TWI805308B - Human-guided rehabilitation system with dynamic feedback - Google Patents

Human-guided rehabilitation system with dynamic feedback Download PDF

Info

Publication number
TWI805308B
TWI805308B TW111113150A TW111113150A TWI805308B TW I805308 B TWI805308 B TW I805308B TW 111113150 A TW111113150 A TW 111113150A TW 111113150 A TW111113150 A TW 111113150A TW I805308 B TWI805308 B TW I805308B
Authority
TW
Taiwan
Prior art keywords
rehabilitation
dynamic
module
parameters
guided
Prior art date
Application number
TW111113150A
Other languages
Chinese (zh)
Other versions
TW202339663A (en
Inventor
張玉梅
賴金輪
Original Assignee
亞東學校財團法人亞東科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亞東學校財團法人亞東科技大學 filed Critical 亞東學校財團法人亞東科技大學
Priority to TW111113150A priority Critical patent/TWI805308B/en
Application granted granted Critical
Publication of TWI805308B publication Critical patent/TWI805308B/en
Publication of TW202339663A publication Critical patent/TW202339663A/en

Links

Images

Landscapes

  • Electrotherapy Devices (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Image Processing (AREA)

Abstract

A human-guided rehabilitation system with dynamic feedback is provided. The human-guided rehabilitation system includes a database and a wearable device. The database includes an ideal rehabilitation trajectory parameter. The wearable device includes a plurality of static sensing modules, a plurality of dynamic sensing modules, a calibration module, an image module, and a processing module. The static sensing modules and the dynamic sensing modules can obtain a plurality of static coordinate parameters and a plurality of dynamic trajectory parameters for a rehabilitated person, respectively. The calibration module can correct the ideal rehabilitation trajectory parameter as a guide trajectory parameter according to the static coordinate parameters. The image module presents a guidance image according to the guidance trajectory parameter. When an error value between the dynamic trajectory parameters and the guide trajectory parameter that are detected by the processing module or a physiological state parameter is greater than a standard threshold, the processing module corrects the guidance trajectory parameter according to an offset of the error value compared with the guidance trajectory parameter. Accordingly, the human-guided rehabilitation system can achieve personalized and effective rehabilitation, and can save costs.

Description

具動態回饋型的仿真人指導復健系統Simulator-guided rehabilitation system with dynamic feedback

本發明涉及一種復健系統,尤其涉及一具動態回饋型的仿真人指導復健系統。 The invention relates to a rehabilitation system, in particular to a dynamic feedback-type simulated human-guided rehabilitation system.

於傳統的復健療程中,復健治療師需要一對一地導引復健者完成復健動作,使復健者受傷部位能逐漸恢復理想的活動功能。然而,由於復健療程需要復健者長期且重複地的實施多種復健動作,並且復健治療師還需要一旁依照復健者的病程而適度地調整復健動作(例如:動作姿態、範圍、力度等),導致整個復健療程於人力成本上消耗極大。 In the traditional rehabilitation course, the rehabilitation therapist needs to guide the rehabilitation patient one-on-one to complete the rehabilitation movements, so that the injured part of the rehabilitation patient can gradually restore the ideal activity function. However, since the rehabilitation course requires the rehabilitation person to perform multiple rehabilitation actions repeatedly for a long period of time, and the rehabilitation therapist also needs to moderately adjust the rehabilitation movements (such as posture, range, Intensity, etc.), resulting in a huge consumption of labor costs in the entire rehabilitation course.

儘管,近年來有發展「以復健機器人引導復健者進行復健動作」之替代方案,但是現有復健機器人的整體造價高昂,且其無法即時察覺復健者的復健狀況以給予正確性之回饋,這限制復健者實現(自行)居家復健的機會。 Although, in recent years, there have been developed alternatives to "use rehabilitation robots to guide the rehabilitators to perform rehabilitation actions", but the overall cost of the existing rehabilitation robots is high, and they cannot detect the rehabilitation status of the rehabilitators in real time to give correctness feedback, which limits the opportunity for the rehabilitated person to achieve (self-)rehabilitation at home.

於是,本發明人認為上述缺陷可改善,乃特潛心研究並配合科學原理的運用,終於提出一種設計合理且有效改善上述缺陷的本發明。 Therefore, the inventor believes that the above-mentioned defects can be improved, Naite devoted himself to research and combined with the application of scientific principles, and finally proposed an invention with reasonable design and effective improvement of the above-mentioned defects.

本發明所要解決的技術問題在於,針對現有技術的不足提供一種具動態回饋型的仿真人指導復健系統。 The technical problem to be solved by the present invention is to provide a dynamic feedback simulation human-guided rehabilitation system for the deficiencies of the prior art.

本發明實施例公開一種具動態回饋型的仿真人指導復健系統,包括:一資料庫,包含一理想復健軌跡參數;以及一穿戴裝置,用以供一復健者穿戴,所述穿戴裝置包含:多個靜態感測模組,能取得所述復健者在靜態時的各部位相對於三維空間的多個靜態座標參數;一校正模組,連接多個所述靜態感測模組與所述資料庫,所述校正模組依據多個所述靜態座標參數對所述理想復健軌跡參數校正為一指引軌跡參數;一影像模組,連接所述資料庫,所述影像模組依據所述指引軌跡參數呈現一指引影像;多個動態感測模組,能取得所述復健者在動態時的各部位相對於時間與三維空間的座標之間的一動態變化參數(或一生理變化參數);及一處理模組,連接多個所述動態感測模組與所述資料庫,所述處理模組能偵測所述動態變化參數與所述指引軌跡參數;其中,當所述動態變化參數與所述指引軌跡參數(或所述生理變化參數)之間的一誤差值大於一標準閥值時,所述處理模組依據所述誤差值相較於所述指引軌跡參數的一偏移量修正所述指引軌跡參數,以取代原本的所述指引軌跡參數。 The embodiment of the present invention discloses a simulated human-guided rehabilitation system with dynamic feedback, including: a database containing parameters of an ideal rehabilitation trajectory; and a wearable device for a rehabilitation person to wear, the wearable device It includes: a plurality of static sensing modules, which can obtain a plurality of static coordinate parameters of each part of the rehabilitation person relative to the three-dimensional space; a correction module, which connects the plurality of static sensing modules and the The database, the correction module corrects the ideal rehabilitation trajectory parameters into a guide trajectory parameter according to a plurality of the static coordinate parameters; an image module, connected to the database, the image module according to the The guide track parameters present a guide image; a plurality of dynamic sensing modules can obtain a dynamic change parameter (or a physiological change parameter) of each part of the rehabilitation person relative to the coordinates of time and three-dimensional space during the dynamic state ); and a processing module connected to a plurality of the dynamic sensing modules and the database, the processing module can detect the dynamic change parameters and the guide trajectory parameters; wherein, when the dynamic When an error value between the change parameter and the guide trajectory parameter (or the physiological change parameter) is greater than a standard threshold value, the processing module The displacement modifies the guide trajectory parameters to replace the original guide trajectory parameters.

綜上所述,本發明實施例所公開的具動態回饋型的仿真人指導復健系統,能通過“所述校正模組依據多個所述靜態座標參數對所述理想復健軌跡參數校正為所述指引軌跡參數”以及“當所述動態變化參數與所述指引軌跡參數之間的所述誤差值大於所述標準閥值時,所述處理模組依據所述誤差值相較於所述指引軌跡參數的所述偏移量修正所述指引軌跡參數”的設計,使得所述處理模組能依據所述復健者的身型、復健情況等即時地修正所述指引軌跡參數,讓所述復健者通過所述影像模組進入沉浸式的虛擬環境時,能依據所述指引影像引導所述復健者進行個人化的復健,從而實現個人化且有效的復健、及節省成本等功效。 In summary, the simulated human-guided rehabilitation system with dynamic feedback disclosed in the embodiment of the present invention can correct the ideal rehabilitation trajectory parameters according to a plurality of static coordinate parameters by the correction module as follows: The guide track parameter" and "when the error value between the dynamic change parameter and the guide track parameter is greater than the standard threshold value, the processing module compares the error value with the The design of “correcting the guiding trajectory parameters” by the offset of the guiding trajectory parameters” enables the processing module to modify the guiding trajectory parameters in real time according to the body shape and rehabilitation conditions of the rehabilitation person, so that When the rehabilitation person enters the immersive virtual environment through the image module, he can guide the rehabilitation person to perform personalized rehabilitation according to the guide image, thereby realizing personalized and effective rehabilitation and saving cost and other effects.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有 關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。 For enabling a further understanding of the features and technical content of the present invention, please refer to the following The detailed description and drawings related to the present invention, however, the provided drawings are only for reference and illustration, and are not intended to limit the present invention.

100、100’:仿真人指導復健系統 100, 100': Simulator-guided rehabilitation system

1:資料庫 1: Database

2:穿戴裝置 2: Wearable device

21:靜態感測模組 21: Static sensing module

22:校正模組 22: Calibration module

23:影像模組 23: Image module

24:動態感測模組 24: Dynamic sensing module

25:處理模組 25: Processing Module

26A、26B:輔助模組 26A, 26B: auxiliary modules

261A:牽引單元 261A: traction unit

261B:刺激單元 261B: Stimulation unit

262A、262B:驅動單元 262A, 262B: drive unit

27:生理感測模組 27: Physiological sensing module

P:復健者 P: rehabilitation person

R:指引影像 R: guide image

圖1為本發明第一實施例的仿真人指導復健系統的電路方塊示意圖。 FIG. 1 is a schematic circuit block diagram of a human-guided rehabilitation system according to the first embodiment of the present invention.

圖2為本發明第一實施例的仿真人指導復健系統被穿戴於復健者時的示意圖。 FIG. 2 is a schematic diagram of the simulated human-guided rehabilitation system being worn on a rehabilitation person according to the first embodiment of the present invention.

圖3為本發明第一實施例的復健者的小腿移動至指引影像時的示意圖。 FIG. 3 is a schematic diagram of a rehabilitation person's calf moving to a guide image according to the first embodiment of the present invention.

圖4為本發明第二實施例的仿真人指導復健系統的電路方塊示意圖。 FIG. 4 is a schematic circuit block diagram of a human-guided rehabilitation system according to a second embodiment of the present invention.

圖5為本發明第二實施例的仿真人指導復健系統的另一電路方塊示意圖。 FIG. 5 is another schematic circuit block diagram of the simulator-guided rehabilitation system according to the second embodiment of the present invention.

以下是通過特定的具體實施例來說明本發明所公開有關“具動態回饋型的仿真人指導復健系統”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。 The following is a specific example to illustrate the implementation of the "Dynamic Feedback Simulated Human Guidance Rehabilitation System" disclosed by the present invention. Those skilled in the art can understand the advantages and effects of the present invention from the content disclosed in this specification . The present invention can be implemented or applied through other different specific embodiments, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are only for simple illustration, and are not drawn according to the actual size, which is stated in advance. The following embodiments will further describe the relevant technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention.

應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件或者信號,但這些元件或者信號不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一信號與另一信號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。 It should be understood that although terms such as "first", "second", and "third" may be used herein to describe various elements or signals, these elements or signals should not be limited by these terms. These terms are mainly used to distinguish one element from another element, or one signal from another signal. In addition, the term "or" used herein may include any one or a combination of more of the associated listed items depending on the actual situation.

另外,於以下說明中,如有指出請參閱特定圖式或是如特定圖式所示,其僅是用以強調於後續說明中,所述的相關內容大部份出現於該特定圖式中,但不限制該後續說明中僅可參考所述特定圖式。 In addition, in the following description, if it is pointed out that please refer to the specific drawing or as shown in the specific drawing, it is only used to emphasize in the subsequent description, and most of the relevant content described above appears in the specific drawing , but does not limit the subsequent description to only those specific drawings that may be referred to.

[第一實施例] [first embodiment]

參閱圖1至圖2所示,本實施例提供一種具動態回饋型的仿真人指導復健系統100。配合圖1及圖2所示,所述仿真人指導復健系統100包含一資料庫1及連接所述資料庫1的一穿戴裝置2,所述穿戴裝置2能用來提供一復健者P穿戴,並且讓所述復健者P進入沉浸式的虛擬實境影像(virtual reality;VR)中,所述資料庫1提供所述穿戴裝置2個人化且即時修正的引導軌跡,以指導(或引導)所述復健者P進行最佳化的復健動作。 Referring to FIG. 1 to FIG. 2 , this embodiment provides a simulated human-guided rehabilitation system 100 with dynamic feedback. As shown in FIG. 1 and FIG. 2, the simulated human-guided rehabilitation system 100 includes a database 1 and a wearable device 2 connected to the database 1, and the wearable device 2 can be used to provide a rehabilitation person P wear it, and let the rehab person P enter into an immersive virtual reality image (virtual reality; VR), the database 1 provides the wearable device 2 with a personalized and real-time corrected guide track to guide (or Guide) the rehabilitation person P to perform the optimal rehabilitation action.

換句話說,任何非「利用虛擬實境影像提供所述復健者P個人化且即時的引導軌跡,以進行復健」的復健系統,非本發明所指的仿真人指導復健系統100。接著以下介紹所述仿真人指導復健系統100的各元件及其連接關係。 In other words, any rehabilitation system that does not "provide the rehabilitation person P with a personalized and real-time guidance track for rehabilitation by using virtual reality images" is not the simulated human-guided rehabilitation system 100 referred to in the present invention. . Next, the components and their connections of the simulator-guided rehabilitation system 100 are introduced as follows.

配合圖1所示,所述資料庫1於本實施例中可以是雲端儲存裝置、或是實體儲存裝置(例如:固態硬碟),但本發明不受限於此。所述資料庫1包含有一復健資料,並且所述復健資料內具有一理想復健軌跡參數。 As shown in FIG. 1 , the database 1 in this embodiment may be a cloud storage device or a physical storage device (such as a solid state disk), but the present invention is not limited thereto. The database 1 includes a rehabilitation data, and the rehabilitation data has an ideal rehabilitation trajectory parameter.

具體來說,所述復健資料是依據不同復健部位、年齡、受傷程度等內容所規劃的一理想復健療程,所述理想復健療程可以包含有至少 一個復健動作的理想移動軌跡。當所述理想移動軌跡以數位化方式轉換並儲存至所述資料庫1時則為一理想復健軌跡參數。 Specifically, the rehabilitation data is an ideal rehabilitation course planned according to different rehabilitation parts, age, injury degree, etc., and the ideal rehabilitation course may include at least An ideal movement profile for a rehabilitation exercise. When the ideal movement trajectory is digitally converted and stored in the database 1, it becomes an ideal rehabilitation trajectory parameter.

配合圖1及圖2所示,所述穿戴裝置2用以供所述復健者P穿戴,並且所述穿戴裝置2能提供所述復健者P進入沉浸式的虛擬實境影像中,且同時取得所述復健者P於三維空間中的各種參數,以進行動作指引及動作修正。 As shown in FIG. 1 and FIG. 2, the wearable device 2 is used to be worn by the rehabilitation person P, and the wearable device 2 can provide the rehabilitation person P to enter an immersive virtual reality image, and At the same time, various parameters of the rehabilitation person P in the three-dimensional space are obtained for motion guidance and motion correction.

具體來說,所述穿戴裝置2於本實施例中包含用以配置於所述復健者P身上的多個靜態感測模組21、連接多個所述靜態感測模組21與所述資料庫1的一校正模組22、連接所述資料庫1的一影像模組23、用以配置於所述復健者P身上的多個動態感測模組24、及連接多個所述動態感測模組24與所述資料庫1的一處理模組25。 Specifically, in this embodiment, the wearable device 2 includes a plurality of static sensing modules 21 configured on the body of the rehabilitation person P, and connects a plurality of the static sensing modules 21 to the A correction module 22 of the database 1, an image module 23 connected to the database 1, a plurality of dynamic sensing modules 24 configured on the body of the rehabilitation person P, and a plurality of the A motion sensing module 24 and a processing module 25 of the database 1 .

如圖1及圖2所示,多個所述靜態感測模組21於本實施例中可以是陀螺儀或其他具備三維空間感測的裝置,並且設置於所述復健者P的關節上,但本發明不受限於此。多個所述靜態感測模組21各能取得所述復健者P在靜態時的各部位相對於三維空間的一靜態座標參數(即,每個所述靜態感測模組21具有一個所述靜態座標參數)。 As shown in Figures 1 and 2, the plurality of static sensing modules 21 in this embodiment may be gyroscopes or other devices with three-dimensional space sensing, and are arranged on the joints of the rehabilitation person P , but the present invention is not limited thereto. A plurality of the static sensing modules 21 can each obtain a static coordinate parameter of each part of the person P in static state relative to a three-dimensional space (that is, each of the static sensing modules 21 has one of the static coordinate parameters).

所述校正模組22於本實施例中為具備計算功能的裝置(例如:微處理器),並且所述校正模組22能依據多個所述靜態座標參數對所述理想復健軌跡參數校正為一指引軌跡參數。 The correction module 22 in this embodiment is a device with a computing function (such as a microprocessor), and the correction module 22 can correct the parameters of the ideal rehabilitation trajectory according to a plurality of the static coordinate parameters is a guide trajectory parameter.

具體來說,所述校正模組22能取得任兩個所述靜態座標參數,並且所述校正模組22能計算出對應兩個前述靜態座標參數對應所述復健者P部位的身型資料,從而將所述理想復健軌跡參數調整至適合所述復健者P身型的指引軌跡(即,用來引導所述復健者P進行復健的軌跡)。 Specifically, the correction module 22 can obtain any two of the static coordinate parameters, and the correction module 22 can calculate the body shape data corresponding to the P part of the rehabilitation person corresponding to the two aforementioned static coordinate parameters , so that the parameters of the ideal rehabilitation trajectory are adjusted to a guiding trajectory suitable for the body shape of the rehabilitation person P (that is, the trajectory used to guide the rehabilitation person P to perform rehabilitation).

舉例來說,假設X軸及Y軸各定義為沿著地面的延伸且相互 垂直的方向,Z軸為地面的高度方向,所述校正模組22能先通過多個所述靜態感測模組21初始化座標參數(例如:確任所述復健者在環境之X軸、Y軸與Z軸,並定義原點)。若以調整所述復健者P的小腿為例子(如圖3所示),所述校正模組22取得由位於所述復健者P腳踝與膝蓋的兩個所述靜態感測模組所提供的所述靜態座標參數。於此假設對應腳踝的所述靜態座標參數為(2,3,10)、對應膝蓋的所述靜態座標參數為(2,10,55)。所述校正模組22能分析(例如:基於大數據進行分類篩選)出兩個所述靜態座標參數以得出其對應所述復健者P的小腿部位,且進一步地計算出小腿長度為45.5公分(即,

Figure 111113150-A0305-02-0009-1
)。最後,所述校正模組22在依據實際部位的數據(例如:小腿長度45.5公分)校正所述理想復健軌跡參數校正為所述指引軌跡參數,亦即所述指引軌跡參數是依據所述復健者P的身型所調整,從而提供個人化的復健指引。當然,所述復健者的其他部位也是如此做調整。 For example, assuming that the X-axis and the Y-axis are respectively defined as extending along the ground and perpendicular to each other, and the Z-axis is the height direction of the ground, the correction module 22 can first pass through a plurality of the static sensing modules 21. Initialize coordinate parameters (for example: confirm that the rehabilitation person is in the X-axis, Y-axis and Z-axis of the environment, and define the origin). Taking the adjustment of the lower leg of the rehabilitation person P as an example (as shown in FIG. 3 ), the calibration module 22 obtains the results obtained by the two static sensing modules located at the ankle and knee of the rehabilitation person P. The static coordinate parameters provided. Here, it is assumed that the static coordinate parameter corresponding to the ankle is (2, 3, 10), and the static coordinate parameter corresponding to the knee is (2, 10, 55). The correction module 22 can analyze (for example: classify and screen based on big data) the two static coordinate parameters to obtain the calf part corresponding to the rehabilitation person P, and further calculate the calf length as 45.5 cm (i.e.,
Figure 111113150-A0305-02-0009-1
). Finally, the correction module 22 calibrates the ideal rehabilitation trajectory parameters to the guide trajectory parameters according to the data of the actual part (for example, the calf length is 45.5 cm), that is, the guide trajectory parameters are based on the rehabilitation trajectory parameters. The body shape of the athlete P is adjusted to provide personalized rehabilitation guidance. Of course, other parts of the rehabilitation person are also adjusted in the same way.

配合圖1及圖2所示,所述影像模組23於本實施例中可以是VR眼鏡,但本發明不受限於此。所述影像模組23能依據所述指引軌跡參數於虛擬實境影像中呈現一指引影像R(如圖3所示)。也就是說,以配戴所述影像模組23的所述復健者P視角為例子,所述復健者P會看見一個虛擬環境,並且於所述虛擬環境中會出現一個指引軌跡(即,所述指引影像R),以指引所述復健者P依循所述指引軌跡進行動作,所述指引軌跡可以是光線軌跡、虛擬人員的手部引導等態樣,但本發明不限制。 As shown in FIG. 1 and FIG. 2 , the image module 23 may be VR glasses in this embodiment, but the present invention is not limited thereto. The image module 23 can present a guide image R (as shown in FIG. 3 ) in the virtual reality image according to the guide trajectory parameters. That is to say, taking the perspective of the rehabilitation person P wearing the image module 23 as an example, the rehabilitation person P will see a virtual environment, and a guiding track (i.e. , the guide image R) to guide the rehabilitation person P to follow the guide trajectory. The guide trajectory may be a light trajectory, a hand guide of a virtual person, etc., but the present invention is not limited thereto.

多個所述動態感測模組24於本實施例中可以是陀螺儀或其他具備三維空間感測的裝置,並且設置於所述復健者P的關節上,亦即多個所述動態感測模組24於實務上是可以分別整合至多個所述靜態感測模組21,但本發明不受限於此。多個所述動態感測模組24能取得所述復健者 P在動態時的各部位相對於時間與三維空間的座標之間的一動態變化參數。 The plurality of dynamic sensing modules 24 in this embodiment may be gyroscopes or other devices with three-dimensional space sensing, and are arranged on the joints of the rehabilitation person P, that is, a plurality of the dynamic sensing modules 24 In practice, the measurement module 24 can be integrated into a plurality of the static sensing modules 21 respectively, but the present invention is not limited thereto. A plurality of the dynamic sensing modules 24 can obtain the P is a dynamic change parameter between the coordinates of each part relative to time and three-dimensional space during dynamic time.

舉例來說,假設所述復健者P於虛擬實境影像中看見所述指引影像R為擺動腳踝且所述復健者P隨之動作時,對應腳踝的所述動態感測模組24能依據時間軸取得對應所述腳踝的多個座標參數,並且形成一個所述動態變化參數(亦即,所述復健者P腳踝的動態軌跡)。 For example, assuming that the rehabilitation person P sees the guiding image R as swinging his ankle in the virtual reality image and the rehabilitation person P moves accordingly, the dynamic sensing module 24 corresponding to the ankle can A plurality of coordinate parameters corresponding to the ankle are obtained according to the time axis, and one dynamic change parameter (that is, the dynamic track of the ankle of the rehabilitation person P) is formed.

配合圖1所示,所述處理模組25於本實施例中為具備計算功能的裝置(例如:微處理器),亦即所述處理模組25於實務上是可以與所述校正模組22做整合,但本發明不受限於此。所述處理模組25能偵測所述動態變化參數與所述指引軌跡參數,其中,當所述動態變化參數與所述指引軌跡參數之間的一誤差值大於一標準閥值時,所述處理模組25依據所述誤差值相較於所述指引軌跡參數的一偏移量修正所述指引軌跡參數,以取代原本的所述指引軌跡參數。 As shown in FIG. 1, the processing module 25 is a device (such as a microprocessor) with a computing function in this embodiment, that is, the processing module 25 can be combined with the calibration module in practice. 22 for integration, but the present invention is not limited thereto. The processing module 25 can detect the dynamic change parameter and the guide track parameter, wherein, when an error value between the dynamic change parameter and the guide track parameter is greater than a standard threshold value, the The processing module 25 modifies the guide trajectory parameter according to an offset between the error value and the guide trajectory parameter to replace the original guide trajectory parameter.

也就是說,所述處理模組25能依據所述復健者P的動作姿態即時且個人化地進行調整所述指引軌跡參數,從而使所述影像模組23於虛擬實境影像中所下次呈現的指引軌跡更適合所述復健者P的復健情況。 That is to say, the processing module 25 can adjust the guidance trajectory parameters in real time and personalizedly according to the movement posture of the person P, so that the image module 23 can perform the following tasks in the virtual reality image. The guidance trajectory presented this time is more suitable for the rehabilitation situation of the rehabilitation person P.

舉例來說,當所述復健者於復健過程中因為疼痛導致其動作偏差時,所述處理模組25會計算出來至少一個所述動態變化參數與所述指引軌跡參數(即,理想復健動作的軌跡)出現所述誤差值,例如:於第10秒時,位置相對應的所述動態變化參數與所述指引軌跡參數的座標各為(20,20,20)與(1,1,1),所述復健者於第10秒時於X軸、Y軸、Z軸的誤差值各為19。 For example, when the rehabilitation person has movement deviation due to pain during the rehabilitation process, the processing module 25 will calculate at least one of the dynamic change parameters and the guide trajectory parameters (that is, the ideal rehabilitation The error value appears in the track of the healthy action), for example: at the 10th second, the coordinates of the dynamic change parameter corresponding to the position and the guide track parameter are (20, 20, 20) and (1, 1 , 1), the error values of the rehabilitation person on the X-axis, Y-axis, and Z-axis at the 10th second are 19 respectively.

當所述處理模組25偵測所述誤差值大於所述標準閥值時,所述處理模組25依據所述偏移量修正所述指引軌跡參數,以取代原本的所述 指引軌跡參數。例如:所述復健者於第10秒時於X軸、Y軸、Z軸的誤差值各為19,偏移量則為32(即,

Figure 111113150-A0305-02-0011-2
)。 When the processing module 25 detects that the error value is greater than the standard threshold value, the processing module 25 modifies the guide trajectory parameters according to the offset to replace the original guide trajectory parameters. For example: at the 10th second, the error values of the X-axis, Y-axis, and Z-axis are each 19, and the offset is 32 (that is,
Figure 111113150-A0305-02-0011-2
).

於實務上,利用所述誤差值與所述偏移量修正所述指引軌跡參數的方式可以是通過一調整加權值做調整。所述調整加權值較佳是±5~±10%的所述偏移量。例如:假設所述調整加權值為+5%,所述處理模組25會依據所述偏移量的+5%調整所述指引軌跡參數,亦即,於第十秒時,所述偏移量的+5%為1.6,所以所述指引軌跡參數的座標由(1,1,1)被調整為(2.6,2.6,2.6),但本發明不受限於此。 In practice, the method of using the error value and the offset to correct the guidance trajectory parameters may be to adjust by adjusting a weighted value. The adjustment weighting value is preferably ±5~±10% of the offset. For example: assuming that the adjustment weighting value is +5%, the processing module 25 will adjust the guide trajectory parameters according to +5% of the offset, that is, at the tenth second, the offset +5% of the amount is 1.6, so the coordinates of the guidance trajectory parameters are adjusted from (1,1,1) to (2.6,2.6,2.6), but the present invention is not limited thereto.

[第二實施例] [Second embodiment]

如圖4及圖5所示,第二實施例的具動態回饋型的仿真人指導復健系統100’類似於上述第一實施例的仿真人指導復健系統100,兩個實施例的相同處則不再加以贅述,而本實施例相較於第一實施例的仿真人指導復健系統100’的差異主要在於: 所述穿戴裝置2包含連接所述處理模組25的一輔助模組,所述輔助模組能依據所述偏移量能輸出一物理回饋,從而讓所述復健者P被提醒(或告知)動作需被調整。 As shown in Fig. 4 and Fig. 5, the simulated human-guided rehabilitation system 100' with dynamic feedback of the second embodiment is similar to the simulated human-guided rehabilitation system 100 of the above-mentioned first embodiment, the same points of the two embodiments It will not be described in detail, but the difference between this embodiment and the simulation human-guided rehabilitation system 100' of the first embodiment mainly lies in: The wearable device 2 includes an auxiliary module connected to the processing module 25, and the auxiliary module can output a physical feedback according to the offset, so that the rehabilitation person P is reminded (or notified) ) action needs to be adjusted.

如圖5所示,於一實際應用中,所述輔助模組26A包含一牽引單元261A及連接所述牽引單元261A的一驅動單元262A。所述牽引單元261A可以是由支架、輪軸、與牽引繩所組成的牽引裝置,所述驅動單元262A(例如:伺服馬達)能驅動所述牽引單元261A(的輪軸帶動牽引繩)輸出所述物理回饋,以用來主動地牽引所述復健者P各部位移動並減少所述偏移量。 As shown in FIG. 5 , in an actual application, the auxiliary module 26A includes a traction unit 261A and a driving unit 262A connected to the traction unit 261A. The traction unit 261A can be a traction device composed of a bracket, an axle, and a traction rope, and the drive unit 262A (for example: a servo motor) can drive the traction unit 261A (the axle drives the traction rope) to output the physical Feedback is used to actively pull the movement of various parts of the person P and reduce the offset.

如圖5所示,於另一實際應用中,所述輔助模組26B包含一刺激單元261B及連接所述刺激單元261B的一驅動單元262B。所述刺激單元 261B可以是震動模組、發熱模組、電流模組、及聲音模組至少其中一者,所述驅動單元262B(例如:供電裝置)能驅動所述刺激單元261B輸出為感知刺激的所述物理回饋,以用來刺激所述復健者P各部位進行引導。也就是說,所述物理回饋可以是為振動、電流、聲音、疼痛、及溫度變化至少其中一者。 As shown in FIG. 5 , in another practical application, the auxiliary module 26B includes a stimulation unit 261B and a driving unit 262B connected to the stimulation unit 261B. The stimulation unit 261B can be at least one of a vibration module, a heating module, a current module, and a sound module, and the driving unit 262B (for example: a power supply device) can drive the stimulation unit 261B to output the physical Feedback is used to stimulate various parts of the rehabilitation person P for guidance. That is to say, the physical feedback may be at least one of vibration, current, sound, pain, and temperature change.

配合圖5所示,較佳地,所述穿戴裝置2還可以包含連接所述處理模組25的一生理感測模組27,所述生理感測模組27能感測所述復健者P的一初始生理參數及一身體負荷參數,所述處理模組25能依據所述初始生理參數及所述身體負荷參數之間的一變化量調整所述標準閥值為一寬裕閥值。 As shown in FIG. 5 , preferably, the wearable device 2 can also include a physiological sensing module 27 connected to the processing module 25, and the physiological sensing module 27 can sense the An initial physiological parameter of P and a body load parameter, the processing module 25 can adjust the standard threshold to be a margin threshold according to a variation between the initial physiological parameter and the body load parameter.

於實務上,所述生理感測模組27於所述復健者P穿戴所述穿戴裝置2時,可以偵測心跳、血壓、呼吸次數、手指溫度、排汗、肌電、末梢血管血流、瞳孔、腦波、肌張力、及臉部表情等至少其中一者以取得所述初始生理參數,亦即所述生理感測模組27可以依據情況增加或減少對應的感測模組。 In practice, the physiological sensing module 27 can detect heartbeat, blood pressure, respiration rate, finger temperature, perspiration, myoelectricity, and peripheral blood flow when the rehabilitation person P wears the wearable device 2 , pupil, brain wave, muscle tension, and facial expression to obtain the initial physiological parameters, that is, the physiological sensing module 27 can increase or decrease the corresponding sensing module according to the situation.

為了便於理解,以下以所述生理感測模組27以呼吸感測模組為例子進行說明,但所述生理感測模組27不受限於此。當所述復健者P於剛穿戴所述穿戴裝置2時,所述生理感測模組27會感測所述復健者P於靜態時的每十秒呼吸次數(即所述初始生理參數)。接著,當所述復健者P於進行復健時,所述生理感測模組27能持續感測所述復健者P的呼吸次數變化(即,所述身體負荷參數),以供所述處理模組25偵測所述復健者P是否發生過於疼痛(即,超出負荷)的情形,並且進行調整。一般而言,當所述復健者P發生過於疼痛之情形時,其所述呼吸次數發生突然地增加或減少且超過一正常值的50%以上。 For ease of understanding, the physiological sensing module 27 is described below as an example of a breathing sensing module, but the physiological sensing module 27 is not limited thereto. When the rehabilitation person P is just wearing the wearable device 2, the physiological sensing module 27 will sense the number of respirations per ten seconds (that is, the initial physiological parameter) of the rehabilitation person P at rest. ). Next, when the rehabilitation person P is undergoing rehabilitation, the physiological sensing module 27 can continuously sense the change of the respiration rate of the rehabilitation person P (that is, the body load parameter) for the The processing module 25 detects whether the ex-rehabilitation person P is in too much pain (ie, overloaded), and makes adjustments. Generally speaking, when the ex-rehabilitation person P suffers from excessive pain, the breathing frequency suddenly increases or decreases and exceeds 50% of a normal value.

例如:若所述復健者P的所述初始生理參數為每十秒呼吸3次(正常人的平均值為每十秒呼吸3至4次),且當所述生理感測模組27感測到所述身體負荷參數驟增為每十秒呼吸5次時,所述處理模組25會偵測到所述變化量為增加66%的所述初始生理參數,從而基於所述變化量超過50%而判定發生疼痛之情形。接著,所述處理模組25會依據所述變化量調整所述標準閥值為所述寬裕閥值(其中,所述標準閥值的絕對值大於所述寬裕閥值的絕對值),從而放寬所述復健者的姿勢標準程度。 For example: if the initial physiological parameter of the rehabilitation person P is 3 breaths per ten seconds (the average value of normal people is 3 to 4 breaths per ten seconds), and when the physiological sensing module 27 senses When it is detected that the body load parameter suddenly increases to 5 breaths per ten seconds, the processing module 25 will detect that the change is an increase of 66% of the initial physiological parameter, so that based on the change exceeding 50% to determine the occurrence of pain. Then, the processing module 25 will adjust the standard threshold value to the margin threshold value (wherein, the absolute value of the standard threshold value is greater than the absolute value of the margin threshold value) according to the change amount, thereby relaxing The postural standard degree of the rehabilitation person.

於又一實際應用中,所述資料庫還依據一時間軸儲存每次被修正後的所述指引軌跡參數與所述變化量,以產生一歷程資料。進一步地,所述處理模組25也能依據所述歷程資料產生一理想加權值,並且所述處理模組25利用所述精準加權值調整所述標準閥值為一理想閥值,從而讓提升所述復健者P的姿勢標準程度。 In yet another practical application, the database also stores the revised guidance trajectory parameters and the variation amount each time according to a time axis, so as to generate a history data. Further, the processing module 25 can also generate an ideal weighted value according to the history data, and the processing module 25 uses the precise weighted value to adjust the standard threshold value to an ideal threshold value, so as to improve the The postural standard degree of the rehabilitation person P.

具體來說,所述歷程資料能包含有所述復健者P沿著所述時間軸的多個所述動態變化參數,並且當多個所述動態變化參數於對應的時間點的所述指引軌跡參數之間的所述誤差值皆小於所述標準閥值時,所述處理模組25能對所述標準閥值進行縮減。較佳地,所述標準閥值是被縮減2%~至5%的所述標準閥值的絕對值(即,所述精準加權值),從而讓所述復健者P需要更精準的動作才能被所述處理模組25認定為標準姿勢,以提升復健效果。 Specifically, the history data can include a plurality of the dynamic change parameters of the rehab person P along the time axis, and when the plurality of the dynamic change parameters are at the corresponding time point, the guidance When the error values between trajectory parameters are all smaller than the standard threshold, the processing module 25 can reduce the standard threshold. Preferably, the standard threshold value is the absolute value of the standard threshold value reduced by 2% to 5% (that is, the precise weighted value), so that the rehabilitation person P needs more precise actions Only then can it be identified as a standard posture by the processing module 25, so as to improve the rehabilitation effect.

[本發明實施例的技術效果] [Technical effects of the embodiments of the present invention]

綜上所述,本發明實施例所公開的具動態回饋型的仿真人指導復健系統,能通過“所述校正模組依據多個所述靜態座標參數對所述理想復健軌跡參數校正為所述指引軌跡參數”以及“當所述動態變化參數與所述指引軌跡參數之間的所述誤差值大於所述標準閥值時,所述處理模組依據所 述誤差值相較於所述指引軌跡參數的所述偏移量修正所述指引軌跡參數”的設計,使得所述處理模組能依據所述復健者的身型、復健情況等即時地修正所述指引軌跡參數,讓所述復健者通過所述影像模組進入沉浸式的虛擬環境時,能依據所述指引影像引導所述復健者進行個人化的復健,從而實現個人化且有效的復健、及節省成本等功效。 In summary, the simulated human-guided rehabilitation system with dynamic feedback disclosed in the embodiment of the present invention can correct the ideal rehabilitation trajectory parameters according to a plurality of static coordinate parameters by the correction module as follows: the guide track parameter" and "when the error value between the dynamic change parameter and the guide track parameter is greater than the standard threshold value, the processing module The error value is compared with the offset of the guide trajectory parameter to correct the design of the guide trajectory parameter ", so that the processing module can real-time Modifying the parameters of the guide trajectory, so that when the rehabilitation person enters the immersive virtual environment through the image module, the rehabilitation person can be guided to perform personalized rehabilitation according to the guidance image, thereby realizing personalization And effective rehabilitation, and cost-saving effects.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The content disclosed above is only a preferred feasible embodiment of the present invention, and does not therefore limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.

100:仿真人指導復健系統 100: Simulation human-guided rehabilitation system

1:資料庫 1: Database

2:穿戴裝置 2: Wearable device

21:靜態感測模組 21: Static sensing module

22:校正模組 22: Calibration module

23:影像模組 23: Image module

24:動態感測模組 24: Dynamic sensing module

25:處理模組 25: Processing Module

Claims (9)

一種具動態回饋型的仿真人指導復健系統,包括: 一資料庫,包含一理想復健軌跡參數;以及 一穿戴裝置,用以供一復健者穿戴,所述穿戴裝置包含: 多個靜態感測模組,各能取得所述復健者在靜態時的各部位相對於三維空間的一靜態座標參數; 一校正模組,連接多個所述靜態感測模組與所述資料庫,所述校正模組依據多個所述靜態座標參數對所述理想復健軌跡參數校正為一指引軌跡參數; 一影像模組,連接所述資料庫,所述影像模組依據所述指引軌跡參數呈現一指引影像; 多個動態感測模組,能取得所述復健者在動態時的各部位相對於時間與三維空間的座標之間的一動態變化參數;及 一處理模組,連接多個所述動態感測模組與所述資料庫,所述處理模組能偵測所述動態變化參數與所述指引軌跡參數;其中,當所述動態變化參數與所述指引軌跡參數之間的一誤差值大於一標準閥值時,所述處理模組依據所述誤差值相較於所述指引軌跡參數的一偏移量修正所述指引軌跡參數,以取代原本的所述指引軌跡參數。 A simulator-guided rehabilitation system with dynamic feedback, including: a database containing parameters of an ideal rehabilitation trajectory; and A wearable device for a rehabilitation person to wear, the wearable device includes: A plurality of static sensing modules, each of which can obtain a static coordinate parameter of each part of the rehabilitation person relative to the three-dimensional space when it is static; A correction module, connected to a plurality of the static sensing modules and the database, the correction module corrects the ideal rehabilitation trajectory parameter into a guide trajectory parameter according to the plurality of static coordinate parameters; an image module connected to the database, the image module presents a guide image according to the guide trajectory parameters; A plurality of dynamic sensing modules can obtain a dynamic change parameter between the coordinates of each part of the rehabilitation person relative to time and three-dimensional space during the dynamic; and A processing module, connected to a plurality of the dynamic sensing modules and the database, the processing module can detect the dynamic change parameters and the guidance trajectory parameters; wherein, when the dynamic change parameters and the When an error value between the guidance trajectory parameters is greater than a standard threshold value, the processing module corrects the guidance trajectory parameters according to an offset between the error value and the guidance trajectory parameters to replace The original said guidance track parameters. 如請求項1所述的具動態回饋型的仿真人指導復健系統,其中,所述穿戴裝置包含連接所述處理模組的一輔助模組,所述輔助模組依據所述偏移量能輸出一物理回饋。The simulation human-guided rehabilitation system with dynamic feedback as described in claim 1, wherein the wearable device includes an auxiliary module connected to the processing module, and the auxiliary module can be used according to the offset Output a physical feedback. 如請求項2所述的具動態回饋型的仿真人指導復健系統,其中,所述輔助模組包含: 一牽引單元,用以牽引所述復健者的各部位;及 一驅動單元,連接所述牽引單元,所述驅動單元能驅動所述牽引單元輸出所述物理回饋,以用來主動地牽引所述復健者各部位移動並減少所述偏移量。 The simulator-guided rehabilitation system with dynamic feedback as described in claim 2, wherein the auxiliary module includes: a traction unit for traction of various parts of the rehabilitation person; and A drive unit is connected to the traction unit, and the drive unit can drive the traction unit to output the physical feedback, so as to actively traction the movement of various parts of the rehabilitation person and reduce the offset. 如請求項2所述的具動態回饋型的仿真人指導復健系統,其中,所述輔助模組包含: 一刺激單元,用以對所述復健者的各部位產生為感知刺激的所述物理回饋;及 一驅動單元,連接所述刺激單元,所述驅動單元能驅動所述刺激單元輸出所述物理回饋,以用來刺激所述復健者各部位進行導引。 The simulator-guided rehabilitation system with dynamic feedback as described in claim 2, wherein the auxiliary module includes: a stimulation unit, which is used to generate the physical feedback as sensory stimulation to each part of the rehabilitation person; and A drive unit is connected to the stimulation unit, and the drive unit can drive the stimulation unit to output the physical feedback, so as to stimulate various parts of the rehabilitation person for guidance. 如請求項4所述的具動態回饋型的仿真人指導復健系統,其中,所述物理回饋為振動、電流、聲音、疼痛、及溫度變化至少其中一者。The simulated human-guided rehabilitation system with dynamic feedback according to claim 4, wherein the physical feedback is at least one of vibration, current, sound, pain, and temperature change. 如請求項1所述的具動態回饋型的仿真人指導復健系統,其中,所述穿戴裝置還包含連接所述處理模組的一生理感測模組,所述生理感測模組能感測所述復健者的一初始生理參數及一身體負荷參數,所述處理模組能依據所述初始生理參數及所述身體負荷參數之間的一變化量調整所述標準閥值為一寬裕閥值。The simulated human-guided rehabilitation system with dynamic feedback as described in claim 1, wherein, the wearable device further includes a physiological sensing module connected to the processing module, and the physiological sensing module can sense Measure an initial physiological parameter and a body load parameter of the rehabilitation person, and the processing module can adjust the standard threshold value to a margin according to a variation between the initial physiological parameter and the body load parameter threshold. 如請求項6所述的具動態回饋型的仿真人指導復健系統,其中,所述資料庫依據時間軸儲存每次被修正後的所述指引軌跡參數與所述變化量,以產生一歷程資料。As described in claim 6, the simulation human-guided rehabilitation system with dynamic feedback, wherein, the database stores the guided trajectory parameters and the variation after each correction according to the time axis, so as to generate a history material. 如請求項7所述的具動態回饋型的仿真人指導復健系統,其中,所述處理模組依據所述歷程資料產生一精準加權值,並且所述處理模組利用所述精準加權值調整所述標準閥值。The simulation human-guided rehabilitation system with dynamic feedback as described in claim 7, wherein, the processing module generates a precise weighted value according to the history data, and the processing module uses the precise weighted value to adjust The standard threshold. 如請求項1所述的具動態回饋型的仿真人指導復健系統,其中,所述處理模組利用所述誤差值與所述偏移量修正所述指引軌跡參數的方式是通過一調整加權值做調整,並且所述調整加權值是±5~±10%的所述偏移量。The simulation human-guided rehabilitation system with dynamic feedback as described in claim 1, wherein, the method for the processing module to use the error value and the offset to correct the guidance trajectory parameters is through an adjustment weighting value, and the adjustment weighted value is ±5-±10% of the offset.
TW111113150A 2022-04-07 2022-04-07 Human-guided rehabilitation system with dynamic feedback TWI805308B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111113150A TWI805308B (en) 2022-04-07 2022-04-07 Human-guided rehabilitation system with dynamic feedback

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111113150A TWI805308B (en) 2022-04-07 2022-04-07 Human-guided rehabilitation system with dynamic feedback

Publications (2)

Publication Number Publication Date
TWI805308B true TWI805308B (en) 2023-06-11
TW202339663A TW202339663A (en) 2023-10-16

Family

ID=87802968

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111113150A TWI805308B (en) 2022-04-07 2022-04-07 Human-guided rehabilitation system with dynamic feedback

Country Status (1)

Country Link
TW (1) TWI805308B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075897A1 (en) * 2019-10-18 2021-04-22 주식회사 네오펙트 Sensing device and sensing data processing method
WO2022061250A2 (en) * 2020-09-21 2022-03-24 Neuro20 Technologies Corp. Systems and methods for managed training and rehabilitation via electrical stimulation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075897A1 (en) * 2019-10-18 2021-04-22 주식회사 네오펙트 Sensing device and sensing data processing method
WO2022061250A2 (en) * 2020-09-21 2022-03-24 Neuro20 Technologies Corp. Systems and methods for managed training and rehabilitation via electrical stimulation

Also Published As

Publication number Publication date
TW202339663A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
US20220296848A1 (en) Immersive multisensory simulation system
Yoo et al. The effects of augmented reality-based Otago exercise on balance, gait, and falls efficacy of elderly women
JP6777751B2 (en) Gait disturbance support device and gait disturbance support method
Mulavara et al. Vestibular-somatosensory convergence in head movement control during locomotion after long-duration space flight
US10576326B2 (en) Method and system for measuring, monitoring, controlling and correcting a movement or a posture of a user
US10258259B1 (en) Multimodal sensory feedback system and method for treatment and assessment of disequilibrium, balance and motion disorders
WO2016001902A1 (en) Apparatus comprising a headset, a camera for recording eye movements and a screen for providing a stimulation exercise and an associated method for treating vestibular, ocular or central impairment
Massion et al. Posture and equilibrium
Zago et al. Down syndrome: gait pattern alterations in posture space kinematics
US20180369053A1 (en) System and method for restoring human motor activity
Goodworth et al. Influence of feedback parameters on performance of a vibrotactile balance prosthesis
Kim et al. Effect of horseback riding simulation machine training on trunk balance and gait of chronic stroke patients
Paul et al. Feasibility and validity of discriminating yaw plane head-on-trunk motion using inertial wearable sensors
WO2020174636A1 (en) Visual information changing device, prism glasses, and method for selecting lens in prism glasses
Mahmud et al. Auditory feedback to make walking in virtual reality more accessible
Park et al. Measurement and analysis of gait pattern during stair walk for improvement of robotic locomotion rehabilitation system
TWI805308B (en) Human-guided rehabilitation system with dynamic feedback
Wang et al. Gender differences of the improvement in balance control based on the real-time visual feedback system with smart wearable devices
Mahmud et al. Vibrotactile feedback to make real walking in virtual reality more accessible
Lee et al. Development of a novel 2-dimensional neck haptic device for gait balance training
CN205251783U (en) Harness is corrected to unusual gesture
Nakada et al. Biomimetic eye modeling & deep neuromuscular oculomotor control.
Canete et al. The effects of exoskeleton assistance at the ankle on sensory integration during standing balance
Ratliffe et al. Effects of approximation on postural sway in healthy subjects
Paolucci et al. Tactile and proprioceptive sensory stimulation modifies estimation of walking distance but not upright gait stability: a pilot study