TWI804819B - Method of removing particles - Google Patents

Method of removing particles Download PDF

Info

Publication number
TWI804819B
TWI804819B TW110106359A TW110106359A TWI804819B TW I804819 B TWI804819 B TW I804819B TW 110106359 A TW110106359 A TW 110106359A TW 110106359 A TW110106359 A TW 110106359A TW I804819 B TWI804819 B TW I804819B
Authority
TW
Taiwan
Prior art keywords
cleaning element
charge
particles
wafer
support base
Prior art date
Application number
TW110106359A
Other languages
Chinese (zh)
Other versions
TW202233316A (en
Inventor
廖啟宏
施柏銘
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Priority to TW110106359A priority Critical patent/TWI804819B/en
Publication of TW202233316A publication Critical patent/TW202233316A/en
Application granted granted Critical
Publication of TWI804819B publication Critical patent/TWI804819B/en

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A method of removing particles includes providing charges onto a surface of a stage and one particle on the surface, moving a cleaning unit toward the surface, and moving the cleaning unit away from the surface. Providing charges onto the surface of the stage and the particle on the stage makes the surface and the particle have the negative charge concurrently. The cleaning unit with an electrostatic-attraction film enables the particle having the negative charge to move toward and adsorb on the electrostatic-attraction film.

Description

移除微粒的方法Methods of removing particles

本揭示案是關於一種移除微粒的方法。The present disclosure is about a method of removing particles.

半導體積體電路(semiconductor integrated circuits)經歷了指數級的成長,產生了多個世代的積體電路,其中每一世代較前一世代具有更小更複雜的電路。在積體電路發展的過程中,功能密度(亦即,每一晶片區域內互連元件的數目)通常會增加,而幾何尺寸(亦即,製程中所能產出的最小元件或線則會縮小。一般而言,尺寸縮小的製程可以增加生產效率以及降低製造成本的好處,但是尺寸縮小亦增加製造與生產積體電路的複雜度。隨著積體電路設計已日益複雜,其臨界尺寸(critical dimension;CD)已相應地減小,導致積體電路元件中的各層之可容許之相對位移的減小。Semiconductor integrated circuits have experienced exponential growth, resulting in multiple generations of integrated circuits, each of which has smaller and more complex circuits than the previous generation. During the evolution of integrated circuits, functional density (that is, the number of interconnected elements per die area) typically increases, while geometry size (that is, the smallest component or line that can be produced in a process) increases. Shrinking. Generally speaking, the size reduction process can increase production efficiency and reduce manufacturing costs, but the size reduction also increases the complexity of manufacturing and producing integrated circuits. As the design of integrated circuits has become increasingly complex, its critical dimension ( critical dimension (CD) has been correspondingly reduced, resulting in a reduction in the allowable relative displacement of the layers in the integrated circuit element.

根據本揭示案的一些實施例,一種移除微粒的方法包括提供電荷至支撐座的表面上及表面的微粒上、移動清潔元件靠近表面、以及移動清潔元件遠離表面。提供電荷至支撐座的表面上及表面的微粒上可使支撐座的表面和表面的微粒帶有相同的負電電性。清潔元件具有靜電吸附層,使具有負電電性的微粒朝向清潔元件移動並吸附在靜電吸附層上。According to some embodiments of the present disclosure, a method of removing particles includes providing a charge to a surface of a support and to particles on the surface, moving a cleaning element closer to the surface, and moving the cleaning element away from the surface. Providing charges on the surface of the support base and the particles on the surface can make the surface of the support base and the particles on the surface have the same negative charge. The cleaning element has an electrostatic adsorption layer, so that the particles with electronegative electricity move toward the cleaning element and are adsorbed on the electrostatic adsorption layer.

根據本揭示案的另一些實施例,一種移除微粒的方法包括移動充電裝置到支撐座的表面上、充電裝置提供第一電荷至表面上及表面的至少一個微粒上、充電裝置提供第二電荷至清潔元件上、移動清潔元件靠近表面、以及移動清潔元件遠離表面。充電裝置提供第一電荷使表面和表面上的微粒具有第一電性、和提供第二電荷使清潔元件具有相異於第一電性的第二電性。具有第二電性的清潔元件使具有第一電性的微粒朝向清潔元件移動並吸附在清潔元件上。According to other embodiments of the present disclosure, a method of removing particles includes moving a charging device onto a surface of a support, the charging device providing a first charge to the surface and at least one particle on the surface, and the charging device providing a second charge onto the cleaning element, move the cleaning element closer to the surface, and move the cleaning element away from the surface. The charging device provides a first charge to impart a first electrical property to the surface and particles on the surface, and a second electrical charge to impart a second electrical property to the cleaning element different from the first electrical property. The cleaning element having the second electrical property moves the particles having the first electrical property toward and adsorbs on the cleaning element.

根據本揭示案的另一些實施例,一種移除微粒的方法包括移動充電裝置到支撐座的表面上、充電裝置提供電荷至表面的微粒、準備基材、設置靜電吸附層至基材上、藉由傳送機械手臂移動基材相對靠近支撐座的表面、該表面的微粒吸附至靜電吸附層上、以及藉由傳送機械手臂移動基材相對遠離支撐座的表面。充電裝置提供電荷至表面的微粒使微粒具有第一電位。基材具有第二電位,其中第二電位與第一電位之間為第一電位差。靜電吸附層具有第三電位,其中第三電位與第一電位之間為第二電位差,且第二電位差大於第一電位差。According to other embodiments of the present disclosure, a method for removing particles includes moving a charging device onto a surface of a support, charging the device to provide charges to the particles on the surface, preparing a substrate, placing an electrostatic adsorption layer on the substrate, by The surface of the substrate relatively close to the support seat is moved by the transfer robot arm, the particles on the surface are adsorbed to the electrostatic adsorption layer, and the surface of the substrate relatively far away from the support seat is moved by the transfer robot arm. The charging device provides charges to the particles on the surface so that the particles have a first potential. The substrate has a second potential, wherein there is a first potential difference between the second potential and the first potential. The electrostatic adsorption layer has a third potential, wherein there is a second potential difference between the third potential and the first potential, and the second potential difference is greater than the first potential difference.

當一個元件被稱為「在…上」時,它可泛指該元件直接在其他元件上,也可以是有其他元件存在於兩者之中。相反地,當一個元件被稱為「直接在」另一元件,它是不能有其他元件存在於兩者之中間。如本文所用,詞彙「及/或」包含了列出的關聯項目中的一個或多個的任何組合。When an element is referred to as being "on", it can generally mean that the element is directly on other elements, or there may be other elements present in between. Conversely, when an element is said to be "directly on" another element, it cannot have other elements in between. As used herein, the word "and/or" includes any combination of one or more of the associated listed items.

再者,為了方便描述圖示中一元件或特徵部件與另一(些)元件或特徵部件的關係,可使用空間相關用語,例如「在...之下」、「下方」、「下部」、「上方」、「上部」及諸如此類用語。除了圖示所繪示之方位外,空間相關用語亦涵蓋使用或操作中之裝置的不同方位。當裝置被轉向不同方位時(例如,旋轉90度或者其他方位),則其中所使用的空間相關形容詞亦將依轉向後的方位來解釋。Furthermore, in order to facilitate the description of the relationship between an element or feature part and another (some) element or feature part in the illustrations, spatial relative terms may be used, such as "below", "under", "lower part" , "above", "upper" and similar terms. Spatial terms also encompass different orientations of the device in use or operation in addition to the orientation depicted in the illustrations. When the device is turned in a different orientation (for example, rotated 90 degrees or otherwise), the spatially relative adjectives used therein shall also be interpreted in terms of the turned orientation.

隨著尺寸微縮趨勢的繼續進行,由於元件尺寸不斷減小,製程或是測量中之對準及重疊問題變得更具挑戰性。在製程期間之小的對準或重疊錯誤可能會導致晶圓之失效。各種元件及技術已被用來降低製造期間之對準不良。舉例而言,對準標記可用以在晶圓裝載至半導體製造工具中時,確保晶圓之間的正確對準。在另一實施例中,晶圓水平校正系統可用以確保在製造期間晶圓為水平的。然而,各種製程產生之微粒仍可能引起半導體製程中之對準問題,尤其當這些微粒位於晶圓及/或光罩支撐座的表面上時。因此,本揭示案之一些實施例提供一種自晶圓及/或光罩支撐座的表面移除微粒的方法。As the scaling trend continues, alignment and overlay issues during process or measurement become more challenging due to ever-shrinking component sizes. Small alignment or overlay errors during processing can lead to wafer failure. Various components and techniques have been used to reduce misalignment during manufacturing. For example, alignment marks can be used to ensure proper alignment between wafers as they are loaded into semiconductor fabrication tools. In another embodiment, a wafer level correction system may be used to ensure that the wafer is level during fabrication. However, particles generated by various processes may still cause alignment problems in semiconductor processing, especially when these particles are on the surface of the wafer and/or the reticle support. Accordingly, some embodiments of the present disclosure provide a method of removing particles from the surface of a wafer and/or a reticle support.

第1圖例示性地繪示了根據本揭示案一些實施例進行清潔晶圓及/或光罩支撐座的時機判斷之流程圖100。晶圓及/或光罩支撐座清潔步驟108可用於任何參數轉換階段之後,例如步驟102中變換不同的晶圓/光罩種類之後、步驟104中進行設備之週期性維護之後、或步驟106進行設備維修之後。在放置目標晶圓及/或光罩至支撐座上之前,先執行步驟108進行支撐座的清潔,以移除支撐座上的微粒。當步驟108清潔結束之後,繼續步驟110中放置晶圓及/或光罩至支撐座上並對目標晶圓及/或光罩進行相關製程、測試或分析。流程圖100提供一判斷清潔支撐座時機之流程圖,當有任何其他時機需進行晶圓及/或光罩支撐座清潔時,可隨時進行步驟108。FIG. 1 schematically illustrates a flowchart 100 for determining when to clean a wafer and/or a reticle support according to some embodiments of the present disclosure. The wafer and/or reticle holder cleaning step 108 can be used after any parameter conversion stage, such as after changing different wafer/reticle types in step 102, after performing periodic maintenance of equipment in step 104, or after performing step 106 After equipment maintenance. Before placing the target wafer and/or the photomask on the support, perform step 108 to clean the support to remove particles on the support. After the cleaning in step 108 is completed, proceed to step 110 to place the wafer and/or the photomask on the support seat and perform related processes, tests or analysis on the target wafer and/or photomask. The flow chart 100 provides a flow chart for determining when to clean the support base. When there is any other opportunity to clean the wafer and/or mask support base, step 108 can be performed at any time.

支撐座可用來放置之目標物包含晶圓、光罩、或其他任何製程上需要維持水平之目標物。支撐座可為晶圓載台/工作台(wafer stage/table)、光罩載台/工作台(mask stage/table)、靜電吸盤(electrostatic chuck, e-chuck)、或其他具有相同概念之裝置。支撐座面積比晶圓及/或光罩大。晶圓的直徑可為約200毫米、約300毫米、約450毫米、或者任何適當的尺寸。在一些實施例中,晶圓載台是設計成具有多個可單獨(彼此獨立)及垂直(垂直於其上所支撐的晶圓表面)移動的晶圓支撐銷。在另一些實施例中,靜電吸盤是設計成一種使用電來產生靜電力的裝置,例如庫侖力及強森拉伯克力(Johnsen-Rahbek force),在半導體製程中用以保持晶圓及/或光罩的位置。Objects that can be placed on the support base include wafers, masks, or any other objects that need to be maintained horizontally in the process. The support base can be a wafer stage/table, a mask stage/table, an electrostatic chuck (e-chuck), or other devices with the same concept. The area of the support seat is larger than that of the wafer and/or the mask. The diameter of the wafer may be about 200 mm, about 300 mm, about 450 mm, or any suitable size. In some embodiments, the wafer stage is designed with a plurality of wafer support pins that move individually (independent of each other) and vertically (perpendicular to the surface of the wafer supported thereon). In other embodiments, the electrostatic chuck is designed as a device that uses electricity to generate electrostatic forces, such as Coulomb force and Johnsen-Rahbek force, used to hold wafers and/or or mask position.

在一些實施例中,晶圓可能為塊材半導體晶圓。例如,晶圓可能包括矽晶圓。晶圓可能包含矽或另一種元素半導體材料,如鍺。在一些實施例中,晶圓可能包括化合物半導體。化合物半導體可能包括砷化鎵(gallium arsenide)、碳化矽(silicon carbide)、砷化銦(indium arsenide)、磷化銦(indium phosphide)、其他合適的材料、或上述的組合。但在另一些實施例中,晶圓可能包括合金半導體,如鍺化矽(silicon germanium)、碳化矽鍺(silicon germanium carbide)、磷砷化鎵(gallium arsenic phosphide)、或磷銦化鎵(gallium indium phosphide)。在其他實施例中,晶圓可能包括絕緣層上矽(silicon-on-insulator, SOI)或絕緣層上鍺(germanium-on-insulator, GOI)之基材。SOI基材可由氧佈植分離(separation by implantation of oxygen)技術、晶圓鍵合(wafer bonding)技術、其他合適的技術,或上述之組合製成。In some embodiments, the wafer may be a bulk semiconductor wafer. For example, wafers may include silicon wafers. Wafers may contain silicon or another elemental semiconductor material such as germanium. In some embodiments, the wafer may include compound semiconductors. The compound semiconductor may include gallium arsenide, silicon carbide, indium arsenide, indium phosphide, other suitable materials, or combinations thereof. However, in other embodiments, the wafer may include alloy semiconductors such as silicon germanium, silicon germanium carbide, gallium arsenic phosphide, or gallium indium phosphide. indium phosphide). In other embodiments, the wafer may include silicon-on-insulator (SOI) or germanium-on-insulator (GOI) substrates. The SOI substrate can be made by separation by implantation of oxygen technology, wafer bonding technology, other suitable technologies, or a combination of the above.

在一些實施例中,晶圓包括未經摻雜的基材。在其他實施例中,晶圓包含摻雜的基材,如p型基材或n型基材。In some embodiments, the wafer includes an undoped substrate. In other embodiments, the wafer includes a doped substrate, such as a p-type substrate or an n-type substrate.

在一些實施例中,依照半導體裝置結構的設計要求,晶圓包含不同的摻雜區域。摻雜區域可能包括p型井及/或n型井。在一些實施例中,摻雜區域是指摻雜p型摻雜物,例如,摻雜區域可能摻雜硼(boron)或二氟化硼(boron fluoride)。n型摻雜物,例如磷或砷。在一些實施例中,部分摻雜區域為p型摻雜而另一部份為n型摻雜。In some embodiments, the wafer contains different doped regions according to the design requirements of the semiconductor device structure. The doped regions may include p-wells and/or n-wells. In some embodiments, the doped region refers to doping with p-type dopant, for example, the doped region may be doped with boron or boron fluoride. n-type dopants such as phosphorus or arsenic. In some embodiments, part of the doped region is p-type doped and another part is n-type doped.

在一些實施例中,內連接結構可能形成在晶圓上。內連接結構可能包括多層的層間介電層及介電層。內連接結構亦可能包括形成於層間介電層之間的多層導電特徵結構,例如導電線(line)、導電通孔(via)、及/或各種導電接點(contact)。In some embodiments, interconnect structures may be formed on the wafer. The interconnection structure may include multiple layers of interlayer dielectric layers and dielectric layers. The interconnection structure may also include multilayer conductive features formed between interlayer dielectric layers, such as conductive lines, conductive vias, and/or various conductive contacts.

在一些實施例中,晶圓具有不同裝置元件(device element)。例如,裝置元件可能包含電晶體(transistor)(例如金屬氧化物半導體場校電晶體(metal oxide semiconductor field effect transistor, MOSFET)、互補式金屬氧化物半導體 (complementary metal oxide semiconductor, CMOS) 電晶體、雙極性接面型電晶體(bipolar junction transistor, BJT)、高壓電晶體(high-voltage transistor)、高頻率電晶體(high-frequency transistor)、p通道及/或n通道場效電晶體(PFET及/或NFET)、二極體、或其他合適的元件)。不同的裝置元件可能採用不同製程方式,包括沉積、蝕刻、植佈、微影、退火、及/或其他合適的製程方式。In some embodiments, the wafer has different device elements. For example, device elements may include transistors (such as metal oxide semiconductor field effect transistors (MOSFETs), complementary metal oxide semiconductor (CMOS) transistors, dual Polar junction transistor (bipolar junction transistor, BJT), high-voltage transistor (high-voltage transistor), high-frequency transistor (high-frequency transistor), p-channel and/or n-channel field-effect transistor (PFET and /or NFET), diodes, or other suitable components). Different device elements may use different process methods, including deposition, etching, implantation, lithography, annealing, and/or other suitable process methods.

在一些實施例中,晶圓中的裝置元件可能經由內連接結構以連結彼此並形成積體電路裝置。積體電路裝置可能包括邏輯(logic)裝置、記憶體(memory)裝置(例如靜態隨機存取記憶體(static random access memory, SRAM))、射頻(radio frequency, RF)裝置、輸入/輸出(input/output(I/O))裝置、單晶片系統(system-on-chip, SOC)裝置、影像感測器(image sensor)裝置、其他合適的裝置、或上述裝置之組合。In some embodiments, device elements in a wafer may be connected to each other via interconnect structures to form an integrated circuit device. Integrated circuit devices may include logic devices, memory devices (such as static random access memory (SRAM)), radio frequency (radio frequency, RF) devices, input/output (input /output (I/O)) device, a system-on-chip (SOC) device, an image sensor (image sensor) device, other suitable devices, or a combination of the above devices.

在一些實施例中,光罩可能包括反射式遮罩。光罩的結構包括基材,該基材由適當的材料製成,例如低熱膨脹材料(low thermal expansion material, LTEM)或石英(fused quartz)。在不同實施例中,低熱膨脹材料包括二氧化鈦(TiO 2)、摻雜的二氧化矽(SiO 2)、或其他具有低熱膨脹的合適材料。光罩可能進一步包括沉積在基材上的反射多層膜(multiple layer)。反射多層膜可能包括數個薄膜對(film pair),舉例來說,鉬-矽(molybdenum-silicon,Mo/Si)薄膜對(例如,在每一組薄膜對中,一鉬層位於一矽層的上方或下方)、或鉬-鈹(molybdenum-beryllium,Mo/Be)薄膜對,或其他高度反射光之合適材料。 In some embodiments, the reticle may include a reflective mask. The structure of the photomask includes a substrate made of a suitable material, such as a low thermal expansion material (LTEM) or fused quartz. In various embodiments, the low thermal expansion material includes titanium dioxide (TiO 2 ), doped silicon dioxide (SiO 2 ), or other suitable materials with low thermal expansion. The photomask may further include reflective multiple layers deposited on the substrate. Reflective multilayer films may include several film pairs, for example, molybdenum-silicon (Mo/Si) film pairs (for example, in each film pair, a molybdenum layer is located on a silicon layer above or below), or molybdenum-beryllium (molybdenum-beryllium, Mo/Be) thin film pair, or other suitable materials that highly reflect light.

參見第2A圖,其為根據本揭示案一些實施例的一種支撐座的例示性前視圖,其中第2A圖中虛線方框的局部放大M1繪示於第2B圖。第2A圖與第2B圖的支撐座200為示例性的晶圓載台之簡化圖,支撐座200包含晶圓支撐銷205。在其他實施例中,如第2C圖和第2D圖中的支撐座200’上,可能不具有晶圓支撐銷205。再者,施作於第2A圖與第2B圖的支撐座200的各階段操作步驟亦可施作於第2C圖與第2D圖的支撐座200’。除非額外說明,圖式中討論到的相同元件之說明可直接應用至其他圖片上。Refer to FIG. 2A , which is an exemplary front view of a support base according to some embodiments of the present disclosure, wherein a partially enlarged M1 of the dotted box in FIG. 2A is shown in FIG. 2B . The support base 200 in FIGS. 2A and 2B is a simplified diagram of an exemplary wafer carrier, and the support base 200 includes wafer support pins 205 . In other embodiments, the wafer support pins 205 may not be provided on the support base 200' in FIG. 2C and FIG. 2D. Furthermore, the operation steps of each stage applied to the support base 200 in FIG. 2A and FIG. 2B can also be applied to the support base 200' in FIG. 2C and FIG. 2D. Descriptions of the same elements discussed in the figures apply directly to the other figures unless otherwise stated.

在一些實施例中,支撐座200在經過一或多道半導體製程之後,難以避免地會有些許微粒204附著在支撐座200的表面202上。這些微粒204可能來自於氣體中的微粒、製程過程中產生的汙染物、原先附著在晶圓上的微粒、或其他產生微粒情況。這些微粒204可能會引起半導體製程中之對準問題以及產生具有缺陷的晶圓。In some embodiments, after the support base 200 passes through one or more semiconductor processes, some particles 204 inevitably adhere to the surface 202 of the support base 200 . These particles 204 may come from particles in the gas, pollutants generated during the process, particles originally attached to the wafer, or other particle-generating conditions. These particles 204 may cause alignment problems in semiconductor manufacturing and produce defective wafers.

在進行移除微粒之前,支撐座200的電性與支撐座200的表面202上之微粒204的電性大致上處於電中性之狀態。換句話說,如第2B圖和第2D圖所繪示,支撐座200或支撐座200’上的第一正電荷206數量與第一負電荷208數量實質上相等,且微粒204上的第一正電荷206數量與第一負電荷208數量亦實質上相等。Before removing the particles, the electrical properties of the support base 200 and the electrical properties of the particles 204 on the surface 202 of the support base 200 are substantially in an electrically neutral state. In other words, as shown in FIG. 2B and FIG. 2D , the number of first positive charges 206 on the support base 200 or the support base 200 ′ is substantially equal to the number of first negative charges 208 , and the first negative charges on the particles 204 The number of positive charges 206 and the number of first negative charges 208 are also substantially equal.

應注意的是,為了簡化圖式呈現,圖式中任何正電荷與負電荷的尺寸、數量、位置、形狀、組合方式、或其他物理之特徵已做調整,以在圖式中呈現出正電荷與負電荷例示性之電性象徵。再者,本揭示案中所繪示的支撐座為具有晶圓支撐銷205的支撐座200僅作為範例並不意在限制。支撐座的用途為放置任何需要維持水平之目標物(例如晶圓或光罩),因此具有相同用途之裝置,皆在本揭示案之精神和範疇之內。It should be noted that in order to simplify the presentation of the diagrams, the size, number, location, shape, combination, or other physical characteristics of any positive and negative charges in the diagrams have been adjusted to present positive charges in the diagrams Illustrative symbol of electricity with negative charge. Furthermore, the support base depicted in this disclosure as support base 200 with wafer support pins 205 is by way of example only and is not intended to be limiting. The purpose of the support base is to place any object that needs to be maintained level, such as a wafer or a photomask, so devices serving the same purpose are within the spirit and scope of the present disclosure.

第1圖中流程圖100的步驟108可藉由本揭示案提供的自晶圓及/或光罩的支撐座之表面移除微粒方法達成。第3圖為根據本揭示案的一些實施例而繪示一種自晶圓及/或光罩的支撐座之表面移除微粒的方法300之流程圖。方法300中各個步驟操作分別對應於第4A圖、第5A圖和第6A圖。例如,方法300的步驟302和第4A圖所示,充電裝置400提供電荷402至支撐座200之表面202上。例如,步驟304和第5A圖所示,移動清潔元件500靠近支撐座200,使支撐座200之表面202上的微粒204朝向清潔元件500靠近並吸附至清潔元件500的靜電吸附層504上。例如,步驟306和第6A圖所示,移動清潔元件500遠離支撐座200。Step 108 of flowchart 100 in FIG. 1 can be achieved by the methods of the present disclosure for removing particles from the surface of the wafer and/or the support pad of the reticle. FIG. 3 is a flowchart illustrating a method 300 of removing particles from surfaces of wafer and/or reticle support seats according to some embodiments of the present disclosure. Each step in the method 300 corresponds to Fig. 4A, Fig. 5A and Fig. 6A respectively. For example, as shown in step 302 of the method 300 and FIG. 4A , the charging device 400 provides an electric charge 402 onto the surface 202 of the support base 200 . For example, as shown in step 304 and FIG. 5A, the cleaning element 500 is moved close to the support base 200, so that the particles 204 on the surface 202 of the support base 200 approach the cleaning element 500 and are attracted to the electrostatic adsorption layer 504 of the cleaning element 500. For example, as shown in step 306 and FIG. 6A , the cleaning element 500 is moved away from the support base 200 .

參見第4A圖,繪示了方法300中步驟302之簡化前視圖:充電裝置400提供電荷402至支撐座200的表面202及表面202上的微粒204。在第4A圖中,充電裝置400亦包括移動充電裝置400的傳動系統、提供電荷402的控制系統、及/或其他裝置。為了簡化說明,上述系統或裝置在第4A圖中未繪出。Referring to FIG. 4A , a simplified front view of step 302 of method 300 is shown: charging device 400 provides charge 402 to surface 202 of support 200 and particles 204 on surface 202 . In FIG. 4A, the charging device 400 also includes a transmission system of the mobile charging device 400, a control system for providing the electric charge 402, and/or other devices. For simplicity of illustration, the above-mentioned system or device is not shown in Fig. 4A.

在一些實施例中,充電裝置400移動至支撐座200之上方,可以藉由類似噴灑的方式提供電荷402至支撐座200的表面202及表面202上的微粒204上。在一些實施例中,充電裝置400噴灑電荷402的過程中,晶圓支撐銷205可保持突出狀態。在一些實施例中,充電裝置400噴灑電荷402的噴灑截面積等於或大於目標物的放置面積,例如晶圓、光罩、或其他需維持水平之目標物,以降低目標物受到微粒204汙染及/或對準問題。第4A圖中虛線方框的局部放大M3繪示於第4B圖。In some embodiments, the charging device 400 moves above the support base 200 , and can provide the charge 402 to the surface 202 of the support base 200 and the particles 204 on the surface 202 in a manner similar to spraying. In some embodiments, the wafer support pin 205 may remain protruding during the charging device 400 spraying the charge 402 . In some embodiments, the spraying cross-sectional area of the charge 402 sprayed by the charging device 400 is equal to or larger than the placement area of the target, such as a wafer, a photomask, or other targets that need to be maintained horizontally, so as to reduce the contamination of the target by particles 204 and /or alignment issues. The partial enlargement M3 of the dotted box in Fig. 4A is shown in Fig. 4B.

充電裝置400提供電荷402,其中充電裝置400的電荷來自於帶電粒子,例如電子、離子、或電漿(plasma)、或其他合適的帶電粒子。The charging device 400 provides charges 402 , wherein the charges of the charging device 400 come from charged particles, such as electrons, ions, or plasma, or other suitable charged particles.

充電裝置400可為電子槍、離子產生器、電漿產生器、其他提供帶電粒子之技術、或上述之組合使用。The charging device 400 can be an electron gun, an ion generator, a plasma generator, other technologies for providing charged particles, or a combination thereof.

參見第4B圖,繪示出第4A圖的局部放大M3前視圖。充電裝置400提供的電荷402為第二負電荷406。在一些實施例中,第二負電荷406從充電裝置400移動至支撐座200的表面202和表面202上的微粒204(例如,沿方向408移動)。支撐座200的表面202和表面202上的微粒204各自具有第一正電荷206、第一負電荷208、和第二負電荷406,使得支撐座200的表面202及表面202上的微粒204各自具有的負電荷數量多於正電荷數量。換句話說,支撐座200的表面202及表面202上的微粒204各自具有負電荷電性。當支撐座200的表面202和表面202上的微粒204各別且同時具有負電荷電性時,一相斥之靜電力產生於支撐座200的表面202及表面202上的微粒204之間。在一些實施例中,一靜電力將以遠離支撐座200的表面202的方向(例如,沿靜電力方向410)施加在微粒204上。Referring to Fig. 4B, a partially enlarged M3 front view of Fig. 4A is shown. The charge 402 provided by the charging device 400 is a second negative charge 406 . In some embodiments, second negative charge 406 moves from charging device 400 to surface 202 of support stand 200 and particles 204 on surface 202 (eg, in direction 408 ). The surface 202 of the support base 200 and the particles 204 on the surface 202 each have a first positive charge 206, a first negative charge 208, and a second negative charge 406, so that the surface 202 of the support base 200 and the particles 204 on the surface 202 each have There are more negative charges than positive charges. In other words, the surface 202 of the support base 200 and the particles 204 on the surface 202 each have a negative electric charge. When the surface 202 of the support base 200 and the particles 204 on the surface 202 have negative charges respectively and simultaneously, a repulsive electrostatic force is generated between the surface 202 of the support base 200 and the particles 204 on the surface 202 . In some embodiments, an electrostatic force will be exerted on the particle 204 in a direction away from the surface 202 of the support 200 (eg, along the electrostatic force direction 410 ).

根據本揭示案的一些實施例,提供電荷402(例如,第二負電荷406)至支撐座200之表面202及表面202上的微粒204,改變了支撐座200之表面202的淨電荷及表面202上的微粒204的淨電荷(意即正電荷與負電荷成對中和後,仍帶有的電荷)。支撐座200之表面202及表面202上的微粒204的淨電荷同時為相同電性時,例如兩者同時為正電或兩者同時為負電,可產生彼此相斥之靜電力。此外,支撐座200之表面202及表面202上的微粒204之間靜電力的大小與各自具備的淨電荷數量呈正比。在一些實施例中,預先在支撐座200之表面202及表面202上的微粒204之間產生相斥之靜電力可能足以幫助表面202上的微粒204在後續步驟中自支撐座200之表面202脫附。According to some embodiments of the present disclosure, providing a charge 402 (eg, a second negative charge 406 ) to the surface 202 of the support 200 and the particles 204 on the surface 202 changes the net charge of the surface 202 of the support 200 and the surface 202 The net charge of the particle 204 on the surface (that is, the charge still carried after the positive charge and the negative charge are neutralized in pairs). When the net charges of the surface 202 of the support base 200 and the particles 204 on the surface 202 are the same at the same time, for example, both are positive or negative at the same time, an electrostatic force repelling each other can be generated. In addition, the magnitude of the electrostatic force between the surface 202 of the support base 200 and the particles 204 on the surface 202 is directly proportional to the amount of net charges they possess. In some embodiments, pre-generated electrostatic repulsion between the surface 202 of the support 200 and the particles 204 on the surface 202 may be sufficient to help the particles 204 on the surface 202 to detach from the surface 202 of the support 200 in a subsequent step. attached.

第5A圖繪示了方法300的步驟304之簡化前視圖。清潔元件500靠近支撐座200(如,方向506),使表面202上的微粒204朝向清潔元件500移動(如,方向508)並吸附至清潔元件500的靜電吸附層504上。在一些實施例中,晶圓傳送機械手臂T承載清潔元件500,並藉由晶圓傳送機械手臂T的移動使清潔元件500靠近支撐座200。清潔元件500包含基材502與設置在基材502上的靜電吸附層504,其中靜電吸附層504面向支撐座200。第5A圖包括其他系統或裝置,例如移除吸附在清潔元件500上的微粒204之清潔系統或其他應用之系統,為了簡化說明,其他系統或裝置未繪示於第5A圖。FIG. 5A shows a simplified front view of step 304 of method 300 . The cleaning element 500 approaches the support base 200 (eg, direction 506 ), so that the particles 204 on the surface 202 move toward the cleaning element 500 (eg, direction 508 ) and are attracted to the electrostatic adsorption layer 504 of the cleaning element 500 . In some embodiments, the wafer transfer robot T carries the cleaning element 500 , and the cleaning element 500 approaches the support base 200 by the movement of the wafer transfer robot T. The cleaning element 500 includes a substrate 502 and an electrostatic adsorption layer 504 disposed on the substrate 502 , wherein the electrostatic adsorption layer 504 faces the support base 200 . FIG. 5A includes other systems or devices, such as a cleaning system for removing particles 204 adsorbed on the cleaning element 500 or other application systems. For simplicity of description, other systems or devices are not shown in FIG. 5A .

繼續參見第5A圖,在一些實施例中,清潔元件500面積與方法300的步驟302中充電裝置400電荷噴灑之面積大致上相同,意即等於或大於目標物的放置面積,例如晶圓、光罩、或其他需維持水平之目標物。在一些實施例中,清潔元件500移動至支撐座200之上方,對齊步驟302中充電裝置400電荷噴灑的面積。清潔元件500朝向支撐座200移動(例如,方向506)。在一些實施例中,清潔元件500停止在支撐座200的表面202上方的一位置,以未接觸支撐座200的表面202及突出的晶圓支撐銷205之態樣來吸附微粒204。在另一些實施例中,清潔元件500以接觸支撐座200的表面202及/或突出的晶圓支撐銷205之態樣來吸附微粒204。第5A圖中虛線方框的局部放大M4繪示於第5B圖。Continuing to refer to FIG. 5A, in some embodiments, the area of the cleaning element 500 is substantially the same as the area of the charge sprayed by the charging device 400 in step 302 of the method 300, which means that it is equal to or larger than the placement area of the target object, such as a wafer, a light source, etc. Covers, or other objects that need to be kept level. In some embodiments, the cleaning element 500 moves above the support base 200 to align with the area where the charging device 400 is sprayed in step 302 . Cleaning element 500 moves toward support base 200 (eg, direction 506 ). In some embodiments, the cleaning element 500 stops at a position above the surface 202 of the support base 200 to absorb the particles 204 without contacting the surface 202 of the support base 200 and the protruding wafer support pins 205 . In some other embodiments, the cleaning element 500 absorbs the particles 204 by contacting the surface 202 of the support base 200 and/or the protruding wafer support pins 205 . The partial enlargement M4 of the dotted box in Fig. 5A is shown in Fig. 5B.

參見第5B圖,繪示出第5A圖的局部放大M4前視圖,其中表面202上的微粒204上具有的負電荷數量多於正電荷數量(例如,第一正電荷206、第一負電荷208、和第二負電荷406),使得表面202上的微粒204具有負電電性。清潔元件500的靜電吸附層504具有吸引負電電性之特性。在一些實施例中,清潔元件500的靜電吸附層504的具有正電電性(例如,第二正電荷510)。具有正電電性的靜電吸附層504與表面202上的微粒204之間產生吸引之靜電力,使得表面202上的微粒204朝向清潔元件500移動(如,方向508)並吸附至清潔元件500的靜電吸附層504上。Referring to FIG. 5B, an enlarged partial M4 front view of FIG. 5A is shown, wherein particles 204 on surface 202 have more negative charges than positive charges (e.g., first positive charge 206, first negative charge 208 , and the second negative charge 406 ), so that the particles 204 on the surface 202 have electronegative properties. The electrostatic adsorption layer 504 of the cleaning element 500 has the characteristic of attracting negative charges. In some embodiments, the electrostatic adsorption layer 504 of the cleaning element 500 has a positive charge (eg, a second positive charge 510 ). An electrostatic force of attraction is generated between the electrostatic adsorption layer 504 with positive electromagnetism and the particles 204 on the surface 202, so that the particles 204 on the surface 202 move toward the cleaning element 500 (such as direction 508) and are attracted to the electrostatic force of the cleaning element 500. on the adsorption layer 504.

在一些實施例中,清潔元件500的基材502為未經圖案化之基材,材料大致上相同於控片(control wafer)或是測試片(dummy wafer),基材可能包括(1)結晶矽;(2)鍺;(3)化合物半導體包括SiC、GaAs、GaP、InP、InAs、及/或InSb;(4)合金半導體包括SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP、GaInAsP;或(5)任何上述之組合。In some embodiments, the substrate 502 of the cleaning element 500 is an unpatterned substrate, and the material is substantially the same as a control wafer or a dummy wafer. The substrate may include (1) crystal Silicon; (2) germanium; (3) compound semiconductors including SiC, GaAs, GaP, InP, InAs, and/or InSb; (4) alloy semiconductors including SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, GaInAsP; or ( 5) Any combination of the above.

一般而言,物品各自具備的淨電荷數量與物品間的靜電力強弱呈正比。物品具備的淨電荷數量影響物品具有的電位狀態,並且物品間的靜電力強弱之狀態可由物品之間的電位差呈現。物品各自具備的淨電荷數量(或電位狀態)與物品之間的電位差具有正向關係。舉例來說,在步驟302中,當充電裝置400提供電荷402至微粒204上,使微粒204淨電荷數量增加,從而可提高微粒204與清潔元件500之間的電位差和相吸的靜電力,因此可能有助於驅動微粒204移動至靜電吸附層504上。在一些實施例中,微粒204與靜電吸附層504與之間的電位差大於約0.1伏特時,在所產生的靜電力可驅使微粒204朝向清潔元件500移動並吸附在清潔元件500的靜電吸附層504上。Generally speaking, the amount of net charge possessed by each item is directly proportional to the strength of the electrostatic force between the items. The amount of net charge possessed by an item affects the potential state of the item, and the state of the electrostatic force between items can be represented by the potential difference between items. The amount of net charge (or potential state) possessed by each item has a positive relationship with the potential difference between the items. For example, in step 302, when the charging device 400 provides the charge 402 to the particle 204, the net charge amount of the particle 204 increases, thereby increasing the potential difference and the electrostatic force of attraction between the particle 204 and the cleaning element 500, so It may be helpful to drive the particles 204 to move onto the electrostatic adsorption layer 504 . In some embodiments, when the potential difference between the particles 204 and the electrostatic adsorption layer 504 is greater than about 0.1 volts, the generated electrostatic force can drive the particles 204 to move toward the cleaning element 500 and be attracted to the electrostatic adsorption layer 504 of the cleaning element 500 superior.

在步驟302中,如第4A圖所示,藉由充電裝置400的提供電荷402以調控微粒204之電性和電量,有助於決定靜電吸附層504的選擇。舉例來說,當微粒204從充電裝置400得到較多的負電荷而呈現淨電荷為負電電性,則清潔元件500的靜電吸附層504具備的淨電荷性質應為正電電性以產生吸引一靜電力。反之亦然。In step 302 , as shown in FIG. 4A , the charge 402 provided by the charging device 400 is used to control the electrical properties and quantity of the particles 204 , which helps to determine the selection of the electrostatic adsorption layer 504 . For example, when the particle 204 obtains more negative charges from the charging device 400 and presents a net charge that is electronegative, the net charge property of the electrostatic adsorption layer 504 of the cleaning element 500 should be positive to generate an electrostatic attraction. force. vice versa.

靜電吸附層可為一塗層,並且塗層的製程參數,例如塗層材料與塗層厚度,亦可能影響與微粒204之間的電位差。舉例來說,在一些實施例中,無塗層的矽晶圓片與具有淨電荷的微粒204之間可產生約0.08伏特至約0.12伏特的電位差;在同一情況下,具有厚度約35奈米至約45奈米的二氧化鈦(Titanium dioxide, TiO 2)塗層的矽晶圓片可與具有淨電荷的微粒204之間可產生約0.5伏特至0.7伏特的電位差。相較之下,具有厚度約35奈米至約45奈米的二氧化鈦塗層的矽晶圓片所具有吸附微粒204的能力(例如,微粒數量、微粒附著度)優於無塗層的矽晶圓片。此外,二氧化鈦塗層可帶有正電電性故吸引具有負電電性之微粒204。因此,可以藉由塗層的製程參數增大清潔元件500和具有淨電荷的微粒204之間的電位差,以產生可有助於微粒204移動至清潔元件500之驅動力。 The electrostatic adsorption layer can be a coating, and coating process parameters, such as coating material and coating thickness, may also affect the potential difference between the electrostatic adsorption layer and the particles 204 . For example, in some embodiments, a potential difference between an uncoated silicon wafer and particles 204 having a net charge of about 0.08 volts to about 0.12 volts can be generated; A potential difference of about 0.5 volts to 0.7 volts can be generated between the silicon wafer coated with titanium dioxide (TiO 2 ) to about 45 nm and the particles 204 having a net charge. In contrast, silicon wafers with a titanium dioxide coating having a thickness of about 35 nm to about 45 nm have a better ability (e.g., number of particles, degree of particle attachment) to adsorb particles 204 than uncoated silicon wafers wafer. In addition, the titanium dioxide coating can be charged positively so as to attract the particles 204 with negative charge. Therefore, the potential difference between the cleaning element 500 and the particles 204 with a net charge can be increased by the coating process parameters to generate a driving force that can help the particles 204 move to the cleaning element 500 .

在一些實施例中,清潔元件500上的塗層可藉由以下製程中至少一者而形成:熱氧化、化學氧化、化學氣相沉積(chemical vapor deposition; CVD),包括低壓CVD(low pressure CVD; LPCVD)、電漿增強CVD (plasma enhanced CVD; PECVD)、超高真空CVD (ultra-high vacuum CVD; UHVCVD)、降壓CVD (reduced pressure CVD; RPCVD)、原子層沉積(atomic layer deposition; ALD)、物理氣相沉積、脈衝雷射沉積、濺射、蒸發沉積、氣相磊晶(vapor phase epitaxy; VPE)、分子束磊晶(molecular beam epitaxy; MBE)、液相磊晶(liquid phase epitaxy; LPE)、電鍍、無電極電鍍,或其他適用技術。In some embodiments, the coating on the cleaning element 500 may be formed by at least one of the following processes: thermal oxidation, chemical oxidation, chemical vapor deposition (chemical vapor deposition; CVD), including low pressure CVD (low pressure CVD) ; LPCVD), plasma enhanced CVD (plasma enhanced CVD; PECVD), ultra-high vacuum CVD (ultra-high vacuum CVD; UHVCVD), step-down CVD (reduced pressure CVD; RPCVD), atomic layer deposition (atomic layer deposition; ALD ), physical vapor deposition, pulsed laser deposition, sputtering, evaporative deposition, vapor phase epitaxy (VPE), molecular beam epitaxy (MBE), liquid phase epitaxy (liquid phase epitaxy) ; LPE), electroplating, electroless plating, or other applicable techniques.

第6A圖繪示了方法300的步驟306之簡化前視圖。移動清潔元件500遠離支撐座200的表面202,其中附著於清潔元件500的微粒204隨著清潔元件500而遠離支撐座200的表面202。在一些實施例中,晶圓傳送機械手臂T承載清潔元件500,並藉由晶圓傳送機械手臂T的移動使清潔元件500遠離支撐座200。在第6A圖中,微粒204因相吸的靜電力而保持附著於清潔元件500的靜電吸附層504上,當清潔元件500遠離支撐座200的表面202(例如,沿方向600),微粒204隨著清潔元件500一併遠離支撐座200的表面202。第6A圖中虛線方框的局部放大M5繪示於第6B圖。FIG. 6A shows a simplified front view of step 306 of method 300 . The cleaning element 500 is moved away from the surface 202 of the supporting base 200 , wherein the particles 204 attached to the cleaning element 500 move away from the surface 202 of the supporting base 200 along with the cleaning element 500 . In some embodiments, the wafer transfer robotic arm T carries the cleaning element 500 , and the cleaning element 500 is moved away from the support base 200 by the movement of the wafer transfer robotic arm T. In Figure 6A, the particles 204 remain attached to the electrostatic adsorption layer 504 of the cleaning element 500 due to the electrostatic force of attraction. The cleaning element 500 is kept away from the surface 202 of the support base 200 . The partial enlargement M5 of the dotted box in Fig. 6A is shown in Fig. 6B.

第6B圖繪示第6A圖的局部放大M5前視圖。微粒204經移除後,支撐座200的表面202上無微粒204,並恢復支撐座200的表面202至最初電中性之狀態,換句話說,支撐座200的表面202具有的相同正電荷數量與負電荷數量。在一些實施例中,可藉由接地的方式恢復支撐座200的表面202的電中性之狀態。應注意的是,支撐座200的表面202上電中性狀態之電荷可來自於第一正電荷206、第一負電荷208、第二負電荷406、其他方式而獲得之電荷(未繪示)、或上述之組合。Fig. 6B shows a partially enlarged front view of M5 in Fig. 6A. After the particles 204 are removed, the surface 202 of the support base 200 is free of particles 204, and the surface 202 of the support base 200 is restored to the state of initial electrical neutrality, in other words, the surface 202 of the support base 200 has the same amount of positive charge with the amount of negative charge. In some embodiments, the electrical neutral state of the surface 202 of the support base 200 can be restored by grounding. It should be noted that the charge in the neutral state on the surface 202 of the support seat 200 may come from the first positive charge 206, the first negative charge 208, the second negative charge 406, or charges obtained by other means (not shown) , or a combination of the above.

在一些實施例中,其他沒繪示在第4A圖到第6B圖的系統或裝置,例如氣體供應系統、排氣系統、位置校準系統、定位傳動系統、及/或其他裝置,可能涵蓋在其中。In some embodiments, other systems or devices not shown in Figures 4A to 6B, such as gas supply systems, exhaust systems, position calibration systems, positioning drive systems, and/or other devices, may be included. .

第1圖中流程圖100的步驟108可藉由本揭示案提供的另一種自晶圓及/或光罩的支撐座之表面移除微粒方法達成。第7圖為根據本揭示案一些實施例而繪示另一種自晶圓及/或光罩的支撐座之表面移除微粒的方法700之流程圖。方法700中各個步驟操作分別對應於第8圖到第11圖。例如,方法700的步驟702和第8圖所示,充電裝置400提供電荷402至支撐座200之表面202上。例如,方法700的步驟703和第9圖所示,使用充電裝置400提供電荷900至清潔元件500上。例如,方法700的步驟704和第10圖所示,移動清潔元件500靠近支撐座200,使支撐座200之表面202上的微粒204朝向清潔元件500靠近並吸附至清潔元件500上。例如,步驟706和第11圖所示,移動清潔元件500遠離支撐座200。相較第3圖的方法300,第7圖的方法700多了一項步驟703,除此之外其他步驟大致上皆可應用方法300的步驟說明。Step 108 of the flowchart 100 in FIG. 1 can be achieved by another method of removing particles from the surface of the wafer and/or the support seat of the photomask provided by the present disclosure. FIG. 7 is a flowchart illustrating another method 700 for removing particles from surfaces of wafer and/or reticle support seats according to some embodiments of the present disclosure. Each step operation in the method 700 corresponds to FIG. 8 to FIG. 11 respectively. For example, in step 702 of method 700 and shown in FIG. For example, step 703 of method 700 and shown in FIG. For example, as shown in step 704 of method 700 and FIG. 10 , the cleaning element 500 is moved close to the support base 200 so that the particles 204 on the surface 202 of the support base 200 approach the cleaning element 500 and are attracted to the cleaning element 500 . For example, as shown in step 706 and FIG. 11 , the cleaning element 500 is moved away from the support base 200 . Compared with the method 300 in FIG. 3 , the method 700 in FIG. 7 has one more step 703 , except for other steps, the description of the steps in the method 300 can generally be applied.

參見第8圖,繪示了方法700中步驟702之簡化前視圖:充電裝置400提供電荷402至支撐座200的表面202及表面202上的微粒204。在第8圖中,充電裝置400亦包括移動充電裝置400的傳動系統、提供電荷402的控制系統、及/或其他裝置。為了簡化說明,上述系統或裝置在第8圖中未繪出。Referring to FIG. 8 , a simplified front view of step 702 of method 700 is shown: charging device 400 provides charge 402 to surface 202 of support 200 and particles 204 on surface 202 . In FIG. 8, the charging device 400 also includes a transmission system of the mobile charging device 400, a control system for providing the electric charge 402, and/or other devices. To simplify the description, the above-mentioned system or device is not shown in FIG. 8 .

在一些實施例中,充電裝置400移動至支撐座200之上方,提供電荷402的方式包括以類似噴灑的方式提供電荷402至支撐座200的表面202及表面202上的微粒204上。在一些實施例中,充電裝置400噴灑電荷402的過程中,晶圓支撐銷205保持突出狀態。在一些實施例中,充電裝置400噴灑電荷402的噴灑截面積等於或大於目標物的放置面積,例如晶圓、光罩、或其他需維持水平之目標物,以降低目標物受到微粒汙染及/或對準問題。第7圖中虛線方框的局部放大M3的不同實施例繪示於第12A圖和第13A圖(稍後討論)。In some embodiments, the charging device 400 moves above the support base 200 , and the manner of providing the charge 402 includes providing the charge 402 to the surface 202 of the support base 200 and the particles 204 on the surface 202 in a manner similar to spraying. In some embodiments, the wafer support pin 205 remains protruding during the charging device 400 spraying the charge 402 . In some embodiments, the spraying cross-sectional area of the charge 402 sprayed by the charging device 400 is equal to or larger than the placement area of the target, such as a wafer, a photomask, or other targets that need to be maintained horizontally, so as to reduce the contamination of the target by particles and/or or alignment issues. Different embodiments of the partial enlargement M3 of the dotted box in Fig. 7 are shown in Fig. 12A and Fig. 13A (discussed later).

參見第9圖,繪示了方法700中步驟703之簡化前視圖:充電裝置400提供電荷900至清潔元件500上(例如,方向902),使清潔元件500所帶之電荷900相異於支撐座200的電荷402。換句話說,當支撐座獲得的電荷402為正電荷時,清潔元件500所獲得的電荷900為負電荷。反之亦然。方法700的步驟703中,藉由在清潔元件500上進行前處理以影響與微粒204之間的電位差。Referring to Figure 9, a simplified front view of step 703 of method 700 is shown: charging device 400 provides charge 900 onto cleaning element 500 (e.g., direction 902) such that cleaning element 500 is charged 900 differently from the support base 200 charges 402. In other words, when the charge 402 obtained by the support seat is a positive charge, the charge 900 obtained by the cleaning element 500 is a negative charge. vice versa. In step 703 of the method 700 , the potential difference between the cleaning element 500 and the particles 204 is affected by performing a pretreatment on the cleaning element 500 .

第10圖繪示了方法700的步驟704之簡化前視圖。清潔元件500靠近支撐座200(如,方向506),使表面202上的微粒204朝向清潔元件500移動(如,方向508)並吸附至清潔元件500上。在一些實施例中,晶圓傳送機械手臂T承載清潔元件500,並藉由晶圓傳送機械手臂T的移動使清潔元件500靠近支撐座200。第10圖包括其他系統或裝置,例如移除吸附在清潔元件500上的微粒204之清潔系統或其他合適的裝置,為了簡化說明,上述系統或裝置未繪示於第10圖。FIG. 10 illustrates a simplified front view of step 704 of method 700 . The cleaning element 500 approaches the support base 200 (eg, direction 506 ), so that the particles 204 on the surface 202 move toward the cleaning element 500 (eg, direction 508 ) and are attracted to the cleaning element 500 . In some embodiments, the wafer transfer robot T carries the cleaning element 500 , and the cleaning element 500 approaches the support base 200 by the movement of the wafer transfer robot T. FIG. 10 includes other systems or devices, such as a cleaning system for removing particles 204 adsorbed on the cleaning element 500 or other suitable devices. For simplicity of illustration, the above systems or devices are not shown in FIG. 10 .

繼續參見第10圖,在一些實施例中,清潔元件500面積與方法700的步驟702中充電裝置400電荷噴灑之面積大致上相同,意即等於或大於目標物的放置面積,例如晶圓、光罩、或其他需維持水平之目標物。在一些實施例中,清潔元件500移動至支撐座200之上方,對齊步驟702中充電裝置400電荷噴灑的面積。清潔元件500朝向支撐座200移動(例如,方向506)並且清潔元件500最終停止在支撐座200的表面202上方的一位置。在一些實施例中,清潔元件500以未接觸支撐座200的表面202及突出的晶圓支撐銷205之態樣來吸附表面202上的微粒204。在另一些實施例中,清潔元件500以接觸支撐座200的表面202及/或突出的晶圓支撐銷205之態樣來吸附表面202上的微粒204。第10圖中虛線方框的局部放大M4的不同實施例繪示於第12B圖和第13B圖(稍後討論)。Continuing to refer to FIG. 10, in some embodiments, the area of the cleaning element 500 is substantially the same as the area of the charge sprayed by the charging device 400 in step 702 of the method 700, which means that it is equal to or larger than the placement area of the target object, such as a wafer, light Covers, or other objects that need to be kept level. In some embodiments, the cleaning element 500 moves above the support base 200 to align with the area where the charging device 400 sprays the charge in step 702 . The cleaning element 500 moves toward the support base 200 (eg, direction 506 ) and the cleaning element 500 eventually stops at a position above the surface 202 of the support base 200 . In some embodiments, the cleaning element 500 absorbs the particles 204 on the surface 202 without contacting the surface 202 of the support base 200 and the protruding wafer support pins 205 . In other embodiments, the cleaning element 500 adsorbs the particles 204 on the surface 202 by contacting the surface 202 of the support base 200 and/or the protruding wafer support pins 205 . Different embodiments of the partial enlargement M4 of the dotted box in Fig. 10 are shown in Fig. 12B and Fig. 13B (discussed later).

第11圖繪示了方法700的步驟706之簡化前視圖。移動清潔元件500遠離支撐座200的表面202,其中附著於清潔元件500的微粒204隨著清潔元件500而遠離支撐座200的表面202。在一些實施例中,晶圓傳送機械手臂T承載清潔元件500,並藉由晶圓傳送機械手臂T的移動使清潔元件500遠離支撐座200。在第11圖中,微粒204因相吸的靜電力而保持附著於清潔元件500上,當清潔元件500遠離支撐座200的表面202(例如,沿方向600),微粒204隨著清潔元件500一併遠離支撐座200的表面202。第11圖中虛線方框的局部放大M5的不同實施例繪示於第12C圖和第13C圖(稍後討論)。FIG. 11 illustrates a simplified front view of step 706 of method 700 . The cleaning element 500 is moved away from the surface 202 of the supporting base 200 , wherein the particles 204 attached to the cleaning element 500 move away from the surface 202 of the supporting base 200 along with the cleaning element 500 . In some embodiments, the wafer transfer robotic arm T carries the cleaning element 500 , and the cleaning element 500 is moved away from the support base 200 by the movement of the wafer transfer robotic arm T. In Figure 11, the particles 204 remain attached to the cleaning element 500 due to the electrostatic force of attraction. When the cleaning element 500 is away from the surface 202 of the support base 200 (for example, along the direction 600), the particles 204 follow the cleaning element 500- And away from the surface 202 of the support seat 200 . A partial enlargement of the dotted box in Fig. 11. Different embodiments of M5 are shown in Figs. 12C and 13C (discussed later).

針對上述方法700中,由於充電裝置400提供的電荷可為負電荷或是正電荷。針對不同電荷之實施例可由第8圖、第10圖、和第11圖中的局部放大M3、M4以及M5來進一步說明。For the above method 700, the charge provided by the charging device 400 can be negative charge or positive charge. Embodiments for different charges can be further illustrated by the partial enlargements M3 , M4 and M5 in FIG. 8 , FIG. 10 , and FIG. 11 .

參見第12A圖,繪示出第8圖的局部放大M3前視圖。充電裝置400提供第三負電荷1200(即,第8圖的電荷402)至支撐座200的表面202及表面202上的微粒204。在一些實施例中,第三負電荷1200從充電裝置400沿方向1202移動至支撐座200的表面202和微粒204。支撐座200的表面202和微粒204各自具有第一正電荷206、第一負電荷208、和第三負電荷1200,使得支撐座200的表面202及微粒204各自具有的負電荷數量多於正電荷數量,因此支撐座200的表面202及微粒204各自具有負電電性。當支撐座200的表面202和微粒204各別且同時具有相同的負電電性時,一相斥之靜電力產生於支撐座200的表面202及表面202上的微粒204之間。在一些實施例中,一靜電力將以遠離支撐座200的表面202的方向(例如,沿靜電力方向1204)施加在微粒204上。Referring to Fig. 12A, a partially enlarged M3 front view of Fig. 8 is shown. The charging device 400 provides the third negative charge 1200 (ie, the charge 402 in FIG. 8 ) to the surface 202 of the support base 200 and the particles 204 on the surface 202 . In some embodiments, the third negative charge 1200 moves from the charging device 400 to the surface 202 and the particles 204 of the support base 200 in a direction 1202 . The surface 202 of the support base 200 and the particles 204 each have a first positive charge 206, a first negative charge 208, and a third negative charge 1200, so that the surface 202 of the support base 200 and the particles 204 each have more negative charges than positive charges Therefore, the surface 202 of the support base 200 and the particles 204 have electronegative properties. When the surface 202 of the support base 200 and the particles 204 have the same electronegative properties separately and at the same time, a repulsive electrostatic force is generated between the surface 202 of the support base 200 and the particles 204 on the surface 202 . In some embodiments, an electrostatic force will be exerted on the particle 204 in a direction away from the surface 202 of the support 200 (eg, along the electrostatic force direction 1204 ).

參見第12B圖,繪示出第10圖的局部放大M4前視圖,表面202上的微粒204上接收到第三負電荷1200後,微粒204具有的負電荷數量多於正電荷數量並具有負電電性,因此可使用能夠吸引負電電性的清潔元件500。在一些實施例中,清潔元件500從充電裝置400得到電荷900為正電荷(即,第三正電荷1206),使得清潔元件500與微粒204和之間產生彼此吸引之靜電力。在一些實施例中,此吸引之靜電力使微粒204朝向清潔元件500移動(例如,沿方向1208)。Referring to FIG. 12B, which shows a partial enlarged M4 front view of FIG. 10, after the particle 204 on the surface 202 receives the third negative charge 1200, the particle 204 has more negative charges than positive charges and has a negative charge. Therefore, a cleaning element 500 capable of attracting electronegative charges may be used. In some embodiments, the charge 900 obtained by the cleaning element 500 from the charging device 400 is a positive charge (ie, the third positive charge 1206 ), so that the cleaning element 500 and the particles 204 generate an electrostatic force that attracts each other. In some embodiments, this attractive electrostatic force moves particles 204 toward cleaning element 500 (eg, in direction 1208 ).

參見第12C圖,繪示出第11圖的局部放大M5前視圖。微粒204經移除後,支撐座200的表面202上無微粒204,並且支撐座200的表面202恢復至大致上電中性之狀態,換句話說,支撐座200的表面202具有相同的正電荷數量與負電荷數量。在一些實施例中,可藉由接地的方式可恢復支撐座200的表面202的大致上電中性之狀態。應注意的是,此時支撐座200的表面202電荷可能來自於第一正電荷206、第一負電荷210、第三負電荷1200、其他方式而獲得之電荷(未繪示)、或上述之組合。Referring to Fig. 12C, a partially enlarged front view of M5 in Fig. 11 is shown. After the particles 204 are removed, there are no particles 204 on the surface 202 of the support base 200, and the surface 202 of the support base 200 returns to a substantially electrically neutral state, in other words, the surface 202 of the support base 200 has the same positive charge. Quantity vs. Negative Charge Quantity. In some embodiments, the substantially electrically neutral state of the surface 202 of the support base 200 can be restored by grounding. It should be noted that the charge on the surface 202 of the support seat 200 may come from the first positive charge 206, the first negative charge 210, the third negative charge 1200, charges obtained in other ways (not shown), or the above-mentioned combination.

參見第13A圖,繪示出第8圖的局部放大M3前視圖的另一實施樣態。充電裝置400提供第四正電荷1300(即,第8圖的電荷402)至支撐座200的表面202及表面202上的微粒204。在一些實施例中,第四正電荷1300從充電裝置400移動至支撐座200的表面202及微粒204(例如,沿方向1302移動)。支撐座200的表面202及微粒204各自具有第一正電荷206、第一負電荷210、和第四正電荷1300,使得支撐座200的表面202和微粒204上各自具有的正電荷數量多於負電荷數量,即,支撐座200的表面202及微粒204各自具有正電電性。當支撐座200的表面202及微粒204各別且同時具有相同的正電電性時,一相斥之靜電力產生於支撐座200的表面202及微粒204之間。在一些實施例中,一靜電力以遠離支撐座200的表面202的方向(例如,沿靜電力方向1304)施加在微粒204上。Referring to FIG. 13A, another embodiment of the partially enlarged front view of M3 in FIG. 8 is shown. The charging device 400 provides the fourth positive charge 1300 (ie, the charge 402 in FIG. 8 ) to the surface 202 of the support base 200 and the particles 204 on the surface 202 . In some embodiments, the fourth positive charge 1300 moves from the charging device 400 to the surface 202 and the particles 204 of the support base 200 (eg, moves in the direction 1302 ). The surface 202 of the support seat 200 and the particle 204 each have a first positive charge 206, a first negative charge 210, and a fourth positive charge 1300, so that the surface 202 of the support seat 200 and the particle 204 each have more positive charges than negative charges. The amount of charge, that is, the surface 202 of the support base 200 and the particles 204 each have a positive charge. When the surface 202 of the support base 200 and the particles 204 have the same positive charge respectively and at the same time, a repulsive electrostatic force is generated between the surface 202 of the support base 200 and the particles 204 . In some embodiments, an electrostatic force is exerted on the particle 204 in a direction away from the surface 202 of the support 200 (eg, along the electrostatic force direction 1304 ).

參見第13B圖,繪示出第10圖的局部放大M4前視圖的另一實施樣態,微粒204獲得第四正電荷1300後具有的正電荷數量多於負電荷數量並且具有正電電性,因此可使用能夠吸引正電電性的清潔元件500。在一些實施例中,清潔元件500從充電裝置400得到電荷900為負電荷(即,第四負電荷1306),使得清潔元件500與微粒204和之間產生彼此吸引之靜電力。在一些實施例中,此吸引之靜電力使微粒204朝向清潔元件500移動(例如,沿方向1308)。Referring to FIG. 13B, another implementation state of the partially enlarged front view of M4 in FIG. 10 is shown. After the particles 204 obtain the fourth positive charge 1300, the number of positive charges is greater than the number of negative charges and has positive electrical properties, so Cleaning elements 500 capable of attracting electropositive charges may be used. In some embodiments, the charge 900 obtained by the cleaning element 500 from the charging device 400 is a negative charge (ie, the fourth negative charge 1306 ), so that the cleaning element 500 and the particles 204 generate an electrostatic force that attracts each other. In some embodiments, this attractive electrostatic force moves particles 204 toward cleaning element 500 (eg, in direction 1308 ).

參見第13C圖,繪示出第11圖的局部放大M5前視圖。微粒204經移除後,支撐座200的表面202上無微粒204,並且支撐座200的表面202恢復大致上電中性之狀態,即,支撐座200的表面202具有相同的正電荷數量與負電荷數量。在一些實施例中,可藉由接地的方式可恢復支撐座200的表面202的大致上電中性之狀態。應注意的是,支撐座200的表面202上的電荷可能來自於第一正電荷206、第一負電荷210、第四正電荷1300、其他方式而獲得之電荷(未繪示)、或上述之組合。Referring to Fig. 13C, a partially enlarged front view of M5 in Fig. 11 is shown. After the particles 204 are removed, there are no particles 204 on the surface 202 of the support base 200, and the surface 202 of the support base 200 returns to a substantially neutral state, that is, the surface 202 of the support base 200 has the same amount of positive and negative charges. amount of charge. In some embodiments, the substantially electrically neutral state of the surface 202 of the support base 200 can be restored by grounding. It should be noted that the charge on the surface 202 of the support base 200 may come from the first positive charge 206, the first negative charge 210, the fourth positive charge 1300, charges obtained in other ways (not shown), or the above-mentioned combination.

在方法300與方法700的操作步驟之間可能有其他的製程操作,為了簡化說明的目的可能會將其他的製程操作省略。再者,方法300與方法700僅為例示,並且不意圖將本揭示案限制於申請專利範圍中明確敘述的內容。There may be other process operations between the operation steps of method 300 and method 700 , which may be omitted for the purpose of simplifying the description. Furthermore, the method 300 and the method 700 are merely examples, and are not intended to limit the present disclosure to what is expressly stated in the claims.

在一些實施例中,方法300中步驟302-306和方法700中的步驟702-306可能持續重複執行以確實移除支撐座200之表面202上的微粒204。支撐座200清潔完成後可接續第1圖中的步驟110。In some embodiments, the steps 302 - 306 in the method 300 and the steps 702 - 306 in the method 700 may be continuously repeated to remove the particles 204 on the surface 202 of the support base 200 . After the support base 200 is cleaned, the step 110 in FIG. 1 can be continued.

根據本揭示案之一些實施例,第14圖示意性地繪示具有支撐座之微影設備1400。微影設備1400元件包括用以調節輻射光束B(例如,極紫外線(extreme ultraviolet, EUV))之光源系統1406、光罩M與支撐光罩M的光罩載台1408,其中光罩載台1408連接至光罩定位傳動元件1410,光罩定位傳動元件1410可準確地定位光罩M。微影設備1400亦包括晶圓載台1414用以固持晶圓W,晶圓載台1414連接至晶圓定位傳動元件1416。晶圓定位傳動元件1416可準確地定位晶圓W。晶圓載台1414作用為支撐座,因為其可支撐晶圓W。微影設備1400更包括投影系統(例如,折射投影透鏡系統)1412,使經由光罩M給予輻射光束B之圖案投射至晶圓W之目標位置上。Figure 14 schematically illustrates a lithography apparatus 1400 having a support base, according to some embodiments of the present disclosure. The components of the lithography equipment 1400 include a light source system 1406 for adjusting the radiation beam B (for example, extreme ultraviolet (extreme ultraviolet, EUV)), a photomask M and a photomask stage 1408 supporting the photomask M, wherein the photomask stage 1408 Connected to the mask positioning transmission element 1410, the mask positioning transmission element 1410 can position the mask M accurately. The lithography equipment 1400 also includes a wafer stage 1414 for holding the wafer W, and the wafer stage 1414 is connected to the wafer positioning transmission element 1416 . The wafer positioning transmission element 1416 can accurately position the wafer W. The wafer stage 1414 acts as a support seat because it supports the wafer W. The lithography equipment 1400 further includes a projection system (eg, a refractive projection lens system) 1412 for projecting the pattern of the radiation beam B through the mask M onto the target position of the wafer W.

在一些實施例中,光源系統1406可包括用於導向、成形或控制輻射光束B的各種類型之光學組件,諸如,折射的、反射的、磁性的、電磁的、靜電的或其他類型之光學組件,或其任何組合。In some embodiments, light source system 1406 may include various types of optical components for directing, shaping, or steering radiation beam B, such as refractive, reflective, magnetic, electromagnetic, electrostatic, or other types of optical components , or any combination thereof.

光罩載台1408作用為支撐座,可支撐光罩M(亦即,承載其重量)。在一些實施例中,光罩載台1408可使用機械的、真空的、靜電的或其他夾持技術來固持光罩M。光罩載台1408可確保光罩M在所要位置,例如,相對於投影系統1412的所要位置。The photomask stage 1408 is used as a supporting seat, which can support the photomask M (ie, carry its weight). In some embodiments, the reticle stage 1408 can hold the reticle M using mechanical, vacuum, electrostatic or other clamping techniques. The reticle stage 1408 may secure the reticle M in a desired position, eg, relative to the projection system 1412 .

在一些實施例中,光罩M為任何元件,此元件可用以在輻射光束的形成圖案,以便形成圖案於晶圓W中。應注意的是,在圖案包括相位位移特徵時,輻射光束B中形成之圖案須精確地對應於晶圓W中之所要圖案。大致上,形成於輻射光束B中之圖案將對應於將形成於晶圓W中之元件(例如積體電路)的特定功能層。In some embodiments, the mask M is any element that can be used to pattern a radiation beam in order to form a pattern in the wafer W. It should be noted that the pattern formed in radiation beam B must correspond exactly to the desired pattern in wafer W when the pattern includes phase shifting features. In general, the patterns formed in the radiation beam B will correspond to specific functional layers of the components to be formed in the wafer W, such as integrated circuits.

在一些實施例中,根據所使用之曝光輻射或諸如浸沒液體之使用或真空之使用的其他因素,投影系統1412為任何類型之投影系統,包括折射的、反射的、折反射的、磁性的、電磁的及靜電光學系統或其任何組合。In some embodiments, projection system 1412 is any type of projection system, including refractive, reflective, catadioptric, magnetic, Electromagnetic and electrostatic optical systems or any combination thereof.

微影設備1400可具有兩個或多個晶圓載台及/或兩個或多個光罩載台,此稱為「多級」類型之機構。在此多級機構中,可並列使用額外工作台,或可在一或多個工作台或支撐件上執行預備步驟而同時一或多個其他工作台或支撐件用於曝光製程。Lithography apparatus 1400 may have two or more wafer stages and/or two or more mask stages, which is referred to as a "multi-stage" type of mechanism. In this multi-stage setup, additional stages may be used in parallel, or preparatory steps may be performed on one or more stages or supports while one or more other stages or supports are used for the exposure process.

微影設備1400亦可為一種類型,在此類型中晶圓W之至少部分可由具有相對高折射率(例如,水)之液體覆蓋以便填充投影系統1412及晶圓W之間的空間。浸沒技術可增大投射系統之數值孔徑(numerical aperture, NA)。前述中的所使用之術語「浸沒」並不意謂晶圓W必須淹沒於液體中,而是僅意謂在曝光期間液體位於投影系統1412及晶圓W之間。The lithography apparatus 1400 may also be of a type in which at least part of the wafer W may be covered by a liquid having a relatively high refractive index (eg, water) in order to fill the space between the projection system 1412 and the wafer W. Immersion technology can increase the numerical aperture (numerical aperture, NA) of the projection system. The term "immersion" used in the foregoing does not mean that the wafer W is necessarily submerged in the liquid, but only means that the liquid is located between the projection system 1412 and the wafer W during exposure.

第14圖中光源系統1406接收來自輻射源1402之輻射光束B。輻射光束B自輻射源1402產生後,在傳遞系統1404幫助下將輻射光束B傳至光源系統1406,其中傳遞系統1404包括合適導向鏡及/或光束放大器。在一些實施例中,輻射源1402、傳遞系統1404、和光源系統1406可合稱作輻射系統。Light source system 1406 in FIG. 14 receives radiation beam B from radiation source 1402 . After the radiation beam B is generated from the radiation source 1402, the radiation beam B is transmitted to the light source system 1406 with the help of the delivery system 1404, wherein the delivery system 1404 includes a suitable guide mirror and/or a beam amplifier. In some embodiments, radiation source 1402, delivery system 1404, and light source system 1406 may collectively be referred to as a radiation system.

在一些實施例中,光源系統1406可進一步包括調整器1418,其係用以調整輻射光束B之角光強度分佈。另外,光源系統1406可包括各種其他組件,諸如,積光器1420及聚光器1422。光源系統1406可用以調節輻射光束B以達到預期的均勻性及強度分佈之光。In some embodiments, the light source system 1406 may further include an adjuster 1418 for adjusting the angular light intensity distribution of the radiation beam B. Additionally, light source system 1406 may include various other components, such as light integrator 1420 and light concentrator 1422 . The light source system 1406 can be used to adjust the radiation beam B to achieve a desired uniformity and intensity distribution of light.

輻射光束B入射至固定於光罩定位傳動元件1410上的光罩M上,並藉由光罩M產生圖案。通過光罩M之後,輻射光束B將通過投影系統1412。投影系統1412可將輻射光束B聚焦至置於晶圓載台1414上之晶圓W中的目標位置上。藉由晶圓定位傳動元件1416,晶圓載台1414可準確地移動,以便將晶圓W中的不同目標位置定位至輻射光束B之路徑中。同樣地,藉由光罩定位傳動元件1410,光罩載台1408可準確的移動,以便將光罩M定位至相對於輻射光束B之路徑。大致上,光罩載台1408之移動可借助於光罩定位傳動元件1410中部分的長衝程模組(用於粗略定位)及短衝程模組(用於精確定位)來實現。同樣地,晶圓載台1414之移動亦可使用晶圓定位傳動元件1416來實現。在一些實施例中,在做為步進曝光機台之情形下,光罩載台1408可僅連接至短衝程致動器,或固定住。光罩M上之光罩對準標記及晶圓W上之晶圓對準標記可用來對準光罩載台1408上之光罩M與晶圓載台1414上之晶圓W。The radiation beam B is incident on the mask M fixed on the mask positioning transmission element 1410 , and a pattern is generated by the mask M. After passing through the reticle M, the radiation beam B will pass through the projection system 1412 . Projection system 1412 may focus beam of radiation B onto a target location in wafer W placed on wafer stage 1414 . By means of the wafer positioning drive element 1416, the wafer stage 1414 can be moved accurately in order to position different target positions in the wafer W into the path of the radiation beam B. Likewise, the reticle stage 1408 can be accurately moved to position the reticle M relative to the path of the radiation beam B by means of the reticle positioning actuator 1410 . Generally, the movement of the mask stage 1408 can be realized by means of a part of the long-stroke module (for rough positioning) and the short-stroke module (for precise positioning) in the mask positioning transmission element 1410 . Likewise, the movement of the wafer stage 1414 can also be achieved using the wafer positioning transmission element 1416 . In some embodiments, in the case of a stepper, the reticle stage 1408 may only be connected to a short-stroke actuator, or be fixed. The mask alignment marks on the mask M and the wafer alignment marks on the wafer W can be used to align the mask M on the mask stage 1408 and the wafer W on the wafer stage 1414 .

當微影設備1400中的光罩載台1408及/或晶圓載台1414變換不同晶圓/光罩種類(如第1圖中步驟102)、進行設備之週期性維護(如第1圖中步驟104)、或進行設備維修(如第1圖中步驟106),可根據本揭示案的一些實施例,例如第3圖中方法300或第7圖中方法700,用來進行光罩載台1408及/或晶圓載台1414之微粒移除清潔步驟(如第1圖中步驟108)。光罩載台1408及/或晶圓載台1414上之微粒移除完成後,再放置目標晶圓及/或光罩置工作台上進行微影製程(如第1圖中步驟110)。When the photomask carrier 1408 and/or wafer carrier 1414 in the lithography equipment 1400 change different types of wafers/masks (such as step 102 in the first figure), perform periodic maintenance of the equipment (such as the step in the first figure 104), or perform equipment maintenance (such as step 106 in FIG. 1), according to some embodiments of the present disclosure, such as method 300 in FIG. 3 or method 700 in FIG. And/or a particle removal cleaning step of the wafer stage 1414 (such as step 108 in FIG. 1 ). After removing the particles on the photomask stage 1408 and/or the wafer stage 1414, the target wafer and/or the photomask are placed on the workbench for lithography process (such as step 110 in FIG. 1 ).

在一些實施例中,參見第15圖,在使用方法300或方法700進行晶圓載台1414之微粒移除清潔之前,先將晶圓W自晶圓載台1414載卸,使用晶圓定位傳動元件1416將晶圓載台1414移動到投影系統1412的範圍之外(例如,沿方向1500),並定位在充電裝置400之下。在一些實施例中,充電裝置400提供電荷至晶圓載台1414的表面(如方法300的步驟302)之後,晶圓載台1414保持在原地(即,投影系統1412的範圍外),接著移動清潔元件靠近至晶圓載台1414(如方法300的步驟304)和移動清潔元件遠離晶圓載台1414(如方法300的步驟306)。上述清潔晶圓載台1414之步驟完成後,再使用晶圓定位傳動元件1416將晶圓載台1414移回投影系統1412的範圍內,執行微影製程。在另一些實施例中,充電裝置400提供電荷至晶圓載台1414的表面上(如方法300的步驟302)之後,使用晶圓定位傳動元件1416將晶圓載台1414先移回投影系統1412的範圍內,再進行移動清潔元件靠近至晶圓載台1414(如方法300的步驟304)和移動清潔元件遠離晶圓載台1414(如方法300的步驟306)。待上述清潔晶圓載台1414之步驟完成後,便可執行微影製程。In some embodiments, see FIG. 15 , prior to performing particle removal cleaning of wafer stage 1414 using method 300 or method 700 , wafer W is loaded and unloaded from wafer stage 1414 using wafer positioning actuator 1416 Wafer stage 1414 is moved out of range of projection system 1412 (eg, in direction 1500 ) and positioned under charging apparatus 400 . In some embodiments, after the charging apparatus 400 provides electrical charge to the surface of the wafer stage 1414 (such as step 302 of the method 300), the wafer stage 1414 remains in place (i.e., out of range of the projection system 1412), and the cleaning element is then moved. Approaching the wafer stage 1414 (eg, step 304 of method 300 ) and moving the cleaning element away from the wafer stage 1414 (eg, step 306 of method 300 ). After the above steps of cleaning the wafer stage 1414 are completed, the wafer positioning transmission element 1416 is used to move the wafer stage 1414 back to the range of the projection system 1412 to perform the lithography process. In some other embodiments, after the charging device 400 provides charges to the surface of the wafer stage 1414 (such as step 302 of the method 300), the wafer positioning transmission element 1416 is used to move the wafer stage 1414 back to the range of the projection system 1412 Inside, move the cleaning element close to the wafer stage 1414 (such as step 304 of the method 300) and move the cleaning element away from the wafer stage 1414 (such as step 306 of the method 300). After the above steps of cleaning the wafer stage 1414 are completed, the lithography process can be performed.

基於以上說明,本揭示案提供了自晶圓支撐座或光罩支撐座上移除微粒的方法,藉由充電裝置提供電荷,先使支撐座與支撐座上的微粒之間產生相斥的靜電力,再使支撐座上的微粒與清潔元件產生相吸的靜電力,得以維持製程、測試和分析過程中免於微粒的干擾。此外,藉由靜電力進行非接觸式的清潔,相較於接觸式的清潔,可減少對支撐座的損傷。Based on the above description, the present disclosure provides a method for removing particles from a wafer support or a photomask support. The charge is provided by a charging device to generate repulsive static electricity between the support and the particles on the support. Force, and then make the particles on the support seat and the cleaning element generate an electrostatic force of attraction, so as to maintain the interference from particles during the process, test and analysis. In addition, the non-contact cleaning by electrostatic force can reduce the damage to the supporting base compared with the contact cleaning.

在本揭示案的一些實施例中,一種移除微粒的方法包括提供電荷至支撐座的表面上及表面的微粒上、移動清潔元件靠近表面、以及移動清潔元件遠離表面。提供電荷至支撐座的表面上及表面的微粒上可使支撐座的表面和表面的微粒帶有相同的負電電性。清潔元件具有靜電吸附層,使具有負電電性的微粒朝向清潔元件移動並吸附在靜電吸附層上。在一些實施例中,提供的電荷包含電子、離子、或電漿。在一些實施例中,清潔元件未物理接觸到支撐座的表面。在一些實施例中,清潔元件的靜電吸附層為自帶正電電性的二氧化鈦塗層。In some embodiments of the present disclosure, a method of removing particles includes providing a charge to a surface of a support and to particles on the surface, moving a cleaning element closer to the surface, and moving the cleaning element away from the surface. Providing charges on the surface of the support base and the particles on the surface can make the surface of the support base and the particles on the surface have the same negative charge. The cleaning element has an electrostatic adsorption layer, so that the particles with electronegative electricity move toward the cleaning element and are adsorbed on the electrostatic adsorption layer. In some embodiments, the provided charge comprises electrons, ions, or plasma. In some embodiments, the cleaning elements do not physically contact the surface of the support seat. In some embodiments, the electrostatic adsorption layer of the cleaning element is an inherently electropositive titanium dioxide coating.

在本揭示案的另一些實施例中,一種移除微粒的方法包括移動充電裝置到支撐座的表面上、充電裝置提供第一電荷至表面上及表面的至少一個微粒上、充電裝置提供第二電荷至清潔元件上、移動清潔元件靠近表面、以及移動清潔元件遠離表面。充電裝置提供第一電荷使表面和表面上的微粒具有第一電性、和提供第二電荷使清潔元件具有相異於第一電性的第二電性。具有第二電性的清潔元件使具有第一電性的微粒朝向清潔元件移動並吸附在清潔元件上。在一些實施例中,清潔元件遠離表面後,表面恢復電中性。In other embodiments of the present disclosure, a method of removing particles includes moving a charging device onto a surface of a support, the charging device providing a first charge to the surface and at least one particle on the surface, and the charging device providing a second charge. A charge is applied to the cleaning elements, the cleaning elements are moved closer to the surface, and the cleaning elements are moved away from the surface. The charging device provides a first charge to impart a first electrical property to the surface and particles on the surface, and a second electrical charge to impart a second electrical property to the cleaning element different from the first electrical property. The cleaning element having the second electrical property moves the particles having the first electrical property toward and adsorbs on the cleaning element. In some embodiments, the surface returns to electrical neutrality after the cleaning element is removed from the surface.

根據本揭示案的另一些實施例,一種移除微粒的方法包括移動充電裝置到支撐座的表面上、充電裝置提供電荷至表面的微粒、準備基材、設置靜電吸附層至基材上、藉由傳送機械手臂移動基材相對靠近支撐座的表面、該表面的微粒吸附至靜電吸附層上、以及藉由傳送機械手臂移動基材相對遠離支撐座的表面。充電裝置提供電荷至表面的微粒使微粒具有第一電位。基材具有第二電位,其中第二電位與第一電位之間為第一電位差。靜電吸附層具有第三電位,其中第三電位與第一電位之間為第二電位差,且第二電位差大於第一電位差。在一些實施例中,充電裝置包含電子槍、離子產生器、或電漿產生器。在一些實施例中,靜電吸附層為二氧化鈦塗層。在一些實施例中,基材為矽晶圓片。According to other embodiments of the present disclosure, a method for removing particles includes moving a charging device onto a surface of a support, charging the device to provide charges to the particles on the surface, preparing a substrate, placing an electrostatic adsorption layer on the substrate, by The surface of the substrate relatively close to the support seat is moved by the transfer robot arm, the particles on the surface are adsorbed to the electrostatic adsorption layer, and the surface of the substrate relatively far away from the support seat is moved by the transfer robot arm. The charging device provides charges to the particles on the surface so that the particles have a first potential. The substrate has a second potential, wherein there is a first potential difference between the second potential and the first potential. The electrostatic adsorption layer has a third potential, wherein there is a second potential difference between the third potential and the first potential, and the second potential difference is greater than the first potential difference. In some embodiments, the charging device includes an electron gun, an ion generator, or a plasma generator. In some embodiments, the electrostatic adsorption layer is a titanium dioxide coating. In some embodiments, the substrate is a silicon wafer.

以上概述了多個實施例的特徵,使本領域具有知識者可更佳瞭解本揭示案的態樣。本領域具有知識者應理解,其可輕易地使用本揭示案作為設計或修改其他製程與結構的依據,以實行本文所介紹的實施例的相同目的及/或達到相同優點。本領域具有知識者還應理解,這種等效的配置並不悖離本揭示案的精神與範疇,且本領域具有通常知識者在不悖離本揭示案的精神與範疇的情況下可對本文做出各種改變、置換以及變更。The foregoing summarizes features of several embodiments so that those skilled in the art may better understand aspects of the disclosure. Those skilled in the art should understand that they can readily use the present disclosure as a basis for designing or modifying other processes and structures to achieve the same purpose and/or achieve the same advantages of the embodiments described herein. Those skilled in the art should also understand that such equivalent configurations do not depart from the spirit and scope of the disclosure, and those with ordinary knowledge in the art can make Various alterations, substitutions, and alterations have been made herein.

100:流程圖 102、104、106、108、110:步驟 200:支撐座 200’:支撐座 202:表面 204:微粒 205:晶圓支撐銷 206:第一正電荷 208:第一負電荷 300:方法 302、304、306:步驟 400:充電裝置 402:電荷 404:方向 406:第二負電荷 408:方向 410:靜電力方向 500:清潔元件 502:基材 504:靜電吸附層 506:方向 508:方向 510:第二正電荷 600:方向 700:方法 702、703、704、706:步驟 900:電荷 902:方向 1200:第三負電荷 1202:方向 1204:靜電力方向 1206:第三正電荷 1208:方向 1300:第四正電荷 1302:方向 1304:靜電力方向 1306:第四負電荷 1308:方向 1400:微影設備 1402:輻射源 1404:傳遞系統 1406:光源系統 1408:光罩載台 1410:光罩定位傳動元件 1412:投影系統 1414:晶圓載台 1416:晶圓定位傳動元件 1418:調整器 1420:積光器 1422:聚光器 1500:方向 B:輻射光束 M:光罩 M1、M2、M3、M4、M5:局部放大 T:傳送機械手臂 W:晶圓 100: Flowchart 102, 104, 106, 108, 110: steps 200: support seat 200': Support seat 202: surface 204: Particles 205: Wafer support pin 206: First positive charge 208: The first negative charge 300: method 302, 304, 306: steps 400: charging device 402: charge 404: direction 406: The second negative charge 408: direction 410: Electrostatic Force Direction 500: cleaning element 502: Substrate 504: electrostatic adsorption layer 506: direction 508: direction 510: second positive charge 600: direction 700: method 702, 703, 704, 706: steps 900: charge 902: direction 1200: The third negative charge 1202: direction 1204: Electrostatic force direction 1206: The third positive charge 1208: direction 1300: The fourth positive charge 1302: direction 1304: Electrostatic force direction 1306: The fourth negative charge 1308: direction 1400: Lithography equipment 1402: Radiation source 1404: delivery system 1406: Light source system 1408: Mask carrier 1410: Reticle positioning drive element 1412:Projection system 1414: wafer carrier 1416: Wafer positioning drive element 1418:Adjuster 1420: light integrator 1422: Concentrator 1500: Direction B: radiation beam M: mask M1, M2, M3, M4, M5: partial enlargement T: Teleport Robotic Arm W: Wafer

閱讀以下實施方法時搭配附圖以清楚理解本揭示案的觀點。應注意的是,根據業界的標準做法,各種特徵並未按照比例繪製。事實上,為了能清楚地討論,各種特徵的尺寸可能任意地放大或縮小。 第1圖根據本揭示案的一些實施例而繪示的一種進行清潔晶圓及/或光罩支撐座的時機判斷之流程圖。 第2A圖和第2C圖根據本揭示案的一些實施例而繪示的支撐座與微粒的前視圖。 第2B圖和第2D圖分別為第2A圖和第2C圖的局部放大的前視圖。 第3圖根據本揭示案的一些實施例而繪示一種自晶圓及/或光罩的支撐座之表面移除微粒的方法之流程圖。 第4A圖根據本揭示案的一些實施例而繪示進行移除微粒方法的其中一個步驟操作的前視圖。 第4B圖為第4A圖的局部放大的前視圖。 第5A圖根據本揭示案的一些實施例而繪示進行移除微粒方法的其中一個步驟操作的前視圖。 第5B圖為第5A圖的局部放大的前視圖。 第6A圖根據本揭示案的一些實施例而繪示進行移除微粒方法的其中一個步驟操作的前視圖。 第6B圖為第6A圖的局部放大的前視圖。 第7圖根據本揭示案的一些實施例而繪示一種自晶圓及/或光罩的支撐座之表面移除微粒的方法之流程圖。 第8圖根據本揭示案的一些實施例而繪示進行移除微粒方法的其中一個步驟操作的前視圖。 第9圖根據本揭示案的一些實施例而繪示進行移除微粒方法的其中一個步驟操作的前視圖。 第10圖根據本揭示案的一些實施例而繪示進行移除微粒方法的其中一個步驟操作的前視圖。 第11圖根據本揭示案的一些實施例而繪示進行移除微粒方法的其中一個步驟操作的前視圖。 第12A圖為第8圖一實施例的局部放大的前視圖。 第12B圖為第10圖一實施例的局部放大的前視圖。 第12C圖為第11圖一實施例的局部放大的前視圖。 第13A圖為第8圖另一實施例的局部放大的前視圖。 第13B圖為第10圖另一實施例的局部放大的前視圖。 第13C圖為第11圖另一實施例的局部放大的前視圖。 第14圖根據本揭示案的一些實施例而繪示的一種微影設備。 第15圖根據本揭示案的一些實施例而繪示的一種微影設備。 When reading the following implementation methods with accompanying drawings, the viewpoints of the disclosure can be clearly understood. It should be noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily expanded or reduced for clarity of discussion. FIG. 1 shows a flow chart for determining the timing of cleaning a wafer and/or a mask support according to some embodiments of the present disclosure. Figures 2A and 2C show front views of support bases and particles according to some embodiments of the present disclosure. Figures 2B and 2D are partially enlarged front views of Figures 2A and 2C, respectively. FIG. 3 illustrates a flow diagram of a method of removing particles from surfaces of wafer and/or reticle support seats according to some embodiments of the present disclosure. FIG. 4A illustrates a front view of one step in a method of removing particles, according to some embodiments of the present disclosure. Figure 4B is a partially enlarged front view of Figure 4A. FIG. 5A illustrates a front view of one step in a method of removing particles, according to some embodiments of the present disclosure. Figure 5B is a partially enlarged front view of Figure 5A. FIG. 6A illustrates a front view of one step in a method of removing particles, according to some embodiments of the present disclosure. Figure 6B is a partially enlarged front view of Figure 6A. FIG. 7 illustrates a flow diagram of a method of removing particles from the surface of a support seat of a wafer and/or a reticle, according to some embodiments of the present disclosure. FIG. 8 illustrates a front view of one step in a method of removing particles according to some embodiments of the present disclosure. FIG. 9 illustrates a front view of one step in a method of removing particles, according to some embodiments of the present disclosure. FIG. 10 illustrates a front view of one step in a method of removing particles, according to some embodiments of the present disclosure. FIG. 11 illustrates a front view of one step in a method of removing particles, according to some embodiments of the present disclosure. Fig. 12A is a partially enlarged front view of an embodiment of Fig. 8 . Fig. 12B is a partially enlarged front view of an embodiment in Fig. 10 . Fig. 12C is a partially enlarged front view of the embodiment in Fig. 11. Fig. 13A is a partially enlarged front view of another embodiment of Fig. 8 . Fig. 13B is a partially enlarged front view of another embodiment of Fig. 10 . Fig. 13C is a partially enlarged front view of another embodiment of Fig. 11. FIG. 14 illustrates a lithography apparatus according to some embodiments of the present disclosure. FIG. 15 illustrates a lithography apparatus according to some embodiments of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

108:步驟 108: Step

300:方法 300: method

302:步驟 302: Step

304:步驟 304: step

306:步驟 306: Step

Claims (10)

一種移除微粒的方法,包括:以一噴灑電荷的方式提供一電荷至一支撐座的一表面上及該表面上的一微粒上,以使該表面和該表面上的該微粒具有相同的一負電電性;移動一清潔元件靠近該表面,其中該清潔元件對齊該噴灑電荷的面積,其中該清潔元件具有一靜電吸附層,該靜電吸附層為自帶正電電性的一二氧化鈦塗層,使具有該負電電性的該微粒朝向該清潔元件移動並吸附在該清潔元件的該靜電吸附層上;以及移動該清潔元件遠離該表面。 A method of removing particles, comprising: providing an electric charge onto a surface of a support base and a particle on the surface in a manner of spraying an electric charge, so that the surface and the particle on the surface have the same a Negative charge; move a cleaning element close to the surface, wherein the cleaning element is aligned with the area where the charge is sprayed, wherein the cleaning element has an electrostatic adsorption layer, and the electrostatic adsorption layer is a titanium dioxide coating with positive charge, so that The particles having the electronegative charge move toward the cleaning element and adsorb on the electrostatic adsorption layer of the cleaning element; and move the cleaning element away from the surface. 如請求項1所述之移除微粒的方法,其中提供該電荷包含提供電子、離子、或電漿。 The method for removing particles as claimed in claim 1, wherein providing the charge includes providing electrons, ions, or plasma. 如請求項1所述之移除微粒的方法,其中該清潔元件未物理接觸到該支撐座的該表面。 The method for removing particles as claimed in claim 1, wherein the cleaning element does not physically contact the surface of the support base. 如請求項1所述之移除微粒的方法,其中該二氧化鈦塗層的厚度為35奈米至45奈米。 The method for removing particles as claimed in claim 1, wherein the thickness of the titanium dioxide coating is 35 nm to 45 nm. 一種移除微粒的方法,包括:移動一充電裝置到一支撐座的一表面上;該充電裝置提供負電荷至該表面上及該表面上的至少一 個微粒上,使該表面和該表面上的該至少一個微粒具有負電性;該充電裝置以一噴灑電荷的方式提供正電荷至一清潔元件上,該清潔元件具有一靜電吸附層,該靜電吸附層為自帶正電電性的一二氧化鈦塗層,使該清潔元件具有正電性,其中該清潔元件對齊該噴灑電荷的面積;移動該清潔元件靠近該表面,其中具有正電性的該清潔元件使具有負電性的該至少一個微粒朝向該清潔元件移動並吸附在該清潔元件的該靜電吸附層上;以及移動該清潔元件遠離該表面。 A method of removing particles, comprising: moving a charging device onto a surface of a support; the charging device provides a negative charge to the surface and at least one of the surface On a particle, the surface and the at least one particle on the surface are negatively charged; the charging device provides a positive charge to a cleaning element in the form of a spray charge, the cleaning element has an electrostatic adsorption layer, and the electrostatic adsorption The layer is a titanium dioxide coating with positive charge, which makes the cleaning element positive, wherein the cleaning element is aligned with the area where the charge is sprayed; moving the cleaning element close to the surface, wherein the positive cleaning element moving the at least one negatively charged particle toward the cleaning element and adsorbing on the electrostatic adsorption layer of the cleaning element; and moving the cleaning element away from the surface. 如請求項5所述之移除微粒的方法,其中該清潔元件遠離該表面後,該表面恢復電中性。 The method for removing particles as claimed in claim 5, wherein after the cleaning element moves away from the surface, the surface returns to electrical neutrality. 一種移除微粒的方法,包括:移動一充電裝置到一支撐座的一表面上;該充電裝置以一噴灑電荷的方式提供一電荷至該表面的一微粒上,使該微粒具有一第一電位,其中在該噴灑電荷的過程中,該支撐座的複數個晶圓支撐銷保持在突出狀態;準備一基材,該基材具有一第二電位,其中該第二電位與該第一電位之間為一第一電位差;設置一靜電吸附層至該基材上,該靜電吸附層為自帶正電電性的一二氧化鈦塗層,使得該靜電吸附層具有一第三 電位,其中該第三電位與該第一電位之間為一第二電位差,且該第二電位差大於該第一電位差;藉由一傳送機械手臂移動該基材相對靠近該支撐座的該表面;該表面的該微粒吸附至該靜電吸附層上;以及藉由該傳送機械手臂移動該基材相對遠離該支撐座的該表面。 A method for removing particles, comprising: moving a charging device onto a surface of a support base; the charging device provides a charge to a particle on the surface in a manner of spraying charges, so that the particle has a first potential , wherein in the process of spraying electric charges, a plurality of wafer support pins of the support stand are kept in a protruding state; a substrate is prepared, and the substrate has a second potential, wherein the difference between the second potential and the first potential There is a first potential difference between them; an electrostatic adsorption layer is set on the substrate, the electrostatic adsorption layer is a titanium dioxide coating with positive charge, so that the electrostatic adsorption layer has a third potential, wherein there is a second potential difference between the third potential and the first potential, and the second potential difference is greater than the first potential difference; moving the substrate relatively close to the surface of the support seat by a transport robot arm; The particles on the surface are adsorbed to the electrostatic adsorption layer; and the substrate is moved relatively away from the surface of the supporting base by the conveying robot arm. 如請求項7所述之移除微粒的方法,其中該充電裝置包含電子槍、離子產生器、或電漿產生器。 The method for removing particles according to claim 7, wherein the charging device includes an electron gun, an ion generator, or a plasma generator. 如請求項7所述之移除微粒的方法,其中該靜電吸附層的厚度為35奈米至45奈米。 The method for removing particles according to claim 7, wherein the electrostatic adsorption layer has a thickness of 35 nm to 45 nm. 如請求項7所述之移除微粒的方法,其中該基材為矽晶圓片。 The method for removing particles as claimed in claim 7, wherein the substrate is a silicon wafer.
TW110106359A 2021-02-23 2021-02-23 Method of removing particles TWI804819B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110106359A TWI804819B (en) 2021-02-23 2021-02-23 Method of removing particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110106359A TWI804819B (en) 2021-02-23 2021-02-23 Method of removing particles

Publications (2)

Publication Number Publication Date
TW202233316A TW202233316A (en) 2022-09-01
TWI804819B true TWI804819B (en) 2023-06-11

Family

ID=84957377

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110106359A TWI804819B (en) 2021-02-23 2021-02-23 Method of removing particles

Country Status (1)

Country Link
TW (1) TWI804819B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100375263C (en) * 1999-05-25 2008-03-12 Toto株式会社 Electrostatic chuck and treating device
CN110709776A (en) * 2017-06-01 2020-01-17 Asml荷兰有限公司 Particle removal apparatus and related systems
US20200384509A1 (en) * 2019-06-10 2020-12-10 Kla Corporation In Situ Process Chamber Chuck Cleaning by Cleaning Substrate
CN112384303A (en) * 2018-07-26 2021-02-19 埃克科林有限公司 Cleaning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100375263C (en) * 1999-05-25 2008-03-12 Toto株式会社 Electrostatic chuck and treating device
CN110709776A (en) * 2017-06-01 2020-01-17 Asml荷兰有限公司 Particle removal apparatus and related systems
CN112384303A (en) * 2018-07-26 2021-02-19 埃克科林有限公司 Cleaning device
US20200384509A1 (en) * 2019-06-10 2020-12-10 Kla Corporation In Situ Process Chamber Chuck Cleaning by Cleaning Substrate

Also Published As

Publication number Publication date
TW202233316A (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US11378894B2 (en) Lithography system with an embedded cleaning module
JP4541349B2 (en) Exposure apparatus and exposure method
US7196769B2 (en) Exposure apparatus and device manufacturing method
TWI488007B (en) System and method of exchanging reticles
TWI742319B (en) Reticle, reticle container and method for discharging static charges on reticle
US10274844B1 (en) Lithography apparatus and method for protecting a reticle
US11119420B2 (en) Particle prevention method in lithography exposure apparatus
TW201331721A (en) Cleaning a support that holds a patterning device inside a lithography apparatus
US7430037B2 (en) Reticle cassette and exposure apparatus using reticle cassette
TWI804819B (en) Method of removing particles
CN114967350A (en) Method for removing particles
US7245350B2 (en) Exposure apparatus
JP2007293376A (en) Exposure device and method for manufacturing substrate
US10627728B2 (en) Method for creating vacuum in load lock chamber
US20210200107A1 (en) Particle removing assembly and method of cleaning mask for lithography
JP4020261B2 (en) Exposure method, exposure apparatus, and substrate manufacturing method
JP4312247B2 (en) Proximity exposure apparatus and substrate manufacturing method
TWI448823B (en) Lithographic apparatus, combination of lithographic apparatus and processing module, and device manufacturing method
KR101895404B1 (en) Apparatus and Method for treating substrate
TW202143299A (en) Semiconductor manufacturing system
TW202040746A (en) Electrostatic clamp for a lithographic apparatus
JP2008124506A (en) Proximity exposure system and substrate manufacturing method
TW202236483A (en) Semiconductor substrate stage
CN111061129B (en) Lithography system and method for cleaning a lithography system
JP2005353988A (en) Transfer method and device for tabular material, and exposure device