TWI805437B - Robot point calculus correction system and correction method - Google Patents
Robot point calculus correction system and correction method Download PDFInfo
- Publication number
- TWI805437B TWI805437B TW111125430A TW111125430A TWI805437B TW I805437 B TWI805437 B TW I805437B TW 111125430 A TW111125430 A TW 111125430A TW 111125430 A TW111125430 A TW 111125430A TW I805437 B TWI805437 B TW I805437B
- Authority
- TW
- Taiwan
- Prior art keywords
- robot
- point
- calibration
- positioning
- calculation
- Prior art date
Links
Images
Landscapes
- Manipulator (AREA)
- Numerical Control (AREA)
Abstract
本發明係關於一種機器人點位演算校正系統與校正方法。機器人點位演算校正系統包含一機器人點位定位與演算校正模組及一機器人點位演算校正程式及伺服器模組。機器人點位定位與演算校正模組用以演算一機械人之一初始點位數據以進行校正定位。機器人點位演算校正程式及伺服器模組用以搭載演算機械人之初始點位數據所需的複數硬體與複數演算程式。其中,機器人點位定位與演算校正模組包含但不限於一機器人點位定位模組及一機器人校正處理中心,機器人點位定位模組以純數學方法演算機器人之初始點位數據,機器人校正處理中心於接收初始點位數據後,以純數學方法完成校正計算;該機器人點位演算校正程式及伺服器模組可透過該機器內部的作業系統,同時可透過該機器人本身搭載之控制系統及其介面,在無需額外使用電腦或其他作業裝置下,完成校正作業。 The invention relates to a robot point calculus correction system and a correction method. The robot point calculation correction system includes a robot point positioning and calculation correction module, a robot point calculation correction program and a server module. The robot point positioning and calculation correction module is used to calculate an initial point data of a robot for correction and positioning. The robot point calculation correction program and the server module are used to carry complex hardware and complex calculation programs required for calculating the initial point data of the robot. Among them, the robot point positioning and calculation correction module includes but not limited to a robot point positioning module and a robot correction processing center. The robot point positioning module uses pure mathematics to calculate the initial point data of the robot, and the robot correction processing center After receiving the initial point data, the correction calculation is completed by purely mathematical methods; the robot point calculation correction program and server module can pass through the internal operating system of the machine, and at the same time through the control system and interface of the robot itself, Complete the calibration work without additional use of computers or other operating devices.
Description
本發明係關於一種演算校正系統與校正方法,詳細而言,係關於一種機器人點位演算校正系統與校正方法。 The present invention relates to a calculus correction system and a correction method, in detail, to a robot point calculus correction system and a correction method.
於傳統機器人之一種校正方法中,是透過更換模具、工件進行校正作業,因此需要至少1小時以上之作業時間。另一種機器人校正方式為透過CCD校正,但其成本較高,因此較低價位之機器人在換算後,其校正成本就過高。 In a calibration method of a traditional robot, the calibration operation is performed by replacing the mold and the workpiece, so at least 1 hour of working time is required. Another way of robot calibration is through CCD calibration, but its cost is high, so the calibration cost of lower-priced robots is too high after conversion.
於傳統之機器人的另一種校正方法中,是透過多個感測器或多個攝像單元的設置來進行機器人定位點抓取與校正作業,因此過多的感測器或攝像單元也會增加校正成本。 In another calibration method for traditional robots, multiple sensors or multiple camera units are used to capture and calibrate robot positioning points, so too many sensors or camera units will also increase the cost of calibration .
傳統之機器人校正,需要設定初始定位基準點,並透過手動操作來回移動機器人本體以完成機器人部件之點定位後,才能進行手動校正作業,因此具有需要專業人員手動操作之困難性與高成本。 In traditional robot calibration, it is necessary to set the initial positioning reference point and move the robot body back and forth by manual operation to complete the point positioning of the robot parts before manual calibration can be performed. Therefore, it is difficult and expensive for professionals to operate manually.
於現有之中華民國發明專利公開案第201915625A號中,係揭示一種機器人工具中心點校正系統,其可包含第一影像感測器、第二影像感測器及控制器。第一影像感測器可具有第一影像中心軸。第二影像感測器可具有第二影像中心軸,第二影像中心軸與第一影像中心軸可具有交點且不相互平行。 控制器可控制機器人使其工具中心點在第一影像中心軸及第二影像中心軸之間重覆移動。其中,控制器可在工具中心點與第一影像中心軸及第二影像中心軸之交點重合時記錄包含機器人之關節座標之校正點,且可移動工具中心點,並可重覆上述步驟以產生複數個校正點,再根據該些校正點計算工具中心點之座標。 In the existing ROC Invention Patent Publication No. 201915625A, a robot tool center point calibration system is disclosed, which may include a first image sensor, a second image sensor and a controller. The first image sensor may have a first image central axis. The second image sensor may have a second image central axis, and the second image central axis and the first image central axis may have an intersection and are not parallel to each other. The controller can control the robot so that the tool center point repeatedly moves between the first image center axis and the second image center axis. Wherein, the controller can record the correction point including the joint coordinates of the robot when the tool center point coincides with the intersection of the first image center axis and the second image center axis, and can move the tool center point, and repeat the above steps to generate A plurality of calibration points, and then calculate the coordinates of the center point of the tool based on these calibration points.
(1)於一實施例中,機器人工具中心點校正系統可包含控制器及影像感測器,並可透過視覺伺服(Visual Servo Control)的方式自動校正機器人之工具中心點,故可達極高的校正精確度且可降低人力成本及時間成本。 (1) In one embodiment, the robot tool center point calibration system can include a controller and an image sensor, and can automatically correct the tool center point of the robot through visual servo control (Visual Servo Control), so it can reach extremely high Excellent calibration accuracy and can reduce labor costs and time costs.
(2)於一實施例中,機器人工具中心點校正系統可透過控制器及影像感測器自動校正機器人之工具中心點,且不需要事先校正影像感測器的位置,故可進一步降低人力成本及時間成本。 (2) In one embodiment, the tool center point calibration system of the robot can automatically calibrate the tool center point of the robot through the controller and the image sensor, and does not need to calibrate the position of the image sensor in advance, so the labor cost can be further reduced and time cost.
(3)於一實施例中,機器人工具中心點校正系統可透過一次的校正流程即可達到極高的校正精確度,因此機器人工具中心點校正系統可以更有效率的對機器人工具中心點進行校正。 (3) In one embodiment, the robot tool center point calibration system can achieve extremely high calibration accuracy through one calibration process, so the robot tool center point calibration system can more efficiently calibrate the robot tool center point .
(4)於一實施例中,機器人工具中心點校正系統可應用於各種不同的機器人,因此使用上更具彈性。 (4) In an embodiment, the robot tool center point calibration system can be applied to various robots, so it is more flexible in use.
前案一的技術領域與本案相同,其透過兩個影像感測器,並使兩個影像中心軸具有相交點並不平行,控制機器中心點在中心軸上移動,交點重合時記錄包含機器人之關節座標之校正點,透過視覺伺服(Visual Servo Control)的方式自動校正機器人之工具中心點。該案僅能做前置作業,另外價格偏高,一組機器人就需要一組CCD,其應用於需要中心點很準,也無需再次重新校正之機器人。本案發明為無需高精度校正之快速校正手段。 The technical field of the previous case 1 is the same as this case. It uses two image sensors and makes the central axes of the two images intersect and are not parallel to control the center point of the machine to move on the central axis. The correction point of joint coordinates automatically corrects the tool center point of the robot through Visual Servo Control. This case can only do pre-work, and the price is too high. A set of robots requires a set of CCDs. It is applied to a robot that requires a very accurate center point and does not need to be re-calibrated again. The invention of this case is a fast calibration method that does not require high-precision calibration.
於現有之中華民國發明專利公開案第201420290A號中,係揭示一種機器人校正方法,將支架模組的座標系統對準到攝影機系統的座標系統。所述方法包括:使用對準工具,所述對準工具允許操作員放置工件在支架模組的已知位置。接著由攝影機系統擷取這些工件的影像。控制器使用從支架模組及攝影機系統得到的資訊,以決定兩個座標系統之間的關係。接著控制器決定一變換方程式,以從一座標系統轉換到另一個座標系統。根據第一實施例,揭露一種校正機器人的方法。所述方法包括:連接對準工具到機器人的末端作用器,其中末端作用器是支架模組的一部分,其中對準工具包含一個或多個空間,每一空間具有三個各別的指部;移動末端作用器到攝影機的視野內的第一位置;降下末端作用器;當末端作用器位在第一位置時,放置各別的工件在一個或多個空間,且同時推壓每一工件以頂住(against)所述各別的三個指部;使用參照支架模組的座標系統,對於位在第一位置的每一空間而儲存第一組座標位置;移動末端作用器,在視野內由第一位置移動到第二位置,而不影響工件的位置;當末端作用器位在第二位置時,放置各別的工件在一個或多個空間,且同時推壓每一工件以頂住所述各別的三個指部;使用參照支架模組的座標系統,對於位在第二位置的每一空間而儲存第二組座標位置;移動末端作用器,由第二位置移動到視野外的位置,而不影響工件的位置;在末端作用器移動到視野外的位置之後,使用攝影機擷取工件的影像;使用參照攝影機的座標系統,對於每一工件而決定第三組座標位置;以及使用第一組座標位置、第二組座標位置及第三組座標位置來計算一變換方程式,以將參照攝影機的座標系統中的座標位置、轉換為參照支架模組的座標系統中的座標位置。 In the existing ROC Invention Patent Publication No. 201420290A, a robot calibration method is disclosed, which aligns the coordinate system of the bracket module with the coordinate system of the camera system. The method includes using an alignment tool that allows an operator to place a workpiece in a known location on a support module. Images of these workpieces are then captured by the camera system. The controller uses information obtained from the rig module and the camera system to determine the relationship between the two coordinate systems. The controller then determines a transformation equation to convert from one coordinate system to another. According to a first embodiment, a method of calibrating a robot is disclosed. The method comprises: attaching an alignment tool to an end effector of the robot, wherein the end effector is part of a support module, wherein the alignment tool comprises one or more spaces, each space having three respective fingers; moving the end effector to a first position within the field of view of the camera; lowering the end effector; while the end effector is in the first position, placing individual workpieces in one or more spaces and simultaneously pushing each workpiece to against said respective three fingers; storing a first set of coordinate positions for each space at a first position using a coordinate system referenced to the bracket module; moving the end effector within the field of view Move from the first position to the second position without affecting the position of the workpiece; when the end effector is in the second position, place individual workpieces in one or more spaces, and simultaneously push each workpiece to withstand said respective three fingers; storing a second set of coordinate positions for each space at a second position using the coordinate system of the reference bracket module; moving the end effector from the second position out of view position of the workpiece without affecting the position of the workpiece; capturing an image of the workpiece using a camera after the end effector has moved to a position out of view; determining a third set of coordinate positions for each workpiece using a coordinate system referenced to the camera; and A transformation equation is calculated by using the first set of coordinate positions, the second set of coordinate positions and the third set of coordinate positions, so as to transform the coordinate positions in the coordinate system of the reference camera into the coordinate positions in the coordinate system of the reference frame module.
前案二的技術領域與本案類似,該案僅能做前置作業,其根據夾具更換做座標更換,其與本發明不相似。 The technical field of the previous case 2 is similar to this case, and this case can only do the pre-work, and it does the coordinate replacement according to the fixture replacement, which is not similar to the present invention.
於現有之中華民國發明專利公開案第201403277A號中,係揭示一種機器人系統,其包括:相機,其拍攝可動部而製作相機圖像;記憶部,其記憶可動部之形狀模型;匹配處理部,其根據相機圖像與形狀模型之匹配而檢測可動部於相機座標系統中之位置及朝向;控制資訊取得部,其取得由控制可動部之運動之動作控制部所識別的可動部於機器人座標系統中之位置及朝向之資訊;及座標校正部,其基於相機座標系統中之可動部位置及朝向、以及機器人座標系統中之可動部之位置及朝向,而進行相機座標系統與機器人座標系統之關聯。又,於上述機器人系統中,上述匹配處理部亦可根據三維之上述形狀模型生成上述可動部之二維圖像,並使用所生成之二維圖像,檢測上述相機圖像內之上述可動部之位置及朝向。藉此,可根據三維之可動部之形狀模型確實地檢測上述相機圖像內之上述可動部之位置及朝向。又,即便不設置複數台相機,亦能以來自1台相機之圖像執行校準。又,於上述機器人系統中,上述形狀模型亦可為上述可動部之CAD(computer aided design,電腦輔助設計)資料。藉此,能以高精度檢測上述可動部之位置及朝向。由於可流用機器人系統之設計階段中已製作之資料,故而可節省製作校準用之形狀模型之資料所耗費之成本。於上述機器人系統中,上述可動部亦可為臂、臂之連桿、或末端效應器(end effector)。藉此,可確實地執行校準。又於上述機器人系統中,亦可為上述記憶部存儲複數個不同之可動部之形狀模型;上述匹配處理部使用複數個上述可動部之形狀模型中之至少任一者,檢測該可動部於相機座標系統中之位置及朝向;上述座標系統校正部對於藉由上述匹配處理部而檢測出相機座標系統 中之位置及朝向的可動部,進行上述相機座標系統與上述機器人座標系統之關聯。藉此,只要存在可自設置有相機之位置進行拍攝之可動部,則即便於其他可動部位於無法自相機進行拍攝之位置之情形時,亦可執行校準。於上述機器人系統中,亦可為於各個上述可動部之表面附有不同之識別資訊,且上述匹配處理部於上述相機圖像中檢測識別資訊,並使用與檢測出之識別資訊相對應之可動部之形狀模型,檢測該可動部於相機座標系統中之位置及朝向。藉此,可於複數個形狀模型中鎖定成為匹配對象之可動部之形狀模型,故而可更迅速地完成校準。 In the existing ROC Invention Patent Publication No. 201403277A, a robot system is disclosed, which includes: a camera, which photographs the movable part to make a camera image; a memory part, which memorizes the shape model of the movable part; a matching processing part, It detects the position and orientation of the movable part in the camera coordinate system based on the matching of the camera image and the shape model; the control information acquisition part obtains the movable part in the robot coordinate system identified by the motion control part that controls the movement of the movable part information on the position and orientation in the camera coordinate system; and a coordinate correction unit, which associates the camera coordinate system with the robot coordinate system based on the position and orientation of the movable part in the camera coordinate system and the position and orientation of the movable part in the robot coordinate system . In addition, in the above robot system, the matching processing unit may generate a two-dimensional image of the movable part from the three-dimensional shape model, and detect the movable part in the camera image using the generated two-dimensional image. location and orientation. Thereby, the position and orientation of the movable part in the camera image can be reliably detected from the three-dimensional shape model of the movable part. Also, even without installing a plurality of cameras, calibration can be performed with images from one camera. In addition, in the above robot system, the shape model may be CAD (computer aided design) data of the movable part. Thereby, the position and orientation of the said movable part can be detected with high precision. Since the data produced in the design stage of the robot system can be reused, the cost of making the data of the shape model for calibration can be saved. In the aforementioned robot system, the aforementioned movable part may also be an arm, a link of an arm, or an end effector. Thereby, calibration can be surely performed. In addition, in the above-mentioned robot system, the memory unit may also store a plurality of different shape models of the movable part; The position and orientation in the coordinate system; the above-mentioned coordinate system correction unit detects the camera coordinate system through the above-mentioned matching processing unit The position and orientation of the movable part are associated with the above-mentioned camera coordinate system and the above-mentioned robot coordinate system. Thereby, as long as there is a movable part that can be photographed from the position where the camera is installed, calibration can be performed even when other movable parts are located at positions where photographing from the camera cannot be performed. In the above-mentioned robot system, different identification information may be attached to the surface of each of the above-mentioned movable parts, and the above-mentioned matching processing part detects the identification information in the above-mentioned camera image, and uses the movable part corresponding to the detected identification information. The shape model of the part is used to detect the position and orientation of the movable part in the camera coordinate system. Thereby, the shape model of the movable part to be matched can be locked among a plurality of shape models, so that the calibration can be completed more quickly.
前案三的技術領域與本案相同,該發明做散件頭定位,透過將模具頭數據資料建檔完成,同時透過CCD+CAD建檔完成,其發明必須要專業人士才可使用。本發明無需該手段,直接透過機器人機上軟體操作即可校正完成。 The technical field of the previous case 3 is the same as that of this case. This invention is used for the positioning of the part head, which is completed by filing the data of the die head and at the same time through the file construction of CCD+CAD. The invention must be used by professionals. The present invention does not need this means, and the calibration can be completed directly through the software operation on the robot machine.
於現有之中華民國發明專利公開案第201736065A號中,係揭示一種用以決定機械手幾何性質的方法、限制裝置、及系統。前案四係建立於結合; In the existing ROC Invention Patent Publication No. 201736065A, a method, a limiting device, and a system for determining the geometric properties of a manipulator are disclosed. The four lines of the former case are established on the combination;
-廣泛且創新地使用容易獲得之內部控制器信號,特別是馬達轉矩。 - Extensive and innovative use of readily available internal controller signals, especially motor torque.
-適合之模型和形式能實現小/彈性偏差和動態結構之精確建模,從而支援參數識別。 - Suitable models and forms enable accurate modeling of small/elastic deviations and dynamic structures to support parametric identification.
-以機械可行方式限制運動之原則,使得該方法可應用於標準(非先驗儀器化)之機器人。 - The principle of constraining motion in a mechanistically feasible way makes the method applicable to standard (not a priori instrumented) robots.
-一種指揮和控制策略而非從現有耗時方法之平均,避免已知、未知數影響:靜態摩擦對非零力之影響以及任意放置夾緊點之位置。用於控制器配置之設備與軟體設置,使得處理校準能自動化且集成於應用中,甚至在使用者層級之系統和程式設計。其用以決定機械手(2)幾何性質的方法及系統控制機械手(2)以執行表現出與環境、或在機械手(2)的不同連桿間的力相互作用之限制運動,以機械地形成動態鏈。鏈係可包含外圍設備和外部運動軸。限制裝置係使能有助於確定幾何性質之運動。關節統一模型與連桿順應性係有助於確定剛度參數。力相互作用係為摩擦察覺所控制,使得非幾何性質可被識別,從而使非幾何效果與幾何效果分離,以提高精度。 - A command and control strategy rather than averaging from existing time-consuming methods, avoiding known and unknown effects: the effect of static friction on non-zero forces and the location of arbitrarily placed clamping points. Equipment and software setup for controller configuration, enabling process calibration to be automated and integrated in the application, even system and programming at the user level. Its method and system for determining the geometrical properties of a manipulator (2) controls a manipulator (2) to perform constrained motions exhibiting force interactions with the environment, or between different linkages of the manipulator (2), with mechanical form a dynamic chain. Chains can include peripherals and external axes of motion. A restraining device is one that enables motion that facilitates the determination of geometric properties. A unified model of the joint and the compliance system of the connecting rod help to determine the stiffness parameters. Force interactions are controlled by friction detection, allowing non-geometric properties to be identified, thereby separating non-geometric effects from geometric effects for improved accuracy.
前案四的技術領域與本案類似,該發明透過限制機械手的運作,使其作出目標姿勢,透過摩擦感知控制,監測馬達轉矩與角度,依據識別的參數確定幾何性質。其用途是建模標準化機器人數據。該案轉劇僅能做扭力,並無法做定位修正,其與本案不同。 The technical field of the previous case 4 is similar to that of this case. The invention restricts the operation of the manipulator to make it take a target posture, monitors the motor torque and angle through friction sensing control, and determines the geometric properties according to the identified parameters. Its purpose is to model normalized robot data. This case can only be used for twisting, but not for positioning correction, which is different from this case.
於現有之中華民國發明專利公開案第201736069A號中,係揭示一種機器手臂校正方法,以改善習知技術之缺點。其一實施例提供一種用於機器手臂系統之機構參數校正方法。該機器手臂系統包括一機器手臂和一量測儀器。該機構參數校正方法包括依據n個機構參數集合控制該機器手臂執行n個操作動作,使該機器手臂末端移向對應之n個預測定位點;決定該n個預測定位點之中每兩者之間之一預測相對位移量方程式;在該機器手臂執行每一該操作動作時,感測該機器手臂末端所對應之一三維量測座標;依據該n個三維量測座標決定該機器手臂執行每兩操作動作時,該機器手臂末端所移動之一量測相對位移量;依據該等預測相對位移量方程式和該等量測相對位移量取得該機器手 臂所對應之一最佳化方程式,並依據該最佳化方程式取得該機器手臂之一機構參數誤差集合;以及使用該機構參數誤差集合校正該機器手臂之該等機構參數集合。 In the existing Republic of China Invention Patent Publication No. 201736069A, a method for calibrating a robot arm is disclosed to improve the shortcomings of the conventional technology. One embodiment thereof provides a mechanism parameter calibration method for a robot arm system. The robot arm system includes a robot arm and a measuring instrument. The mechanism parameter correction method includes controlling the robot arm to perform n operation actions according to n mechanism parameter sets, so that the end of the robot arm moves to the corresponding n predicted positioning points; determining the distance between each of the n predicted positioning points One of the predicted relative displacement equations; when the robot arm performs each operation action, a three-dimensional measurement coordinate corresponding to the end of the robot arm is sensed; according to the n three-dimensional measurement coordinates, it is determined that the robot arm performs each operation During the two operations, one of the ends of the robot arm moves to measure the relative displacement; the robot arm is obtained according to the predicted relative displacement equation and the measured relative displacement. An optimization equation corresponding to the arm, and obtain a mechanism parameter error set of the robot arm according to the optimization equation; and use the mechanism parameter error set to correct the mechanism parameter sets of the robot arm.
其一實施例提供一種用於機器手臂系統之機構參數校正方法。該機器手臂系統包括一機器手臂、一校正塊和一量測儀器。該機構參數校正方法包括設置該量測儀器在該機器手臂之末端;依據nx個第一方向定位點機構參數集合控制該機器手臂執行nx個操作動作,使該機器手臂末端移向該第一方向第一精度平面正前方之nx個第一方向預測定位點;在該機器手臂執行每一該操作動作時,感測該機器手臂之末端與該第一方向第一精度平面之一第一方向量測位移量;依據該nx個第一方向量測位移量決定該機器手臂執行每兩操作動作時,該機器手臂之末端所移動之一第一方向量測相對位移量;決定該nx個第一方向預測定位點之中每兩者之間之一第一方向預測相對位移量方程式;依據該等第一方向預測相對位移量方程式和該等第一方向量測相對位移量取得該機器手臂所對應之一最佳化方程式,並依據該最佳化方程式取得該機器手臂之一機構參數誤差集合;以及使用該機構參數誤差集合校正該機器手臂之該等機構參數集合。 One embodiment thereof provides a mechanism parameter calibration method for a robot arm system. The robot arm system includes a robot arm, a calibration block and a measuring instrument. The mechanism parameter calibration method includes setting the measuring instrument at the end of the robot arm; controlling the robot arm to perform nx operations according to the set of mechanism parameters of nx first direction anchor points, so that the end of the robot arm moves to the first direction nx predicted positioning points in the first direction directly in front of the first precision plane; when the robot arm performs each operation action, a first direction quantity between the end of the robot arm and the first precision plane in the first direction is sensed Measuring the amount of displacement; according to the measured displacement of the nx first directions, when the robot arm performs every two operations, the end of the robot arm moves in one of the first directions to measure the relative displacement; determine the nx first directions A first-direction predicted relative displacement equation between each two of the direction-predicted positioning points; according to the first-direction predicted relative displacement equation and the first-direction measured relative displacement, the corresponding robot arm is obtained An optimization equation, and obtain a mechanism parameter error set of the robot arm according to the optimization equation; and use the mechanism parameter error set to correct the mechanism parameter sets of the robot arm.
前案五的技術領域與本案類似,該發明僅能做前置作業,透過拉出中心點方框,去抓點定位校正。該案也並無敘述其為手動或自動進行中心點標記作業。本案前置作業即預先完成中心點設置,並能依據中心點,以純數學演算校正完成,其與本案不相似。 The technical field of the previous case 5 is similar to that of this case. This invention can only do pre-work, by pulling out the center point box, to grasp the point positioning and correction. This case also does not describe that it is a manual or automatic center point marking operation. The pre-work in this case is to complete the setting of the center point in advance, and it can be corrected by pure mathematical calculation based on the center point, which is not similar to this case.
有鑑於此,如何提供一種機器人點位演算校正系統與校正方法,使其可用以免除需要專業人員手動操作之困難性,同時用以有效地降低校正成本與校正時間,乃為此一業界亟待解決之問題。 In view of this, how to provide a robot point calculus calibration system and calibration method, so that it can be used to avoid the difficulty of manual operation by professionals, and at the same time effectively reduce the calibration cost and calibration time, is an urgent need for the industry to solve question.
為解決上述之現有技術的不足之處,本發明之主要目的在於提供一種機器人點位演算校正系統與校正方法,其可直接以軟體完成機器人定位之校正,無需更換機具或透過CCD校正,同時也能夠將校正成本降低,無論高價或低價之機器人皆可完成校正作業。 In order to solve the above-mentioned deficiencies in the prior art, the main purpose of the present invention is to provide a robot point calculation calibration system and calibration method, which can directly complete the calibration of robot positioning with software, without the need to replace equipment or calibrate through CCD. The calibration cost can be reduced, and no matter whether the robot is high-priced or low-priced, it can complete the calibration work.
本發明之另一目的在於提供一種機器人點位演算校正系統與校正方法,其無需感測器或攝像單元,在直接輸入機器人參數後,即可藉由軟體抓取機器人的點位,並由軟體運行校正公式以直接完成校正作業。 Another object of the present invention is to provide a robot point calculus calibration system and calibration method, which does not require a sensor or camera unit, after directly inputting robot parameters, the robot's point can be captured by software, and the software can Run the correction formula to directly complete the correction job.
本發明之又一目的在於提供一種機器人點位演算校正系統與校正方法,其可去除需要專業人員手動操作之困難性與高成本。 Another object of the present invention is to provide a robot point calculation calibration system and calibration method, which can eliminate the difficulty and high cost of manual operation by professionals.
為達上述之目的,本發明之機器人點位演算校正系統包含一機器人點位定位與演算校正模組及一機器人點位演算校正程式及伺服器模組。機器人點位定位與演算校正模組用以演算一機械人之一初始點位數據以進行校正定位。機器人點位演算校正程式及伺服器模組用以搭載演算機械人之初始點位數據所需的複數硬體與複數演算程式。其中,機器人點位定位與演算校正模組包含但不限於一機器人點位定位模組及一機器人校正處理中心,機器人點位定位模組以純數學方法演算機器人之初始點位數據,機器人校正處理中心於接收初始點位數據後,以純數學方法完成校正計算;該機器人點位演算校正程式及 伺服器模組可透過該機器人內部的作業系統,同時可透過該機器人本身搭載之控制系統及其介面,在無需額外使用電腦或其他作業裝置下,完成校正作業。 To achieve the above-mentioned purpose, the robot point calculation correction system of the present invention includes a robot point positioning and calculation correction module, a robot point calculation correction program and a server module. The robot point positioning and calculation correction module is used to calculate an initial point data of a robot for correction and positioning. The robot point calculation correction program and the server module are used to carry complex hardware and complex calculation programs required for calculating the initial point data of the robot. Among them, the robot point positioning and calculation correction module includes but not limited to a robot point positioning module and a robot correction processing center. The robot point positioning module uses pure mathematics to calculate the initial point data of the robot, and the robot correction processing center After receiving the initial point data, complete the correction calculation with pure mathematics; the robot point calculation correction program and The server module can complete the calibration operation through the robot's internal operating system, and at the same time through the robot's own control system and its interface, without additional use of computers or other operating devices.
為達上述之目的,本發明之機器人點位演算校正系統具有的機器人點位定位與演算校正模組更包含一硬體感測裝置,硬體感測裝置包含但不限於一影像鏡頭,用以拍攝複數點位與初始作業處理之複數基準點。 In order to achieve the above-mentioned purpose, the robot point position positioning and calculation correction module of the robot point position calculation correction system of the present invention further includes a hardware sensing device, and the hardware sensing device includes but is not limited to a video lens for Multiple reference points for shooting multiple points and initial job processing.
為達上述之目的,本發明之機器人點位演算校正系統具有的機器人點位定位模組包含但不限於一演算法點位定位及一硬體感測定位,演算法點位定位透過純數學完成機器人之所有定位點之計算,硬體感測定位用以完成參數輸入或單獨定位,定義出相對位置進行校正。 In order to achieve the above-mentioned purpose, the robot point positioning module of the robot point calculation and correction system of the present invention includes but not limited to an algorithm point positioning and a hardware sensory positioning, and the algorithm point positioning is completed through pure mathematics Calculation of all positioning points of the robot, hardware sensing positioning is used to complete parameter input or separate positioning, and define the relative position for correction.
為達上述之目的,本發明之機器人點位演算校正系統具有的機器人點位定位模組更包含一細節參數補正模組,以微調校正機械人的個別參數。 In order to achieve the above purpose, the robot point positioning module of the robot point calculation and correction system of the present invention further includes a detailed parameter correction module to fine-tune and correct individual parameters of the robot.
為達上述之目的,本發明之機器人點位演算校正系統具有的機器人校正處理中心透過複數公式完成校正、或透過單一公式之複數參數組合完成校正。 In order to achieve the above-mentioned purpose, the robot calibration processing center of the robot point calculation calibration system of the present invention completes calibration through multiple formulas, or completes calibration through multiple parameter combinations of a single formula.
為達上述之目的,本發明之機器人點位演算校正系統具有的機械人為工業用機械人。 In order to achieve the above-mentioned purpose, the robot of the robot point calculation and correction system of the present invention is an industrial robot.
為達上述之目的,本發明之機器人點位演算校正系統具有的機器人點位演算校正程式及伺服器模組透過一工業電腦所搭載之複數校正程式進行機械人之校正作業。 In order to achieve the above-mentioned purpose, the robot point calculation calibration program and the server module of the robot point calculation calibration system of the present invention carry out the calibration operation of the robot through the multiple calibration programs carried by an industrial computer.
為達上述之目的,本發明之機器人點位演算校正方法,包含下列步驟: 提供一機械人;初始化機械人之定位點與輸入參數;提供一機器人點位定位與演算校正模組以演算機械人之一初始點位數據;提供一機器人點位演算校正程式及伺服器模組以搭載演算機械人之初始點位數據所需的複數硬體與複數演算程式;透過機器人點位定位與演算校正模組具有的一機器人點位定位模組,以純數學方法演算機器人之初始點位數據;以及透過機器人點位定位與演算校正模組具有的一機器人校正處理中心,於接收初始點位數據後,以純數學方法完成校正計算;該機器人點位演算校正程式及伺服器模組可透過該機器人內部的作業系統,同時可透過該機器人本身搭載之控制系統及其介面,在無需額外使用電腦或其他作業裝置下,完成校正作業。 In order to achieve the above-mentioned purpose, the robot point calculation correction method of the present invention includes the following steps: Provide a robot; initialize the positioning point and input parameters of the robot; provide a robot point positioning and calculation correction module to calculate the initial point data of the robot; provide a robot point calculation correction program and server module With complex hardware and complex calculation programs required for calculating the initial point data of the robot; through a robot point positioning module with a robot point positioning and calculation correction module, the initial point position of the robot is calculated purely mathematically data; and a robot calibration processing center through the robot point positioning and calculation calibration module, after receiving the initial point data, complete the calibration calculation with pure mathematics; the robot point calculation calibration program and the server module can be used through The operating system inside the robot can also complete the calibration work through the control system and interface of the robot itself without additional use of computers or other operating devices.
為達上述之目的,本發明機器人點位演算校正方法具有的機器人點位定位與演算校正模組更包含一硬體感測裝置,硬體感測裝置包含但不限於一影像鏡頭,用以拍攝複數點位與初始作業處理之複數基準點。 In order to achieve the above-mentioned purpose, the robot point positioning and calculation correction module of the robot point calculation correction method of the present invention further includes a hardware sensing device, and the hardware sensing device includes but is not limited to a video lens for shooting Multiple points and multiple reference points for initial job processing.
為達上述之目的,本發明機器人點位演算校正方法具有的機器人點位定位模組包含但不限於一演算法點位定位及一硬體感測定位,演算法點位定位透過純數學完成機器人之所有定位點之計算,硬體感測定位用以完成參數輸入或單獨定位,定義出相對位置進行校正。 In order to achieve the above-mentioned purpose, the robot point positioning module of the robot point calculation correction method of the present invention includes but is not limited to an algorithm point positioning and a hardware sensory positioning, and the algorithm point positioning is completed by pure mathematics. For the calculation of all positioning points, the hardware sensor positioning is used to complete the parameter input or separate positioning, and the relative position is defined for correction.
為達上述之目的,本發明機器人點位演算校正方法具有的機器人點位定位模組更包含一細節參數補正模組,以微調校正機械人的個別參數。 In order to achieve the above-mentioned purpose, the robot point positioning module included in the robot point calculation correction method of the present invention further includes a detailed parameter correction module to fine-tune and correct individual parameters of the robot.
為達上述之目的,本發明機器人點位演算校正方法具有的機器人校正處理中心透過複數公式完成校正、或透過單一公式之複數參數組合完成校正。 In order to achieve the above-mentioned purpose, the robot calibration processing center of the robot point calculus calibration method of the present invention completes calibration through complex formulas, or completes calibration through multiple parameter combinations of a single formula.
100:機器人點位演算校正系統 100: Robot point calculation correction system
200:機器人點位定位與演算校正模組 200: Robot point positioning and calculation correction module
210:機器人點位定位模組 210:Robot point positioning module
212:演算法點位定位 212: Algorithm point positioning
214:硬體感測定位 214: Hardware somatosensory positioning
216:細節參數補正模組 216: Detailed parameter correction module
220:機器人校正處理中心 220: Robot Calibration Processing Center
230:硬體感測裝置 230: hardware sensing device
300:機器人點位演算校正程式及伺服器模組 300: Robot point calculation correction program and server module
310:工業電腦 310: industrial computer
圖1為本發明之機器人點位演算校正系統的示意圖;圖2為本發明之機器人點位演算校正方法的流程圖;以及圖3為本發明之機器人點位演算校正系統具有的機械人校正介面的示意圖。 Fig. 1 is a schematic diagram of the robot point calculus correction system of the present invention; Fig. 2 is a flow chart of the robot point calculus correction method of the present invention; and Fig. 3 is a robot correction interface provided by the robot point calculus correction system of the present invention schematic diagram.
茲將本發明配合附圖,並以實施例之表達形式詳細說明如下。於文中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係侷限本發明於實際實施上的專利範圍,合先敘明。 The present invention is hereby combined with the accompanying drawings and described in detail as follows in terms of embodiments. The drawings used in this article are only for illustration and auxiliary description, and may not be the true proportion and precise configuration of the present invention after implementation, so the present invention should not be limited by the proportion and arrangement of the attached drawings. The scope of the patent in practice is described first.
如圖1所示,本發明之一種機器人點位演算校正系統100包含一機器人點位定位與演算校正模組200及一機器人點位演算校正程式及伺服器模組300。機器人點位定位與演算校正模組200用以演算一機械人之一初始點位數據以進行校正定位。機器人點位演算校正程式及伺服器模組300用以搭載演算機械人之初始點位數據所需的複數硬體與複數演算程式。其中,機器人點位定位與演算校正模組200包含但不限於一機器人點位定位模組210及一機器人校正
處理中心220;機器人點位定位模組210以純數學方法演算機器人之初始點位數據,機器人校正處理中心220於接收初始點位數據後,以純數學方法完成校正計算。
As shown in FIG. 1 , a robot point
前述之機器人點位定位與演算校正模組200更包含一硬體感測裝置230。硬體感測裝置230包含但不限於一影像鏡頭,該影像鏡頭用以拍攝複數點位與初始作業處理之複數基準點,藉此定義出相對位置進行校正。
The aforementioned robot point positioning and
如圖2所示,本發明更提供一種機器人點位演算校正方法,包含下列步驟:如步驟410所示,提供一機械人;如步驟420所示,初始化機械人之定位點與輸入參數;如步驟430所示,提供一機器人點位定位與演算校正模組以演算機械人之一初始點位數據;如步驟440所示,提供一機器人點位演算校正程式及伺服器模組以搭載演算機械人之初始點位數據所需的複數硬體與複數演算程式;如步驟450所示,透過機器人點位定位與演算校正模組具有的一機器人點位定位模組,以純數學方法演算機器人之初始點位數據;以及如步驟460所示,透過機器人點位定位與演算校正模組具有的一機器人校正處理中心,於接收初始點位數據後,以純數學方法完成校正計算。
As shown in Figure 2, the present invention further provides a method for correcting robot point calculations, including the following steps: as shown in
其中,於步驟420之初始化機械人之定位點與輸入參數中,其包含但不限於:初始化校正的定位點、機器人參數輸入等初始作業,依此完成在進行後續之校正作業前,不同機器人需要進行之初始化校正用的定位點依據,完成校正前之初始作業處理。
Among them, in
於步驟430之提供機器人點位定位與演算校正模組200以演算機械人之初始點位數據中,機器人點位定位與演算校正模組200用以提供一機器人點位定位與演算校正方法,該機器人點位定位與演算校正方法係指本系統由輸入現有機器人之參數以及進行點位定位,一直到將這些點位校正處理完成之整體程序作業之方法。其內包含但不限於上述之機器人點位定位模組210、機器人校正處理中心200等。該機器人點位定位與演算校正方法適用之機器人包含但不限於工業用關節形機器人等類型之機器人。
In
於步驟440之提供機器人點位演算校正程式及伺服器模組500以搭載演算機械人之初始點位數據所需的複數硬體與複數演算程式中,機器人點位演算校正程式及伺服器模組500係指本案所有程式運作及其純數學公式演算法,及平台運行所用之伺服器及資料庫。其中,前述之伺服器及資料庫皆可為單數或多數個伺服器及資料庫硬體設備,設備形式可為本地端實體設備、雲端虛擬伺服器及資料庫等,所有硬體形式不限。其可依據本系統使用之規格需求,依此對應合適之伺服器及資料庫數量及架構配置,依此作為本系統之運行所用。
In
前述之所有程式運作可包含但不限於搭載本系統可運行之校正作業之程式。前述之純數學公式演算法可包含但不限於內建於機器人點位定位模組20與機器人校正處理中心220內之演算法點位定位與校正公式。
All the aforementioned program operations may include, but are not limited to, programs that carry calibration operations that can be run by the system. The aforementioned pure mathematical formula algorithm may include but not limited to the algorithm point positioning and calibration formula built in the robot point positioning module 20 and the robot
機器人點位定位模組210係指可將現有機器人參數輸入後,完成所有定位點定位之所有方式。機器人點位定位模組210包含但不限於一演算法點位定位212及一硬體感測定位214。其中,演算法點位定位212透過純數學完
成機器人之所有定位點之計算,硬體感測定位214則用以完成參數輸入或單獨定位。
The robot
詳細而言,演算法點位定位212是透過純數學完成現有機器人之所有定位點的計算,其透過機器人參數輸入,包含但不限於所有不同部件、成品之尺寸等參數,依此套入公式完成現有機器人之所有定位點的計算。其一實施例公式邏輯如下:機器人部件基準=機器人部件外觀尺寸-機器人部件夾持尺寸+機器人部件其他尺寸(如:墊高、加厚等)
In detail, the
依此完成機器人各部件點位之計算。依據公式邏輯,其他實際實施例演算用公式如下:素材軟爪基準=素材軟爪尺寸-素材夾持尺寸 In this way, the calculation of the position of each component of the robot is completed. According to the logic of the formula, the calculation formula used in other practical embodiments is as follows: material soft jaw reference = material soft jaw size - material clamping size
成品軟爪基準=成品軟爪尺寸-成品夾持尺寸 Finished soft jaw benchmark = finished soft jaw size - finished product clamping size
素材爪位置計算=素材工件高度+素材軟爪尺寸-素材夾持尺寸+墊高柱加板厚 Material claw position calculation = material workpiece height + material soft claw size - material clamping size + height column plus plate thickness
成品爪位置計算=成品工件高度+成品軟爪尺寸-成品夾持尺寸 Finished claw position calculation = finished workpiece height + finished soft claw size - finished product clamping size
NC成品1位置計算=成品爪位置計算+NC軟爪1尺寸-NC軟爪1修爪深度 NC finished product 1 position calculation = finished product jaw position calculation + NC soft jaw 1 size - NC soft jaw 1 repair jaw depth
NC成品2位置計算=成品爪位置計算+NC軟爪2尺寸-NC軟爪2修爪深度 NC finished product 2 position calculation = finished product jaw position calculation + NC soft jaw 2 size - NC soft jaw 2 repair jaw depth
NC素材1位置計算=素材爪位置計算+NC軟爪1尺寸-NC軟爪1修爪深度+NC1位置補正-墊高柱加板厚 NC material 1 position calculation = material jaw position calculation + NC soft jaw 1 size - NC soft jaw 1 repair jaw depth + NC1 position correction - heightening column plus plate thickness
NC素材2位置計算=素材爪位置計算+NC軟爪2尺寸-NC軟爪2修爪深度+NC2位置補正-墊高柱加板厚 NC material 2 position calculation = material jaw position calculation + NC soft jaw 2 size - NC soft jaw 2 repair jaw depth + NC2 position correction - heightening column plus plate thickness
以上公式僅為實施例,並不代表所有本發明之應用公式或其所有變化型態。 The above formulas are only examples, and do not represent all the application formulas of the present invention or all variations thereof.
硬體感測定位214乃是透過輔助工具,其可包含但不限於攝像單元或設備(如:CCD)等,用以完成參數輸入或單獨定位。
The
機器人校正處理中心220係指透過純數學計算公式,並透過程式運算公式,將現有機器人定位透過公式完成校正。其一公式實施例如:校正公式內有複數重點A(加工機)、B(工件)、C(機器人)等參數,校正前已具備A~C之正式參數(如:A=1、B=2、C=3),透過純數學算式,將待校正機器人之A~C參數總和,比對校正來源之正式參數,依據修正補足或遞減A~C參數,使其與校正來源之正式參數一致,即直接完成校正。由此本案可直接套用於所有類型機器人,且可透過複數公式完成校正、或透過單一公式之複數參數組合完成校正。
The robot
於一延伸應用中,本發明之機器人點位演算校正方法因為可透過純數學方法進行點位定位校正,因此無論該工業用機器人之類型或用途,本方法皆可適用於所有工業用機器人之校正作業。 In an extended application, the robot point calculus correction method of the present invention can perform point positioning correction through pure mathematical methods, so regardless of the type or purpose of the industrial robot, this method can be applied to the calibration of all industrial robots Operation.
此外,本發明之機器人點位演算校正系統100具有的機器人點位定位模組210更包含一細節參數補正模組216。細節參數補正模組216用以提供一細節參數補正方法,其可在本系統完成校正後,針對不同之機器人進行細微校正(如:可手動調整各項定位參數之軟體及其作業系統與介面),以此使個
別機器人能有針對特定生產需求、精度,或廠區、生產產品等之需要進行微調校正作業,從而微調校正機械人的個別參數。
In addition, the robot
本發明之機器人點位演算校正系統100具有的機器人點位演算校正程式及伺服器模組300可透過一工業電腦310所搭載之複數校正程式,進行機械人之校正作業。詳言之,可透過將複數校正程式搭載於包含但不限於工業電腦310等外部設備後,連接機器人進行校正作業,藉此增加應用範圍,也因此本發明可適用於不具備操作螢幕之機器人已進行校正作業。
The robot point calculus calibration program and the
本發明之機器人點位演算校正系統與校正方法更可進一步具有下述功能: The robot point calculation correction system and correction method of the present invention can further have the following functions:
一、短時間校正完成: 1. Short-term calibration completed:
由於本發明之機器人點位定位與演算校正方法可透過校正程式軟體直接演算並完成點位校正,因此不需使用傳統之手動校正,可於短時間(1分鐘)內完成校正。 Since the robot point positioning and calculation correction method of the present invention can directly calculate and complete point correction through the correction program software, it does not need to use traditional manual correction, and can complete the correction in a short time (1 minute).
二、純數學方法點位紀錄完成校正 2. The point record is corrected by purely mathematical method
於機器人點位定位模組210機器人校正處理中心220中,於輸入機器人參數後,對現有機器人點位演算完成,到導入校正公式校正點位完成,皆可全部以純數學方法之程式與公式完成校正動作。
In the robot
三、一次性定位所有機器人部件點位之方法 3. The method of one-time positioning of all robot parts
於機器人點位定位模組210中,其所具有的演算法點位定位212因為是透過純數學方法之演算法,故無需如傳統的手動校正,需在一個點位校正完成才可進行下一個點位之校正。如此一來,本方法可一次性地演算完成所有機器人部件之點位定位。
In the robot
四、直接透過機器人介面校正 4. Calibrate directly through the robot interface
機器人點位演算校正程式及伺服器模組300可透過機器人內部的作業系統,同時可透過機器人本身搭載之控制系統及其介面,在無需額外使用電腦或其他作業裝置下,完成校正作業。
The robot point calculation calibration program and the
五、機器人校正介面 5. Robot Calibration Interface
機器人點位演算校正程式及伺服器模組300可提供人員操作之校正介面。以前述之直接透過機器人介面校正為實施例,校正介面直接透過機器人介面顯示之陳列可如圖3所示。
The robot point calculation calibration program and the
於圖3中,該實施例之上方、下方及左側為機器人常規選單內容(其包含但不限於功能選單、運行狀態陳列等),右側即為本系統之校正介面。以該機器人為例,其需要於介面上輸入機器人參數(包含但不限於素材高度、模具高度、手軟爪高度、車床軟爪高度、料盤設定計數X、料盤設定計數Y、素材夾取次數設定、素材夾取次數等),參數輸入完成後透過介面上按鍵「啟動校正作業」,該參數即會交由本系統之機器人點位定位模組210完成點位定位,並將點位資訊由本系統之機器人校正處理中心220之校正公式校正完成。
In Fig. 3, the upper, lower and left sides of this embodiment are the contents of the regular menu of the robot (including but not limited to the function menu, display of running status, etc.), and the right side is the calibration interface of the system. Taking this robot as an example, it needs to input robot parameters on the interface (including but not limited to material height, mold height, hand soft claw height, lathe soft claw height, tray setting count X, tray setting count Y, material clamping times setting, material clamping times, etc.), after the parameter input is completed, press the button "Start Calibration Operation" on the interface, and the parameter will be handed over to the robot
本機器人校正介面,其陳列方式、內容依據機器人之規格、用途或部件等提供自適應或特化介面,因此該實施例並非本系統唯一介面之形式。介面也不限於直接透過機器人介面顯示,或其他外部電腦、網站、程式進行介面呈現。 The display mode and content of this robot calibration interface provide an adaptive or specialized interface based on the robot’s specifications, uses, or components. Therefore, this embodiment is not the only interface form of this system. The interface is not limited to display directly through the robot interface, or other external computers, websites, and programs for interface presentation.
綜上所述,由於傳統之機器人之一種校正方法中,是透過更換模具、工件進行校正作業,因此需要至少1小時以上之作業時間。另一種機器
人校正方式為透過CCD校正,但其成本較高,因此較低價位之機器人換算其校正成本就過高。本發明之機器人點位定位模組210與機器人校正處理中心220可直接以軟體完成機器人定位之校正,無需更換機具或透過CCD校正,同時也能夠將校正成本降低,無論高價或低價之機器人皆可完成校正作業。
To sum up, as one of the traditional robot calibration methods is to perform calibration operations by replacing molds and workpieces, it requires at least 1 hour of working time. another machine
The human calibration method is through CCD calibration, but its cost is relatively high, so the calibration cost of lower-priced robots is too high. The robot
另一方面,於傳統之機器人的另一種校正方法中,是透過多個感測器或多個攝像單元的設置來進行機器人定位點抓取與校正作業,因此過多的感測器或攝像單元也會增加校正成本。因此,本發明之另一目的在於提供一種機器人點位演算校正系統與校正方法,其無需感測器或攝像單元,在直接輸入機器人參數後,即可藉由軟體抓取機器人的點位,並由軟體運行校正公式以直接完成校正作業。 On the other hand, in another calibration method of the traditional robot, the positioning point of the robot is grasped and corrected through the setting of multiple sensors or multiple camera units, so too many sensors or camera units are also will increase the cost of correction. Therefore, another object of the present invention is to provide a robot point calculus calibration system and calibration method, which does not require a sensor or a camera unit. After directly inputting robot parameters, the robot’s point can be captured by software, and The correction formula is run by the software to directly complete the correction job.
再一方面,傳統之機器人校正,需要設定初始定位基準點,並透過手動操作來回移動機器人本體以完成機器人部件之點定位後,才能進行手動校正作業,因此具有需要專業人員手動操作之困難性與高成本,相反地,本發明之機器人點位演算校正系統與校正方法則可去除需要專業人員手動操作之困難性,同時降低專業人員的高成本。 On the other hand, the traditional robot calibration needs to set the initial positioning reference point and move the robot body back and forth through manual operation to complete the point positioning of the robot parts before manual calibration can be performed. Therefore, it is difficult and difficult for professionals to operate manually. High cost, on the contrary, the robot point calculus correction system and correction method of the present invention can eliminate the difficulty of requiring manual operation by professionals, and at the same time reduce the high cost of professionals.
以上所述之實施例僅係為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。 The above-described embodiments are only to illustrate the technical ideas and characteristics of the present invention, and its purpose is to enable those skilled in this art to understand the content of the present invention and implement it accordingly, and should not limit the patent scope of the present invention. That is to say, all equivalent changes or modifications made according to the spirit disclosed in the present invention should still be covered by the patent scope of the present invention.
100:機器人點位演算校正系統 100: Robot point calculation correction system
200:機器人點位定位與演算校正模組 200: Robot point positioning and calculation correction module
210:機器人點位定位模組 210:Robot point positioning module
212:演算法點位定位 212: Algorithm point positioning
214:硬體感測定位 214: Hardware somatosensory positioning
216:細節參數補正模組 216: Detailed parameter correction module
220:機器人校正處理中心 220: Robot Calibration Processing Center
230:硬體感測裝置 230: hardware sensing device
300:機器人點位演算校正程式及伺服器模組 300: Robot point calculation correction program and server module
310:工業電腦 310: industrial computer
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111125430A TWI805437B (en) | 2022-07-06 | 2022-07-06 | Robot point calculus correction system and correction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111125430A TWI805437B (en) | 2022-07-06 | 2022-07-06 | Robot point calculus correction system and correction method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI805437B true TWI805437B (en) | 2023-06-11 |
TW202402493A TW202402493A (en) | 2024-01-16 |
Family
ID=87803023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111125430A TWI805437B (en) | 2022-07-06 | 2022-07-06 | Robot point calculus correction system and correction method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI805437B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201736069A (en) * | 2016-04-08 | 2017-10-16 | 台達電子工業股份有限公司 | Mechanism parametric calibration method for robotic arm system |
CN113365785A (en) * | 2019-02-07 | 2021-09-07 | Abb瑞士股份有限公司 | Method for calibrating a tool of an industrial robot, control system and industrial robot |
-
2022
- 2022-07-06 TW TW111125430A patent/TWI805437B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201736069A (en) * | 2016-04-08 | 2017-10-16 | 台達電子工業股份有限公司 | Mechanism parametric calibration method for robotic arm system |
CN113365785A (en) * | 2019-02-07 | 2021-09-07 | Abb瑞士股份有限公司 | Method for calibrating a tool of an industrial robot, control system and industrial robot |
Also Published As
Publication number | Publication date |
---|---|
TW202402493A (en) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7207851B2 (en) | Control method, robot system, article manufacturing method, program and recording medium | |
CN112672860B (en) | Robot calibration for AR and digital twinning | |
JP3946711B2 (en) | Robot system | |
JP5670416B2 (en) | Robot system display device | |
JP6180087B2 (en) | Information processing apparatus and information processing method | |
JP5815761B2 (en) | Visual sensor data creation system and detection simulation system | |
JP4021413B2 (en) | Measuring device | |
JP6572262B2 (en) | Teaching position correcting device and teaching position correcting method | |
JP3733364B2 (en) | Teaching position correction method | |
JP5321532B2 (en) | Robot calibration apparatus and calibration method | |
JP7130927B2 (en) | Controller and robot system | |
JP5523392B2 (en) | Calibration apparatus and calibration method | |
JP6922204B2 (en) | Controls, robots and robot systems | |
JPWO2018043525A1 (en) | Robot system, robot system control apparatus, and robot system control method | |
KR100644174B1 (en) | Method for compensating in welding robot | |
JP2019098409A (en) | Robot system and calibration method | |
JP6410411B2 (en) | Pattern matching apparatus and pattern matching method | |
JPH058185A (en) | Automatic operation error measuring method of robot body | |
TWI805437B (en) | Robot point calculus correction system and correction method | |
JP7249221B2 (en) | SENSOR POSITION AND POSTURE CALIBRATION DEVICE AND SENSOR POSITION AND POSTURE CALIBRATION METHOD | |
WO2023013740A1 (en) | Robot control device, robot control system, and robot control method | |
TW202327835A (en) | Robot device equipped with three-dimensional sensor and method for controlling robot device wherein the robot device includes a position information generation unit and a surface estimation unit | |
WO2023013699A1 (en) | Robot control device, robot control system, and robot control method | |
JP2005186193A (en) | Calibration method and three-dimensional position measuring method for robot | |
Lu et al. | Robot calibration using relative measurements |