TWI804371B - Transmission delay detection method and transmission delay detection system - Google Patents

Transmission delay detection method and transmission delay detection system Download PDF

Info

Publication number
TWI804371B
TWI804371B TW111124593A TW111124593A TWI804371B TW I804371 B TWI804371 B TW I804371B TW 111124593 A TW111124593 A TW 111124593A TW 111124593 A TW111124593 A TW 111124593A TW I804371 B TWI804371 B TW I804371B
Authority
TW
Taiwan
Prior art keywords
node device
time
packets
detection
transmission delay
Prior art date
Application number
TW111124593A
Other languages
Chinese (zh)
Other versions
TW202404317A (en
Inventor
李明叡
王培峰
蘇星融
李孟濂
楊明哲
Original Assignee
和碩聯合科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和碩聯合科技股份有限公司 filed Critical 和碩聯合科技股份有限公司
Priority to TW111124593A priority Critical patent/TWI804371B/en
Priority to KR1020230052963A priority patent/KR20240002905A/en
Application granted granted Critical
Publication of TWI804371B publication Critical patent/TWI804371B/en
Publication of TW202404317A publication Critical patent/TW202404317A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/067Generation of reports using time frame reporting

Abstract

A transmission delay detection method and a transmission delay detection system are disclosed. The method includes: sending a plurality of detection packets in batches by a first node device, and the detection packets are forwarded by a second node device to a third node device; receiving a plurality of response packets by the first node device, wherein the response packets are sent in batches by the third node device in response to the detection packets, and the response packets are forwarded by the second node device; obtaining first time information and second time information reported by the second node device, wherein the first time information reflects time at which the detection packets reach the second node device, and the second time information reflects time at which the response packets reach the second node device; and evaluating transmission delay related to the second node device according to the first time information and the second time information.

Description

傳輸延遲檢測方法與傳輸延遲檢測系統Transmission delay detection method and transmission delay detection system

本發明是有關於一種傳輸延遲檢測技術,且特別是有關於一種傳輸延遲檢測方法與傳輸延遲檢測系統。The present invention relates to a transmission delay detection technology, and in particular to a transmission delay detection method and a transmission delay detection system.

目前業界常被使用的網路延遲量測工具如Ping, Traceroute及雙向主動量測協議(Two-Way Active Measurement Protocol, TWAMP)都只能得到端點到端點的封包往返時間(Round-Trip Time, RTT),但沒辦法得到網路中每一個節點的延遲資訊,故也無從推知最大的延遲是發生在哪些節點之間。特別是,在5G分散式布建上,更需要知道每段節點之間的延遲以便在設計上符合相關規範。At present, the network delay measurement tools commonly used in the industry such as Ping, Traceroute and Two-Way Active Measurement Protocol (TWAMP) can only obtain the round-trip time (Round-Trip Time) of the end-to-end packet. , RTT), but there is no way to get the delay information of each node in the network, so it is impossible to infer which nodes the greatest delay occurs between. In particular, in 5G distributed deployment, it is more necessary to know the delay between each node in order to meet the relevant specifications in design.

有鑑於此,本發明提供一種傳輸延遲檢測方法與傳輸延遲檢測系統,可提高對封包的傳輸延遲的檢測效率。In view of this, the present invention provides a transmission delay detection method and a transmission delay detection system, which can improve the detection efficiency of packet transmission delay.

本發明的實施例提供一種傳輸延遲檢測方法,其包括:由第一節點裝置批次發送多個檢測封包,且所述多個檢測封包經由第二節點裝置轉發至第三節點裝置;由所述第一節點裝置接收多個回應封包,其中所述多個回應封包是由所述第三節點裝置批次發送以回應所述多個檢測封包,且所述多個回應封包經由所述第二節點裝置轉發;獲得由所述第二節點裝置回報的第一時間資訊與第二時間資訊,其中所述第一時間資訊反映所述多個檢測封包抵達所述第二節點裝置的時間,且所述第二時間資訊反映所述多個回應封包抵達所述第二節點裝置的時間;以及根據所述第一時間資訊與所述第二時間資訊評估與所述第二節點裝置有關的傳輸延遲。An embodiment of the present invention provides a transmission delay detection method, which includes: a first node device sends multiple detection packets in batches, and the multiple detection packets are forwarded to a third node device via a second node device; The first node device receives a plurality of response packets, wherein the plurality of response packets are sent in batches by the third node device in response to the plurality of detection packets, and the plurality of response packets pass through the second node Device forwarding; obtaining first time information and second time information reported by the second node device, wherein the first time information reflects the time when the plurality of detection packets arrive at the second node device, and the The second time information reflects the arrival time of the plurality of response packets at the second node device; and estimates a transmission delay related to the second node device according to the first time information and the second time information.

本發明的實施例另提供一種傳輸延遲檢測系統,其包括多個節點裝置與伺服器。所述伺服器與所述多個節點裝置通訊連接。所述伺服器用以:經由所述多個節點裝置中的第一節點裝置批次發送多個檢測封包,且所述多個檢測封包經由所述多個節點裝置中的第二節點裝置轉發至所述多個節點裝置中的第三節點裝置;經由所述第一節點裝置接收多個回應封包,其中所述多個回應封包是由所述第三節點裝置批次發送以回應所述多個檢測封包,且所述多個回應封包經由所述第二節點裝置轉發;獲得由所述第二節點裝置回報的第一時間資訊與第二時間資訊,其中所述第一時間資訊反映所述多個檢測封包抵達所述第二節點裝置的時間,且所述第二時間資訊反映所述多個回應封包抵達所述第二節點裝置的時間;以及根據所述第一時間資訊與所述第二時間資訊評估與所述第二節點裝置有關的傳輸延遲。An embodiment of the present invention further provides a transmission delay detection system, which includes a plurality of node devices and a server. The server communicates with the plurality of node devices. The server is used to: send a plurality of detection packets in batches through the first node device among the plurality of node devices, and forward the plurality of detection packets to the A third node device among the plurality of node devices; receiving a plurality of response packets via the first node device, wherein the plurality of response packets are sent in batches by the third node device in response to the plurality of detecting packets, and forwarding the plurality of response packets via the second node device; obtaining first time information and second time information reported by the second node device, wherein the first time information reflects the multiple The time when a detection packet arrives at the second node device, and the second time information reflects the time when the plurality of response packets arrive at the second node device; and according to the first time information and the second time information Time information estimates transmission delays associated with the second node device.

基於上述,在第一節點裝置批次發送多個檢測封包後,所述多個檢測封包可經由第二節點裝置轉發至第三節點裝置。稍後,第一節點裝置可接收多個回應封包,其是由第三節點裝置批次發送以回應所述多個檢測封包,且所述多個回應封包同樣經由所述第二節點裝置轉發。在獲得由第二節點裝置回報的第一時間資訊與第二時間資訊後,與所述第二節點裝置有關的傳輸延遲可根據第一時間資訊與第二時間資訊而評估。特別是,第一時間資訊可反映所述多個檢測封包抵達所述第二節點裝置的時間,且第二時間資訊可反映所述多個回應封包抵達所述第二節點裝置的時間。藉此,可有效針對封包的傳遞路徑上的特定節點裝置進行傳輸延遲的評估,進而提高對封包的傳輸延遲的檢測效率。Based on the above, after the first node device sends multiple detection packets in batches, the multiple detection packets may be forwarded to the third node device via the second node device. Later, the first node device may receive a plurality of response packets sent in batches by the third node device in response to the plurality of detection packets, and the plurality of response packets are also forwarded by the second node device. After obtaining the first time information and the second time information reported by the second node device, the transmission delay related to the second node device can be evaluated according to the first time information and the second time information. In particular, the first time information may reflect the time when the plurality of detection packets arrive at the second node device, and the second time information may reflect the time when the plurality of response packets arrive at the second node device. In this way, the evaluation of the transmission delay can be effectively performed on a specific node device on the transmission path of the packet, thereby improving the detection efficiency of the transmission delay of the packet.

圖1是根據本發明的實施例所繪示的傳輸延遲檢測系統的示意圖。FIG. 1 is a schematic diagram of a transmission delay detection system according to an embodiment of the present invention.

請參照圖1,傳輸延遲檢測系統10包括節點裝置(亦稱為第一節點裝置)11、節點裝置(亦稱為第二節點裝置)12、節點裝置(亦稱為第三節點裝置)13及伺服器14。Please refer to FIG. 1, the transmission delay detection system 10 includes a node device (also called a first node device) 11, a node device (also called a second node device) 12, a node device (also called a third node device) 13 and server 14.

節點裝置11~13皆為網路傳輸環境中的網路節點設備。以5G傳輸環境為例,節點裝置11可為使用者設備(User Equipment, UE),節點裝置12可為基地台(gNB),且節點裝置13可為5G核心(Core)伺服器的資料網路(DN)節點。此外,在其他應用中,節點裝置11~13亦可分別包括其他類型的網路節點設備,本發明不加以限制。伺服器14可與節點裝置11~13通訊連接。伺服器14可用以負責或控制傳輸延遲檢測系統10的整體或部分運作。The node devices 11-13 are all network node devices in the network transmission environment. Taking the 5G transmission environment as an example, the node device 11 can be a user equipment (User Equipment, UE), the node device 12 can be a base station (gNB), and the node device 13 can be a data network of a 5G core (Core) server (DN) node. In addition, in other applications, the node devices 11 - 13 may also respectively include other types of network node devices, which are not limited by the present invention. The server 14 can communicate with the node devices 11 - 13 . The server 14 can be used to be in charge of or control the entire or partial operation of the transmission delay detection system 10 .

圖2是根據本發明的實施例所繪示的伺服器的示意圖。FIG. 2 is a schematic diagram of a server according to an embodiment of the present invention.

請參照圖2,伺服器14包括通訊介面電路21、儲存電路22及處理器23。通訊介面電路21用以執行有線及/或無線通訊功能。例如,通訊介面電路21可包括有線或無線通訊電路。通訊介面電路21可用以將伺服器14通訊連接至節點裝置11~13。Please refer to FIG. 2 , the server 14 includes a communication interface circuit 21 , a storage circuit 22 and a processor 23 . The communication interface circuit 21 is used for performing wired and/or wireless communication functions. For example, the communication interface circuit 21 may include wired or wireless communication circuits. The communication interface circuit 21 can be used for communication connection of the server 14 to the node devices 11-13.

儲存電路22用以儲存資料。例如,儲存電路22可包括揮發性儲存電路與非揮發性儲存電路。揮發性儲存電路用以揮發性地儲存資料。例如,揮發性儲存電路可包括隨機存取記憶體(Random Access Memory, RAM)或類似的揮發性儲存媒體。非揮發性儲存電路用以非揮發性地儲存資料。例如,非揮發性儲存電路可包括唯讀記憶體(Read Only Memory, ROM)、固態硬碟(solid state disk, SSD)、傳統硬碟(Hard disk drive, HDD)或類似的非揮發性儲存媒體。The storage circuit 22 is used for storing data. For example, the storage circuit 22 may include a volatile storage circuit and a non-volatile storage circuit. The volatile storage circuit is used for volatile storage of data. For example, the volatile storage circuit may include random access memory (Random Access Memory, RAM) or similar volatile storage media. The non-volatile storage circuit is used for non-volatile storage of data. For example, the non-volatile storage circuit may include a read only memory (Read Only Memory, ROM), a solid state disk (solid state disk, SSD), a traditional hard disk (Hard disk drive, HDD) or similar non-volatile storage media .

處理器23耦接至通訊介面電路21與儲存電路22。處理器23可用以負責或控制伺服器14的整體或部分運作。例如,處理器23可包括中央處理單元(Central Processing Unit, CPU)或是其他可程式化之一般用途或特殊用途的微處理器、數位訊號處理器(Digital Signal Processor, DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits, ASIC)、可程式化邏輯裝置(Programmable Logic Device, PLD)或其他類似裝置或這些裝置的組合。處理器23可經由通訊介面電路21與節點裝置11~13通訊。The processor 23 is coupled to the communication interface circuit 21 and the storage circuit 22 . The processor 23 can be used to be responsible for or control the whole or part of the operation of the server 14 . For example, the processor 23 may include a central processing unit (Central Processing Unit, CPU) or other programmable general-purpose or special-purpose microprocessors, digital signal processors (Digital Signal Processor, DSP), programmable control device, application specific integrated circuit (Application Specific Integrated Circuits, ASIC), programmable logic device (Programmable Logic Device, PLD) or other similar devices or a combination of these devices. The processor 23 can communicate with the node devices 11 - 13 via the communication interface circuit 21 .

請同時參照圖1與圖2,節點裝置11可批次發送多個網路封包(亦稱為檢測封包)PA(1)~PA(N)。例如,檢測封包PA(1)~PA(N)為使用者資料包協定(User Datagram Protocol, UDP)封包。N可為任意大於1的正整數。例如,N可為50、100或其他數值。例如,節點裝置11可透過多執行緒(multithreading)的方式來執行封包發送,使每一個檢測封包不需要等待上一個封包完成測試即可被送出。藉此,可達到短時間內發送多個檢測封包PA(1)~PA(N)的需求。特別是,所發出的檢測封包PA(1)~PA(N)可經由節點裝置12轉發至節點裝置13。例如,檢測封包PA(1)~PA(N)可基於傳輸控制協定(Transmission Control Protocol, TCP)/網際網路協定(Internet Protocol, IP)(簡稱為TCP/IP)在節點裝置11至13間進行傳輸與封包分析。Please refer to FIG. 1 and FIG. 2 at the same time, the node device 11 can send a plurality of network packets (also called detection packets) PA( 1 )˜PA(N) in batches. For example, the detected packets PA( 1 )˜PA(N) are User Datagram Protocol (UDP) packets. N can be any positive integer greater than 1. For example, N can be 50, 100 or other numerical values. For example, the node device 11 can perform packet sending in a multi-threading manner, so that each detection packet can be sent out without waiting for the previous packet to complete the test. In this way, the requirement of sending a plurality of detection packets PA( 1 )˜PA(N) in a short time can be met. In particular, the sent detection packets PA( 1 )˜PA(N) can be forwarded to the node device 13 via the node device 12 . For example, the detection packets PA(1)~PA(N) can be transmitted between node devices 11 to 13 based on Transmission Control Protocol (Transmission Control Protocol, TCP)/Internet Protocol (Internet Protocol, IP) (abbreviated as TCP/IP). Perform transmission and packet analysis.

在接收並轉發檢測封包PA(1)~PA(N)的過程中,節點裝置12可記錄檢測封包PA(1)~PA(N)抵達節點裝置12的時間。例如,節點裝置12可對接收到的各個檢測封包PA(1)~PA(N)加上時間戳(timestamp)。爾後,節點裝置12可將特定的時間資訊(亦稱為第一時間資訊)回報給伺服器14。第一時間資訊可反映檢測封包PA(1)~PA(N)抵達節點裝置12的時間。During the process of receiving and forwarding the detection packets PA( 1 )˜PA(N), the node device 12 can record the time when the detection packets PA( 1 )˜PA(N) arrive at the node device 12 . For example, the node device 12 may add timestamps to the received detection packets PA( 1 )˜PA(N). Afterwards, the node device 12 can report specific time information (also referred to as first time information) to the server 14 . The first time information may reflect the time when the detection packets PA( 1 )˜PA(N) arrive at the node device 12 .

在發送檢測封包PA(1)~PA(N)後,節點裝置11可等待並接收多個網路封包(亦稱為回應封包)PB(1)~PB(M)。例如,回應封包PB(1)~PB(M)同樣為UDP封包。M可為任意大於1的正整數。例如,M可為50、100或其他數值。特別是,回應封包PB(1)~PB(M)是由節點裝置13批次發送,以回應檢測封包PA(1)~PA(N)。例如,回應封包PB(1)~PB(M)可經由節點裝置12轉發至節點裝置11。此外,回應封包PB(1)~PB(M)同樣可基於TCP/IP在節點裝置11至13間進行傳輸與封包分析。After sending the detection packets PA( 1 )˜PA(N), the node device 11 can wait for and receive a plurality of network packets (also called response packets) PB( 1 )˜PB(M). For example, the response packets PB(1)~PB(M) are also UDP packets. M can be any positive integer greater than 1. For example, M can be 50, 100 or other numerical values. In particular, the response packets PB( 1 )˜PB(M) are sent in batches by the node device 13 to respond to the detection packets PA( 1 )˜PA(N). For example, the response packets PB( 1 )˜PB(M) can be forwarded to the node device 11 via the node device 12 . In addition, the response packets PB( 1 )˜PB(M) can also be transmitted and analyzed among the node devices 11 to 13 based on TCP/IP.

在一實施例中,節點裝置11與13皆支援TWAMP或類似用以量測封包傳輸效能的通訊協定。以TWAMP為例,節點裝置11可發送符合TWAMP規範的檢測封包PA(1)~PA(N)至節點裝置13,以啟動節點裝置11與13之間的封包傳輸效能的相關量測。響應於所接收到的檢測封包PA(1)~PA(N),節點裝置13可依序且批量發送同樣符合TWAMP規範的回應封包PB(1)~PB(M)至節點裝置11,以協助完成節點裝置11與13之間的封包傳輸效能的相關量測。例如,回應封包PB(p)是響應於檢測封包PA(q)而產生並發送,p為介於1至M之間的任意正整數,且q為介於1至N之間的任意正整數。但是,節點裝置12可不支援TWAMP等用以量測封包傳輸效能的任一通訊協定。In one embodiment, both the node devices 11 and 13 support TWAMP or a similar communication protocol for measuring packet transmission performance. Taking TWAMP as an example, the node device 11 can send detection packets PA( 1 )˜PA(N) conforming to the TWAMP specification to the node device 13 to start the measurement of the packet transmission performance between the node devices 11 and 13 . In response to the received detection packets PA(1)~PA(N), the node device 13 can sequentially and in batches send response packets PB(1)~PB(M) that also comply with the TWAMP specification to the node device 11 to assist The relative measurement of the packet transmission performance between the node devices 11 and 13 is completed. For example, the response packet PB(p) is generated and sent in response to the detection packet PA(q), p is any positive integer between 1 and M, and q is any positive integer between 1 and N . However, the node device 12 may not support any communication protocol used for measuring packet transmission performance, such as TWAMP.

需注意的是,在本發明的實施例中,皆不考慮封包遺失的情況。因此,N可等於M。但是,若考量到實務上封包可能會在傳輸過程中遺失,則N可能會不等於M。例如,M可能會小於N。It should be noted that in the embodiments of the present invention, packet loss is not considered. Therefore, N may be equal to M. However, if it is considered that packets may be lost during transmission in practice, N may not be equal to M. For example, M may be smaller than N.

在接收並轉發回應封包PB(1)~PB(M)的過程中,節點裝置12可記錄回應封包PB(1)~PB(M)抵達節點裝置12的時間。例如,節點裝置12可對接收到的各個回應封包PB(1)~PB(M)加上時間戳。爾後,節點裝置12可將另一時間資訊(亦稱為第二時間資訊)回報給伺服器14。第二時間資訊可反映回應封包PB(1)~PB(M)抵達節點裝置12的時間。During the process of receiving and forwarding the response packets PB( 1 )˜PB(M), the node device 12 can record the time when the response packets PB( 1 )˜PB(M) arrive at the node device 12 . For example, the node device 12 may add time stamps to each of the received response packets PB(1)˜PB(M). Thereafter, the node device 12 can report another time information (also referred to as second time information) to the server 14 . The second time information may reflect the time when the response packets PB( 1 )˜PB(M) arrive at the node device 12 .

在獲得由節點裝置12回報的第一時間資訊與第二時間資訊後,伺服器14可根據第一時間資訊與第二時間資訊來評估與節點裝置12有關的傳輸延遲。例如,處理器23可根據檢測封包PA(1)~PA(N)抵達節點裝置12的時間、回應封包PB(1)~PB(M)抵達節點裝置12的時間、上述兩者的時間差或進一步搭配其他參數,來概略評估與節點裝置12有關的傳輸延遲狀況。然後,處理器23可根據評估結果產生相關的評估資訊,以反映與節點裝置12有關的傳輸延遲狀況。例如,所述傳輸延遲狀況可包括節點裝置12與相鄰節點裝置之間的封包傳輸花費時間或封包傳輸速率等,且所評估的傳輸延遲狀況不限於此。藉此,即便節點裝置12不支援TWAMP等用以量測封包傳輸效能的通訊協定,伺服器14仍可根據第一時間資訊與第二時間資訊來評估與節點裝置12有關的傳輸延遲狀況。After obtaining the first time information and the second time information reported by the node device 12, the server 14 can evaluate the transmission delay related to the node device 12 according to the first time information and the second time information. For example, the processor 23 may detect the time when the packets PA(1)~PA(N) arrive at the node device 12, the time when the response packets PB(1)~PB(M) arrive at the node device 12, the time difference between the above two or further Together with other parameters, the transmission delay status related to the node device 12 is roughly evaluated. Then, the processor 23 can generate relevant evaluation information according to the evaluation result to reflect the transmission delay status related to the node device 12 . For example, the transmission delay condition may include the packet transmission time or packet transmission rate between the node device 12 and the adjacent node device, and the evaluated transmission delay condition is not limited thereto. In this way, even if the node device 12 does not support a communication protocol for measuring packet transmission performance such as TWAMP, the server 14 can still evaluate the transmission delay status related to the node device 12 according to the first time information and the second time information.

在一實施例中,在發送檢測封包PA(1)~PA(N)的過程中,節點裝置11亦可記錄檢測封包PA(1)~PA(N)的發送時間。例如,節點裝置11可對所發送的各個檢測封包PA(1)~PA(N)加上時間戳。爾後,節點裝置11可將檢測封包PA(1)~PA(N)的發送時間資訊回報給伺服器14。檢測封包PA(1)~PA(N)的發送時間資訊可反映節點裝置11發送檢測封包PA(1)~PA(N)的時間。In one embodiment, during the process of sending the detection packets PA( 1 )˜PA(N), the node device 11 may also record the sending time of the detection packets PA( 1 )˜PA(N). For example, the node device 11 may add time stamps to the sent detection packets PA( 1 )˜PA(N). Afterwards, the node device 11 can report the sending time information of the detected packets PA( 1 )˜PA(N) to the server 14 . The sending time information of the detection packets PA( 1 )˜PA(N) can reflect the time when the node device 11 sends the detection packets PA( 1 )˜PA(N).

在一實施例中,在接收檢測封包PA(1)~PA(N)的過程中,節點裝置13亦可記錄檢測封包PA(1)~PA(N)的抵達時間。例如,節點裝置13可對所接收的各個檢測封包PA(1)~PA(N)加上時間戳。爾後,節點裝置13可將檢測封包PA(1)~PA(N)的抵達時間資訊回報給伺服器14。檢測封包PA(1)~PA(N)的抵達時間資訊可反映檢測封包PA(1)~PA(N)抵達節點裝置13的時間。In one embodiment, during the process of receiving the detection packets PA( 1 )˜PA(N), the node device 13 may also record the arrival time of the detection packets PA( 1 )˜PA(N). For example, the node device 13 may add time stamps to the received detection packets PA( 1 )˜PA(N). Afterwards, the node device 13 can report the arrival time information of the detected packets PA( 1 )˜PA(N) to the server 14 . The arrival time information of the detection packets PA( 1 )˜PA(N) can reflect the time when the detection packets PA( 1 )˜PA(N) arrive at the node device 13 .

在一實施例中,在發送回應封包PB(1)~PB(M)的過程中,節點裝置13亦可記錄回應封包PB(1)~PB(M)的發送時間。例如,節點裝置13可對所發送的各個回應封包PB(1)~PB(M)加上時間戳。爾後,節點裝置13可將回應封包PB(1)~PB(M)的發送時間資訊回報給伺服器14。回應封包PB(1)~PB(M)的發送時間資訊可反映節點裝置13發送回應封包PB(1)~PB(M)的時間。In one embodiment, during the process of sending the response packets PB( 1 )˜PB(M), the node device 13 may also record the sending time of the response packets PB( 1 )˜PB(M). For example, the node device 13 may add time stamps to the sent response packets PB(1)˜PB(M). Afterwards, the node device 13 can report the sending time information of the response packets PB( 1 )˜PB(M) to the server 14 . The sending time information of the response packets PB( 1 )˜PB(M) may reflect the time when the node device 13 sends the response packets PB( 1 )˜PB(M).

在一實施例中,在接收回應封包PB(1)~PB(M)的過程中,節點裝置11亦可記錄回應封包PB(1)~PB(M)的抵達時間。例如,節點裝置11可對所接收的各個回應封包PB(1)~PB(M)加上時間戳。爾後,節點裝置11可將回應封包PB(1)~PB(M)的抵達時間資訊回報給伺服器14。回應封包PB(1)~PB(M)的抵達時間資訊可反映回應封包PB(1)~PB(M)抵達節點裝置11的時間。In an embodiment, during the process of receiving the response packets PB( 1 )˜PB(M), the node device 11 may also record the arrival time of the response packets PB( 1 )˜PB(M). For example, the node device 11 may add time stamps to the received response packets PB(1)˜PB(M). Afterwards, the node device 11 can report the arrival time information of the response packets PB( 1 )˜PB(M) to the server 14 . The arrival time information of the response packets PB( 1 )˜PB(M) may reflect the time when the response packets PB( 1 )˜PB(M) arrive at the node device 11 .

在一實施例中,在發送檢測封包PA(1)~PA(N)之前,處理器23可指示節點裝置11至13進行時間同步。此時間同步可對節點裝置11至13各自的本地時間(或系統時間)進行同步,例如同步為全域(global)時間,以修正節點裝置11至13之間可能存在的時間誤差。例如,節點裝置11至13可基於精確時間協定(Precision Time Protocol, PTP)來進行時間同步。In one embodiment, before sending the detection packets PA( 1 )˜PA(N), the processor 23 may instruct the node devices 11 to 13 to perform time synchronization. The time synchronization can synchronize the respective local time (or system time) of the node devices 11-13, such as synchronizing to a global (global) time, so as to correct possible time errors among the node devices 11-13. For example, the node devices 11 to 13 can perform time synchronization based on Precision Time Protocol (PTP).

在一實施例中,處理器23可根據檢測封包PA(1)~PA(N)的發送時間資訊、檢測封包PA(1)~PA(N)的抵達時間資訊、回應封包PB(1)~PB(M)的發送時間資訊、回應封包PB(1)~PB(M)的抵達時間資訊、第一時間資訊及第二時間資訊,評估與節點裝置12有關的傳輸延遲。例如,處理器23可根據節點裝置11發送檢測封包PA(1)~PA(N)的時間、檢測封包PA(1)~PA(N)抵達節點裝置12的時間、檢測封包PA(1)~PA(N)抵達節點裝置13的時間、節點裝置13發送檢測封包回應封包PB(1)~PB(M)的時間、回應封包PB(1)~PB(M)抵達節點裝置12的時間及回應封包PB(1)~PB(M)抵達節點裝置11的時間、上述任兩者的時間差或進一步搭配其他參數,來評估與節點裝置12有關的傳輸延遲。In one embodiment, the processor 23 can detect the sending time information of the packets PA(1)~PA(N), the arrival time information of the detected packets PA(1)~PA(N), and respond to the packets PB(1)~ The transmission time information of PB(M), the arrival time information, first time information and second time information of the response packets PB(1)˜PB(M) are used to evaluate the transmission delay related to the node device 12 . For example, the processor 23 can send the detection packets PA(1)~PA(N) according to the time of the node device 11, the time when the detection packets PA(1)~PA(N) arrive at the node device 12, the detection packets PA(1)~PA(N) The time when PA(N) arrives at the node device 13, the time when the node device 13 sends the detection packet response packet PB(1)~PB(M), the time when the response packet PB(1)~PB(M) arrives at the node device 12 and the response The time when the packets PB( 1 )˜PB(M) arrive at the node device 11 , the time difference between any of the above two, or other parameters are further used to evaluate the transmission delay related to the node device 12 .

在一實施例中,假設檢測封包PA(1)~PA(N)從節點裝置11發送至節點裝置13的過程總共約花費22.68毫秒(ms),其中檢測封包PA(1)~PA(N)從節點裝置11發送至節點裝置12的過程約花費22.45毫秒,而檢測封包PA(1)~PA(N)從節點裝置12發送至節點裝置13的過程約花費0.23毫秒。處理器23可根據上述傳輸時間之資訊來評估與節點裝置12有關的傳輸延遲狀況。例如,所評估的傳輸延遲狀況可反映出在節點裝置11至13的上行鏈路(Up-Link)或下行鏈路(Down-Link)中,發生在節點裝置11與12之間的傳輸延遲約佔整體傳輸延遲的99%,而發生在節點裝置12與13之間的傳輸延遲僅佔整體傳輸延遲的1%。爾後,網路開發或設計人員可根據此評估結果著重針對節點裝置11與12之間的傳輸延遲進行優化。In one embodiment, it is assumed that the process of sending the detection packets PA(1)~PA(N) from the node device 11 to the node device 13 takes about 22.68 milliseconds (ms) in total, wherein the detection packets PA(1)~PA(N) The process of sending from the node device 11 to the node device 12 takes about 22.45 milliseconds, and the process of sending the detection packets PA( 1 )˜PA(N) from the node device 12 to the node device 13 takes about 0.23 milliseconds. The processor 23 can evaluate the transmission delay status related to the node device 12 according to the above transmission time information. For example, the evaluated transmission delay situation can reflect that in the uplink (Up-Link) or downlink (Down-Link) of the node devices 11 to 13, the transmission delay occurring between the node devices 11 and 12 is about It accounts for 99% of the overall transmission delay, while the transmission delay between the node devices 12 and 13 only accounts for 1% of the overall transmission delay. Thereafter, network developers or designers can focus on optimizing the transmission delay between the node devices 11 and 12 according to the evaluation result.

在一實施例中,處理器23可根據檢測封包PA(1)~PA(N)抵達節點裝置12的時間之分布,獲得檢測封包PA(1)~PA(N)抵達節點裝置12的一個中心時間(亦稱為第一中心時間)。第一中心時間可約略用以代表檢測封包PA(1)~PA(N)抵達節點裝置12的時間之分布在統計上的中心位置。另一方面,處理器23可根據回應封包PB(1)~PB(M)抵達節點裝置12的時間之分布,獲得回應封包PB(1)~PB(M)抵達節點裝置12的一個中心時間(亦稱為第二中心時間)。第二中心時間可約略用以代表回應封包PB(1)~PB(M)抵達節點裝置12的時間之分布在統計上的中心位置。處理器23可根據第一中心時間與第二中心時間評估與節點裝置12有關的傳輸延遲。In one embodiment, the processor 23 can obtain a center of the detection packets PA(1)~PA(N) arriving at the node device 12 according to the distribution of the time when the detection packets PA(1)~PA(N) arrive at the node device 12 time (also known as first central time). The first central time may be roughly used to represent the statistical central position of the distribution of the time when the detection packets PA( 1 )˜PA(N) arrive at the node device 12 . On the other hand, the processor 23 can obtain a central time ( Also known as Second Central Time). The second central time can be roughly used to represent the statistical central position of the distribution of the time when the response packets PB( 1 )˜PB(M) arrive at the node device 12 . The processor 23 can estimate the transmission delay related to the node device 12 according to the first central time and the second central time.

圖3是根據本發明的實施例所繪示的多個檢測封包抵達第二節點裝置的時間之分布的示意圖。FIG. 3 is a schematic diagram illustrating the time distribution of a plurality of detection packets arriving at a second node device according to an embodiment of the present invention.

請參照圖3,圖3中的縱軸代表檢測封包的編號,且橫軸代表時間。從圖3可看出,檢測封包PA(1)~PA(N)抵達節點裝置12的時間之分布。Please refer to FIG. 3 , the vertical axis in FIG. 3 represents the number of detected packets, and the horizontal axis represents time. It can be seen from FIG. 3 that the time distribution of the detection packets PA( 1 )˜PA(N) arriving at the node device 12 is obtained.

特別是,在圖3的實施例中,時間點TC(1)對應第一中心時間,時間點T(1)對應檢測封包PA(1)~PA(N)中第一個抵達節點裝置12的檢測封包的抵達時間,且時間點T(i)對應檢測封包PA(1)~PA(N)中第i個抵達節點裝置12的檢測封包的抵達時間。此外,N為檢測封包PA(1)~PA(N)的總數,例如為50或其他數值。In particular, in the embodiment of FIG. 3 , the time point TC(1) corresponds to the first central time, and the time point T(1) corresponds to the detection packet PA(1)~PA(N) that first arrives at the node device 12. The arrival time of the detection packet, and the time point T(i) corresponds to the arrival time of the i-th detection packet arriving at the node device 12 among the detection packets PA(1)˜PA(N). In addition, N is the total number of detected packets PA( 1 )˜PA(N), for example, 50 or other values.

圖4是根據本發明的實施例所繪示的多個回應封包抵達第二節點裝置的時間之分布的示意圖。FIG. 4 is a schematic diagram illustrating the distribution of the arrival time of a plurality of response packets at the second node device according to an embodiment of the present invention.

請參照圖4,圖4中的縱軸代表回應封包的編號,且橫軸代表時間。從圖4可看出,回應封包PB(1)~PB(M)抵達節點裝置12的時間之分布。Please refer to FIG. 4 , the vertical axis in FIG. 4 represents the number of the response packet, and the horizontal axis represents time. It can be seen from FIG. 4 , the distribution of the time when the response packets PB( 1 )˜PB(M) arrive at the node device 12 .

特別是,在圖4的實施例中,時間點TC(2)對應第二中心時間,時間點T(1)’對應回應封包PB(1)~PB(M)中第一個抵達節點裝置12的檢測封包的抵達時間,且時間點T(j)對應回應封包PB(1)~PB(M)中第j個抵達節點裝置12的檢測封包的抵達時間。此外,M為回應封包PB(1)~PB(M)的總數,例如為50或其他數值。In particular, in the embodiment of FIG. 4, the time point TC(2) corresponds to the second central time, and the time point T(1)' corresponds to the first arrival of the response packets PB(1)~PB(M) at the node device 12 The arrival time of the detection packet of , and the time point T(j) corresponds to the arrival time of the jth detection packet arriving at the node device 12 among the response packets PB(1)˜PB(M). In addition, M is the total number of response packets PB(1)˜PB(M), for example, 50 or other values.

在一實施例中,處理器23可分別根據以下方程式(1.1)與(1.2)獲得第一中心時間與第二中心時間。In one embodiment, the processor 23 can respectively obtain the first central time and the second central time according to the following equations (1.1) and (1.2).

Figure 02_image001
(1.1)
Figure 02_image001
(1.1)

Figure 02_image003
(1.2)
Figure 02_image003
(1.2)

須注意的是,在方程式(1.1)與(1.2)中,是以同一批傳送的多個封包中,第一個抵達的封包的抵達時間做為基準,搭配其餘封包的抵達時間來對第一個抵達的封包的抵達時間進行修正,以決定第一中心時間與第二中心時間,但本發明不限於此。在其他實施例中,第一中心時間與第二中心時間還可以根據其他邏輯規則來決定,本發明不加以限制。It should be noted that in the equations (1.1) and (1.2), the arrival time of the first packet among the multiple packets transmitted in the same batch is used as the benchmark, and the arrival time of the other packets is used to compare the arrival time of the first packet. The arrival time of each arriving packet is corrected to determine the first central time and the second central time, but the present invention is not limited thereto. In other embodiments, the first central time and the second central time may also be determined according to other logic rules, which are not limited by the present invention.

在一實施例中,處理器23可使用第一中心時間來代表檢測封包PA(1)~PA(N)抵達節點裝置12的時間,並使用第二中心時間來代表回應封包PB(1)~PB(M)抵達節點裝置12的時間。相較於使用各個封包的實際抵達時間,透過使用第一中心時間與第二中心時間來進行傳輸延遲的評估,可有效降低運算量。此外,考量到單一封包在傳輸過程中有遺失的可能,透過批量傳輸大量的檢測封包(及回應封包)並統計此些封包抵達特定節點裝置的時間,可有效提高傳輸延遲的評估之準確率。In one embodiment, the processor 23 may use the first central time to represent the time when the detection packets PA(1)~PA(N) arrive at the node device 12, and use the second central time to represent the response packets PB(1)~ The time when PB(M) arrives at the node device 12. Compared with using the actual arrival time of each packet, the calculation amount can be effectively reduced by using the first central time and the second central time to evaluate the transmission delay. In addition, considering the possibility of a single packet being lost during transmission, the accuracy of transmission delay evaluation can be effectively improved by batch-transmitting a large number of detection packets (and response packets) and counting the arrival time of these packets at a specific node device.

在一實施例中,處理器23可根據檢測封包PA(1)~PA(N)的發送時間資訊(即檢測封包PA(1)~PA(N)從節點裝置11發送的時間)與第一中心時間,評估節點裝置11與12之間在封包的特定傳遞方向(亦稱為第一傳遞方向)上的傳輸延遲。類似的,處理器23可根據第一中心時間與檢測封包PA(1)~PA(N)的抵達時間資訊(即檢測封包PA(1)~PA(N)抵達節點裝置13的時間),評估節點裝置12與13之間在第一傳遞方向上的傳輸延遲。In one embodiment, the processor 23 can compare the sending time information of the detection packets PA(1)~PA(N) (that is, the time when the detection packets PA(1)~PA(N) are sent from the node device 11) to the first The central time evaluates the transmission delay between the node devices 11 and 12 in a specific transfer direction (also referred to as the first transfer direction) of the packet. Similarly, the processor 23 can evaluate according to the first central time and the arrival time information of the detection packets PA(1)~PA(N) (that is, the time when the detection packets PA(1)~PA(N) arrive at the node device 13). Transmission delay between node devices 12 and 13 in the first transfer direction.

在一實施例中,處理器23可根據回應封包PB(1)~PB(M)的發送時間資訊(即回應封包PB(1)~PB(M)從節點裝置13發送的時間)與第二中心時間,評估節點裝置12與13之間在另一傳遞方向(亦稱為第二傳遞方向)上的傳輸延遲。類似的,處理器23可根據第二中心時間與回應封包PB(1)~PB(M)的抵達時間資訊(即回應封包PB(1)~PB(M)抵達節點裝置11的時間),評估節點裝置11與12之間在另一傳遞方向(亦稱為第二傳遞方向)上的傳輸延遲。In one embodiment, the processor 23 can compare the sending time information of the response packets PB(1)~PB(M) (that is, the time when the response packets PB(1)~PB(M) are sent from the node device 13) with the second Central time, the transmission delay between the node devices 12 and 13 in another transfer direction (also referred to as the second transfer direction) is evaluated. Similarly, the processor 23 can evaluate according to the second central time and the arrival time information of the response packets PB(1)~PB(M) (that is, the time when the response packets PB(1)~PB(M) arrive at the node device 11). The transmission delay between the node devices 11 and 12 in another transmission direction (also referred to as the second transmission direction).

在一實施例中,第一傳遞方向與第二傳遞方向可分別為Up-Link與Down-Link。或者,在一實施例中,第一傳遞方向與第二傳遞方向可分別為Down-Link與Up-Link。In an embodiment, the first transmission direction and the second transmission direction may be Up-Link and Down-Link respectively. Alternatively, in an embodiment, the first transmission direction and the second transmission direction may be Down-Link and Up-Link respectively.

在一實施例中,處理器23也可使用不同的中心時間來代表檢測封包PA(1)~PA(N)從節點裝置11發送的時間、檢測封包PA(1)~PA(N)抵達節點裝置13的時間、回應封包PB(1)~PB(M)從節點裝置13發送的時間及回應封包PB(1)~PB(M)抵達節點裝置11的時間。In one embodiment, the processor 23 may also use different central times to represent the time when the detection packets PA(1)~PA(N) are sent from the node device 11, and the time when the detection packets PA(1)~PA(N) arrive at the node The time of the device 13 , the time when the response packets PB( 1 )˜PB(M) are sent from the node device 13 , and the time when the response packets PB( 1 )˜PB(M) arrive at the node device 11 .

以檢測封包PA(1)~PA(N)從節點裝置11發送的時間為例,處理器23可透過統計檢測封包PA(1)~PA(N)從節點裝置11發送的時間之分布,來獲得檢測封包PA(1)~PA(N)從節點裝置11發送的一個中心時間。此中心時間可約略用以代表檢測封包PA(1)~PA(N)從節點裝置11發送的時間之分布在統計上的中心位置,依此類推。相關的操作細節已詳述於上,例如可參照方程式(1.1)及/或(1.2),在此不重複說明。Taking the time when the detection packets PA(1)~PA(N) are sent from the node device 11 as an example, the processor 23 can calculate the distribution of the time when the detection packets PA(1)~PA(N) are sent from the node device 11, to A central time when the detection packets PA( 1 )˜PA(N) are sent from the node device 11 is obtained. The center time can be roughly used to represent the statistical center position of the time distribution of the detection packets PA( 1 )˜PA(N) sent from the node device 11 , and so on. Relevant operational details have been described in detail above, for example, reference can be made to equations (1.1) and/or (1.2), which will not be repeated here.

在一實施例中,處理器23可根據批量發送的網路封包(即檢測封包PA(1)~PA(N)及/或回應封包PB(1)~PB(M))從節點裝置發送、經過節點裝置或抵達節點裝置的中心時間,來評估該些網路封包在任兩個相鄰或不相鄰的節點裝置之間的傳輸延遲(或封包傳輸效率)。In one embodiment, the processor 23 may send from the node device according to the network packets sent in batches (ie detection packets PA(1)~PA(N) and/or response packets PB(1)~PB(M)), The transmission delay (or packet transmission efficiency) of the network packets between any two adjacent or non-adjacent node devices is evaluated by passing through the node device or the central time of arriving at the node device.

以下表1與表2為例,表1呈現批量傳輸的多個網路封包在Up-Link傳輸過程中,經過任兩個相鄰的節點裝置所花費的時間,且表2呈現批量傳輸的多個網路封包在Down-Link傳輸過程中,經過任兩個相鄰的節點裝置所花費的時間。處理器23可根據表1與表2中記載的資訊來評估與各個節點裝置相關的傳輸延遲(或封包傳輸效率)。特別是,所述時間皆是以對應於各個節點裝置的中心時間來進行估測。 表1 節點裝置11至12的傳輸時間(ms) 節點裝置12至13的傳輸時間(ms) Up-Link總傳輸時間(ms) 22.45 0.23 22.68 表2 節點裝置13至12的傳輸時間(ms) 節點裝置12至11的傳輸時間(ms) Down-Link總傳輸時間(ms) 0.11 5.56 5.67 The following Table 1 and Table 2 are taken as examples. Table 1 shows the time it takes for multiple network packets to be transferred in batches to pass through any two adjacent node devices during the Up-Link transmission process, and Table 2 shows how many packets are transferred in batches. The time it takes for a network packet to pass through any two adjacent node devices during Down-Link transmission. The processor 23 can evaluate the transmission delay (or packet transmission efficiency) related to each node device according to the information recorded in Table 1 and Table 2 . In particular, the time is estimated based on the central time corresponding to each node device. Table 1 Transmission time of node devices 11 to 12 (ms) Transmission time of node devices 12 to 13 (ms) Up-Link total transmission time (ms) 22.45 0.23 22.68 Table 2 Transmission time of node devices 13 to 12 (ms) Transmission time of node devices 12 to 11 (ms) Down-Link total transmission time (ms) 0.11 5.56 5.67

例如,根據表1與表2,處理器23可獲得在一次的檢測程序中,批量傳輸的網路封包在Up-Link與Down-Link傳輸中總共花費的傳輸時間約為28.35毫秒。其中,發生在節點裝置11與12之間的Up-Link傳輸延遲約佔整體傳輸延遲的79%,發生在節點裝置11與12之間的Down-Link傳輸延遲約佔整體傳輸延遲的19%,而發生在其餘節點裝置之間的傳輸延遲僅佔整體傳輸延遲的2%。爾後,網路開發或設計人員可根據此評估結果著重針對節點裝置11與12之間的傳輸延遲進行優化,以符合相關通訊協定之規範。For example, according to Table 1 and Table 2, the processor 23 can obtain that in one detection procedure, the total transmission time spent by the batch-transmitted network packets in Up-Link and Down-Link transmission is about 28.35 milliseconds. Among them, the Up-Link transmission delay occurring between the node devices 11 and 12 accounts for about 79% of the overall transmission delay, and the Down-Link transmission delay occurring between the node devices 11 and 12 accounts for about 19% of the overall transmission delay, The transmission delay between other node devices only accounts for 2% of the overall transmission delay. Thereafter, network developers or designers can focus on optimizing the transmission delay between the node devices 11 and 12 according to the evaluation results, so as to comply with the specifications of the relevant communication protocols.

在一實施例中,處理器23可將所測得的傳輸延遲之相關資訊儲存於儲存電路22中,以供使用者查詢。或者,在一實施例中,處理器23可將所測得的傳輸延遲之相關資訊傳送給作為使用者設備(UE)的節點裝置11,以供使用者查看。此外,在一實施例中,處理器23可透過與各個節點裝置11~13中的代理(client)程式溝通,以指示各個節點裝置11~13完成各自的工作任務。In one embodiment, the processor 23 may store the measured transmission delay related information in the storage circuit 22 for user query. Alternatively, in one embodiment, the processor 23 may transmit the measured transmission delay related information to the node device 11 as a user equipment (UE) for viewing by the user. In addition, in one embodiment, the processor 23 can communicate with a client program in each of the node devices 11-13 to instruct each of the node devices 11-13 to complete their respective tasks.

須注意的是,為了說明方便,在前述實施例中,作為中繼節點的節點裝置12的總數為1個,但本發明不限於此。在其他實施例中,作為中繼節點的節點裝置12的總數亦可以為多個,例如2個或3個等,本發明不加以限制。It should be noted that, for convenience of description, in the foregoing embodiments, the total number of node devices 12 serving as relay nodes is one, but the present invention is not limited thereto. In other embodiments, the total number of node devices 12 serving as relay nodes may also be multiple, such as 2 or 3, which is not limited by the present invention.

圖5是根據本發明的實施例所繪示的傳輸延遲檢測系統的示意圖。FIG. 5 is a schematic diagram of a transmission delay detection system according to an embodiment of the present invention.

請參照圖5,傳輸延遲檢測系統50包括節點裝置(即第一節點裝置)51、節點裝置(即第二節點裝置)52(1)~52(K)、節點裝置(即第三節點裝置)53及伺服器54。Please refer to FIG. 5, the transmission delay detection system 50 includes a node device (i.e. a first node device) 51, a node device (i.e. a second node device) 52(1)~52(K), a node device (i.e. a third node device) 53 and server 54.

節點裝置51、52(1)~52(K)及53皆為網路傳輸環境中的網路節點設備。以5G傳輸環境為例,節點裝置51可為使用者設備(UE),節點裝置52(1)可為基地台(gNB),節點裝置52(K)可為5G核心伺服器的使用者面功能(User Plane Function, UPF)節點,且節點裝置53可為5G核心伺服器的資料網路(DN)節點。此外,在其他應用中,節點裝置51、52(1)~52(K)及53亦可分別包括其他類型的網路節點設備,本發明不加以限制。伺服器54可與節點裝置51、52(1)~52(K)及53通訊連接。伺服器54可用以負責或控制傳輸延遲檢測系統50的整體或部分運作。The node devices 51, 52(1)-52(K) and 53 are all network node devices in the network transmission environment. Taking the 5G transmission environment as an example, the node device 51 can be a user equipment (UE), the node device 52(1) can be a base station (gNB), and the node device 52(K) can be a user plane function of a 5G core server (User Plane Function, UPF) node, and the node device 53 may be a data network (DN) node of a 5G core server. In addition, in other applications, the node devices 51 , 52 ( 1 )˜52 (K) and 53 may respectively include other types of network node devices, which are not limited by the present invention. The server 54 can communicate with the node devices 51 , 52 ( 1 )˜52 (K) and 53 . The server 54 can be used to be in charge of or control the entire or partial operation of the transmission delay detection system 50 .

須注意的是,傳輸延遲檢測系統50中伺服器54對節點裝置51、52(1)~52(K)及53執行的傳輸延遲檢測的檢測方式可包含前述實施例提及的各項操作,例如由節點裝置51批量發送檢測封包PA(1)~PA(N),由節點裝置52(1)~52(K)依序轉發檢測封包PA(1)~PA(N)至節點裝置53,由節點裝置53響應於檢測封包PA(1)~PA(N)而批量發送回應封包PB(1)~PB(M),由節點裝置52(1)~52(K)依序轉發回應封包PB(1)~PB(M)至節點裝置51,及由伺服器54根據各個節點裝置回報的封包發送、經過或抵達時間來評估與各個節點裝置有關的傳輸延遲等。此些操作的相關細節皆可參考前述各實施例,在此不重複說明。It should be noted that, the transmission delay detection method performed by the server 54 on the node devices 51, 52(1)-52(K) and 53 in the transmission delay detection system 50 may include various operations mentioned in the foregoing embodiments, For example, the detection packets PA(1)~PA(N) are sent in batches by the node device 51, and the detection packets PA(1)~PA(N) are sequentially forwarded by the node devices 52(1)~52(K) to the node device 53, The node device 53 sends response packets PB(1)~PB(M) in batches in response to the detected packets PA(1)~PA(N), and the node devices 52(1)~52(K) sequentially forward the response packets PB (1)~PB(M) to the node device 51, and the server 54 evaluates the transmission delay related to each node device according to the packet sending, passing or arrival time reported by each node device. Relevant details of these operations can refer to the foregoing embodiments, and will not be repeated here.

圖6是根據本發明的實施例所繪示的傳輸延遲檢測方法的流程圖。FIG. 6 is a flowchart of a transmission delay detection method according to an embodiment of the present invention.

請參照圖6,在步驟S601中,由第一節點裝置批次發送多個檢測封包,且所述多個檢測封包經由第二節點裝置轉發至第三節點裝置。在步驟S602中,由第一節點裝置接收多個回應封包,其中所述多個回應封包是由第三節點裝置批次發送以回應所述多個檢測封包,且所述多個回應封包經由第二節點裝置轉發。在步驟S603中,獲得由第二節點裝置回報的第一時間資訊與第二時間資訊,其中第一時間資訊反映所述多個檢測封包抵達第二節點裝置的時間,且第二時間資訊反映所述多個回應封包抵達第二節點裝置的時間。在步驟S604中,根據第一時間資訊與第二時間資訊評估與第二節點裝置有關的傳輸延遲。Please refer to FIG. 6 , in step S601 , the first node device sends multiple detection packets in batches, and the multiple detection packets are forwarded to the third node device via the second node device. In step S602, a plurality of response packets are received by the first node device, wherein the plurality of response packets are sent in batches by the third node device in response to the plurality of detection packets, and the plurality of response packets are sent through the first node device The two-node device forwards. In step S603, the first time information and the second time information reported by the second node device are obtained, wherein the first time information reflects the time when the plurality of detection packets arrive at the second node device, and the second time information reflects the The time when the plurality of response packets arrive at the second node device. In step S604, the transmission delay related to the second node device is estimated according to the first time information and the second time information.

然而,圖6中各步驟已詳細說明如上,在此便不再贅述。值得注意的是,圖6中各步驟可以實作為多個程式碼或是電路,本發明不加以限制。此外,圖6的方法可以搭配以上範例實施例使用,也可以單獨使用,本發明不加以限制。However, each step in FIG. 6 has been described in detail above, and will not be repeated here. It should be noted that each step in FIG. 6 can be implemented as a plurality of program codes or circuits, which is not limited by the present invention. In addition, the method in FIG. 6 can be used in combination with the above exemplary embodiments, or can be used alone, which is not limited by the present invention.

綜上所述,首先,即便網路環境中的特定節點裝置不支援TWAMP等用以量測封包傳輸效能的通訊協定,伺服器仍可根據第一時間資訊與第二時間資訊來評估與所述節點裝置有關的傳輸延遲狀況。其次,考量到單一封包在傳輸過程中有遺失的可能,透過批量傳輸大量的檢測封包(及回應封包)並統計此些封包抵達特定節點裝置的時間,可有效提高傳輸延遲的評估之準確率。此外,相較於使用各個封包的實際抵達時間,透過使用第一中心時間與第二中心時間來進行傳輸延遲的評估,可有效降低運算量。藉此,本發明的實施例可有效提高對封包的傳輸延遲的檢測效率。To sum up, first of all, even if a specific node device in the network environment does not support communication protocols such as TWAMP for measuring packet transmission performance, the server can still evaluate and match the above information based on the first time information and the second time information. The transmission delay condition related to the node device. Secondly, considering the possibility of a single packet being lost during transmission, the accuracy of transmission delay evaluation can be effectively improved by batch-transmitting a large number of detection packets (and response packets) and counting the arrival time of these packets at a specific node device. In addition, compared with using the actual arrival time of each packet, by using the first central time and the second central time to evaluate the transmission delay, the calculation amount can be effectively reduced. Therefore, the embodiment of the present invention can effectively improve the detection efficiency of the transmission delay of the packet.

雖然本發明已以實施例發明如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been described above with embodiments, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field may make some modifications and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.

10,50:傳輸延遲檢測系統 11,12,13,51,52(1)~52(K),53,:節點裝置 14,54:伺服器 PA(1)~PA(N),PB(1)~PB(M):網路封包 21:通訊介面電路 22:儲存電路 23:處理器 T(1),TC(1),T(i),T(1)’,TC(2),T(j):時間點 S601~S604:步驟10,50: transmission delay detection system 11,12,13,51,52(1)~52(K),53,: node device 14,54: server PA(1)~PA(N), PB(1)~PB(M): network packet 21: Communication interface circuit 22: storage circuit 23: Processor T(1), TC(1), T(i), T(1)’, TC(2), T(j): time points S601~S604: steps

圖1是根據本發明的實施例所繪示的傳輸延遲檢測系統的示意圖。 圖2是根據本發明的實施例所繪示的伺服器的示意圖。 圖3是根據本發明的實施例所繪示的多個檢測封包抵達第二節點裝置的時間之分布的示意圖。 圖4是根據本發明的實施例所繪示的多個回應封包抵達第二節點裝置的時間之分布的示意圖。 圖5是根據本發明的實施例所繪示的傳輸延遲檢測系統的示意圖。 圖6是根據本發明的實施例所繪示的傳輸延遲檢測方法的流程圖。 FIG. 1 is a schematic diagram of a transmission delay detection system according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a server according to an embodiment of the present invention. FIG. 3 is a schematic diagram illustrating the time distribution of a plurality of detection packets arriving at a second node device according to an embodiment of the present invention. FIG. 4 is a schematic diagram illustrating the distribution of the arrival time of a plurality of response packets at the second node device according to an embodiment of the present invention. FIG. 5 is a schematic diagram of a transmission delay detection system according to an embodiment of the present invention. FIG. 6 is a flowchart of a transmission delay detection method according to an embodiment of the present invention.

S601~S604:步驟 S601~S604: steps

Claims (12)

一種傳輸延遲檢測方法,包括: 由第一節點裝置批次發送多個檢測封包,且該多個檢測封包經由第二節點裝置轉發至第三節點裝置; 由該第一節點裝置接收多個回應封包,該多個回應封包是由該第三節點裝置批次發送以回應該多個檢測封包,且該多個回應封包經由該第二節點裝置轉發; 獲得由該第二節點裝置回報的第一時間資訊與第二時間資訊,該第一時間資訊反映該多個檢測封包抵達該第二節點裝置的時間,且該第二時間資訊反映該多個回應封包抵達該第二節點裝置的時間;以及 根據該第一時間資訊與該第二時間資訊評估與該第二節點裝置有關的傳輸延遲。 A transmission delay detection method, comprising: sending multiple detection packets in batches by the first node device, and the multiple detection packets are forwarded to the third node device via the second node device; receiving a plurality of response packets by the first node device, the plurality of response packets are sent in batches by the third node device in response to the plurality of detection packets, and the plurality of response packets are forwarded via the second node device; Obtain first time information and second time information reported by the second node device, the first time information reflects the time when the plurality of detection packets arrive at the second node device, and the second time information reflects the plurality of responses the time when the packet arrives at the second node device; and A transmission delay related to the second node device is estimated according to the first time information and the second time information. 如請求項1所述的傳輸延遲檢測方法,其中該第二節點裝置不支援用以量測封包傳輸效能的任一通訊協定。The transmission delay detection method as claimed in claim 1, wherein the second node device does not support any communication protocol for measuring packet transmission performance. 如請求項1所述的傳輸延遲檢測方法,其中根據該第一時間資訊與該第二時間資訊評估與該第二節點裝置有關的該傳輸延遲的步驟包括: 根據該多個檢測封包的發送時間資訊、該多個檢測封包抵達該第三節點裝置的抵達時間資訊、該多個回應封包的發送時間資訊、該多個回應封包抵達該第一節點裝置的抵達時間資訊、該第一時間資訊及該第二時間資訊,評估與該第二節點裝置有關的該傳輸延遲。 The transmission delay detection method as claimed in claim 1, wherein the step of evaluating the transmission delay related to the second node device according to the first time information and the second time information comprises: According to the sending time information of the plurality of detection packets, the arrival time information of the plurality of detection packets at the third node device, the sending time information of the plurality of response packets, the arrival time of the plurality of response packets at the first node device Time information, the first time information and the second time information evaluate the transmission delay associated with the second node device. 如請求項1所述的傳輸延遲檢測方法,其中根據該第一時間資訊與該第二時間資訊評估與該第二節點裝置有關的該傳輸延遲的步驟包括: 根據該多個檢測封包抵達該第二節點裝置的該時間之分布,獲得該多個檢測封包抵達該第二節點裝置的第一中心時間; 根據該多個回應封包抵達該第二節點裝置的該時間之分布,獲得該多個回應封包抵達該第二節點裝置的第二中心時間;以及 根據該第一中心時間與該第二中心時間評估與該第二節點裝置有關的傳輸延遲。 The transmission delay detection method as claimed in claim 1, wherein the step of evaluating the transmission delay related to the second node device according to the first time information and the second time information comprises: Obtaining a first central time at which the plurality of detection packets arrive at the second node device according to the distribution of the time at which the plurality of detection packets arrive at the second node device; Obtaining a second central time at which the plurality of response packets arrive at the second node device according to the distribution of the time at which the plurality of response packets arrive at the second node device; and A transmission delay related to the second node device is estimated according to the first central time and the second central time. 如請求項4所述的傳輸延遲檢測方法,其中根據該多個檢測封包抵達該第二節點裝置的該時間之該分布,獲得該多個檢測封包抵達該第二節點裝置的該第一中心時間的步驟包括: 根據以下方程式獲得該第一中心時間,
Figure 03_image005
其中,TC(1)對應該第一中心時間,T(1)對應該多個檢測封包中第一個抵達該第二節點裝置的檢測封包的抵達時間,T(i)對應該多個檢測封包中第i個抵達該第二節點裝置的檢測封包的抵達時間,且N為該多個檢測封包的總數; 其中根據該多個回應封包抵達該第二節點裝置的該時間之該分布,獲得該多個回應封包抵達該第二節點裝置的該第二中心時間的操作包括: 根據以下方程式獲得該第二中心時間,
Figure 03_image007
其中,TC(2)對應該第二中心時間,T(1)’對應該多個回應封包中第一個抵達該第二節點裝置的回應封包的抵達時間,T(j)’對應該多個回應封包中第j個抵達該第二節點裝置的回應封包的抵達時間,且M為該多個回應封包的總數。
The transmission delay detection method as described in claim 4, wherein according to the distribution of the times when the plurality of detection packets arrive at the second node device, the first central time at which the plurality of detection packets arrive at the second node device is obtained The steps of include: Obtaining the first central time according to the following equation,
Figure 03_image005
Wherein, TC(1) corresponds to the first central time, T(1) corresponds to the arrival time of the first detection packet arriving at the second node device among the plurality of detection packets, and T(i) corresponds to the plurality of detection packets The arrival time of the i-th detection packet arriving at the second node device, and N is the total number of the plurality of detection packets; wherein according to the distribution of the time when the plurality of response packets arrive at the second node device, the obtained The operation of a plurality of response packets arriving at the second central time of the second node device includes: obtaining the second central time according to the following equation,
Figure 03_image007
Among them, TC(2) corresponds to the second central time, T(1)' corresponds to the arrival time of the first response packet arriving at the second node device among the plurality of response packets, and T(j)' corresponds to the plurality of response packets The arrival time of the jth response packet among the response packets arriving at the second node device, and M is the total number of the plurality of response packets.
如請求項4所述的傳輸延遲檢測方法,其中根據該第一中心時間與該第二中心時間評估與該第二節點裝置有關的該傳輸延遲的步驟包括以下步驟的至少其中之一: 根據該多個檢測封包的發送時間資訊與該第一中心時間,評估該第一節點裝置與該第二節點裝置之間在第一傳遞方向上的傳輸延遲; 根據該第一中心時間與該多個檢測封包抵達該第三節點裝置的抵達時間資訊,評估該第二節點裝置與該第三節點裝置之間在該第一傳遞方向上的傳輸延遲; 根據該多個回應封包的發送時間資訊與該第二中心時間,評估該第三節點裝置與該第二節點裝置之間在第二傳遞方向上的傳輸延遲;以及 根據該第二中心時間與該多個回應封包抵達該第一節點裝置的抵達時間資訊,評估該第二節點裝置與該第一節點裝置之間在該第二傳遞方向上的傳輸延遲。 The transmission delay detection method as claimed in claim 4, wherein the step of evaluating the transmission delay related to the second node device according to the first central time and the second central time includes at least one of the following steps: Estimate the transmission delay between the first node device and the second node device in the first transmission direction according to the sending time information of the plurality of detection packets and the first central time; Estimate the transmission delay between the second node device and the third node device in the first transfer direction according to the first central time and the arrival time information of the plurality of detected packets arriving at the third node device; Estimate a transmission delay between the third node device and the second node device in the second transfer direction according to the sending time information of the plurality of response packets and the second central time; and According to the second central time and the arrival time information of the plurality of response packets arriving at the first node device, the transmission delay between the second node device and the first node device in the second transmission direction is estimated. 一種傳輸延遲檢測系統,包括: 多個節點裝置;以及 伺服器,與該多個節點裝置通訊連接, 其中該伺服器用以: 經由該多個節點裝置中的第一節點裝置批次發送多個檢測封包,且該多個檢測封包經由該多個節點裝置中的第二節點裝置轉發至該多個節點裝置中的第三節點裝置; 經由該第一節點裝置接收多個回應封包,其中該多個回應封包是由該第三節點裝置批次發送以回應該多個檢測封包,且該多個回應封包經由該第二節點裝置轉發; 獲得由該第二節點裝置回報的第一時間資訊與第二時間資訊,其中該第一時間資訊反映該多個檢測封包抵達該第二節點裝置的時間,且該第二時間資訊反映該多個回應封包抵達該第二節點裝置的時間;以及 根據該第一時間資訊與該第二時間資訊評估與該第二節點裝置有關的傳輸延遲。 A transmission delay detection system comprising: multiple node devices; and a server, communicating with the plurality of node devices, Wherein the server is used for: A plurality of detection packets are sent in batches via a first node device among the plurality of node devices, and the plurality of detection packets are forwarded to a third node among the plurality of node devices via a second node device among the plurality of node devices device; receiving a plurality of response packets via the first node device, wherein the plurality of response packets are sent in batches by the third node device in response to the plurality of detection packets, and the plurality of response packets are forwarded via the second node device; Obtain first time information and second time information reported by the second node device, wherein the first time information reflects the time when the plurality of detection packets arrive at the second node device, and the second time information reflects the plurality of the time when the response packet arrives at the second node device; and A transmission delay related to the second node device is estimated according to the first time information and the second time information. 如請求項7所述的傳輸延遲檢測系統,其中該第二節點裝置不支援用以量測封包傳輸效能的任一通訊協定。The transmission delay detection system as claimed in claim 7, wherein the second node device does not support any communication protocol for measuring packet transmission performance. 如請求項7所述的傳輸延遲檢測系統,其中該伺服器根據該第一時間資訊與該第二時間資訊評估與該第二節點裝置有關的該傳輸延遲的操作包括: 根據該多個檢測封包的發送時間資訊、該多個檢測封包抵達該第三節點裝置的抵達時間資訊、該多個回應封包的發送時間資訊、該多個回應封包抵達該第一節點裝置的抵達時間資訊、該第一時間資訊及該第二時間資訊,評估與該第二節點裝置有關的該傳輸延遲。 The transmission delay detection system according to claim 7, wherein the operation of the server to estimate the transmission delay related to the second node device according to the first time information and the second time information includes: According to the sending time information of the plurality of detection packets, the arrival time information of the plurality of detection packets at the third node device, the sending time information of the plurality of response packets, the arrival time of the plurality of response packets at the first node device Time information, the first time information and the second time information evaluate the transmission delay associated with the second node device. 如請求項7所述的傳輸延遲檢測系統,其中該伺服器根據該第一時間資訊與該第二時間資訊評估與該第二節點裝置有關的該傳輸延遲的操作包括: 根據該多個檢測封包抵達該第二節點裝置的該時間之分布,獲得該多個檢測封包抵達該第二節點裝置的第一中心時間; 根據該多個回應封包抵達該第二節點裝置的該時間之分布,獲得該多個回應封包抵達該第二節點裝置的第二中心時間;以及 根據該第一中心時間與該第二中心時間評估與該第二節點裝置有關的傳輸延遲。 The transmission delay detection system according to claim 7, wherein the operation of the server to estimate the transmission delay related to the second node device according to the first time information and the second time information includes: Obtaining a first central time at which the plurality of detection packets arrive at the second node device according to the distribution of the time at which the plurality of detection packets arrive at the second node device; Obtaining a second central time at which the plurality of response packets arrive at the second node device according to the distribution of the time at which the plurality of response packets arrive at the second node device; and A transmission delay related to the second node device is estimated according to the first central time and the second central time. 如請求項10所述的傳輸延遲檢測系統,其中該伺服器根據該多個檢測封包抵達該第二節點裝置的該時間之該分布,獲得該多個檢測封包抵達該第二節點裝置的該第一中心時間的操作包括: 根據以下方程式獲得該第一中心時間,
Figure 03_image005
其中,TC(1)對應該第一中心時間,T(1)對應該多個檢測封包中第一個抵達該第二節點裝置的檢測封包的抵達時間,T(i)對應該多個檢測封包中第i個抵達該第二節點裝置的檢測封包的抵達時間,且N為該多個檢測封包的總數, 其中該伺服器根據該多個回應封包抵達該第二節點裝置的該時間之該分布,獲得該多個回應封包抵達該第二節點裝置的該第二中心時間的操作包括: 根據以下方程式獲得該第二中心時間,
Figure 03_image007
其中,TC(2)對應該第二中心時間,T(1)’對應該多個回應封包中第一個抵達該第二節點裝置的回應封包的抵達時間,T(j)’對應該多個回應封包中第j個抵達該第二節點裝置的回應封包的抵達時間,且M為該多個回應封包的總數。
The transmission delay detection system as described in claim 10, wherein the server obtains the first time when the plurality of detection packets arrive at the second node device according to the distribution of the times when the plurality of detection packets arrive at the second node device The operation of a central time includes: Obtaining the first central time according to the following equation,
Figure 03_image005
Wherein, TC(1) corresponds to the first central time, T(1) corresponds to the arrival time of the first detection packet arriving at the second node device among the plurality of detection packets, and T(i) corresponds to the plurality of detection packets The arrival time of the i-th detection packet arriving at the second node device, and N is the total number of the plurality of detection packets, wherein the server is based on the distribution of the times when the plurality of response packets arrive at the second node device The operation of obtaining the second central time when the plurality of response packets arrive at the second node device includes: obtaining the second central time according to the following equation,
Figure 03_image007
Among them, TC(2) corresponds to the second central time, T(1)' corresponds to the arrival time of the first response packet arriving at the second node device among the plurality of response packets, and T(j)' corresponds to the plurality of response packets The arrival time of the jth response packet among the response packets arriving at the second node device, and M is the total number of the plurality of response packets.
如請求項10所述的傳輸延遲檢測系統,其中該伺服器根據該第一中心時間與該第二中心時間評估與該第二節點裝置有關的該傳輸延遲的操作包括以下操作的至少其中之一: 根據該多個檢測封包的發送時間資訊與該第一中心時間,評估該第一節點裝置與該第二節點裝置之間在第一傳遞方向上的傳輸延遲; 根據該第一中心時間與該多個檢測封包抵達該第三節點裝置的抵達時間資訊,評估該第二節點裝置與該第三節點裝置之間在該第一傳遞方向上的傳輸延遲; 根據該多個回應封包的發送時間資訊與該第二中心時間,評估該第三節點裝置與該第二節點裝置之間在第二傳遞方向上的傳輸延遲;以及 根據該第二中心時間與該多個回應封包抵達該第一節點裝置的抵達時間資訊,評估該第二節點裝置與該第一節點裝置之間在該第二傳遞方向上的傳輸延遲。 The transmission delay detection system as claimed in claim 10, wherein the operation of the server to estimate the transmission delay related to the second node device according to the first central time and the second central time includes at least one of the following operations : Estimate the transmission delay between the first node device and the second node device in the first transmission direction according to the sending time information of the plurality of detection packets and the first central time; Estimate the transmission delay between the second node device and the third node device in the first transfer direction according to the first central time and the arrival time information of the plurality of detected packets arriving at the third node device; Estimate a transmission delay between the third node device and the second node device in the second transfer direction according to the sending time information of the plurality of response packets and the second central time; and According to the second central time and the arrival time information of the plurality of response packets arriving at the first node device, the transmission delay between the second node device and the first node device in the second transmission direction is estimated.
TW111124593A 2022-06-30 2022-06-30 Transmission delay detection method and transmission delay detection system TWI804371B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111124593A TWI804371B (en) 2022-06-30 2022-06-30 Transmission delay detection method and transmission delay detection system
KR1020230052963A KR20240002905A (en) 2022-06-30 2023-04-21 Transmission delay detection method and transmission delay detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111124593A TWI804371B (en) 2022-06-30 2022-06-30 Transmission delay detection method and transmission delay detection system

Publications (2)

Publication Number Publication Date
TWI804371B true TWI804371B (en) 2023-06-01
TW202404317A TW202404317A (en) 2024-01-16

Family

ID=87803404

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111124593A TWI804371B (en) 2022-06-30 2022-06-30 Transmission delay detection method and transmission delay detection system

Country Status (2)

Country Link
KR (1) KR20240002905A (en)
TW (1) TWI804371B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394796A (en) * 2011-11-04 2012-03-28 华为技术有限公司 Link time delay detection method, source terminal, destination terminal and system
CN106130825A (en) * 2016-08-04 2016-11-16 华为技术有限公司 A kind of data transmission quality detection method and device
CN112134747A (en) * 2019-06-24 2020-12-25 中兴通讯股份有限公司 Method for detecting transmission delay and related equipment
CN112994961A (en) * 2019-12-02 2021-06-18 华为技术有限公司 Transmission quality detection method, device, system and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394796A (en) * 2011-11-04 2012-03-28 华为技术有限公司 Link time delay detection method, source terminal, destination terminal and system
CN106130825A (en) * 2016-08-04 2016-11-16 华为技术有限公司 A kind of data transmission quality detection method and device
CN112134747A (en) * 2019-06-24 2020-12-25 中兴通讯股份有限公司 Method for detecting transmission delay and related equipment
CN112994961A (en) * 2019-12-02 2021-06-18 华为技术有限公司 Transmission quality detection method, device, system and storage medium

Also Published As

Publication number Publication date
KR20240002905A (en) 2024-01-08
TW202404317A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
US10425321B2 (en) Methods, systems, and computer readable media for testing time sensitive network (TSN) elements
US7457868B1 (en) Methods and apparatus for measuring network performance
US5477531A (en) Method and apparatus for testing a packet-based network
US11611498B2 (en) Round-trip time evaluation system, method, and apparatus
US10178204B2 (en) Information processing method and device
CN108737003A (en) For testing time sensitive network(TSN)Method, system and the computer-readable medium of element
US9814008B2 (en) Methods, systems, and computer readable media for receiving a clock synchronization message
US20160182332A1 (en) Method, a computer program product, and a carrier for indicating one-way latency in a data network
WO2018113425A1 (en) Method, apparatus and system for detecting time delay
US10498627B2 (en) Detecting packet forwarding path
WO2011124165A2 (en) Method and device for detecting link loss ratio
JP5271247B2 (en) Communication quality data monitoring measurement apparatus and method and program
Alexander et al. Off-path round trip time measurement via TCP/IP side channels
WO2020135429A1 (en) Traffic analysis method and apparatus, and traffic detection method and apparatus
US9276831B2 (en) Determining network latency with limited computing resources
CN104618922B (en) Measurement result matching process and device in a kind of RTT measurement and positionings system
US11916660B2 (en) TSN operation management system with time capture location protocol
US7139824B2 (en) Method and system for isolating and simulating dropped packets in a computer network
TWI804371B (en) Transmission delay detection method and transmission delay detection system
US8989039B2 (en) Packet transfer delay measurement system
CN112491489A (en) Method, device and system for time synchronization based on in-band telemetry
WO2017114568A1 (en) Method, system and device for providing time-stamps in a network measurement test
US11677651B2 (en) UDPING—continuous one-way monitoring of multiple network links
CN107864026B (en) Aggregation link frame loss measuring device and method
JP2004135065A (en) Transmission terminal, reception terminal and data transmission system