TWI805666B - Method for forming a semeconductor device - Google Patents

Method for forming a semeconductor device Download PDF

Info

Publication number
TWI805666B
TWI805666B TW107146555A TW107146555A TWI805666B TW I805666 B TWI805666 B TW I805666B TW 107146555 A TW107146555 A TW 107146555A TW 107146555 A TW107146555 A TW 107146555A TW I805666 B TWI805666 B TW I805666B
Authority
TW
Taiwan
Prior art keywords
photoresist
layer
dielectric layer
region
inter
Prior art date
Application number
TW107146555A
Other languages
Chinese (zh)
Other versions
TW202025316A (en
Inventor
李昆儒
劉昕融
陸俊岑
侯朝鐘
施宇隆
蕭富駿
詹昂
高葦昕
李志嶽
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW107146555A priority Critical patent/TWI805666B/en
Publication of TW202025316A publication Critical patent/TW202025316A/en
Application granted granted Critical
Publication of TWI805666B publication Critical patent/TWI805666B/en

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

A method for forming a semiconductor device includes providing a structure having an interconnection formed on a substrate, and the interconnection comprising interconnect layers respectively buried in dielectric layers, wherein the structure has a first area and a second area; forming a memory cell structure in the first area, and the memory cell structure formed above one of the interconnect layers; depositing an inter-metal dielectric (IMD) layer above the interconnection, and the IMD layer covering the memory cell structure; forming a photo-resist layer on the IMD layer; patterning the photo-resist layer to expose a protruding portion of the IMD layer above the memory cell structure in the first area and remain a resist portion in the second area; hardening the resist portion to form a resist mask in the second area; and etching the protruding portion of the IMD layer using the resist mask.

Description

形成半導體裝置之方法 Method of forming semiconductor device

本發明是有關於一種形成半導體裝置之方法,且特別是有關於一種形成方法,使製得之半導體裝置其元件分布密度不同的區域所覆蓋之介電層於平坦化後具有平整的表面。 The present invention relates to a method of forming a semiconductor device, and in particular to a method of forming, so that the dielectric layer covered by regions with different element distribution densities in the manufactured semiconductor device has a flat surface after planarization.

近年來半導體裝置尺寸日益減小。對半導體技術來說,持續縮小半導體結構尺寸、改善速率、增進效能、提高密度及降低每單位積體電路的成本,係為半導體技術重要的發展目標。隨著半導體裝置尺寸的縮小,其電子特性仍然必須維持甚至是更進一步地改善,以符合市場上對應用之電子產品的要求。舉例來說,半導體裝置中各層結構與所屬元件若有損傷或是表面不平整,都會對元件的電子特性造成不可忽視的影響,因此這對半導體業者而言是需注意的重要問題之一。 In recent years, semiconductor devices have been increasingly reduced in size. For semiconductor technology, it is an important development goal of semiconductor technology to continuously reduce the size of semiconductor structures, improve speed, increase performance, increase density and reduce the cost per unit circuit. As the size of the semiconductor device shrinks, its electronic characteristics must still be maintained or even further improved in order to meet the requirements of the applied electronic products in the market. For example, if the structure of each layer in a semiconductor device and its components are damaged or the surface is uneven, it will have a non-negligible impact on the electronic characteristics of the device. Therefore, this is one of the important issues that semiconductor manufacturers need to pay attention to.

目前於後段製程的平坦化製程(post-planarization process),對於沒有或幾乎沒有結構的某些區域,通常會有因過度拋光或侵蝕(over-polishing or erosion)而產生凹陷的問題。如領域技術者所知,不需要的金屬殘留物會殘留在 結構的凹陷區域(dishing area)中,這會導致隨後的金屬內連線製程(metal interconnection process)中有短路問題。因此,需要發展一種可使形成元件具有完整廓形且沒有凹陷和殘餘物等缺陷的方法,以滿足應用產品的要求。 In the current post-planarization process of the back-end process, for some areas with no or almost no structure, there is usually a problem of dishing due to over-polishing or erosion. As known to those skilled in the art, unwanted metal residues can remain on In the dishing area of the structure, this will cause short circuit problems in the subsequent metal interconnection process. Therefore, it is necessary to develop a method that can make the forming element have a complete profile without defects such as dents and residues, so as to meet the requirements of application products.

本發明係有關於一種形成一半導體裝置之方法,其利用硬化光阻及相關移除步驟,以使製得之半導體裝置其元件分布密度不同的區域所覆蓋之介電層在平坦化步驟後具有平整的表面。 The present invention relates to a method of forming a semiconductor device, which uses hardening photoresist and related removal steps, so that the dielectric layer covered by the regions with different component distribution densities in the semiconductor device produced has a flattening after the planarization step flat surface.

根據一實施例,係提出一種形成一半導體裝置之方法,包括:提供包含有一內連線(interconnection)形成於一基板上之一結構,且內連線包括複數個內連線層(interconnect layers)分別埋置於介電層中,其中此結構具有一第一區域和一第二區域;於第一區域形成一記憶體結構,此記憶體結構係形成於該些內連線層其中之一者上方;沈積一金屬層間介電層(inter-metal dielectric layer,IMD)於內連線之上方,且金屬層間介電層係覆蓋記憶體結構;形成一光阻層於金屬層間介電層上; 圖案化光阻層,以暴露出第一區域中位於記憶體結構上方的金屬層間介電層之一突出部分(protruding portion),並且於第二區域中留下一光阻部分(resist portion);硬化光阻部分,以於第二區域形成一光阻遮罩;以及藉由光阻遮罩而蝕刻金屬層間介電層之突出部分。 According to an embodiment, a method of forming a semiconductor device is provided, including: providing a structure including an interconnection formed on a substrate, and the interconnection includes a plurality of interconnection layers (interconnect layers) respectively buried in the dielectric layer, wherein the structure has a first area and a second area; a memory structure is formed in the first area, and the memory structure is formed in one of the interconnection layers above; deposit an inter-metal dielectric layer (inter-metal dielectric layer, IMD) above the interconnection line, and the inter-metal dielectric layer covers the memory structure; form a photoresist layer on the inter-metal dielectric layer; patterning the photoresist layer to expose a protruding portion of the IMD layer above the memory structure in the first region, and leave a resist portion in the second region; hardening the photoresist part to form a photoresist mask in the second region; and etching the protruding part of the intermetal dielectric layer through the photoresist mask.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above-mentioned and other aspects of the present invention, the following specific examples are given in detail with the accompanying drawings as follows:

10:基板 10: Substrate

11:內連線 11: Inner connection

12:介電層 12: Dielectric layer

13:內連線層 13: Inner layer

131:導線 131: wire

132:導電孔 132: conductive hole

14:記憶體結構 14: Memory structure

141:底電極 141: Bottom electrode

142:磁穿隧接面堆疊 142:Magnetic Tunneling Junction Stacking

143:頂電極 143: top electrode

145:間隙壁 145: gap wall

15:金屬層間介電層 15: Inter-metal dielectric layer

151:突出部分 151: overhang

151’、151C:第一部份 151', 151C: Part I

152、152C:第二部份 152, 152C: Part Two

151a:突出部分的上表面 151a: Upper surface of the protrusion

151’-a、151C-a:第一部份的上表面 151'-a, 151C-a: the upper surface of the first part

152a、152C-a:第二部份的上表面 152a, 152C-a: the upper surface of the second part

16:光阻層 16: Photoresist layer

161:光阻部分 161: Photoresist part

161a:光阻部分的上表面 161a: the upper surface of the photoresist part

162、162’:光阻遮罩 162, 162': photoresist mask

162a:光阻遮罩的上表面 162a: Top surface of photoresist mask

A1:第一區域 A1: The first area

A2:第二區域 A2: Second area

△H0:起始高度落差 △H 0 : initial height difference

H1:第一高度 H 1 : first height

H2:第二高度 H 2 : second height

Hd:第一部份和第二部份之間的高度差 H d : Height difference between the first part and the second part

第1A-1G圖繪示根據本揭露一實施例之一半導體裝置之形成方法示意圖。 1A-1G are diagrams illustrating a method for forming a semiconductor device according to an embodiment of the present disclosure.

於本揭露之實施例中,係提出一種形成半導體裝置之方法。根據實施例,係對於覆蓋在元件較密集分布區域的介電層(例如金屬層間介電層)進行去除之前,先以硬化之光阻覆蓋於不含有元件或元件分布密度稀疏之區域的介電層上方,以避免對應於不含元件或元件分布稀疏之區域的介電層因過度蝕刻而產生凹陷(dishing)的問題。因此,根據實施例所提出之方法,可使製得之半導體裝置其元件分布密度不同的區域所覆蓋之介電層於平 坦化後具有平整的表面。實施例所提出之方法可應用於晶圓之後段製程(BEOL)中的一平坦化製程(post-planarization process)中,以簡易而有效地使製得之半導體裝置其所屬元件構型完整,特別是表面平整,以維持相關元件的電子特性。 In an embodiment of the present disclosure, a method for forming a semiconductor device is proposed. According to an embodiment, before removing the dielectric layer (such as the inter-metal dielectric layer) covering the densely distributed area, first cover the dielectric layer in the area that does not contain components or where the component distribution density is sparse with a hardened photoresist. layer, so as to avoid the problem of dishing caused by over-etching of the dielectric layer corresponding to the region without components or with sparse distribution of components. Therefore, according to the method proposed in the embodiment, the dielectric layer covered by the regions with different component distribution densities in the manufactured semiconductor device can be placed on a flat surface. It has a flat surface after tanning. The method proposed in the embodiment can be applied to a planarization process (post-planarization process) in the back-end process (BEOL) of the wafer, so as to easily and effectively complete the structure of the components of the manufactured semiconductor device, especially It is a flat surface to maintain the electronic properties of the associated components.

以下係提出相關實施例,配合圖示以詳細說明本揭露所提出之形成方法。然而本揭露並不僅限於此示例。需注意的是,本揭露並非顯示出所有可能的實施例,因此未於本揭露提出的其他實施態樣也可能可以應用。相關領域者可在不脫離本揭露之精神和範圍內對示例之結構和製程加以變化與修飾,以符合實際應用所需。再者,圖式係已簡化以利清楚說明實施例之內容,圖式上的尺寸比例並非按照實際產品等比例繪製。因此,說明書和圖示內容僅作敘述實施例之用,而非作為限縮本揭露保護範圍之用。 The relevant embodiments are presented below, and the forming method proposed in this disclosure is described in detail with the aid of figures. However, the present disclosure is not limited to this example. It should be noted that this disclosure does not show all possible embodiments, so other implementations not mentioned in this disclosure may also be applicable. Those in the relevant art can make changes and modifications to the structure and process of the examples without departing from the spirit and scope of the present disclosure, so as to meet the needs of practical applications. Furthermore, the drawings have been simplified to clearly illustrate the content of the embodiments, and the size ratios in the drawings are not drawn according to the proportion of the actual product. Therefore, the specification and illustrations are only used to describe the embodiments, rather than to limit the protection scope of the present disclosure.

再者,說明書與請求項中所使用的序數例如”第一”、”第二”等之用詞,是為了修飾請求項之元件,其本身並不意含及代表該請求元件有任何之前的序數,也不代表某一請求元件與另一請求元件的順序、或是製造方法上的順序,該些序數的使用僅用來使具有某命名的一請求元件得以和另一具有相同命名的請求元件能作出清楚區分。再者,說明書與請求項中可能使用的空間相關之用詞,例如”之下”(beneath)”、“下方,”(below)、“較低的”(lower)、“上方”(above)、“較高的”(upper)或類似詞語,是用來便於敘述和參照如圖示所繪製之其中一元素或特徵與另一 元素或特徵之間的空間關係。因此具通常知識者可知,該些空間相關之用詞除了包括如圖所示之元件方位,更包括了元件於使用或操作時不同於圖示的方位。因此,說明書與請求項中所使用的該些用詞僅用以敘述實施例之用,而非用以限制本揭露保護範圍之用。 Furthermore, the ordinal numbers used in the description and claims, such as "first", "second", etc., are used to modify the elements of the claims, which do not imply and represent that the claimed elements have any previous ordinal numbers. , nor does it represent the order of a certain requested element with another requested element, or the order of the manufacturing method. Can make a clear distinction. Furthermore, words related to the space that may be used in the description and the claim, such as "beneath" (beneath), "below," (below), "lower" (lower), "above" (above) , "higher" (upper) or similar words are used for convenience of description and reference to one element or feature as drawn with another The spatial relationship between elements or features. Therefore, those with ordinary knowledge can understand that these space-related terms not only include the orientation of the components shown in the figure, but also include the orientation of the component when it is used or operated differently from the figure. Therefore, the terms used in the specification and claims are only used to describe the embodiments, rather than to limit the protection scope of the present disclosure.

第1A-1G圖繪示根據本揭露一實施例之一半導體裝置之形成方法示意圖。 1A-1G are diagrams illustrating a method for forming a semiconductor device according to an embodiment of the present disclosure.

如第1A圖所示,係提出包含有一內連線(interconnection)11形成於一基板10上之一結構。於此示例中,此結構包括一第一區域A1例如為一記憶體區域和一第二區域A2例如為一邏輯區域。於一示例中,第一區域A1中係形成有至少一個記憶體結構(memory cell structure)14,第二區域A2例如是一不含元件的區域,或是相較於第一區域A1的元件分布密度來說其相關部件的分布密度較為稀疏的一區域。在實際應用中,第一區域A1可包括多個記憶體結構,第二區域A2例如是埋置有一邏輯電路於絕緣層中。於以下實施例中以及所參照之圖式僅以兩個記憶體結構形成於第一區域A1,以及未繪示元件於第二區域A2為例做一示例說明。 As shown in FIG. 1A, a structure including an interconnection 11 formed on a substrate 10 is proposed. In this example, the structure includes a first area A1 such as a memory area and a second area A2 such as a logic area. In one example, at least one memory cell structure (memory cell structure) 14 is formed in the first area A1, and the second area A2 is, for example, an area without components, or a component distribution compared to the first area A1 In terms of density, the distribution density of its related components is relatively sparse. In practical applications, the first area A1 may include a plurality of memory structures, and the second area A2 is, for example, embedded with a logic circuit in the insulating layer. In the following embodiments and the referenced drawings, only two memory structures are formed in the first area A1 and no components are shown in the second area A2 as an example for illustration.

於此示例中,實施例所提出之方法係應用於晶圓之後段製程(BEOL)中的平坦化製程。如第1A圖所示,基板10上之內連線11係包括多個內連線層(interconnect layers)13分別埋置於介電層(dielectric layers)12中,並於第一區域A1形成記 憶體結構14,記憶體結構14係形成於一內連線層之上方。每一內連線層例如是包括一導電孔(例如填充有鎢的接觸導孔)132和一導線(例如金屬線)131,記憶體結構14例如是形成於接觸導孔132上。為簡化示例圖示以利清楚說明實施例之形成方法,第1A-1G圖中僅簡繪第二內連線層13於介電層12中,以及兩個記憶體結構14形成於第一區域A1之第二內連線層13上方(例如記憶體結構14位於導電孔132例如第二接觸孔V2之上方),以做非限制性地一示例說明。 In this example, the method proposed in the embodiment is applied to the planarization process in the back end of line (BEOL) of the wafer. As shown in FIG. 1A, the interconnection 11 on the substrate 10 includes a plurality of interconnection layers (interconnect layers) 13 respectively embedded in the dielectric layer (dielectric layers) 12, and forms a mark in the first area A1. The memory structure 14 is formed above an interconnect layer. Each interconnection layer includes, for example, a conductive hole (such as a contact hole filled with tungsten) 132 and a wire (such as a metal line) 131 , and the memory structure 14 is formed on the contact hole 132 . In order to simplify the illustration and facilitate the clear description of the formation method of the embodiment, only the second interconnection layer 13 in the dielectric layer 12 is briefly depicted in Figures 1A-1G, and two memory structures 14 are formed in the first region Above the second interconnection layer 13 of A1 (for example, the memory structure 14 is located above the conductive hole 132 such as the second contact hole V2 ), for non-limiting illustration.

雖然,如第1A圖中(及之後提出之圖式)所繪製之記憶體結構14係以形成於第二內連線層13上做說明,其中第二內連線層13例如由一對的導電孔132例如第二接觸孔(縮寫“V2”)和一導線131例如第二金屬線(縮寫為“M2”)所組成,但本揭露可應用之記憶體結構14的形成位置並不僅限於如圖式中之位置。實施例之記憶體結構14可以形成任一內連線層上、或形成於任兩相鄰的內連線層之間;例如記憶體結構14可形成於第三、四、或五內連線層上、或形成於第三內連線層和第四內連線層之間、或形成於第四內連線層和第五內連線層之間...等。 Although, the memory structure 14 as drawn in Figure 1A (and subsequent drawings) is described as being formed on the second interconnection layer 13, wherein the second interconnection layer 13 is formed, for example, by a pair of The conductive hole 132 such as the second contact hole (abbreviated as "V2") and a wire 131 such as the second metal line (abbreviated as "M2") are formed, but the formation position of the memory structure 14 applicable to this disclosure is not limited to as position in the diagram. The memory structure 14 of the embodiment can be formed on any interconnection layer, or formed between any two adjacent interconnection layers; for example, the memory structure 14 can be formed on the third, fourth, or fifth interconnection layer, or formed between the third interconnection layer and the fourth interconnection layer, or formed between the fourth interconnection layer and the fifth interconnection layer, etc.

再者,如第1A圖所示,於內連線11之上方係沈積一金屬層間介電層(inter-metal dielectric layer,IMD)15並覆蓋記憶體結構14。由於第一區域A1形成有記憶體結構14,而第二區域A2則不含有部件(或於其他實施例中第二區域A2含有較少數量或稀疏分佈的相關部件),此時所沈積之金屬層間介電層15 於對應第一區域A1的最上表面與對應第二區域A2的最上表面係存在有較大的一起始高度落差(step height)△H0Furthermore, as shown in FIG. 1A , an inter-metal dielectric layer (IMD) 15 is deposited on the interconnection 11 and covers the memory structure 14 . Since the memory structure 14 is formed in the first area A1, and the second area A2 does not contain components (or in other embodiments, the second area A2 contains a relatively small number or sparsely distributed related components), the metal deposited at this time There is a relatively large step height ΔH 0 between the uppermost surface corresponding to the first region A1 and the uppermost surface corresponding to the second region A2 of the interlayer dielectric layer 15 .

另外,值得注意的是,實施例之記憶體結構14係視實際應用之元件需求而可適當改變與決定。如文中提出之示例,係以具有磁穿隧接面(magnetic tunnel junction,MTJ)的記憶體作為一記憶體結構14的示例說明,但本揭露並不限制可應用之記憶體結構14的態樣。如第1A圖中之示例,一記憶體結構14係包括一底電極(bottom electrode)141、一頂電極(top electrode)143和一磁穿隧接面堆疊(MTJ stacks)142設置於底電極141和頂電極143之間。且間隙壁(spacers)145係形成於底電極141、磁穿隧接面堆疊142和頂電極143之側壁上,例如第1A圖中所示之間隙壁145覆蓋底電極141和磁穿隧接面堆疊之所有側壁142,以及覆蓋頂電極143之至少部分側壁。 In addition, it is worth noting that the memory structure 14 of the embodiment can be appropriately changed and determined according to the requirements of components in practical applications. As the example presented in the text, the memory with magnetic tunnel junction (magnetic tunnel junction, MTJ) is used as an example of the memory structure 14 for illustration, but the present disclosure does not limit the aspect of the applicable memory structure 14 . As shown in FIG. 1A, a memory structure 14 includes a bottom electrode 141, a top electrode 143, and a magnetic tunnel junction stack (MTJ stacks) 142 disposed on the bottom electrode 141. and the top electrode 143. And the spacers 145 are formed on the sidewalls of the bottom electrode 141, the magnetic tunnel junction stack 142 and the top electrode 143, for example, the spacers 145 shown in FIG. 1A cover the bottom electrode 141 and the magnetic tunnel junction All sidewalls 142 of the stack, and at least a portion of the sidewalls covering the top electrode 143 .

之後,如第1B圖所示,於金屬層間介電層15上覆蓋一阻劑材料(resist material);例如形成一光阻層(photo resist layer)16於金屬層間介電層15上。其中光阻層16係在一第一溫度下沈積於金屬層間介電層15上。於一示例中,第一溫度例如是低於170℃。於另一示例中,第一溫度例如是在100℃至170℃範圍之間。 After that, as shown in FIG. 1B , a resist material is covered on the inter-metal dielectric layer 15 ; for example, a photoresist layer 16 is formed on the inter-metal dielectric layer 15 . The photoresist layer 16 is deposited on the IMD layer 15 at a first temperature. In an example, the first temperature is lower than 170° C., for example. In another example, the first temperature ranges from 100° C. to 170° C., for example.

之後,如第1C圖所示,圖案化光阻層16,以暴露出第一區域A1中位於記憶體結構14上方的金屬層間介電層15的一部份,例如第1C圖中之一突出部分(protruding portion)151, 並且於第二區域A2中留下一光阻部分(a resist portion)161。亦即,圖案化後,對應第一區域A1之光阻層16的部分被移除,而光阻層對應第二區域A2則留下光阻部分(a resist portion)161。圖案化的方式可透過研磨(polishing)方式例如是化學機械研磨(Chemical-Mechanical Polishing,CMP)對光阻材料進行處理。 Afterwards, as shown in FIG. 1C, the photoresist layer 16 is patterned to expose a part of the inter-metal dielectric layer 15 above the memory structure 14 in the first region A1, such as one of the protruding parts in FIG. 1C. Part (protruding portion) 151, And a resist portion 161 is left in the second area A2. That is, after patterning, the portion of the photoresist layer 16 corresponding to the first area A1 is removed, and a resist portion 161 of the photoresist layer corresponding to the second area A2 is left. The patterning method can process the photoresist material through a polishing method such as Chemical-Mechanical Polishing (CMP).

根據實施例,進行光阻層16之圖案化步驟時,對於光阻層16的移除速率係大於對於金屬層間介電層15的移除速率。於一示例中,在進行光阻層16之圖案化時,光阻層16的移除速率(remove rate,RR)(例如記為RRPR)相對於金屬層間介電層15的移除速率(例如記為RRULK)之比例係等於或大於50;亦即,移除速率之比例可表示為:RRPR/RRULK

Figure 107146555-A0305-02-0011-3
50。 According to an embodiment, when the photoresist layer 16 is patterned, the removal rate of the photoresist layer 16 is greater than the removal rate of the IMD layer 15 . In one example, when the photoresist layer 16 is patterned, the removal rate (remove rate, RR) of the photoresist layer 16 (for example, denoted as RR PR ) is relative to the removal rate of the inter-metal dielectric layer 15 ( For example, the ratio denoted as RR ULK ) is equal to or greater than 50; that is, the ratio of the removal rate can be expressed as: RR PR /RR ULK
Figure 107146555-A0305-02-0011-3
50.

再者,於圖案化光阻層16之後,於第二區域A2中所留下之光阻部分161的上表面161a係低於第一區域A1中位於記憶體結構14上方的金屬層間介電層15之突出部分151的上表面151a。如第1C圖所示,於第二區域A2中所留下之光阻部分161係具有一第一高度(first height)H1,第一區域A1中位於記憶體結構14上方的金屬層間介電層15的突出部分151係具有一第二高度(second height)H2,第一高度H1小於第二高度H2。另外,於一示例中,第一高度H1係等於或大於1/2的第二高度H2Moreover, after the photoresist layer 16 is patterned, the upper surface 161a of the photoresist portion 161 left in the second area A2 is lower than the IMD layer above the memory structure 14 in the first area A1 The upper surface 151a of the protruding portion 151 of 15. As shown in FIG. 1C, the photoresist portion 161 left in the second area A2 has a first height (first height) H 1 , and the IMD located above the memory structure 14 in the first area A1 The protruding portion 151 of the layer 15 has a second height (second height) H 2 , and the first height H 1 is smaller than the second height H 2 . In addition, in an example, the first height H 1 is equal to or greater than 1/2 of the second height H 2 .

之後,如第1D圖所示,對於第二區域A2中所留下之光阻部分161進行硬化(harden),以於該第二區域形成一光阻 遮罩(resist mask)162。其中,可透過加熱方式以烘烤(baking)光阻材料的方式對光阻部分161進行硬化。其中光阻部分161係在一第二溫度下進行硬化。於一示例中,第二溫度例如是高於200℃。於另一示例中,第二溫度例如是在200℃至350℃之範圍之間。相較於前述於金屬層間介電層15上沈積光阻層16(第1B圖)的第一溫度,硬化光阻部分161時之第二溫度係高於沈積光阻層16時之第一溫度。 Afterwards, as shown in FIG. 1D, the photoresist portion 161 left in the second area A2 is hardened to form a photoresist in the second area. Resist mask 162 . Wherein, the photoresist portion 161 can be cured by baking the photoresist material through heating. The photoresist portion 161 is hardened at a second temperature. In an example, the second temperature is higher than 200° C., for example. In another example, the second temperature is, for example, in the range of 200°C to 350°C. Compared to the aforementioned first temperature for depositing the photoresist layer 16 on the IMD layer 15 (FIG. 1B), the second temperature for curing the photoresist portion 161 is higher than the first temperature for depositing the photoresist layer 16 .

然後,藉由光阻遮罩162對金屬層間介電層15之突出部分151進行蝕刻。根據實施例,進行蝕刻時,對於金屬層間介電層15之突出部分151之蝕刻速率係大於對於光阻遮罩162之蝕刻速率。於一示例中,金屬層間介電層15之突出部分151的蝕刻速率(etch rate,ER)(例如記為ERULK)相對於光阻遮罩162的蝕刻速率(例如記為ERPR)之比例係等於或大於10;亦即,蝕刻速率之比例可表示為:ERULK/ERPR

Figure 107146555-A0305-02-0012-1
10。蝕刻後,如第1E圖所示,光阻遮罩162’的上表面162a係高於位於記憶體結構14上方之金屬層間介電層15之一第一部份151’(first portion)的上表面151’-a。 Then, the protruding portion 151 of the IMD layer 15 is etched through the photoresist mask 162 . According to an embodiment, when etching is performed, the etching rate for the protruding portion 151 of the IMD layer 15 is greater than the etching rate for the photoresist mask 162 . In one example, the ratio of the etch rate (ER) of the protruding portion 151 of the IMD layer 15 (for example, denoted as ER ULK ) relative to the etch rate of the photoresist mask 162 (for example, denoted as ER PR ) is equal to or greater than 10; that is, the ratio of etch rates can be expressed as: ER ULK /ER PR
Figure 107146555-A0305-02-0012-1
10. After etching, as shown in FIG. 1E, the upper surface 162a of the photoresist mask 162' is higher than that of a first portion 151' (first portion) of the IMD layer 15 above the memory structure 14. Surface 151'-a.

之後,移除光阻遮罩162’,如第1F圖所示。在移除光阻遮罩162’後,第一區域A1中位於記憶體結構14上方之金屬層間介電層15之一第一部份151’與第二區域A2中金屬層間介電層15之一第二部份(second portion)152之間係具有一高度差(step-height difference)Hd。如第1F圖所示,一示例中,第一部 份151’之上表面151’-a係略高於第二部份152之上表面152a。再者,於一示例中,第一部份151’和第二部份152之間的高度差Hd係不超過100Å(i.e.

Figure 107146555-A0305-02-0013-2
100Å)。 Thereafter, the photoresist mask 162' is removed, as shown in FIG. 1F. After removing the photoresist mask 162', a first portion 151' of the inter-metal dielectric layer 15 above the memory structure 14 in the first region A1 and a portion 151' of the inter-metal dielectric layer 15 in the second region A2 There is a step-height difference H d between a second portion 152 . As shown in FIG. 1F , in one example, the upper surface 151 ′-a of the first portion 151 ′ is slightly higher than the upper surface 152 a of the second portion 152 . Furthermore, in one example, the height difference H d between the first part 151' and the second part 152 is not more than 100 Å (ie
Figure 107146555-A0305-02-0013-2
100Å).

移除光阻遮罩162’後,係對於金屬層間介電層進行平坦化步驟,使第一區域A1和第二區域A2中的金屬層間介電層部份其上表面實質上齊平,如第1G圖所示。平坦化步驟可透過研磨方式,例如是兼具化學腐蝕及機械力的化學機械研磨(CMP)方式,對金屬層間介電層之材料進行平坦化處理。於一實施例中,對金屬層間介電層的平坦化可進行至暴露出記憶體結構14之上方電極為止,以使後續製程的導線或導孔可透過與電極的接觸而電性連接至記憶體結構14。以此示例之包括有底電極141、磁穿隧接面堆疊142和頂電極143的記憶體結構14為例,對金屬層間介電層之第一部份151’和第二部份152係平坦化至停止於記憶體結構之頂電極143(例如金屬鉭)為止,並暴露出頂電極143之上表面143a。如第1G圖所示,平坦化步驟後,金屬層間介電層包括第一區域A1中之第一部份151C和第二區域A2中之第二部份152C,且第一部份151C的上表面151C-a與第二部份152C的上表面152C-a實質上齊平。 After the photoresist mask 162' is removed, a planarization step is performed on the inter-metal dielectric layer, so that the upper surfaces of the inter-metal dielectric layers in the first region A1 and the second region A2 are substantially flush, as shown in Figure 1G. In the planarization step, the material of the inter-metal dielectric layer can be planarized by grinding methods, such as chemical mechanical polishing (CMP) which combines chemical etching and mechanical force. In one embodiment, the planarization of the inter-metal dielectric layer can be performed until the upper electrode of the memory structure 14 is exposed, so that the wires or vias in the subsequent process can be electrically connected to the memory through the contact with the electrode. body structure14. Taking this exemplary memory structure 14 including the bottom electrode 141, the magnetic tunnel junction stack 142 and the top electrode 143 as an example, the first portion 151' and the second portion 152 of the IMD layer are planar Thinning stops at the top electrode 143 (such as metal tantalum) of the memory structure, and exposes the upper surface 143 a of the top electrode 143 . As shown in FIG. 1G, after the planarization step, the inter-metal dielectric layer includes a first portion 151C in the first region A1 and a second portion 152C in the second region A2, and the top of the first portion 151C The surface 151C-a is substantially flush with the upper surface 152C-a of the second portion 152C.

根據上述,實施例所提出之方法,可應用於一後段製程的平坦化製程,使製得之半導體裝置其元件分布密度不同的區域所覆蓋之介電層於平坦化後具有平整的表面。因此,根據實施例所提出之方法,除了可避免對應於不含有元件或元件分布稀 疏之區域的介電層於蝕刻製程中容易產生凹陷(dishing)的問題,亦無須如傳統方式使用額外光罩進行例如反罩幕回蝕(Reverse Mask Etch-back,RME),即可以簡易地達到使製得之半導體裝置其元件分布密度不同的區域所覆蓋之介電層於平坦化後具有平整的表面。且此方法與現有製程相容,具有實質上的經濟效益。 According to the above, the method proposed in the embodiment can be applied to the planarization process of a back-end process, so that the dielectric layer covered by the regions with different component distribution densities in the manufactured semiconductor device has a flat surface after planarization. Therefore, according to the method proposed in the embodiment, in addition to avoiding the corresponding The dielectric layer in the sparse area is prone to the problem of dishing during the etching process, and it is not necessary to use an additional mask in the traditional method such as Reverse Mask Etch-back (RME), which can be easily The dielectric layer covered by the regions with different component distribution densities in the manufactured semiconductor device has a flat surface after planarization. Moreover, the method is compatible with the existing manufacturing process and has substantial economic benefits.

如上述圖示之結構和步驟,是用以敘述本揭露之部分實施例或應用例,本揭露並不限制於上述結構和步驟之範圍與應用態樣。其他不同結構態樣之實施例,例如不同於圖示之記憶體結構的已知組件或其他記憶體結構態樣都可應用,其示例之結構和步驟可根據實際應用之需求而調整。因此圖示之結構僅為舉例說明之用,而非限制之用。通常知識者當知,應用本揭露之相關結構和步驟過程,例如半導體裝置中相關元件和層的排列方式和設置位置、或者製造步驟細節等,都可能以依實際應用樣態所需而可能有相應的調整和變化。再者,通常知識者當知上述示例中所提出之高度、溫度、比例等數值僅用以作示例,而非限制之用。 The structures and steps shown above are used to describe some embodiments or application examples of the present disclosure, and the present disclosure is not limited to the scope and application of the above structures and steps. Embodiments of other different structural forms, such as known components different from the illustrated memory structure or other memory structural forms are applicable, and the structures and steps of the examples can be adjusted according to actual application requirements. Therefore, the structure shown in the figure is only for illustration, not for limitation. Those with ordinary knowledge should know that the relevant structures and steps of the application of the present disclosure, such as the arrangement and location of the relevant components and layers in the semiconductor device, or the details of the manufacturing steps, etc., may be different according to the needs of the actual application. Adjust and change accordingly. Furthermore, those with ordinary knowledge should know that the values such as height, temperature, and ratio mentioned in the above examples are only for illustration rather than limitation.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

10:基板 10: Substrate

11:內連線 11: Inner connection

12:介電層 12: Dielectric layer

13:內連線層 13: Inner layer

131:導線 131: wire

132:導電孔 132: conductive hole

14:記憶體結構 14: Memory structure

141:底電極 141: Bottom electrode

142:磁穿隧接面堆疊 142:Magnetic Tunneling Junction Stacking

143:頂電極 143: top electrode

145:間隙壁 145: gap wall

151:突出部分 151: overhang

152:第二部份 152: Part Two

151a:突出部分的上表面 151a: Upper surface of the protrusion

152a:第二部份的上表面 152a: the upper surface of the second part

162:光阻遮罩 162: Photoresist mask

A1:第一區域 A1: The first area

A2:第二區域 A2: Second area

H1:第一高度 H 1 : first height

H2:第二高度 H 2 : second height

Claims (12)

一種形成一半導體裝置之方法,包括:提供包含有一內連線(interconnection)形成於一基板上之一結構,且該內連線包括複數個內連線層(interconnect layers)分別埋置於介電層中,其中該結構具有一第一區域和一第二區域;於該第一區域形成一記憶體結構(memory cell structure),該記憶體結構係形成於該些內連線層其中之一者上方,該記憶體結構包括一底電極、一頂電極和一磁穿隧接面堆疊(magnetic tunnel junction(MTJ)stacks)設置於該底電極和該頂電極之間;沈積一金屬層間介電層(inter-metal dielectric layer,IMD)於該內連線之上方,且該金屬層間介電層係覆蓋該記憶體結構;形成一光阻層於該金屬層間介電層上;圖案化該光阻層,以暴露出該第一區域中位於該記憶體結構上方的該金屬層間介電層之一突出部分(protruding portion),並且於該第二區域中留下一光阻部分;硬化該光阻部分,以於該第二區域形成一光阻遮罩;以及藉由該光阻遮罩而蝕刻該金屬層間介電層之該突出部分。 A method of forming a semiconductor device, comprising: providing a structure comprising an interconnection (interconnection) formed on a substrate, and the interconnection includes a plurality of interconnection layers (interconnect layers) respectively embedded in dielectric layer, wherein the structure has a first region and a second region; a memory structure (memory cell structure) is formed in the first region, and the memory structure is formed in one of the interconnection layers Above, the memory structure includes a bottom electrode, a top electrode, and magnetic tunnel junction (MTJ) stacks disposed between the bottom electrode and the top electrode; depositing an intermetal dielectric layer (inter-metal dielectric layer, IMD) is above the interconnection line, and the inter-metal dielectric layer covers the memory structure; forming a photoresist layer on the inter-metal dielectric layer; patterning the photoresist layer, to expose a protruding portion (protruding portion) of the inter-metal dielectric layer above the memory structure in the first region, and leave a photoresist portion in the second region; harden the photoresist part to form a photoresist mask in the second region; and etching the protruding part of the inter-metal dielectric layer through the photoresist mask. 如申請專利範圍第1項所述之方法,其中在圖案化該光阻層之後,於該第二區域中所留下之該光阻部分的一上表 面係低於該第一區域中位於該記憶體結構上方的該金屬層間介電層之該突出部分的一上表面。 The method according to claim 1, wherein after patterning the photoresist layer, an upper surface of the photoresist portion left in the second region The surface is lower than an upper surface of the protruding portion of the IMD layer above the memory structure in the first region. 如申請專利範圍第1項所述之方法,其中在圖案化該光阻層之後,於該第二區域中所留下之該光阻部分係具有一第一高度(first height),該第一區域中位於該記憶體結構上方的該金屬層間介電層的該突出部分係具有一第二高度(second height),且該第一高度等於或大於1/2的該第二高度。 The method as described in claim 1, wherein after patterning the photoresist layer, the photoresist portion left in the second region has a first height (first height), the first The protruding portion of the IMD layer above the memory structure in the region has a second height, and the first height is equal to or greater than 1/2 of the second height. 如申請專利範圍第1項所述之方法,其中在進行圖案化該光阻層時,該光阻層的移除速率相對於該金屬層間介電層的移除速率之一比例係等於或大於50。 The method according to claim 1, wherein when patterning the photoresist layer, the ratio of the removal rate of the photoresist layer to the removal rate of the inter-metal dielectric layer is equal to or greater than 50. 如申請專利範圍第1項所述之方法,其中該光阻層係在第一溫度下沈積於該金屬層間介電層上,該光阻部分係在第二溫度下硬化,其中該第二溫度高於該第一溫度。 The method described in claim 1, wherein the photoresist layer is deposited on the inter-metal dielectric layer at a first temperature, and the photoresist portion is hardened at a second temperature, wherein the second temperature higher than the first temperature. 如申請專利範圍第5項所述之方法,其中該第一溫度係在100℃至170℃之範圍,該第二溫度係在200℃至350℃之範圍。 The method described in claim 5, wherein the first temperature is in the range of 100°C to 170°C, and the second temperature is in the range of 200°C to 350°C. 如申請專利範圍第1項所述之方法,其中該金屬層間介電層之該突出部分之一蝕刻速率相對於該光阻遮罩之一蝕刻速率的一比例係等於或大於10。 The method of claim 1, wherein a ratio of an etching rate of the protruding portion of the IMD layer to an etching rate of the photoresist mask is equal to or greater than 10. 如申請專利範圍第1項所述之方法,更包括:移除該光阻遮罩;以及平坦化該金屬層間介電層。 The method described in claim 1 further includes: removing the photoresist mask; and planarizing the inter-metal dielectric layer. 如申請專利範圍第8項所述之方法,其中在移除該光阻遮罩後,於該第一區域中位於該記憶體結構上方的該金屬層間介電層之一第一部份(first portion)與該第二區域的該金屬層間介電層之一第二部份(second portion)之間的一高度差(step-height difference)係不超過100Å。 The method as described in claim 8, wherein after removing the photoresist mask, a first portion (first) of the inter-metal dielectric layer above the memory structure in the first region portion) and a second portion of the IMD layer in the second region is no more than 100 Å. 如申請專利範圍第8項所述之方法,其中該金屬層間介電層係平坦化至停止於該記憶體結構之該頂電極(top electrode)為止,並暴露出該頂電極之上表面。 The method described in claim 8, wherein the inter-metal dielectric layer is planarized until it stops at the top electrode of the memory structure and exposes the top surface of the top electrode. 如申請專利範圍第1項所述之方法,其中該第一區域係為一記憶體區域,該第二區域係為一邏輯區域。 The method described in item 1 of the scope of the patent application, wherein the first area is a memory area, and the second area is a logic area. 如申請專利範圍第1項所述之方法,其中該內連線包括一導線和一接觸導孔(contact via)連接至埋置於該些介電層內之該導線,其中該記憶體結構係形成於該接觸導孔上。 The method described in claim 1, wherein the interconnection includes a wire and a contact via connected to the wire embedded in the dielectric layers, wherein the memory structure is formed on the contact hole.
TW107146555A 2018-12-21 2018-12-21 Method for forming a semeconductor device TWI805666B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107146555A TWI805666B (en) 2018-12-21 2018-12-21 Method for forming a semeconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107146555A TWI805666B (en) 2018-12-21 2018-12-21 Method for forming a semeconductor device

Publications (2)

Publication Number Publication Date
TW202025316A TW202025316A (en) 2020-07-01
TWI805666B true TWI805666B (en) 2023-06-21

Family

ID=73005044

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146555A TWI805666B (en) 2018-12-21 2018-12-21 Method for forming a semeconductor device

Country Status (1)

Country Link
TW (1) TWI805666B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732658A (en) * 1986-12-03 1988-03-22 Honeywell Inc. Planarization of silicon semiconductor devices
TW201419413A (en) * 2012-11-14 2014-05-16 United Microelectronics Corp Method of fabricating dielectric layer and shallow trench isolation
TW201635390A (en) * 2015-03-16 2016-10-01 台灣積體電路製造股份有限公司 Semiconductor device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732658A (en) * 1986-12-03 1988-03-22 Honeywell Inc. Planarization of silicon semiconductor devices
TW201419413A (en) * 2012-11-14 2014-05-16 United Microelectronics Corp Method of fabricating dielectric layer and shallow trench isolation
TW201635390A (en) * 2015-03-16 2016-10-01 台灣積體電路製造股份有限公司 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
TW202025316A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
TWI579840B (en) A topological method to build self-aligned mtj without a mask
CN109427657B (en) Semiconductor device and method of forming the same
KR100946080B1 (en) Method for forming a pattern of semiconductor device
TWI797304B (en) Subtractive interconnect formation using a fully self-aligned scheme
US10763169B2 (en) Contact structure and associated method for flash memory
US9947535B2 (en) Trench formation using horn shaped spacer
US9786551B2 (en) Trench structure for high performance interconnection lines of different resistivity and method of making same
US20100308380A1 (en) Dual damascene processing for gate conductor and active area to first metal level interconnect structures
JP4711658B2 (en) Manufacturing method of semiconductor device having fine pattern
KR100901054B1 (en) Semiconductor device and manufacturing method of semiconductor device
CN112713239B (en) Method for manufacturing semiconductor device including embedded magnetic resistance random access memory
US6280644B1 (en) Method of planarizing a surface on an integrated circuit
US6261960B1 (en) High density contacts having rectangular cross-section for dual damascene applications
TWI805666B (en) Method for forming a semeconductor device
KR101124302B1 (en) Fabrication Method of Dual Damascene Pattern for Semiconductor Device
US6391745B1 (en) Method for forming overlay verniers for semiconductor devices
KR100833424B1 (en) Method for manufacturing a metal wire in semiconductor memory device
TWI512894B (en) Metal interconnect structure and process thereof
US11810816B2 (en) Chemical mechanical polishing topography reset and control on interconnect metal lines
US11361993B2 (en) Method for inverse via patterning for back end of line dual damascene structures
US20230170293A1 (en) Beol top via wirings with dual damascene via and super via redundancy
CN111463169B (en) Method for manufacturing semiconductor device
KR100525088B1 (en) Method of forming interconnection with dual damascene process
KR100675874B1 (en) Method For Planarization The Inter Insulation Layer Of Semiconductor Device
TWI226675B (en) Method of forming dual damascene