TWI807427B - Real-time system reliability evaluation method - Google Patents

Real-time system reliability evaluation method Download PDF

Info

Publication number
TWI807427B
TWI807427B TW110135141A TW110135141A TWI807427B TW I807427 B TWI807427 B TW I807427B TW 110135141 A TW110135141 A TW 110135141A TW 110135141 A TW110135141 A TW 110135141A TW I807427 B TWI807427 B TW I807427B
Authority
TW
Taiwan
Prior art keywords
reliability
workstation
vector
machine
machines
Prior art date
Application number
TW110135141A
Other languages
Chinese (zh)
Other versions
TW202314416A (en
Inventor
林義貴
張秉宸
黃鼎翔
Original Assignee
國立陽明交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立陽明交通大學 filed Critical 國立陽明交通大學
Priority to TW110135141A priority Critical patent/TWI807427B/en
Publication of TW202314416A publication Critical patent/TW202314416A/en
Application granted granted Critical
Publication of TWI807427B publication Critical patent/TWI807427B/en

Links

Images

Landscapes

  • General Factory Administration (AREA)
  • Hardware Redundancy (AREA)

Abstract

A real-time system reliability evaluation method, the method adapted to a factory that includes a plurality of workstations to be implemented using a computing device, each of workstations has a plurality of machines, each of machines is related to a time period, the time period has N time points, N is positive integer and N ≧ 2, the method comprising steps of: (a) the computing device calculates machine reliability of each machine in each time points of the N time points according to a Weibull distribution (b) the computing device calculates the corresponding state probability of each workstation in multiple states according to a binomial distribution and the reliabilities of the machines, and generates a capacity probability table (c) the computing device calculates the capacity probability table and a minimal system level vector using a recursive sum of disjoint products to obtain a system reliability.

Description

即時系統可靠度評估方法 Real-time System Reliability Evaluation Method

本發明是有關於一種系統可靠度評估方法,特別是指一種即時系統可靠度評估方法。 The invention relates to a system reliability evaluation method, in particular to a real-time system reliability evaluation method.

先前技術多與可靠度評估與系統可靠度監測相關,包含定義系統之可靠度評估方式及監測方式等。先前技術著重於考慮不同限制條件下的可靠度計算。以下列舉四個例子:第一例,在給定傳輸時間的限制條件下,評估系統可靠度;第二例,在不同時間點,節點能成功傳送或失敗的機率分布有所不同,第三例,計算系統能完成傳輸的機率作為可靠度;第四例,考慮一電腦網路,在資料間傳輸時會因電壓不穩定、磁場或閃電等意外,造成封包傳送出現遺漏,為了提高整體電腦網路系統的可靠度,先前技術將該電腦網路分成主要傳輸路徑及備援傳輸路徑,在主路徑出現錯誤時,可以利用備援傳輸路徑維持整個系統的運作。 Most of the previous technologies are related to reliability assessment and system reliability monitoring, including defining system reliability assessment methods and monitoring methods. Prior art focuses on reliability calculation under different constraints. Four examples are listed below: the first example is to evaluate the reliability of the system under the given transmission time limit; the second example is that at different time points, the distribution of the probability of nodes being able to successfully transmit or fail is different; the third example is to calculate the probability that the system can complete the transmission as the reliability; the fourth example is to consider a computer network. When data is transmitted due to accidents such as voltage instability, magnetic field or lightning, packet transmission may be missed. In the event of an error, a backup transmission path can be used to maintain the operation of the entire system.

然而,先前技術具有以下缺點:並無考量到元件可靠度會隨時間流動而衰退,因而元件在各個狀態的機率分布並非隨著時間變化,而是呈現固定不動。這樣的考量並不符合現實,得到的可靠度評估因而不準確。 However, the prior art has the following disadvantages: it does not take into account that the component reliability will deteriorate with time, so the probability distribution of the components in each state does not change with time, but is fixed. Such considerations do not correspond to reality, and the resulting reliability assessment is thus inaccurate.

因此,本發明的目的,即在各元件會損壞之情況下,提供一種考量時間運行下的即時系統可靠度評估方法。 Therefore, the object of the present invention is to provide a real-time system reliability evaluation method under consideration of time operation when each component will be damaged.

於是,本發明即時系統可靠度評估方法,由一運算裝置來執行以適用於一工廠,該工廠包含多個工作站,每一工作站包括多個機台,每一機台相關於一時間段,該時間段包括N個時間點,N≧2,N是正整數,該方法包含以下步驟(a)~(c)。 Therefore, the real-time system reliability evaluation method of the present invention is implemented by a computing device to be applicable to a factory. The factory includes a plurality of workstations, each workstation includes a plurality of machines, and each machine is associated with a time period. The time period includes N time points, N≧2, and N is a positive integer. The method includes the following steps (a) to (c).

步驟(a)該運算裝置根據一韋伯分配之可靠度機率函數計算每一機台在該N個時間點的每一時間點下的機台可靠度。 Step (a) The calculation device calculates the machine reliability of each machine at each time point of the N time points according to a reliability probability function of Weber distribution.

步驟(b)該運算裝置根據一二項分配式及該等機台可靠度計算每一工作站在多個狀態下分別對應的狀態機率,並產生一產能機率表,該等狀態相關於機台可用數 Step (b) The computing device calculates the state probabilities corresponding to each workstation in a plurality of states according to a binomial distribution formula and the reliability of the machines, and generates a production probability table, and these states are related to the available number of machines

步驟(c)該運算裝置將該產能機率表及一最小系統級向量代入一機率計算演算法進行計算,求得一系統可靠度,該最小系統級向量相關於滿足一訂單的最少機台數。 Step (c) The computing device substitutes the capacity probability table and a minimum system-level vector into a probability calculation algorithm for calculation to obtain a system reliability. The minimum system-level vector is related to the minimum number of machines to satisfy an order.

本發明的功效在於:根據該韋伯分配之可靠度機率函 數,將時間參數納入機台可靠度作考量,接著根據該二項分配式及該等機台可靠度計算每一工作站在多個狀態下分別對應的狀態機率,求得該產能機率表,將該產能機率表及該最小系統級向量代入該機率計算演算法進行計算,求得該系統可靠度。該系統可靠度會隨時間流動而衰退,符合現實結果。 The effect of the present invention is that: according to the reliability probability function of the Weber distribution The time parameter is included in the reliability of the machine for consideration, and then according to the binomial distribution formula and the reliability of the machines, the state probability corresponding to each workstation in multiple states is calculated to obtain the production probability table, and the production probability table and the minimum system-level vector are substituted into the probability calculation algorithm for calculation, and the system reliability is obtained. The reliability of the system will decline over time, which is consistent with the realistic results.

100~104:找出最小系統即向量的步驟 100~104: Steps to find out the minimum system is the vector

201~205:計算每一時間點的系統可靠度的步驟 201~205: Steps to calculate the system reliability at each time point

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是本發明即時系統可靠度評估方法的一實施例的一流程圖;圖2是該實施例的一流程圖;圖3是該實施例的一工廠的工作站作業的網路拓樸圖;及圖4是該實施例的一系統可靠度與時間的關係圖。 Other features and effects of the present invention will be clearly presented in the implementation manner with reference to the drawings, wherein: Fig. 1 is a flow chart of an embodiment of the real-time system reliability evaluation method of the present invention; Fig. 2 is a flow chart of the embodiment; Fig. 3 is a network topology diagram of the workstation operation of a factory of the embodiment; and Fig. 4 is a relation diagram of a system reliability and time of the embodiment.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same numerals.

參閱圖1,圖1是一流程圖,說明根據本發明即時系統可靠度評估方法的一實施例的步驟,由步驟100開始。本發明即時系 統可靠度評估方法,由一運算裝置來執行以適用於一工廠,該工廠包含多個工作站,每一工作站包括多個機台,每一機台相關於一時間段,該時間段包括N個時間點,N≧2,N是正整數。 Referring to FIG. 1 , FIG. 1 is a flowchart illustrating the steps of an embodiment of the real-time system reliability assessment method according to the present invention, starting from step 100 . The instant system of the present invention The system reliability evaluation method is implemented by a computing device and is suitable for a factory. The factory includes a plurality of workstations, each workstation includes a plurality of machines, and each machine is related to a time period. The time period includes N time points, N≧2, and N is a positive integer.

在步驟101中,一運算裝置根據一載流向量網路模型進行計算,求得一需求率。該載流向量網路模型包括一訂單的需求量D及一時間段t。 In step 101, a computing device calculates according to a current-carrying vector network model to obtain a demand rate. The current-carrying vector network model includes an order demand D and a time period t.

參閱圖3,圖3是該實施例的一工廠的工作站作業網路拓樸圖。該工廠是一製鞋廠。a1~a20是該工廠的工作站,在統計學上可以稱作弧(arc)。a1:縫製鞋舌頂部及鞋舌底部(stitch tongue top & tongue bottom)、a2:縫合繫帶環(stitch lace loop)、a3:縫製鞋舌頂部及鞋舌襯裡(stitch tongue top & tongue lining)、a4:黏合鞋舌底部(cement tongue bottom)、a5:黏貼鞋舌頂部及鞋舌底部(stick tongue top & tongue bottom)、a6:通過馬赫捶平鞋舌頂部及鞋舌底部(hammer flat by mach tongue top & tongue bottom)、a7:滾動鞋舌泡棉(rolling tongue foam)、a8:滾動鞋舌(rolling tongue)、a9:黏貼鞋舌泡棉及翻鞋舌襯裡(stick tongue foam & turn over tongue lining)、a10:通過馬赫捶平鞋舌(hammer flat by mach tongue)、a11:縫鞋舌邊線(stitch edge line tongue)、a12:縫製肩裡和鞋領口襯(stitch quarter lining & collar lining)、a13:使鞋面及 鞋身側片內外腰彎曲(zigzag vamp & quarter med lat)、a14:縫合接縫(stitch seams foxing)、a15:通過馬赫捶平肩裡和鞋領口襯(hammer flat by mach quarter lining & collar lining)、a16:通過馬赫捶平且黏合接縫(cement and hammer flat by mach foxing)、a17:黏貼尼龍(stick nylon)、a18:剪裁鬆緊帶(cut elastic lace)、a19:縫製鞋眼攀帶至鞋眼片(stitch eyestay lat loop to eyestay)、a20:將鞋眼攀帶打孔(punching eyestay lat loop)。 Referring to FIG. 3, FIG. 3 is a topological diagram of a workstation operation network of a factory in this embodiment. The factory is a shoe factory. a 1 ~ a 20 are the workstations of the factory, which can be called arcs (arc) in statistics. a 1 :縫製鞋舌頂部及鞋舌底部(stitch tongue top & tongue bottom)、a 2 :縫合繫帶環(stitch lace loop)、a 3 :縫製鞋舌頂部及鞋舌襯裡(stitch tongue top & tongue lining)、a 4 :黏合鞋舌底部(cement tongue bottom)、a 5 :黏貼鞋舌頂部及鞋舌底部(stick tongue top & tongue bottom)、a 6 :通過馬赫捶平鞋舌頂部及鞋舌底部(hammer flat by mach tongue top & tongue bottom)、a 7 :滾動鞋舌泡棉(rolling tongue foam)、a 8 :滾動鞋舌(rolling tongue)、a 9 :黏貼鞋舌泡棉及翻鞋舌襯裡(stick tongue foam & turn over tongue lining)、a 10 :通過馬赫捶平鞋舌(hammer flat by mach tongue)、a 11 :縫鞋舌邊線(stitch edge line tongue)、a 12 :縫製肩裡和鞋領口襯(stitch quarter lining & collar lining)、a 13 :使鞋面及鞋身側片內外腰彎曲(zigzag vamp & quarter med lat)、a 14 :縫合接縫(stitch seams foxing)、a 15 :通過馬赫捶平肩裡和鞋領口襯(hammer flat by mach quarter lining & collar lining)、a 16 :通過馬赫捶平且黏合接縫(cement and hammer flat by mach foxing)、a 17 :黏貼尼龍(stick nylon)、a 18 :剪裁鬆緊帶(cut elastic lace)、a 19 :縫製鞋眼攀帶至鞋眼片(stitch eyestay lat loop to eyestay)、a 20 :將鞋眼攀帶打孔(punching eyestay lat loop)。

該載流向量網路模型包括該訂單的需求量D=50000雙鞋,該時間段t=50小時。該需求率d=D/t=50000/50=1000,也就是說為了滿足該載流向量網路模型,每小時需生產1000雙鞋。 The current-carrying vector network model includes the demand of the order D=50,000 pairs of shoes, and the time period t=50 hours. The demand rate d=D/t=50000/50=1000, that is to say, in order to satisfy the current-carrying vector network model, 1000 pairs of shoes need to be produced per hour.

在步驟102中,該運算裝置根據該需求率d及每一機台對應的產量進行計算,求得一流向量F=(f1 ,f2 ,...,fm)的所有可行解。該流向量F相關於找尋符合最接近每一工作站的機台數與每一機台對應的產量的乘積的最小值的數值。該載流向量網路模型還包括一工廠數量及一工作站數量。該流向量F=(f1 ,f2 ,...,fm),m是正整數,表示工廠數量,該流向量的所有可行解滿足

Figure 110135141-A0305-02-0007-1
,並滿足fj
Figure 110135141-A0305-02-0007-36
Lj
Figure 110135141-A0305-02-0007-2
,j=1,2,...,m,i是正整數,表示工作站的排序,Wi是正整數,表示在第i工作站的所有機台數,ki表示在第i工作站的機台對應的產能,ai表示第i工作站,Pj表示第j工廠。 In step 102, the calculation device calculates according to the demand rate d and the output corresponding to each machine, and obtains all feasible solutions of the flow vector F=(f 1 , f 2 , ... , f m ). The flow vector F is related to finding the value closest to the minimum value of the product of the number of machines in each workstation and the output corresponding to each machine. The current-carrying vector network model also includes a factory quantity and a workstation quantity. The flow vector F=(f 1 , f 2 , ... , f m ), m is a positive integer representing the number of factories, and all feasible solutions of the flow vector satisfy
Figure 110135141-A0305-02-0007-1
, and satisfy f j
Figure 110135141-A0305-02-0007-36
L j ,
Figure 110135141-A0305-02-0007-2
, j=1,2,...,m, i is a positive integer, indicating the sorting of workstations, W i is a positive integer, indicating the number of all machines at the i-th workstation, k i is the corresponding production capacity of the i-th workstation, a i is the i-th workstation, and P j is the j-th factory.

Figure 110135141-A0305-02-0008-3
Figure 110135141-A0305-02-0008-3

表1是各工作站資料及韋伯參數表,α、β是韋伯參數,由歷史資料得到。 Table 1 is the data of each workstation and the table of Weber parameters. α and β are Weber parameters obtained from historical data.

參閱圖3與表1,該工廠數量是1,該工作站數量是20。則該流向量F=(f1)。i=1,f1

Figure 110135141-A0305-02-0008-37
3×420;i=2,f2
Figure 110135141-A0305-02-0008-38
5×280;i=3,f3
Figure 110135141-A0305-02-0008-39
6×230;...;i=20,f20
Figure 110135141-A0305-02-0008-40
6×240。有一可行解F=(f1)=(1000)。 Referring to Figure 3 and Table 1, the number of factories is 1, and the number of workstations is 20. Then the flow vector F=(f 1 ). i=1, f 1
Figure 110135141-A0305-02-0008-37
3×420; i=2, f 2
Figure 110135141-A0305-02-0008-38
5×280; i=3, f 3
Figure 110135141-A0305-02-0008-39
6×230;...;i=20, f 20
Figure 110135141-A0305-02-0008-40
6×240. There is a feasible solution F=(f 1 )=(1000).

在步驟103中,該運算裝置將該流向量F的所有可行解分別轉換為多個最小系統級向量(minimal system level vector,MSLV)的候選者X=(x1 ,x2 ,...,xn),n=1,2,...,i。每一最小系統級向量的候選者X相關於該流向量與每一機台對應的產量的比值。每一最小系統級向量的候選者X的分量

Figure 110135141-A0305-02-0008-4
。在步驟104中,該運算裝置利用一向量比較法找尋該等最小系統級向量的候選者X中的最小系統級向量。該向量比較法是相關於一向量空間中, 各向量彼此比較大小之方法。 In step 103, the computing device converts all feasible solutions of the flow vector F into a plurality of minimal system level vector (MSLV) candidates X=(x 1 , x 2 , ... , x n ), n=1,2,...,i. The candidate X for each minimum system-level vector is related to the ratio of the flow vector to the output corresponding to each machine. Components of candidate X for each smallest system-level vector
Figure 110135141-A0305-02-0008-4
. In step 104, the computing device uses a vector comparison method to find the smallest system-level vector among the candidates X of the smallest system-level vectors. The vector comparison method is related to the method of comparing the sizes of the vectors with each other in a vector space.

參閱圖3與表1,由於只有一座工廠,所以無需利用該比較法找尋該等最小系統級向量的候選者X中的最小系統級向量。該可行解F=(f1)=(1000)轉換為滿足一小時生產1000雙鞋的最小系統級向量X1=(x1 ,x2 ,...,x20)。需注意的是,該最小系統級向量X1的分量xi是取可滿足一小時生產1000雙鞋的最小整數。該最小系統級向量X1在工廠中又可稱作是最小產能下界向量。i=1,

Figure 110135141-A0305-02-0009-5
3;i=2,
Figure 110135141-A0305-02-0009-7
;i=3,
Figure 110135141-A0305-02-0009-8
;...;i=1,
Figure 110135141-A0305-02-0009-9
。該最小系統級向量X1=(x1 ,x2 ,...,x20)=(3,4,5,5,4,3,3,4,4,3,3,3,3,4,4,4,4,3,4,5)。參閱圖2與表1,是該實施例的一流程圖。在步驟201中,該運算裝置根據一韋伯分配之可靠度機率函數計算每一機台在該N個時間點的每一時間點下的機台可靠度。該步驟201中的韋伯分配之可靠度機率函數即該機台可靠度
Figure 110135141-A0305-02-0009-10
,i是正整數,表示工作站的排序,t*是每一時間點,α、β是韋伯參數,預設同一工作站下的每一機台可靠度是一樣的。利用For迴路(For Loop)計算t*=1小時,每一工作站的每一機台可靠度,如下所示。
Figure 110135141-A0305-02-0009-11
Figure 110135141-A0305-02-0009-12
;r3(1)=
Figure 110135141-A0305-02-0010-13
;...;
Figure 110135141-A0305-02-0010-14
。t*=2小時,每一工作站的每一機台可靠度,如下所示。
Figure 110135141-A0305-02-0010-15
Figure 110135141-A0305-02-0010-16
Figure 110135141-A0305-02-0010-17
;...;
Figure 110135141-A0305-02-0010-18
。 Referring to FIG. 3 and Table 1, since there is only one factory, there is no need to use the comparison method to find the minimum system-level vector among the candidates X of the minimum system-level vectors. The feasible solution F=(f 1 )=(1000) is transformed into the minimum system-level vector X 1 =(x 1 , x 2 , ... , x 20 ) that satisfies the requirement of producing 1000 pairs of shoes in one hour. It should be noted that the component xi of the minimum system-level vector X 1 is the smallest integer that can meet the requirement of producing 1000 pairs of shoes in one hour. The minimum system-level vector X 1 may also be referred to as the minimum capacity lower bound vector in the factory. i=1,
Figure 110135141-A0305-02-0009-5
3; i=2,
Figure 110135141-A0305-02-0009-7
;i=3,
Figure 110135141-A0305-02-0009-8
;...;i=1,
Figure 110135141-A0305-02-0009-9
. The minimum system-level vector X 1 =(x 1 , x 2 , ... , x 20 )=(3,4,5,5,4,3,3,4,4,3,3,3,3,4,4,4,4,3,4,5). Referring to FIG. 2 and Table 1, it is a flow chart of this embodiment. In step 201, the calculation device calculates the machine reliability of each machine at each time point of the N time points according to a reliability probability function of Weber distribution. The reliability probability function of the Weber distribution in the step 201 is the machine reliability
Figure 110135141-A0305-02-0009-10
, i is a positive integer, indicating the order of workstations, t * is each time point, α, β are Weber parameters, and the reliability of each machine under the same workstation is assumed to be the same. Use For Loop to calculate t*=1 hour, the reliability of each machine at each workstation, as shown below.
Figure 110135141-A0305-02-0009-11
;
Figure 110135141-A0305-02-0009-12
; r 3 (1) =
Figure 110135141-A0305-02-0010-13
;...;
Figure 110135141-A0305-02-0010-14
. t * = 2 hours, the reliability of each machine for each workstation, as shown below.
Figure 110135141-A0305-02-0010-15
;
Figure 110135141-A0305-02-0010-16
;
Figure 110135141-A0305-02-0010-17
;...;
Figure 110135141-A0305-02-0010-18
.

在步驟202中,該運算裝置根據一二項分配式及該等機台可靠度計算每一工作站在多個狀態下分別對應的狀態機率,並產生一產能機率表,該等狀態相關於機台可用數。該步驟202中的二項分配式即每一工作站在多個狀態下分別對應的狀態機率

Figure 110135141-A0305-02-0010-35
,yi是非負整數,表示在第i工作站的可工作機台數,Wi是正整數,表示在第i工作站的所有機台數,該產能機率表即是計算每一工作站在多個狀態下分別對應的狀態機率的結果。t*=1小時的產能機率表
Figure 110135141-A0305-02-0010-20
,i=1,2,...,20;yi=0,1,...,Wi,如以下的表2。 In step 202, the computing device calculates state probabilities corresponding to multiple states of each workstation according to a binomial distribution formula and the reliability of the machines, and generates a production probability table, and the states are related to the available number of machines. The binomial distribution in step 202 is the state probability corresponding to each workstation in multiple states
Figure 110135141-A0305-02-0010-35
, y i is a non-negative integer, indicating the number of workable machines at the i-th workstation, W i is a positive integer, indicating the number of all machines at the i-th workstation, and the productivity probability table is the result of calculating the state probabilities corresponding to each workstation in multiple states. t * = Production probability table for 1 hour
Figure 110135141-A0305-02-0010-20
, i=1 , 2 , ... , 20; y i =0 , 1 , ... , W i , as shown in Table 2 below.

Figure 110135141-A0305-02-0010-21
Figure 110135141-A0305-02-0010-21
Figure 110135141-A0305-02-0011-23
Figure 110135141-A0305-02-0011-23

t*=2小時的產能機率表

Figure 110135141-A0305-02-0011-25
,i=1,2,...,20;yi=0,1,...,Wi,如以下的表3。 t * = 2 hour capacity probability table
Figure 110135141-A0305-02-0011-25
, i=1 , 2 , ... , 20; y i =0 , 1 , ... , W i , as shown in Table 3 below.

Figure 110135141-A0305-02-0011-26
Figure 110135141-A0305-02-0011-26

在步驟203中,該運算裝置將該產能機率表及該最小系統級向量利用一遞迴不交合法(recursive sum of disjoint products,RSDP)進行計算,求得一系統可靠度,該最小系統級向量相關於滿足該訂單的最少機台數。該步驟203中的該系統可靠度

Figure 110135141-A0305-02-0012-27
,d表示該需求率,k是正整數,表示工廠數量,Xr表示第r工廠的最小系統級向量。t*=1小時的系統可靠度
Figure 110135141-A0305-02-0012-28
。在步驟204中,判斷該時間點t*是否小於最終時間點t,若是,則回到步驟201,繼續疊代,若否,則在步驟205中,輸出每一時間點的系統可靠度,也就是系統可靠度隨時間變化的資料,如圖4所示。 In step 203, the computing device calculates the production probability table and the minimum system-level vector using a recursive sum of disjoint products (RSDP) to obtain a system reliability. The minimum system-level vector is related to the minimum number of machines that satisfy the order. The system reliability in step 203
Figure 110135141-A0305-02-0012-27
, d represents the demand rate, k is a positive integer representing the number of factories, and X r represents the minimum system-level vector of the rth factory. t * = System reliability for 1 hour
Figure 110135141-A0305-02-0012-28
. In step 204, it is judged whether the time point t * is smaller than the final time point t, if yes, return to step 201, and continue to iterate, if not, then in step 205, output the system reliability at each time point, that is, the data of system reliability changing with time, as shown in Figure 4.

參閱圖4,該系統可靠度會隨時間流動而衰退,符合現實結果。以該系統可靠度作為指標,依照各工廠運轉的狀況設定該系統可靠度的門檻值,可作為維修與否的依據。 Referring to Figure 4, the reliability of the system will decline with time, which is in line with the actual results. Taking the reliability of the system as an indicator, the threshold value of the reliability of the system is set according to the operating conditions of each factory, which can be used as the basis for maintenance or not.

綜上所述,上述實施例具有以下優點:該系統可靠度考量時間因子,因此該系統可靠度會隨時間流動而衰退,符合現實結果。達成功效是該系統可靠度是一系統產能管理的績效指標,管理者可運用該指標評估該系統在限制條件下完成訂單需求的可能性,進而調整產能或即時維修。 To sum up, the above embodiments have the following advantages: the reliability of the system considers the time factor, so the reliability of the system will decline with time, which is in line with the actual results. Achieving efficacy is that the system reliability is a performance index of system capacity management. Managers can use this index to evaluate the possibility of the system fulfilling order requirements under limited conditions, and then adjust capacity or instant maintenance.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。 But the above are only embodiments of the present invention, and should not limit the scope of the present invention. All simple equivalent changes and modifications made according to the patent scope of the present invention and the content of the patent specification are still within the scope of the patent of the present invention.

201~205:計算每一時間點的系統可靠度的步驟 201~205: Steps to calculate the system reliability at each time point

Claims (7)

一種即時系統可靠度評估方法,由一運算裝置來執行以適用於一工廠,該工廠包含多個工作站,每一工作站包括多個機台,每一機台相關於一時間段,該時間段包括N個時間點,N≧2,N是正整數,該方法包含以下步驟:(s)該運算裝置根據一載流向量網路模型計算得出一最小系統級向量;其中,該步驟(s)還包含以下子步驟:(s1)~(s4);(s1)該運算裝置根據該載流向量網路模型進行計算,求得一需求率,該載流向量網路模型包括一訂單的需求量及該時間段;(s2)該運算裝置根據該需求率及每一機台對應的產量進行計算,求得一流向量的所有可行解,該流向量相關於找尋符合最接近每一工作站的機台數與每一機台對應的產量的乘積的最小值的數值,該載流向量網路模型還包括一工廠數量及一工作站數量;(s3)該運算裝置將該流向量的所有可行解分別轉換為多個最小系統級向量的候選者,每一最小系統級向量的候選者相關於該流向量與每一機台對應的產量的比值;及(s4)該運算裝置利用一向量比較法找尋該等最小系統級向量的候選者中的最小系統級向量;(a)該運算裝置根據一韋伯分配之可靠度機率函數計算每一機台在該N個時間點的每一時間點下的機台可靠度; (b)該運算裝置根據一二項分配式及該等機台可靠度計算每一工作站在多個狀態下分別對應的狀態機率,並產生一產能機率表,該等狀態相關於機台可用數;及(c)該運算裝置將該產能機率表及該最小系統級向量利用一遞迴不交合法進行計算,求得一系統可靠度,該最小系統級向量相關於滿足該訂單的最少機台數。 A real-time system reliability evaluation method is implemented by a computing device to be applicable to a factory. The factory includes a plurality of workstations, each workstation includes a plurality of machines, and each machine is related to a time period. The time period includes N time points, N≧2, and N is a positive integer. The current-carrying vector network model is calculated to obtain a demand rate, and the current-carrying vector network model includes the demand of an order and the time period; (s2) the computing device calculates according to the demand rate and the output corresponding to each machine, and obtains all feasible solutions of the flow vector. All feasible solutions of flow vectors are respectively converted into candidates of a plurality of minimum system-level vectors, each candidate of the minimum system-level vector is related to the ratio of the flow vector to the output corresponding to each machine; and (s4) the computing device uses a vector comparison method to find the minimum system-level vector among the candidates of the minimum system-level vectors; (a) the computing device calculates the machine reliability of each machine at each time point of the N time points according to a reliability probability function of Weber distribution; (b) the computing device calculates the state probabilities corresponding to each workstation in a plurality of states according to a binomial distribution formula and the machine reliability, and generates a capacity probability table, and the states are related to the available number of machines; and (c) the computing device calculates the capacity probability table and the minimum system-level vector using a recursive disjoint method to obtain a system reliability, and the minimum system-level vector is related to the minimum number of machines that satisfy the order. 如請求項1所述的即時系統可靠度評估之方法,其中,該步驟(a)中的韋伯分配之可靠度機率函數即該機台可靠度
Figure 110135141-A0305-02-0015-29
,i是正整數,表示工作站的排序,t*是每一時間點,α、β是韋伯參數,預設同一工作站下的每一機台可靠度是一樣的。
The method for evaluating real-time system reliability as described in claim item 1, wherein, the reliability probability function of the Weber distribution in the step (a) is the reliability of the machine
Figure 110135141-A0305-02-0015-29
, i is a positive integer, indicating the order of workstations, t * is each time point, α, β are Weber parameters, and the reliability of each machine under the same workstation is assumed to be the same.
如請求2所述的即時系統可靠度評估方法,其中,該步驟(b)中的二項分配式即每一工作站在多個狀態下分別對應的狀態機率
Figure 110135141-A0305-02-0015-30
,yi是非負整數,表示在第i工作站的可工作機台數,Wi是正整數,表示在第i工作站的所有機台數,該產能機率表即是計算每一工作站在多個狀態下分別對應的狀態機率的結果。
The instant system reliability evaluation method as described in request 2, wherein, the binomial distribution formula in the step (b) is the state probability corresponding to each workstation in multiple states
Figure 110135141-A0305-02-0015-30
, y i is a non-negative integer, indicating the number of workable machines at the i-th workstation, W i is a positive integer, indicating the number of all machines at the i-th workstation, and the productivity probability table is the result of calculating the state probabilities corresponding to each workstation in multiple states.
如請求項3所述的即時系統可靠度評估方法,其中,該步驟(c)中的該系統可靠度
Figure 110135141-A0305-02-0015-31
,d表示一需求率,k是正整數,表示工廠數量,Xr表示第r工廠的最小系統級向量。
The instant system reliability evaluation method as described in claim 3, wherein, the system reliability in the step (c)
Figure 110135141-A0305-02-0015-31
, d represents a demand rate, k is a positive integer representing the number of factories, and X r represents the minimum system-level vector of the rth factory.
如請求項1所述的即時系統可靠度評估方法,其中,該子步驟(s1)中的該需求率d=D/t,D表示該訂單的需求量,t表示該時間段。 The real-time system reliability evaluation method as described in claim item 1, wherein the demand rate d=D/t in the sub-step (s1), D represents the demand quantity of the order, and t represents the time period. 如請求項5所述的即時系統可靠度評估方法,其中,該子步驟(s2)中的該流向量F=(f1 ,f2 ,...,fm),m是正整數,表示工廠數量,該流向量的所有可行解滿足
Figure 110135141-A0305-02-0016-34
,並滿足fj
Figure 110135141-A0305-02-0016-41
Lj
Figure 110135141-A0305-02-0016-32
,j=1,2,...,m,i是正整數,表示工作站的排序,Wi是正整數,表示在第i工作站的所有機台數,ki表示在第i工作站的機台對應的產能,ai表示第i工作站,Pj表示第j工廠。
The instant system reliability evaluation method as described in claim item 5, wherein, the flow vector F=(f 1 , f 2 , ... , f m ) in the sub-step (s2), m is a positive integer representing the number of factories, and all feasible solutions of the flow vector satisfy
Figure 110135141-A0305-02-0016-34
, and satisfy f j
Figure 110135141-A0305-02-0016-41
L j ,
Figure 110135141-A0305-02-0016-32
, j=1,2,...,m, i is a positive integer, indicating the sorting of workstations, W i is a positive integer, indicating the number of all machines at the i-th workstation, k i is the corresponding production capacity of the i-th workstation, a i is the i-th workstation, and P j is the j-th factory.
如請求項6所述的即時系統可靠度評估方法,其中,該子步驟(s3)中的每一最小系統級向量的候選者X=(x1 ,x2 ,...,xn),n=1,2,...,i,每一最小系統級向量的候選者的分量
Figure 110135141-A0305-02-0016-33
The instant system reliability assessment method as described in Claim 6, wherein, in the sub-step (s3), each candidate of the minimum system-level vector X=(x 1 , x 2 , ... , x n ), n=1, 2, ..., i, the components of each minimum system-level vector candidate
Figure 110135141-A0305-02-0016-33
.
TW110135141A 2021-09-22 2021-09-22 Real-time system reliability evaluation method TWI807427B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110135141A TWI807427B (en) 2021-09-22 2021-09-22 Real-time system reliability evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110135141A TWI807427B (en) 2021-09-22 2021-09-22 Real-time system reliability evaluation method

Publications (2)

Publication Number Publication Date
TW202314416A TW202314416A (en) 2023-04-01
TWI807427B true TWI807427B (en) 2023-07-01

Family

ID=86943347

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110135141A TWI807427B (en) 2021-09-22 2021-09-22 Real-time system reliability evaluation method

Country Status (1)

Country Link
TW (1) TWI807427B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201042560A (en) * 2009-05-27 2010-12-01 Univ Nat Taiwan Science Tech System feasible duration evaluation method for project management in budget and time restriction
TW201324388A (en) * 2011-12-02 2013-06-16 Univ Nat Taiwan Science Tech System reliability evaluation method for manufacture network
US8886475B2 (en) * 2009-09-25 2014-11-11 Abb Research Ltd Reliability calculation for Substation Automation systems
WO2021052777A1 (en) * 2019-09-18 2021-03-25 Siemens Aktiengesellschaft System, apparatus and method for predicting attributes of an asset
TWI739635B (en) * 2020-10-20 2021-09-11 國立陽明交通大學 Reliability evaluation method of multi-state distributed network system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201042560A (en) * 2009-05-27 2010-12-01 Univ Nat Taiwan Science Tech System feasible duration evaluation method for project management in budget and time restriction
US8886475B2 (en) * 2009-09-25 2014-11-11 Abb Research Ltd Reliability calculation for Substation Automation systems
TW201324388A (en) * 2011-12-02 2013-06-16 Univ Nat Taiwan Science Tech System reliability evaluation method for manufacture network
WO2021052777A1 (en) * 2019-09-18 2021-03-25 Siemens Aktiengesellschaft System, apparatus and method for predicting attributes of an asset
TWI739635B (en) * 2020-10-20 2021-09-11 國立陽明交通大學 Reliability evaluation method of multi-state distributed network system

Also Published As

Publication number Publication date
TW202314416A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
US10380498B1 (en) Platform services to enable one-click execution of the end-to-end sequence of modeling steps
CN110609759B (en) Fault root cause analysis method and device
TWI712900B (en) Distributed cluster training method and device
US20200272923A1 (en) Identifying locations and causes of network faults
WO2022134911A1 (en) Diagnosis method and apparatus, and terminal and storage medium
CN103605787B (en) Method and system for evaluating and analyzing relay protection
CN112256698B (en) Table relation automatic association method based on multi-hash function
JP2010182015A (en) Quality control system, quality control apparatus, and quality control program
CN111624986A (en) Case base-based fault diagnosis method and system
CN104270277A (en) Alarming information processing method and alarming information processing device
US20190146464A1 (en) Management method for object supply and management system using thereof
TWI807427B (en) Real-time system reliability evaluation method
JP6833660B2 (en) Reliability monitoring system, reliability evaluation method, and program
US10320636B2 (en) State information completion using context graphs
JP7181464B2 (en) Power estimation program, power estimation device and power estimation method
JP6399206B2 (en) Estimator management system
EP4050529A1 (en) System to invoke update of machine learning models on edge computeres
CN113852515B (en) Node state management and control method and system for digital twin network
CN116070906A (en) Risk identification and assessment method based on complex product supplier supply chain
US20230336409A1 (en) Combination rules creation device, method and program
CN114637649A (en) Alarm root cause analysis method and device based on OLTP database system
CN114065937A (en) Equipment fault diagnosis method and device and terminal equipment
Zhang et al. An efficient algorithm for web service selection based on local selection in large scale
CN113381902A (en) Method, apparatus and computer storage medium for detecting cross-regional network link
CN104965836A (en) Internet data processing method and apparatus