TWI806321B - Inundation assessment method and computing device - Google Patents

Inundation assessment method and computing device Download PDF

Info

Publication number
TWI806321B
TWI806321B TW110149206A TW110149206A TWI806321B TW I806321 B TWI806321 B TW I806321B TW 110149206 A TW110149206 A TW 110149206A TW 110149206 A TW110149206 A TW 110149206A TW I806321 B TWI806321 B TW I806321B
Authority
TW
Taiwan
Prior art keywords
data
rainfall
flooding
coordinates
normalized
Prior art date
Application number
TW110149206A
Other languages
Chinese (zh)
Other versions
TW202326178A (en
Inventor
王豪偉
許至璁
Original Assignee
財團法人國家實驗研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人國家實驗研究院 filed Critical 財團法人國家實驗研究院
Priority to TW110149206A priority Critical patent/TWI806321B/en
Application granted granted Critical
Publication of TWI806321B publication Critical patent/TWI806321B/en
Publication of TW202326178A publication Critical patent/TW202326178A/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一種淹水評估方法,藉由一運算裝置來實施,當該運算裝置接收到多筆相關於一地域之雨量資料時,根據每一雨量資料的多個不同觀測座標及其對應的降雨量,利用一內插方法獲得每一地點座標所對應的降雨量,以作為處理後的雨量資料,並將一座標資料的多個地點座標進行正規化,以獲得一正規化後的座標資料,且將每一處理後的雨量資料的降雨量進行正規化,以獲得一正規化後的雨量資料,並根據該正規化後的座標資料,及該等正規化後的雨量資料,利用一淹水評估模型,獲得一包含該地域之該等地點於一評估時間點的多個淹水深度的淹水評估結果。A flood assessment method implemented by a computing device, when the computing device receives multiple pieces of rainfall data related to a region, according to a plurality of different observation coordinates of each rainfall data and its corresponding rainfall, use An interpolation method obtains the rainfall corresponding to each location coordinate as the processed rainfall data, and normalizes multiple location coordinates of the coordinate data to obtain a normalized coordinate data, and each normalizing the rainfall of the processed rainfall data to obtain a normalized rainfall data, and using a flood assessment model based on the normalized coordinate data and the normalized rainfall data, Obtain a flood assessment result including multiple flood depths of the locations in the area at an assessment time point.

Description

淹水評估方法及其運算裝置Inundation assessment method and computing device

本發明是有關於一種淹水評估方法,特別是指一種用於評估一相關於一地域之淹水深度的淹水評估方法及其運算裝置。The present invention relates to a flooding assessment method, in particular to a flooding assessment method for assessing a flooding depth related to an area and a computing device thereof.

以往當氣候變遷時世界各國容易造成嚴重的淹水問題,以台灣為例子,原本2021年初還是大乾旱,但於2021年8月初西南氣流帶來豪雨,造成南部不小的農業經濟損失。針對氣候變遷可能在任何區域快速地發生淹水的問題,其現有運用在預防淹水的淹水評估方法有一維機器學習,及二維淹水物理模式,其中一維機器學習僅能根據即時觀測資料評估距離當前時間點之未來1至3小時的淹水程度,由於所依據的評估資料須為即時的觀測資料,使用上較為受限,且能預估的淹水時間點也受限於取得即時觀測資料的未來1至3小時,二維淹水物理模式的評估結果則是需要耗費較高的運算時間。In the past, when the climate changed, countries around the world were prone to serious flooding problems. Taking Taiwan as an example, there was a severe drought in early 2021, but in early August 2021, the southwesterly airflow brought heavy rain, causing considerable agricultural and economic losses in the south. Aiming at the problem that climate change may rapidly cause flooding in any area, its existing flooding assessment method used in flood prevention has one-dimensional machine learning and two-dimensional flooding physical model, of which one-dimensional machine learning can only be based on real-time observations The data assesses the degree of flooding in the next 1 to 3 hours from the current time point. Since the evaluation data based on it must be real-time observation data, the use is relatively limited, and the time point of flooding that can be estimated is also limited by the availability of For the next 1 to 3 hours of real-time observation data, the evaluation results of the two-dimensional flooding physical model need to consume relatively high computing time.

因此,若能提出一種方法來降低運算時間,且能評估距離當前時間點之更久以後的未來時間點,便能快速地及早預測淹水風險,以讓防災計畫研擬,及災前整備階段能夠妥善的執行。Therefore, if a method can be proposed to reduce the calculation time and evaluate the future time point that is longer than the current time point, the flood risk can be predicted quickly and early, so that disaster prevention plans can be formulated and pre-disaster preparations can be made. stage can be properly executed.

因此,本發明的目的,即在提供一種可即時且自動評估出一地域在距離當前時間點之更久以後的未來時間點之淹水深度的淹水評估方法。Therefore, the purpose of the present invention is to provide a flood assessment method that can instantly and automatically assess the flood depth of a region at a future time point that is longer than the current time point.

於是,本發明淹水評估方法,藉由一運算裝置來實施,該運算裝置儲存有一用於評估一相關於一地域之淹水深度的淹水評估模型,及一相關於該地域的多個不同地點的座標資料,該座標資料包含多個對應該等地點的地點座標,該淹水評估方法包含一步驟(A)、一步驟(B)、一步驟(C),及一步驟(D)。Therefore, the flood assessment method of the present invention is implemented by a computing device, which stores a flood assessment model for assessing a flood depth related to a region, and a plurality of different models related to the region Coordinate data of a location, the coordinate data includes a plurality of location coordinates corresponding to the locations, and the flood assessment method includes a step (A), a step (B), a step (C), and a step (D).

該步驟(A)是當該運算裝置接收到多筆相關於該地域在不同時間區段之雨量資料時,每一雨量資料包含多個不同觀測點的觀測座標,及多個對應該等觀測點的降雨量,該等時間區段分別由多個不同且早於一個評估時間點的先前時間點各自與該評估時間點所界定出,對於每一雨量資料,該運算裝置根據該雨量資料的該等觀測座標及其對應的降雨量,利用一內插方法獲得每一地點座標所對應的降雨量,以作為處理後的雨量資料。The step (A) is when the computing device receives multiple pieces of rainfall data related to the region in different time periods, each rainfall data includes the observation coordinates of multiple different observation points, and multiple corresponding observation points The rainfall amount, these time periods are respectively defined by a plurality of different previous time points that are earlier than an evaluation time point and the evaluation time point, for each rainfall data, the calculation device is based on the rainfall data of the Observation coordinates and their corresponding rainfall are obtained by using an interpolation method to obtain the rainfall corresponding to each location coordinate as the processed rainfall data.

該步驟(B)是該運算裝置將該座標資料的該等地點座標進行正規化,以獲得一正規化後的座標資料。In the step (B), the computing device normalizes the location coordinates of the coordinate data to obtain a normalized coordinate data.

該步驟(C)是對於每一處理後的雨量資料,該運算裝置將該處理後的雨量資料的降雨量進行正規化,以獲得一正規化後的雨量資料。In the step (C), for each processed rainfall data, the calculation device normalizes the rainfall amount of the processed rainfall data to obtain a normalized rainfall data.

該步驟(D)是該運算裝置根據該正規化後的座標資料,及該等正規化後的雨量資料,利用該淹水評估模型,獲得一包含該地域之該等地點於該評估時間點的多個淹水深度的淹水評估結果。The step (D) is that the calculation device obtains an estimation time point of the locations including the region by using the flood assessment model based on the normalized coordinate data and the normalized rainfall data. Flood assessment results for multiple flood depths.

本發明的另一目的,即在提供一種可即時且自動評估出一地域在距離當前時間點之更久以後的未來時間點之淹水深度的運算裝置。Another object of the present invention is to provide a computing device capable of instantly and automatically evaluating the flooding depth of an area at a future time point that is longer than the current time point.

於是,本發明運算裝置,包含一儲存模組,及一處理模組。Therefore, the computing device of the present invention includes a storage module and a processing module.

該儲存模組用於儲存一用於評估一相關於一地域之淹水深度的淹水評估模型,及一相關於該地域的多個不同地點的座標資料,該座標資料包含多個對應該等地點的地點座標。The storage module is used to store a flood assessment model for assessing a flood depth related to a region, and a coordinate data related to a plurality of different locations in the region, the coordinate data includes a plurality of corresponding The location coordinates of the location.

該處理模組電連接該儲存模組。The processing module is electrically connected to the storage module.

其中,當該處理模組接收到多筆相關於該地域在不同時間區段之雨量資料時,每一雨量資料包含多個不同觀測點的觀測座標,及多個對應該等觀測點的降雨量,該等時間區段分別由多個不同且早於一個評估時間點的先前時間點各自與該評估時間點所界定出,對於每一雨量資料,該處理模組根據該雨量資料的該等觀測座標及其對應的降雨量,利用一內插方法獲得每一地點座標所對應的降雨量,以作為處理後的雨量資料,該處理模組將該儲存模組所存有的該座標資料的該等地點座標進行正規化,以獲得一正規化後的座標資料,且對於每一處理後的雨量資料,該處理模組將該處理後的雨量資料的降雨量進行正規化,以獲得一正規化後的雨量資料,該處理模組根據該正規化後的座標資料,及該等正規化後的雨量資料,利用該儲存模組所存有的該淹水評估模型,獲得一包含該地域之該等地點於該評估時間點的多個淹水深度的淹水評估結果。Among them, when the processing module receives multiple pieces of rainfall data related to the region in different time periods, each rainfall data includes the observation coordinates of multiple different observation points, and multiple rainfall corresponding to the same observation point , the time intervals are respectively defined by a plurality of different previous time points earlier than an evaluation time point and the evaluation time point, for each rainfall data, the processing module is based on the observations of the rainfall data Coordinates and their corresponding rainfall, use an interpolation method to obtain the rainfall corresponding to each location coordinate, as the processed rainfall data, the processing module will save the coordinate data stored in the storage module The location coordinates are normalized to obtain a normalized coordinate data, and for each processed rainfall data, the processing module normalizes the rainfall of the processed rainfall data to obtain a normalized According to the normalized coordinate data and the normalized rainfall data, the processing module uses the flood assessment model stored in the storage module to obtain a list of the locations including the region Flood assessment results for multiple flood depths at that assessment time point.

本發明的功效在於:藉由該處理模組根據該雨量資料利用該內插方法獲得處理後的雨量資料,可使處理後之雨量資料所涵蓋的地點與該地域之該等地點一致,此外,藉由該處理模組獲得該正規化後的座標資料,及該等正規化後的雨量資料,並利用該淹水評估模型,獲得該淹水評估結果,由於該等雨量資料不需限制為即時的觀測資料,其可為預估的雨量資料,因此只要可取得未來時間點前之對應不同時間區段的預估雨量資料,即可即時地評估出該地域在未來時間點的淹水狀況。The effect of the present invention is that: the processing module obtains the processed rainfall data by using the interpolation method according to the rainfall data, so that the locations covered by the processed rainfall data can be consistent with the locations in the area. In addition, Obtain the normalized coordinate data and the normalized rainfall data through the processing module, and use the flood assessment model to obtain the flood assessment result, because the rainfall data does not need to be limited to real-time The observation data can be estimated rainfall data, so as long as the estimated rainfall data corresponding to different time periods before the future time point can be obtained, the flooding status of the area at the future time point can be evaluated in real time.

在本發明被詳細描述的前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same numerals.

參閱圖1,本發明淹水評估方法的一實施例,藉由一運算裝置來實施,該運算裝置包含一儲存模組1,及一電連接該儲存模組1的處理模組2。Referring to FIG. 1 , an embodiment of the flood assessment method of the present invention is implemented by a computing device, which includes a storage module 1 and a processing module 2 electrically connected to the storage module 1 .

該儲存模組1儲存有一用於評估一相關於該地域之淹水深度的淹水評估模型、一相關於該地域的多個不同地點的座標資料,及該地域之該等地點中不會淹水的至少一非淹水地點的非淹水地點座標,該座標資料包含多個對應該等地點的地點座標,每一地點座標為一個三維座標,且包含一X座標、一Y座標,及一Z座標。The storage module 1 stores a flood assessment model for assessing a flood depth related to the region, a coordinate data of a plurality of different points related to the region, and the points that are not likely to be flooded in the region Non-flooded location coordinates of at least one non-flooded location of water, the coordinate data includes a plurality of location coordinates corresponding to the location, each location coordinate is a three-dimensional coordinate, and includes an X coordinate, a Y coordinate, and a Z-coordinate.

該儲存模組1還儲存有多筆相關於該地域所發生之淹水事件的淹水事件資料,每筆淹水事件資料包含多筆對應不同降雨時間區段的淹水雨量資料,及一對應該等淹水雨量資料的淹水資料。每一淹水資料包含在所對應之淹水事件發生時於一對應的淹水量測時間點所量測到之多個對應該等地點的淹水深度,每一淹水雨量資料包含多個不同量測點的量測座標,及在所對應之淹水事件發生時對應於該等量測點的多個降雨量,每筆淹水事件資料對應的該等降雨時間區段分別由早於所對應之淹水事件發生時所對應之淹水量測時間點的多個不同之降雨時間點各自與所對應之淹水事件發生時對應的淹水量測時間點所界定出。The storage module 1 also stores a plurality of flooding event data related to the flooding event in the area, and each flooding event data includes multiple flooding rainfall data corresponding to different rainfall time periods, and a pair of The inundation data should wait for the inundation rainfall data. Each flooding data includes the flooding depths of multiple corresponding locations measured at a corresponding flooding measurement time point when the corresponding flooding event occurs, and each flooding rainfall data includes multiple The measurement coordinates of different measurement points, and the multiple rainfall corresponding to these measurement points when the corresponding flooding event occurs, the rainfall time intervals corresponding to each flooding event data are respectively from earlier than A plurality of different rainfall time points corresponding to the flooding measurement time point when the corresponding flooding event occurs are respectively defined by the corresponding flooding measurement time point when the corresponding flooding event occurs.

舉例來說,該淹水量測時間點若為2018年11月10號早上10點,則該等降雨時間點即分別為2018年11月10號早上的9點、8點、7點、6點、4點、2點、2018年11月9號晚上的12點,及2018年11月9號晚上的10點,亦即,該等雨量資料即分別為早於該淹水量測時間點的前1小時至該淹水量測時間點內累積的降雨量、早於該淹水量測時間點的前2小時至該淹水量測時間點內累積的降雨量、早於該淹水量測時間點的前3小時至該淹水量測時間點內累積的降雨量、早於該淹水量測時間點的前4小時至該淹水量測時間點內累積的降雨量、早於該淹水量測時間點的前6小時至該淹水量測時間點內累積的降雨量、早於該淹水量測時間點的前8小時、早於該淹水量測時間點的前10小時至該淹水量測時間點內累積的降雨量,及早於該淹水量測時間點的前12小時至該淹水量測時間點內累積的降雨量。For example, if the flood measurement time point is 10 am on November 10, 2018, then the rainfall time points are respectively 9 am, 8 am, 7 am, 6 am on November 10, 2018. at 12:00 on the night of November 9, 2018, and at 10:00 on the night of November 9, 2018, that is, the rainfall data are earlier than the flooding measurement time point The cumulative rainfall from 1 hour before the flooding measurement time point to the flooding measurement time point, the accumulated rainfall from the 2 hours before the flooding measurement time point to the flooding measurement time point, and the flooding measurement time point earlier than the flooding The accumulated rainfall from 3 hours before the measurement time point to the inundation measurement time point, the accumulated rainfall from the 4 hours before the inundation measurement time point to the inundation measurement time point, the early The cumulative rainfall from 6 hours before the flooding measurement time point to the flooding measurement time point, the 8 hours earlier than the flooding measurement time point, and the rainfall earlier than the flooding measurement time point The cumulative rainfall from the previous 10 hours to the flooding measurement time point, and the accumulated rainfall from the previous 12 hours to the flooding measurement time point earlier than the flooding measurement time point.

參閱圖1,該運算裝置可為一平板電腦、一筆記型電腦、一伺服器或一個人電腦,但不以此為限。Referring to FIG. 1, the computing device can be a tablet computer, a notebook computer, a server or a personal computer, but not limited thereto.

以下將配合本發明淹水評估方法之該實施例,來說明該運算裝置中各元件的運作細節,該淹水評估方法之該實施例包含一用於建立該淹水評估模型的淹水評估模型建立程序,及一用於評估該地域之淹水深度的淹水評估程序。The details of the operation of each element in the computing device will be described below in conjunction with the embodiment of the flood assessment method of the present invention. The embodiment of the flood assessment method includes a flood assessment model for establishing the flood assessment model Establish procedures, and a flood assessment procedure for assessing the flood depth of the area.

該淹水評估模型建立程序包含一步驟51、一步驟52、一步驟53、一步驟54、一步驟55,及一步驟56。The flood assessment model building procedure includes a step 51 , a step 52 , a step 53 , a step 54 , a step 55 , and a step 56 .

該淹水評估程序包含一步驟61、一步驟62、一步驟63,及一步驟64。The flood assessment procedure includes a step 61 , a step 62 , a step 63 , and a step 64 .

參閱圖1與圖2,該淹水評估模型建立程序包含以下步驟。Referring to Fig. 1 and Fig. 2, the establishment procedure of the flood assessment model includes the following steps.

在步驟51中,該處理模組2經由該儲存模組1所存有的該等淹水事件資料,利用一資料篩選方法獲得多筆目標淹水資料,其中該資料篩選方法為百分位數方法(Percentile),亦即,取樣該等淹水事件資料之資料量的百分位數。In step 51, the processing module 2 obtains a plurality of target flooding data through a data screening method through the flooding event data stored in the storage module 1, wherein the data screening method is a percentile method (Percentile), that is, the percentile of the amount of data that samples the flooding event data.

在步驟52中,對於該等目標淹水資料之每一淹水雨量資料,該處理模組2根據該淹水雨量資料的該等量測座標及其對應的降雨量,利用一內插方法獲得每一地點座標所對應的降雨量,以作為處理後的淹水雨量資料。一般而言,該等量測點的數量會少於該地域之該等地點的數量,且該等量測座標與該等地點座標亦非完全一致,藉由步驟52之執行即可使每一處理後的淹水雨量資料皆包含所有地點座標的降雨量,而與所對應之淹水資料所涵蓋的地點一致。In step 52, for each flooding rainfall data of the target flooding data, the processing module 2 uses an interpolation method to obtain The rainfall corresponding to each location coordinate is used as the flooded rainfall data after processing. Generally speaking, the quantity of these measurement points will be less than the quantity of these locations in this area, and these measurement coordinates and these location coordinates are not completely consistent, by the execution of step 52, each The processed inundation rainfall data all contain the rainfall at all location coordinates, and are consistent with the locations covered by the corresponding inundation data.

在步驟53中,該處理模組2將該儲存模組1所存有的該座標資料的該等地點座標進行正規化,以獲得一正規化後的座標資料。值得一提的是,由於淹水與否與所在地點具有一定的關連性,因此在建立該淹水評估模型時,該地域之該等地點的地點座標亦是不可或缺的項目。In step 53 , the processing module 2 normalizes the location coordinates of the coordinate data stored in the storage module 1 to obtain a normalized coordinate data. It is worth mentioning that since flooding has a certain relationship with the location, the location coordinates of these locations in the area are also indispensable items when establishing the flood assessment model.

在步驟54中,對於每一處理後的淹水雨量資料,該處理模組2將該處理後的淹水雨量資料的降雨量進行正規化,以獲得一正規化後的淹水雨量資料In step 54, for each processed flood rainfall data, the processing module 2 normalizes the rainfall of the processed flood rainfall data to obtain a normalized flood rainfall data

在步驟55中,對於每一目標淹水資料,該處理模組2將該目標淹水資料所對應之正規化後的淹水雨量資料、該正規化後的座標資料,及所對應的該等淹水深度,作為一組淹水訓練資料。In step 55, for each target flood data, the processing module 2 corresponds to the normalized flood rainfall data corresponding to the target flood data, the normalized coordinate data, and the corresponding Depth of flooding, as a set of flooding training data.

在步驟56中,該處理模組2根據該等淹水訓練資料,利用一機器學習演算法,建立該淹水評估模型,其中該機器學習演算法可為卷積神經網路(CNN, Convolutional Neural Network)演算模型。In step 56, the processing module 2 uses a machine learning algorithm to establish the flood assessment model according to the flood training data, wherein the machine learning algorithm can be a convolutional neural network (CNN, Convolutional Neural Network) calculation model.

參閱圖1與圖3,該淹水評估程序包含以下步驟。Referring to Figure 1 and Figure 3, the flood assessment procedure includes the following steps.

在步驟61中,當該處理模組2接收到多筆相關於該地域在不同時間區段之雨量資料時,每一雨量資料包含多個不同觀測點的觀測座標,及多個對應該等觀測點的降雨量,該等時間區段分別由多個不同且早於一個評估時間點的先前時間點各自與該評估時間點所界定出,對於每一雨量資料,該處理模組2根據該雨量資料的該等觀測座標及其對應的降雨量,利用該內插方法獲得每一地點座標所對應的降雨量,以作為處理後的雨量資料。In step 61, when the processing module 2 receives multiple pieces of rainfall data related to the region in different time periods, each rainfall data includes observation coordinates of multiple different observation points, and multiple corresponding observations The rainfall at the point, these time intervals are respectively defined by a plurality of different previous time points earlier than an evaluation time point and the evaluation time point, for each rainfall data, the processing module 2 according to the rainfall For the observation coordinates of the data and the corresponding rainfall, the interpolation method is used to obtain the rainfall corresponding to each location coordinate as the processed rainfall data.

舉例來說,該評估時間點若為明天的早上10點,可透過氣象局預報獲得在該等先前時間點各自與該評估時間點所界定出的該等時間區段之該等雨量資料,其中該等先前時間點分別為明天早上的9點、8點、7點、6點、4點、2點、今天晚上的12點,及今天晚上的10點。相較於習知僅能針對即時觀測資料評估距離當前時間點之未來1至3小時的淹水程度,若氣象預報可提供距離當前時間點更久的未來時間點之雨量資料,就可以利用該淹水評估模型評估出更久以後的未來時間點之淹水深度。For example, if the evaluation time point is 10:00 am tomorrow, the rainfall data of the time intervals defined by the previous time points and the evaluation time point can be obtained through the forecast of the Meteorological Bureau, where These previous time points are 9 o'clock, 8 o'clock, 7 o'clock, 6 o'clock, 4 o'clock, 2 o'clock tomorrow morning, 12 o'clock this evening, and 10 o'clock this evening. Compared with conventional methods that can only assess the flooding degree 1 to 3 hours from the current time point based on real-time observation data, if the weather forecast can provide rainfall data at a future time point that is longer than the current time point, it can be used The inundation assessment model estimates the inundation depth at a further future point in time.

在步驟62中,該處理模組2將該儲存模組1所存有的該座標資料的該等地點座標進行正規化,以獲得該正規化後的座標資料。In step 62, the processing module 2 normalizes the location coordinates of the coordinate data stored in the storage module 1 to obtain the normalized coordinate data.

參閱圖1與圖4,值得特別說明的是,步驟62包含以下子步驟。Referring to FIG. 1 and FIG. 4 , it is worth noting that step 62 includes the following sub-steps.

在步驟621中,該處理模組2將該儲存模組1所存有的該等地點座標的X座標進行正規化,以獲得多個正規化後的X座標。In step 621 , the processing module 2 normalizes the X coordinates of the location coordinates stored in the storage module 1 to obtain a plurality of normalized X coordinates.

在步驟622中,該處理模組2將該儲存模組1所存有的該等地點座標的Y座標進行正規化,以獲得多個正規化後的Y座標。In step 622 , the processing module 2 normalizes the Y coordinates of the location coordinates stored in the storage module 1 to obtain a plurality of normalized Y coordinates.

在步驟623中,該處理模組2將該儲存模組1所存有的該等地點座標的Z座標進行正規化,以獲得多個正規化後的Z座標。In step 623 , the processing module 2 normalizes the Z coordinates of the location coordinates stored in the storage module 1 to obtain a plurality of normalized Z coordinates.

其中,該等正規化後的X座標、該等正規化後的Y座標,及該等正規化後的Z座標共同構成該正規化後的座標資料。Wherein, the normalized X coordinates, the normalized Y coordinates, and the normalized Z coordinates together constitute the normalized coordinate data.

參閱圖1與圖5,值得特別說明的是,步驟623包含以下子步驟。Referring to FIG. 1 and FIG. 5 , it is worth noting that step 623 includes the following sub-steps.

在步驟623a中,該處理模組2將該儲存模組1所存有的該至少一非淹水地點座標的Z座標設定為該等地點座標之Z座標中的最大值。由於Z座標的座標值越大,即代表該地點的地勢越高,地勢越高越不容易淹水,因此,藉由將該至少一非淹水地點座標的Z座標設定為該等地點座標之Z座標中的最大值,使得在進行淹水評估時,對應該至少一非淹水地點的淹水深度基本上即會指示出無淹水。In step 623a, the processing module 2 sets the Z coordinate of the at least one non-flooded location coordinate stored in the storage module 1 as the maximum value among the Z coordinates of the location coordinates. Since the larger the coordinate value of the Z coordinate, it means that the terrain of the site is higher, and the higher the terrain, the less likely it is to be flooded. Therefore, by setting the Z coordinate of the at least one non-flooded location coordinate as one of the location coordinates The maximum value in the Z coordinate is such that the flooding depth corresponding to at least one non-flooded location substantially indicates no flooding when the flooding assessment is performed.

在步驟623b中,該處理模組2將經步驟623a之設定後的該等地點座標的Z座標進行正規化,以獲得該等正規化後的Z座標。In step 623b, the processing module 2 normalizes the Z coordinates of the location coordinates set in step 623a to obtain the normalized Z coordinates.

在步驟63中,對於每一處理後的雨量資料,該處理模組2根據對應有最長時間區段之處理後的雨量資料中的最大降雨量來對該處理後的雨量資料中的每一降雨量進行正規化,以獲得一正規化後的雨量資料。In step 63, for each processed rainfall data, the processing module 2 processes each rainfall data in the processed rainfall data according to the maximum rainfall in the processed rainfall data corresponding to the longest time segment Normalize the amount to obtain a normalized rainfall data.

在步驟64中,該處理模組2根據該正規化後的座標資料,及該等正規化後的雨量資料,利用該儲存模組1所存有的該淹水評估模型,獲得一包含該地域之該等地點於該評估時間點的多個淹水深度的淹水評估結果。In step 64, the processing module 2 uses the flood assessment model stored in the storage module 1 according to the normalized coordinate data and the normalized rainfall data to obtain a map containing the area. The results of the inundation assessment for the sites at various inundation depths at that assessment time point.

綜上所述,本發明淹水評估方法,藉由該處理模組2接收到相關於該地域在不同時間區段之該等雨量資料,並根據每一雨量資料利用該內插方法獲得處理後的雨量資料,可使處理後之雨量資料所涵蓋的地點與該地域之該等地點一致,此外,藉由該處理模組2獲得該正規化後的座標資料,及該等正規化後的雨量資料,並利用該淹水評估模型,獲得該淹水評估結果。由於該等雨量資料不需限制為即時的觀測資料,其可為預估的雨量資料,因此只要可取得未來時間點前之對應不同時間區段的預估雨量資料,即可即時地評估出該地域在未來時間點的淹水狀況,故確實能達成本發明的目的。To sum up, in the flood assessment method of the present invention, the processing module 2 receives the rainfall data related to the region in different time periods, and uses the interpolation method to obtain the processed rainfall data according to each rainfall data. The rainfall data can make the locations covered by the processed rainfall data consistent with those locations in the area. In addition, the normalized coordinate data and the normalized rainfall data can be obtained through the processing module 2 data, and use the flood assessment model to obtain the flood assessment results. Since such rainfall data need not be limited to real-time observation data, it can be estimated rainfall data, so as long as the estimated rainfall data corresponding to different time periods before the future time point can be obtained, the The flooding situation of the region at the future time point, so the purpose of the present invention can be really achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。But the above-mentioned ones are only embodiments of the present invention, and should not limit the scope of the present invention. All simple equivalent changes and modifications made according to the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. Within the scope covered by the patent of the present invention.

1:儲存模組1: Storage module

2:處理模組2: Processing module

51~56:步驟51~56: Steps

61~64:步驟61~64: Steps

621~623:步驟621~623: Steps

623a~623b:步驟623a~623b: steps

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,說明一用於執行本發明淹水評估方法之一實施例的運算裝置; 圖2是一流程圖,說明本發明淹水評估方法之該實施例的一淹水評估模型建立程序; 圖3是一流程圖,說明本發明淹水評估方法之該實施例的一淹水評估程序; 圖4是一流程圖,說明一處理模組如何將一座標資料正規化的細部流程;及 圖5是一流程圖,說明該處理模組如何將多個地點座標的Z座標正規化的細部流程。 Other features and effects of the present invention will be clearly presented in the implementation manner with reference to the drawings, wherein: FIG. 1 is a block diagram illustrating a computing device for performing one embodiment of the flooding assessment method of the present invention; Fig. 2 is a flowchart illustrating a flood assessment model building procedure of this embodiment of the flood assessment method of the present invention; FIG. 3 is a flow chart illustrating a flood assessment procedure of the embodiment of the flood assessment method of the present invention; Fig. 4 is a flow chart illustrating the detailed flow of how a processing module normalizes coordinate data; and FIG. 5 is a flow chart illustrating the detailed process of how the processing module normalizes the Z coordinates of multiple location coordinates.

61~64:步驟 61~64: Steps

Claims (6)

一種淹水評估方法,藉由一運算裝置來實施,該運算裝置儲存有一用於評估一相關於一地域之淹水深度的淹水評估模型、一相關於該地域的多個不同地點的座標資料,及該地域之該等地點中不會淹水的至少一非淹水地點的非淹水地點座標,該座標資料包含多個對應該等地點的地點座標,每一地點座標為一個三維座標,且包含一X座標、一Y座標,及一Z座標,該淹水評估方法包含以下步驟:(A)當該運算裝置接收到多筆相關於該地域在不同時間區段之雨量資料時,每一雨量資料包含多個不同觀測點的觀測座標,及多個對應該等觀測點的降雨量,該等時間區段分別由多個不同且早於一個評估時間點的先前時間點各自與該評估時間點所界定出,對於每一雨量資料,該運算裝置根據該雨量資料的該等觀測座標及其對應的降雨量,利用一內插方法獲得每一地點座標所對應的降雨量,以作為處理後的雨量資料;(B)該運算裝置將該座標資料的該等地點座標進行正規化,以獲得一正規化後的座標資料,其中,步驟(B)包含以下子步驟,(B-1)該運算裝置將該等地點座標的X座標進行正規化,以獲得多個正規化後的X座標,(B-2)該運算裝置將該等地點座標的Y座標進行正規化,以獲得多個正規化後的Y座標, (B-3)該運算裝置將該等地點座標的Z座標進行正規化,以獲得多個正規化後的Z座標,其中,該等正規化後的X座標、該等正規化後的Y座標,及該等正規化後的Z座標共同構成該正規化後的座標資料,其中,步驟(B-3)包含以下子步驟,(B-3-1)該運算裝置將該至少一非淹水地點座標的Z座標設定為該等地點座標之Z座標中的最大值,及(B-3-2)該運算裝置將經步驟(B-3-1)之設定後的該等地點座標的Z座標進行正規化,以獲得該等正規化後的Z座標;(C)對於每一處理後的雨量資料,該運算裝置將該處理後的雨量資料的降雨量進行正規化,以獲得一正規化後的雨量資料;及(D)該運算裝置根據該正規化後的座標資料,及該等正規化後的雨量資料,利用該淹水評估模型,獲得一包含該地域之該等地點於該評估時間點的多個淹水深度的淹水評估結果。 A flood assessment method implemented by a computing device storing a flood assessment model for assessing a flood depth related to a region, coordinate data related to a plurality of different locations in the region , and the non-flooded location coordinates of at least one non-flooded location among the locations in the region that will not be flooded, the coordinate data includes a plurality of location coordinates corresponding to such locations, and each location coordinate is a three-dimensional coordinate, And including an X coordinate, a Y coordinate, and a Z coordinate, the flood assessment method includes the following steps: (A) when the computing device receives multiple pieces of rainfall data related to the region in different time periods, each A rainfall data includes the observation coordinates of a plurality of different observation points, and a plurality of rainfall corresponding to the observation points, and these time segments are respectively connected with the evaluation time points by a plurality of different previous time points earlier than an evaluation time point As defined by the time point, for each rainfall data, the calculation device uses an interpolation method to obtain the rainfall corresponding to each location coordinate according to the observation coordinates of the rainfall data and the corresponding rainfall, as a processing (B) the computing device normalizes the location coordinates of the coordinate data to obtain a normalized coordinate data, wherein step (B) includes the following sub-steps, (B-1) The computing device normalizes the X coordinates of the location coordinates to obtain a plurality of normalized X coordinates, and (B-2) the computing device normalizes the Y coordinates of the location coordinates to obtain a plurality of The normalized Y coordinate, (B-3) The computing device normalizes the Z coordinates of the location coordinates to obtain a plurality of normalized Z coordinates, wherein the normalized X coordinates, the normalized Y coordinates , and the normalized Z coordinates together constitute the normalized coordinate data, wherein step (B-3) includes the following sub-steps, (B-3-1) the computing device takes at least one non-flooded The Z coordinate of the location coordinates is set to the maximum value of the Z coordinates of the location coordinates, and (B-3-2) the computing device will set the Z coordinates of the location coordinates after step (B-3-1) Coordinates are normalized to obtain the normalized Z coordinates; (C) For each processed rainfall data, the computing device normalizes the rainfall of the processed rainfall data to obtain a normalized and (D) the computing device, based on the normalized coordinate data and the normalized rainfall data, uses the flooding assessment model to obtain a set of locations including the region in the assessment Inundation assessment results for multiple inundation depths at time points. 如請求項1所述的淹水評估方法,其中,在步驟(C)中,對於每一處理後的雨量資料,該運算裝置根據對應有最長時間區段之處理後的雨量資料中的最大降雨量來對該處理後的雨量資料中的每一降雨量進行正規化,以獲得該正規化後的雨量資料。 The flood assessment method as described in Claim 1, wherein, in step (C), for each processed rainfall data, the computing device calculates the maximum rainfall in the processed rainfall data corresponding to the longest time segment Each rainfall amount in the processed rainfall data is normalized to obtain the normalized rainfall data. 如請求項1所述的淹水評估方法,該運算裝置還存有多筆相關於該地域所發生之淹水事件的淹水事件資料,每筆淹 水事件資料包含多筆對應不同降雨時間區段的淹水雨量資料,及一對應該等淹水雨量資料的淹水資料,每一淹水資料包含在所對應之淹水事件發生時於一對應的淹水量測時間點所量測到之多個對應該等地點的淹水深度,每一淹水雨量資料包含多個不同量測點的量測座標,及在所對應之淹水事件發生時對應於該等量測點的多個降雨量,每筆淹水事件資料對應的該等降雨時間區段分別由早於所對應之淹水事件發生時所對應之該淹水量測時間點的多個不同之降雨時間點各自與所對應之淹水事件發生時對應的淹水量測時間點所界定出,其中,在步驟(A)前,還包含以下步驟:(E)該運算裝置經由該等淹水事件資料,利用一資料篩選方法獲得多筆目標淹水資料;(F)對於該等目標淹水資料之每一淹水雨量資料,該運算裝置根據該淹水雨量資料的該等量測座標及其對應的降雨量,利用該內插方法獲得每一地點座標所對應的降雨量,以作為處理後的淹水雨量資料;(G)該運算裝置將該座標資料的該等地點座標進行正規化,以獲得該正規化後的座標資料;(H)對於每一處理後的淹水雨量資料,該運算裝置將該處理後的淹水雨量資料的降雨量進行正規化,以獲得一正規化後的淹水雨量資料;(I)對於每一目標淹水資料,該運算裝置將該目標淹水資料所對應之正規化後的淹水雨量資料、該正規化後的座 標資料,及所對應的該等淹水深度,作為一組淹水訓練資料;及(J)該運算裝置根據該等淹水訓練資料,利用一機器學習演算法,建立該淹水評估模型。 According to the flood assessment method described in claim 1, the computing device also stores multiple flood event data related to the flood events that occurred in the area, and each flood The water event data includes multiple flooding rainfall data corresponding to different rainfall time periods, and a pair of flooding data corresponding to the flooding rainfall data. Each flooding data contains a corresponding flooding event when the corresponding flooding event occurs The flooding depths measured at multiple corresponding locations at the flooding measurement time point, each flooding rainfall data includes the measurement coordinates of multiple different measurement points, and the occurrence of the corresponding flooding event The multiple rainfall amounts corresponding to the measurement points at that time, and the rainfall time segments corresponding to each flood event data are respectively earlier than the corresponding flood measurement time points when the corresponding flood event occurs A plurality of different rainfall time points are defined by the corresponding flood measurement time points when the corresponding flood event occurs, wherein, before step (A), the following steps are also included: (E) the computing device Through the flooding event data, a data screening method is used to obtain multiple pieces of target flooding data; (F) for each flooding rainfall data of the target flooding data, the computing device is based on the flooding rainfall data Equal measurement coordinates and their corresponding rainfall, use the interpolation method to obtain the rainfall corresponding to the coordinates of each location, as the processed flood rainfall data; (G) the computing device will use the coordinate data The location coordinates are normalized to obtain the normalized coordinate data; (H) for each processed flood rainfall data, the computing device normalizes the rainfall of the processed flood rainfall data to obtain Obtain a normalized flooding rainfall data; (1) for each target flooding data, the computing device corresponding to the normalized flooding rainfall data of the target flooding data, the normalized constellation The target data and the corresponding flooding depths are used as a set of flooding training data; and (J) the computing device uses a machine learning algorithm to establish the flooding assessment model based on the flooding training data. 一種用於評估淹水深度的運算裝置,包含:一儲存模組,用於儲存一用於評估一相關於一地域之淹水深度的淹水評估模型、一相關於該地域的多個不同地點的座標資料,及該地域之該等地點中不會淹水的至少一非淹水地點的非淹水地點座標,該座標資料包含多個對應該等地點的地點座標,每一地點座標為一個三維座標,且包含一X座標、一Y座標,及一Z座標;及一處理模組,電連接該儲存模組;其中,當該處理模組接收到多筆相關於該地域在不同時間區段之雨量資料時,每一雨量資料包含多個不同觀測點的觀測座標,及多個對應該等觀測點的降雨量,該等時間區段分別由多個不同且早於一個評估時間點的先前時間點各自與該評估時間點所界定出,對於每一雨量資料,該處理模組根據該雨量資料的該等觀測座標及其對應的降雨量,利用一內插方法獲得每一地點座標所對應的降雨量,以作為處理後的雨量資料,該處理模組將該儲存模組所存有的該座標資料的該等地點座標進行正規化,以獲得一正規化後的座標資料,其中該處理模組將該等地點座標的X座標進行正規化,以獲得多個正規化後的X座標,該處理模組將該等地點座標的Y座標進行正規化,以獲得多 個正規化後的Y座標,該處理模組將該等地點座標的Z座標進行正規化,以獲得多個正規化後的Z座標,且該等正規化後的X座標、該等正規化後的Y座標,及該等正規化後的Z座標共同構成該正規化後的座標資料,其中該處理模組將該儲存模組所存有的該至少一非淹水地點座標的Z座標設定為該等地點座標之Z座標中的最大值,並將設定後的該等地點座標的Z座標進行正規化,以獲得該等正規化後的Z座標,且對於每一處理後的雨量資料,該處理模組將該處理後的雨量資料的降雨量進行正規化,以獲得一正規化後的雨量資料,該處理模組根據該正規化後的座標資料,及該等正規化後的雨量資料,利用該儲存模組所存有的該淹水評估模型,獲得一包含該地域之該等地點於該評估時間點的多個淹水深度的淹水評估結果。 A computing device for estimating flooding depth, comprising: a storage module for storing a flooding assessment model for estimating a flooding depth related to an area, a plurality of different locations related to the area , and the non-flooded location coordinates of at least one non-flooded location among the locations in the region that will not be flooded, the coordinates data includes multiple location coordinates corresponding to such locations, and each location coordinate is a Three-dimensional coordinates, including an X coordinate, a Y coordinate, and a Z coordinate; and a processing module electrically connected to the storage module; wherein, when the processing module receives multiple transactions related to the region in different time zones When the rainfall data for a period of time is used, each rainfall data contains the observation coordinates of multiple different observation points, and multiple rainfall amounts corresponding to the observation points. For each rainfall data defined by the previous time points and the evaluation time point, the processing module uses an interpolation method to obtain the coordinates of each location according to the observation coordinates of the rainfall data and the corresponding rainfall. The corresponding rainfall is used as the processed rainfall data. The processing module normalizes the location coordinates of the coordinate data stored in the storage module to obtain a normalized coordinate data, wherein the processing The module normalizes the X coordinates of the location coordinates to obtain multiple normalized X coordinates, and the processing module normalizes the Y coordinates of the location coordinates to obtain multiple normalized Y coordinates, the processing module normalizes the Z coordinates of the location coordinates to obtain a plurality of normalized Z coordinates, and the normalized X coordinates, the normalized The Y coordinate and the normalized Z coordinates together constitute the normalized coordinate data, wherein the processing module sets the Z coordinate of the at least one non-flooded location coordinate stored in the storage module as the The maximum value of the Z coordinates of the location coordinates, and normalize the Z coordinates of the location coordinates after setting to obtain the normalized Z coordinates, and for each processed rainfall data, the processing The module normalizes the rainfall of the processed rainfall data to obtain a normalized rainfall data. The processing module uses the normalized coordinate data and the normalized rainfall data to use The flooding assessment model stored in the storage module obtains a flooding assessment result including multiple flooding depths of the locations in the area at the assessment time point. 如請求項4所述的運算裝置,其中,對於每一處理後的雨量資料,該處理模組根據對應有最長時間區段之處理後的雨量資料中的最大降雨量來對該處理後的雨量資料中的每一降雨量進行正規化,以獲得該正規化後的雨量資料。 The computing device according to claim 4, wherein, for each processed rainfall data, the processing module calculates the processed rainfall data according to the maximum rainfall in the processed rainfall data corresponding to the longest time segment Each rainfall amount in the data is normalized to obtain the normalized rainfall data. 如請求項4所述的運算裝置,其中,該儲存模組還儲存有多筆相關於該地域所發生之淹水事件的淹水事件資料,每筆淹水事件資料包含多筆對應不同降雨時間區段的淹水雨量資料,及一對應該等淹水雨量資料的淹水資料,每一淹水資料包含在所對應之淹水事件發生時於一對應的淹水量測時間點所量測到之多個對應該等地點的淹水深度,每一淹水雨量資料包含多個不同量測點的量測座標, 及在所對應之淹水事件發生時對應於該等量測點的多個降雨量,每筆淹水事件資料對應的該等降雨時間區段分別由早於所對應之淹水事件發生時所對應之淹水量測時間點的多個不同之降雨時間點各自與所對應之淹水事件發生時對應的淹水量測時間點所界定出,該處理模組經由該儲存模組所存有的該等淹水事件資料,利用一資料篩選方法獲得多筆目標淹水資料,對於該等目標淹水資料之每一淹水雨量資料,該處理模組根據該淹水雨量資料的該等量測座標及其對應的降雨量,利用該內插方法獲得每一地點座標所對應的降雨量,以作為處理後的淹水雨量資料,該處理模組將該儲存模組所存有的該座標資料的該等地點座標進行正規化,以獲得該正規化後的座標資料,對於每一處理後的淹水雨量資料,該處理模組將該處理後的淹水雨量資料的降雨量進行正規化,以獲得一正規化後的淹水雨量資料,對於每一目標淹水資料,該處理模組將該目標淹水資料所對應之正規化後的淹水雨量資料、該正規化後的座標資料,及所對應的該等淹水深度,作為一組淹水訓練資料,並根據該等淹水訓練資料,利用一機器學習演算法,建立該淹水評估模型。The computing device as described in claim 4, wherein the storage module also stores a plurality of flooding event data related to flooding events in the region, and each flooding event data includes multiple records corresponding to different rainfall times The flooding rainfall data of the section, and the flooding data corresponding to the flooding rainfall data, each flooding data includes the measurement at a corresponding flooding measurement time point when the corresponding flooding event occurs There are multiple flooding depths corresponding to the corresponding locations, and each flooding rainfall data contains the measurement coordinates of multiple different measurement points, And when the corresponding flooding event occurs, the rainfall corresponding to the multiple measurement points, and the rainfall time period corresponding to each flooding event data is from earlier than the corresponding flooding event. A plurality of different rainfall time points corresponding to the flooding measurement time point are defined by the corresponding flooding measurement time point when the corresponding flooding event occurs, and the processing module is stored by the storage module For the flooding event data, a data screening method is used to obtain multiple pieces of target flooding data, and for each flooding rainfall data of the target flooding data, the processing module is based on the measurement of the flooding rainfall data Coordinates and their corresponding rainfall, use the interpolation method to obtain the rainfall corresponding to the coordinates of each location, as the flooded rainfall data after processing, the processing module will store the coordinate data stored in the module The coordinates of the locations are normalized to obtain the normalized coordinate data, and for each processed flood rainfall data, the processing module normalizes the rainfall of the processed flood rainfall data to obtain Obtaining a normalized flooding rainfall data, for each target flooding data, the processing module corresponds to the normalized flooding rainfall data corresponding to the target flooding data, the normalized coordinate data, and The corresponding flooding depths are used as a set of flooding training data, and according to the flooding training data, a machine learning algorithm is used to establish the flooding assessment model.
TW110149206A 2021-12-28 2021-12-28 Inundation assessment method and computing device TWI806321B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110149206A TWI806321B (en) 2021-12-28 2021-12-28 Inundation assessment method and computing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110149206A TWI806321B (en) 2021-12-28 2021-12-28 Inundation assessment method and computing device

Publications (2)

Publication Number Publication Date
TWI806321B true TWI806321B (en) 2023-06-21
TW202326178A TW202326178A (en) 2023-07-01

Family

ID=87803092

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110149206A TWI806321B (en) 2021-12-28 2021-12-28 Inundation assessment method and computing device

Country Status (1)

Country Link
TW (1) TWI806321B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110533258A (en) * 2019-09-05 2019-12-03 河海大学 A kind of rice wheat rotation waterlogging Forewarn evaluation method and system
TW202011277A (en) * 2018-09-10 2020-03-16 陳柏蒼 Method for measuring water level by using graphic recognition and system thereof capable of using a virtual image training data set and a historical image date set for training a water level recognition module
CN113505521A (en) * 2021-05-20 2021-10-15 天津大学 Urban waterlogging rapid forecasting method based on neural network-numerical simulation
CN113516203A (en) * 2021-08-10 2021-10-19 欧梯恩智能科技(苏州)有限公司 Training method of waterlogging prediction model, prediction method and storage device
CN113610264A (en) * 2021-06-22 2021-11-05 国网浙江省电力有限公司电力科学研究院 Refined power grid typhoon flood disaster prediction model

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202011277A (en) * 2018-09-10 2020-03-16 陳柏蒼 Method for measuring water level by using graphic recognition and system thereof capable of using a virtual image training data set and a historical image date set for training a water level recognition module
CN110533258A (en) * 2019-09-05 2019-12-03 河海大学 A kind of rice wheat rotation waterlogging Forewarn evaluation method and system
CN113505521A (en) * 2021-05-20 2021-10-15 天津大学 Urban waterlogging rapid forecasting method based on neural network-numerical simulation
CN113610264A (en) * 2021-06-22 2021-11-05 国网浙江省电力有限公司电力科学研究院 Refined power grid typhoon flood disaster prediction model
CN113516203A (en) * 2021-08-10 2021-10-19 欧梯恩智能科技(苏州)有限公司 Training method of waterlogging prediction model, prediction method and storage device

Also Published As

Publication number Publication date
TW202326178A (en) 2023-07-01

Similar Documents

Publication Publication Date Title
Zhang et al. Evaluation of flood frequency under non-stationarity resulting from climate indices and reservoir indices in the East River basin, China
Zhang et al. Spatio-temporal variations of precipitation extremes in Xinjiang, China
Ganguli et al. Ensemble prediction of regional droughts using climate inputs and the SVM–copula approach
Moreira et al. SPI-based drought category prediction using loglinear models
Gado An at-site flood estimation method in the context of nonstationarity I. A simulation study
US20220327447A1 (en) Climate-based risk rating
Huang et al. Contributions of climate variability and human activities to the variation of runoff in the Wei River Basin, China
Niaz et al. A novel spatially weighted accumulative procedure for regional drought monitoring
Zhang et al. Assessment of drought evolution characteristics based on a nonparametric and trivariate integrated drought index
Oesting et al. Spatial modeling of drought events using max-stable processes
Wanishsakpong et al. Optimal time series model for forecasting monthly temperature in the southwestern region of Thailand
Wang et al. Bivariate copula function-based spatial–temporal characteristics analysis of drought in Anhui Province, China
Zhu et al. Investigating the uncertainty and transferability of parameters in SWAT model under climate change
Abdul Rauf et al. Analysis of rainfall severity and duration in Victoria, Australia using non-parametric copulas and marginal distributions
Cheraghalizadeh et al. A copula-based joint meteorological–hydrological drought index in a humid region (Kasilian basin, North Iran)
Jan et al. Modelling non-stationary extreme streamflow in Peninsular Malaysia
Kim et al. Quantifying a threshold of missing values for gap filling processes in daily precipitation series
TWI806321B (en) Inundation assessment method and computing device
Rezaiy et al. Drought forecasting using W-ARIMA model with standardized precipitation index
Zhang et al. Statistics-based investigation on typhoon transition modeling
CN116721781A (en) Method and device for predicting insect vector infectious disease transmission risk, electronic equipment and medium
Gashure et al. Spatiotemporal climate variability and trends in UNESCO designated cultural landscapes of Konso, Ethiopia
Dupuis A model for nighttime minimum temperatures
Liu et al. Jump-detection and curve estimation methods for discontinuous regression functions based on the piecewise B-spline function
Wang et al. Identification of changes in heavy rainfall events in Ontario, Canada