a first speed threshold value, the speed data in the second speed change interval includes at least a second speed data higher than a second speed threshold value, the speed data in the third speed change interval includes at least a third speed data lower than a third speed threshold value, the fourth speed change interval includes at least a fourth speed data higher than a fourth speed threshold value, the fifth speed change interval includes at least a fifth speed data lower than a fifth speed threshold value, and the sixth speed change interval includes at least a fifth speed data value lower than a fifth speed threshold value. A sixth speed data higher than a sixth speed threshold. 如請求項11所述的裝置,其中該些特定位移變化區間包括一第一位移變化區間、一第二位移變化區間、一第三位移變化區間、一第四位移變化區間、一第五位移變化區間及一第六位移變化區間; 該第一位移變化區間中的該位移數據至少包括低於一第一位移門限值的一第一位移數據,該第二位移變化區間中的該位移數據至少包括高於該第一位移數據的一第二位移數據,該第三位移變化區間中的該位移數據至少包括低於該第一位移數據的一第三位移數據,該第四位移變化區間至少包括高於該第一位移數據的一第四位移數據,該第五位移變化區間至少包括高於該第四位移數據的一第五位移數據,該第六位移變化區間至少包括低於該第五位移數據的一第六位移數據。 The device as described in claim 11, wherein the specific displacement change intervals include a first displacement change interval, a second displacement change interval, a third displacement change interval, a fourth displacement change interval, a fifth displacement change interval and a sixth displacement change interval; The displacement data in the first displacement variation interval includes at least a first displacement data lower than a first displacement threshold value, the displacement data in the second displacement variation interval includes at least a second displacement data higher than the first displacement data, the displacement data in the third displacement variation interval includes at least a third displacement data lower than the first displacement data, the fourth displacement variation interval includes at least a fourth displacement data higher than the first displacement data, the fifth displacement variation interval includes at least a fifth displacement data higher than the fourth displacement data, and the sixth displacement variation interval includes at least a sixth displacement data lower than the fifth displacement data. displacement data. 如請求項9所述的裝置,其中該特定動作為下蹲跳動作,該至少一其他動作包括一立定跳遠動作,且該處理器執行: 基於該運動數據判定該使用者執行該下蹲跳動作的一跳躍高度; 取得該下蹲跳動作與該立定跳遠動作之間的一第一相關性;以及 基於該跳躍高度以及該第一相關性預估該使用者執行該立定跳遠動作的一跳躍距離。 The device according to claim 9, wherein the specific action is a squat jump action, the at least one other action includes a standing long jump action, and the processor executes: determining a jump height for the user to perform the squat jump action based on the motion data; obtaining a first correlation between the squat jump motion and the standing long jump motion; and A jump distance for the user to perform the standing long jump action is estimated based on the jump height and the first correlation. 如請求項15所述的裝置,其中該至少一其他動作更包括對應於一指定距離的一短跑衝刺動作,且該處理器更執行: 取得該下蹲跳動作、該立定跳遠動作及該短跑衝刺動作之間的一第二相關性;以及 基於該跳躍高度、該跳躍距離及該第二相關性預估該使用者以該短跑衝刺動作完成該指定距離的一跑步時間。 The device according to claim 15, wherein the at least one other action further includes a sprint action corresponding to a specified distance, and the processor further executes: obtaining a second correlation between the squat jump motion, the standing long jump motion, and the sprint motion; and A running time for the user to complete the specified distance with the sprint action is estimated based on the jump height, the jump distance and the second correlation. 一種電腦可讀儲存媒體,該電腦可讀儲存媒體對可執行電腦程式進行記錄,該可執行電腦程式由一運動表現預估裝置載入以執行以下步驟: 透過一穿戴式裝置收集一使用者在執行一特定動作過程中的運動數據;以及 反應於判定該運動數據符合該特定動作的動作特徵,基於該運動數據預估該使用者執行至少一其他動作的至少一運動表現。 A computer-readable storage medium, the computer-readable storage medium records an executable computer program, and the executable computer program is loaded by an exercise performance estimation device to perform the following steps: Collecting motion data of a user during a specific movement through a wearable device; and In response to determining that the motion data conforms to the motion characteristics of the specific motion, at least one motion performance of the user performing at least one other motion is estimated based on the motion data.
TW111124409A 2022-06-30 2022-06-30 Method and device for predicting sports performance, and computer readable storage medium TWI807893B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111124409A TWI807893B (en) 2022-06-30 2022-06-30 Method and device for predicting sports performance, and computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111124409A TWI807893B (en) 2022-06-30 2022-06-30 Method and device for predicting sports performance, and computer readable storage medium

Publications (2)

Publication Number Publication Date
TWI807893B true TWI807893B (en) 2023-07-01
TW202402356A TW202402356A (en) 2024-01-16

Family

ID=88149335

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111124409A TWI807893B (en) 2022-06-30 2022-06-30 Method and device for predicting sports performance, and computer readable storage medium

Country Status (1)

Country Link
TW (1) TWI807893B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110477924A (en) * 2018-05-14 2019-11-22 吕艺光 Adaptive motion posture sensing System and method for
JP2020004331A (en) * 2018-07-02 2020-01-09 国立研究開発法人産業技術総合研究所 Motion creation method, apparatus and program
TW202008962A (en) * 2018-08-15 2020-03-01 財團法人工業技術研究院 State of exercise evaluation method
TW202220728A (en) * 2020-08-24 2022-06-01 美商海舟公司 Rank listing of competitive performances of exercise on a machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110477924A (en) * 2018-05-14 2019-11-22 吕艺光 Adaptive motion posture sensing System and method for
JP2020004331A (en) * 2018-07-02 2020-01-09 国立研究開発法人産業技術総合研究所 Motion creation method, apparatus and program
TW202008962A (en) * 2018-08-15 2020-03-01 財團法人工業技術研究院 State of exercise evaluation method
TW202220728A (en) * 2020-08-24 2022-06-01 美商海舟公司 Rank listing of competitive performances of exercise on a machine

Also Published As

Publication number Publication date
TW202402356A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
US10900991B2 (en) Calculating pace and energy expenditure from athletic movement attributes
JP6564328B2 (en) Extending gameplay with physical activity monitoring devices
US10126427B2 (en) Estimating local motion of physical exercise
JP6403696B2 (en) Physical activity monitoring device and method
US8951165B2 (en) Personal training with physical activity monitoring device
US10898112B2 (en) Gait posture meter and program
RU2628155C2 (en) Device, method and computer program for reconstruction of object motion
RU2011134908A (en) DETERMINING USER ENERGY COSTS
CN104937376A (en) Systems and methods for frequency-based stride length correction in a pedometer device
US11039665B2 (en) Receiving feedback based on pressure sensor data and movement data
JP6496996B2 (en) Exercise quantity calculation method, exercise quantity calculation device, and portable device
WO2019047410A1 (en) Method and apparatus for counting the number of steps
JP2018158087A (en) Exercise test evaluation system, exercise test evaluation device, exercise test evaluation method, and computer program
TWI807893B (en) Method and device for predicting sports performance, and computer readable storage medium
JP7122696B2 (en) Factor estimation system and factor estimation method
JP7173102B2 (en) Information processing device, information processing method and program
CN117372467A (en) Athletic performance estimation method, apparatus and computer readable storage medium
US20240001195A1 (en) Method and device for predicting sports performance, and computer readable storage medium
CN115804580A (en) Electronic device, algorithm selection method, and recording medium
US20240049982A1 (en) Estimation of Individual's Maximum Oxygen Uptake, VO2MAX
CN113749650A (en) Motion information acquisition method and device
US20230389824A1 (en) Estimating gait event times & ground contact time at wrist
JP6817998B2 (en) Methods and machines for rehabilitation
TWI488671B (en) Athletic Condition Assessment System Based on Classifier
CN118606771A (en) Turning detection method and device, nonvolatile storage medium and wearable equipment