TWI806675B - 發射器與功率校正方法 - Google Patents

發射器與功率校正方法 Download PDF

Info

Publication number
TWI806675B
TWI806675B TW111123459A TW111123459A TWI806675B TW I806675 B TWI806675 B TW I806675B TW 111123459 A TW111123459 A TW 111123459A TW 111123459 A TW111123459 A TW 111123459A TW I806675 B TWI806675 B TW I806675B
Authority
TW
Taiwan
Prior art keywords
signal
transmitter
value
frequency band
power
Prior art date
Application number
TW111123459A
Other languages
English (en)
Other versions
TW202402002A (zh
Inventor
黃嘉暐
呂宜樺
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW111123459A priority Critical patent/TWI806675B/zh
Priority to US18/204,399 priority patent/US20230421271A1/en
Application granted granted Critical
Publication of TWI806675B publication Critical patent/TWI806675B/zh
Publication of TW202402002A publication Critical patent/TW202402002A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/13Monitoring; Testing of transmitters for calibration of power amplifiers, e.g. gain or non-linearity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Nonlinear Science (AREA)
  • Transmitters (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Cash Registers Or Receiving Machines (AREA)

Abstract

發射器包含發射器電路、校正電路以及發射器訊號強度指標電路。發射器電路耦接至電源節點以接收供應電壓,並經由天線發射輸出訊號。校正電路在發射器電路操作於第一頻帶時感測電源節點的電流以產生第一訊號以及在發射器電路操作於第二頻帶時感測電流以產生第二訊號,並根據第一訊號與第二訊號產生校正訊號。發射器訊號強度指標電路偵測輸出訊號的功率以產生第一偵測訊號,並根據校正訊號與第一偵測訊號產生第二偵測訊號。發射器電路根據第二偵測訊號調整輸出訊號的功率至目標功率。

Description

發射器與功率校正方法
本案是關於發射器,尤其是可利用電流感測來校正輸出功率的發射器以及功率校正方法。
在多數應用中,發射器的輸出功率須符合一目標功率,以使接收端可正確地辨識發射器所發出的訊號。然而,在實際應用中,當發射器的天線端的負載產生變動時,發射器的輸出功率也會出現變化,使得發射器的輸出功率不準確。
於一些實施態樣中,本案的目的之一為(但不限於)提供一種可藉由電流感測來自動校正輸出功率的發射器與功率校正方法,以改善先前技術的不足。
於一些實施態樣中,發射器包含發射器電路、校正電路以及發射器訊號強度指標電路。發射器電路耦接至一電源節點以接收一供應電壓,並經由一天線發射一輸出訊號。校正電路用以在該發射器電路操作於一第一頻帶時感測該電源節點的一電流以產生具有一第一數值的一第一訊號以及在該發射器電路操作於一第二頻帶時感測該電流以產生具有一第二數值的該第一訊號,並根據具有該第一數值的該第一訊號與具有該第二數值的該第一訊號產生一校正訊號。發射器訊號強度指標電路用以偵測該輸出訊號的功率以產生一第一偵測訊號,並根據該校正訊號與該第一偵測訊號產生一第二偵測訊號。該發射器電路更用以根據該第二偵測訊號調整該輸出訊號的功率至一目標功率。
於一些實施態樣中,功率校正方法包含下列操作:在一發射器電路操作於一第一頻帶時感測一電源節點的一電流以產生具有一第一數值的一第一訊號,其中該發射器電路耦接至該電源節點以接收一供應電壓,且該發射器電路經由一天線發射一輸出訊號;在該發射器電路操作於一第二頻帶時感測該電流以產生具有一第二數值的該第一訊號;根據具有該第一數值的該第一訊號與具有該第二數值的該第一訊號產生一校正訊號;偵測該輸出訊號的功率以產生一第一偵測訊號,並根據該校正訊號與該第一偵測訊號產生一第二偵測訊號;以及根據該第二偵測訊號調整該輸出訊號的功率至一目標功率。
有關本案的特徵、實作與功效,茲配合圖式作較佳實施例詳細說明如下。
本文所使用的所有詞彙具有其通常的意涵。上述之詞彙在普遍常用之字典中之定義,在本案的內容中包含任一於此討論的詞彙之使用例子僅為示例,不應限制到本案之範圍與意涵。同樣地,本案亦不僅以於此說明書所示出的各種實施例為限。
關於本文中所使用之『耦接』或『連接』,均可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,亦可指二或多個元件相互操作或動作。如本文所用,用語『電路系統』可為由至少一電路形成的單一系統,且用語『電路』可為由至少一個電晶體與/或至少一個主被動元件按一定方式連接以處理訊號的裝置。
如本文所用,用語『與/或』包含了列出的關聯項目中的一個或多個的任何組合。在本文中,使用第一、第二與第三等等之詞彙,是用於描述並辨別各個元件。因此,在本文中的第一元件也可被稱為第二元件,而不脫離本案的本意。為易於理解,於各圖式中的類似元件將被指定為相同標號。
圖1為根據本案一些實施例繪製的一種發射器100的示意圖。於一些實施例中,發射器100具有輸出功率調整機制,其可根據天線的回波損耗(return loss)對應地調整輸出功率,以使得發射器100的實際輸出功率可達到目標功率。
發射器100包含發射器電路120、校正電路140以及發射器訊號強度指標(transmitter signal strength indicator)電路160。發射器電路120可經由天線101發射輸出訊號VO。例如,發射器電路120可包含基頻電路(未示出)、數位類比轉換器電路(未示出)與具有可調增益的放大器電路(未示出)。基頻電路可產生輸入訊號,數位類比轉換器電路可轉換該輸入訊號以產生類比訊號,且放大器電路可放大該類比訊號以產生輸出訊號VO。發射器電路120可根據偵測訊號D2調整該放大器電路的放大增益,以調整輸出訊號VO的功率。於一些實施例中,發射器電路120耦接至電源節點N1以接收供應電壓VDD(例如為3.3伏特),並經由供應電壓VDD驅動。例如,前述的放大器電路可耦接至電源節點N1以接收供應電壓VDD,以經由供應電壓VDD驅動。上述關於發射器電路120的設置方式用於示例,且本案並不以此為限。
於一些實施例中,發射器電路120可操作於多個頻帶中之一者。例如,該些頻帶可包含(但不限於)第一頻帶(例如為低頻帶)、第二頻帶(例如為中頻帶)以及第三頻帶(例如為高頻帶),其中第一頻帶、第二頻帶與第三頻帶每一者的頻率範圍彼此不同,例如,第三頻帶的頻率範圍高於第二頻帶的頻率範圍,且第二頻帶的頻率範圍高於第一頻帶的頻率範圍。於一些實施例中,在5G應用中,第一頻帶可為通道36至通道64所對應的頻帶,第二頻帶可為通道100至通道144所對應的頻帶,且第三頻帶可為通道149至通道177所對應的頻帶。
校正電路140在發射器電路120操作在第一頻帶時感測自電源節點N1流入發射器電路120的電流I1以產生具有第一數值的訊號S1,並在發射器電路120操作在另一頻帶(例如為第二頻帶與第三頻帶中之一者)時感測電流I1以產生具有第二數值的訊號S1,並根據具有第一數值的訊號S1與具有第二數值的訊號S1產生校正訊號DC。於一些實施例中,若第二數值的解析度不夠高,校正電路140更在發射器電路120操作在其它頻帶(例如為第二頻帶與第三頻帶中的剩餘者)時感測電流I1以產生具有第三數值的訊號S1,並根據具有第一數值的訊號S1、具有第二數值的訊號S1與具有第三數值的訊號S1產生校正訊號DC。
於一些實施例中,校正電路140可根據具有第一數值的訊號S1、具有第二數值的訊號S1與/或具有第三數值的訊號S1決定天線101的阻抗偏移與一功率補償量,以產生校正訊號DC。在實際應用中,天線101的阻抗可能會因為環境條件、接收端裝置的負載效應等影響而出現偏移,進而使得輸出訊號VO的功率未能達到目標功率。天線101的阻抗偏移可經由觀察天線101的回波損耗來進行監測。關於此處的說明將於參照圖2說明。
於一些實施例中,校正電路140包含電流感測器電路141、記憶體電路142以及記憶體電路143。電流感測器電路141用以在發射器電路120操作於一特定頻帶時感測電流I1以產生具有對應數值的訊號S1。例如,電流感測器電路141可在發射器電路120操作於第一頻帶時感測電流I1以產生具有第一數值的訊號S1,並在發射器電路120操作於第二頻帶時感測電流I1以產生具有第二數值的訊號S1,並可在發射器電路120操作於第三頻帶時感測電流I1以產生具有第三數值的訊號S1。於一些實施例中,訊號S1可為(但不限於)一數位訊號。
記憶體電路142儲存有一查找表145,並根據上述具有不同數值的訊號S1來搜尋查找表145以產生訊號S2。於一些實施例中,記憶體電路142可根據具有不同數值的訊號S1(例如為具有第一數值的訊號S1與具有第二數值的訊號S1)搜尋查找表145,以決定天線101的阻抗偏移與功率補償量以產生訊號S2。關於查找表145的設置方式將於後參照圖4說明。於一些實施例中,記憶體電路142可由(但不限於)動態隨機存取記憶體實施。
記憶體電路143根據訊號S2產生校正訊號DC。於一些實施例中,記憶體電路143儲存有用來補償發射器訊號強度指標的多個代碼(code word),其可用來修正經發射器訊號強度指標電路160偵測到的輸出功率(其可能會因為發射器電路120的輸出阻抗偏移而存在誤差)。於一些實施例中,記憶體電路143可根據訊號S2自上述該些代碼選出一者,並將選出的代碼輸出為校正訊號DC。或者,在另一些實施例中,記憶體電路143可根據訊號S2調整所選出的代碼,並將調整後的代碼輸出為校正訊號DC。於一些實施例中,記憶體電路143可為一暫存器電路。於一些實施例中,記憶體電路143可由(但不限於)電子可程式熔絲(efuse)電路實施。
發射器訊號強度指標電路160用以偵測輸出訊號VO的功率並產生偵測訊號D1(相當於輸出訊號VO的發射器訊號強度指標),並根據校正訊號DC與偵測訊號D1產生偵測訊號D2。如此,發射器電路120可根據偵測訊號D2調整放大增益,以調整輸出訊號VO的功率至目標功率,以補償天線101的阻抗偏移所產生的功率變化。例如,發射器訊號強度指標電路160包含自動增益控制的機制,發射器電路120可根據偵測訊號D2來調整發射器電路120的放大器電路之放大增益,進而調整輸出訊號VO的功率。
於一些實施例中,發射器訊號強度指標電路160包含功率偵測器電路161、類比數位轉換電路162、加法器電路163以及減法器電路164。功率偵測器電路161偵測輸出訊號VO的功率以產生訊號S3。類比數位轉換電路162轉換訊號S3為偵測訊號D1。加法器電路163加總偵測訊號D1與校正訊號DC以產生訊號DC’。減法器電路164可自目標訊號DT減去訊號DC’以產生偵測訊號D2,其中目標訊號DT用來指示輸出訊號VO的目標功率。於一些實施例中,偵測訊號D1、校正訊號DC、訊號DC’、偵測訊號D2與/或目標訊號DT可為數位訊號。於一些實施例中,前述的多個訊號可為類比訊號,且發射器訊號強度指標電路160可在未使用類比數位轉換電路162下處理該些訊號。在另一些實施例中,該些訊號可實施為包含類比訊號與數位訊號的混合訊號組合。上述關於發射器訊號強度指標電路160的設置方式用於示例,且本案並不以此為限。
圖2為根據本案一些實施例繪製圖1的輸出訊號VO在天線101的回波損耗為6分貝(dB)時的功率變化之示意圖。如前所述,在實際應用中,天線101的阻抗出現偏移,使得輸出訊號VO的功率產生非預期的變化。經實驗可知,若天線101的回波損耗的絕對值越高(代表天線101所收到的反射能量越低),輸出訊號VO的功率變化就越低;反之,若天線101的回波損耗的絕對值越低(代表天線101所收到的反射能量越高),輸出訊號VO的功率變化就越多。例如,若天線101的回波損耗約為10分貝時,輸出訊號VO的功率變化範圍約在1分貝之內。相對地,若天線101的回波損耗約為3~6分貝時,輸出訊號VO的功率變化範圍約在2~3分貝。例如,如圖2所示,線段201表示輸出訊號VO在天線101的阻抗未出現偏移時的功率變化。在目標功率設定為16分貝毫瓦(dBm)時,輸出功率VO的功率亦為16分貝毫瓦。換言之,在天線101的阻抗未出現偏移的情況下,可以線性地控制輸出訊號VO的功率。
線段202表示輸出訊號VO在天線101的回波損耗約為6分貝(即天線101的阻抗出現偏移)且其相位約為60度時的功率變化。線段203表示輸出訊號VO在天線101的回波損耗約為6分貝且其相位約為240度時的功率變化。線段204表示輸出訊號VO在天線101的回波損耗約為6分貝且其相位約為330度時的功率變化。藉由將線段201與其它線段202~204比較,可理解當天線101的阻抗出現偏移時,輸出訊號VO的功率會基於輸出訊號VO的不同相位產生不同的變化。例如,在目標功率設定為14分貝毫瓦時,輸出訊號VO的功率變化約為1.78分貝。或者,在目標功率設定為22分貝毫瓦時,輸出訊號VO的功率變化約為2.2分貝。上述的功率差異代表發射器電路120的輸出功率可能過低。因此,可利用校正電路120來判斷天線101的阻抗偏移並調整發射器電路120的輸出功率,以改善發射器100整體的輸出功率準確度。
圖3A為根據本案一些實施例繪製指示輸出訊號VO在當圖1的天線101的回波損耗約為6分貝且發射器電路120操作於高頻頻帶(即第三頻帶)時功率之史密斯圖(Smith chart)。在一些實施例中,可藉由設定一目標功率與一目標回波損耗來量測圖1的天線101之阻抗以產生圖3A的史密斯圖,進而確認天線101的阻抗偏移。例如,在圖3A的例子中,目標功率設定為16分貝,即理想上輸出訊號VO的功率在不同相位下皆具有16分貝。天線101的回波損耗設定為6分貝。藉由S參數分析,可在史密斯圖上繪製對應於反射係數S11(其可用以指示回波損耗)為-6分貝的圓301。
圓301包含多個點P1~P10,每一點表示輸出訊號VO在不同相位的功率。例如,點P1指示具有相位為0度的輸出訊號VO在天線101的回波損耗為6分貝時之功率為14.32分貝,點P10指示具有相位為270度的輸出訊號VO在天線101的回波損耗為6分貝時之功率為15.81分貝,且點P12指示具有相位為330度的輸出訊號VO在天線101的回波損耗為6分貝時之功率為14.84分貝。
圖3B為根據本案一些實施例繪製指示電流I1在當圖1的天線101的回波損耗約為6分貝且發射器電路120操作於高頻頻帶(即第三頻帶)時的數值之史密斯圖。對應於圖3A,藉由感測圖1的電流I1可以獲得此電流I1在不同相位下的數值,並在史密斯圖上繪製出圓302。對應於圓301,圓302上亦包含多個點P1~P10,其中圖3A的多個點P1~P10的位置相同於圖3B的多個點P1~P10的位置。在圖3B中,每一點表示電流I1在不同相位下的數值。例如,點P1指示電流I1在輸出訊號VO的相位為0度且天線101的回波損耗為6分貝的條件下之數值為356.42毫安培,點P10指示電流I1在輸出訊號VO的相位為270度且天線101的回波損耗為6分貝的條件下之數值為368.32毫安培,且點P12指示電流I1在輸出訊號VO的相位為330度且天線101的回波損耗為6分貝的條件下之數值為366.21毫安培。
圖3C為根據本案一些實施例繪製指示電流I1在當圖1的天線101的回波損耗約為6分貝且發射器電路120操作於低頻頻帶(即第一頻帶)時的數值之史密斯圖。類似圖3B的量測條件,於此例中,天線101的回波損耗仍設定為6分貝,而發射器電路120改操作於低頻頻帶(即第一頻帶)。如此,藉由相同的量測方式,可在史密斯圖上繪製此電流I1在不同相位下的數值,以產生圓303。對應於圓301與302,圓303上亦包含多個點P1~P10,其中圖3C的多個點P1~P10的位置相同於圖3A與圖3B的多個點P1~P10的位置。
類似地,在圖3C中,每一點表示電流I1在不同相位下的數值。例如,點P10指示電流I1在輸出訊號VO的相位為270度且天線101的回波損耗為6分貝的條件下之數值為357.9毫安培,且點P12指示電流I1在輸出訊號VO的相位為330度且天線101的回波損耗為6分貝的條件下之數值為334.43毫安培。
由圖3A可得知,點P10所對應的功率相當接近於目標功率(例如為16分貝),而點P12所對應的功率與目標功率相差較大,故校正電路120會點P12所對應的阻抗偏移進行功率補償。然而,在圖3B可得知,點P10所對應的電流I1的數值相當接近於點P12的電流I1的數值。上述的兩個電流值之間的差異可能低於電流感測器電路141的解析度,造成校正電路120可能無法準確地在單一頻帶所量測到的電流I1判斷出天線101的阻抗偏移是對應於點P10或點P12。於此情形下,可控制發射器電路120操作於另一頻帶(例如為第一頻帶),並再次感測點P10與點P12所對應的電流I1的數值。如圖3C所示,點P10所對應的電流I1的數值與點P12的電流I1的數值之間具有較大的差異。因此,藉由映射不同頻帶的多個點,可讓校正電路120更準確地判斷天線101的阻抗偏移是對應於點P10或點P12。
另一方面,如圖3B所示,點P5所對應的電流I1之數值(即315.52毫安培)相當接近於點P6所對應的電流I1之數值(即314.91毫安培)。此上述兩者之間的電流差異可能低於電流感測器電路141的解析度。相應地,如圖3C所示,點P5所對應的電流I1之數值(即300.79毫安培)與點P6所對應的電流I1之數值(即307.74毫安培)之間具有較大的差異。如此,可讓校正電路120更準確地判斷天線101的阻抗偏移是對應於點P5或點P6。據此,應當理解,若發射器電路120在操作於低頻頻帶(即第一頻帶)時的數值之量測結果仍低於電流感測器電路141的解析度,可再次控制發射器電路120操作於另一頻帶(例如為第二頻帶),並感測電流I1的數值。如此,可在將該些點P1~P10等效地從第一頻帶映射到第二頻帶,並可根據該些點P1~P12在第二頻帶上所對應的電流I1來判斷天線101的阻抗偏移。
圖4為根據本案一些實施例繪製圖1的查找表145的示意圖。基於圖3A至圖3C所示的史密斯圖,應可理解,在一些實施例中,圖1的查找表145可藉由圖3A至圖3C所示的量測的方式來預先建立。
例如,圖4的查找表145是對應於目標功率為16分貝毫瓦的情形。查找表145可指示多個阻抗資訊、多個第一電流值、多個第二電流值與多個第三電流值之間的對應關係。多個阻抗資訊指示天線101在基於不同相位的輸出訊號VO所量到的多個反射係數(於此例中為0.5,其對應之回波損耗為6分貝)。多個第一電流值為電流I1在發射器電路120操作於第一頻帶時對應於具有不同相位的輸出訊號VO的數值。多個第二電流值為電流I1在發射器電路120操作於第二頻帶時對應於具有不同相位的輸出訊號VO的數值。多個第三電流值為電流I1在發射器電路120操作於第三頻帶時對應於具有不同相位的輸出訊號VO的數值。另一方面,查找表145更可指示該些阻抗資訊、在第一頻帶下的多個第一功率補償量、在第二頻帶下的多個第二功率補償量以及在第三頻帶下的多個第三功率補償量之間的對應關係。其中,該些第一功率補償量、該些第二功率補償量與該第三功率補償量代表在對應頻帶下輸出訊號VO的功率與目標功率之間的差值。
詳細而言,在圖3A與圖3B(對應於第三頻帶)中,點P10所對應的輸出訊號VO的功率為15.81分貝,此功率與目標功率之間的差值為0.19分貝(即第三功率補償量),且點P10所對應的電流I1之數值為368.32毫安培(即第三電流值)。對應地,在圖3C(對應於第一頻帶)中,點P10所對應的輸出訊號VO的功率為16.48分貝,且此功率與目標功率之間的差值為-0.48分貝(即第一功率補償量),且點P10所對應的電流I1之數值為357.9毫安培(即第一電流值)。因此,藉由搜尋查找表145,可判斷出點P10所對應的阻抗資訊為反射係數為0.5,且輸出訊號VO的相位為270度。如此一來,校正電路120可基於此阻抗資訊(以粗線框標示)確認天線101的阻抗偏移,並可根據此阻抗資訊所對應的第一功率補償量、第二功率補償量與第三功率補償量在不同頻帶下產生對應的訊號S2。
圖5為根據本案一些實施例繪製一種功率校正方法500的流程圖。於一些實施例中,功率校正方法500可由(但不限於)圖1的發射器100執行。
於操作S510,控制發射器電路操作於多個頻帶中之一者,並設定發射器電路的目標功率,其中發射器電路經由電源節點接收供應電壓並經由天線發射輸出訊號。例如,可藉由軟體或系統中的控制電路(未示出)來控制發射器電路120操作於第一頻帶,並設定發射器電路120的目標功率(例如為前述的16分貝)。
於操作S520,感測電源節點的電流之數值,以產生具有第一數值的訊號。例如,電流感測器電路141可感測電流I1,以產生具有第一數值的訊號S1。
於操作S530,控制發射器電路操作於多個頻帶中之剩餘者,並感測電源節點的電流之數值,以產生具有其它數值的訊號。例如,可藉由軟體來控制發射器電路120操作於第二頻帶。於此條件下,電流感測器電路141可感測電流I1,以產生具有第二數值的訊號S1。類似地,再次控制發射器電路120操作於第三頻帶。於此條件下,電流感測器電路141可感測電流I1,以產生具有第三數值的訊號S1。
於操作S540,根據具有第一數值的訊號以及具有其它數值的訊號搜尋查找表,以產生校正訊號。例如,如前所述,記憶體電路142可根據具有第三數值的訊號S1搜尋查找表145以確認第三頻帶的相關資訊,並根據具有第一數值的訊號S1搜尋查找表145以確認第一頻帶的相關資訊,並據此確認天線101的阻抗偏移。接著,記憶體電路142可根據對應此阻抗偏移的多個功率補償量在不同頻帶下產生對應的校正訊號DC。於一些實施例中,若根據第一頻帶與第三頻帶兩者的相關資訊仍無法有效地判斷出阻抗偏移,記憶體電路142可更根據具有第二數值的訊號S1搜尋查找表145中關於第二頻帶的資訊,以確認天線101的阻抗偏移。
於操作S550,偵測輸出訊號的功率產生第一偵測訊號,並根據第一偵測訊號與校正訊號產生第二偵測訊號。於操作S560,根據第二偵測訊號調整輸出訊號的功率至目標功率。例如,發射器訊號強度指標電路160可偵測輸出訊號VO的功率產生偵測訊號D1,並加總偵測訊號D1以及校正訊號DC來產生偵測訊號D2。如此,發射器電路120可根據偵測訊號D2調整放大增益,進而調整輸出訊號VO的功率。
上述功率校正方法500的多個操作之說明可參考前述多個實施例,故於此不再贅述。上述多個操作僅為示例,並非限定需依照此示例中的順序執行。在不違背本案的各實施例的操作方式與範圍下,在功率校正方法500下的各種操作當可適當地增加、替換、省略或以不同順序執行。或者,在功率校正方法500下的一或多個操作可以是同時或部分同時執行。
應當理解,上述多個實施例是以三個頻帶為例進行說明。在不同實施例中,上述的多個電路設置方式、查找表145與功率校正方法500亦可適用於僅具有兩個頻帶的應用。因此,上述多個實施例可適用於具有2個或2個以上的頻帶的應用。另外,上述多個實施例是以回波損耗為6分貝進行說明,但本案並不以此為限。
綜上所述,在本案一些實施例中提供的發射器與功率校正方法可藉由感測在不同頻帶下的電流來有效地判斷出天線的阻抗偏移,並決定對應的功率補償量,進而將發射器的功率校正回目標功率。
雖然本案之實施例如上所述,然而該些實施例並非用來限定本案,本技術領域具有通常知識者可依據本案之明示或隱含之內容對本案之技術特徵施以變化,凡此種種變化均可能屬於本案所尋求之專利保護範疇,換言之,本案之專利保護範圍須視本說明書之申請專利範圍所界定者為準。
100:發射器 101:天線 120:發射器電路 140:校正電路 141:電流感測器電路 142,143:記憶體電路 145:查找表 160:發射器訊號強度指標電路 161:功率偵測器電路 162:類比數位轉換電路 163:加法器電路 164:減法器電路 201~204:線段 301,302,303:圓 500:功率校正方法 D1,D2:偵測訊號 DC:校正訊號 DC’:訊號 DT:目標訊號 I1:電流 N1:電源節點 P1~P12:點 S1,S2,S3:訊號 S510,S520,S530,S540,S550,S560:操作 VDD:供應電壓 VO:輸出訊號
[圖1]為根據本案一些實施例繪製的一種發射器的示意圖; [圖2]為根據本案一些實施例繪製圖1的輸出訊號在天線的回波損耗為6分貝時的功率變化之示意圖; [圖3A]為根據本案一些實施例繪製指示輸出訊號在當圖1的天線的回波損耗約為6分貝且發射器電路操作於高頻頻帶時功率之史密斯圖; [圖3B]為根據本案一些實施例繪製指示電流在當圖1的天線的回波損耗約為6分貝且發射器電路操作於高頻頻帶時的數值之史密斯圖; [圖3C]為根據本案一些實施例繪製指示電流在當圖1的天線的回波損耗約為6分貝且發射器電路操作於低頻頻帶時的數值之史密斯圖; [圖4]為根據本案一些實施例繪製圖1的查找表的示意圖;以及 [圖5]為根據本案一些實施例繪製一種功率校正方法的流程圖。
100:發射器
101:天線
120:發射器電路
140:校正電路
141:電流感測器電路
142,143:記憶體電路
145:查找表
160:發射器訊號強度指標電路
161:功率偵測器電路
162:類比數位轉換電路
163:加法器電路
164:減法器電路
D1,D2,:偵測訊號
DC:校正訊號
DC’:訊號
DT:目標訊號
I1:電流
N1:電源節點
S1,S2,S3:訊號
VDD:供應電壓
VO:輸出訊號

Claims (10)

  1. 一種發射器,包含: 一發射器電路,耦接至一電源節點以接收一供應電壓,並經由一天線發射一輸出訊號; 一校正電路,用以在該發射器電路操作於一第一頻帶時感測該電源節點的一電流以產生具有一第一數值的一第一訊號,並在該發射器電路操作於一第二頻帶時感測該電流以產生具有一第二數值的該第一訊號,並根據具有該第一數值的該第一訊號與具有該第二數值的該第一訊號產生一校正訊號;以及 一發射器訊號強度指標電路,用以偵測該輸出訊號的功率以產生一第一偵測訊號,並根據該校正訊號與該第一偵測訊號產生一第二偵測訊號, 其中該發射器電路更用以根據該第二偵測訊號調整該輸出訊號的功率至一目標功率。
  2. 如請求項1之發射器,其中該校正電路用以根據該第一數值與該第二數值決定該天線的阻抗偏移與一功率補償量,以產生該校正訊號。
  3. 如請求項1之發射器,其中該校正電路包含: 一電流感測器電路,用以在該發射器電路操作於該第一頻帶時感測該電流以產生具有該第一數值的該第一訊號,並在該發射器電路操作於該第二頻帶時感測該電流以產生具有該第二數值的該第一訊號; 一第一記憶體電路,用以儲存一查找表並根據具有該第一數值的該第一訊號以及具有該第二數值的該第一訊號搜尋該查找表以產生一第二訊號;以及 一第二記憶體電路,用以根據該第二訊號產生該校正訊號。
  4. 如請求項3之發射器,其中該查找表用以指示複數個阻抗資訊、複數個第一電流值以及複數個第二電流值之間的對應關係,該些阻抗資訊指示該天線在基於具有不同相位的該輸出訊號時所量測到的複數個反射係數,該些第一電流值為該電流在該發射器電路操作於該第一頻帶時對應於具有不同相位的該輸出訊號的數值,且該些第二電流值為該電流在該發射器電路操作於該第二頻帶時對應於具有不同相位的該輸出訊號的數值。
  5. 如請求項4之發射器,其中該查找表更用以指示該些阻抗資訊、在該第一頻帶下的複數個第一功率補償量與在該第二頻帶下的複數個第二功率補償量之間的對應關係。
  6. 如請求項4之發射器,其中該些反射係數中每一者為-6分貝。
  7. 如請求項1之發射器,其中該第一頻帶與該第二頻帶的頻率範圍彼此不同。
  8. 如請求項1之發射器,其中該校正電路更用以在該發射器電路操作於一第三頻帶時感測該電流以產生具有一第三數值的該第一訊號,並根據具有該第一數值的該第一訊號、具有該第二數值的該第一訊號與具有該第三數值的該第一訊號產生該校正訊號,且該第一頻帶、該第二頻帶與該第三頻帶的頻率範圍彼此不同。
  9. 如請求項1之發射器,其中該發射器電路用以根據該第二偵測訊號調整一放大增益,以調整該輸出訊號的功率。
  10. 一種功率校正方法,包含: 在一發射器電路操作於一第一頻帶時感測一電源節點的一電流以產生具有一第一數值的一第一訊號,其中該發射器電路耦接至該電源節點以接收一供應電壓,且該發射器電路經由一天線發射一輸出訊號; 在該發射器電路操作於一第二頻帶時感測該電流以產生具有一第二數值的該第一訊號; 根據具有該第一數值的該第一訊號與具有該第二數值的該第一訊號產生一校正訊號; 偵測該輸出訊號的功率以產生一第一偵測訊號,並根據該校正訊號與該第一偵測訊號產生一第二偵測訊號;以及 根據該第二偵測訊號調整該輸出訊號的功率至一目標功率。
TW111123459A 2022-06-23 2022-06-23 發射器與功率校正方法 TWI806675B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111123459A TWI806675B (zh) 2022-06-23 2022-06-23 發射器與功率校正方法
US18/204,399 US20230421271A1 (en) 2022-06-23 2023-06-01 Transmitter and power calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111123459A TWI806675B (zh) 2022-06-23 2022-06-23 發射器與功率校正方法

Publications (2)

Publication Number Publication Date
TWI806675B true TWI806675B (zh) 2023-06-21
TW202402002A TW202402002A (zh) 2024-01-01

Family

ID=87803154

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111123459A TWI806675B (zh) 2022-06-23 2022-06-23 發射器與功率校正方法

Country Status (2)

Country Link
US (1) US20230421271A1 (zh)
TW (1) TWI806675B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026680A1 (en) * 1998-10-30 2000-05-11 Palm, Inc. Apparatus for power management of electrical systems
TW200520427A (en) * 2003-12-04 2005-06-16 Via Tech Inc Personal communication device with transmitted RF power strength indicator
US20110032038A1 (en) * 2007-10-16 2011-02-10 Renesas Electronics Corporation Rf power amplifier apparatus and power supply circuit for controlling power-supply voltage to rf power amplifier
TW201220681A (en) * 2010-04-15 2012-05-16 Apple Inc Methods for determining optimum power supply voltages for radio-frequency power amplifier circuitry
WO2017217716A1 (ko) * 2016-06-13 2017-12-21 주식회사 맵스 임피던스 변화에 자동 조정 가능한 무선 전력 송신기
CN110190402A (zh) * 2018-02-21 2019-08-30 恩智浦有限公司 天线调谐装置
CN111106881A (zh) * 2019-01-07 2020-05-05 中国人民解放军海军工程大学 一种基于发信功能完备性的短波发信智能监测系统
US20210351799A1 (en) * 2018-05-14 2021-11-11 Molex CVS Dbendorf GmbH Antenna unit, transmission system and method for operating an antenna unit
TW202143664A (zh) * 2020-05-07 2021-11-16 美商莫比克斯實驗公司 具有嵌入式測試校準電路的5g毫米波相位陣列天線模組架構

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026680A1 (en) * 1998-10-30 2000-05-11 Palm, Inc. Apparatus for power management of electrical systems
TW200520427A (en) * 2003-12-04 2005-06-16 Via Tech Inc Personal communication device with transmitted RF power strength indicator
US20110032038A1 (en) * 2007-10-16 2011-02-10 Renesas Electronics Corporation Rf power amplifier apparatus and power supply circuit for controlling power-supply voltage to rf power amplifier
TW201220681A (en) * 2010-04-15 2012-05-16 Apple Inc Methods for determining optimum power supply voltages for radio-frequency power amplifier circuitry
WO2017217716A1 (ko) * 2016-06-13 2017-12-21 주식회사 맵스 임피던스 변화에 자동 조정 가능한 무선 전력 송신기
CN110190402A (zh) * 2018-02-21 2019-08-30 恩智浦有限公司 天线调谐装置
US20210351799A1 (en) * 2018-05-14 2021-11-11 Molex CVS Dbendorf GmbH Antenna unit, transmission system and method for operating an antenna unit
CN111106881A (zh) * 2019-01-07 2020-05-05 中国人民解放军海军工程大学 一种基于发信功能完备性的短波发信智能监测系统
TW202143664A (zh) * 2020-05-07 2021-11-16 美商莫比克斯實驗公司 具有嵌入式測試校準電路的5g毫米波相位陣列天線模組架構

Also Published As

Publication number Publication date
TW202402002A (zh) 2024-01-01
US20230421271A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
US9019011B2 (en) Method of power amplifier calibration for an envelope tracking system
EP1443335B1 (en) Sensor apparatus, measuring system and method of calibration
JP4828542B2 (ja) インピーダンス検出器
CN101621810B (zh) 接收信号强度指示探测器和校准接收信号强度指示的方法
US9641146B2 (en) Apparatus and method for detecting radio frequency power
RU2393637C2 (ru) Способы самокалибровки в беспроводном передатчике
TW546835B (en) Integrated power detector with temperature compensation
US6834991B2 (en) Radiometer with programmable noise source calibration
US7808322B1 (en) System and method for modifying output power of an information communication system
US8644776B1 (en) Systems and methods for providing improved power performance in wireless communication systems
US5724003A (en) Methods and apparatus for signal amplitude control systems
US20070007945A1 (en) Automatic non-linear phase response calibration and compensation for a power measurement device
US5659253A (en) Temperature compensated radio frequency detector circuit
US4970456A (en) Temperature compensated power detector
JP2006211657A (ja) 移動通信端末機の送信電力制御装置および制御方法
TWI806675B (zh) 發射器與功率校正方法
KR102013838B1 (ko) 전압 정재파비 측정 장치 및 그 제어 방법
CN117353759A (zh) 发射器与功率校正方法
TWI761229B (zh) 功率偵測裝置與偵測功率範圍校正方法
CN115015824A (zh) 对数检波器校准电路及校准方法及对数检波器
JP3456202B2 (ja) 受信レベルモニタ回路
US5646624A (en) Performance matching of weather avoidance radar
JP6049817B1 (ja) パワー制御可能な無線通信装置
CN114019336A (zh) 一种检波晶体管温度修正装置和方法
JP3351067B2 (ja) 検波回路