TWI806496B - Construction systems for recurrent bayesian networks, construction methods for recurrent bayesian networks, computer readable recording medium with stored program, non-transitory computer program products, and wireless network control systems - Google Patents
Construction systems for recurrent bayesian networks, construction methods for recurrent bayesian networks, computer readable recording medium with stored program, non-transitory computer program products, and wireless network control systems Download PDFInfo
- Publication number
- TWI806496B TWI806496B TW111109714A TW111109714A TWI806496B TW I806496 B TWI806496 B TW I806496B TW 111109714 A TW111109714 A TW 111109714A TW 111109714 A TW111109714 A TW 111109714A TW I806496 B TWI806496 B TW I806496B
- Authority
- TW
- Taiwan
- Prior art keywords
- network
- recurrent
- current
- group
- bayesian
- Prior art date
Links
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
- Telephone Function (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
本發明係關於應用於遞迴貝式網路的基因演算法技術,特別是可應用於無線網路控制系統的遞迴貝式網路。The invention relates to the genetic algorithm technology applied to the recursive Bayesian network, especially the recursive Bayesian network applicable to the wireless network control system.
自我組織網路(self-organizing network,SON)指的是行動網路自動化和蜂窩/無線網路管理中人為干預的最小化。這一概念由3GPP在第8版引入。自我組織網路的主要目標可以粗略地分為三點。第一,將智慧和自主適應性引入蜂窩網路;第二,減少資本和運營支出;第三,在網路容量、覆蓋、提供的服務與體驗等方面提高網路性能。然而,市場上現有的自我組織網路解決方案許多操作仍然是手動完成的(例如,網路故障通常是直接被修復);並且許多操作仍由人工完成(例如,網路故障通常由工程師直接修復)以及一些開放的挑戰仍未解決,如自我組織網路功能的協調問題,或適當解決集中式和分散式自我組織網路實施之間的權衡問題。Self-organizing network (SON) refers to the minimization of human intervention in mobile network automation and cellular/wireless network management. This concept was introduced by 3GPP in Release 8. The main goals of self-organizing networks can be roughly divided into three points. First, to introduce intelligence and autonomous adaptability into cellular networks; second, to reduce capital and operating expenses; and third, to improve network performance in terms of network capacity, coverage, provided services and experience. However, many operations of existing self-organizing network solutions on the market are still done manually (for example, network faults are usually directly repaired); and many operations are still done manually (for example, network faults are usually directly repaired by engineers ) as well as some open challenges that remain unresolved, such as the coordination of the self-organizing network functions, or properly addressing the trade-offs between centralized and decentralized self-organizing network implementations.
遞迴貝式網路(recurrent Bayesian networks)具有可利用先驗知識將問題特徵之間的因果關係建模為隨機變數之間的依賴關係,並處理問題任務中固有的不確定性的優點。然而,訓練一個大型的遞迴貝式網路通常需要大量的訓練樣本才能從資料中學習到有用的東西。並且待訓練的遞迴貝式網路的結構是預先給定的,這可能會導致計算資源的利用效率低落。Recurrent Bayesian networks have the advantage of being able to use prior knowledge to model the causal relationship between problem features as dependencies between random variables, and to deal with the inherent uncertainty in the problem task. However, training a large recurrent Bayesian network usually requires a large number of training samples to learn useful things from the data. Moreover, the structure of the recurrent Bayesian network to be trained is predetermined, which may lead to low utilization efficiency of computing resources.
有鑑於此,本發明一些實施例提供一種遞迴貝式網路建構系統、遞迴貝式網路建構方法、電腦可讀取記錄媒體、非暫時性電腦程式產品及無線網路控制系統,以改善現有技術問題。In view of this, some embodiments of the present invention provide a recursive Bayesian network construction system, a recursive Bayesian network construction method, a computer-readable recording medium, a non-transitory computer program product, and a wireless network control system, to Improve existing technical problems.
本發明一實施例提供一種遞迴貝式網路建構系統,包含至少一處理器。前述至少一處理器經配置以執行下列步驟以產生任務網路:建立初始族群,其中初始族群包含多個組合模式生成網路,並設定初始族群為當前族群;對當前族群中的每一組合模式生成網路,建立對應遞迴貝式網路,以獲得對應當前族群的遞迴貝式網路集合;利用演化演算法以及適應度函數演化當前族群以獲得下一族群,將下一族群設為當前族群;依據適應度函數以及對應當前族群的遞迴貝式網路集合判斷終止條件是否被滿足;以及響應於終止條件未被滿足,重複執行前述步驟,響應於終止條件被滿足,依據適應度函數,選擇當前族群中之解答網路作為任務網路。An embodiment of the present invention provides a system for constructing a recurrent Bayesian network, which includes at least one processor. The aforementioned at least one processor is configured to perform the following steps to generate a task network: establish an initial group, wherein the initial group includes a plurality of combination patterns to generate a network, and set the initial group as the current group; for each combination pattern in the current group Generate a network and establish a corresponding recursive Bayesian network to obtain a recursive Bayesian network set corresponding to the current population; use evolutionary algorithms and fitness functions to evolve the current population to obtain the next population, and set the next population to The current group; judge whether the termination condition is satisfied according to the fitness function and the recursive Bayesian network set corresponding to the current group; function, select the solution network in the current group as the task network.
本發明一實施例提供一種遞迴貝式網路建構方法,由一處理器執行。遞迴貝式網路建構方法用以產生任務網路。遞迴貝式網路建構方法包含:建立初始族群,其中初始族群包含多個組合模式生成網路,並設定初始族群為當前族群;對當前族群中的每一組合模式生成網路,建立對應遞迴貝式網路,以獲得對應當前族群的遞迴貝式網路集合;利用演化演算法以及適應度函數演化當前族群以獲得下一族群,將下一族群設為當前族群;依據適應度函數以及對應當前族群的遞迴貝式網路集合判斷終止條件是否被滿足;以及響應於終止條件未被滿足,重複執行前述步驟,響應於終止條件被滿足,依據適應度函數,選擇當前族群中之解答網路作為任務網路。An embodiment of the present invention provides a method for constructing a recursive Bayesian network, which is executed by a processor. A recurrent Bayesian network construction method is used to generate task networks. The recursive Bayesian network construction method includes: establishing an initial group, wherein the initial group contains a plurality of combination mode generation networks, and setting the initial group as the current group; for each combination mode generation network in the current group, establishing a corresponding Recursive Bayesian network to obtain a recursive Bayesian network set corresponding to the current population; use the evolutionary algorithm and fitness function to evolve the current population to obtain the next population, and set the next population as the current population; according to the fitness function And the recursive Bayesian network set corresponding to the current group determines whether the termination condition is satisfied; and in response to the termination condition not being satisfied, repeat the above steps, in response to the termination condition being satisfied, according to the fitness function, select one of the current group The solution network serves as the task network.
本發明一些實施例提供一種內儲程式之電腦可讀取媒體及一種非暫時性電腦程式產品,當處理器載入程式並執行後,能夠完成前述遞迴貝式網路建構方法。Some embodiments of the present invention provide a computer-readable medium storing a program and a non-transitory computer program product. After the processor loads the program and executes it, the aforementioned recursive Bayesian network construction method can be completed.
本發明一實施例提供一種無線網路控制系統。無線網路控制系統應用前述遞迴貝式網路建構系統所產生的任務網路。無線網路控制系統耦接無線存取網路(Radio Access Network,RAN)並且包含優化器與控制單元。優化器經配置以接收無線存取網路的網路狀態與目標策略,並輸出最佳組態給無線存取網路以配置與優化無線存取網路。控制單元包含前述任務網路。其中,優化器基於解決方案空間中的多個解決方案,將每一解決方案的多個配置特徵向量輸入給控制單元。任務網路評估每一配置特徵向量的至少一關鍵績效指標(Key Performance Indicators,KPI)以獲得每一配置特徵向量的關鍵績效指標數值。優化器基於每一配置特徵向量的關鍵績效指標數值選擇在解決方案空間中選擇一個最佳解決方案。優化器並基於最佳解決方案輸出最佳組態給無線存取網路。An embodiment of the invention provides a wireless network control system. The wireless network control system applies the task network generated by the aforementioned recursive Bayesian network construction system. The wireless network control system is coupled to a radio access network (Radio Access Network, RAN) and includes an optimizer and a control unit. The optimizer is configured to receive the network status and target policy of the wireless access network, and output the optimal configuration to the wireless access network for configuring and optimizing the wireless access network. The control unit includes the aforementioned task network. Wherein, the optimizer inputs a plurality of configuration feature vectors of each solution to the control unit based on the plurality of solutions in the solution space. The task network evaluates at least one Key Performance Indicator (KPI) of each configuration feature vector to obtain the KPI value of each configuration feature vector. The optimizer chooses an optimal solution in the solution space based on the KPI values for each configuration eigenvector. The optimizer outputs the best configuration to the radio access network based on the best solution.
基於上述,本發明一些實施例提供一種遞迴貝式網路建構系統、建構方法、電腦可讀取記錄媒體及非暫時性電腦程式產品,藉由演化組合模式生成網路所構成的族群,可以有效率地建造一個適合的遞迴貝式網路。本發明一些實施例提供一種無線網路控制系統,藉由應用前述遞迴貝式網路建構系統所產生的任務網路可自動地完成自我組織網路解決方案。Based on the above, some embodiments of the present invention provide a recursive Bayesian network construction system, a construction method, a computer-readable recording medium, and a non-transitory computer program product. The group formed by the network can be generated by an evolutionary combination model. Efficiently construct a suitable recurrent Bayesian network. Some embodiments of the present invention provide a wireless network control system, which can automatically complete a self-organizing network solution by applying the task network generated by the aforementioned recursive Bayesian network construction system.
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之實施例的詳細說明中,將可清楚的呈現。圖式中各元件的比例或尺寸,係以誇張或省略或概略的方式表示,以供熟悉此技藝之人士之瞭解與閱讀,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均仍應落在本發明所揭示之技術內容涵蓋之範圍內。在所有圖式中相同的標號將用於表示相同或相似的元件。以下實施例中所提到的「耦接」或「連接」一詞可指任何直接或間接、有線或無線的連接手段。The aforementioned and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of the embodiments with reference to the drawings. The ratio or size of each element in the drawings is expressed in an exaggerated, omitted or approximate manner, for the understanding and reading of those familiar with the art, and is not used to limit the conditions for the implementation of the present invention, so there is no technical limitation Substantive meaning, any modification of structure, change of proportional relationship or adjustment of size shall still fall within the scope covered by the technical content disclosed in the present invention without affecting the functions and objectives of the present invention. Inside. The same reference numbers will be used throughout the drawings to refer to the same or similar elements. The term "coupled" or "connected" mentioned in the following embodiments may refer to any direct or indirect, wired or wireless connection means.
圖1係依據本發明一實施例所繪示的遞迴貝式網路建構系統方塊圖。請參閱圖1,遞迴貝式網路建構系統100包含處理器101與記憶體102。其中記憶體102被配置以儲存計算過程中需要暫存的中間結果。值得說明的是,雖然圖1僅繪示單一的處理器101,但遞迴貝式網路建構系統100也可配置多個處理器以加快運算速度。FIG. 1 is a block diagram of a recurrent Bayesian network construction system according to an embodiment of the present invention. Please refer to FIG. 1 , the recurrent Bayesian
以下即配合圖式詳細說明本發明實施例之遞迴貝式網路建構方法以及遞迴貝式網路建構系統100各模組之間如何協同運作。The method for constructing a recursive Bayesian network according to the embodiment of the present invention and how the various modules of the recursive Bayesian
圖2係依據本發明一實施例所繪示的組合模式生成網路(compositional pattern-producing network,CPPN)示意圖。圖3係依據本發明一實施例所繪示的神經網路編碼示意圖。圖4係依據本發明一實施例所繪示的神經網路變異(mutation)過程示意圖。圖5係依據本發明一實施例所繪示的神經網路交換(crossover)過程示意圖。圖9係依據本發明一實施例所繪示的遞迴貝式網路建構方法流程圖。請先一併參閱圖2至圖5以及圖9。FIG. 2 is a schematic diagram of a compositional pattern-producing network (CPPN) according to an embodiment of the present invention. FIG. 3 is a schematic diagram of neural network coding according to an embodiment of the present invention. FIG. 4 is a schematic diagram of a neural network mutation process according to an embodiment of the present invention. FIG. 5 is a schematic diagram of a neural network crossover process according to an embodiment of the present invention. FIG. 9 is a flowchart of a method for constructing a recurrent Bayesian network according to an embodiment of the present invention. Please refer to FIG. 2 to FIG. 5 and FIG. 9 together.
在圖9所繪示的實施例中,組合模式生成網路是一種神經網路。以圖2所繪示組合模式生成網路205為例,組合模式生成網路205包含輸入層2051、隱藏層2052以及輸出層2053。其中,隱藏層2052的各節點可採用不同的啟動函數(activation function),如正弦函數(trigonometric sine)、高斯函數(Gaussian)等。值得說明的是,組合模式生成網路205僅是用以說明一般的組合模式生成網路,本發明並不以組合模式生成網路205的連結關係為限。In the embodiment shown in FIG. 9, the combined pattern generation network is a neural network. Taking the combined
利用組合模式生成網路,可以將神經網路的連結模式儲存為一個四維超立方體(four-dimensional hypercube),其中四維超立方體的每個點可以表示為(x
1,y
1,x
2,y
2),其中x
1,y
1,x
2,y
2為四維超立方體的點的座標分量。每個點編碼兩個節點之間的連結。組合模式生成網路205可視為一個四維函數CPPN(1):
w=CPPN(x
1,y
1,x
2,y
2) (1)。
其中w為組合模式生成網路205的輸出值。如圖2所繪示,節點(x
1,y
1)到節點(x
2,y
2)間的連結權重可以藉由,只要將(x
1,y
1,x
2,y
2)輸入至四維函數CPPN(1)中,得到的輸出w即為節點(x
1,y
1)到節點(x
2,y
2)間的連結權重。以圖2所繪示的例子來說明,由於四維函數CPPN(1) 對應於(-1,1,1,1)的輸出為w
1,節點201(編碼為(-1,1))到節點202(編碼為(1,1))間的連結權重為w
1;由於四維函數CPPN(1) 對應於(0,-1,1,-1)的輸出為w
2,節點203(編碼為(0,-1))到節點204(編碼為(1,-1))間的連結權重為w
2。值得說明的是,在此實施例中,會先給定一個最小閾值w
min,當輸出w小於最小閾值w
min時,表示兩節點並不連接。以上述的方式,組合模式生成網路205及對應的前述四維函數CPPN(1)可以建立對應的神經網路拓樸形態。
Using the combination mode to generate the network, the connection mode of the neural network can be stored as a four-dimensional hypercube, where each point of the four-dimensional hypercube can be expressed as (x 1 ,y 1 ,x 2 ,y 2 ), where x 1 , y 1 , x 2 , y 2 are the coordinate components of the points of the four-dimensional hypercube. Each point encodes a link between two nodes. The combined
請參閱圖3,一般神經網路可以藉由編號其節點與連結來表示神經網路以使神經網路可以進行演化運算。以圖3所繪示的例子來說,將組合模式生成網路205各節點編號1~7,可以得到編號後組合模式生成網路303。編號後組合模式生成網路303可以表示成節點基因301與連結基因302。節點基因301所記載「輸入」表示這個節點為輸入節點;節點基因301所記載「輸出」表示這個節點為輸出節點;節點基因301所記載「隱藏」表示這個節點為隱藏節點。連結基因302所記載「進」表示連結的起始節點;連結基因302所記載「出」表示連結的終點節點;連結基因302所記載「權重」表示連結的權重值;連結基因302所記載「創新」(innovation)表示連結的創新值。連接的創新值用以在執行神經網路演化運算中的交換過程時匹配基因組之用,連接的創新值的使用將在之後的實施例中進一步的介紹。Please refer to FIG. 3 , a general neural network can represent a neural network by numbering its nodes and links so that the neural network can perform evolutionary operations. Taking the example shown in FIG. 3 as an example, by numbering the nodes of the combination
在經由圖3所繪示將神經網路表示成節點基因301與連結基因302後,神經網路可以進一步進行演化運算。如圖4所繪示,神經網路402具有連結基因401。藉由隨機增加連結基因401的連結基因元素,如連結基因403中「進」為2,「出」為5,「權重」為0.1,「創新」為6的連結基因元素。連結基因403對應神經網路404。神經網路402演化到神經網路404的過程稱為神經網路變異過程。After the neural network is represented as
值得說明的是,前述隨機增加連結基因401的元素,可以藉由一般軟體模擬隨機之函式(例如Python裡random模組的random()函式)隨機產生適當的「進」、「出」、「權重」、「創新」來實現。It is worth noting that the aforementioned random addition of elements connecting the
請參閱圖5,神經網路503具有連結基因501,連結基因501具有連結基因元素5011、5012、5013與5014。神經網路504具有連結基因502,連結基因502具有連結基因元素5021、5022、5023、5024與5025。要對神經網路503與神經網路504執行神經網路演化運算中的交換過程以產生新的神經網路,首先基於「創新」數字匹配兩者連結基因的連結基因元素。以圖5所繪示的例子來說明,連結基因元素5011匹配連結基因元素5021,連結基因元素5012匹配連結基因元素5022,連結基因元素5013匹配連結基因元素5023。連結基因元素5014並未匹配連結基因502的連結基因元素,連結基因元素5024、連結基因元素5025並未匹配連結基因501的連結基因元素。對於前述匹配的基因元素,隨機選擇其中之一放入新的神經網路的連結基因中。Please refer to FIG. 5 , the
以前述例子來說,連結基因元素5011匹配連結基因元素5021,因此隨機選取連結基因元素5011與連結基因元素5021其中之一放入神經網路506的連結基因505中。連結基因元素5012匹配連結基因元素5022,因此隨機選取連結基因元素5012與連結基因元素5022其中之一放入神經網路506的連結基因505中,以此類推。對於沒有匹配到的連結基因元素,如連結基因元素5014、5024與5025則無條件放入神經網路506的連結基因505中。最終可以得到連結基因505與對應的神經網路506,其中連結基因505包含連結基因元素5051、5052、5053、5054、5055與5056。神經網路503與神經網路504被稱為神經網路506的親代(parent),神經網路506被稱為神經網路503與神經網路504的子代(offspring)。Taking the foregoing example as an example, the linking
前述圖3至圖5所繪示的對神經網路的拓撲結構和連接權重進行進化的演算法被稱為增強拓樸的神經進化(NeuroEvolution of Augmenting Topologies)方法。The algorithm for evolving the topology and connection weights of the neural network shown in FIGS. 3 to 5 is called the NeuroEvolution of Augmenting Topologies method.
值得說明的是,可以藉由一般軟體模擬隨機之函式(例如Python裡random模組的sample()函式)隨機連結基因元素5012與連結基因元素5022其中之一以達成前述隨機選取連結基因元素5012與連結基因元素5022其中之一的過程。It is worth noting that one of the
在圖9的步驟S901中,處理器101建立初始族群,並設定初始族群為當前族群。其中,初始族群包含多個由處理器101隨機產生的組合模式生成網路(舉例來說,如圖2所繪示的組合模式生成網路205),初始族群的數量為一預設的族群數量M,M為一正整數。處理器101並設定前述初始族群為當前族群。處理器101還會從外部接收一個適應度函數,用以演化當前族群。值得說明的是,處理器101可使用一般軟體所提供模擬隨機之函式(例如Python裡random模組的各函式)藉由隨機產生節點基因與連結基因中的各數值(如圖3所繪示)以隨機產生組合模式生成網路。In step S901 of FIG. 9 , the
圖6-1、圖6-2係依據本發明一實施例所繪示的貝式網路(Bayesian network)示意圖。在說明步驟S902之前,請先參閱圖6-1與圖6-2。貝式網路是一種機率圖型模型,藉由有向無環圖(directed acyclic graphs,DAGs)得知一組隨機變數(random variables){X 1,X 2,...,X n}及其n組條件機率分配(conditional probability distributions,CPDs)的性質。舉例來說,貝式網路可用來表示疾病和其相關症狀間的機率關係,在已知某種症狀的情況下,貝式網路可用來計算各種可能罹患疾病之發生機率。一般而言,貝式網路的節點表示隨機變數,它們可以是可觀察到的變數,抑或是潛在變量、未知參數等。連接兩個節點的箭頭代表此兩個隨機變數是具有因果關係或是非條件獨立的。而兩個節點間若沒有箭頭相互連接一起的情況就稱其隨機變數彼此間為條件獨立。若兩個節點間以一個單箭頭連接在一起,表示其中一個節點是親代節點,另一個節點是子節點,子節點對親代節點會產生一個條件機率值。 6-1 and 6-2 are schematic diagrams of a Bayesian network according to an embodiment of the present invention. Before describing step S902, please refer to FIG. 6-1 and FIG. 6-2. The Bayesian network is a probabilistic graphical model. A set of random variables (random variables) {X 1 ,X 2 ,...,X n } and Its n groups of conditional probability distributions (conditional probability distributions, CPDs) properties. For example, a Bayesian network can be used to represent the probability relationship between a disease and its related symptoms. Given a certain symptom, the Bayesian network can be used to calculate the probability of various possible diseases. In general, the nodes of a Bayesian network represent random variables, which can be observable variables, latent variables, unknown parameters, etc. Arrows connecting two nodes indicate whether the two random variables are causal or unconditionally independent. If there is no arrow connecting two nodes, the random variables are said to be conditionally independent from each other. If two nodes are connected by a single arrow, it means that one node is a parent node and the other node is a child node, and the child node will generate a conditional probability value for the parent node.
圖6-1繪示了一個貝式網路,包含節點601(由隨機變數X 1表示)、節點602(由隨機變數X 2表示)、節點603(由隨機變數X 3表示)與節點604(由隨機變數X 4表示)。節點601(由隨機變數X 1表示)與節點602(由隨機變數X 2表示)兩個節點間具有連接的箭頭,代表此兩個隨機變數X 1與X 2是具有因果關係或是非條件獨立的。並且,節點601(由隨機變數X 1表示)是親代節點,另一個節點602(由隨機變數X 2表示)是子節點,節點601(由隨機變數X 1表示)與節點602(由隨機變數X 2表示)產生一個條件機率P(X 2|X 1),節點601(由隨機變數X 1表示)與節點603(由隨機變數X 3表示)產生一個條件機率P(X 3|X 1),節點604(由隨機變數X 4表示)與節點602(由隨機變數X 2表示)及節點603(由隨機變數X 3表示)產生一個條件機率P(X 4|X 2,X 3)。P(X 1)表示節點601(由隨機變數X 1表示)的機率。 Figure 6-1 shows a Bayesian network, including node 601 (represented by random variable X1 ), node 602 (represented by random variable X2 ), node 603 (represented by random variable X3 ) and node 604 ( represented by the random variable X4 ). There is a connecting arrow between the two nodes of node 601 (represented by random variable X 1 ) and node 602 (represented by random variable X 2 ), which means that the two random variables X 1 and X 2 are causal or unconditionally independent . And, node 601 (represented by random variable X 1 ) is a parent node, another node 602 (represented by random variable X 2 ) is a child node, node 601 (represented by random variable X 1 ) is related to node 602 (represented by random variable X 1 ) X 2 ) generates a conditional probability P(X 2 |X 1 ), node 601 (represented by random variable X 1 ) and node 603 (represented by random variable X 3 ) generate a conditional probability P(X 3 |X 1 ) , node 604 (represented by random variable X 4 ), node 602 (represented by random variable X 2 ) and node 603 (represented by random variable X 3 ) generate a conditional probability P(X 4 |X 2 , X 3 ). P(X 1 ) represents the probability of node 601 (represented by random variable X 1 ).
在本發明的一實施例中,貝式網路在節點的性質是屬於離散型。在此實施例中,條件機率可以條件機率表(conditional probability table,CPT)表示。條件機率表任一列的機率總和必為1。以圖6-2所繪示的貝式網路為例,節點605表示多雲的隨機變數C、節點606表示灑水的隨機變數S、節點607表示下雨的隨機變數R以及節點608表示草地濕的隨機變數W,其中隨機變數C、S、R及W取值皆為集合{T,F},T、F為前述集合的元素,T代表發生,F代表未發生。P(C)以機率表609表示,P(S|C)以條件機率表610表示,P(R|C)以條件機率表611表示,P(W|S,R)以條件機率表612表示。In an embodiment of the present invention, the properties of the nodes in the Bayesian network are discrete. In this embodiment, the conditional probability can be represented by a conditional probability table (conditional probability table, CPT). The sum of the probabilities in any column of the conditional probability table must be 1. Taking the Bayesian network shown in Figure 6-2 as an example, the
圖7係依據本發明一實施例所繪示的遞迴貝式網路(Recurrent Neural Networks)示意圖。如圖7所繪示,遞迴貝式網路700包含輸入層701、隱藏層702與輸出層703。其中隱藏層702包含一個貝式網路7021與一個遞迴層7022,遞迴層7022用於紀錄貝式網路的狀態,並在下一時刻將現在時刻所記錄的狀態添加到下一時刻的輸入中。圖7下方繪示遞迴貝式網路700對時間展開的運作情形,其中,時間t-1時的輸出層706、時間t的輸出層709與時間t+1的輸出層712對應輸出層703;時間t-1時的輸入層704、時間t的輸入層707與時間t+1的輸入層710對應輸入層701;時間t-1時的隱藏層705、時間t的隱藏層708與時間t+1的隱藏層711對應隱藏層702;時間t-1時隱藏層705的貝式網路7051與遞迴層7052、時間t隱藏層708的貝式網路7081與遞迴層7082與時間t+1隱藏層711的貝式網路7111與遞迴層7112對應隱藏層702的貝式網路7021與遞迴層7022。在時間t-1時,隱藏層705將節點狀態M1存於遞迴層7052中。在時間t時,節點狀態M1被輸入到隱藏層708中。同樣的,在時間t時,隱藏層705將節點狀態M2存於遞迴層7082中。在時間t+1時,節點狀態M2被輸入到隱藏層711中。同樣的,在時間t+1時,隱藏層711將節點狀態M3存於遞迴層7112中,以此類推。FIG. 7 is a schematic diagram of a recurrent Bayesian network (Recurrent Neural Networks) according to an embodiment of the present invention. As shown in FIG. 7 , the recurrent
圖8係依據本發明一實施例所繪示的遞迴貝式網路建構示意圖。請再同時參閱圖8與圖9。在步驟S902中,處理器101對當前族群中的每一組合模式生成網路,建立對應遞迴貝式網路。下面以圖8為例說明前述建立對應遞迴貝式網路方法。對組合模式生成網路805,對於所有時間t,組合模式生成網路805以遞迴貝式網路在時間t的貝式網路800的所有可能的兩個節點為輸入(如圖8所繪示的節點801(由隨機變數X
1表示)與節點802(由隨機變數X
2表示)),得到條件機率P(X
2|X
1)。值得說明的是,如果輸入的兩個節點不具因果關係或是條件獨立的,則組合模式生成網路805輸出為0。如此,經由組合模式生成網路805可建立遞迴貝式網路在時間t的貝式網路800,其中,遞迴貝式網路在時間t的貝式網路800包含節點801(由隨機變數X
1表示)、節點802(由隨機變數X
2表示)、節點803(由隨機變數X
3表示)與節點804(由隨機變數X
4表示);並且,節點802(由隨機變數X
2表示)對其親代節點的節點801(由隨機變數X
1表示)的條件機率為P(X
2|X
1),節點803(由隨機變數X
3表示)對其親代節點的節點801(由隨機變數X
1表示)的條件機率為P(X
3|X
1),節點804(由隨機變數X
4表示)對其親代節點的節點802(由隨機變數X
2表示)與節點803(由隨機變數X
3表示)的條件機率為P(X
4|X
2,X
3)。P(X
1)表示節點801(由隨機變數X
1表示)的機率。
FIG. 8 is a schematic diagram illustrating the construction of a recurrent Bayesian network according to an embodiment of the present invention. Please refer to FIG. 8 and FIG. 9 at the same time. In step S902, the
經由上述的建立方法,處理器101對當前族群中的每一組合模式生成網路,可以建立一個對應遞迴貝式網路。因此,最終處理器101可以獲得對應當前族群的遞迴貝式網路集合。Through the above establishment method, the
在步驟S903中,處理器101利用演化演算法以及一個適應度函數演化當前族群以獲得下一族群,並將下一族群設為當前族群。在本發明一實施例中,處理器101利用前述適應度函數計算當前族群中每一組合模式生成網路的適應度值,並利用當前族群中每一組合模式生成網路的適應度值對當前族群中每一組合模式生成網路進行排序。處理器101利用排序結果選擇適應度較大的當前族群中N個組合模式生成網路,其中N為正整數且N小於前述族群數量M。處理器101再利用前述圖4、圖5所繪示的神經網路演化運算中的變異過程與交換過程對選擇出的N個組合模式生成網路進行操作,以使前述N個組合模式生成網路擴展到族群數量M以獲得下一族群。處理器101再將下一族群設為當前族群以繼續下一步驟。In step S903, the
在本發明一實施例中,前述處理器101利用前述圖4、圖5所繪示的神經網路演化運算中的變異過程與交換過程對選擇出的N個組合模式生成網路進行操作的過程包含處理器101依據一個交換機率,隨機對前述N個組合模式生成網路執行變異過程與交換過程。前述交換機率例如為0.8。則處理器101有80%的機率對前述N個組合模式生成網路執行交換過程,有80%的機率對前述N個組合模式生成網路執行變異過程。In an embodiment of the present invention, the
值得說明的是,只要是利用前述圖3至圖5所繪示的對神經網路的拓撲結構和連接權重進行進化的增強拓樸的神經進化演算法皆可適用於演化前述當前族群,本發明並不以前述實施例為限。It is worth noting that, as long as the neuroevolution algorithm for enhancing the topology of the neural network and the connection weights shown in Figures 3 to 5 are used to evolve the aforementioned current population, the present invention It is not limited to the foregoing embodiments.
在步驟S904中,處理器101依據適應度函數以及對應當前族群的遞迴貝式網路集合判斷終止條件是否被滿足。在此實施例中,前述終止條件為重複執行步驟S902與S903的次數已達到一預設值,或者依據前述適應度函數,當前族群已包含一個候選網路使得候選網路的適應度值大於一個預設適應度值。若終止條件沒有被滿足,則處理器101再執行步驟S902與步驟S903。若終止條件被滿足,則處理器101執行步驟S905。In step S904, the
在步驟S905中,由於當前族群已包含至少一個候選網路使得候選網路的適應度值大於一個預設適應度值。處理器101再依據適應度函數,選擇當前族群中適應度值大於前述預設適應度值的一個解答網路作為任務網路。In step S905, since the current group contains at least one candidate network, the fitness value of the candidate network is greater than a preset fitness value. The
圖10係依據本發明一實施例所繪示的遞迴貝式網路建構方法流程圖。在圖10所繪示的實施例中,貝式網路在節點的性質是屬於離散型,前述步驟S902包含步驟S1001與步驟S1002。在步驟S1001中,處理器101選擇當前族群中的當前組合模式生成網路。在步驟S1002中,處理器101利用當前組合模式生成網路關於對應遞迴貝式網路中子節點與子節點所對應親代節點的輸出,建立對應遞迴貝式網路中子節點所對應親代節點的條件機率表,以建立對應遞迴貝式網路。FIG. 10 is a flowchart of a method for constructing a recurrent Bayesian network according to an embodiment of the present invention. In the embodiment shown in FIG. 10 , the properties of the nodes in the Bayesian network are discrete, and the aforementioned step S902 includes step S1001 and step S1002 . In step S1001, the
圖11係依據本發明一實施例所繪示的遞迴貝式網路建構方法流程圖。在圖11所繪示的實施例中,前述步驟S901還包含步驟S1101。在步驟S1101中,處理器101依據一個參數,隨機產生初始族群。在此實施例中,前述參數為處理器101基於開始執行步驟S901的時間所產生的一數值,處理器101再依據這個數值初始化一般軟體模擬隨機的函式(例如Python裡random模組的random()函式)以隨機產生初始族群。處理器101再設定初始族群為當前族群。FIG. 11 is a flowchart of a method for constructing a recurrent Bayesian network according to an embodiment of the present invention. In the embodiment shown in FIG. 11 , the aforementioned step S901 further includes step S1101 . In step S1101, the
圖12是本說明書的一個實施例的電子設備的結構方塊圖。如圖12所示,在硬體層面,電子設備1200包括處理器1201、內部記憶體1202以及非揮發性記憶體1203。內部記憶體1202例如是隨機存取記憶體 (Random - Access Memory,RAM)。非揮發性記憶體(non-volatile memory)例如是至少1個磁碟記憶體等。當然,電子設備1200還可能包括其他功能所需要的硬體。FIG. 12 is a structural block diagram of an electronic device according to an embodiment of the present specification. As shown in FIG. 12 , at the hardware level, the
內部記憶體1202和非揮發性記憶體1203,用於存放程式,程式可以包括程式碼,程式碼包括電腦操作指令。內部記憶體1202和非揮發性記憶體1203向處理器1201提供指令和資料。處理器1201從非揮發性記憶體1203讀取對應的電腦程式到內部記憶體1202中然後運行。處理器1201具體用於執行圖9到圖13所記載的各步驟。The
處理器1201可能是一種積體電路晶片,具有信號的處理能力。在實現過程中,前述實施例中揭露的各方法、步驟可以透過處理器801中的硬體的積體邏輯電路或者軟體形式的指令完成。處理器1201可以是通用處理器,包括中央處理器(Central Processing Unit, CPU)、數位信號處理器(Digital Signal Processor, DSP)、專用積體電路(Application Specific Integrated Circuit,ASIC)、現場可程式化閘陣列(Field-Programmable Gate Array,FPGA)或者其他可程式化邏輯裝置,可以實現或執行前述實施例中揭露的各方法、步驟。The
本說明書實施例還提供了一種電腦可讀儲存媒體,電腦可讀儲存媒體儲存至少一指令,該至少一指令當被電子設備1200的處理器1201執行時,能夠使電子設備1200的處理器1201執行前述實施例中揭露的各方法、步驟。The embodiment of this specification also provides a computer-readable storage medium. The computer-readable storage medium stores at least one instruction. When the at least one instruction is executed by the
電腦的儲存媒體的例子包括,但不限於相變記憶體 (PRAM)、靜態隨機存取記憶體(SRAM)、動態隨機存取記憶體(DRAM)、其他類型的隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電可抹除可程式化 唯讀記憶體 (EEPROM)、快閃記憶體或其他內部記憶體技術、唯讀光碟唯讀記憶體(CD-ROM)、數位多功能光碟(DVD)或其他光學儲存器、磁盒式磁帶,磁帶式磁碟儲存器或其他磁性儲存設備或任何其他非傳輸媒體,可用於儲存可以被計算設備存取的資訊。按照本文中的界定,電腦可讀媒體不包括暫態媒體(transitory media),如調變的資料信號和載波。Examples of storage media for computers include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM) , read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other internal memory technologies, compact disc read-only memory (CD-ROM), digital multi A compact disc (DVD) or other optical storage, magnetic tape cartridge, magnetic tape storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device. As defined herein, computer readable media excludes transitory media, such as modulated data signals and carrier waves.
圖13為應用前述遞迴貝式網路建構系統所產生任務網路的無線網路控制系統方塊圖。請參閱圖13,無線網路控制系統1300外部耦接無線存取網路(Radio Access Network,RAN)1301。無線網路控制系統1300包含遞迴貝式網路建構系統100、優化器1302與控制單元1303。優化器1302經配置以接收無線存取網路1301的網路狀態以及從外部接收一目標策略。優化器1302經配置以輸出最佳組態給無線存取網路1301以配置與優化無線存取網路1301。控制單元1303經配置以從前述遞迴貝式網路建構系統100接收並儲存任務網路1304。遞迴貝式網路建構系統100利用預先收集的無線存取網路1301相關數據以及與無線存取網路1301相關的適應度函數產生任務網路1304。任務網路1304支援因果推理模型(Causal Reasoning Model)二級(干預(intervention))和三級(反事實(counterfactual))。因此,任務網路1304可以用來回答「給定時間序列的無線存取網路配置特徵向量,無線存取網路1301將達到什麼關鍵績效指標?」這樣的問題。FIG. 13 is a block diagram of a wireless network control system using the task network generated by the aforementioned recursive Bayesian network construction system. Please refer to FIG. 13 , the wireless
其中優化器1302基於解決方案空間中的多個解決方案,將每一解決方案的多個配置特徵向量輸入給控制單元1303。任務網路1304再評估輸入的每一配置特徵向量的關鍵績效指標(Key Performance Indicators,KPI)以獲得每一配置特徵向量的關鍵績效指標數值。優化器1302基於每一配置特徵向量的關鍵績效指標數值選擇在解決方案空間中選擇最佳解決方案。優化器1302並基於最佳解決方案輸出最佳組態給無線存取網路1301。Wherein the
在本發明一些實施例中,前述每一配置特徵向量的分量包含無線存取網路的拓撲結構、路由表、流量強度矩陣與功率強度矩陣。In some embodiments of the present invention, the components of each configuration eigenvector include a topological structure of the RAN, a routing table, a traffic intensity matrix, and a power intensity matrix.
在本發明一些實施例中,前述關鍵績效指標選取自延遲(delay)指標、抖動(jitter)指標以及損耗(lose)指標其中之一或是其組合。In some embodiments of the present invention, the aforementioned key performance indicators are selected from one or a combination of delay (delay) indicators, jitter (jitter) indicators and loss (lose) indicators.
在本發明一些實施例中,無線存取網路1301為5G無線存取網路。In some embodiments of the present invention, the
基於上述,本發明一些實施例提供一種遞迴貝式網路建構系統、建構方法、電腦可讀取記錄媒體及非暫時性電腦程式產品,藉由演化組合模式生成網路所構成的族群,可以有效率地建造一個適合的遞迴貝式網路。Based on the above, some embodiments of the present invention provide a recursive Bayesian network construction system, a construction method, a computer-readable recording medium, and a non-transitory computer program product. The group formed by the network can be generated by an evolutionary combination model. Efficiently construct a suitable recurrent Bayesian network.
本發明一些實施例提供一種無線網路控制系統,藉由應用前述遞迴貝式網路建構系統所產生的任務網路可自動地完成自我組織網路解決方案。Some embodiments of the present invention provide a wireless network control system, which can automatically complete a self-organizing network solution by applying the task network generated by the aforementioned recursive Bayesian network construction system.
雖然本發明的技術內容已經以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神所作些許之更動與潤飾,皆應涵蓋於本發明的範疇內,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the technical content of the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any modification and modification made by those skilled in the art without departing from the spirit of the present invention should be covered by the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.
100:遞迴貝式網路建構系統
101、1201:處理器
102:記憶體
205、303、805:組合模式生成網路
2051、701、704、707、710:輸入層
2052、702、705、708、711:隱藏層
2053、703、706、709、712:輸出層
w、w1、w2:輸出
201、202、203、204、801、802、803、804:節點
301:節點基因
302、401、403、501、502、505:連結基因
402、404、503、504、506:神經網路
5011、5012、5013、5014、5021、5022、5023、5024、5025、5051、5052、5053、5054、5055、5056:連結基因元素
601~608:節點
609:機率表
610~612:條件機率表
700:遞迴貝式網路
7021、7051、7081、7111、800:貝式網路
7022、7052、7082、7112:遞迴層
1200:電子設備
1202:內部記憶體
1203:非揮發性記憶體
1300:無線網路控制系統
1301:無線存取網路
1302:優化器
1303:控制單元
1304:任務網路
P(.):機率
P(X
1):隨機變數X
1的機率
P(X
2|X
1)、P(X
3|X
1)、P(X
4|X
2,X
3):條件機率
t:時間
X
1、X
2、X
3、X
4、C、S、R、W:隨機變數
T、F:集合的元素
M1、M2、M3:節點狀態
S901~S905、S1001~S1002、S1101:步驟100: Recurrent Bayesian
圖1係依據本發明一實施例所繪示的遞迴貝式網路建構系統方塊圖。 圖2係依據本發明一實施例所繪示的組合模式生成網路示意圖。 圖3係依據本發明一實施例所繪示的神經網路編碼示意圖。 圖4係依據本發明一實施例所繪示的神經網路變異過程示意圖。 圖5係依據本發明一實施例所繪示的神經網路交換過程示意圖。 圖6-1係依據本發明一實施例所繪示的貝式網路示意圖。 圖6-2係依據本發明一實施例所繪示的貝式網路示意圖。 圖7係依據本發明一實施例所繪示的遞迴貝式網路示意圖。 圖8係依據本發明一實施例所繪示的遞迴貝式網路建構示意圖。 圖9係依據本發明一實施例所繪示的遞迴貝式網路建構方法流程圖。 圖10係依據本發明一實施例所繪示的遞迴貝式網路建構方法流程圖。 圖11係依據本發明一實施例所繪示的遞迴貝式網路建構方法流程圖。 圖12係本說明書的一個實施例的電子設備的結構方塊圖。 圖13係應用遞迴貝式網路建構系統所產生任務網路的無線網路控制系統方塊圖。 FIG. 1 is a block diagram of a recurrent Bayesian network construction system according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a combined mode generation network according to an embodiment of the present invention. FIG. 3 is a schematic diagram of neural network coding according to an embodiment of the present invention. FIG. 4 is a schematic diagram of a neural network mutation process according to an embodiment of the present invention. FIG. 5 is a schematic diagram of a neural network switching process according to an embodiment of the present invention. FIG. 6-1 is a schematic diagram of a Bayesian network according to an embodiment of the present invention. FIG. 6-2 is a schematic diagram of a Bayesian network according to an embodiment of the present invention. FIG. 7 is a schematic diagram of a recurrent Bayesian network according to an embodiment of the present invention. FIG. 8 is a schematic diagram illustrating the construction of a recurrent Bayesian network according to an embodiment of the present invention. FIG. 9 is a flowchart of a method for constructing a recurrent Bayesian network according to an embodiment of the present invention. FIG. 10 is a flowchart of a method for constructing a recurrent Bayesian network according to an embodiment of the present invention. FIG. 11 is a flowchart of a method for constructing a recurrent Bayesian network according to an embodiment of the present invention. FIG. 12 is a structural block diagram of an electronic device according to an embodiment of the present specification. Fig. 13 is a block diagram of a wireless network control system for a task network generated by applying a recursive Bayesian network construction system.
S901~S905:步驟 S901~S905: steps
Claims (19)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111109714A TWI806496B (en) | 2022-03-16 | 2022-03-16 | Construction systems for recurrent bayesian networks, construction methods for recurrent bayesian networks, computer readable recording medium with stored program, non-transitory computer program products, and wireless network control systems |
CN202210391790.5A CN115988542A (en) | 2021-10-13 | 2022-04-14 | Network construction system and method, recording medium, program product, and control system |
US17/839,742 US20230110592A1 (en) | 2021-10-13 | 2022-06-14 | Construction system for recurrent bayesian networks, construction method for recurrent bayesian networks, computer readable recording medium, non-transitory computer program product, and radio network control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111109714A TWI806496B (en) | 2022-03-16 | 2022-03-16 | Construction systems for recurrent bayesian networks, construction methods for recurrent bayesian networks, computer readable recording medium with stored program, non-transitory computer program products, and wireless network control systems |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI806496B true TWI806496B (en) | 2023-06-21 |
TW202338669A TW202338669A (en) | 2023-10-01 |
Family
ID=87803137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111109714A TWI806496B (en) | 2021-10-13 | 2022-03-16 | Construction systems for recurrent bayesian networks, construction methods for recurrent bayesian networks, computer readable recording medium with stored program, non-transitory computer program products, and wireless network control systems |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI806496B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI446280B (en) * | 2008-03-08 | 2014-07-21 | Tokyo Electron Ltd | Autonomous biologically based learning tool |
CN112712178A (en) * | 2020-12-30 | 2021-04-27 | 航天信息股份有限公司 | Bayesian network structure learning method and system based on genetic algorithm |
US20210224634A1 (en) * | 2020-01-22 | 2021-07-22 | Shanghai United Imaging Intelligence Co., Ltd. | Systems and methods for image reconstruction |
TW202131661A (en) * | 2019-02-15 | 2021-08-16 | 南韓商三星電子股份有限公司 | Device and method for network optimization and non-transitory computer-readable medium |
-
2022
- 2022-03-16 TW TW111109714A patent/TWI806496B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI446280B (en) * | 2008-03-08 | 2014-07-21 | Tokyo Electron Ltd | Autonomous biologically based learning tool |
TW202131661A (en) * | 2019-02-15 | 2021-08-16 | 南韓商三星電子股份有限公司 | Device and method for network optimization and non-transitory computer-readable medium |
US20210224634A1 (en) * | 2020-01-22 | 2021-07-22 | Shanghai United Imaging Intelligence Co., Ltd. | Systems and methods for image reconstruction |
CN112712178A (en) * | 2020-12-30 | 2021-04-27 | 航天信息股份有限公司 | Bayesian network structure learning method and system based on genetic algorithm |
Also Published As
Publication number | Publication date |
---|---|
TW202338669A (en) | 2023-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210133536A1 (en) | Load prediction method and apparatus based on neural network | |
Oda et al. | Evaluation of WMN-GA for different mutation operators | |
Tam et al. | A decomposition-based multi-objective optimization approach for balancing the energy consumption of wireless sensor networks | |
WO2022227217A1 (en) | Text classification model training method and apparatus, and device and readable storage medium | |
CN113285831B (en) | Network behavior knowledge intelligent learning method and device, computer equipment and storage medium | |
CN113988464A (en) | Network link attribute relation prediction method and equipment based on graph neural network | |
Asheralieva et al. | Optimizing age of information and security of the next-generation internet of everything systems | |
CN116567572A (en) | Unmanned aerial vehicle self-organizing communication network space-time evolution deployment method, device, equipment and medium | |
CN113535381B (en) | Service function chain mapping method, device and equipment based on improved genetic algorithm | |
TWI806496B (en) | Construction systems for recurrent bayesian networks, construction methods for recurrent bayesian networks, computer readable recording medium with stored program, non-transitory computer program products, and wireless network control systems | |
CN112073983B (en) | Wireless data center network topology optimization method and system based on flow prediction | |
CN111597139B (en) | Communication method, system, equipment and medium of GPU | |
CN112396166A (en) | Graph convolution neural network training method and device based on mixed granularity aggregator | |
CN106406082B (en) | System control method, device, controller and control system | |
US20230110592A1 (en) | Construction system for recurrent bayesian networks, construction method for recurrent bayesian networks, computer readable recording medium, non-transitory computer program product, and radio network control system | |
Szlachcic | Fault tolerant topological design for computer networks | |
Efstathiou et al. | Efficient multi-objective optimisation of service compositions in mobile ad hoc networks using lightweight surrogate models | |
TWI833065B (en) | Network optimizer and network optimization method thereof | |
Punhani et al. | Optimal extra links placement in mesh interconnection network using improved environmental adaptation method | |
Swapna Kumar et al. | GDFEC protocol for heterogeneous wireless sensor network | |
Bidlo | Investigation of replicating tiles in cellular automata designed by evolution using conditionally matching rules | |
Lianshuan et al. | A Multi-Objective Genetic Algorithm Based on Objective-Layered to Solve Network Optimization Design | |
CN117336187B (en) | Unmanned aerial vehicle communication network inference method based on inter-edge association | |
JP7197624B2 (en) | Methods for selecting task networks and systems and methods for determining behavior based on sensing data | |
JP2001175636A (en) | Method and device for optimizing number of multi- layered neural network units |