TWI805141B - Positioning method and device for unmanned aerial vehicles - Google Patents

Positioning method and device for unmanned aerial vehicles Download PDF

Info

Publication number
TWI805141B
TWI805141B TW110148001A TW110148001A TWI805141B TW I805141 B TWI805141 B TW I805141B TW 110148001 A TW110148001 A TW 110148001A TW 110148001 A TW110148001 A TW 110148001A TW I805141 B TWI805141 B TW I805141B
Authority
TW
Taiwan
Prior art keywords
uav
coordinate system
value
acceleration
horizontal
Prior art date
Application number
TW110148001A
Other languages
Chinese (zh)
Other versions
TW202319706A (en
Inventor
蔡澤斌
明亮 陳
廖益木
Original Assignee
大陸商廣州昂寶電子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商廣州昂寶電子有限公司 filed Critical 大陸商廣州昂寶電子有限公司
Publication of TW202319706A publication Critical patent/TW202319706A/en
Application granted granted Critical
Publication of TWI805141B publication Critical patent/TWI805141B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Gyroscopes (AREA)

Abstract

公開了一種用於無人機的定位方法和設備,其中,無人機裝載有加速度感測器、陀螺儀感測器、高度感測器、以及光流感測器,該定位方法包括:基於加速度感測器測量的加速度值和陀螺儀感測器測量的角速度值,獲取無人機在水平航向坐標系下的運動加速度原始值;基於光流感測器測量的相對位移值、高度感測器測量的相對高度值、加速度感測器測量的加速度值、陀螺儀感測器測量的角速度值、以及無人機在水平航向坐標系下的運動加速度原始值,獲取無人機在水平航向坐標系下的運動加速度校正值;以及基於無人機在水平航向坐標系下的運動加速度原始值和運動加速度校正值,獲取無人機在水平航向坐標系下的位置。 Disclosed is a positioning method and device for unmanned aerial vehicles, wherein the unmanned aerial vehicle is loaded with an acceleration sensor, a gyroscope sensor, a height sensor, and an optical flow sensor. The positioning method includes: based on acceleration sensing The acceleration value measured by the gyro sensor and the angular velocity value measured by the gyroscope sensor are used to obtain the original value of the motion acceleration of the UAV in the horizontal heading coordinate system; based on the relative displacement value measured by the optical flow sensor and the relative height measured by the height sensor value, the acceleration value measured by the acceleration sensor, the angular velocity value measured by the gyroscope sensor, and the original value of the motion acceleration of the UAV in the horizontal heading coordinate system to obtain the motion acceleration correction value of the UAV in the horizontal heading coordinate system ; and based on the original motion acceleration value and the motion acceleration correction value of the UAV in the horizontal heading coordinate system, the position of the UAV in the horizontal heading coordinate system is obtained.

Description

用於無人機的定位方法和設備 Positioning method and device for unmanned aerial vehicles

本發明涉及無人機領域,尤其涉及用於無人機的定位方法和設備。 The invention relates to the field of unmanned aerial vehicles, in particular to a positioning method and equipment for unmanned aerial vehicles.

隨著無人機技術的發展,無人機的應用範圍越來越廣,消費群體越來越大。在對製造成本敏感的中低端市場中,對擁有低廉成本和高性能表現的無人機的需求越來越大。針對沒有全球定位系統(Global Positioning System,GPS)信號或GPS信號較弱以及無人機體積小、載重能力弱等場景和限制,可以使用光流感測器檢測無人機相對於被檢測平面上的起始位置(即,無人機在起飛時刻所在的位置)的位移和移動速度。但是,在無人機起降、飛行導航、目標跟蹤等多種機動情況下,如果單純使用光流感測器進行無人機定位,則光流感測器本身的累積偏移、無人機本身的姿態和高度位置變化、以及地面特徵不理想或變化複雜等極易成為引發無人機不穩定的因素。 With the development of drone technology, the application range of drones is getting wider and wider, and the consumer groups are getting bigger and bigger. In the mid-to-low-end market, which is sensitive to manufacturing costs, there is an increasing demand for drones with low cost and high performance. For scenarios and limitations such as no GPS (Global Positioning System, GPS) signal or weak GPS signal, small size of the UAV, and weak load capacity, the optical flow sensor can be used to detect the starting position of the UAV relative to the detected plane. Position (i.e., where the drone was at the moment of takeoff) displacement and movement velocity. However, in various maneuvering situations such as UAV take-off and landing, flight navigation, and target tracking, if the optical flow sensor is only used for UAV positioning, the cumulative offset of the optical flow sensor itself, the attitude and height position of the UAV itself Changes, unsatisfactory ground features or complex changes can easily become factors that cause UAV instability.

根據本發明實施例的用於無人機的定位方法,其中,無人機裝載有加速度感測器、陀螺儀感測器、高度感測器、以及光流感測器,該定位方法包括:基於加速度感測器測量的加速度值和陀螺儀感測器測量的角速度值,獲取無人機在水平航向坐標系下的運動加速度原始值;基於光流感測器測量的相對位移值、高度感測器測量的相對高度值、加速度感測器測量的加速度值、陀螺儀感測器測量的角速度值、以及無人機在水平航向坐標系下的運動加速度原始值,獲取無人機在水平航向坐標系下的運動加速度校正值;以及基於無人機在水平航向坐標系下的運動加速度原始值和運動加速度校正值,獲取無人機在水平航向坐標系下的位置。 According to the positioning method for unmanned aerial vehicle according to the embodiment of the present invention, wherein the unmanned aerial vehicle is loaded with an acceleration sensor, a gyroscope sensor, a height sensor, and an optical flow sensor, the positioning method includes: The acceleration value measured by the sensor and the angular velocity value measured by the gyroscope sensor are used to obtain the original value of the motion acceleration of the UAV in the horizontal heading coordinate system; based on the relative displacement value measured by the optical flow sensor and the relative displacement value measured by the height sensor The altitude value, the acceleration value measured by the acceleration sensor, the angular velocity value measured by the gyroscope sensor, and the original value of the motion acceleration of the UAV in the horizontal heading coordinate system are used to obtain the motion acceleration correction of the UAV in the horizontal heading coordinate system value; and based on the original motion acceleration value and the motion acceleration correction value of the UAV in the horizontal heading coordinate system, the position of the UAV in the horizontal heading coordinate system is obtained.

根據本發明實施例的用於無人機的定位設備,其中,無人機裝載有加速度感測器、陀螺儀感測器、高度感測器、以及光流感測器,該定位設備包括:記憶體,其上存儲有電腦可執行指令;以及一個或多個處理器,被配置 為執行電腦可執行指令,以實現上述用於無人機的定位方法。 According to the positioning device for unmanned aerial vehicle according to the embodiment of the present invention, wherein the unmanned aerial vehicle is loaded with an acceleration sensor, a gyroscope sensor, a height sensor, and an optical flow sensor, the positioning device includes: a memory, having computer-executable instructions stored thereon; and one or more processors, configured To execute computer-executable instructions to realize the above positioning method for drones.

根據本發明實施例的用於無人機的定位方法和定位設備,通過將加速度感測器、陀螺儀感測器、高度感測器、和光流感測器的測量結果相互融合,可以更接近真實、更平滑即時、且更精確地對無人機進行定位。 According to the positioning method and positioning device for drones in the embodiments of the present invention, by combining the measurement results of the acceleration sensor, gyroscope sensor, height sensor, and optical flow sensor, it can be closer to the real, Smoother, real-time, and more precise positioning of drones.

100,S102,S104,S106:定位方法 100, S102, S104, S106: positioning method

200:電腦系統 200: Computer system

201:處理裝置 201: processing device

202:唯讀記憶體(ROM) 202: Read Only Memory (ROM)

203:隨機存取記憶體(RAM) 203: Random Access Memory (RAM)

204:匯流排 204: busbar

205:輸入/輸出(I/O)介面 205: input/output (I/O) interface

206:輸入裝置 206: input device

207:輸出裝置 207: output device

208:存儲裝置 208: storage device

209:通信裝置 209: Communication device

從下面結合圖式對本發明的具體實施方式的描述中可以更好地理解本發明,其中:圖1示出了根據本發明實施例的用於無人機的定位方法的流程圖。 The present invention can be better understood from the following description of specific embodiments of the present invention in conjunction with the drawings, wherein: FIG. 1 shows a flow chart of a positioning method for a drone according to an embodiment of the present invention.

圖2示出了可以實現根據本發明實施例的用於無人機的定位方法的電腦系統的示意圖。 Fig. 2 shows a schematic diagram of a computer system that can implement a positioning method for a drone according to an embodiment of the present invention.

下面將詳細描述本發明的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明決不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在圖式和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 Features and exemplary embodiments of various aspects of the invention will be described in detail below. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. The following description of the embodiments is only to provide a better understanding of the present invention by showing examples of the present invention. The present invention is by no means limited to any specific configurations and algorithms set forth below, but covers any modification, substitution and improvement of elements, components and algorithms without departing from the spirit of the invention. In the drawings and the following description, well-known structures and techniques have not been shown in order to avoid unnecessarily obscuring the present invention.

鑒於單獨使用光流感測器對無人機進行定位存在的上述問題,提出了一種多感測器融合互補、高精度、高穩健性的用於無人機的定位方法。 In view of the above-mentioned problems in the positioning of UAVs using optical flow sensors alone, a multi-sensor fusion complementary, high-precision, and high-robust positioning method for UAVs is proposed.

圖1示出了根據本發明實施例的用於無人機的定位方法100的流程圖。需要說明的是,定位方法100將使用來自無人機控制系統的加速度感測器、陀螺儀感測器、高度感測器、以及光流感測器的測量結果,並且將在以無人機為站心、始終以無人機的機頭方向為0方位角的相對大地運動的水平航向坐標系為參考坐標系對無人機進行定位。 Fig. 1 shows a flowchart of a positioning method 100 for a drone according to an embodiment of the present invention. It should be noted that the positioning method 100 will use the measurement results from the acceleration sensor, gyroscope sensor, altitude sensor, and optical flow sensor of the UAV control system, and will use the UAV as the center 1. Always use the horizontal heading coordinate system with the nose direction of the drone as the 0 azimuth angle relative to the ground motion as the reference coordinate system to position the drone.

如圖1所示,定位方法100包括:S102,基於加速度感測器測量的加速度值和陀螺儀感測器測量的角速度值,獲取無人機在水平航向坐標系下 的運動加速度原始值;S104,基於光流感測器測量的相對位移值、高度感測器測量的相對高度值、加速度感測器測量的加速度值、陀螺儀感測器測量的角速度值、以及無人機在水平航向坐標系下的運動加速度原始值,獲取無人機在水平航向坐標系下的運動加速度校正值;以及S106,基於無人機在水平航向坐標系下的運動加速度原始值和運動加速度校正值,獲取無人機在水平航向坐標系下的位置。 As shown in FIG. 1 , the positioning method 100 includes: S102, based on the acceleration value measured by the acceleration sensor and the angular velocity value measured by the gyroscope sensor, obtain the UAV in the horizontal heading coordinate system The original value of motion acceleration; S104, based on the relative displacement value measured by the optical flow sensor, the relative height value measured by the height sensor, the acceleration value measured by the acceleration sensor, the angular velocity value measured by the gyroscope sensor, and the value of the unmanned The original value of the motion acceleration of the UAV in the horizontal course coordinate system is used to obtain the correction value of the motion acceleration of the UAV in the horizontal course coordinate system; , to obtain the position of the UAV in the horizontal heading coordinate system.

在一些實施例中,由於加速度感測器測量的是無人機在無人機載體坐標系下的加速度值,所以需要將加速度感測器測量的加速度值進行坐標系轉換,以得到無人機在水平航向坐標系下的加速度值。即,獲取無人機在水平航向坐標系下的運動加速度原始值包括:基於加速度感測器測量的加速度值和陀螺儀感測器測量的角速度值,獲取用於將加速度感測器測量的加速度值轉換為無人機在水平航向坐標系下的運動加速度原始值的方向餘弦矩陣;以及基於加速度感測器測量的加速度值和該方向餘弦矩陣,獲取無人機在水平航向坐標系下的運動加速度原始值。 In some embodiments, since the acceleration sensor measures the acceleration value of the UAV in the UAV carrier coordinate system, it is necessary to convert the acceleration value measured by the acceleration sensor into the coordinate system to obtain the UAV in the horizontal heading. The acceleration value in the coordinate system. That is, obtaining the original value of the motion acceleration of the UAV under the horizontal heading coordinate system includes: based on the acceleration value measured by the acceleration sensor and the angular velocity value measured by the gyroscope sensor, obtaining the acceleration value measured by the acceleration sensor Convert to the direction cosine matrix of the original value of the motion acceleration of the UAV in the horizontal heading coordinate system; and based on the acceleration value measured by the acceleration sensor and the direction cosine matrix, obtain the original value of the motion acceleration of the UAV in the horizontal heading coordinate system .

例如,可以根據等式(1),將加速度感測器測量的加速度值轉換為無人機在水平航向坐標系下的運動加速度原始值。 For example, according to equation (1), the acceleration value measured by the acceleration sensor can be converted into the original value of the motion acceleration of the UAV in the horizontal heading coordinate system.

a n =a b R (1) a n = a b . R (1)

在等式(1)中,R為用於將加速度感測器測量的加速度值轉換為無人機在水平航向坐標系下的運動加速度原始值的方向餘弦矩陣(偏航角為0時的方向餘弦矩陣),a n 為無人機在水平航向坐標系下的運動加速度原始值,a b 為加速度感測器測量的加速度值(單位為cm/s/s)。這裡,由於方向餘弦矩陣的使用,減少了三角函數的使用,降低了對無人機搭載的計算設備的算力要求並且提升了該計算設備的運算效率。 In equation (1), R is the direction cosine matrix used to convert the acceleration value measured by the acceleration sensor into the original value of the motion acceleration of the UAV in the horizontal heading coordinate system (the direction cosine when the yaw angle is 0 matrix), a n is the original value of the motion acceleration of the UAV in the horizontal heading coordinate system, and a b is the acceleration value measured by the acceleration sensor (in cm/s/s). Here, due to the use of the direction cosine matrix, the use of trigonometric functions is reduced, the computing power requirement for the computing device carried by the UAV is reduced, and the computing efficiency of the computing device is improved.

為了描述方便,下文中所有的運動加速度的單位為cm/s/s,運動速度的單位為cm/s,相對位移的單位為cm。 For the convenience of description, the unit of all motion accelerations below is cm/s/s, the unit of motion speed is cm/s, and the unit of relative displacement is cm.

在一些實施例中,獲取無人機在水平航向坐標系下的運動加速度校正值包括:基於光流感測器測量的相對位移值、高度感測器測量的相對高度值、加速度感測器測量的加速度值、以及陀螺儀感測器測量的角速度值,獲取無人機在水平航向坐標系下的高度和角度補償後的相對位移值;基於無人機在 水平航向坐標系下的高度和角度補償後的相對位移值與互補濾波後的相對位移值,獲取無人機在水平航向坐標系下的高度和角度補償後的相對位移差值;以及基於無人機在水平航向坐標系下的高度和角度補償後的相對位移差值和第一自我調整積分係數,獲取無人機在水平航向坐標系下的運動加速度校正值。 In some embodiments, obtaining the motion acceleration correction value of the UAV under the horizontal heading coordinate system includes: based on the relative displacement value measured by the optical flow sensor, the relative height value measured by the height sensor, and the acceleration measured by the acceleration sensor value, and the angular velocity value measured by the gyroscope sensor, to obtain the relative displacement value of the UAV after altitude and angle compensation in the horizontal heading coordinate system; The relative displacement value after the altitude and angle compensation in the horizontal heading coordinate system and the relative displacement value after complementary filtering are obtained to obtain the relative displacement difference after the altitude and angle compensation of the UAV in the horizontal heading coordinate system; and based on the UAV in the The relative displacement difference and the first self-adjusting integral coefficient after the altitude and angle compensation in the horizontal heading coordinate system are used to obtain the motion acceleration correction value of the UAV in the horizontal heading coordinate system.

例如,可以根據等式(2)和(2-1),基於無人機在水平航向坐標系下的高度和角度補償後的相對位移值和第一自我調整積分係數,獲取無人機在水平航向坐標系下的運動加速度校正值:

Figure 110148001-A0305-02-0006-1
For example, according to equations (2) and (2-1), based on the relative displacement value and the first self-adjusting integral coefficient after the altitude and angle compensation of the UAV in the horizontal heading coordinate system, the horizontal heading coordinate of the UAV can be obtained The motion acceleration correction value under the system:
Figure 110148001-A0305-02-0006-1

Figure 110148001-A0305-02-0006-2
Figure 110148001-A0305-02-0006-2

在等式(2)和(2-1)中,a n_x_correction a n_y_correction 分別為無人機在水平航向坐標系下的水準方向(x方向)和垂直方向(y方向)的運動加速度校正值,S opt_x S opt_y 分別為無人機在水平航向坐標系下的x方向和y方向的高度和角度補償後的相對位移值,S opt_x_dealt S opt_y_dealt 分別為無人機在水平航向坐標系下的x方向和y方向的高度和角度補償後的相對位移差值,S n_x_filterS n_y_filter分別為無人機在水平航向坐標系下的x方向和y方向的互補濾波後的相對位移值,k1為第一自我調整積分係數。這裡,a n_x_correction a n_y_correction 的初始值均為零。 In equations (2) and (2-1), a n _ x _ correction , a n _ y _ correction are respectively the horizontal direction (x direction) and vertical direction (y direction) of the UAV in the horizontal heading coordinate system ) motion acceleration correction value, S opt _ x , S opt y are the relative displacement values after the height and angle compensation of the UAV in the x direction and y direction under the horizontal heading coordinate system respectively, S opt _ x _ dealt , S opt _ y _ dealt is the relative displacement difference of the UAV in the x direction and y direction under the horizontal heading coordinate system and the angle after compensation, and S n _ x _filter and S n _ y _filter are respectively Relative displacement values after complementary filtering in the x-direction and y-direction in the horizontal heading coordinate system, k1 is the first self-adjusting integral coefficient. Here, the initial values of a n _ x _ correction and a n _ y _ correction are both zero.

在一些實施例中,獲取無人機在水平航向坐標系下的位置包括:基於無人機在水平航向坐標系下的運動加速度原始值和運動加速度校正值,獲取無人機在水平航向坐標系下的互補濾波後的運動加速度值;以及基於無人機在水平航向坐標系下的互補濾波後的運動加速度值,獲取無人機在水平航向坐標系下的運動速度原始值。 In some embodiments, obtaining the position of the UAV under the horizontal course coordinate system includes: based on the original motion acceleration value and the motion acceleration correction value of the UAV under the horizontal course coordinate system, obtaining the complementary position of the UAV under the horizontal course coordinate system. The filtered motion acceleration value; and based on the complementary filtered motion acceleration value of the drone in the horizontal heading coordinate system, the original value of the motion speed of the drone in the horizontal heading coordinate system is obtained.

例如,可以根據等式(3),基於無人機在水平航向坐標系下的運動加速度原始值和運動加速度校正值,獲取無人機在水平航向坐標系下的互補濾波後的運動加速度值。 For example, according to equation (3), based on the original motion acceleration value and the motion acceleration correction value of the UAV in the horizontal heading coordinate system, the complementary filtered motion acceleration value of the UAV in the horizontal heading coordinate system can be obtained.

Figure 110148001-A0305-02-0007-3
Figure 110148001-A0305-02-0007-3

在等式(3)中,a n_x_filtera n_y_filter分別為無人機在水平航向坐標系下的x方向和y方向的互補濾波後的運動加速度值,a n_x_origion a n_y_origion 分別為根據等式(1)獲取的、無人機在水平航向坐標系下的x方向和y方向的運動加速度原始值,a n_x_correction a n_y_correction 分別為無人機在水平航向坐標系下的x方向和y方向的運動加速度校正值。 In equation (3), a n _ x _filter , a n _ y _filter are the motion acceleration values after complementary filtering in the x direction and y direction of the UAV in the horizontal heading coordinate system, respectively, and a n _x_ origin , a n _y_ origin are the original values of motion acceleration in the x direction and y direction of the UAV in the horizontal heading coordinate system obtained according to equation (1), and a n _ x _ correction , a n _ y _ correction are the unmanned The correction value of the motion acceleration in the x direction and y direction of the aircraft in the horizontal heading coordinate system.

例如,可以根據等式(4)和(5),基於無人機在水平航向坐標系下的互補濾波後的運動加速度值,獲取無人機在水平航向坐標系下的運動速度原始值。 For example, according to equations (4) and (5), the original value of the motion velocity of the UAV in the horizontal heading coordinate system can be obtained based on the complementary filtered motion acceleration value of the UAV in the horizontal heading coordinate system.

Figure 110148001-A0305-02-0007-4
Figure 110148001-A0305-02-0007-4

Figure 110148001-A0305-02-0007-5
Figure 110148001-A0305-02-0007-5

在等式(4)中,V n_x_origionV n_x_origion分別為無人機在水平航向坐標系下的x方向和y方向的運動速度原始值,V n_x_dealtV n_y_dealt分別為無人機在水平航向坐標系下的x方向和y方向的單位時間(例如,1s)內的速度增量、T表示時間。 In equation (4), V n _ x _origion , V n _ x _origion are the original values of the movement speed of the UAV in the x direction and y direction in the horizontal heading coordinate system, respectively, V n _ x _dealt , V n _ y_dealt is the speed increment of the drone in the x direction and y direction in the horizontal heading coordinate system, respectively, within a unit time (for example, 1s), and T represents time.

在一些實施例中,獲取無人機在水平航向坐標系下的位置還可以包括:基於無人機在水平航向坐標系下的高度和角度補償後的相對位移差值和第二自我調整積分係數,獲取無人機在水平航向坐標系下的運動速度校正值;基於無人機在水平航向坐標系下的運動速度原始值和運動速度校正值,獲取無人機在水平航向坐標系下的互補濾波後的運動速度值。 In some embodiments, obtaining the position of the UAV in the horizontal heading coordinate system may also include: based on the relative displacement difference and the second self-adjusting integral coefficient after the height and angle compensation of the UAV in the horizontal heading coordinate system, obtaining The movement speed correction value of the UAV in the horizontal course coordinate system; based on the original movement speed value and the movement speed correction value of the UAV in the horizontal course coordinate system, the complementary filtered movement speed of the UAV in the horizontal course coordinate system is obtained value.

例如,可以根據等式(6),基於無人機在水平航向坐標系下的高度和角度補償後的相對位移差值和第二自我調整積分係數,獲取無人機在水平航向坐標系下的運動速度校正值。 For example, according to equation (6), based on the relative displacement difference and the second self-adjusting integral coefficient after the altitude and angle compensation of the drone in the horizontal heading coordinate system, the movement speed of the UAV in the horizontal heading coordinate system can be obtained correction value.

Figure 110148001-A0305-02-0008-6
Figure 110148001-A0305-02-0008-6

在等式(6)中,V n_x_correction 、V n_y_correction 分別為無人機在水平航向坐標系下的x方向和y方向的運動速度校正值,S opt_x_dealt S opt_y_dealt 分別為無人機在水平航向坐標系下的x方向和y方向的高度和角度補償後的相對位移差值,k2為第二自我調整積分係數。這裡,V n_x_correction 、V n_y_correction 的初始值均為零。 In equation (6), V n _ x _ correction and V n _ y _ correction are the movement speed correction values of the drone in the x direction and y direction under the horizontal heading coordinate system respectively, S opt _ x _ dealt , S opt _ y _ dealt is the relative displacement difference after the height and angle compensation of the drone in the x direction and y direction under the horizontal heading coordinate system, and k2 is the second self-adjusting integral coefficient. Here, the initial values of V n _ x _ correction and V n _ y _ correction are both zero.

例如,可以根據等式(7),基於無人機在水平航向坐標系下的運動速度原始值和運動速度校正值,獲取無人機在水平航向坐標系下的互補濾波後的運動速度值。 For example, according to equation (7), based on the original value of the motion speed and the correction value of the motion speed of the UAV in the horizontal heading coordinate system, the complementary filtered motion speed value of the UAV in the horizontal heading coordinate system can be obtained.

Figure 110148001-A0305-02-0008-7
Figure 110148001-A0305-02-0008-7

在等式(7)中,V n_x_filter V n_y_filter 分別為無人機在水平航向坐標系下的x方向和y方向的互補濾波後的運動速度值,V n_x_origionV n_x_origion分別為無人機在水平航向坐標系下的x方向和y方向的運動速度原始值,V n_x_correction 、V n_y_correction 分別為無人機在水平航向坐標系下的x方向和y方向的運動速度校正值。 In equation (7), V n _ x _ filter , V n _ y _ filter are the motion velocity values after complementary filtering in the x direction and y direction of the UAV in the horizontal heading coordinate system, V n _ x _origion , V n _ x _origion are the original values of the motion speed of the drone in the x direction and y direction in the horizontal heading coordinate system, respectively, V n _ x _ correction , V n _ y _ correction are the horizontal heading coordinates of the drone respectively The correction value of the movement speed in the x direction and y direction under the system.

在一些實施例中,獲取無人機在水平航向坐標系下的位置還可以包括:基於無人機在水平航向坐標系下的互補濾波後的運動速度值,獲取無人機在水平航向坐標系下的相對位移原始值。 In some embodiments, obtaining the position of the UAV in the horizontal heading coordinate system may also include: based on the motion velocity value after complementary filtering of the UAV in the horizontal heading coordinate system, obtaining the relative position of the UAV in the horizontal heading coordinate system. Shift the original value.

例如,可以根據等式(8),基於無人機在水平航向坐標系下的互補濾波後的運動速度值,獲取無人機在水平航向坐標系下的相對位移原始值。 For example, the original value of the relative displacement of the UAV in the horizontal heading coordinate system can be obtained based on the complementary filtered motion velocity value of the UAV in the horizontal heading coordinate system according to equation (8).

Figure 110148001-A0305-02-0008-9
Figure 110148001-A0305-02-0008-9

在等式(8)中,S n_x_origionS n_y_origion分別為無人機在水平航向坐標系下的x方向和y方向的相對位移原始值,V n_x_filter V n_y_filter 分別為無人機 在水平航向坐標系下的x方向和y方向的互補濾波後的運動速度值,V n_x_dealtV n_y_dealt分別為無人機在水平航向坐標系下的x方向和y方向的單位時間(例如,1s)內的速度增量,T表示時間。 In equation (8), S n _ x _origion , S n _ y _origion are the relative displacement original values of the UAV in the x direction and y direction under the horizontal heading coordinate system, V n _ x _ filter , V n _ y _ filter is the motion velocity value after complementary filtering in the x direction and y direction of the UAV in the horizontal course coordinate system, V n _ x _dealt , V n _ y _dealt are the UAV in the horizontal course coordinate system The speed increment in unit time (for example, 1s) in the x direction and y direction of , T represents time.

在一些實施例中,獲取無人機在水平航向坐標系下的位置還可以包括:基於無人機在水平航向坐標系下的高度和角度補償後的相對位移差值和第三自我調整積分係數,獲取無人機在水平航向坐標系下的相對位移校正值;以及基於無人機在水平航向坐標系下的相對位移初始值和相對位移校正值,獲取無人機在水平航向坐標系下的互補濾波後的相對位移值。 In some embodiments, obtaining the position of the UAV in the horizontal heading coordinate system may also include: based on the relative displacement difference and the third self-adjusting integral coefficient after the height and angle compensation of the UAV in the horizontal heading coordinate system, obtaining The relative displacement correction value of the UAV in the horizontal course coordinate system; and based on the relative displacement initial value and the relative displacement correction value of the UAV in the horizontal course coordinate system, obtain the relative displacement after complementary filtering of the UAV in the horizontal course coordinate system displacement value.

例如,可以根據等式(9),基於無人機在水平航向坐標系下的高度和角度補償後的相對位移差值和第三自我調整積分係數,獲取無人機在水平航向坐標系下的相對位移校正值。 For example, according to equation (9), the relative displacement of the UAV in the horizontal course coordinate system can be obtained based on the relative displacement difference after the altitude and angle compensation of the UAV in the horizontal course coordinate system and the third self-adjusting integral coefficient correction value.

Figure 110148001-A0305-02-0009-10
Figure 110148001-A0305-02-0009-10

在等式(9)中,S n_x_correction 、S n_y_correction 分別為無人機在水平航向坐標系下的x方向和y方向的相對位移校正值,S opt_x_dealt S opt_y_dealt 分別為無人機在水平航向坐標系下的x方向和y方向的高度和角度補償後的相對位移差值,k3為第三自我調整積分係數。這裡,S n_x_correction 、S n_y_correction 的初始值均為零。 In equation (9), S n _ x _ correction , S n _ y _ correction are the relative displacement correction values of the drone in the x direction and y direction under the horizontal heading coordinate system respectively, S opt _ x _ dealt , S opt _ y _ dealt is the relative displacement difference after the height and angle compensation of the UAV in the x direction and y direction under the horizontal heading coordinate system, and k3 is the third self-adjusting integral coefficient. Here, the initial values of S n _ x _ correction and S n _ y _ correction are both zero.

例如,可以根據等式(10),基於無人機在水平航向坐標系下的相對位移初始值和相對位移校正值,獲取無人機在水平航向坐標系下的互補濾波後的相對位移值。 For example, according to equation (10), based on the relative displacement initial value and the relative displacement correction value of the UAV in the horizontal course coordinate system, the complementary filtered relative displacement value of the UAV in the horizontal course coordinate system can be obtained.

Figure 110148001-A0305-02-0009-11
Figure 110148001-A0305-02-0009-11

在等式(10)中,S n_x_filterS n_y_filter分別為無人機在水平航向坐標系下的x方向和y方向的互補濾波後的相對位移值,S n_x_origionS n_y_origion分別為無人機在水平航向坐標系下的x方向和y方向的相對位移原始值,S n_x_correction S n_y_correction 分別為無人機在水平航向坐標系下的x方向和y方向的相對位移校正值。 In equation (10), S n _ x _filter , S n _ y _filter are the relative displacement values of the UAV after complementary filtering in the x direction and y direction in the horizontal heading coordinate system, respectively, S n _ x _origion , S n _ y _origion are the original relative displacement values of the UAV in the x-direction and y-direction under the horizontal course coordinate system, respectively, and S n _ x _ correction , S n _ y _ correction are the relative displacement values of the UAV under the horizontal course coordinate system. Relative displacement correction values in the x-direction and y-direction.

在一些實施例中,第一、第二、和第三自我調整積分係數分別是基於自我調整濾波係數及第一、第二、和第三常量確定的。例如,可以根據等式(11),基於自我調整濾波係數及第一、第二、和第三常量,確定第一、第二、和第三自我調整積分係數。 In some embodiments, the first, second, and third self-tuning integral coefficients are determined based on the self-tuning filter coefficients and the first, second, and third constants, respectively. For example, the first, second, and third self-adjusting integral coefficients may be determined based on the self-adjusting filter coefficients and the first, second, and third constants according to equation (11).

Figure 110148001-A0305-02-0010-12
Figure 110148001-A0305-02-0010-12

在等式(11)中,k1、k2、k3分別為第一、第二、和第三自我調整積分係數,k filter 為自我調整濾波係數,需要進行動態調節,以獲取無人機的平滑真實的相對位移,e1、e2、e3分別為第一、第二、和第三常量。 In equation (11), k1, k2, and k3 are the first, second, and third self-adjusting integral coefficients respectively, and k filter is the self-adjusting filter coefficient, which needs to be adjusted dynamically to obtain the smooth and real Relative displacement, e 1, e 2, e 3 are the first, second, and third constants respectively.

在一些實施例中,可以通過監測無人機相對於被檢測平面的運動速度,判斷無人機處於起飛、降落、上升、下降、還是機動飛行狀態,並根據無人機所處的狀態來調節自我調整濾波係數。 In some embodiments, by monitoring the movement speed of the UAV relative to the detected plane, it can be judged whether the UAV is in the state of take-off, landing, ascending, descending, or maneuvering flight, and adjust the self-adjusting filter according to the state of the UAV. coefficient.

例如,可以根據等式(12),獲取無人機在水平航向坐標系下的x方向、y方向、及z方向(豎直方向)三個方向的融合運動速度,然後根據等式(13),基於無人機在水平航向坐標系下的融合運動速度來自我調整地調節自我調整濾波係數。 For example, according to equation (12), the fusion motion speed of the drone in the x direction, y direction, and z direction (vertical direction) in the horizontal heading coordinate system can be obtained, and then according to equation (13), The self-adjusting filter coefficients are self-adjustingly adjusted based on the fused motion speed of the UAV in the horizontal heading coordinate system.

Figure 110148001-A0305-02-0010-13
Figure 110148001-A0305-02-0010-13

Figure 110148001-A0305-02-0010-14
Figure 110148001-A0305-02-0010-14

在等式(12)中,V n_mix 為無人機在水平航向坐標系下的x方向、y方向、及z方向三個方向的融合運動速度,V n_x_filter V n_y_filter V n_z_filter 分別為無人機在水平航向坐標系下的x方向、y方向、及z方向的互補濾波後的運動速度值。 In equation (12), V n _ mix is the fusion motion speed of the drone in the x direction, y direction, and z direction in the horizontal heading coordinate system, V n _ x _ filter , V n _ y _ filter , V n _ z _ filter are the motion velocity values after complementary filtering in the x direction, y direction, and z direction of the UAV in the horizontal heading coordinate system, respectively.

在等式(13)中,將V n_mix 限幅在[0,C]區間內,C的取值取決於光流感測器的可測量速度範圍上限以及無人機的速度上限,B的取值取決於無 人機懸停的速度容錯範圍。當V n_mix 處在[0,B]區間時,保持係數

Figure 110148001-A0305-02-0010-17
不變,當 V n_mix 處在(B,C]區間時,使用函數g(V n_mix )計算
Figure 110148001-A0305-02-0010-19
的調節係數,其中,函 數g(V n_mix )的輸出值在〔1,D]區間中,D為在速度C下測得的最終融合速度,位移良好的最大調節係數。 In equation (13), V n _ mix is limited in the interval [0, C], the value of C depends on the upper limit of the measurable speed range of the optical flow sensor and the upper limit of the speed of the drone, and the value of B is The value depends on the speed tolerance of the drone hovering. When V n _ mix is in the [0,B] interval, keep the coefficient
Figure 110148001-A0305-02-0010-17
unchanged, when V n _ mix is in the (B, C] interval, use the function g ( V n _ mix ) to calculate
Figure 110148001-A0305-02-0010-19
The adjustment coefficient of , wherein, the output value of the function g ( V n _ mix ) is in the [1, D] interval, D is the final fusion speed measured at the speed C, and the maximum adjustment coefficient with good displacement.

這裡,可以根據等式(14),基於光流感測器的資料品質參數Q opt 對原始濾波係數

Figure 110148001-A0305-02-0011-20
進行動態調節。 Here, according to equation (14), based on the data quality parameter Q opt of the optical flow sensor, the original filter coefficient
Figure 110148001-A0305-02-0011-20
Make dynamic adjustments.

Figure 110148001-A0305-02-0011-16
Figure 110148001-A0305-02-0011-16

在等式(14)中,

Figure 110148001-A0305-02-0011-21
為在第一品質閾值A的條件下整定得到的 原始互補濾波係數。如等式(14)所示,當光流感測器的資料品質參數Q opt 小於 第一品質閾值A時,
Figure 110148001-A0305-02-0011-22
為原始互補濾波係數
Figure 110148001-A0305-02-0011-25
;當光流感測器的資料品質 參數Q opt 在[A,B)區間時(B為衡量光流感測器的資料品質的第二品質閾值), 使用函數f(Q opt )計算
Figure 110148001-A0305-02-0011-23
的調節係數,其中,函數f(Q opt )的輸出範圍在(0,1]區間中。 In equation (14),
Figure 110148001-A0305-02-0011-21
is the original complementary filter coefficient obtained by setting under the condition of the first quality threshold A. As shown in equation (14), when the data quality parameter Qopt of the optical flow sensor is less than the first quality threshold A,
Figure 110148001-A0305-02-0011-22
is the original complementary filter coefficient
Figure 110148001-A0305-02-0011-25
; When the data quality parameter Q opt of the optical flow sensor is in the [A, B) interval (B is the second quality threshold for measuring the data quality of the optical flow sensor), use the function f ( Q opt ) to calculate
Figure 110148001-A0305-02-0011-23
The adjustment coefficient of , where the output range of the function f ( Q opt ) is in the (0,1] interval.

綜上所述,根據本發明實施例的用於無人機的定位方法通過對來自加速度感測器、陀螺儀感測器、高度感測器、和光流感測器的測量結果相互融合,可以更接近真實、更平滑即時、且更精確地對無人機進行定位。另外,通過根據無人機在水平航向坐標系下的互補濾波後的運動速度自我調整地調節自我調整濾波係數,可以在無人機處於懸停及飛行移動狀態時較高精度地還原無人機的真實位移及速度情況。另外,對於無人機處於懸停或導航控制、目標跟隨等機動飛行狀態、以及環境變化的情況,都可以較高精度地還原無人機的真實位移及速度情況。同時,基於無人機控制系統的基本感測器(即,加速度感測器、陀螺儀感測器、高度感測器、和光流感測器)來對無人機進行定位,不會增加額外的硬體成本和負載,運算量小,適合各種對成本敏感和無人機體積載重能力受限的場合。 To sum up, the positioning method for UAVs according to the embodiment of the present invention can be closer to Realistic, smoother real-time, and more precise positioning of drones. In addition, by self-adjusting the self-adjusting filter coefficient according to the motion speed after the complementary filtering of the UAV in the horizontal heading coordinate system, the real displacement of the UAV can be restored with high precision when the UAV is in a hovering and flying state. and speed conditions. In addition, when the UAV is in a maneuvering flight state such as hovering or navigation control, target following, and the environment changes, the real displacement and speed of the UAV can be restored with high accuracy. At the same time, the UAV is positioned based on the basic sensors of the UAV control system (ie, acceleration sensor, gyroscope sensor, altitude sensor, and optical flow sensor), without adding additional hardware Cost and load, small amount of calculation, suitable for various occasions that are sensitive to cost and limited in the volume and load capacity of drones.

圖2示出了可以實現根據本發明實施例的用於多旋翼無人機的位移補償方法和裝置的電腦系統的示意圖。下面結合圖2,描述適於用來實現本發明的實施例的電腦系統200。應該明白的是,圖2示出的電腦系統200僅是一個示例,不應對本發明的實施例的功能和使用範圍帶來任何限制。 Fig. 2 shows a schematic diagram of a computer system that can implement a displacement compensation method and device for a multi-rotor UAV according to an embodiment of the present invention. A computer system 200 suitable for implementing the embodiment of the present invention will be described below with reference to FIG. 2 . It should be understood that the computer system 200 shown in FIG. 2 is only an example, and should not limit the functions and scope of use of the embodiments of the present invention.

如圖2所示,電腦系統200可以包括處理裝置(例如,中央處理器、圖形處理器等)201,其可以根據存儲在唯讀記憶體(Read Only Memory,ROM)202中的程式或者從存儲裝置208載入到隨機存取記憶體(Random Access Memory。RAM)203中的程式而執行各種適當的動作和處理。在RAM 203中,還存儲有電腦系統200操作所需的各種程式和資料。處理裝置201、ROM 202、以及RAM 203通過匯流排204彼此相連。輸入/輸出(I/O)介面205也連接至匯流排204。 As shown in FIG. 2 , the computer system 200 may include a processing device (for example, a central processing unit, a graphics processing unit, etc.) 201, which may be stored in a read-only memory (Read Only Memory, ROM) 202 according to a program or from a memory The device 208 is loaded into random access memory (Random Access Memory. RAM) 203 to execute various appropriate actions and processes. In the RAM 203, various programs and data necessary for the operation of the computer system 200 are also stored. The processing device 201 , ROM 202 , and RAM 203 are connected to each other through a bus bar 204 . An input/output (I/O) interface 205 is also connected to the bus bar 204 .

通常,以下裝置可以連接至I/O介面205:包括例如觸控式螢幕、觸控板、攝像頭、加速度計、陀螺儀、感測器等的輸入裝置206;包括例如液晶顯示器(Liquid Crystal Display,LCD)、揚聲器、振動器、電機、電子調速器等的輸出裝置207;包括例如閃光卡(Flash Card)等的存儲裝置208;以及通信裝置209。通信裝置209可以允許電腦系統200與其他設備進行無線或有線通信以交換資料。雖然圖2示出了具有各種裝置的電腦系統200,但是應理解的是,並不要求實施或具備所有示出的裝置。可以替代地實施或具備更多或更少的裝置。圖2中示出的每個方框可以代表一個裝置,也可以根據需要代表多個裝置。 Generally, the following devices can be connected to the I/O interface 205: an input device 206 including, for example, a touch screen, a touchpad, a camera, an accelerometer, a gyroscope, a sensor, etc.; including, for example, a liquid crystal display (Liquid Crystal Display, LCD), a speaker, a vibrator, a motor, an electronic speed controller, etc.; a storage device 208 including, for example, a flash card (Flash Card); and a communication device 209. The communication device 209 may allow the computer system 200 to communicate with other devices wirelessly or by wire to exchange data. While FIG. 2 shows computer system 200 with various devices, it should be understood that implementing or possessing all of the devices shown is not a requirement. More or fewer means may alternatively be implemented or provided. Each block shown in FIG. 2 may represent one device, or may represent multiple devices as required.

特別地,根據本發明的實施例,上文參考流程圖描述的過程可以被實現為電腦軟體程式。例如,本公開的實施例提供一種電腦可讀存儲介質,其存儲電腦程式,該電腦程式包含用於執行圖1所示的方法100的程式碼。在這樣的實施例中,該電腦程式可以通過通信裝置209從網路上被下載和安裝,或者從存儲裝置208被安裝,或者從ROM 202被安裝。在該電腦程式被處理裝置201執行時,實現根據本發明實施例的裝置中限定的上述功能。 In particular, according to an embodiment of the present invention, the processes described above with reference to the flowcharts may be implemented as computer software programs. For example, an embodiment of the present disclosure provides a computer-readable storage medium storing a computer program including program codes for executing the method 100 shown in FIG. 1 . In such an embodiment, the computer program may be downloaded and installed from the network via the communication device 209 , or installed from the storage device 208 , or installed from the ROM 202 . When the computer program is executed by the processing device 201, the above-mentioned functions defined in the device according to the embodiment of the present invention are realized.

需要說明的是,根據本發明實施例的電腦可讀介質可以是電腦可讀信號介質或者電腦可讀存儲介質或者是上述兩者的任意組合。電腦可讀存儲介質例如可以是──但不限於──電、磁、光、電磁、紅外線、或半導體的系統、裝置或器件,或者任意以上的組合。電腦可讀存儲介質的更具體的例子可以包括但不限於:具有一個或多個導線的電連接、可擕式電腦磁片、硬碟、隨機存取記憶體(RAM)、唯讀記憶體(ROM)、可擦除可規劃式唯讀記憶體(Erasable Programmable Read Only Memory,EPROM或快閃記憶體)、光纖、光碟唯讀記憶體(Compact Disc Read Only Memory,CD-ROM)、光記憶體件、磁記憶體件、或者上述的任意合適的組合。根據本發明實施例的電腦可讀存儲介質可以是任何包含或存儲程式的有形介質,該程式可以被指令執行系統、裝 置或者器件使用或者與其結合使用。另外,根據本發明實施例的電腦可讀信號介質可以包括在基頻中或者作為載波一部分傳播的資料信號,其中承載了電腦可讀的程式碼。這種傳播的資料信號可以採用多種形式,包括但不限於電磁信號、光信號或上述的任意合適的組合。電腦可讀信號介質還可以是電腦可讀存儲介質以外的任何電腦可讀介質,該電腦可讀信號介質可以發送、傳播或者傳輸用於由指令執行系統、裝置或者器件使用或者與其結合使用的程式。電腦可讀介質上包含的程式碼可以用任何適當的介質傳輸,包括但不限於:電線、光纜、射頻(Radio Frequency,RF)等等,或者上述的任意合適的組合。 It should be noted that the computer-readable medium according to the embodiment of the present invention may be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two. A computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples of computer-readable storage media may include, but are not limited to, electrical connections with one or more wires, portable computer diskettes, hard disks, random access memory (RAM), read-only memory ( ROM), erasable programmable read only memory (Erasable Programmable Read Only Memory, EPROM or flash memory), optical fiber, compact disc read only memory (Compact Disc Read Only Memory, CD-ROM), optical memory components, magnetic memory components, or any suitable combination of the above. A computer-readable storage medium according to an embodiment of the present invention may be any tangible medium that contains or stores a program that can be executed by an instruction execution system, installed configuration or device use or in conjunction with it. In addition, a computer readable signal medium according to an embodiment of the present invention may include a data signal carrying computer readable program code in a baseband or as part of a carrier wave. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. . The program code contained on the computer readable medium may be transmitted by any suitable medium, including but not limited to: wires, optical cables, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.

可以以一種或多種程式設計語言或其組合來編寫用於執行根據本發明實施例的操作的電腦程式代碼,所述程式設計語言包括物件導向的程式設計語言──諸如Java、Smalltalk、C++,還包括常規的過程式程式設計語言──諸如“C”語言或類似的程式設計語言。程式碼可以完全地在使用者電腦上執行、部分地在使用者電腦上執行、作為一個獨立的套裝軟體執行、部分在使用者電腦上部分在遠端電腦上執行、或者完全在遠端電腦或伺服器上執行。在涉及遠端電腦的情形中,遠端電腦可以通過任意種類的網路──包括區域網路(Local Area Network,LAN)或廣域網路(Wide Area Network,WAN)──連接到使用者電腦,或者,可以連接到外部電腦(例如利用網際網路服務提供者來通過網際網路連接)。 Computer program code for performing operations in accordance with embodiments of the present invention may be written in one or more programming languages, or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and Includes conventional procedural programming languages -- such as "C" or similar programming languages. The code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or executed on the server. In cases involving a remote computer, the remote computer can be connected to the user computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), Alternatively, it is possible to connect to an external computer (eg, via an Internet connection using an Internet service provider).

圖式中的流程圖和框圖,圖示了按照本發明的各種實施例的系統、方法和電腦程式產品的可能實現的體系架構、功能、和操作。在這點上,流程圖或框圖中的每個方框可以代表一個模組、程式段、或代碼的一部分,該模組、程式段、或代碼的一部分包含一個或多個用於實現規定的邏輯功能的可執行指令。也應當注意,在有些作為替換的實現中,方框中所標注的功能也可以以不同於圖式中所標注的順序發生。例如,兩個接連地表示的方框實際上可以基本並行地執行,它們有時也可以按相反的循序執行,這依所涉及的功能而定。也要注意的是,框圖和/或流程圖中的每個方框、以及框圖和/或流程圖中的方框的組合,可以用執行規定的功能或操作的專用的基於硬體的系統來實現,或者可以用專用硬體與電腦指令的組合來實現。 The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in a flowchart or block diagram may represent a module, program segment, or portion of code that includes one or more Executable instructions for logical functions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved. It should also be noted that each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts, can be implemented with a dedicated hardware-based computer that performs the specified function or operation. system, or may be implemented using a combination of dedicated hardware and computer instructions.

本發明可以以其他的具體形式實現,而不脫離其精神和本質特徵。 例如,特定實施例中所描述的演算法可以被修改,而系統體系結構並不脫離本發明的基本精神。因此,當前的實施例在所有方面都被看作是示例性的而非限定性的,本發明的範圍由所附請求項而非上述描述定義,並且,落入請求項的含義和等同物的範圍內的全部改變從而都被包括在本發明的範圍之中。 The present invention may be embodied in other specific forms without departing from its spirit and essential characteristics. For example, the algorithms described in certain embodiments may be modified without departing from the basic spirit of the invention in terms of system architecture. Therefore, the current embodiments are to be considered in all respects as illustrative rather than restrictive, the scope of the present invention is defined by the appended claims rather than the above description, and what falls within the meanings and equivalents of the claims All changes in scope are thereby embraced within the scope of the invention.

100,S102,S104,S106:定位方法 100, S102, S104, S106: positioning method

Claims (13)

一種用於無人機的定位方法,其中,所述無人機裝載有加速度感測器、陀螺儀感測器、高度感測器、以及光流感測器,該定位方法包括: A positioning method for a drone, wherein the drone is equipped with an acceleration sensor, a gyroscope sensor, a height sensor, and an optical flow sensor, and the positioning method includes: 基於所述加速度感測器測量的加速度值和所述陀螺儀感測器測量的角速度值,獲取所述無人機在水平航向坐標系下的運動加速度原始值; Based on the acceleration value measured by the acceleration sensor and the angular velocity value measured by the gyroscope sensor, the original value of the motion acceleration of the drone in the horizontal heading coordinate system is obtained; 基於所述光流感測器測量的相對位移值、所述高度感測器測量的相對高度值、所述加速度感測器測量的加速度值、所述陀螺儀感測器測量的角速度值、以及所述無人機在水平航向坐標系下的運動加速度原始值,獲取所述無人機在水平航向坐標系下的運動加速度校正值;以及 Based on the relative displacement value measured by the optical flow sensor, the relative height value measured by the height sensor, the acceleration value measured by the acceleration sensor, the angular velocity value measured by the gyro sensor, and the The original value of the motion acceleration of the UAV in the horizontal heading coordinate system, and obtain the correction value of the motion acceleration of the UAV in the horizontal heading coordinate system; and 基於所述無人機在水平航向坐標系下的運動加速度原始值和運動加速度校正值,獲取所述無人機在水平航向坐標系下的位置。 Based on the original motion acceleration value and the motion acceleration correction value of the UAV in the horizontal heading coordinate system, the position of the UAV in the horizontal heading coordinate system is acquired. 如請求項1所述的定位方法,其中,獲取所述無人機在水平航向坐標系下的運動加速度原始值包括: The positioning method as described in claim 1, wherein obtaining the original value of the motion acceleration of the UAV in the horizontal heading coordinate system includes: 基於所述加速度感測器測量的加速度值和所述陀螺儀感測器測量的角速度值,獲取用於將所述加速度感測器測量的加速度值轉換為所述無人機在水平航向坐標系下的運動加速度原始值的方向餘弦矩陣;以及 Based on the acceleration value measured by the acceleration sensor and the angular velocity value measured by the gyroscope sensor, the acquisition is used to convert the acceleration value measured by the acceleration sensor into the UAV in the horizontal heading coordinate system The direction cosine matrix of the original value of the motion acceleration of ; and 基於所述加速度感測器測量的加速度值和所述方向餘弦矩陣,獲取所述無人機在水平航向坐標系下的運動加速度原始值, Based on the acceleration value measured by the acceleration sensor and the direction cosine matrix, the original value of the motion acceleration of the drone in the horizontal heading coordinate system is obtained, 其中,所述加速度感測器測量的加速度值是所述無人機在無人機載體坐標系下的運動加速度值。 Wherein, the acceleration value measured by the acceleration sensor is the motion acceleration value of the UAV in the UAV carrier coordinate system. 如請求項1所述的定位方法,其中,獲取所述無人機在水平航向坐標系下的運動加速度校正值包括: The positioning method as described in claim 1, wherein obtaining the motion acceleration correction value of the UAV in the horizontal heading coordinate system includes: 基於所述光流感測器測量的相對位移值、所述高度感測器測量的相對高度值、所述加速度感測器測量的加速度值、以及所述陀螺儀感測器測量的角速度值,獲取所述無人機在水平航向坐標系下的高度和角度補償後的相對位移值; Based on the relative displacement value measured by the optical flow sensor, the relative height value measured by the height sensor, the acceleration value measured by the acceleration sensor, and the angular velocity value measured by the gyroscope sensor, obtain The relative displacement value after the height and angle compensation of the UAV under the horizontal heading coordinate system; 基於所述無人機在水平航向坐標系下的高度和角度補償後的相對位移值與互補濾波後的相對位移值,獲取所述無人機在水平航向坐標系下的高度和角度補償後的相對位移差值;以及 Based on the relative displacement value after the altitude and angle compensation of the UAV in the horizontal course coordinate system and the relative displacement value after complementary filtering, obtain the relative displacement of the UAV in the horizontal course coordinate system after altitude and angle compensation difference; and 基於所述無人機在水平航向坐標系下的高度和角度補償後的相對位移差值 和第一自我調整積分係數,獲取所述無人機在水平航向坐標系下的運動加速度校正值, Based on the relative displacement difference after the altitude and angle compensation of the UAV in the horizontal heading coordinate system and the first self-adjusting integral coefficient to obtain the motion acceleration correction value of the UAV in the horizontal heading coordinate system, 其中,所述第一自我調整積分係數是基於自我調整濾波係數和第一常量確定的,所述自我調整濾波係數是基於所述無人機在水平航向坐標系下的運動加速度原始值和運動加速度校正值確定的。 Wherein, the first self-adjusting integral coefficient is determined based on the self-adjusting filter coefficient and the first constant, and the self-adjusting filter coefficient is based on the original value of the motion acceleration and the motion acceleration correction of the UAV in the horizontal heading coordinate system The value is determined. 如請求項3所述的定位方法,其中,獲取所述無人機在水平航向坐標系下的位置包括: The positioning method as described in claim 3, wherein obtaining the position of the UAV under the horizontal heading coordinate system includes: 基於所述無人機在水平航向坐標系下的運動加速度原始值和運動加速度校正值,獲取所述無人機在水平航向坐標系下的互補濾波後的運動加速度值;以及 Based on the original motion acceleration value and the motion acceleration correction value of the UAV in the horizontal heading coordinate system, obtain the complementary filtered motion acceleration value of the UAV in the horizontal heading coordinate system; and 基於所述無人機在水平航向坐標系下的互補濾波後的運動加速度值,獲取所述無人機在水平航向坐標系下的運動速度原始值。 Based on the motion acceleration value after complementary filtering of the UAV in the horizontal heading coordinate system, the original value of the motion speed of the UAV in the horizontal heading coordinate system is obtained. 如請求項4所述的定位方法,其中,獲取所述無人機在水平航向坐標系下的位置還包括: The positioning method as described in claim 4, wherein obtaining the position of the UAV in the horizontal heading coordinate system also includes: 基於所述無人機在水平航向坐標系下的高度和角度補償後的相對位移差值和第二自我調整積分係數,獲取所述無人機在水平航向坐標系下的運動速度校正值;以及 Based on the altitude and angle-compensated relative displacement difference and the second self-adjusting integral coefficient of the UAV in the horizontal course coordinate system, obtain the motion speed correction value of the UAV in the horizontal course coordinate system; and 基於所述無人機在水平航向坐標系下的運動速度原始值和運動速度校正值,獲取所述無人機在水平航向坐標系下的互補濾波後的運動速度值, Based on the original value of the motion speed and the correction value of the motion speed of the UAV in the horizontal heading coordinate system, the complementary filtered motion speed value of the UAV in the horizontal heading coordinate system is obtained, 其中,所述第二自我調整積分係數是基於自我調整濾波係數和第二常量確定的,所述自我調整濾波係數是基於所述無人機在水平航向坐標系下的互補濾波後的運動速度值確定的。 Wherein, the second self-adjusting integral coefficient is determined based on the self-adjusting filter coefficient and the second constant, and the self-adjusting filter coefficient is determined based on the complementary filtered motion velocity value of the UAV in the horizontal heading coordinate system of. 如請求項5所述的定位方法,其中,獲取所述無人機在水平航向坐標系下的位置還包括: The positioning method as described in claim 5, wherein obtaining the position of the UAV in the horizontal heading coordinate system also includes: 基於所述無人機在水平航向坐標系下的互補濾波後的運動速度值,獲取所述無人機在水平航向坐標系下的相對位移原始值。 Based on the motion velocity value after complementary filtering of the UAV in the horizontal course coordinate system, the relative displacement original value of the UAV in the horizontal course coordinate system is acquired. 如請求項6所述的定位方法,其中,獲取所述無人機在水平航向坐標系下的位置還包括: The positioning method as described in claim 6, wherein obtaining the position of the UAV in the horizontal heading coordinate system also includes: 基於所述無人機在水平航向坐標系下的高度和角度補償後的相對位移差值 和第三自我調整積分係數,獲取所述無人機在水平航向坐標系下的相對位移校正值;以及 Based on the relative displacement difference after the altitude and angle compensation of the UAV in the horizontal heading coordinate system and the third self-adjusting integral coefficient, to obtain the relative displacement correction value of the UAV in the horizontal heading coordinate system; and 基於所述無人機在水平航向坐標系下的相對位移初始值和相對位移校正值,獲取所述無人機在水平航向坐標系下的互補濾波後的相對位移值, Based on the relative displacement initial value and the relative displacement correction value of the UAV in the horizontal course coordinate system, the complementary filtered relative displacement value of the UAV in the horizontal course coordinate system is obtained, 其中,所述第三自我調整積分係數是基於所述自我調整濾波係數和第三常量確定的。 Wherein, the third self-adjusting integral coefficient is determined based on the self-adjusting filter coefficient and a third constant. 如請求項3所述的定位方法,其中,確定所述自我調整濾波係數的處理包括: The positioning method according to claim 3, wherein the process of determining the self-adjusting filter coefficient includes: 基於所述無人機在水平航向坐標系下的運動加速度原始值和運動加速度校正值,獲取所述無人機在水平航向坐標系下的互補濾波後的運動加速度值; Based on the original motion acceleration value and the motion acceleration correction value of the UAV in the horizontal heading coordinate system, the complementary filtered motion acceleration value of the UAV in the horizontal heading coordinate system is obtained; 基於所述無人機在水平航向坐標系下的互補濾波後的運動加速度值,獲取所述無人機在水平航向坐標系下的運動速度原始值; Based on the complementary filtered motion acceleration value of the UAV in the horizontal heading coordinate system, the original value of the motion speed of the UAV in the horizontal heading coordinate system is obtained; 基於所述無人機在水平航向坐標系下的高度和角度補償後的相對位移差值和第二自我調整積分係數,獲取所述無人機在水平航向坐標系下的運動速度校正值; Based on the relative displacement difference and the second self-adjusting integral coefficient after the altitude and angle compensation of the UAV in the horizontal course coordinate system, the movement speed correction value of the UAV in the horizontal course coordinate system is obtained; 基於所述無人機在水平航向坐標系下的運動速度原始值和運動速度校正值,獲取所述無人機在水平航向坐標系下的互補濾波後的運動速度值;以及 Based on the original motion speed value and the correction value of the motion speed of the UAV in the horizontal heading coordinate system, obtain the complementary filtered motion speed value of the UAV in the horizontal heading coordinate system; and 基於所述無人機在水平航向坐標系下的互補濾波後的運動速度值,確定所述自我調整濾波係數, determining the self-adjusting filter coefficient based on the complementary filtered motion velocity value of the UAV in the horizontal heading coordinate system, 其中,所述第二自我調整積分係數是基於所述自我調整濾波係數和第二常量確定的,所述自我調整濾波係數是基於所述無人機在水平航向坐標系下的互補濾波後的運動速度值確定的,並且所述自我調整濾波係數的初始值是取決於所述光流感測器的資料品質參數、用於衡量所述光流感測器的資料品質的資料品質閾值、以及利用所述資料品質閾值整定得到的原始互補濾波係數的預定值。 Wherein, the second self-adjusting integral coefficient is determined based on the self-adjusting filter coefficient and the second constant, and the self-adjusting filter coefficient is based on the complementary filtered motion speed of the UAV in the horizontal heading coordinate system The value is determined, and the initial value of the self-adjusting filter coefficient depends on the data quality parameter of the optical flow sensor, the data quality threshold used to measure the data quality of the optical flow sensor, and the use of the data The predetermined value of the original complementary filter coefficient obtained by quality threshold adjustment. 如請求項8所述的定位方法,其中,所述無人機在水平航向坐標系下的運動速度原始值、運動速度校正值、以及運動加速度校正值的初始值均為零。 The positioning method according to claim 8, wherein the initial values of the original value of the motion speed, the correction value of the motion speed, and the correction value of the motion acceleration of the UAV in the horizontal heading coordinate system are all zero. 如請求項8所述的定位方法,其中,基於所述光流感測器的資料品質參數、用於衡量所述光流感測器的資料品質的資料品質閾值、利用所 述資料品質閾值整定得到的原始互補濾波係數、以及所述無人機在水平航向坐標系下的互補濾波後的運動速度值,確定所述自我調整濾波係數。 The positioning method according to claim 8, wherein, based on the data quality parameters of the optical flow sensor, the data quality threshold used to measure the data quality of the optical flow sensor, using the The self-adjusting filter coefficient is determined based on the original complementary filter coefficient obtained by setting the data quality threshold and the motion speed value of the UAV after complementary filtering in the horizontal heading coordinate system. 如請求項7所述的定位方法,其中,所述無人機在水平航向坐標系下的相對位移原始值和相對位移校正值的初始值均為零。 The positioning method according to claim 7, wherein the initial value of the relative displacement original value and the relative displacement correction value of the UAV in the horizontal heading coordinate system are both zero. 一種用於無人機的定位設備,其中,所述無人機裝載有加速度感測器、陀螺儀感測器、高度感測器、以及光流感測器,該定位設備包括: A positioning device for a drone, wherein the drone is equipped with an acceleration sensor, a gyroscope sensor, a height sensor, and an optical flow sensor, and the positioning device includes: 記憶體,其上存儲有電腦可執行指令;以及 memory on which computer-executable instructions are stored; and 一個或多個處理器,被配置為執行所述電腦可執行指令,以實現請求項1至11中任一項所述的定位方法。 One or more processors configured to execute the computer-executable instructions to implement the positioning method described in any one of claims 1 to 11. 一種無人機,包括: A drone comprising: 加速度感測器; acceleration sensor; 陀螺儀感測器; Gyro sensor; 高度感測器; height sensor; 光流感測器;以及 optical flow sensor; and 請求項12所述的用於無人機的定位設備。 The positioning device for unmanned aerial vehicles described in claim 12.
TW110148001A 2021-11-03 2021-12-21 Positioning method and device for unmanned aerial vehicles TWI805141B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111294756.8 2021-11-03
CN202111294756.8A CN114018241B (en) 2021-11-03 2021-11-03 Positioning method and device for unmanned aerial vehicle

Publications (2)

Publication Number Publication Date
TW202319706A TW202319706A (en) 2023-05-16
TWI805141B true TWI805141B (en) 2023-06-11

Family

ID=80060164

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110148001A TWI805141B (en) 2021-11-03 2021-12-21 Positioning method and device for unmanned aerial vehicles

Country Status (2)

Country Link
CN (1) CN114018241B (en)
TW (1) TWI805141B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115790574B (en) * 2023-02-14 2023-04-28 飞联智航(北京)科技有限公司 Unmanned aerial vehicle optical flow positioning method and device and unmanned aerial vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9279683B2 (en) * 2012-03-02 2016-03-08 Moog Inc. Real-time aircraft status detection system and method
US20160349746A1 (en) * 2015-05-29 2016-12-01 Faro Technologies, Inc. Unmanned aerial vehicle having a projector and being tracked by a laser tracker
CN111857176A (en) * 2020-07-20 2020-10-30 广州狸园科技有限公司 GPS unmanned aerial vehicle control method
CN112924999A (en) * 2021-01-14 2021-06-08 华南理工大学 Unmanned aerial vehicle positioning method, system, device and medium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU118740U1 (en) * 2012-01-12 2012-07-27 Открытое акционерное общество "Концерн "Созвездие" ADAPTIVE NAVIGATION COMPLEX
EP2730888A1 (en) * 2012-11-07 2014-05-14 Ecole Polytechnique Federale de Lausanne EPFL-SRI Method to determine a direction and amplitude of a current velocity estimate of a moving device
CN103853156B (en) * 2014-02-07 2016-06-01 中山大学 A kind of small-sized four-rotor aircraft control system based on machine set sensor and method
CN104808231B (en) * 2015-03-10 2017-07-11 天津大学 Unmanned plane localization method based on GPS Yu light stream Data Fusion of Sensor
CN105352495B (en) * 2015-11-17 2018-03-23 天津大学 Acceleration and light stream Data Fusion of Sensor unmanned plane horizontal velocity control method
CN106017463B (en) * 2016-05-26 2019-02-26 浙江大学 A kind of Aerial vehicle position method based on orientation sensing device
KR101769602B1 (en) * 2016-08-09 2017-08-18 아이디어주식회사 Apparatus and method of position revision for hovering using optical flow and imu and ultrasonic sensor
CN109916394A (en) * 2019-04-04 2019-06-21 山东智翼航空科技有限公司 Combined navigation algorithm fusing optical flow position and speed information
CN111398522B (en) * 2020-03-24 2022-02-22 山东智翼航空科技有限公司 Indoor air quality detection system and detection method based on micro unmanned aerial vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9279683B2 (en) * 2012-03-02 2016-03-08 Moog Inc. Real-time aircraft status detection system and method
US20160349746A1 (en) * 2015-05-29 2016-12-01 Faro Technologies, Inc. Unmanned aerial vehicle having a projector and being tracked by a laser tracker
CN111857176A (en) * 2020-07-20 2020-10-30 广州狸园科技有限公司 GPS unmanned aerial vehicle control method
CN112924999A (en) * 2021-01-14 2021-06-08 华南理工大学 Unmanned aerial vehicle positioning method, system, device and medium

Also Published As

Publication number Publication date
CN114018241B (en) 2023-12-26
TW202319706A (en) 2023-05-16
CN114018241A (en) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2018184467A1 (en) Method and device for detecting posture of ball head
CN109000612B (en) Equipment angle estimation method and device, camera shooting assembly and aircraft
WO2020103049A1 (en) Terrain prediction method and device of rotary microwave radar, and system and unmanned aerial vehicle
CN111983936B (en) Unmanned aerial vehicle semi-physical simulation system and evaluation method
CN107014371A (en) UAV integrated navigation method and apparatus based on the adaptive interval Kalman of extension
CN104615142A (en) Flight controller for civil small UAV (Unmanned Aerial Vehicle)
WO2021027638A1 (en) Yaw angle fusion method and apparatus, and aerial vehicle
WO2021031974A1 (en) Method for selecting initial value of course angle of unmanned aerial vehicle and unmanned aerial vehicle
WO2021031975A1 (en) Method and device for determining heading of unmanned aerial vehicle, and unmanned aerial vehicle
CN104898681A (en) Tetra-rotor aircraft attitude obtaining method by use of three-order approximation Picard quaternion
WO2021078002A1 (en) Method and device for selecting initial value of heading angle of unmanned aerial vehicle, and unmanned aerial vehicle
CN112066985B (en) Initialization method, device, medium and electronic equipment for combined navigation system
CN108318038A (en) A kind of quaternary number Gaussian particle filtering pose of mobile robot calculation method
Di et al. A data fusion system for attitude estimation of low-cost miniature UAVs
US11669109B2 (en) Method and apparatus for yaw fusion and aircraft
CN106774378A (en) A kind of UAV Flight Control and localization method
CN103712598A (en) Attitude determination system and method of small unmanned aerial vehicle
CN109521785B (en) Intelligent rotor craft system capable of being shot with oneself
TWI805141B (en) Positioning method and device for unmanned aerial vehicles
CN115164936A (en) Global pose correction method and device for point cloud splicing in high-precision map manufacturing
García et al. Analysis of sensor data and estimation output with configurable UAV platforms
WO2021217329A1 (en) Altitude detection method, method and device for determining compensation, and unmanned aerial vehicle
CN115727842A (en) Rapid alignment method and system for unmanned aerial vehicle, computer equipment and storage medium
TWI747718B (en) Displacement compensation method and equipment and speed compensation method and equipment
CN114199220A (en) Unmanned aerial vehicle air online magnetic compass calibration method and device